2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
41 #include "ext4_jbd2.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
58 csum_lo = raw->i_checksum_lo;
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = raw->i_checksum_hi;
63 raw->i_checksum_hi = 0;
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
69 raw->i_checksum_lo = csum_lo;
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = csum_hi;
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
80 __u32 provided, calculated;
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
96 return provided == calculated;
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
120 trace_ext4_begin_ordered_truncate(inode, new_size);
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
127 if (!EXT4_I(inode)->jinode)
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
137 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138 struct inode *inode, struct page *page, loff_t from,
139 loff_t length, int flags);
142 * Test whether an inode is a fast symlink.
144 static int ext4_inode_is_fast_symlink(struct inode *inode)
146 int ea_blocks = EXT4_I(inode)->i_file_acl ?
147 (inode->i_sb->s_blocksize >> 9) : 0;
149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
153 * Restart the transaction associated with *handle. This does a commit,
154 * so before we call here everything must be consistently dirtied against
157 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
164 * moment, get_block can be called only for blocks inside i_size since
165 * page cache has been already dropped and writes are blocked by
166 * i_mutex. So we can safely drop the i_data_sem here.
168 BUG_ON(EXT4_JOURNAL(inode) == NULL);
169 jbd_debug(2, "restarting handle %p\n", handle);
170 up_write(&EXT4_I(inode)->i_data_sem);
171 ret = ext4_journal_restart(handle, nblocks);
172 down_write(&EXT4_I(inode)->i_data_sem);
173 ext4_discard_preallocations(inode);
179 * Called at the last iput() if i_nlink is zero.
181 void ext4_evict_inode(struct inode *inode)
186 trace_ext4_evict_inode(inode);
188 ext4_ioend_wait(inode);
190 if (inode->i_nlink) {
192 * When journalling data dirty buffers are tracked only in the
193 * journal. So although mm thinks everything is clean and
194 * ready for reaping the inode might still have some pages to
195 * write in the running transaction or waiting to be
196 * checkpointed. Thus calling jbd2_journal_invalidatepage()
197 * (via truncate_inode_pages()) to discard these buffers can
198 * cause data loss. Also even if we did not discard these
199 * buffers, we would have no way to find them after the inode
200 * is reaped and thus user could see stale data if he tries to
201 * read them before the transaction is checkpointed. So be
202 * careful and force everything to disk here... We use
203 * ei->i_datasync_tid to store the newest transaction
204 * containing inode's data.
206 * Note that directories do not have this problem because they
207 * don't use page cache.
209 if (ext4_should_journal_data(inode) &&
210 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
214 jbd2_log_start_commit(journal, commit_tid);
215 jbd2_log_wait_commit(journal, commit_tid);
216 filemap_write_and_wait(&inode->i_data);
218 truncate_inode_pages(&inode->i_data, 0);
222 if (!is_bad_inode(inode))
223 dquot_initialize(inode);
225 if (ext4_should_order_data(inode))
226 ext4_begin_ordered_truncate(inode, 0);
227 truncate_inode_pages(&inode->i_data, 0);
229 if (is_bad_inode(inode))
233 * Protect us against freezing - iput() caller didn't have to have any
234 * protection against it
236 sb_start_intwrite(inode->i_sb);
237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238 ext4_blocks_for_truncate(inode)+3);
239 if (IS_ERR(handle)) {
240 ext4_std_error(inode->i_sb, PTR_ERR(handle));
242 * If we're going to skip the normal cleanup, we still need to
243 * make sure that the in-core orphan linked list is properly
246 ext4_orphan_del(NULL, inode);
247 sb_end_intwrite(inode->i_sb);
252 ext4_handle_sync(handle);
254 err = ext4_mark_inode_dirty(handle, inode);
256 ext4_warning(inode->i_sb,
257 "couldn't mark inode dirty (err %d)", err);
261 ext4_truncate(inode);
264 * ext4_ext_truncate() doesn't reserve any slop when it
265 * restarts journal transactions; therefore there may not be
266 * enough credits left in the handle to remove the inode from
267 * the orphan list and set the dtime field.
269 if (!ext4_handle_has_enough_credits(handle, 3)) {
270 err = ext4_journal_extend(handle, 3);
272 err = ext4_journal_restart(handle, 3);
274 ext4_warning(inode->i_sb,
275 "couldn't extend journal (err %d)", err);
277 ext4_journal_stop(handle);
278 ext4_orphan_del(NULL, inode);
279 sb_end_intwrite(inode->i_sb);
285 * Kill off the orphan record which ext4_truncate created.
286 * AKPM: I think this can be inside the above `if'.
287 * Note that ext4_orphan_del() has to be able to cope with the
288 * deletion of a non-existent orphan - this is because we don't
289 * know if ext4_truncate() actually created an orphan record.
290 * (Well, we could do this if we need to, but heck - it works)
292 ext4_orphan_del(handle, inode);
293 EXT4_I(inode)->i_dtime = get_seconds();
296 * One subtle ordering requirement: if anything has gone wrong
297 * (transaction abort, IO errors, whatever), then we can still
298 * do these next steps (the fs will already have been marked as
299 * having errors), but we can't free the inode if the mark_dirty
302 if (ext4_mark_inode_dirty(handle, inode))
303 /* If that failed, just do the required in-core inode clear. */
304 ext4_clear_inode(inode);
306 ext4_free_inode(handle, inode);
307 ext4_journal_stop(handle);
308 sb_end_intwrite(inode->i_sb);
311 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
315 qsize_t *ext4_get_reserved_space(struct inode *inode)
317 return &EXT4_I(inode)->i_reserved_quota;
322 * Calculate the number of metadata blocks need to reserve
323 * to allocate a block located at @lblock
325 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
327 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
328 return ext4_ext_calc_metadata_amount(inode, lblock);
330 return ext4_ind_calc_metadata_amount(inode, lblock);
334 * Called with i_data_sem down, which is important since we can call
335 * ext4_discard_preallocations() from here.
337 void ext4_da_update_reserve_space(struct inode *inode,
338 int used, int quota_claim)
340 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 struct ext4_inode_info *ei = EXT4_I(inode);
343 spin_lock(&ei->i_block_reservation_lock);
344 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345 if (unlikely(used > ei->i_reserved_data_blocks)) {
346 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347 "with only %d reserved data blocks",
348 __func__, inode->i_ino, used,
349 ei->i_reserved_data_blocks);
351 used = ei->i_reserved_data_blocks;
354 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
355 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
356 "with only %d reserved metadata blocks "
357 "(releasing %d blocks with reserved %d data blocks)",
358 inode->i_ino, ei->i_allocated_meta_blocks,
359 ei->i_reserved_meta_blocks, used,
360 ei->i_reserved_data_blocks);
362 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 /* Update per-inode reservations */
366 ei->i_reserved_data_blocks -= used;
367 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
368 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
369 used + ei->i_allocated_meta_blocks);
370 ei->i_allocated_meta_blocks = 0;
372 if (ei->i_reserved_data_blocks == 0) {
374 * We can release all of the reserved metadata blocks
375 * only when we have written all of the delayed
378 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
379 ei->i_reserved_meta_blocks);
380 ei->i_reserved_meta_blocks = 0;
381 ei->i_da_metadata_calc_len = 0;
383 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385 /* Update quota subsystem for data blocks */
387 dquot_claim_block(inode, EXT4_C2B(sbi, used));
390 * We did fallocate with an offset that is already delayed
391 * allocated. So on delayed allocated writeback we should
392 * not re-claim the quota for fallocated blocks.
394 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
398 * If we have done all the pending block allocations and if
399 * there aren't any writers on the inode, we can discard the
400 * inode's preallocations.
402 if ((ei->i_reserved_data_blocks == 0) &&
403 (atomic_read(&inode->i_writecount) == 0))
404 ext4_discard_preallocations(inode);
407 static int __check_block_validity(struct inode *inode, const char *func,
409 struct ext4_map_blocks *map)
411 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 ext4_error_inode(inode, func, line, map->m_pblk,
414 "lblock %lu mapped to illegal pblock "
415 "(length %d)", (unsigned long) map->m_lblk,
422 #define check_block_validity(inode, map) \
423 __check_block_validity((inode), __func__, __LINE__, (map))
426 * Return the number of contiguous dirty pages in a given inode
427 * starting at page frame idx.
429 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
430 unsigned int max_pages)
432 struct address_space *mapping = inode->i_mapping;
436 int i, nr_pages, done = 0;
440 pagevec_init(&pvec, 0);
443 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445 (pgoff_t)PAGEVEC_SIZE);
448 for (i = 0; i < nr_pages; i++) {
449 struct page *page = pvec.pages[i];
450 struct buffer_head *bh, *head;
453 if (unlikely(page->mapping != mapping) ||
455 PageWriteback(page) ||
456 page->index != idx) {
461 if (page_has_buffers(page)) {
462 bh = head = page_buffers(page);
464 if (!buffer_delay(bh) &&
465 !buffer_unwritten(bh))
467 bh = bh->b_this_page;
468 } while (!done && (bh != head));
475 if (num >= max_pages) {
480 pagevec_release(&pvec);
486 * The ext4_map_blocks() function tries to look up the requested blocks,
487 * and returns if the blocks are already mapped.
489 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
490 * and store the allocated blocks in the result buffer head and mark it
493 * If file type is extents based, it will call ext4_ext_map_blocks(),
494 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
497 * On success, it returns the number of blocks being mapped or allocate.
498 * if create==0 and the blocks are pre-allocated and uninitialized block,
499 * the result buffer head is unmapped. If the create ==1, it will make sure
500 * the buffer head is mapped.
502 * It returns 0 if plain look up failed (blocks have not been allocated), in
503 * that case, buffer head is unmapped
505 * It returns the error in case of allocation failure.
507 int ext4_map_blocks(handle_t *handle, struct inode *inode,
508 struct ext4_map_blocks *map, int flags)
513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 (unsigned long) map->m_lblk);
517 * Try to see if we can get the block without requesting a new
520 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
521 down_read((&EXT4_I(inode)->i_data_sem));
522 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
523 retval = ext4_ext_map_blocks(handle, inode, map, flags &
524 EXT4_GET_BLOCKS_KEEP_SIZE);
526 retval = ext4_ind_map_blocks(handle, inode, map, flags &
527 EXT4_GET_BLOCKS_KEEP_SIZE);
529 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
530 up_read((&EXT4_I(inode)->i_data_sem));
532 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
534 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
535 /* delayed alloc may be allocated by fallocate and
536 * coverted to initialized by directIO.
537 * we need to handle delayed extent here.
539 down_write((&EXT4_I(inode)->i_data_sem));
542 ret = check_block_validity(inode, map);
547 /* If it is only a block(s) look up */
548 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
552 * Returns if the blocks have already allocated
554 * Note that if blocks have been preallocated
555 * ext4_ext_get_block() returns the create = 0
556 * with buffer head unmapped.
558 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
562 * When we call get_blocks without the create flag, the
563 * BH_Unwritten flag could have gotten set if the blocks
564 * requested were part of a uninitialized extent. We need to
565 * clear this flag now that we are committed to convert all or
566 * part of the uninitialized extent to be an initialized
567 * extent. This is because we need to avoid the combination
568 * of BH_Unwritten and BH_Mapped flags being simultaneously
569 * set on the buffer_head.
571 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
574 * New blocks allocate and/or writing to uninitialized extent
575 * will possibly result in updating i_data, so we take
576 * the write lock of i_data_sem, and call get_blocks()
577 * with create == 1 flag.
579 down_write((&EXT4_I(inode)->i_data_sem));
582 * if the caller is from delayed allocation writeout path
583 * we have already reserved fs blocks for allocation
584 * let the underlying get_block() function know to
585 * avoid double accounting
587 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
588 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
590 * We need to check for EXT4 here because migrate
591 * could have changed the inode type in between
593 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
594 retval = ext4_ext_map_blocks(handle, inode, map, flags);
596 retval = ext4_ind_map_blocks(handle, inode, map, flags);
598 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
600 * We allocated new blocks which will result in
601 * i_data's format changing. Force the migrate
602 * to fail by clearing migrate flags
604 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
608 * Update reserved blocks/metadata blocks after successful
609 * block allocation which had been deferred till now. We don't
610 * support fallocate for non extent files. So we can update
611 * reserve space here.
614 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
615 ext4_da_update_reserve_space(inode, retval, 1);
617 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
618 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
620 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
623 /* delayed allocation blocks has been allocated */
624 ret = ext4_es_remove_extent(inode, map->m_lblk,
631 up_write((&EXT4_I(inode)->i_data_sem));
632 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
633 int ret = check_block_validity(inode, map);
640 /* Maximum number of blocks we map for direct IO at once. */
641 #define DIO_MAX_BLOCKS 4096
643 static int _ext4_get_block(struct inode *inode, sector_t iblock,
644 struct buffer_head *bh, int flags)
646 handle_t *handle = ext4_journal_current_handle();
647 struct ext4_map_blocks map;
648 int ret = 0, started = 0;
651 if (ext4_has_inline_data(inode))
655 map.m_len = bh->b_size >> inode->i_blkbits;
657 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
658 /* Direct IO write... */
659 if (map.m_len > DIO_MAX_BLOCKS)
660 map.m_len = DIO_MAX_BLOCKS;
661 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
662 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
664 if (IS_ERR(handle)) {
665 ret = PTR_ERR(handle);
671 ret = ext4_map_blocks(handle, inode, &map, flags);
673 map_bh(bh, inode->i_sb, map.m_pblk);
674 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
675 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
679 ext4_journal_stop(handle);
683 int ext4_get_block(struct inode *inode, sector_t iblock,
684 struct buffer_head *bh, int create)
686 return _ext4_get_block(inode, iblock, bh,
687 create ? EXT4_GET_BLOCKS_CREATE : 0);
691 * `handle' can be NULL if create is zero
693 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
694 ext4_lblk_t block, int create, int *errp)
696 struct ext4_map_blocks map;
697 struct buffer_head *bh;
700 J_ASSERT(handle != NULL || create == 0);
704 err = ext4_map_blocks(handle, inode, &map,
705 create ? EXT4_GET_BLOCKS_CREATE : 0);
707 /* ensure we send some value back into *errp */
715 bh = sb_getblk(inode->i_sb, map.m_pblk);
720 if (map.m_flags & EXT4_MAP_NEW) {
721 J_ASSERT(create != 0);
722 J_ASSERT(handle != NULL);
725 * Now that we do not always journal data, we should
726 * keep in mind whether this should always journal the
727 * new buffer as metadata. For now, regular file
728 * writes use ext4_get_block instead, so it's not a
732 BUFFER_TRACE(bh, "call get_create_access");
733 fatal = ext4_journal_get_create_access(handle, bh);
734 if (!fatal && !buffer_uptodate(bh)) {
735 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
736 set_buffer_uptodate(bh);
739 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
740 err = ext4_handle_dirty_metadata(handle, inode, bh);
744 BUFFER_TRACE(bh, "not a new buffer");
754 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
755 ext4_lblk_t block, int create, int *err)
757 struct buffer_head *bh;
759 bh = ext4_getblk(handle, inode, block, create, err);
762 if (buffer_uptodate(bh))
764 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
766 if (buffer_uptodate(bh))
773 int ext4_walk_page_buffers(handle_t *handle,
774 struct buffer_head *head,
778 int (*fn)(handle_t *handle,
779 struct buffer_head *bh))
781 struct buffer_head *bh;
782 unsigned block_start, block_end;
783 unsigned blocksize = head->b_size;
785 struct buffer_head *next;
787 for (bh = head, block_start = 0;
788 ret == 0 && (bh != head || !block_start);
789 block_start = block_end, bh = next) {
790 next = bh->b_this_page;
791 block_end = block_start + blocksize;
792 if (block_end <= from || block_start >= to) {
793 if (partial && !buffer_uptodate(bh))
797 err = (*fn)(handle, bh);
805 * To preserve ordering, it is essential that the hole instantiation and
806 * the data write be encapsulated in a single transaction. We cannot
807 * close off a transaction and start a new one between the ext4_get_block()
808 * and the commit_write(). So doing the jbd2_journal_start at the start of
809 * prepare_write() is the right place.
811 * Also, this function can nest inside ext4_writepage(). In that case, we
812 * *know* that ext4_writepage() has generated enough buffer credits to do the
813 * whole page. So we won't block on the journal in that case, which is good,
814 * because the caller may be PF_MEMALLOC.
816 * By accident, ext4 can be reentered when a transaction is open via
817 * quota file writes. If we were to commit the transaction while thus
818 * reentered, there can be a deadlock - we would be holding a quota
819 * lock, and the commit would never complete if another thread had a
820 * transaction open and was blocking on the quota lock - a ranking
823 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
824 * will _not_ run commit under these circumstances because handle->h_ref
825 * is elevated. We'll still have enough credits for the tiny quotafile
828 int do_journal_get_write_access(handle_t *handle,
829 struct buffer_head *bh)
831 int dirty = buffer_dirty(bh);
834 if (!buffer_mapped(bh) || buffer_freed(bh))
837 * __block_write_begin() could have dirtied some buffers. Clean
838 * the dirty bit as jbd2_journal_get_write_access() could complain
839 * otherwise about fs integrity issues. Setting of the dirty bit
840 * by __block_write_begin() isn't a real problem here as we clear
841 * the bit before releasing a page lock and thus writeback cannot
842 * ever write the buffer.
845 clear_buffer_dirty(bh);
846 ret = ext4_journal_get_write_access(handle, bh);
848 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
852 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
853 struct buffer_head *bh_result, int create);
854 static int ext4_write_begin(struct file *file, struct address_space *mapping,
855 loff_t pos, unsigned len, unsigned flags,
856 struct page **pagep, void **fsdata)
858 struct inode *inode = mapping->host;
859 int ret, needed_blocks;
866 trace_ext4_write_begin(inode, pos, len, flags);
868 * Reserve one block more for addition to orphan list in case
869 * we allocate blocks but write fails for some reason
871 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
872 index = pos >> PAGE_CACHE_SHIFT;
873 from = pos & (PAGE_CACHE_SIZE - 1);
876 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
877 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
886 * grab_cache_page_write_begin() can take a long time if the
887 * system is thrashing due to memory pressure, or if the page
888 * is being written back. So grab it first before we start
889 * the transaction handle. This also allows us to allocate
890 * the page (if needed) without using GFP_NOFS.
893 page = grab_cache_page_write_begin(mapping, index, flags);
899 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
900 if (IS_ERR(handle)) {
901 page_cache_release(page);
902 return PTR_ERR(handle);
906 if (page->mapping != mapping) {
907 /* The page got truncated from under us */
909 page_cache_release(page);
910 ext4_journal_stop(handle);
913 wait_on_page_writeback(page);
915 if (ext4_should_dioread_nolock(inode))
916 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
918 ret = __block_write_begin(page, pos, len, ext4_get_block);
920 if (!ret && ext4_should_journal_data(inode)) {
921 ret = ext4_walk_page_buffers(handle, page_buffers(page),
923 do_journal_get_write_access);
929 * __block_write_begin may have instantiated a few blocks
930 * outside i_size. Trim these off again. Don't need
931 * i_size_read because we hold i_mutex.
933 * Add inode to orphan list in case we crash before
936 if (pos + len > inode->i_size && ext4_can_truncate(inode))
937 ext4_orphan_add(handle, inode);
939 ext4_journal_stop(handle);
940 if (pos + len > inode->i_size) {
941 ext4_truncate_failed_write(inode);
943 * If truncate failed early the inode might
944 * still be on the orphan list; we need to
945 * make sure the inode is removed from the
946 * orphan list in that case.
949 ext4_orphan_del(NULL, inode);
952 if (ret == -ENOSPC &&
953 ext4_should_retry_alloc(inode->i_sb, &retries))
955 page_cache_release(page);
962 /* For write_end() in data=journal mode */
963 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
965 if (!buffer_mapped(bh) || buffer_freed(bh))
967 set_buffer_uptodate(bh);
968 return ext4_handle_dirty_metadata(handle, NULL, bh);
971 static int ext4_generic_write_end(struct file *file,
972 struct address_space *mapping,
973 loff_t pos, unsigned len, unsigned copied,
974 struct page *page, void *fsdata)
976 int i_size_changed = 0;
977 struct inode *inode = mapping->host;
978 handle_t *handle = ext4_journal_current_handle();
980 if (ext4_has_inline_data(inode))
981 copied = ext4_write_inline_data_end(inode, pos, len,
984 copied = block_write_end(file, mapping, pos,
985 len, copied, page, fsdata);
988 * No need to use i_size_read() here, the i_size
989 * cannot change under us because we hold i_mutex.
991 * But it's important to update i_size while still holding page lock:
992 * page writeout could otherwise come in and zero beyond i_size.
994 if (pos + copied > inode->i_size) {
995 i_size_write(inode, pos + copied);
999 if (pos + copied > EXT4_I(inode)->i_disksize) {
1000 /* We need to mark inode dirty even if
1001 * new_i_size is less that inode->i_size
1002 * bu greater than i_disksize.(hint delalloc)
1004 ext4_update_i_disksize(inode, (pos + copied));
1008 page_cache_release(page);
1011 * Don't mark the inode dirty under page lock. First, it unnecessarily
1012 * makes the holding time of page lock longer. Second, it forces lock
1013 * ordering of page lock and transaction start for journaling
1017 ext4_mark_inode_dirty(handle, inode);
1023 * We need to pick up the new inode size which generic_commit_write gave us
1024 * `file' can be NULL - eg, when called from page_symlink().
1026 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1027 * buffers are managed internally.
1029 static int ext4_ordered_write_end(struct file *file,
1030 struct address_space *mapping,
1031 loff_t pos, unsigned len, unsigned copied,
1032 struct page *page, void *fsdata)
1034 handle_t *handle = ext4_journal_current_handle();
1035 struct inode *inode = mapping->host;
1038 trace_ext4_ordered_write_end(inode, pos, len, copied);
1039 ret = ext4_jbd2_file_inode(handle, inode);
1042 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1045 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1046 /* if we have allocated more blocks and copied
1047 * less. We will have blocks allocated outside
1048 * inode->i_size. So truncate them
1050 ext4_orphan_add(handle, inode);
1055 page_cache_release(page);
1058 ret2 = ext4_journal_stop(handle);
1062 if (pos + len > inode->i_size) {
1063 ext4_truncate_failed_write(inode);
1065 * If truncate failed early the inode might still be
1066 * on the orphan list; we need to make sure the inode
1067 * is removed from the orphan list in that case.
1070 ext4_orphan_del(NULL, inode);
1074 return ret ? ret : copied;
1077 static int ext4_writeback_write_end(struct file *file,
1078 struct address_space *mapping,
1079 loff_t pos, unsigned len, unsigned copied,
1080 struct page *page, void *fsdata)
1082 handle_t *handle = ext4_journal_current_handle();
1083 struct inode *inode = mapping->host;
1086 trace_ext4_writeback_write_end(inode, pos, len, copied);
1087 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1090 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1091 /* if we have allocated more blocks and copied
1092 * less. We will have blocks allocated outside
1093 * inode->i_size. So truncate them
1095 ext4_orphan_add(handle, inode);
1100 ret2 = ext4_journal_stop(handle);
1104 if (pos + len > inode->i_size) {
1105 ext4_truncate_failed_write(inode);
1107 * If truncate failed early the inode might still be
1108 * on the orphan list; we need to make sure the inode
1109 * is removed from the orphan list in that case.
1112 ext4_orphan_del(NULL, inode);
1115 return ret ? ret : copied;
1118 static int ext4_journalled_write_end(struct file *file,
1119 struct address_space *mapping,
1120 loff_t pos, unsigned len, unsigned copied,
1121 struct page *page, void *fsdata)
1123 handle_t *handle = ext4_journal_current_handle();
1124 struct inode *inode = mapping->host;
1130 trace_ext4_journalled_write_end(inode, pos, len, copied);
1131 from = pos & (PAGE_CACHE_SIZE - 1);
1134 BUG_ON(!ext4_handle_valid(handle));
1136 if (ext4_has_inline_data(inode))
1137 copied = ext4_write_inline_data_end(inode, pos, len,
1141 if (!PageUptodate(page))
1143 page_zero_new_buffers(page, from+copied, to);
1146 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1147 to, &partial, write_end_fn);
1149 SetPageUptodate(page);
1151 new_i_size = pos + copied;
1152 if (new_i_size > inode->i_size)
1153 i_size_write(inode, pos+copied);
1154 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1155 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1156 if (new_i_size > EXT4_I(inode)->i_disksize) {
1157 ext4_update_i_disksize(inode, new_i_size);
1158 ret2 = ext4_mark_inode_dirty(handle, inode);
1164 page_cache_release(page);
1165 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1166 /* if we have allocated more blocks and copied
1167 * less. We will have blocks allocated outside
1168 * inode->i_size. So truncate them
1170 ext4_orphan_add(handle, inode);
1172 ret2 = ext4_journal_stop(handle);
1175 if (pos + len > inode->i_size) {
1176 ext4_truncate_failed_write(inode);
1178 * If truncate failed early the inode might still be
1179 * on the orphan list; we need to make sure the inode
1180 * is removed from the orphan list in that case.
1183 ext4_orphan_del(NULL, inode);
1186 return ret ? ret : copied;
1190 * Reserve a single cluster located at lblock
1192 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1195 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1196 struct ext4_inode_info *ei = EXT4_I(inode);
1197 unsigned int md_needed;
1199 ext4_lblk_t save_last_lblock;
1203 * We will charge metadata quota at writeout time; this saves
1204 * us from metadata over-estimation, though we may go over by
1205 * a small amount in the end. Here we just reserve for data.
1207 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1212 * recalculate the amount of metadata blocks to reserve
1213 * in order to allocate nrblocks
1214 * worse case is one extent per block
1217 spin_lock(&ei->i_block_reservation_lock);
1219 * ext4_calc_metadata_amount() has side effects, which we have
1220 * to be prepared undo if we fail to claim space.
1222 save_len = ei->i_da_metadata_calc_len;
1223 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1224 md_needed = EXT4_NUM_B2C(sbi,
1225 ext4_calc_metadata_amount(inode, lblock));
1226 trace_ext4_da_reserve_space(inode, md_needed);
1229 * We do still charge estimated metadata to the sb though;
1230 * we cannot afford to run out of free blocks.
1232 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1233 ei->i_da_metadata_calc_len = save_len;
1234 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1235 spin_unlock(&ei->i_block_reservation_lock);
1236 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1240 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1243 ei->i_reserved_data_blocks++;
1244 ei->i_reserved_meta_blocks += md_needed;
1245 spin_unlock(&ei->i_block_reservation_lock);
1247 return 0; /* success */
1250 static void ext4_da_release_space(struct inode *inode, int to_free)
1252 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1253 struct ext4_inode_info *ei = EXT4_I(inode);
1256 return; /* Nothing to release, exit */
1258 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1260 trace_ext4_da_release_space(inode, to_free);
1261 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1263 * if there aren't enough reserved blocks, then the
1264 * counter is messed up somewhere. Since this
1265 * function is called from invalidate page, it's
1266 * harmless to return without any action.
1268 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1269 "ino %lu, to_free %d with only %d reserved "
1270 "data blocks", inode->i_ino, to_free,
1271 ei->i_reserved_data_blocks);
1273 to_free = ei->i_reserved_data_blocks;
1275 ei->i_reserved_data_blocks -= to_free;
1277 if (ei->i_reserved_data_blocks == 0) {
1279 * We can release all of the reserved metadata blocks
1280 * only when we have written all of the delayed
1281 * allocation blocks.
1282 * Note that in case of bigalloc, i_reserved_meta_blocks,
1283 * i_reserved_data_blocks, etc. refer to number of clusters.
1285 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1286 ei->i_reserved_meta_blocks);
1287 ei->i_reserved_meta_blocks = 0;
1288 ei->i_da_metadata_calc_len = 0;
1291 /* update fs dirty data blocks counter */
1292 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1294 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1296 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1299 static void ext4_da_page_release_reservation(struct page *page,
1300 unsigned long offset)
1303 struct buffer_head *head, *bh;
1304 unsigned int curr_off = 0;
1305 struct inode *inode = page->mapping->host;
1306 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1310 head = page_buffers(page);
1313 unsigned int next_off = curr_off + bh->b_size;
1315 if ((offset <= curr_off) && (buffer_delay(bh))) {
1317 clear_buffer_delay(bh);
1319 curr_off = next_off;
1320 } while ((bh = bh->b_this_page) != head);
1323 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1324 ext4_es_remove_extent(inode, lblk, to_release);
1327 /* If we have released all the blocks belonging to a cluster, then we
1328 * need to release the reserved space for that cluster. */
1329 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1330 while (num_clusters > 0) {
1331 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1332 ((num_clusters - 1) << sbi->s_cluster_bits);
1333 if (sbi->s_cluster_ratio == 1 ||
1334 !ext4_find_delalloc_cluster(inode, lblk))
1335 ext4_da_release_space(inode, 1);
1342 * Delayed allocation stuff
1346 * mpage_da_submit_io - walks through extent of pages and try to write
1347 * them with writepage() call back
1349 * @mpd->inode: inode
1350 * @mpd->first_page: first page of the extent
1351 * @mpd->next_page: page after the last page of the extent
1353 * By the time mpage_da_submit_io() is called we expect all blocks
1354 * to be allocated. this may be wrong if allocation failed.
1356 * As pages are already locked by write_cache_pages(), we can't use it
1358 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1359 struct ext4_map_blocks *map)
1361 struct pagevec pvec;
1362 unsigned long index, end;
1363 int ret = 0, err, nr_pages, i;
1364 struct inode *inode = mpd->inode;
1365 struct address_space *mapping = inode->i_mapping;
1366 loff_t size = i_size_read(inode);
1367 unsigned int len, block_start;
1368 struct buffer_head *bh, *page_bufs = NULL;
1369 sector_t pblock = 0, cur_logical = 0;
1370 struct ext4_io_submit io_submit;
1372 BUG_ON(mpd->next_page <= mpd->first_page);
1373 memset(&io_submit, 0, sizeof(io_submit));
1375 * We need to start from the first_page to the next_page - 1
1376 * to make sure we also write the mapped dirty buffer_heads.
1377 * If we look at mpd->b_blocknr we would only be looking
1378 * at the currently mapped buffer_heads.
1380 index = mpd->first_page;
1381 end = mpd->next_page - 1;
1383 pagevec_init(&pvec, 0);
1384 while (index <= end) {
1385 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1388 for (i = 0; i < nr_pages; i++) {
1390 struct page *page = pvec.pages[i];
1392 index = page->index;
1396 if (index == size >> PAGE_CACHE_SHIFT)
1397 len = size & ~PAGE_CACHE_MASK;
1399 len = PAGE_CACHE_SIZE;
1401 cur_logical = index << (PAGE_CACHE_SHIFT -
1403 pblock = map->m_pblk + (cur_logical -
1408 BUG_ON(!PageLocked(page));
1409 BUG_ON(PageWriteback(page));
1411 bh = page_bufs = page_buffers(page);
1414 if (map && (cur_logical >= map->m_lblk) &&
1415 (cur_logical <= (map->m_lblk +
1416 (map->m_len - 1)))) {
1417 if (buffer_delay(bh)) {
1418 clear_buffer_delay(bh);
1419 bh->b_blocknr = pblock;
1421 if (buffer_unwritten(bh) ||
1423 BUG_ON(bh->b_blocknr != pblock);
1424 if (map->m_flags & EXT4_MAP_UNINIT)
1425 set_buffer_uninit(bh);
1426 clear_buffer_unwritten(bh);
1430 * skip page if block allocation undone and
1433 if (ext4_bh_delay_or_unwritten(NULL, bh))
1435 bh = bh->b_this_page;
1436 block_start += bh->b_size;
1439 } while (bh != page_bufs);
1446 clear_page_dirty_for_io(page);
1447 err = ext4_bio_write_page(&io_submit, page, len,
1450 mpd->pages_written++;
1452 * In error case, we have to continue because
1453 * remaining pages are still locked
1458 pagevec_release(&pvec);
1460 ext4_io_submit(&io_submit);
1464 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1468 struct pagevec pvec;
1469 struct inode *inode = mpd->inode;
1470 struct address_space *mapping = inode->i_mapping;
1471 ext4_lblk_t start, last;
1473 index = mpd->first_page;
1474 end = mpd->next_page - 1;
1476 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1477 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1478 ext4_es_remove_extent(inode, start, last - start + 1);
1480 pagevec_init(&pvec, 0);
1481 while (index <= end) {
1482 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1485 for (i = 0; i < nr_pages; i++) {
1486 struct page *page = pvec.pages[i];
1487 if (page->index > end)
1489 BUG_ON(!PageLocked(page));
1490 BUG_ON(PageWriteback(page));
1491 block_invalidatepage(page, 0);
1492 ClearPageUptodate(page);
1495 index = pvec.pages[nr_pages - 1]->index + 1;
1496 pagevec_release(&pvec);
1501 static void ext4_print_free_blocks(struct inode *inode)
1503 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1504 struct super_block *sb = inode->i_sb;
1506 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1507 EXT4_C2B(EXT4_SB(inode->i_sb),
1508 ext4_count_free_clusters(inode->i_sb)));
1509 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1510 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1511 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1512 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1513 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1514 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1515 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1516 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1517 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1518 EXT4_I(inode)->i_reserved_data_blocks);
1519 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1520 EXT4_I(inode)->i_reserved_meta_blocks);
1525 * mpage_da_map_and_submit - go through given space, map them
1526 * if necessary, and then submit them for I/O
1528 * @mpd - bh describing space
1530 * The function skips space we know is already mapped to disk blocks.
1533 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1535 int err, blks, get_blocks_flags;
1536 struct ext4_map_blocks map, *mapp = NULL;
1537 sector_t next = mpd->b_blocknr;
1538 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1539 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1540 handle_t *handle = NULL;
1543 * If the blocks are mapped already, or we couldn't accumulate
1544 * any blocks, then proceed immediately to the submission stage.
1546 if ((mpd->b_size == 0) ||
1547 ((mpd->b_state & (1 << BH_Mapped)) &&
1548 !(mpd->b_state & (1 << BH_Delay)) &&
1549 !(mpd->b_state & (1 << BH_Unwritten))))
1552 handle = ext4_journal_current_handle();
1556 * Call ext4_map_blocks() to allocate any delayed allocation
1557 * blocks, or to convert an uninitialized extent to be
1558 * initialized (in the case where we have written into
1559 * one or more preallocated blocks).
1561 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1562 * indicate that we are on the delayed allocation path. This
1563 * affects functions in many different parts of the allocation
1564 * call path. This flag exists primarily because we don't
1565 * want to change *many* call functions, so ext4_map_blocks()
1566 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1567 * inode's allocation semaphore is taken.
1569 * If the blocks in questions were delalloc blocks, set
1570 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1571 * variables are updated after the blocks have been allocated.
1574 map.m_len = max_blocks;
1575 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1576 if (ext4_should_dioread_nolock(mpd->inode))
1577 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1578 if (mpd->b_state & (1 << BH_Delay))
1579 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1581 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1583 struct super_block *sb = mpd->inode->i_sb;
1587 * If get block returns EAGAIN or ENOSPC and there
1588 * appears to be free blocks we will just let
1589 * mpage_da_submit_io() unlock all of the pages.
1594 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1600 * get block failure will cause us to loop in
1601 * writepages, because a_ops->writepage won't be able
1602 * to make progress. The page will be redirtied by
1603 * writepage and writepages will again try to write
1606 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1607 ext4_msg(sb, KERN_CRIT,
1608 "delayed block allocation failed for inode %lu "
1609 "at logical offset %llu with max blocks %zd "
1610 "with error %d", mpd->inode->i_ino,
1611 (unsigned long long) next,
1612 mpd->b_size >> mpd->inode->i_blkbits, err);
1613 ext4_msg(sb, KERN_CRIT,
1614 "This should not happen!! Data will be lost");
1616 ext4_print_free_blocks(mpd->inode);
1618 /* invalidate all the pages */
1619 ext4_da_block_invalidatepages(mpd);
1621 /* Mark this page range as having been completed */
1628 if (map.m_flags & EXT4_MAP_NEW) {
1629 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1632 for (i = 0; i < map.m_len; i++)
1633 unmap_underlying_metadata(bdev, map.m_pblk + i);
1637 * Update on-disk size along with block allocation.
1639 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1640 if (disksize > i_size_read(mpd->inode))
1641 disksize = i_size_read(mpd->inode);
1642 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1643 ext4_update_i_disksize(mpd->inode, disksize);
1644 err = ext4_mark_inode_dirty(handle, mpd->inode);
1646 ext4_error(mpd->inode->i_sb,
1647 "Failed to mark inode %lu dirty",
1652 mpage_da_submit_io(mpd, mapp);
1656 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1657 (1 << BH_Delay) | (1 << BH_Unwritten))
1660 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1662 * @mpd->lbh - extent of blocks
1663 * @logical - logical number of the block in the file
1664 * @b_state - b_state of the buffer head added
1666 * the function is used to collect contig. blocks in same state
1668 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
1669 unsigned long b_state)
1672 int blkbits = mpd->inode->i_blkbits;
1673 int nrblocks = mpd->b_size >> blkbits;
1676 * XXX Don't go larger than mballoc is willing to allocate
1677 * This is a stopgap solution. We eventually need to fold
1678 * mpage_da_submit_io() into this function and then call
1679 * ext4_map_blocks() multiple times in a loop
1681 if (nrblocks >= (8*1024*1024 >> blkbits))
1684 /* check if the reserved journal credits might overflow */
1685 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
1686 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1688 * With non-extent format we are limited by the journal
1689 * credit available. Total credit needed to insert
1690 * nrblocks contiguous blocks is dependent on the
1691 * nrblocks. So limit nrblocks.
1697 * First block in the extent
1699 if (mpd->b_size == 0) {
1700 mpd->b_blocknr = logical;
1701 mpd->b_size = 1 << blkbits;
1702 mpd->b_state = b_state & BH_FLAGS;
1706 next = mpd->b_blocknr + nrblocks;
1708 * Can we merge the block to our big extent?
1710 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1711 mpd->b_size += 1 << blkbits;
1717 * We couldn't merge the block to our extent, so we
1718 * need to flush current extent and start new one
1720 mpage_da_map_and_submit(mpd);
1724 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1726 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1730 * This function is grabs code from the very beginning of
1731 * ext4_map_blocks, but assumes that the caller is from delayed write
1732 * time. This function looks up the requested blocks and sets the
1733 * buffer delay bit under the protection of i_data_sem.
1735 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1736 struct ext4_map_blocks *map,
1737 struct buffer_head *bh)
1740 sector_t invalid_block = ~((sector_t) 0xffff);
1742 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1746 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1747 "logical block %lu\n", inode->i_ino, map->m_len,
1748 (unsigned long) map->m_lblk);
1750 * Try to see if we can get the block without requesting a new
1751 * file system block.
1753 down_read((&EXT4_I(inode)->i_data_sem));
1754 if (ext4_has_inline_data(inode)) {
1756 * We will soon create blocks for this page, and let
1757 * us pretend as if the blocks aren't allocated yet.
1758 * In case of clusters, we have to handle the work
1759 * of mapping from cluster so that the reserved space
1760 * is calculated properly.
1762 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1763 ext4_find_delalloc_cluster(inode, map->m_lblk))
1764 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1766 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1767 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1769 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1773 * XXX: __block_prepare_write() unmaps passed block,
1776 /* If the block was allocated from previously allocated cluster,
1777 * then we dont need to reserve it again. */
1778 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1779 retval = ext4_da_reserve_space(inode, iblock);
1781 /* not enough space to reserve */
1785 retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
1789 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1790 * and it should not appear on the bh->b_state.
1792 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1794 map_bh(bh, inode->i_sb, invalid_block);
1796 set_buffer_delay(bh);
1800 up_read((&EXT4_I(inode)->i_data_sem));
1806 * This is a special get_blocks_t callback which is used by
1807 * ext4_da_write_begin(). It will either return mapped block or
1808 * reserve space for a single block.
1810 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1811 * We also have b_blocknr = -1 and b_bdev initialized properly
1813 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1814 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1815 * initialized properly.
1817 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1818 struct buffer_head *bh, int create)
1820 struct ext4_map_blocks map;
1823 BUG_ON(create == 0);
1824 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1826 map.m_lblk = iblock;
1830 * first, we need to know whether the block is allocated already
1831 * preallocated blocks are unmapped but should treated
1832 * the same as allocated blocks.
1834 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1838 map_bh(bh, inode->i_sb, map.m_pblk);
1839 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1841 if (buffer_unwritten(bh)) {
1842 /* A delayed write to unwritten bh should be marked
1843 * new and mapped. Mapped ensures that we don't do
1844 * get_block multiple times when we write to the same
1845 * offset and new ensures that we do proper zero out
1846 * for partial write.
1849 set_buffer_mapped(bh);
1854 static int bget_one(handle_t *handle, struct buffer_head *bh)
1860 static int bput_one(handle_t *handle, struct buffer_head *bh)
1866 static int __ext4_journalled_writepage(struct page *page,
1869 struct address_space *mapping = page->mapping;
1870 struct inode *inode = mapping->host;
1871 struct buffer_head *page_bufs = NULL;
1872 handle_t *handle = NULL;
1873 int ret = 0, err = 0;
1874 int inline_data = ext4_has_inline_data(inode);
1875 struct buffer_head *inode_bh = NULL;
1877 ClearPageChecked(page);
1880 BUG_ON(page->index != 0);
1881 BUG_ON(len > ext4_get_max_inline_size(inode));
1882 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1883 if (inode_bh == NULL)
1886 page_bufs = page_buffers(page);
1891 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1894 /* As soon as we unlock the page, it can go away, but we have
1895 * references to buffers so we are safe */
1898 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1899 ext4_writepage_trans_blocks(inode));
1900 if (IS_ERR(handle)) {
1901 ret = PTR_ERR(handle);
1905 BUG_ON(!ext4_handle_valid(handle));
1908 ret = ext4_journal_get_write_access(handle, inode_bh);
1910 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1913 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1914 do_journal_get_write_access);
1916 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1921 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1922 err = ext4_journal_stop(handle);
1926 if (!ext4_has_inline_data(inode))
1927 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1929 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1936 * Note that we don't need to start a transaction unless we're journaling data
1937 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1938 * need to file the inode to the transaction's list in ordered mode because if
1939 * we are writing back data added by write(), the inode is already there and if
1940 * we are writing back data modified via mmap(), no one guarantees in which
1941 * transaction the data will hit the disk. In case we are journaling data, we
1942 * cannot start transaction directly because transaction start ranks above page
1943 * lock so we have to do some magic.
1945 * This function can get called via...
1946 * - ext4_da_writepages after taking page lock (have journal handle)
1947 * - journal_submit_inode_data_buffers (no journal handle)
1948 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1949 * - grab_page_cache when doing write_begin (have journal handle)
1951 * We don't do any block allocation in this function. If we have page with
1952 * multiple blocks we need to write those buffer_heads that are mapped. This
1953 * is important for mmaped based write. So if we do with blocksize 1K
1954 * truncate(f, 1024);
1955 * a = mmap(f, 0, 4096);
1957 * truncate(f, 4096);
1958 * we have in the page first buffer_head mapped via page_mkwrite call back
1959 * but other buffer_heads would be unmapped but dirty (dirty done via the
1960 * do_wp_page). So writepage should write the first block. If we modify
1961 * the mmap area beyond 1024 we will again get a page_fault and the
1962 * page_mkwrite callback will do the block allocation and mark the
1963 * buffer_heads mapped.
1965 * We redirty the page if we have any buffer_heads that is either delay or
1966 * unwritten in the page.
1968 * We can get recursively called as show below.
1970 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1973 * But since we don't do any block allocation we should not deadlock.
1974 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1976 static int ext4_writepage(struct page *page,
1977 struct writeback_control *wbc)
1982 struct buffer_head *page_bufs = NULL;
1983 struct inode *inode = page->mapping->host;
1984 struct ext4_io_submit io_submit;
1986 trace_ext4_writepage(page);
1987 size = i_size_read(inode);
1988 if (page->index == size >> PAGE_CACHE_SHIFT)
1989 len = size & ~PAGE_CACHE_MASK;
1991 len = PAGE_CACHE_SIZE;
1993 page_bufs = page_buffers(page);
1995 * We cannot do block allocation or other extent handling in this
1996 * function. If there are buffers needing that, we have to redirty
1997 * the page. But we may reach here when we do a journal commit via
1998 * journal_submit_inode_data_buffers() and in that case we must write
1999 * allocated buffers to achieve data=ordered mode guarantees.
2001 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2002 ext4_bh_delay_or_unwritten)) {
2003 redirty_page_for_writepage(wbc, page);
2004 if (current->flags & PF_MEMALLOC) {
2006 * For memory cleaning there's no point in writing only
2007 * some buffers. So just bail out. Warn if we came here
2008 * from direct reclaim.
2010 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2017 if (PageChecked(page) && ext4_should_journal_data(inode))
2019 * It's mmapped pagecache. Add buffers and journal it. There
2020 * doesn't seem much point in redirtying the page here.
2022 return __ext4_journalled_writepage(page, len);
2024 memset(&io_submit, 0, sizeof(io_submit));
2025 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2026 ext4_io_submit(&io_submit);
2031 * This is called via ext4_da_writepages() to
2032 * calculate the total number of credits to reserve to fit
2033 * a single extent allocation into a single transaction,
2034 * ext4_da_writpeages() will loop calling this before
2035 * the block allocation.
2038 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2040 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2043 * With non-extent format the journal credit needed to
2044 * insert nrblocks contiguous block is dependent on
2045 * number of contiguous block. So we will limit
2046 * number of contiguous block to a sane value
2048 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2049 (max_blocks > EXT4_MAX_TRANS_DATA))
2050 max_blocks = EXT4_MAX_TRANS_DATA;
2052 return ext4_chunk_trans_blocks(inode, max_blocks);
2056 * write_cache_pages_da - walk the list of dirty pages of the given
2057 * address space and accumulate pages that need writing, and call
2058 * mpage_da_map_and_submit to map a single contiguous memory region
2059 * and then write them.
2061 static int write_cache_pages_da(handle_t *handle,
2062 struct address_space *mapping,
2063 struct writeback_control *wbc,
2064 struct mpage_da_data *mpd,
2065 pgoff_t *done_index)
2067 struct buffer_head *bh, *head;
2068 struct inode *inode = mapping->host;
2069 struct pagevec pvec;
2070 unsigned int nr_pages;
2073 long nr_to_write = wbc->nr_to_write;
2074 int i, tag, ret = 0;
2076 memset(mpd, 0, sizeof(struct mpage_da_data));
2079 pagevec_init(&pvec, 0);
2080 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2081 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2083 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2084 tag = PAGECACHE_TAG_TOWRITE;
2086 tag = PAGECACHE_TAG_DIRTY;
2088 *done_index = index;
2089 while (index <= end) {
2090 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2091 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2095 for (i = 0; i < nr_pages; i++) {
2096 struct page *page = pvec.pages[i];
2099 * At this point, the page may be truncated or
2100 * invalidated (changing page->mapping to NULL), or
2101 * even swizzled back from swapper_space to tmpfs file
2102 * mapping. However, page->index will not change
2103 * because we have a reference on the page.
2105 if (page->index > end)
2108 *done_index = page->index + 1;
2111 * If we can't merge this page, and we have
2112 * accumulated an contiguous region, write it
2114 if ((mpd->next_page != page->index) &&
2115 (mpd->next_page != mpd->first_page)) {
2116 mpage_da_map_and_submit(mpd);
2117 goto ret_extent_tail;
2123 * If the page is no longer dirty, or its
2124 * mapping no longer corresponds to inode we
2125 * are writing (which means it has been
2126 * truncated or invalidated), or the page is
2127 * already under writeback and we are not
2128 * doing a data integrity writeback, skip the page
2130 if (!PageDirty(page) ||
2131 (PageWriteback(page) &&
2132 (wbc->sync_mode == WB_SYNC_NONE)) ||
2133 unlikely(page->mapping != mapping)) {
2138 wait_on_page_writeback(page);
2139 BUG_ON(PageWriteback(page));
2142 * If we have inline data and arrive here, it means that
2143 * we will soon create the block for the 1st page, so
2144 * we'd better clear the inline data here.
2146 if (ext4_has_inline_data(inode)) {
2147 BUG_ON(ext4_test_inode_state(inode,
2148 EXT4_STATE_MAY_INLINE_DATA));
2149 ext4_destroy_inline_data(handle, inode);
2152 if (mpd->next_page != page->index)
2153 mpd->first_page = page->index;
2154 mpd->next_page = page->index + 1;
2155 logical = (sector_t) page->index <<
2156 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2158 /* Add all dirty buffers to mpd */
2159 head = page_buffers(page);
2162 BUG_ON(buffer_locked(bh));
2164 * We need to try to allocate unmapped blocks
2165 * in the same page. Otherwise we won't make
2166 * progress with the page in ext4_writepage
2168 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2169 mpage_add_bh_to_extent(mpd, logical,
2172 goto ret_extent_tail;
2173 } else if (buffer_dirty(bh) &&
2174 buffer_mapped(bh)) {
2176 * mapped dirty buffer. We need to
2177 * update the b_state because we look
2178 * at b_state in mpage_da_map_blocks.
2179 * We don't update b_size because if we
2180 * find an unmapped buffer_head later
2181 * we need to use the b_state flag of
2184 if (mpd->b_size == 0)
2186 bh->b_state & BH_FLAGS;
2189 } while ((bh = bh->b_this_page) != head);
2191 if (nr_to_write > 0) {
2193 if (nr_to_write == 0 &&
2194 wbc->sync_mode == WB_SYNC_NONE)
2196 * We stop writing back only if we are
2197 * not doing integrity sync. In case of
2198 * integrity sync we have to keep going
2199 * because someone may be concurrently
2200 * dirtying pages, and we might have
2201 * synced a lot of newly appeared dirty
2202 * pages, but have not synced all of the
2208 pagevec_release(&pvec);
2213 ret = MPAGE_DA_EXTENT_TAIL;
2215 pagevec_release(&pvec);
2221 static int ext4_da_writepages(struct address_space *mapping,
2222 struct writeback_control *wbc)
2225 int range_whole = 0;
2226 handle_t *handle = NULL;
2227 struct mpage_da_data mpd;
2228 struct inode *inode = mapping->host;
2229 int pages_written = 0;
2230 unsigned int max_pages;
2231 int range_cyclic, cycled = 1, io_done = 0;
2232 int needed_blocks, ret = 0;
2233 long desired_nr_to_write, nr_to_writebump = 0;
2234 loff_t range_start = wbc->range_start;
2235 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2236 pgoff_t done_index = 0;
2238 struct blk_plug plug;
2240 trace_ext4_da_writepages(inode, wbc);
2243 * No pages to write? This is mainly a kludge to avoid starting
2244 * a transaction for special inodes like journal inode on last iput()
2245 * because that could violate lock ordering on umount
2247 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2251 * If the filesystem has aborted, it is read-only, so return
2252 * right away instead of dumping stack traces later on that
2253 * will obscure the real source of the problem. We test
2254 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2255 * the latter could be true if the filesystem is mounted
2256 * read-only, and in that case, ext4_da_writepages should
2257 * *never* be called, so if that ever happens, we would want
2260 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2263 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2266 range_cyclic = wbc->range_cyclic;
2267 if (wbc->range_cyclic) {
2268 index = mapping->writeback_index;
2271 wbc->range_start = index << PAGE_CACHE_SHIFT;
2272 wbc->range_end = LLONG_MAX;
2273 wbc->range_cyclic = 0;
2276 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2277 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2281 * This works around two forms of stupidity. The first is in
2282 * the writeback code, which caps the maximum number of pages
2283 * written to be 1024 pages. This is wrong on multiple
2284 * levels; different architectues have a different page size,
2285 * which changes the maximum amount of data which gets
2286 * written. Secondly, 4 megabytes is way too small. XFS
2287 * forces this value to be 16 megabytes by multiplying
2288 * nr_to_write parameter by four, and then relies on its
2289 * allocator to allocate larger extents to make them
2290 * contiguous. Unfortunately this brings us to the second
2291 * stupidity, which is that ext4's mballoc code only allocates
2292 * at most 2048 blocks. So we force contiguous writes up to
2293 * the number of dirty blocks in the inode, or
2294 * sbi->max_writeback_mb_bump whichever is smaller.
2296 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2297 if (!range_cyclic && range_whole) {
2298 if (wbc->nr_to_write == LONG_MAX)
2299 desired_nr_to_write = wbc->nr_to_write;
2301 desired_nr_to_write = wbc->nr_to_write * 8;
2303 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2305 if (desired_nr_to_write > max_pages)
2306 desired_nr_to_write = max_pages;
2308 if (wbc->nr_to_write < desired_nr_to_write) {
2309 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2310 wbc->nr_to_write = desired_nr_to_write;
2314 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2315 tag_pages_for_writeback(mapping, index, end);
2317 blk_start_plug(&plug);
2318 while (!ret && wbc->nr_to_write > 0) {
2321 * we insert one extent at a time. So we need
2322 * credit needed for single extent allocation.
2323 * journalled mode is currently not supported
2326 BUG_ON(ext4_should_journal_data(inode));
2327 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2329 /* start a new transaction*/
2330 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2332 if (IS_ERR(handle)) {
2333 ret = PTR_ERR(handle);
2334 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2335 "%ld pages, ino %lu; err %d", __func__,
2336 wbc->nr_to_write, inode->i_ino, ret);
2337 blk_finish_plug(&plug);
2338 goto out_writepages;
2342 * Now call write_cache_pages_da() to find the next
2343 * contiguous region of logical blocks that need
2344 * blocks to be allocated by ext4 and submit them.
2346 ret = write_cache_pages_da(handle, mapping,
2347 wbc, &mpd, &done_index);
2349 * If we have a contiguous extent of pages and we
2350 * haven't done the I/O yet, map the blocks and submit
2353 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2354 mpage_da_map_and_submit(&mpd);
2355 ret = MPAGE_DA_EXTENT_TAIL;
2357 trace_ext4_da_write_pages(inode, &mpd);
2358 wbc->nr_to_write -= mpd.pages_written;
2360 ext4_journal_stop(handle);
2362 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2363 /* commit the transaction which would
2364 * free blocks released in the transaction
2367 jbd2_journal_force_commit_nested(sbi->s_journal);
2369 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2371 * Got one extent now try with rest of the pages.
2372 * If mpd.retval is set -EIO, journal is aborted.
2373 * So we don't need to write any more.
2375 pages_written += mpd.pages_written;
2378 } else if (wbc->nr_to_write)
2380 * There is no more writeout needed
2381 * or we requested for a noblocking writeout
2382 * and we found the device congested
2386 blk_finish_plug(&plug);
2387 if (!io_done && !cycled) {
2390 wbc->range_start = index << PAGE_CACHE_SHIFT;
2391 wbc->range_end = mapping->writeback_index - 1;
2396 wbc->range_cyclic = range_cyclic;
2397 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2399 * set the writeback_index so that range_cyclic
2400 * mode will write it back later
2402 mapping->writeback_index = done_index;
2405 wbc->nr_to_write -= nr_to_writebump;
2406 wbc->range_start = range_start;
2407 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2411 static int ext4_nonda_switch(struct super_block *sb)
2413 s64 free_blocks, dirty_blocks;
2414 struct ext4_sb_info *sbi = EXT4_SB(sb);
2417 * switch to non delalloc mode if we are running low
2418 * on free block. The free block accounting via percpu
2419 * counters can get slightly wrong with percpu_counter_batch getting
2420 * accumulated on each CPU without updating global counters
2421 * Delalloc need an accurate free block accounting. So switch
2422 * to non delalloc when we are near to error range.
2424 free_blocks = EXT4_C2B(sbi,
2425 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2426 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2428 * Start pushing delalloc when 1/2 of free blocks are dirty.
2430 if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2431 !writeback_in_progress(sb->s_bdi) &&
2432 down_read_trylock(&sb->s_umount)) {
2433 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2434 up_read(&sb->s_umount);
2437 if (2 * free_blocks < 3 * dirty_blocks ||
2438 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2440 * free block count is less than 150% of dirty blocks
2441 * or free blocks is less than watermark
2448 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2449 loff_t pos, unsigned len, unsigned flags,
2450 struct page **pagep, void **fsdata)
2452 int ret, retries = 0;
2455 struct inode *inode = mapping->host;
2458 index = pos >> PAGE_CACHE_SHIFT;
2460 if (ext4_nonda_switch(inode->i_sb)) {
2461 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2462 return ext4_write_begin(file, mapping, pos,
2463 len, flags, pagep, fsdata);
2465 *fsdata = (void *)0;
2466 trace_ext4_da_write_begin(inode, pos, len, flags);
2468 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2469 ret = ext4_da_write_inline_data_begin(mapping, inode,
2479 * grab_cache_page_write_begin() can take a long time if the
2480 * system is thrashing due to memory pressure, or if the page
2481 * is being written back. So grab it first before we start
2482 * the transaction handle. This also allows us to allocate
2483 * the page (if needed) without using GFP_NOFS.
2486 page = grab_cache_page_write_begin(mapping, index, flags);
2492 * With delayed allocation, we don't log the i_disksize update
2493 * if there is delayed block allocation. But we still need
2494 * to journalling the i_disksize update if writes to the end
2495 * of file which has an already mapped buffer.
2498 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2499 if (IS_ERR(handle)) {
2500 page_cache_release(page);
2501 return PTR_ERR(handle);
2505 if (page->mapping != mapping) {
2506 /* The page got truncated from under us */
2508 page_cache_release(page);
2509 ext4_journal_stop(handle);
2512 /* In case writeback began while the page was unlocked */
2513 wait_on_page_writeback(page);
2515 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2518 ext4_journal_stop(handle);
2520 * block_write_begin may have instantiated a few blocks
2521 * outside i_size. Trim these off again. Don't need
2522 * i_size_read because we hold i_mutex.
2524 if (pos + len > inode->i_size)
2525 ext4_truncate_failed_write(inode);
2527 if (ret == -ENOSPC &&
2528 ext4_should_retry_alloc(inode->i_sb, &retries))
2531 page_cache_release(page);
2540 * Check if we should update i_disksize
2541 * when write to the end of file but not require block allocation
2543 static int ext4_da_should_update_i_disksize(struct page *page,
2544 unsigned long offset)
2546 struct buffer_head *bh;
2547 struct inode *inode = page->mapping->host;
2551 bh = page_buffers(page);
2552 idx = offset >> inode->i_blkbits;
2554 for (i = 0; i < idx; i++)
2555 bh = bh->b_this_page;
2557 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2562 static int ext4_da_write_end(struct file *file,
2563 struct address_space *mapping,
2564 loff_t pos, unsigned len, unsigned copied,
2565 struct page *page, void *fsdata)
2567 struct inode *inode = mapping->host;
2569 handle_t *handle = ext4_journal_current_handle();
2571 unsigned long start, end;
2572 int write_mode = (int)(unsigned long)fsdata;
2574 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2575 switch (ext4_inode_journal_mode(inode)) {
2576 case EXT4_INODE_ORDERED_DATA_MODE:
2577 return ext4_ordered_write_end(file, mapping, pos,
2578 len, copied, page, fsdata);
2579 case EXT4_INODE_WRITEBACK_DATA_MODE:
2580 return ext4_writeback_write_end(file, mapping, pos,
2581 len, copied, page, fsdata);
2587 trace_ext4_da_write_end(inode, pos, len, copied);
2588 start = pos & (PAGE_CACHE_SIZE - 1);
2589 end = start + copied - 1;
2592 * generic_write_end() will run mark_inode_dirty() if i_size
2593 * changes. So let's piggyback the i_disksize mark_inode_dirty
2596 new_i_size = pos + copied;
2597 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2598 if (ext4_has_inline_data(inode) ||
2599 ext4_da_should_update_i_disksize(page, end)) {
2600 down_write(&EXT4_I(inode)->i_data_sem);
2601 if (new_i_size > EXT4_I(inode)->i_disksize)
2602 EXT4_I(inode)->i_disksize = new_i_size;
2603 up_write(&EXT4_I(inode)->i_data_sem);
2604 /* We need to mark inode dirty even if
2605 * new_i_size is less that inode->i_size
2606 * bu greater than i_disksize.(hint delalloc)
2608 ext4_mark_inode_dirty(handle, inode);
2612 if (write_mode != CONVERT_INLINE_DATA &&
2613 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2614 ext4_has_inline_data(inode))
2615 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2618 ret2 = generic_write_end(file, mapping, pos, len, copied,
2624 ret2 = ext4_journal_stop(handle);
2628 return ret ? ret : copied;
2631 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2634 * Drop reserved blocks
2636 BUG_ON(!PageLocked(page));
2637 if (!page_has_buffers(page))
2640 ext4_da_page_release_reservation(page, offset);
2643 ext4_invalidatepage(page, offset);
2649 * Force all delayed allocation blocks to be allocated for a given inode.
2651 int ext4_alloc_da_blocks(struct inode *inode)
2653 trace_ext4_alloc_da_blocks(inode);
2655 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2656 !EXT4_I(inode)->i_reserved_meta_blocks)
2660 * We do something simple for now. The filemap_flush() will
2661 * also start triggering a write of the data blocks, which is
2662 * not strictly speaking necessary (and for users of
2663 * laptop_mode, not even desirable). However, to do otherwise
2664 * would require replicating code paths in:
2666 * ext4_da_writepages() ->
2667 * write_cache_pages() ---> (via passed in callback function)
2668 * __mpage_da_writepage() -->
2669 * mpage_add_bh_to_extent()
2670 * mpage_da_map_blocks()
2672 * The problem is that write_cache_pages(), located in
2673 * mm/page-writeback.c, marks pages clean in preparation for
2674 * doing I/O, which is not desirable if we're not planning on
2677 * We could call write_cache_pages(), and then redirty all of
2678 * the pages by calling redirty_page_for_writepage() but that
2679 * would be ugly in the extreme. So instead we would need to
2680 * replicate parts of the code in the above functions,
2681 * simplifying them because we wouldn't actually intend to
2682 * write out the pages, but rather only collect contiguous
2683 * logical block extents, call the multi-block allocator, and
2684 * then update the buffer heads with the block allocations.
2686 * For now, though, we'll cheat by calling filemap_flush(),
2687 * which will map the blocks, and start the I/O, but not
2688 * actually wait for the I/O to complete.
2690 return filemap_flush(inode->i_mapping);
2694 * bmap() is special. It gets used by applications such as lilo and by
2695 * the swapper to find the on-disk block of a specific piece of data.
2697 * Naturally, this is dangerous if the block concerned is still in the
2698 * journal. If somebody makes a swapfile on an ext4 data-journaling
2699 * filesystem and enables swap, then they may get a nasty shock when the
2700 * data getting swapped to that swapfile suddenly gets overwritten by
2701 * the original zero's written out previously to the journal and
2702 * awaiting writeback in the kernel's buffer cache.
2704 * So, if we see any bmap calls here on a modified, data-journaled file,
2705 * take extra steps to flush any blocks which might be in the cache.
2707 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2709 struct inode *inode = mapping->host;
2714 * We can get here for an inline file via the FIBMAP ioctl
2716 if (ext4_has_inline_data(inode))
2719 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2720 test_opt(inode->i_sb, DELALLOC)) {
2722 * With delalloc we want to sync the file
2723 * so that we can make sure we allocate
2726 filemap_write_and_wait(mapping);
2729 if (EXT4_JOURNAL(inode) &&
2730 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2732 * This is a REALLY heavyweight approach, but the use of
2733 * bmap on dirty files is expected to be extremely rare:
2734 * only if we run lilo or swapon on a freshly made file
2735 * do we expect this to happen.
2737 * (bmap requires CAP_SYS_RAWIO so this does not
2738 * represent an unprivileged user DOS attack --- we'd be
2739 * in trouble if mortal users could trigger this path at
2742 * NB. EXT4_STATE_JDATA is not set on files other than
2743 * regular files. If somebody wants to bmap a directory
2744 * or symlink and gets confused because the buffer
2745 * hasn't yet been flushed to disk, they deserve
2746 * everything they get.
2749 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2750 journal = EXT4_JOURNAL(inode);
2751 jbd2_journal_lock_updates(journal);
2752 err = jbd2_journal_flush(journal);
2753 jbd2_journal_unlock_updates(journal);
2759 return generic_block_bmap(mapping, block, ext4_get_block);
2762 static int ext4_readpage(struct file *file, struct page *page)
2765 struct inode *inode = page->mapping->host;
2767 trace_ext4_readpage(page);
2769 if (ext4_has_inline_data(inode))
2770 ret = ext4_readpage_inline(inode, page);
2773 return mpage_readpage(page, ext4_get_block);
2779 ext4_readpages(struct file *file, struct address_space *mapping,
2780 struct list_head *pages, unsigned nr_pages)
2782 struct inode *inode = mapping->host;
2784 /* If the file has inline data, no need to do readpages. */
2785 if (ext4_has_inline_data(inode))
2788 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2791 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2793 trace_ext4_invalidatepage(page, offset);
2795 /* No journalling happens on data buffers when this function is used */
2796 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2798 block_invalidatepage(page, offset);
2801 static int __ext4_journalled_invalidatepage(struct page *page,
2802 unsigned long offset)
2804 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2806 trace_ext4_journalled_invalidatepage(page, offset);
2809 * If it's a full truncate we just forget about the pending dirtying
2812 ClearPageChecked(page);
2814 return jbd2_journal_invalidatepage(journal, page, offset);
2817 /* Wrapper for aops... */
2818 static void ext4_journalled_invalidatepage(struct page *page,
2819 unsigned long offset)
2821 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
2824 static int ext4_releasepage(struct page *page, gfp_t wait)
2826 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2828 trace_ext4_releasepage(page);
2830 WARN_ON(PageChecked(page));
2831 if (!page_has_buffers(page))
2834 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2836 return try_to_free_buffers(page);
2840 * ext4_get_block used when preparing for a DIO write or buffer write.
2841 * We allocate an uinitialized extent if blocks haven't been allocated.
2842 * The extent will be converted to initialized after the IO is complete.
2844 int ext4_get_block_write(struct inode *inode, sector_t iblock,
2845 struct buffer_head *bh_result, int create)
2847 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2848 inode->i_ino, create);
2849 return _ext4_get_block(inode, iblock, bh_result,
2850 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2853 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2854 struct buffer_head *bh_result, int create)
2856 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2857 inode->i_ino, create);
2858 return _ext4_get_block(inode, iblock, bh_result,
2859 EXT4_GET_BLOCKS_NO_LOCK);
2862 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2863 ssize_t size, void *private, int ret,
2866 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2867 ext4_io_end_t *io_end = iocb->private;
2869 /* if not async direct IO or dio with 0 bytes write, just return */
2870 if (!io_end || !size)
2873 ext_debug("ext4_end_io_dio(): io_end 0x%p "
2874 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2875 iocb->private, io_end->inode->i_ino, iocb, offset,
2878 iocb->private = NULL;
2880 /* if not aio dio with unwritten extents, just free io and return */
2881 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2882 ext4_free_io_end(io_end);
2884 inode_dio_done(inode);
2886 aio_complete(iocb, ret, 0);
2890 io_end->offset = offset;
2891 io_end->size = size;
2893 io_end->iocb = iocb;
2894 io_end->result = ret;
2897 ext4_add_complete_io(io_end);
2901 * For ext4 extent files, ext4 will do direct-io write to holes,
2902 * preallocated extents, and those write extend the file, no need to
2903 * fall back to buffered IO.
2905 * For holes, we fallocate those blocks, mark them as uninitialized
2906 * If those blocks were preallocated, we mark sure they are split, but
2907 * still keep the range to write as uninitialized.
2909 * The unwritten extents will be converted to written when DIO is completed.
2910 * For async direct IO, since the IO may still pending when return, we
2911 * set up an end_io call back function, which will do the conversion
2912 * when async direct IO completed.
2914 * If the O_DIRECT write will extend the file then add this inode to the
2915 * orphan list. So recovery will truncate it back to the original size
2916 * if the machine crashes during the write.
2919 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2920 const struct iovec *iov, loff_t offset,
2921 unsigned long nr_segs)
2923 struct file *file = iocb->ki_filp;
2924 struct inode *inode = file->f_mapping->host;
2926 size_t count = iov_length(iov, nr_segs);
2928 get_block_t *get_block_func = NULL;
2930 loff_t final_size = offset + count;
2932 /* Use the old path for reads and writes beyond i_size. */
2933 if (rw != WRITE || final_size > inode->i_size)
2934 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2936 BUG_ON(iocb->private == NULL);
2938 /* If we do a overwrite dio, i_mutex locking can be released */
2939 overwrite = *((int *)iocb->private);
2942 atomic_inc(&inode->i_dio_count);
2943 down_read(&EXT4_I(inode)->i_data_sem);
2944 mutex_unlock(&inode->i_mutex);
2948 * We could direct write to holes and fallocate.
2950 * Allocated blocks to fill the hole are marked as
2951 * uninitialized to prevent parallel buffered read to expose
2952 * the stale data before DIO complete the data IO.
2954 * As to previously fallocated extents, ext4 get_block will
2955 * just simply mark the buffer mapped but still keep the
2956 * extents uninitialized.
2958 * For non AIO case, we will convert those unwritten extents
2959 * to written after return back from blockdev_direct_IO.
2961 * For async DIO, the conversion needs to be deferred when the
2962 * IO is completed. The ext4 end_io callback function will be
2963 * called to take care of the conversion work. Here for async
2964 * case, we allocate an io_end structure to hook to the iocb.
2966 iocb->private = NULL;
2967 ext4_inode_aio_set(inode, NULL);
2968 if (!is_sync_kiocb(iocb)) {
2969 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
2974 io_end->flag |= EXT4_IO_END_DIRECT;
2975 iocb->private = io_end;
2977 * we save the io structure for current async direct
2978 * IO, so that later ext4_map_blocks() could flag the
2979 * io structure whether there is a unwritten extents
2980 * needs to be converted when IO is completed.
2982 ext4_inode_aio_set(inode, io_end);
2986 get_block_func = ext4_get_block_write_nolock;
2988 get_block_func = ext4_get_block_write;
2989 dio_flags = DIO_LOCKING;
2991 ret = __blockdev_direct_IO(rw, iocb, inode,
2992 inode->i_sb->s_bdev, iov,
3000 ext4_inode_aio_set(inode, NULL);
3002 * The io_end structure takes a reference to the inode, that
3003 * structure needs to be destroyed and the reference to the
3004 * inode need to be dropped, when IO is complete, even with 0
3005 * byte write, or failed.
3007 * In the successful AIO DIO case, the io_end structure will
3008 * be destroyed and the reference to the inode will be dropped
3009 * after the end_io call back function is called.
3011 * In the case there is 0 byte write, or error case, since VFS
3012 * direct IO won't invoke the end_io call back function, we
3013 * need to free the end_io structure here.
3015 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3016 ext4_free_io_end(iocb->private);
3017 iocb->private = NULL;
3018 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3019 EXT4_STATE_DIO_UNWRITTEN)) {
3022 * for non AIO case, since the IO is already
3023 * completed, we could do the conversion right here
3025 err = ext4_convert_unwritten_extents(inode,
3029 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3033 /* take i_mutex locking again if we do a ovewrite dio */
3035 inode_dio_done(inode);
3036 up_read(&EXT4_I(inode)->i_data_sem);
3037 mutex_lock(&inode->i_mutex);
3043 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3044 const struct iovec *iov, loff_t offset,
3045 unsigned long nr_segs)
3047 struct file *file = iocb->ki_filp;
3048 struct inode *inode = file->f_mapping->host;
3052 * If we are doing data journalling we don't support O_DIRECT
3054 if (ext4_should_journal_data(inode))
3057 /* Let buffer I/O handle the inline data case. */
3058 if (ext4_has_inline_data(inode))
3061 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3062 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3063 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3065 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3066 trace_ext4_direct_IO_exit(inode, offset,
3067 iov_length(iov, nr_segs), rw, ret);
3072 * Pages can be marked dirty completely asynchronously from ext4's journalling
3073 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3074 * much here because ->set_page_dirty is called under VFS locks. The page is
3075 * not necessarily locked.
3077 * We cannot just dirty the page and leave attached buffers clean, because the
3078 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3079 * or jbddirty because all the journalling code will explode.
3081 * So what we do is to mark the page "pending dirty" and next time writepage
3082 * is called, propagate that into the buffers appropriately.
3084 static int ext4_journalled_set_page_dirty(struct page *page)
3086 SetPageChecked(page);
3087 return __set_page_dirty_nobuffers(page);
3090 static const struct address_space_operations ext4_ordered_aops = {
3091 .readpage = ext4_readpage,
3092 .readpages = ext4_readpages,
3093 .writepage = ext4_writepage,
3094 .write_begin = ext4_write_begin,
3095 .write_end = ext4_ordered_write_end,
3097 .invalidatepage = ext4_invalidatepage,
3098 .releasepage = ext4_releasepage,
3099 .direct_IO = ext4_direct_IO,
3100 .migratepage = buffer_migrate_page,
3101 .is_partially_uptodate = block_is_partially_uptodate,
3102 .error_remove_page = generic_error_remove_page,
3105 static const struct address_space_operations ext4_writeback_aops = {
3106 .readpage = ext4_readpage,
3107 .readpages = ext4_readpages,
3108 .writepage = ext4_writepage,
3109 .write_begin = ext4_write_begin,
3110 .write_end = ext4_writeback_write_end,
3112 .invalidatepage = ext4_invalidatepage,
3113 .releasepage = ext4_releasepage,
3114 .direct_IO = ext4_direct_IO,
3115 .migratepage = buffer_migrate_page,
3116 .is_partially_uptodate = block_is_partially_uptodate,
3117 .error_remove_page = generic_error_remove_page,
3120 static const struct address_space_operations ext4_journalled_aops = {
3121 .readpage = ext4_readpage,
3122 .readpages = ext4_readpages,
3123 .writepage = ext4_writepage,
3124 .write_begin = ext4_write_begin,
3125 .write_end = ext4_journalled_write_end,
3126 .set_page_dirty = ext4_journalled_set_page_dirty,
3128 .invalidatepage = ext4_journalled_invalidatepage,
3129 .releasepage = ext4_releasepage,
3130 .direct_IO = ext4_direct_IO,
3131 .is_partially_uptodate = block_is_partially_uptodate,
3132 .error_remove_page = generic_error_remove_page,
3135 static const struct address_space_operations ext4_da_aops = {
3136 .readpage = ext4_readpage,
3137 .readpages = ext4_readpages,
3138 .writepage = ext4_writepage,
3139 .writepages = ext4_da_writepages,
3140 .write_begin = ext4_da_write_begin,
3141 .write_end = ext4_da_write_end,
3143 .invalidatepage = ext4_da_invalidatepage,
3144 .releasepage = ext4_releasepage,
3145 .direct_IO = ext4_direct_IO,
3146 .migratepage = buffer_migrate_page,
3147 .is_partially_uptodate = block_is_partially_uptodate,
3148 .error_remove_page = generic_error_remove_page,
3151 void ext4_set_aops(struct inode *inode)
3153 switch (ext4_inode_journal_mode(inode)) {
3154 case EXT4_INODE_ORDERED_DATA_MODE:
3155 if (test_opt(inode->i_sb, DELALLOC))
3156 inode->i_mapping->a_ops = &ext4_da_aops;
3158 inode->i_mapping->a_ops = &ext4_ordered_aops;
3160 case EXT4_INODE_WRITEBACK_DATA_MODE:
3161 if (test_opt(inode->i_sb, DELALLOC))
3162 inode->i_mapping->a_ops = &ext4_da_aops;
3164 inode->i_mapping->a_ops = &ext4_writeback_aops;
3166 case EXT4_INODE_JOURNAL_DATA_MODE:
3167 inode->i_mapping->a_ops = &ext4_journalled_aops;
3176 * ext4_discard_partial_page_buffers()
3177 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3178 * This function finds and locks the page containing the offset
3179 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3180 * Calling functions that already have the page locked should call
3181 * ext4_discard_partial_page_buffers_no_lock directly.
3183 int ext4_discard_partial_page_buffers(handle_t *handle,
3184 struct address_space *mapping, loff_t from,
3185 loff_t length, int flags)
3187 struct inode *inode = mapping->host;
3191 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3192 mapping_gfp_mask(mapping) & ~__GFP_FS);
3196 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3197 from, length, flags);
3200 page_cache_release(page);
3205 * ext4_discard_partial_page_buffers_no_lock()
3206 * Zeros a page range of length 'length' starting from offset 'from'.
3207 * Buffer heads that correspond to the block aligned regions of the
3208 * zeroed range will be unmapped. Unblock aligned regions
3209 * will have the corresponding buffer head mapped if needed so that
3210 * that region of the page can be updated with the partial zero out.
3212 * This function assumes that the page has already been locked. The
3213 * The range to be discarded must be contained with in the given page.
3214 * If the specified range exceeds the end of the page it will be shortened
3215 * to the end of the page that corresponds to 'from'. This function is
3216 * appropriate for updating a page and it buffer heads to be unmapped and
3217 * zeroed for blocks that have been either released, or are going to be
3220 * handle: The journal handle
3221 * inode: The files inode
3222 * page: A locked page that contains the offset "from"
3223 * from: The starting byte offset (from the beginning of the file)
3224 * to begin discarding
3225 * len: The length of bytes to discard
3226 * flags: Optional flags that may be used:
3228 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3229 * Only zero the regions of the page whose buffer heads
3230 * have already been unmapped. This flag is appropriate
3231 * for updating the contents of a page whose blocks may
3232 * have already been released, and we only want to zero
3233 * out the regions that correspond to those released blocks.
3235 * Returns zero on success or negative on failure.
3237 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3238 struct inode *inode, struct page *page, loff_t from,
3239 loff_t length, int flags)
3241 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3242 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3243 unsigned int blocksize, max, pos;
3245 struct buffer_head *bh;
3248 blocksize = inode->i_sb->s_blocksize;
3249 max = PAGE_CACHE_SIZE - offset;
3251 if (index != page->index)
3255 * correct length if it does not fall between
3256 * 'from' and the end of the page
3258 if (length > max || length < 0)
3261 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3263 if (!page_has_buffers(page))
3264 create_empty_buffers(page, blocksize, 0);
3266 /* Find the buffer that contains "offset" */
3267 bh = page_buffers(page);
3269 while (offset >= pos) {
3270 bh = bh->b_this_page;
3276 while (pos < offset + length) {
3277 unsigned int end_of_block, range_to_discard;
3281 /* The length of space left to zero and unmap */
3282 range_to_discard = offset + length - pos;
3284 /* The length of space until the end of the block */
3285 end_of_block = blocksize - (pos & (blocksize-1));
3288 * Do not unmap or zero past end of block
3289 * for this buffer head
3291 if (range_to_discard > end_of_block)
3292 range_to_discard = end_of_block;
3296 * Skip this buffer head if we are only zeroing unampped
3297 * regions of the page
3299 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3303 /* If the range is block aligned, unmap */
3304 if (range_to_discard == blocksize) {
3305 clear_buffer_dirty(bh);
3307 clear_buffer_mapped(bh);
3308 clear_buffer_req(bh);
3309 clear_buffer_new(bh);
3310 clear_buffer_delay(bh);
3311 clear_buffer_unwritten(bh);
3312 clear_buffer_uptodate(bh);
3313 zero_user(page, pos, range_to_discard);
3314 BUFFER_TRACE(bh, "Buffer discarded");
3319 * If this block is not completely contained in the range
3320 * to be discarded, then it is not going to be released. Because
3321 * we need to keep this block, we need to make sure this part
3322 * of the page is uptodate before we modify it by writeing
3323 * partial zeros on it.
3325 if (!buffer_mapped(bh)) {
3327 * Buffer head must be mapped before we can read
3330 BUFFER_TRACE(bh, "unmapped");
3331 ext4_get_block(inode, iblock, bh, 0);
3332 /* unmapped? It's a hole - nothing to do */
3333 if (!buffer_mapped(bh)) {
3334 BUFFER_TRACE(bh, "still unmapped");
3339 /* Ok, it's mapped. Make sure it's up-to-date */
3340 if (PageUptodate(page))
3341 set_buffer_uptodate(bh);
3343 if (!buffer_uptodate(bh)) {
3345 ll_rw_block(READ, 1, &bh);
3347 /* Uhhuh. Read error. Complain and punt.*/
3348 if (!buffer_uptodate(bh))
3352 if (ext4_should_journal_data(inode)) {
3353 BUFFER_TRACE(bh, "get write access");
3354 err = ext4_journal_get_write_access(handle, bh);
3359 zero_user(page, pos, range_to_discard);
3362 if (ext4_should_journal_data(inode)) {
3363 err = ext4_handle_dirty_metadata(handle, inode, bh);
3365 mark_buffer_dirty(bh);
3367 BUFFER_TRACE(bh, "Partial buffer zeroed");
3369 bh = bh->b_this_page;
3371 pos += range_to_discard;
3377 int ext4_can_truncate(struct inode *inode)
3379 if (S_ISREG(inode->i_mode))
3381 if (S_ISDIR(inode->i_mode))
3383 if (S_ISLNK(inode->i_mode))
3384 return !ext4_inode_is_fast_symlink(inode);
3389 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3390 * associated with the given offset and length
3392 * @inode: File inode
3393 * @offset: The offset where the hole will begin
3394 * @len: The length of the hole
3396 * Returns: 0 on success or negative on failure
3399 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3401 struct inode *inode = file->f_path.dentry->d_inode;
3402 if (!S_ISREG(inode->i_mode))
3405 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3406 return ext4_ind_punch_hole(file, offset, length);
3408 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3409 /* TODO: Add support for bigalloc file systems */
3413 trace_ext4_punch_hole(inode, offset, length);
3415 return ext4_ext_punch_hole(file, offset, length);
3421 * We block out ext4_get_block() block instantiations across the entire
3422 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3423 * simultaneously on behalf of the same inode.
3425 * As we work through the truncate and commit bits of it to the journal there
3426 * is one core, guiding principle: the file's tree must always be consistent on
3427 * disk. We must be able to restart the truncate after a crash.
3429 * The file's tree may be transiently inconsistent in memory (although it
3430 * probably isn't), but whenever we close off and commit a journal transaction,
3431 * the contents of (the filesystem + the journal) must be consistent and
3432 * restartable. It's pretty simple, really: bottom up, right to left (although
3433 * left-to-right works OK too).
3435 * Note that at recovery time, journal replay occurs *before* the restart of
3436 * truncate against the orphan inode list.
3438 * The committed inode has the new, desired i_size (which is the same as
3439 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3440 * that this inode's truncate did not complete and it will again call
3441 * ext4_truncate() to have another go. So there will be instantiated blocks
3442 * to the right of the truncation point in a crashed ext4 filesystem. But
3443 * that's fine - as long as they are linked from the inode, the post-crash
3444 * ext4_truncate() run will find them and release them.
3446 void ext4_truncate(struct inode *inode)
3448 trace_ext4_truncate_enter(inode);
3450 if (!ext4_can_truncate(inode))
3453 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3455 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3456 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3458 if (ext4_has_inline_data(inode)) {
3461 ext4_inline_data_truncate(inode, &has_inline);
3466 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3467 ext4_ext_truncate(inode);
3469 ext4_ind_truncate(inode);
3471 trace_ext4_truncate_exit(inode);
3475 * ext4_get_inode_loc returns with an extra refcount against the inode's
3476 * underlying buffer_head on success. If 'in_mem' is true, we have all
3477 * data in memory that is needed to recreate the on-disk version of this
3480 static int __ext4_get_inode_loc(struct inode *inode,
3481 struct ext4_iloc *iloc, int in_mem)
3483 struct ext4_group_desc *gdp;
3484 struct buffer_head *bh;
3485 struct super_block *sb = inode->i_sb;
3487 int inodes_per_block, inode_offset;
3490 if (!ext4_valid_inum(sb, inode->i_ino))
3493 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3494 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3499 * Figure out the offset within the block group inode table
3501 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3502 inode_offset = ((inode->i_ino - 1) %
3503 EXT4_INODES_PER_GROUP(sb));
3504 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3505 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3507 bh = sb_getblk(sb, block);
3510 if (!buffer_uptodate(bh)) {
3514 * If the buffer has the write error flag, we have failed
3515 * to write out another inode in the same block. In this
3516 * case, we don't have to read the block because we may
3517 * read the old inode data successfully.
3519 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3520 set_buffer_uptodate(bh);
3522 if (buffer_uptodate(bh)) {
3523 /* someone brought it uptodate while we waited */
3529 * If we have all information of the inode in memory and this
3530 * is the only valid inode in the block, we need not read the
3534 struct buffer_head *bitmap_bh;
3537 start = inode_offset & ~(inodes_per_block - 1);
3539 /* Is the inode bitmap in cache? */
3540 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3541 if (unlikely(!bitmap_bh))
3545 * If the inode bitmap isn't in cache then the
3546 * optimisation may end up performing two reads instead
3547 * of one, so skip it.
3549 if (!buffer_uptodate(bitmap_bh)) {
3553 for (i = start; i < start + inodes_per_block; i++) {
3554 if (i == inode_offset)
3556 if (ext4_test_bit(i, bitmap_bh->b_data))
3560 if (i == start + inodes_per_block) {
3561 /* all other inodes are free, so skip I/O */
3562 memset(bh->b_data, 0, bh->b_size);
3563 set_buffer_uptodate(bh);
3571 * If we need to do any I/O, try to pre-readahead extra
3572 * blocks from the inode table.
3574 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3575 ext4_fsblk_t b, end, table;
3578 table = ext4_inode_table(sb, gdp);
3579 /* s_inode_readahead_blks is always a power of 2 */
3580 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3583 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3584 num = EXT4_INODES_PER_GROUP(sb);
3585 if (ext4_has_group_desc_csum(sb))
3586 num -= ext4_itable_unused_count(sb, gdp);
3587 table += num / inodes_per_block;
3591 sb_breadahead(sb, b++);
3595 * There are other valid inodes in the buffer, this inode
3596 * has in-inode xattrs, or we don't have this inode in memory.
3597 * Read the block from disk.
3599 trace_ext4_load_inode(inode);
3601 bh->b_end_io = end_buffer_read_sync;
3602 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3604 if (!buffer_uptodate(bh)) {
3605 EXT4_ERROR_INODE_BLOCK(inode, block,
3606 "unable to read itable block");
3616 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3618 /* We have all inode data except xattrs in memory here. */
3619 return __ext4_get_inode_loc(inode, iloc,
3620 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3623 void ext4_set_inode_flags(struct inode *inode)
3625 unsigned int flags = EXT4_I(inode)->i_flags;
3627 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3628 if (flags & EXT4_SYNC_FL)
3629 inode->i_flags |= S_SYNC;
3630 if (flags & EXT4_APPEND_FL)
3631 inode->i_flags |= S_APPEND;
3632 if (flags & EXT4_IMMUTABLE_FL)
3633 inode->i_flags |= S_IMMUTABLE;
3634 if (flags & EXT4_NOATIME_FL)
3635 inode->i_flags |= S_NOATIME;
3636 if (flags & EXT4_DIRSYNC_FL)
3637 inode->i_flags |= S_DIRSYNC;
3640 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3641 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3643 unsigned int vfs_fl;
3644 unsigned long old_fl, new_fl;
3647 vfs_fl = ei->vfs_inode.i_flags;
3648 old_fl = ei->i_flags;
3649 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3650 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3652 if (vfs_fl & S_SYNC)
3653 new_fl |= EXT4_SYNC_FL;
3654 if (vfs_fl & S_APPEND)
3655 new_fl |= EXT4_APPEND_FL;
3656 if (vfs_fl & S_IMMUTABLE)
3657 new_fl |= EXT4_IMMUTABLE_FL;
3658 if (vfs_fl & S_NOATIME)
3659 new_fl |= EXT4_NOATIME_FL;
3660 if (vfs_fl & S_DIRSYNC)
3661 new_fl |= EXT4_DIRSYNC_FL;
3662 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3665 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3666 struct ext4_inode_info *ei)
3669 struct inode *inode = &(ei->vfs_inode);
3670 struct super_block *sb = inode->i_sb;
3672 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3673 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3674 /* we are using combined 48 bit field */
3675 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3676 le32_to_cpu(raw_inode->i_blocks_lo);
3677 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3678 /* i_blocks represent file system block size */
3679 return i_blocks << (inode->i_blkbits - 9);
3684 return le32_to_cpu(raw_inode->i_blocks_lo);
3688 static inline void ext4_iget_extra_inode(struct inode *inode,
3689 struct ext4_inode *raw_inode,
3690 struct ext4_inode_info *ei)
3692 __le32 *magic = (void *)raw_inode +
3693 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
3694 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
3695 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3696 ext4_find_inline_data_nolock(inode);
3698 EXT4_I(inode)->i_inline_off = 0;
3701 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3703 struct ext4_iloc iloc;
3704 struct ext4_inode *raw_inode;
3705 struct ext4_inode_info *ei;
3706 struct inode *inode;
3707 journal_t *journal = EXT4_SB(sb)->s_journal;
3713 inode = iget_locked(sb, ino);
3715 return ERR_PTR(-ENOMEM);
3716 if (!(inode->i_state & I_NEW))
3722 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3725 raw_inode = ext4_raw_inode(&iloc);
3727 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3728 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3729 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3730 EXT4_INODE_SIZE(inode->i_sb)) {
3731 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3732 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3733 EXT4_INODE_SIZE(inode->i_sb));
3738 ei->i_extra_isize = 0;
3740 /* Precompute checksum seed for inode metadata */
3741 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3742 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3743 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3745 __le32 inum = cpu_to_le32(inode->i_ino);
3746 __le32 gen = raw_inode->i_generation;
3747 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3749 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3753 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3754 EXT4_ERROR_INODE(inode, "checksum invalid");
3759 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3760 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3761 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3762 if (!(test_opt(inode->i_sb, NO_UID32))) {
3763 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3764 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3766 i_uid_write(inode, i_uid);
3767 i_gid_write(inode, i_gid);
3768 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3770 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3771 ei->i_inline_off = 0;
3772 ei->i_dir_start_lookup = 0;
3773 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3774 /* We now have enough fields to check if the inode was active or not.
3775 * This is needed because nfsd might try to access dead inodes
3776 * the test is that same one that e2fsck uses
3777 * NeilBrown 1999oct15
3779 if (inode->i_nlink == 0) {
3780 if (inode->i_mode == 0 ||
3781 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3782 /* this inode is deleted */
3786 /* The only unlinked inodes we let through here have
3787 * valid i_mode and are being read by the orphan
3788 * recovery code: that's fine, we're about to complete
3789 * the process of deleting those. */
3791 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3792 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3793 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3794 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3796 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3797 inode->i_size = ext4_isize(raw_inode);
3798 ei->i_disksize = inode->i_size;
3800 ei->i_reserved_quota = 0;
3802 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3803 ei->i_block_group = iloc.block_group;
3804 ei->i_last_alloc_group = ~0;
3806 * NOTE! The in-memory inode i_data array is in little-endian order
3807 * even on big-endian machines: we do NOT byteswap the block numbers!
3809 for (block = 0; block < EXT4_N_BLOCKS; block++)
3810 ei->i_data[block] = raw_inode->i_block[block];
3811 INIT_LIST_HEAD(&ei->i_orphan);
3814 * Set transaction id's of transactions that have to be committed
3815 * to finish f[data]sync. We set them to currently running transaction
3816 * as we cannot be sure that the inode or some of its metadata isn't
3817 * part of the transaction - the inode could have been reclaimed and
3818 * now it is reread from disk.
3821 transaction_t *transaction;
3824 read_lock(&journal->j_state_lock);
3825 if (journal->j_running_transaction)
3826 transaction = journal->j_running_transaction;
3828 transaction = journal->j_committing_transaction;
3830 tid = transaction->t_tid;
3832 tid = journal->j_commit_sequence;
3833 read_unlock(&journal->j_state_lock);
3834 ei->i_sync_tid = tid;
3835 ei->i_datasync_tid = tid;
3838 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3839 if (ei->i_extra_isize == 0) {
3840 /* The extra space is currently unused. Use it. */
3841 ei->i_extra_isize = sizeof(struct ext4_inode) -
3842 EXT4_GOOD_OLD_INODE_SIZE;
3844 ext4_iget_extra_inode(inode, raw_inode, ei);
3848 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3849 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3850 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3851 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3853 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3854 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3855 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3857 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3861 if (ei->i_file_acl &&
3862 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3863 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3867 } else if (!ext4_has_inline_data(inode)) {
3868 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3869 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3870 (S_ISLNK(inode->i_mode) &&
3871 !ext4_inode_is_fast_symlink(inode))))
3872 /* Validate extent which is part of inode */
3873 ret = ext4_ext_check_inode(inode);
3874 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3875 (S_ISLNK(inode->i_mode) &&
3876 !ext4_inode_is_fast_symlink(inode))) {
3877 /* Validate block references which are part of inode */
3878 ret = ext4_ind_check_inode(inode);
3884 if (S_ISREG(inode->i_mode)) {
3885 inode->i_op = &ext4_file_inode_operations;
3886 inode->i_fop = &ext4_file_operations;
3887 ext4_set_aops(inode);
3888 } else if (S_ISDIR(inode->i_mode)) {
3889 inode->i_op = &ext4_dir_inode_operations;
3890 inode->i_fop = &ext4_dir_operations;
3891 } else if (S_ISLNK(inode->i_mode)) {
3892 if (ext4_inode_is_fast_symlink(inode)) {
3893 inode->i_op = &ext4_fast_symlink_inode_operations;
3894 nd_terminate_link(ei->i_data, inode->i_size,
3895 sizeof(ei->i_data) - 1);
3897 inode->i_op = &ext4_symlink_inode_operations;
3898 ext4_set_aops(inode);
3900 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3901 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3902 inode->i_op = &ext4_special_inode_operations;
3903 if (raw_inode->i_block[0])
3904 init_special_inode(inode, inode->i_mode,
3905 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3907 init_special_inode(inode, inode->i_mode,
3908 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3911 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3915 ext4_set_inode_flags(inode);
3916 unlock_new_inode(inode);
3922 return ERR_PTR(ret);
3925 static int ext4_inode_blocks_set(handle_t *handle,
3926 struct ext4_inode *raw_inode,
3927 struct ext4_inode_info *ei)
3929 struct inode *inode = &(ei->vfs_inode);
3930 u64 i_blocks = inode->i_blocks;
3931 struct super_block *sb = inode->i_sb;
3933 if (i_blocks <= ~0U) {
3935 * i_blocks can be represented in a 32 bit variable
3936 * as multiple of 512 bytes
3938 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3939 raw_inode->i_blocks_high = 0;
3940 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3943 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3946 if (i_blocks <= 0xffffffffffffULL) {
3948 * i_blocks can be represented in a 48 bit variable
3949 * as multiple of 512 bytes
3951 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3952 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3953 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3955 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
3956 /* i_block is stored in file system block size */
3957 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3958 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3959 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
3965 * Post the struct inode info into an on-disk inode location in the
3966 * buffer-cache. This gobbles the caller's reference to the
3967 * buffer_head in the inode location struct.
3969 * The caller must have write access to iloc->bh.
3971 static int ext4_do_update_inode(handle_t *handle,
3972 struct inode *inode,
3973 struct ext4_iloc *iloc)
3975 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3976 struct ext4_inode_info *ei = EXT4_I(inode);
3977 struct buffer_head *bh = iloc->bh;
3978 int err = 0, rc, block;
3979 int need_datasync = 0;
3983 /* For fields not not tracking in the in-memory inode,
3984 * initialise them to zero for new inodes. */
3985 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
3986 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
3988 ext4_get_inode_flags(ei);
3989 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3990 i_uid = i_uid_read(inode);
3991 i_gid = i_gid_read(inode);
3992 if (!(test_opt(inode->i_sb, NO_UID32))) {
3993 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
3994 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
3996 * Fix up interoperability with old kernels. Otherwise, old inodes get
3997 * re-used with the upper 16 bits of the uid/gid intact
4000 raw_inode->i_uid_high =
4001 cpu_to_le16(high_16_bits(i_uid));
4002 raw_inode->i_gid_high =
4003 cpu_to_le16(high_16_bits(i_gid));
4005 raw_inode->i_uid_high = 0;
4006 raw_inode->i_gid_high = 0;
4009 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4010 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4011 raw_inode->i_uid_high = 0;
4012 raw_inode->i_gid_high = 0;
4014 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4016 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4017 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4018 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4019 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4021 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4023 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4024 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4025 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4026 cpu_to_le32(EXT4_OS_HURD))
4027 raw_inode->i_file_acl_high =
4028 cpu_to_le16(ei->i_file_acl >> 32);
4029 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4030 if (ei->i_disksize != ext4_isize(raw_inode)) {
4031 ext4_isize_set(raw_inode, ei->i_disksize);
4034 if (ei->i_disksize > 0x7fffffffULL) {
4035 struct super_block *sb = inode->i_sb;
4036 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4037 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4038 EXT4_SB(sb)->s_es->s_rev_level ==
4039 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4040 /* If this is the first large file
4041 * created, add a flag to the superblock.
4043 err = ext4_journal_get_write_access(handle,
4044 EXT4_SB(sb)->s_sbh);
4047 ext4_update_dynamic_rev(sb);
4048 EXT4_SET_RO_COMPAT_FEATURE(sb,
4049 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4050 ext4_handle_sync(handle);
4051 err = ext4_handle_dirty_super(handle, sb);
4054 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4055 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4056 if (old_valid_dev(inode->i_rdev)) {
4057 raw_inode->i_block[0] =
4058 cpu_to_le32(old_encode_dev(inode->i_rdev));
4059 raw_inode->i_block[1] = 0;
4061 raw_inode->i_block[0] = 0;
4062 raw_inode->i_block[1] =
4063 cpu_to_le32(new_encode_dev(inode->i_rdev));
4064 raw_inode->i_block[2] = 0;
4066 } else if (!ext4_has_inline_data(inode)) {
4067 for (block = 0; block < EXT4_N_BLOCKS; block++)
4068 raw_inode->i_block[block] = ei->i_data[block];
4071 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4072 if (ei->i_extra_isize) {
4073 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4074 raw_inode->i_version_hi =
4075 cpu_to_le32(inode->i_version >> 32);
4076 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4079 ext4_inode_csum_set(inode, raw_inode, ei);
4081 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4082 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4085 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4087 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4090 ext4_std_error(inode->i_sb, err);
4095 * ext4_write_inode()
4097 * We are called from a few places:
4099 * - Within generic_file_write() for O_SYNC files.
4100 * Here, there will be no transaction running. We wait for any running
4101 * transaction to commit.
4103 * - Within sys_sync(), kupdate and such.
4104 * We wait on commit, if tol to.
4106 * - Within prune_icache() (PF_MEMALLOC == true)
4107 * Here we simply return. We can't afford to block kswapd on the
4110 * In all cases it is actually safe for us to return without doing anything,
4111 * because the inode has been copied into a raw inode buffer in
4112 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4115 * Note that we are absolutely dependent upon all inode dirtiers doing the
4116 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4117 * which we are interested.
4119 * It would be a bug for them to not do this. The code:
4121 * mark_inode_dirty(inode)
4123 * inode->i_size = expr;
4125 * is in error because a kswapd-driven write_inode() could occur while
4126 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4127 * will no longer be on the superblock's dirty inode list.
4129 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4133 if (current->flags & PF_MEMALLOC)
4136 if (EXT4_SB(inode->i_sb)->s_journal) {
4137 if (ext4_journal_current_handle()) {
4138 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4143 if (wbc->sync_mode != WB_SYNC_ALL)
4146 err = ext4_force_commit(inode->i_sb);
4148 struct ext4_iloc iloc;
4150 err = __ext4_get_inode_loc(inode, &iloc, 0);
4153 if (wbc->sync_mode == WB_SYNC_ALL)
4154 sync_dirty_buffer(iloc.bh);
4155 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4156 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4157 "IO error syncing inode");
4166 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4167 * buffers that are attached to a page stradding i_size and are undergoing
4168 * commit. In that case we have to wait for commit to finish and try again.
4170 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4174 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4175 tid_t commit_tid = 0;
4178 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4180 * All buffers in the last page remain valid? Then there's nothing to
4181 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4184 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4187 page = find_lock_page(inode->i_mapping,
4188 inode->i_size >> PAGE_CACHE_SHIFT);
4191 ret = __ext4_journalled_invalidatepage(page, offset);
4193 page_cache_release(page);
4197 read_lock(&journal->j_state_lock);
4198 if (journal->j_committing_transaction)
4199 commit_tid = journal->j_committing_transaction->t_tid;
4200 read_unlock(&journal->j_state_lock);
4202 jbd2_log_wait_commit(journal, commit_tid);
4209 * Called from notify_change.
4211 * We want to trap VFS attempts to truncate the file as soon as
4212 * possible. In particular, we want to make sure that when the VFS
4213 * shrinks i_size, we put the inode on the orphan list and modify
4214 * i_disksize immediately, so that during the subsequent flushing of
4215 * dirty pages and freeing of disk blocks, we can guarantee that any
4216 * commit will leave the blocks being flushed in an unused state on
4217 * disk. (On recovery, the inode will get truncated and the blocks will
4218 * be freed, so we have a strong guarantee that no future commit will
4219 * leave these blocks visible to the user.)
4221 * Another thing we have to assure is that if we are in ordered mode
4222 * and inode is still attached to the committing transaction, we must
4223 * we start writeout of all the dirty pages which are being truncated.
4224 * This way we are sure that all the data written in the previous
4225 * transaction are already on disk (truncate waits for pages under
4228 * Called with inode->i_mutex down.
4230 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4232 struct inode *inode = dentry->d_inode;
4235 const unsigned int ia_valid = attr->ia_valid;
4237 error = inode_change_ok(inode, attr);
4241 if (is_quota_modification(inode, attr))
4242 dquot_initialize(inode);
4243 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4244 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4247 /* (user+group)*(old+new) structure, inode write (sb,
4248 * inode block, ? - but truncate inode update has it) */
4249 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4250 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4251 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4252 if (IS_ERR(handle)) {
4253 error = PTR_ERR(handle);
4256 error = dquot_transfer(inode, attr);
4258 ext4_journal_stop(handle);
4261 /* Update corresponding info in inode so that everything is in
4262 * one transaction */
4263 if (attr->ia_valid & ATTR_UID)
4264 inode->i_uid = attr->ia_uid;
4265 if (attr->ia_valid & ATTR_GID)
4266 inode->i_gid = attr->ia_gid;
4267 error = ext4_mark_inode_dirty(handle, inode);
4268 ext4_journal_stop(handle);
4271 if (attr->ia_valid & ATTR_SIZE) {
4273 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4274 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4276 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4281 if (S_ISREG(inode->i_mode) &&
4282 attr->ia_valid & ATTR_SIZE &&
4283 (attr->ia_size < inode->i_size)) {
4286 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4287 if (IS_ERR(handle)) {
4288 error = PTR_ERR(handle);
4291 if (ext4_handle_valid(handle)) {
4292 error = ext4_orphan_add(handle, inode);
4295 EXT4_I(inode)->i_disksize = attr->ia_size;
4296 rc = ext4_mark_inode_dirty(handle, inode);
4299 ext4_journal_stop(handle);
4301 if (ext4_should_order_data(inode)) {
4302 error = ext4_begin_ordered_truncate(inode,
4305 /* Do as much error cleanup as possible */
4306 handle = ext4_journal_start(inode,
4308 if (IS_ERR(handle)) {
4309 ext4_orphan_del(NULL, inode);
4312 ext4_orphan_del(handle, inode);
4314 ext4_journal_stop(handle);
4320 if (attr->ia_valid & ATTR_SIZE) {
4321 if (attr->ia_size != inode->i_size) {
4322 loff_t oldsize = inode->i_size;
4324 i_size_write(inode, attr->ia_size);
4326 * Blocks are going to be removed from the inode. Wait
4327 * for dio in flight. Temporarily disable
4328 * dioread_nolock to prevent livelock.
4331 if (!ext4_should_journal_data(inode)) {
4332 ext4_inode_block_unlocked_dio(inode);
4333 inode_dio_wait(inode);
4334 ext4_inode_resume_unlocked_dio(inode);
4336 ext4_wait_for_tail_page_commit(inode);
4339 * Truncate pagecache after we've waited for commit
4340 * in data=journal mode to make pages freeable.
4342 truncate_pagecache(inode, oldsize, inode->i_size);
4344 ext4_truncate(inode);
4348 setattr_copy(inode, attr);
4349 mark_inode_dirty(inode);
4353 * If the call to ext4_truncate failed to get a transaction handle at
4354 * all, we need to clean up the in-core orphan list manually.
4356 if (orphan && inode->i_nlink)
4357 ext4_orphan_del(NULL, inode);
4359 if (!rc && (ia_valid & ATTR_MODE))
4360 rc = ext4_acl_chmod(inode);
4363 ext4_std_error(inode->i_sb, error);
4369 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4372 struct inode *inode;
4373 unsigned long delalloc_blocks;
4375 inode = dentry->d_inode;
4376 generic_fillattr(inode, stat);
4379 * We can't update i_blocks if the block allocation is delayed
4380 * otherwise in the case of system crash before the real block
4381 * allocation is done, we will have i_blocks inconsistent with
4382 * on-disk file blocks.
4383 * We always keep i_blocks updated together with real
4384 * allocation. But to not confuse with user, stat
4385 * will return the blocks that include the delayed allocation
4386 * blocks for this file.
4388 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4389 EXT4_I(inode)->i_reserved_data_blocks);
4391 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4395 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4397 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4398 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4399 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4403 * Account for index blocks, block groups bitmaps and block group
4404 * descriptor blocks if modify datablocks and index blocks
4405 * worse case, the indexs blocks spread over different block groups
4407 * If datablocks are discontiguous, they are possible to spread over
4408 * different block groups too. If they are contiguous, with flexbg,
4409 * they could still across block group boundary.
4411 * Also account for superblock, inode, quota and xattr blocks
4413 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4415 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4421 * How many index blocks need to touch to modify nrblocks?
4422 * The "Chunk" flag indicating whether the nrblocks is
4423 * physically contiguous on disk
4425 * For Direct IO and fallocate, they calls get_block to allocate
4426 * one single extent at a time, so they could set the "Chunk" flag
4428 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4433 * Now let's see how many group bitmaps and group descriptors need
4443 if (groups > ngroups)
4445 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4446 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4448 /* bitmaps and block group descriptor blocks */
4449 ret += groups + gdpblocks;
4451 /* Blocks for super block, inode, quota and xattr blocks */
4452 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4458 * Calculate the total number of credits to reserve to fit
4459 * the modification of a single pages into a single transaction,
4460 * which may include multiple chunks of block allocations.
4462 * This could be called via ext4_write_begin()
4464 * We need to consider the worse case, when
4465 * one new block per extent.
4467 int ext4_writepage_trans_blocks(struct inode *inode)
4469 int bpp = ext4_journal_blocks_per_page(inode);
4472 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4474 /* Account for data blocks for journalled mode */
4475 if (ext4_should_journal_data(inode))
4481 * Calculate the journal credits for a chunk of data modification.
4483 * This is called from DIO, fallocate or whoever calling
4484 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4486 * journal buffers for data blocks are not included here, as DIO
4487 * and fallocate do no need to journal data buffers.
4489 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4491 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4495 * The caller must have previously called ext4_reserve_inode_write().
4496 * Give this, we know that the caller already has write access to iloc->bh.
4498 int ext4_mark_iloc_dirty(handle_t *handle,
4499 struct inode *inode, struct ext4_iloc *iloc)
4503 if (IS_I_VERSION(inode))
4504 inode_inc_iversion(inode);
4506 /* the do_update_inode consumes one bh->b_count */
4509 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4510 err = ext4_do_update_inode(handle, inode, iloc);
4516 * On success, We end up with an outstanding reference count against
4517 * iloc->bh. This _must_ be cleaned up later.
4521 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4522 struct ext4_iloc *iloc)
4526 err = ext4_get_inode_loc(inode, iloc);
4528 BUFFER_TRACE(iloc->bh, "get_write_access");
4529 err = ext4_journal_get_write_access(handle, iloc->bh);
4535 ext4_std_error(inode->i_sb, err);
4540 * Expand an inode by new_extra_isize bytes.
4541 * Returns 0 on success or negative error number on failure.
4543 static int ext4_expand_extra_isize(struct inode *inode,
4544 unsigned int new_extra_isize,
4545 struct ext4_iloc iloc,
4548 struct ext4_inode *raw_inode;
4549 struct ext4_xattr_ibody_header *header;
4551 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4554 raw_inode = ext4_raw_inode(&iloc);
4556 header = IHDR(inode, raw_inode);
4558 /* No extended attributes present */
4559 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4560 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4561 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4563 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4567 /* try to expand with EAs present */
4568 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4573 * What we do here is to mark the in-core inode as clean with respect to inode
4574 * dirtiness (it may still be data-dirty).
4575 * This means that the in-core inode may be reaped by prune_icache
4576 * without having to perform any I/O. This is a very good thing,
4577 * because *any* task may call prune_icache - even ones which
4578 * have a transaction open against a different journal.
4580 * Is this cheating? Not really. Sure, we haven't written the
4581 * inode out, but prune_icache isn't a user-visible syncing function.
4582 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4583 * we start and wait on commits.
4585 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4587 struct ext4_iloc iloc;
4588 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4589 static unsigned int mnt_count;
4593 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4594 err = ext4_reserve_inode_write(handle, inode, &iloc);
4595 if (ext4_handle_valid(handle) &&
4596 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4597 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4599 * We need extra buffer credits since we may write into EA block
4600 * with this same handle. If journal_extend fails, then it will
4601 * only result in a minor loss of functionality for that inode.
4602 * If this is felt to be critical, then e2fsck should be run to
4603 * force a large enough s_min_extra_isize.
4605 if ((jbd2_journal_extend(handle,
4606 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4607 ret = ext4_expand_extra_isize(inode,
4608 sbi->s_want_extra_isize,
4611 ext4_set_inode_state(inode,
4612 EXT4_STATE_NO_EXPAND);
4614 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4615 ext4_warning(inode->i_sb,
4616 "Unable to expand inode %lu. Delete"
4617 " some EAs or run e2fsck.",
4620 le16_to_cpu(sbi->s_es->s_mnt_count);
4626 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4631 * ext4_dirty_inode() is called from __mark_inode_dirty()
4633 * We're really interested in the case where a file is being extended.
4634 * i_size has been changed by generic_commit_write() and we thus need
4635 * to include the updated inode in the current transaction.
4637 * Also, dquot_alloc_block() will always dirty the inode when blocks
4638 * are allocated to the file.
4640 * If the inode is marked synchronous, we don't honour that here - doing
4641 * so would cause a commit on atime updates, which we don't bother doing.
4642 * We handle synchronous inodes at the highest possible level.
4644 void ext4_dirty_inode(struct inode *inode, int flags)
4648 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4652 ext4_mark_inode_dirty(handle, inode);
4654 ext4_journal_stop(handle);
4661 * Bind an inode's backing buffer_head into this transaction, to prevent
4662 * it from being flushed to disk early. Unlike
4663 * ext4_reserve_inode_write, this leaves behind no bh reference and
4664 * returns no iloc structure, so the caller needs to repeat the iloc
4665 * lookup to mark the inode dirty later.
4667 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4669 struct ext4_iloc iloc;
4673 err = ext4_get_inode_loc(inode, &iloc);
4675 BUFFER_TRACE(iloc.bh, "get_write_access");
4676 err = jbd2_journal_get_write_access(handle, iloc.bh);
4678 err = ext4_handle_dirty_metadata(handle,
4684 ext4_std_error(inode->i_sb, err);
4689 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4696 * We have to be very careful here: changing a data block's
4697 * journaling status dynamically is dangerous. If we write a
4698 * data block to the journal, change the status and then delete
4699 * that block, we risk forgetting to revoke the old log record
4700 * from the journal and so a subsequent replay can corrupt data.
4701 * So, first we make sure that the journal is empty and that
4702 * nobody is changing anything.
4705 journal = EXT4_JOURNAL(inode);
4708 if (is_journal_aborted(journal))
4710 /* We have to allocate physical blocks for delalloc blocks
4711 * before flushing journal. otherwise delalloc blocks can not
4712 * be allocated any more. even more truncate on delalloc blocks
4713 * could trigger BUG by flushing delalloc blocks in journal.
4714 * There is no delalloc block in non-journal data mode.
4716 if (val && test_opt(inode->i_sb, DELALLOC)) {
4717 err = ext4_alloc_da_blocks(inode);
4722 /* Wait for all existing dio workers */
4723 ext4_inode_block_unlocked_dio(inode);
4724 inode_dio_wait(inode);
4726 jbd2_journal_lock_updates(journal);
4729 * OK, there are no updates running now, and all cached data is
4730 * synced to disk. We are now in a completely consistent state
4731 * which doesn't have anything in the journal, and we know that
4732 * no filesystem updates are running, so it is safe to modify
4733 * the inode's in-core data-journaling state flag now.
4737 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4739 jbd2_journal_flush(journal);
4740 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4742 ext4_set_aops(inode);
4744 jbd2_journal_unlock_updates(journal);
4745 ext4_inode_resume_unlocked_dio(inode);
4747 /* Finally we can mark the inode as dirty. */
4749 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
4751 return PTR_ERR(handle);
4753 err = ext4_mark_inode_dirty(handle, inode);
4754 ext4_handle_sync(handle);
4755 ext4_journal_stop(handle);
4756 ext4_std_error(inode->i_sb, err);
4761 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4763 return !buffer_mapped(bh);
4766 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4768 struct page *page = vmf->page;
4772 struct file *file = vma->vm_file;
4773 struct inode *inode = file->f_path.dentry->d_inode;
4774 struct address_space *mapping = inode->i_mapping;
4776 get_block_t *get_block;
4779 sb_start_pagefault(inode->i_sb);
4780 file_update_time(vma->vm_file);
4781 /* Delalloc case is easy... */
4782 if (test_opt(inode->i_sb, DELALLOC) &&
4783 !ext4_should_journal_data(inode) &&
4784 !ext4_nonda_switch(inode->i_sb)) {
4786 ret = __block_page_mkwrite(vma, vmf,
4787 ext4_da_get_block_prep);
4788 } while (ret == -ENOSPC &&
4789 ext4_should_retry_alloc(inode->i_sb, &retries));
4794 size = i_size_read(inode);
4795 /* Page got truncated from under us? */
4796 if (page->mapping != mapping || page_offset(page) > size) {
4798 ret = VM_FAULT_NOPAGE;
4802 if (page->index == size >> PAGE_CACHE_SHIFT)
4803 len = size & ~PAGE_CACHE_MASK;
4805 len = PAGE_CACHE_SIZE;
4807 * Return if we have all the buffers mapped. This avoids the need to do
4808 * journal_start/journal_stop which can block and take a long time
4810 if (page_has_buffers(page)) {
4811 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
4813 ext4_bh_unmapped)) {
4814 /* Wait so that we don't change page under IO */
4815 wait_on_page_writeback(page);
4816 ret = VM_FAULT_LOCKED;
4821 /* OK, we need to fill the hole... */
4822 if (ext4_should_dioread_nolock(inode))
4823 get_block = ext4_get_block_write;
4825 get_block = ext4_get_block;
4827 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
4828 ext4_writepage_trans_blocks(inode));
4829 if (IS_ERR(handle)) {
4830 ret = VM_FAULT_SIGBUS;
4833 ret = __block_page_mkwrite(vma, vmf, get_block);
4834 if (!ret && ext4_should_journal_data(inode)) {
4835 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
4836 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4838 ret = VM_FAULT_SIGBUS;
4839 ext4_journal_stop(handle);
4842 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4844 ext4_journal_stop(handle);
4845 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4848 ret = block_page_mkwrite_return(ret);
4850 sb_end_pagefault(inode->i_sb);