2 * Copyright © 2013 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
28 #include <linux/highmem.h>
30 #include <drm/drm_cache.h>
32 #include "gt/intel_engine.h"
33 #include "gt/intel_engine_regs.h"
34 #include "gt/intel_gpu_commands.h"
35 #include "gt/intel_gt_regs.h"
37 #include "i915_cmd_parser.h"
39 #include "i915_memcpy.h"
43 * DOC: batch buffer command parser
46 * Certain OpenGL features (e.g. transform feedback, performance monitoring)
47 * require userspace code to submit batches containing commands such as
48 * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some
49 * generations of the hardware will noop these commands in "unsecure" batches
50 * (which includes all userspace batches submitted via i915) even though the
51 * commands may be safe and represent the intended programming model of the
54 * The software command parser is similar in operation to the command parsing
55 * done in hardware for unsecure batches. However, the software parser allows
56 * some operations that would be noop'd by hardware, if the parser determines
57 * the operation is safe, and submits the batch as "secure" to prevent hardware
61 * At a high level, the hardware (and software) checks attempt to prevent
62 * granting userspace undue privileges. There are three categories of privilege.
64 * First, commands which are explicitly defined as privileged or which should
65 * only be used by the kernel driver. The parser rejects such commands
67 * Second, commands which access registers. To support correct/enhanced
68 * userspace functionality, particularly certain OpenGL extensions, the parser
69 * provides a whitelist of registers which userspace may safely access
71 * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc).
72 * The parser always rejects such commands.
74 * The majority of the problematic commands fall in the MI_* range, with only a
75 * few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW).
78 * Each engine maintains tables of commands and registers which the parser
79 * uses in scanning batch buffers submitted to that engine.
81 * Since the set of commands that the parser must check for is significantly
82 * smaller than the number of commands supported, the parser tables contain only
83 * those commands required by the parser. This generally works because command
84 * opcode ranges have standard command length encodings. So for commands that
85 * the parser does not need to check, it can easily skip them. This is
86 * implemented via a per-engine length decoding vfunc.
88 * Unfortunately, there are a number of commands that do not follow the standard
89 * length encoding for their opcode range, primarily amongst the MI_* commands.
90 * To handle this, the parser provides a way to define explicit "skip" entries
91 * in the per-engine command tables.
93 * Other command table entries map fairly directly to high level categories
94 * mentioned above: rejected, register whitelist. The parser implements a number
95 * of checks, including the privileged memory checks, via a general bitmasking
100 * A command that requires special handling by the command parser.
102 struct drm_i915_cmd_descriptor {
104 * Flags describing how the command parser processes the command.
106 * CMD_DESC_FIXED: The command has a fixed length if this is set,
107 * a length mask if not set
108 * CMD_DESC_SKIP: The command is allowed but does not follow the
109 * standard length encoding for the opcode range in
111 * CMD_DESC_REJECT: The command is never allowed
112 * CMD_DESC_REGISTER: The command should be checked against the
113 * register whitelist for the appropriate ring
116 #define CMD_DESC_FIXED (1<<0)
117 #define CMD_DESC_SKIP (1<<1)
118 #define CMD_DESC_REJECT (1<<2)
119 #define CMD_DESC_REGISTER (1<<3)
120 #define CMD_DESC_BITMASK (1<<4)
123 * The command's unique identification bits and the bitmask to get them.
124 * This isn't strictly the opcode field as defined in the spec and may
125 * also include type, subtype, and/or subop fields.
133 * The command's length. The command is either fixed length (i.e. does
134 * not include a length field) or has a length field mask. The flag
135 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
136 * a length mask. All command entries in a command table must include
137 * length information.
145 * Describes where to find a register address in the command to check
146 * against the ring's register whitelist. Only valid if flags has the
147 * CMD_DESC_REGISTER bit set.
149 * A non-zero step value implies that the command may access multiple
150 * registers in sequence (e.g. LRI), in that case step gives the
151 * distance in dwords between individual offset fields.
159 #define MAX_CMD_DESC_BITMASKS 3
161 * Describes command checks where a particular dword is masked and
162 * compared against an expected value. If the command does not match
163 * the expected value, the parser rejects it. Only valid if flags has
164 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
167 * If the check specifies a non-zero condition_mask then the parser
168 * only performs the check when the bits specified by condition_mask
175 u32 condition_offset;
177 } bits[MAX_CMD_DESC_BITMASKS];
181 * A table of commands requiring special handling by the command parser.
183 * Each engine has an array of tables. Each table consists of an array of
184 * command descriptors, which must be sorted with command opcodes in
187 struct drm_i915_cmd_table {
188 const struct drm_i915_cmd_descriptor *table;
192 #define STD_MI_OPCODE_SHIFT (32 - 9)
193 #define STD_3D_OPCODE_SHIFT (32 - 16)
194 #define STD_2D_OPCODE_SHIFT (32 - 10)
195 #define STD_MFX_OPCODE_SHIFT (32 - 16)
196 #define MIN_OPCODE_SHIFT 16
198 #define CMD(op, opm, f, lm, fl, ...) \
200 .flags = (fl) | ((f) ? CMD_DESC_FIXED : 0), \
201 .cmd = { (op & ~0u << (opm)), ~0u << (opm) }, \
202 .length = { (lm) }, \
206 /* Convenience macros to compress the tables */
207 #define SMI STD_MI_OPCODE_SHIFT
208 #define S3D STD_3D_OPCODE_SHIFT
209 #define S2D STD_2D_OPCODE_SHIFT
210 #define SMFX STD_MFX_OPCODE_SHIFT
212 #define S CMD_DESC_SKIP
213 #define R CMD_DESC_REJECT
214 #define W CMD_DESC_REGISTER
215 #define B CMD_DESC_BITMASK
217 /* Command Mask Fixed Len Action
218 ---------------------------------------------------------- */
219 static const struct drm_i915_cmd_descriptor gen7_common_cmds[] = {
220 CMD( MI_NOOP, SMI, F, 1, S ),
221 CMD( MI_USER_INTERRUPT, SMI, F, 1, R ),
222 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, R ),
223 CMD( MI_ARB_CHECK, SMI, F, 1, S ),
224 CMD( MI_REPORT_HEAD, SMI, F, 1, S ),
225 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ),
226 CMD( MI_SEMAPHORE_MBOX, SMI, !F, 0xFF, R ),
227 CMD( MI_STORE_DWORD_INDEX, SMI, !F, 0xFF, R ),
228 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W,
229 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ),
230 CMD( MI_STORE_REGISTER_MEM, SMI, F, 3, W | B,
231 .reg = { .offset = 1, .mask = 0x007FFFFC },
234 .mask = MI_GLOBAL_GTT,
237 CMD( MI_LOAD_REGISTER_MEM, SMI, F, 3, W | B,
238 .reg = { .offset = 1, .mask = 0x007FFFFC },
241 .mask = MI_GLOBAL_GTT,
245 * MI_BATCH_BUFFER_START requires some special handling. It's not
246 * really a 'skip' action but it doesn't seem like it's worth adding
247 * a new action. See intel_engine_cmd_parser().
249 CMD( MI_BATCH_BUFFER_START, SMI, !F, 0xFF, S ),
252 static const struct drm_i915_cmd_descriptor gen7_render_cmds[] = {
253 CMD( MI_FLUSH, SMI, F, 1, S ),
254 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
255 CMD( MI_PREDICATE, SMI, F, 1, S ),
256 CMD( MI_TOPOLOGY_FILTER, SMI, F, 1, S ),
257 CMD( MI_SET_APPID, SMI, F, 1, S ),
258 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
259 CMD( MI_SET_CONTEXT, SMI, !F, 0xFF, R ),
260 CMD( MI_URB_CLEAR, SMI, !F, 0xFF, S ),
261 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3F, B,
264 .mask = MI_GLOBAL_GTT,
267 CMD( MI_UPDATE_GTT, SMI, !F, 0xFF, R ),
268 CMD( MI_CLFLUSH, SMI, !F, 0x3FF, B,
271 .mask = MI_GLOBAL_GTT,
274 CMD( MI_REPORT_PERF_COUNT, SMI, !F, 0x3F, B,
277 .mask = MI_REPORT_PERF_COUNT_GGTT,
280 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
283 .mask = MI_GLOBAL_GTT,
286 CMD( GFX_OP_3DSTATE_VF_STATISTICS, S3D, F, 1, S ),
287 CMD( PIPELINE_SELECT, S3D, F, 1, S ),
288 CMD( MEDIA_VFE_STATE, S3D, !F, 0xFFFF, B,
291 .mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK,
294 CMD( GPGPU_OBJECT, S3D, !F, 0xFF, S ),
295 CMD( GPGPU_WALKER, S3D, !F, 0xFF, S ),
296 CMD( GFX_OP_3DSTATE_SO_DECL_LIST, S3D, !F, 0x1FF, S ),
297 CMD( GFX_OP_PIPE_CONTROL(5), S3D, !F, 0xFF, B,
300 .mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY),
305 .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB |
306 PIPE_CONTROL_STORE_DATA_INDEX),
308 .condition_offset = 1,
309 .condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK,
313 static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = {
314 CMD( MI_SET_PREDICATE, SMI, F, 1, S ),
315 CMD( MI_RS_CONTROL, SMI, F, 1, S ),
316 CMD( MI_URB_ATOMIC_ALLOC, SMI, F, 1, S ),
317 CMD( MI_SET_APPID, SMI, F, 1, S ),
318 CMD( MI_RS_CONTEXT, SMI, F, 1, S ),
319 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ),
320 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
321 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W,
322 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ),
323 CMD( MI_RS_STORE_DATA_IMM, SMI, !F, 0xFF, S ),
324 CMD( MI_LOAD_URB_MEM, SMI, !F, 0xFF, S ),
325 CMD( MI_STORE_URB_MEM, SMI, !F, 0xFF, S ),
326 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_VS, S3D, !F, 0x7FF, S ),
327 CMD( GFX_OP_3DSTATE_DX9_CONSTANTF_PS, S3D, !F, 0x7FF, S ),
329 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS, S3D, !F, 0x1FF, S ),
330 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS, S3D, !F, 0x1FF, S ),
331 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS, S3D, !F, 0x1FF, S ),
332 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS, S3D, !F, 0x1FF, S ),
333 CMD( GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS, S3D, !F, 0x1FF, S ),
336 static const struct drm_i915_cmd_descriptor gen7_video_cmds[] = {
337 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
338 CMD( MI_SET_APPID, SMI, F, 1, S ),
339 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
342 .mask = MI_GLOBAL_GTT,
345 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
346 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
349 .mask = MI_FLUSH_DW_NOTIFY,
354 .mask = MI_FLUSH_DW_USE_GTT,
356 .condition_offset = 0,
357 .condition_mask = MI_FLUSH_DW_OP_MASK,
361 .mask = MI_FLUSH_DW_STORE_INDEX,
363 .condition_offset = 0,
364 .condition_mask = MI_FLUSH_DW_OP_MASK,
366 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
369 .mask = MI_GLOBAL_GTT,
373 * MFX_WAIT doesn't fit the way we handle length for most commands.
374 * It has a length field but it uses a non-standard length bias.
375 * It is always 1 dword though, so just treat it as fixed length.
377 CMD( MFX_WAIT, SMFX, F, 1, S ),
380 static const struct drm_i915_cmd_descriptor gen7_vecs_cmds[] = {
381 CMD( MI_ARB_ON_OFF, SMI, F, 1, R ),
382 CMD( MI_SET_APPID, SMI, F, 1, S ),
383 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0xFF, B,
386 .mask = MI_GLOBAL_GTT,
389 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
390 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
393 .mask = MI_FLUSH_DW_NOTIFY,
398 .mask = MI_FLUSH_DW_USE_GTT,
400 .condition_offset = 0,
401 .condition_mask = MI_FLUSH_DW_OP_MASK,
405 .mask = MI_FLUSH_DW_STORE_INDEX,
407 .condition_offset = 0,
408 .condition_mask = MI_FLUSH_DW_OP_MASK,
410 CMD( MI_CONDITIONAL_BATCH_BUFFER_END, SMI, !F, 0xFF, B,
413 .mask = MI_GLOBAL_GTT,
418 static const struct drm_i915_cmd_descriptor gen7_blt_cmds[] = {
419 CMD( MI_DISPLAY_FLIP, SMI, !F, 0xFF, R ),
420 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, B,
423 .mask = MI_GLOBAL_GTT,
426 CMD( MI_UPDATE_GTT, SMI, !F, 0x3F, R ),
427 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, B,
430 .mask = MI_FLUSH_DW_NOTIFY,
435 .mask = MI_FLUSH_DW_USE_GTT,
437 .condition_offset = 0,
438 .condition_mask = MI_FLUSH_DW_OP_MASK,
442 .mask = MI_FLUSH_DW_STORE_INDEX,
444 .condition_offset = 0,
445 .condition_mask = MI_FLUSH_DW_OP_MASK,
447 CMD( COLOR_BLT, S2D, !F, 0x3F, S ),
448 CMD( SRC_COPY_BLT, S2D, !F, 0x3F, S ),
451 static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = {
452 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, R ),
453 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, R ),
457 * For Gen9 we can still rely on the h/w to enforce cmd security, and only
458 * need to re-enforce the register access checks. We therefore only need to
459 * teach the cmdparser how to find the end of each command, and identify
460 * register accesses. The table doesn't need to reject any commands, and so
461 * the only commands listed here are:
462 * 1) Those that touch registers
463 * 2) Those that do not have the default 8-bit length
465 * Note that the default MI length mask chosen for this table is 0xFF, not
466 * the 0x3F used on older devices. This is because the vast majority of MI
467 * cmds on Gen9 use a standard 8-bit Length field.
468 * All the Gen9 blitter instructions are standard 0xFF length mask, and
469 * none allow access to non-general registers, so in fact no BLT cmds are
470 * included in the table at all.
473 static const struct drm_i915_cmd_descriptor gen9_blt_cmds[] = {
474 CMD( MI_NOOP, SMI, F, 1, S ),
475 CMD( MI_USER_INTERRUPT, SMI, F, 1, S ),
476 CMD( MI_WAIT_FOR_EVENT, SMI, F, 1, S ),
477 CMD( MI_FLUSH, SMI, F, 1, S ),
478 CMD( MI_ARB_CHECK, SMI, F, 1, S ),
479 CMD( MI_REPORT_HEAD, SMI, F, 1, S ),
480 CMD( MI_ARB_ON_OFF, SMI, F, 1, S ),
481 CMD( MI_SUSPEND_FLUSH, SMI, F, 1, S ),
482 CMD( MI_LOAD_SCAN_LINES_INCL, SMI, !F, 0x3F, S ),
483 CMD( MI_LOAD_SCAN_LINES_EXCL, SMI, !F, 0x3F, S ),
484 CMD( MI_STORE_DWORD_IMM, SMI, !F, 0x3FF, S ),
485 CMD( MI_LOAD_REGISTER_IMM(1), SMI, !F, 0xFF, W,
486 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 } ),
487 CMD( MI_UPDATE_GTT, SMI, !F, 0x3FF, S ),
488 CMD( MI_STORE_REGISTER_MEM_GEN8, SMI, F, 4, W,
489 .reg = { .offset = 1, .mask = 0x007FFFFC } ),
490 CMD( MI_FLUSH_DW, SMI, !F, 0x3F, S ),
491 CMD( MI_LOAD_REGISTER_MEM_GEN8, SMI, F, 4, W,
492 .reg = { .offset = 1, .mask = 0x007FFFFC } ),
493 CMD( MI_LOAD_REGISTER_REG, SMI, !F, 0xFF, W,
494 .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 } ),
497 * We allow BB_START but apply further checks. We just sanitize the
500 #define MI_BB_START_OPERAND_MASK GENMASK(SMI-1, 0)
501 #define MI_BB_START_OPERAND_EXPECT (MI_BATCH_PPGTT_HSW | 1)
502 CMD( MI_BATCH_BUFFER_START_GEN8, SMI, !F, 0xFF, B,
505 .mask = MI_BB_START_OPERAND_MASK,
506 .expected = MI_BB_START_OPERAND_EXPECT,
510 static const struct drm_i915_cmd_descriptor noop_desc =
511 CMD(MI_NOOP, SMI, F, 1, S);
524 static const struct drm_i915_cmd_table gen7_render_cmd_table[] = {
525 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
526 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
529 static const struct drm_i915_cmd_table hsw_render_ring_cmd_table[] = {
530 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
531 { gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
532 { hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) },
535 static const struct drm_i915_cmd_table gen7_video_cmd_table[] = {
536 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
537 { gen7_video_cmds, ARRAY_SIZE(gen7_video_cmds) },
540 static const struct drm_i915_cmd_table hsw_vebox_cmd_table[] = {
541 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
542 { gen7_vecs_cmds, ARRAY_SIZE(gen7_vecs_cmds) },
545 static const struct drm_i915_cmd_table gen7_blt_cmd_table[] = {
546 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
547 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
550 static const struct drm_i915_cmd_table hsw_blt_ring_cmd_table[] = {
551 { gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
552 { gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
553 { hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) },
556 static const struct drm_i915_cmd_table gen9_blt_cmd_table[] = {
557 { gen9_blt_cmds, ARRAY_SIZE(gen9_blt_cmds) },
562 * Register whitelists, sorted by increasing register offset.
566 * An individual whitelist entry granting access to register addr. If
567 * mask is non-zero the argument of immediate register writes will be
568 * AND-ed with mask, and the command will be rejected if the result
569 * doesn't match value.
571 * Registers with non-zero mask are only allowed to be written using
574 struct drm_i915_reg_descriptor {
580 /* Convenience macro for adding 32-bit registers. */
581 #define REG32(_reg, ...) \
582 { .addr = (_reg), __VA_ARGS__ }
584 #define REG32_IDX(_reg, idx) \
585 { .addr = _reg(idx) }
588 * Convenience macro for adding 64-bit registers.
590 * Some registers that userspace accesses are 64 bits. The register
591 * access commands only allow 32-bit accesses. Hence, we have to include
592 * entries for both halves of the 64-bit registers.
594 #define REG64(_reg) \
596 { .addr = _reg ## _UDW }
598 #define REG64_IDX(_reg, idx) \
599 { .addr = _reg(idx) }, \
600 { .addr = _reg ## _UDW(idx) }
602 #define REG64_BASE_IDX(_reg, base, idx) \
603 { .addr = _reg(base, idx) }, \
604 { .addr = _reg ## _UDW(base, idx) }
606 static const struct drm_i915_reg_descriptor gen7_render_regs[] = {
607 REG64(GPGPU_THREADS_DISPATCHED),
608 REG64(HS_INVOCATION_COUNT),
609 REG64(DS_INVOCATION_COUNT),
610 REG64(IA_VERTICES_COUNT),
611 REG64(IA_PRIMITIVES_COUNT),
612 REG64(VS_INVOCATION_COUNT),
613 REG64(GS_INVOCATION_COUNT),
614 REG64(GS_PRIMITIVES_COUNT),
615 REG64(CL_INVOCATION_COUNT),
616 REG64(CL_PRIMITIVES_COUNT),
617 REG64(PS_INVOCATION_COUNT),
618 REG64(PS_DEPTH_COUNT),
619 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
620 REG64_IDX(MI_PREDICATE_SRC0, RENDER_RING_BASE),
621 REG64_IDX(MI_PREDICATE_SRC1, RENDER_RING_BASE),
622 REG32(GEN7_3DPRIM_END_OFFSET),
623 REG32(GEN7_3DPRIM_START_VERTEX),
624 REG32(GEN7_3DPRIM_VERTEX_COUNT),
625 REG32(GEN7_3DPRIM_INSTANCE_COUNT),
626 REG32(GEN7_3DPRIM_START_INSTANCE),
627 REG32(GEN7_3DPRIM_BASE_VERTEX),
628 REG32(GEN7_GPGPU_DISPATCHDIMX),
629 REG32(GEN7_GPGPU_DISPATCHDIMY),
630 REG32(GEN7_GPGPU_DISPATCHDIMZ),
631 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
632 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0),
633 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1),
634 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2),
635 REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3),
636 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0),
637 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1),
638 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2),
639 REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3),
640 REG32(GEN7_SO_WRITE_OFFSET(0)),
641 REG32(GEN7_SO_WRITE_OFFSET(1)),
642 REG32(GEN7_SO_WRITE_OFFSET(2)),
643 REG32(GEN7_SO_WRITE_OFFSET(3)),
644 REG32(GEN7_L3SQCREG1),
645 REG32(GEN7_L3CNTLREG2),
646 REG32(GEN7_L3CNTLREG3),
647 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
650 static const struct drm_i915_reg_descriptor hsw_render_regs[] = {
651 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 0),
652 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 1),
653 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 2),
654 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 3),
655 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 4),
656 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 5),
657 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 6),
658 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 7),
659 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 8),
660 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 9),
661 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 10),
662 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 11),
663 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 12),
664 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 13),
665 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 14),
666 REG64_BASE_IDX(GEN8_RING_CS_GPR, RENDER_RING_BASE, 15),
668 .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE,
670 REG32(HSW_ROW_CHICKEN3,
671 .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 |
672 HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
676 static const struct drm_i915_reg_descriptor gen7_blt_regs[] = {
677 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
678 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
680 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
683 static const struct drm_i915_reg_descriptor gen9_blt_regs[] = {
684 REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
685 REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
687 REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
688 REG32_IDX(RING_CTX_TIMESTAMP, BLT_RING_BASE),
689 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 0),
690 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 1),
691 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 2),
692 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 3),
693 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 4),
694 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 5),
695 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 6),
696 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 7),
697 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 8),
698 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 9),
699 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 10),
700 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 11),
701 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 12),
702 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 13),
703 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 14),
704 REG64_BASE_IDX(GEN8_RING_CS_GPR, BLT_RING_BASE, 15),
710 struct drm_i915_reg_table {
711 const struct drm_i915_reg_descriptor *regs;
715 static const struct drm_i915_reg_table ivb_render_reg_tables[] = {
716 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
719 static const struct drm_i915_reg_table ivb_blt_reg_tables[] = {
720 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
723 static const struct drm_i915_reg_table hsw_render_reg_tables[] = {
724 { gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
725 { hsw_render_regs, ARRAY_SIZE(hsw_render_regs) },
728 static const struct drm_i915_reg_table hsw_blt_reg_tables[] = {
729 { gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
732 static const struct drm_i915_reg_table gen9_blt_reg_tables[] = {
733 { gen9_blt_regs, ARRAY_SIZE(gen9_blt_regs) },
736 static u32 gen7_render_get_cmd_length_mask(u32 cmd_header)
738 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
740 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
742 if (client == INSTR_MI_CLIENT)
744 else if (client == INSTR_RC_CLIENT) {
745 if (subclient == INSTR_MEDIA_SUBCLIENT)
751 DRM_DEBUG("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header);
755 static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header)
757 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
759 (cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
760 u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT;
762 if (client == INSTR_MI_CLIENT)
764 else if (client == INSTR_RC_CLIENT) {
765 if (subclient == INSTR_MEDIA_SUBCLIENT) {
774 DRM_DEBUG("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header);
778 static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header)
780 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
782 if (client == INSTR_MI_CLIENT)
784 else if (client == INSTR_BC_CLIENT)
787 DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
791 static u32 gen9_blt_get_cmd_length_mask(u32 cmd_header)
793 u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
795 if (client == INSTR_MI_CLIENT || client == INSTR_BC_CLIENT)
798 DRM_DEBUG("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
802 static bool validate_cmds_sorted(const struct intel_engine_cs *engine,
803 const struct drm_i915_cmd_table *cmd_tables,
809 if (!cmd_tables || cmd_table_count == 0)
812 for (i = 0; i < cmd_table_count; i++) {
813 const struct drm_i915_cmd_table *table = &cmd_tables[i];
817 for (j = 0; j < table->count; j++) {
818 const struct drm_i915_cmd_descriptor *desc =
820 u32 curr = desc->cmd.value & desc->cmd.mask;
822 if (curr < previous) {
823 drm_err(&engine->i915->drm,
824 "CMD: %s [%d] command table not sorted: "
825 "table=%d entry=%d cmd=0x%08X prev=0x%08X\n",
826 engine->name, engine->id,
827 i, j, curr, previous);
838 static bool check_sorted(const struct intel_engine_cs *engine,
839 const struct drm_i915_reg_descriptor *reg_table,
846 for (i = 0; i < reg_count; i++) {
847 u32 curr = i915_mmio_reg_offset(reg_table[i].addr);
849 if (curr < previous) {
850 drm_err(&engine->i915->drm,
851 "CMD: %s [%d] register table not sorted: "
852 "entry=%d reg=0x%08X prev=0x%08X\n",
853 engine->name, engine->id,
864 static bool validate_regs_sorted(struct intel_engine_cs *engine)
867 const struct drm_i915_reg_table *table;
869 for (i = 0; i < engine->reg_table_count; i++) {
870 table = &engine->reg_tables[i];
871 if (!check_sorted(engine, table->regs, table->num_regs))
879 const struct drm_i915_cmd_descriptor *desc;
880 struct hlist_node node;
884 * Different command ranges have different numbers of bits for the opcode. For
885 * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The
886 * problem is that, for example, MI commands use bits 22:16 for other fields
887 * such as GGTT vs PPGTT bits. If we include those bits in the mask then when
888 * we mask a command from a batch it could hash to the wrong bucket due to
889 * non-opcode bits being set. But if we don't include those bits, some 3D
890 * commands may hash to the same bucket due to not including opcode bits that
891 * make the command unique. For now, we will risk hashing to the same bucket.
893 static inline u32 cmd_header_key(u32 x)
895 switch (x >> INSTR_CLIENT_SHIFT) {
897 case INSTR_MI_CLIENT:
898 return x >> STD_MI_OPCODE_SHIFT;
899 case INSTR_RC_CLIENT:
900 return x >> STD_3D_OPCODE_SHIFT;
901 case INSTR_BC_CLIENT:
902 return x >> STD_2D_OPCODE_SHIFT;
906 static int init_hash_table(struct intel_engine_cs *engine,
907 const struct drm_i915_cmd_table *cmd_tables,
912 hash_init(engine->cmd_hash);
914 for (i = 0; i < cmd_table_count; i++) {
915 const struct drm_i915_cmd_table *table = &cmd_tables[i];
917 for (j = 0; j < table->count; j++) {
918 const struct drm_i915_cmd_descriptor *desc =
920 struct cmd_node *desc_node =
921 kmalloc(sizeof(*desc_node), GFP_KERNEL);
926 desc_node->desc = desc;
927 hash_add(engine->cmd_hash, &desc_node->node,
928 cmd_header_key(desc->cmd.value));
935 static void fini_hash_table(struct intel_engine_cs *engine)
937 struct hlist_node *tmp;
938 struct cmd_node *desc_node;
941 hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) {
942 hash_del(&desc_node->node);
948 * intel_engine_init_cmd_parser() - set cmd parser related fields for an engine
949 * @engine: the engine to initialize
951 * Optionally initializes fields related to batch buffer command parsing in the
952 * struct intel_engine_cs based on whether the platform requires software
955 int intel_engine_init_cmd_parser(struct intel_engine_cs *engine)
957 const struct drm_i915_cmd_table *cmd_tables;
961 if (GRAPHICS_VER(engine->i915) != 7 && !(GRAPHICS_VER(engine->i915) == 9 &&
962 engine->class == COPY_ENGINE_CLASS))
965 switch (engine->class) {
967 if (IS_HASWELL(engine->i915)) {
968 cmd_tables = hsw_render_ring_cmd_table;
970 ARRAY_SIZE(hsw_render_ring_cmd_table);
972 cmd_tables = gen7_render_cmd_table;
973 cmd_table_count = ARRAY_SIZE(gen7_render_cmd_table);
976 if (IS_HASWELL(engine->i915)) {
977 engine->reg_tables = hsw_render_reg_tables;
978 engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables);
980 engine->reg_tables = ivb_render_reg_tables;
981 engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables);
983 engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask;
985 case VIDEO_DECODE_CLASS:
986 cmd_tables = gen7_video_cmd_table;
987 cmd_table_count = ARRAY_SIZE(gen7_video_cmd_table);
988 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
990 case COPY_ENGINE_CLASS:
991 engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask;
992 if (GRAPHICS_VER(engine->i915) == 9) {
993 cmd_tables = gen9_blt_cmd_table;
994 cmd_table_count = ARRAY_SIZE(gen9_blt_cmd_table);
995 engine->get_cmd_length_mask =
996 gen9_blt_get_cmd_length_mask;
998 /* BCS Engine unsafe without parser */
999 engine->flags |= I915_ENGINE_REQUIRES_CMD_PARSER;
1000 } else if (IS_HASWELL(engine->i915)) {
1001 cmd_tables = hsw_blt_ring_cmd_table;
1002 cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmd_table);
1004 cmd_tables = gen7_blt_cmd_table;
1005 cmd_table_count = ARRAY_SIZE(gen7_blt_cmd_table);
1008 if (GRAPHICS_VER(engine->i915) == 9) {
1009 engine->reg_tables = gen9_blt_reg_tables;
1010 engine->reg_table_count =
1011 ARRAY_SIZE(gen9_blt_reg_tables);
1012 } else if (IS_HASWELL(engine->i915)) {
1013 engine->reg_tables = hsw_blt_reg_tables;
1014 engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables);
1016 engine->reg_tables = ivb_blt_reg_tables;
1017 engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables);
1020 case VIDEO_ENHANCEMENT_CLASS:
1021 cmd_tables = hsw_vebox_cmd_table;
1022 cmd_table_count = ARRAY_SIZE(hsw_vebox_cmd_table);
1023 /* VECS can use the same length_mask function as VCS */
1024 engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
1027 MISSING_CASE(engine->class);
1031 if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) {
1032 drm_err(&engine->i915->drm,
1033 "%s: command descriptions are not sorted\n",
1037 if (!validate_regs_sorted(engine)) {
1038 drm_err(&engine->i915->drm,
1039 "%s: registers are not sorted\n", engine->name);
1043 ret = init_hash_table(engine, cmd_tables, cmd_table_count);
1045 drm_err(&engine->i915->drm,
1046 "%s: initialised failed!\n", engine->name);
1047 fini_hash_table(engine);
1051 engine->flags |= I915_ENGINE_USING_CMD_PARSER;
1054 if (intel_engine_requires_cmd_parser(engine) &&
1055 !intel_engine_using_cmd_parser(engine))
1062 * intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields
1063 * @engine: the engine to clean up
1065 * Releases any resources related to command parsing that may have been
1066 * initialized for the specified engine.
1068 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine)
1070 if (!intel_engine_using_cmd_parser(engine))
1073 fini_hash_table(engine);
1076 static const struct drm_i915_cmd_descriptor*
1077 find_cmd_in_table(struct intel_engine_cs *engine,
1080 struct cmd_node *desc_node;
1082 hash_for_each_possible(engine->cmd_hash, desc_node, node,
1083 cmd_header_key(cmd_header)) {
1084 const struct drm_i915_cmd_descriptor *desc = desc_node->desc;
1085 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1093 * Returns a pointer to a descriptor for the command specified by cmd_header.
1095 * The caller must supply space for a default descriptor via the default_desc
1096 * parameter. If no descriptor for the specified command exists in the engine's
1097 * command parser tables, this function fills in default_desc based on the
1098 * engine's default length encoding and returns default_desc.
1100 static const struct drm_i915_cmd_descriptor*
1101 find_cmd(struct intel_engine_cs *engine,
1103 const struct drm_i915_cmd_descriptor *desc,
1104 struct drm_i915_cmd_descriptor *default_desc)
1108 if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1111 desc = find_cmd_in_table(engine, cmd_header);
1115 mask = engine->get_cmd_length_mask(cmd_header);
1119 default_desc->cmd.value = cmd_header;
1120 default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT;
1121 default_desc->length.mask = mask;
1122 default_desc->flags = CMD_DESC_SKIP;
1123 return default_desc;
1126 static const struct drm_i915_reg_descriptor *
1127 __find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr)
1129 int start = 0, end = count;
1130 while (start < end) {
1131 int mid = start + (end - start) / 2;
1132 int ret = addr - i915_mmio_reg_offset(table[mid].addr);
1143 static const struct drm_i915_reg_descriptor *
1144 find_reg(const struct intel_engine_cs *engine, u32 addr)
1146 const struct drm_i915_reg_table *table = engine->reg_tables;
1147 const struct drm_i915_reg_descriptor *reg = NULL;
1148 int count = engine->reg_table_count;
1150 for (; !reg && (count > 0); ++table, --count)
1151 reg = __find_reg(table->regs, table->num_regs, addr);
1156 /* Returns a vmap'd pointer to dst_obj, which the caller must unmap */
1157 static u32 *copy_batch(struct drm_i915_gem_object *dst_obj,
1158 struct drm_i915_gem_object *src_obj,
1159 unsigned long offset, unsigned long length,
1160 bool *needs_clflush_after)
1162 unsigned int src_needs_clflush;
1163 unsigned int dst_needs_clflush;
1167 ret = i915_gem_object_prepare_write(dst_obj, &dst_needs_clflush);
1169 return ERR_PTR(ret);
1171 dst = i915_gem_object_pin_map(dst_obj, I915_MAP_WB);
1172 i915_gem_object_finish_access(dst_obj);
1176 ret = i915_gem_object_prepare_read(src_obj, &src_needs_clflush);
1178 i915_gem_object_unpin_map(dst_obj);
1179 return ERR_PTR(ret);
1182 src = ERR_PTR(-ENODEV);
1183 if (src_needs_clflush && i915_has_memcpy_from_wc()) {
1184 src = i915_gem_object_pin_map(src_obj, I915_MAP_WC);
1186 i915_unaligned_memcpy_from_wc(dst,
1189 i915_gem_object_unpin_map(src_obj);
1193 unsigned long x, n, remain;
1197 * We can avoid clflushing partial cachelines before the write
1198 * if we only every write full cache-lines. Since we know that
1199 * both the source and destination are in multiples of
1200 * PAGE_SIZE, we can simply round up to the next cacheline.
1201 * We don't care about copying too much here as we only
1202 * validate up to the end of the batch.
1205 if (dst_needs_clflush & CLFLUSH_BEFORE)
1206 remain = round_up(remain,
1207 boot_cpu_data.x86_clflush_size);
1210 x = offset_in_page(offset);
1211 for (n = offset >> PAGE_SHIFT; remain; n++) {
1212 int len = min(remain, PAGE_SIZE - x);
1214 src = kmap_local_page(i915_gem_object_get_page(src_obj, n));
1215 if (src_needs_clflush)
1216 drm_clflush_virt_range(src + x, len);
1217 memcpy(ptr, src + x, len);
1226 i915_gem_object_finish_access(src_obj);
1228 memset32(dst + length, 0, (dst_obj->base.size - length) / sizeof(u32));
1230 /* dst_obj is returned with vmap pinned */
1231 *needs_clflush_after = dst_needs_clflush & CLFLUSH_AFTER;
1236 static inline bool cmd_desc_is(const struct drm_i915_cmd_descriptor * const desc,
1239 return desc->cmd.value == (cmd & desc->cmd.mask);
1242 static bool check_cmd(const struct intel_engine_cs *engine,
1243 const struct drm_i915_cmd_descriptor *desc,
1244 const u32 *cmd, u32 length)
1246 if (desc->flags & CMD_DESC_SKIP)
1249 if (desc->flags & CMD_DESC_REJECT) {
1250 DRM_DEBUG("CMD: Rejected command: 0x%08X\n", *cmd);
1254 if (desc->flags & CMD_DESC_REGISTER) {
1256 * Get the distance between individual register offset
1257 * fields if the command can perform more than one
1260 const u32 step = desc->reg.step ? desc->reg.step : length;
1263 for (offset = desc->reg.offset; offset < length;
1265 const u32 reg_addr = cmd[offset] & desc->reg.mask;
1266 const struct drm_i915_reg_descriptor *reg =
1267 find_reg(engine, reg_addr);
1270 DRM_DEBUG("CMD: Rejected register 0x%08X in command: 0x%08X (%s)\n",
1271 reg_addr, *cmd, engine->name);
1276 * Check the value written to the register against the
1277 * allowed mask/value pair given in the whitelist entry.
1280 if (cmd_desc_is(desc, MI_LOAD_REGISTER_MEM)) {
1281 DRM_DEBUG("CMD: Rejected LRM to masked register 0x%08X\n",
1286 if (cmd_desc_is(desc, MI_LOAD_REGISTER_REG)) {
1287 DRM_DEBUG("CMD: Rejected LRR to masked register 0x%08X\n",
1292 if (cmd_desc_is(desc, MI_LOAD_REGISTER_IMM(1)) &&
1293 (offset + 2 > length ||
1294 (cmd[offset + 1] & reg->mask) != reg->value)) {
1295 DRM_DEBUG("CMD: Rejected LRI to masked register 0x%08X\n",
1303 if (desc->flags & CMD_DESC_BITMASK) {
1306 for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) {
1309 if (desc->bits[i].mask == 0)
1312 if (desc->bits[i].condition_mask != 0) {
1314 desc->bits[i].condition_offset;
1315 u32 condition = cmd[offset] &
1316 desc->bits[i].condition_mask;
1322 if (desc->bits[i].offset >= length) {
1323 DRM_DEBUG("CMD: Rejected command 0x%08X, too short to check bitmask (%s)\n",
1324 *cmd, engine->name);
1328 dword = cmd[desc->bits[i].offset] &
1331 if (dword != desc->bits[i].expected) {
1332 DRM_DEBUG("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (%s)\n",
1335 desc->bits[i].expected,
1336 dword, engine->name);
1345 static int check_bbstart(u32 *cmd, u32 offset, u32 length,
1349 const unsigned long *jump_whitelist)
1351 u64 jump_offset, jump_target;
1352 u32 target_cmd_offset, target_cmd_index;
1354 /* For igt compatibility on older platforms */
1355 if (!jump_whitelist) {
1356 DRM_DEBUG("CMD: Rejecting BB_START for ggtt based submission\n");
1361 DRM_DEBUG("CMD: Recursive BB_START with bad length(%u)\n",
1366 jump_target = *(u64 *)(cmd + 1);
1367 jump_offset = jump_target - batch_addr;
1370 * Any underflow of jump_target is guaranteed to be outside the range
1371 * of a u32, so >= test catches both too large and too small
1373 if (jump_offset >= batch_length) {
1374 DRM_DEBUG("CMD: BB_START to 0x%llx jumps out of BB\n",
1380 * This cannot overflow a u32 because we already checked jump_offset
1381 * is within the BB, and the batch_length is a u32
1383 target_cmd_offset = lower_32_bits(jump_offset);
1384 target_cmd_index = target_cmd_offset / sizeof(u32);
1386 *(u64 *)(cmd + 1) = shadow_addr + target_cmd_offset;
1388 if (target_cmd_index == offset)
1391 if (IS_ERR(jump_whitelist))
1392 return PTR_ERR(jump_whitelist);
1394 if (!test_bit(target_cmd_index, jump_whitelist)) {
1395 DRM_DEBUG("CMD: BB_START to 0x%llx not a previously executed cmd\n",
1403 static unsigned long *alloc_whitelist(u32 batch_length)
1408 * We expect batch_length to be less than 256KiB for known users,
1409 * i.e. we need at most an 8KiB bitmap allocation which should be
1410 * reasonably cheap due to kmalloc caches.
1413 /* Prefer to report transient allocation failure rather than hit oom */
1414 jmp = bitmap_zalloc(DIV_ROUND_UP(batch_length, sizeof(u32)),
1415 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
1417 return ERR_PTR(-ENOMEM);
1422 #define LENGTH_BIAS 2
1425 * intel_engine_cmd_parser() - parse a batch buffer for privilege violations
1426 * @engine: the engine on which the batch is to execute
1427 * @batch: the batch buffer in question
1428 * @batch_offset: byte offset in the batch at which execution starts
1429 * @batch_length: length of the commands in batch_obj
1430 * @shadow: validated copy of the batch buffer in question
1431 * @trampoline: true if we need to trampoline into privileged execution
1433 * Parses the specified batch buffer looking for privilege violations as
1434 * described in the overview.
1436 * Return: non-zero if the parser finds violations or otherwise fails; -EACCES
1437 * if the batch appears legal but should use hardware parsing
1440 int intel_engine_cmd_parser(struct intel_engine_cs *engine,
1441 struct i915_vma *batch,
1442 unsigned long batch_offset,
1443 unsigned long batch_length,
1444 struct i915_vma *shadow,
1447 u32 *cmd, *batch_end, offset = 0;
1448 struct drm_i915_cmd_descriptor default_desc = noop_desc;
1449 const struct drm_i915_cmd_descriptor *desc = &default_desc;
1450 bool needs_clflush_after = false;
1451 unsigned long *jump_whitelist;
1452 u64 batch_addr, shadow_addr;
1455 GEM_BUG_ON(!IS_ALIGNED(batch_offset, sizeof(*cmd)));
1456 GEM_BUG_ON(!IS_ALIGNED(batch_length, sizeof(*cmd)));
1457 GEM_BUG_ON(range_overflows_t(u64, batch_offset, batch_length,
1459 GEM_BUG_ON(!batch_length);
1461 cmd = copy_batch(shadow->obj, batch->obj,
1462 batch_offset, batch_length,
1463 &needs_clflush_after);
1465 DRM_DEBUG("CMD: Failed to copy batch\n");
1466 return PTR_ERR(cmd);
1469 jump_whitelist = NULL;
1471 /* Defer failure until attempted use */
1472 jump_whitelist = alloc_whitelist(batch_length);
1474 shadow_addr = gen8_canonical_addr(i915_vma_offset(shadow));
1475 batch_addr = gen8_canonical_addr(i915_vma_offset(batch) + batch_offset);
1478 * We use the batch length as size because the shadow object is as
1479 * large or larger and copy_batch() will write MI_NOPs to the extra
1480 * space. Parsing should be faster in some cases this way.
1482 batch_end = cmd + batch_length / sizeof(*batch_end);
1486 if (*cmd == MI_BATCH_BUFFER_END)
1489 desc = find_cmd(engine, *cmd, desc, &default_desc);
1491 DRM_DEBUG("CMD: Unrecognized command: 0x%08X\n", *cmd);
1496 if (desc->flags & CMD_DESC_FIXED)
1497 length = desc->length.fixed;
1499 length = (*cmd & desc->length.mask) + LENGTH_BIAS;
1501 if ((batch_end - cmd) < length) {
1502 DRM_DEBUG("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n",
1510 if (!check_cmd(engine, desc, cmd, length)) {
1515 if (cmd_desc_is(desc, MI_BATCH_BUFFER_START)) {
1516 ret = check_bbstart(cmd, offset, length, batch_length,
1517 batch_addr, shadow_addr,
1522 if (!IS_ERR_OR_NULL(jump_whitelist))
1523 __set_bit(offset, jump_whitelist);
1527 if (cmd >= batch_end) {
1528 DRM_DEBUG("CMD: Got to the end of the buffer w/o a BBE cmd!\n");
1536 * With the trampoline, the shadow is executed twice.
1538 * 1 - starting at offset 0, in privileged mode
1539 * 2 - starting at offset batch_len, as non-privileged
1541 * Only if the batch is valid and safe to execute, do we
1542 * allow the first privileged execution to proceed. If not,
1543 * we terminate the first batch and use the second batchbuffer
1544 * entry to chain to the original unsafe non-privileged batch,
1545 * leaving it to the HW to validate.
1547 *batch_end = MI_BATCH_BUFFER_END;
1550 /* Batch unsafe to execute with privileges, cancel! */
1551 cmd = page_mask_bits(shadow->obj->mm.mapping);
1552 *cmd = MI_BATCH_BUFFER_END;
1554 /* If batch is unsafe but valid, jump to the original */
1555 if (ret == -EACCES) {
1558 flags = MI_BATCH_NON_SECURE_I965;
1559 if (IS_HASWELL(engine->i915))
1560 flags = MI_BATCH_NON_SECURE_HSW;
1562 GEM_BUG_ON(!IS_GRAPHICS_VER(engine->i915, 6, 7));
1563 __gen6_emit_bb_start(batch_end,
1567 ret = 0; /* allow execution */
1572 i915_gem_object_flush_map(shadow->obj);
1574 if (!IS_ERR_OR_NULL(jump_whitelist))
1575 kfree(jump_whitelist);
1576 i915_gem_object_unpin_map(shadow->obj);
1581 * i915_cmd_parser_get_version() - get the cmd parser version number
1582 * @dev_priv: i915 device private
1584 * The cmd parser maintains a simple increasing integer version number suitable
1585 * for passing to userspace clients to determine what operations are permitted.
1587 * Return: the current version number of the cmd parser
1589 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv)
1591 struct intel_engine_cs *engine;
1592 bool active = false;
1594 /* If the command parser is not enabled, report 0 - unsupported */
1595 for_each_uabi_engine(engine, dev_priv) {
1596 if (intel_engine_using_cmd_parser(engine)) {
1605 * Command parser version history
1607 * 1. Initial version. Checks batches and reports violations, but leaves
1608 * hardware parsing enabled (so does not allow new use cases).
1609 * 2. Allow access to the MI_PREDICATE_SRC0 and
1610 * MI_PREDICATE_SRC1 registers.
1611 * 3. Allow access to the GPGPU_THREADS_DISPATCHED register.
1612 * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3.
1613 * 5. GPGPU dispatch compute indirect registers.
1614 * 6. TIMESTAMP register and Haswell CS GPR registers
1615 * 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers.
1616 * 8. Don't report cmd_check() failures as EINVAL errors to userspace;
1617 * rely on the HW to NOOP disallowed commands as it would without
1618 * the parser enabled.
1619 * 9. Don't whitelist or handle oacontrol specially, as ownership
1620 * for oacontrol state is moving to i915-perf.
1621 * 10. Support for Gen9 BCS Parsing