]> Git Repo - linux.git/blame - arch/x86/kernel/traps.c
maccess: rename probe_kernel_{read,write} to copy_{from,to}_kernel_nofault
[linux.git] / arch / x86 / kernel / traps.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1991, 1992 Linus Torvalds
a8c1be9d 3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
1da177e4
LT
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <[email protected]>, May 2000
7 */
8
9/*
c1d518c8 10 * Handle hardware traps and faults.
1da177e4 11 */
c767a54b
JP
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
56dd9470 15#include <linux/context_tracking.h>
b5964405
IM
16#include <linux/interrupt.h>
17#include <linux/kallsyms.h>
18#include <linux/spinlock.h>
b5964405
IM
19#include <linux/kprobes.h>
20#include <linux/uaccess.h>
b5964405 21#include <linux/kdebug.h>
f503b5ae 22#include <linux/kgdb.h>
1da177e4 23#include <linux/kernel.h>
186f4360 24#include <linux/export.h>
b5964405 25#include <linux/ptrace.h>
b02ef20a 26#include <linux/uprobes.h>
1da177e4 27#include <linux/string.h>
b5964405 28#include <linux/delay.h>
1da177e4 29#include <linux/errno.h>
b5964405
IM
30#include <linux/kexec.h>
31#include <linux/sched.h>
68db0cf1 32#include <linux/sched/task_stack.h>
1da177e4 33#include <linux/timer.h>
1da177e4 34#include <linux/init.h>
91768d6c 35#include <linux/bug.h>
b5964405
IM
36#include <linux/nmi.h>
37#include <linux/mm.h>
c1d518c8
AH
38#include <linux/smp.h>
39#include <linux/io.h>
0d00449c
PZ
40#include <linux/hardirq.h>
41#include <linux/atomic.h>
42
b5964405 43#include <asm/stacktrace.h>
1da177e4 44#include <asm/processor.h>
1da177e4 45#include <asm/debugreg.h>
35de5b06 46#include <asm/text-patching.h>
08d636b6 47#include <asm/ftrace.h>
c1d518c8 48#include <asm/traps.h>
1da177e4 49#include <asm/desc.h>
78f7f1e5 50#include <asm/fpu/internal.h>
6650cdd9 51#include <asm/cpu.h>
ed1bbc40 52#include <asm/cpu_entry_area.h>
9e55e44e 53#include <asm/mce.h>
4eefbe79 54#include <asm/fixmap.h>
1164dd00 55#include <asm/mach_traps.h>
17f41571 56#include <asm/alternative.h>
a84eeaa9 57#include <asm/fpu/xstate.h>
ba3e127e 58#include <asm/vm86.h>
6fc9dc81 59#include <asm/umip.h>
59c1dcbe
JH
60#include <asm/insn.h>
61#include <asm/insn-eval.h>
c1d518c8 62
081f75bb 63#ifdef CONFIG_X86_64
428cf902 64#include <asm/x86_init.h>
081f75bb
AH
65#include <asm/pgalloc.h>
66#include <asm/proto.h>
081f75bb 67#else
c1d518c8 68#include <asm/processor-flags.h>
8e6dafd6 69#include <asm/setup.h>
b2502b41 70#include <asm/proto.h>
081f75bb 71#endif
1da177e4 72
7854f822 73DECLARE_BITMAP(system_vectors, NR_VECTORS);
b77b881f 74
d99e1bd1 75static inline void cond_local_irq_enable(struct pt_regs *regs)
762db434
AH
76{
77 if (regs->flags & X86_EFLAGS_IF)
78 local_irq_enable();
79}
80
d99e1bd1 81static inline void cond_local_irq_disable(struct pt_regs *regs)
3d2a71a5
AH
82{
83 if (regs->flags & X86_EFLAGS_IF)
84 local_irq_disable();
3d2a71a5
AH
85}
86
9a93848f
PZ
87int is_valid_bugaddr(unsigned long addr)
88{
89 unsigned short ud;
90
91 if (addr < TASK_SIZE_MAX)
92 return 0;
93
94 if (probe_kernel_address((unsigned short *)addr, ud))
95 return 0;
96
97 return ud == INSN_UD0 || ud == INSN_UD2;
98}
99
9326638c 100static nokprobe_inline int
79e21d65 101do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str,
c416ddf5 102 struct pt_regs *regs, long error_code)
1da177e4 103{
d74ef111 104 if (v8086_mode(regs)) {
3c1326f8 105 /*
c416ddf5 106 * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86.
3c1326f8
AH
107 * On nmi (interrupt 2), do_trap should not be called.
108 */
c416ddf5
FW
109 if (trapnr < X86_TRAP_UD) {
110 if (!handle_vm86_trap((struct kernel_vm86_regs *) regs,
111 error_code, trapnr))
112 return 0;
113 }
79e21d65 114 } else if (!user_mode(regs)) {
81fd9c18 115 if (fixup_exception(regs, trapnr, error_code, 0))
9a93848f
PZ
116 return 0;
117
9a93848f
PZ
118 tsk->thread.error_code = error_code;
119 tsk->thread.trap_nr = trapnr;
120 die(str, regs, error_code);
c416ddf5 121 }
1da177e4 122
b5964405 123 /*
51e7dc70 124 * We want error_code and trap_nr set for userspace faults and
b5964405
IM
125 * kernelspace faults which result in die(), but not
126 * kernelspace faults which are fixed up. die() gives the
127 * process no chance to handle the signal and notice the
128 * kernel fault information, so that won't result in polluting
129 * the information about previously queued, but not yet
be4c11af 130 * delivered, faults. See also exc_general_protection below.
b5964405
IM
131 */
132 tsk->thread.error_code = error_code;
51e7dc70 133 tsk->thread.trap_nr = trapnr;
d1895183 134
c416ddf5
FW
135 return -1;
136}
1da177e4 137
6ace1098
EB
138static void show_signal(struct task_struct *tsk, int signr,
139 const char *type, const char *desc,
140 struct pt_regs *regs, long error_code)
141{
081f75bb
AH
142 if (show_unhandled_signals && unhandled_signal(tsk, signr) &&
143 printk_ratelimit()) {
6ace1098
EB
144 pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx",
145 tsk->comm, task_pid_nr(tsk), type, desc,
c767a54b 146 regs->ip, regs->sp, error_code);
1c99a687 147 print_vma_addr(KERN_CONT " in ", regs->ip);
c767a54b 148 pr_cont("\n");
081f75bb 149 }
6ace1098
EB
150}
151
9326638c 152static void
c416ddf5 153do_trap(int trapnr, int signr, char *str, struct pt_regs *regs,
164881b6 154 long error_code, int sicode, void __user *addr)
c416ddf5
FW
155{
156 struct task_struct *tsk = current;
157
c416ddf5
FW
158 if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code))
159 return;
d1895183 160
6ace1098 161 show_signal(tsk, signr, "trap ", str, regs, error_code);
081f75bb 162
164881b6 163 if (!sicode)
3cf5d076 164 force_sig(signr);
164881b6 165 else
2e1661d2 166 force_sig_fault(signr, sicode, addr);
1da177e4 167}
9326638c 168NOKPROBE_SYMBOL(do_trap);
1da177e4 169
dff0796e 170static void do_error_trap(struct pt_regs *regs, long error_code, char *str,
164881b6 171 unsigned long trapnr, int signr, int sicode, void __user *addr)
dff0796e 172{
5778077d 173 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
02fdcd5e 174
dff0796e
ON
175 if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) !=
176 NOTIFY_STOP) {
d99e1bd1 177 cond_local_irq_enable(regs);
164881b6 178 do_trap(trapnr, signr, str, regs, error_code, sicode, addr);
ca4c6a98 179 cond_local_irq_disable(regs);
dff0796e 180 }
dff0796e
ON
181}
182
218e31b6
TG
183/*
184 * Posix requires to provide the address of the faulting instruction for
185 * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t.
186 *
187 * This address is usually regs->ip, but when an uprobe moved the code out
188 * of line then regs->ip points to the XOL code which would confuse
189 * anything which analyzes the fault address vs. the unmodified binary. If
190 * a trap happened in XOL code then uprobe maps regs->ip back to the
191 * original instruction address.
192 */
193static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs)
194{
195 return (void __user *)uprobe_get_trap_addr(regs);
196}
197
9d06c402
TG
198DEFINE_IDTENTRY(exc_divide_error)
199{
200 do_error_trap(regs, 0, "divide_error", X86_TRAP_DE, SIGFPE,
201 FPE_INTDIV, error_get_trap_addr(regs));
202}
203
4b6b9111
TG
204DEFINE_IDTENTRY(exc_overflow)
205{
206 do_error_trap(regs, 0, "overflow", X86_TRAP_OF, SIGSEGV, 0, NULL);
207}
208
49893c5c
TG
209#ifdef CONFIG_X86_F00F_BUG
210void handle_invalid_op(struct pt_regs *regs)
211#else
212static inline void handle_invalid_op(struct pt_regs *regs)
213#endif
214{
215 do_error_trap(regs, 0, "invalid opcode", X86_TRAP_UD, SIGILL,
216 ILL_ILLOPN, error_get_trap_addr(regs));
217}
218
15a416e8 219DEFINE_IDTENTRY_RAW(exc_invalid_op)
49893c5c 220{
15a416e8
AL
221 bool rcu_exit;
222
223 /*
224 * Handle BUG/WARN like NMIs instead of like normal idtentries:
225 * if we bugged/warned in a bad RCU context, for example, the last
226 * thing we want is to BUG/WARN again in the idtentry code, ad
227 * infinitum.
228 */
229 if (!user_mode(regs) && is_valid_bugaddr(regs->ip)) {
230 enum bug_trap_type type;
231
232 nmi_enter();
233 instrumentation_begin();
234 trace_hardirqs_off_finish();
235 type = report_bug(regs->ip, regs);
236 if (regs->flags & X86_EFLAGS_IF)
237 trace_hardirqs_on_prepare();
238 instrumentation_end();
239 nmi_exit();
240
241 if (type == BUG_TRAP_TYPE_WARN) {
242 /* Skip the ud2. */
243 regs->ip += LEN_UD2;
244 return;
245 }
246
247 /*
248 * Else, if this was a BUG and report_bug returns or if this
249 * was just a normal #UD, we want to continue onward and
250 * crash.
251 */
252 }
253
254 rcu_exit = idtentry_enter_cond_rcu(regs);
255 instrumentation_begin();
49893c5c 256 handle_invalid_op(regs);
15a416e8
AL
257 instrumentation_end();
258 idtentry_exit_cond_rcu(regs, rcu_exit);
49893c5c
TG
259}
260
f95658fd
TG
261DEFINE_IDTENTRY(exc_coproc_segment_overrun)
262{
263 do_error_trap(regs, 0, "coprocessor segment overrun",
264 X86_TRAP_OLD_MF, SIGFPE, 0, NULL);
265}
266
97b3d290
TG
267DEFINE_IDTENTRY_ERRORCODE(exc_invalid_tss)
268{
269 do_error_trap(regs, error_code, "invalid TSS", X86_TRAP_TS, SIGSEGV,
270 0, NULL);
271}
272
99a3fb8d
TG
273DEFINE_IDTENTRY_ERRORCODE(exc_segment_not_present)
274{
275 do_error_trap(regs, error_code, "segment not present", X86_TRAP_NP,
276 SIGBUS, 0, NULL);
277}
278
fd9689bf
TG
279DEFINE_IDTENTRY_ERRORCODE(exc_stack_segment)
280{
281 do_error_trap(regs, error_code, "stack segment", X86_TRAP_SS, SIGBUS,
282 0, NULL);
1da177e4
LT
283}
284
436608bb 285DEFINE_IDTENTRY_ERRORCODE(exc_alignment_check)
6650cdd9
PZI
286{
287 char *str = "alignment check";
288
6650cdd9
PZI
289 if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP)
290 return;
291
292 if (!user_mode(regs))
293 die("Split lock detected\n", regs, error_code);
294
295 local_irq_enable();
296
297 if (handle_user_split_lock(regs, error_code))
298 return;
299
300 do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs,
301 error_code, BUS_ADRALN, NULL);
302}
303
e37e43a4 304#ifdef CONFIG_VMAP_STACK
6271cfdf
AL
305__visible void __noreturn handle_stack_overflow(const char *message,
306 struct pt_regs *regs,
307 unsigned long fault_address)
e37e43a4
AL
308{
309 printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n",
310 (void *)fault_address, current->stack,
311 (char *)current->stack + THREAD_SIZE - 1);
312 die(message, regs, 0);
313
314 /* Be absolutely certain we don't return. */
2022cceb 315 panic("%s", message);
e37e43a4
AL
316}
317#endif
318
7d8d8cfd
AL
319/*
320 * Runs on an IST stack for x86_64 and on a special task stack for x86_32.
321 *
322 * On x86_64, this is more or less a normal kernel entry. Notwithstanding the
323 * SDM's warnings about double faults being unrecoverable, returning works as
324 * expected. Presumably what the SDM actually means is that the CPU may get
325 * the register state wrong on entry, so returning could be a bad idea.
326 *
327 * Various CPU engineers have promised that double faults due to an IRET fault
328 * while the stack is read-only are, in fact, recoverable.
329 *
330 * On x86_32, this is entered through a task gate, and regs are synthesized
331 * from the TSS. Returning is, in principle, okay, but changes to regs will
332 * be lost. If, for some reason, we need to return to a context with modified
333 * regs, the shim code could be adjusted to synchronize the registers.
c29c775a
TG
334 *
335 * The 32bit #DF shim provides CR2 already as an argument. On 64bit it needs
336 * to be read before doing anything else.
7d8d8cfd 337 */
c29c775a 338DEFINE_IDTENTRY_DF(exc_double_fault)
081f75bb
AH
339{
340 static const char str[] = "double fault";
341 struct task_struct *tsk = current;
342
7102cb07 343#ifdef CONFIG_VMAP_STACK
c29c775a
TG
344 unsigned long address = read_cr2();
345#endif
346
af726f21
AL
347#ifdef CONFIG_X86_ESPFIX64
348 extern unsigned char native_irq_return_iret[];
349
350 /*
351 * If IRET takes a non-IST fault on the espfix64 stack, then we
6d9256f0
AL
352 * end up promoting it to a doublefault. In that case, take
353 * advantage of the fact that we're not using the normal (TSS.sp0)
354 * stack right now. We can write a fake #GP(0) frame at TSS.sp0
355 * and then modify our own IRET frame so that, when we return,
356 * we land directly at the #GP(0) vector with the stack already
357 * set up according to its expectations.
358 *
359 * The net result is that our #GP handler will think that we
360 * entered from usermode with the bad user context.
95927475 361 *
0d00449c 362 * No need for nmi_enter() here because we don't use RCU.
af726f21 363 */
c739f930 364 if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY &&
af726f21
AL
365 regs->cs == __KERNEL_CS &&
366 regs->ip == (unsigned long)native_irq_return_iret)
367 {
c482feef 368 struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
e9660391 369 unsigned long *p = (unsigned long *)regs->sp;
af726f21 370
6d9256f0
AL
371 /*
372 * regs->sp points to the failing IRET frame on the
373 * ESPFIX64 stack. Copy it to the entry stack. This fills
374 * in gpregs->ss through gpregs->ip.
375 *
376 */
e9660391
PZ
377 gpregs->ip = p[0];
378 gpregs->cs = p[1];
379 gpregs->flags = p[2];
380 gpregs->sp = p[3];
381 gpregs->ss = p[4];
6d9256f0 382 gpregs->orig_ax = 0; /* Missing (lost) #GP error code */
af726f21 383
6d9256f0
AL
384 /*
385 * Adjust our frame so that we return straight to the #GP
386 * vector with the expected RSP value. This is safe because
387 * we won't enable interupts or schedule before we invoke
388 * general_protection, so nothing will clobber the stack
389 * frame we just set up.
bd7b1f7c
AL
390 *
391 * We will enter general_protection with kernel GSBASE,
392 * which is what the stub expects, given that the faulting
393 * RIP will be the IRET instruction.
6d9256f0 394 */
be4c11af 395 regs->ip = (unsigned long)asm_exc_general_protection;
6d9256f0 396 regs->sp = (unsigned long)&gpregs->orig_ax;
95927475 397
af726f21
AL
398 return;
399 }
400#endif
401
0d00449c 402 nmi_enter();
c29c775a 403 instrumentation_begin();
c9408265 404 notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV);
081f75bb
AH
405
406 tsk->thread.error_code = error_code;
51e7dc70 407 tsk->thread.trap_nr = X86_TRAP_DF;
081f75bb 408
e37e43a4
AL
409#ifdef CONFIG_VMAP_STACK
410 /*
411 * If we overflow the stack into a guard page, the CPU will fail
412 * to deliver #PF and will send #DF instead. Similarly, if we
413 * take any non-IST exception while too close to the bottom of
414 * the stack, the processor will get a page fault while
415 * delivering the exception and will generate a double fault.
416 *
417 * According to the SDM (footnote in 6.15 under "Interrupt 14 -
418 * Page-Fault Exception (#PF):
419 *
420 * Processors update CR2 whenever a page fault is detected. If a
421 * second page fault occurs while an earlier page fault is being
6d9256f0 422 * delivered, the faulting linear address of the second fault will
e37e43a4
AL
423 * overwrite the contents of CR2 (replacing the previous
424 * address). These updates to CR2 occur even if the page fault
425 * results in a double fault or occurs during the delivery of a
426 * double fault.
427 *
428 * The logic below has a small possibility of incorrectly diagnosing
429 * some errors as stack overflows. For example, if the IDT or GDT
430 * gets corrupted such that #GP delivery fails due to a bad descriptor
431 * causing #GP and we hit this condition while CR2 coincidentally
432 * points to the stack guard page, we'll think we overflowed the
433 * stack. Given that we're going to panic one way or another
434 * if this happens, this isn't necessarily worth fixing.
435 *
436 * If necessary, we could improve the test by only diagnosing
437 * a stack overflow if the saved RSP points within 47 bytes of
438 * the bottom of the stack: if RSP == tsk_stack + 48 and we
439 * take an exception, the stack is already aligned and there
440 * will be enough room SS, RSP, RFLAGS, CS, RIP, and a
441 * possible error code, so a stack overflow would *not* double
442 * fault. With any less space left, exception delivery could
443 * fail, and, as a practical matter, we've overflowed the
444 * stack even if the actual trigger for the double fault was
445 * something else.
446 */
c29c775a
TG
447 if ((unsigned long)task_stack_page(tsk) - 1 - address < PAGE_SIZE) {
448 handle_stack_overflow("kernel stack overflow (double-fault)",
449 regs, address);
450 }
e37e43a4
AL
451#endif
452
93efbde2 453 pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code);
0337b7eb 454 die("double fault", regs, error_code);
93efbde2 455 panic("Machine halted.");
c29c775a 456 instrumentation_end();
081f75bb 457}
081f75bb 458
58d9c81f 459DEFINE_IDTENTRY(exc_bounds)
fe3d197f 460{
58d9c81f 461 if (notify_die(DIE_TRAP, "bounds", regs, 0,
fe3d197f 462 X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP)
8c84014f 463 return;
d99e1bd1 464 cond_local_irq_enable(regs);
fe3d197f 465
f39b6f0e 466 if (!user_mode(regs))
58d9c81f 467 die("bounds", regs, 0);
fe3d197f 468
58d9c81f 469 do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, 0, 0, NULL);
ca4c6a98
TG
470
471 cond_local_irq_disable(regs);
fe3d197f
DH
472}
473
59c1dcbe
JH
474enum kernel_gp_hint {
475 GP_NO_HINT,
476 GP_NON_CANONICAL,
477 GP_CANONICAL
478};
479
480/*
481 * When an uncaught #GP occurs, try to determine the memory address accessed by
482 * the instruction and return that address to the caller. Also, try to figure
483 * out whether any part of the access to that address was non-canonical.
484 */
485static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs,
486 unsigned long *addr)
1da177e4 487{
59c1dcbe
JH
488 u8 insn_buf[MAX_INSN_SIZE];
489 struct insn insn;
490
fe557319
CH
491 if (copy_from_kernel_nofault(insn_buf, (void *)regs->ip,
492 MAX_INSN_SIZE))
59c1dcbe
JH
493 return GP_NO_HINT;
494
495 kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE);
496 insn_get_modrm(&insn);
497 insn_get_sib(&insn);
498
499 *addr = (unsigned long)insn_get_addr_ref(&insn, regs);
500 if (*addr == -1UL)
501 return GP_NO_HINT;
502
503#ifdef CONFIG_X86_64
504 /*
505 * Check that:
506 * - the operand is not in the kernel half
507 * - the last byte of the operand is not in the user canonical half
508 */
509 if (*addr < ~__VIRTUAL_MASK &&
510 *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK)
511 return GP_NON_CANONICAL;
512#endif
513
514 return GP_CANONICAL;
515}
516
517#define GPFSTR "general protection fault"
518
be4c11af 519DEFINE_IDTENTRY_ERRORCODE(exc_general_protection)
1da177e4 520{
59c1dcbe 521 char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR;
36209766 522 enum kernel_gp_hint hint = GP_NO_HINT;
13485ab5 523 struct task_struct *tsk;
36209766
BP
524 unsigned long gp_addr;
525 int ret;
b5964405 526
d99e1bd1 527 cond_local_irq_enable(regs);
c6df0d71 528
6fc9dc81
RN
529 if (static_cpu_has(X86_FEATURE_UMIP)) {
530 if (user_mode(regs) && fixup_umip_exception(regs))
ca4c6a98 531 goto exit;
6fc9dc81
RN
532 }
533
d74ef111 534 if (v8086_mode(regs)) {
ef3f6288
FW
535 local_irq_enable();
536 handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code);
ca4c6a98 537 local_irq_disable();
8c84014f 538 return;
ef3f6288 539 }
1da177e4 540
13485ab5 541 tsk = current;
ef3f6288 542
36209766 543 if (user_mode(regs)) {
ef3f6288
FW
544 tsk->thread.error_code = error_code;
545 tsk->thread.trap_nr = X86_TRAP_GP;
76dee4a7 546
36209766
BP
547 show_signal(tsk, SIGSEGV, "", desc, regs, error_code);
548 force_sig(SIGSEGV);
ca4c6a98 549 goto exit;
ef3f6288 550 }
1da177e4 551
36209766 552 if (fixup_exception(regs, X86_TRAP_GP, error_code, 0))
ca4c6a98 553 goto exit;
59c1dcbe 554
13485ab5 555 tsk->thread.error_code = error_code;
51e7dc70 556 tsk->thread.trap_nr = X86_TRAP_GP;
b5964405 557
36209766
BP
558 /*
559 * To be potentially processing a kprobe fault and to trust the result
560 * from kprobe_running(), we have to be non-preemptible.
561 */
562 if (!preemptible() &&
563 kprobe_running() &&
564 kprobe_fault_handler(regs, X86_TRAP_GP))
ca4c6a98 565 goto exit;
aa49f204 566
36209766
BP
567 ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV);
568 if (ret == NOTIFY_STOP)
ca4c6a98 569 goto exit;
1da177e4 570
36209766
BP
571 if (error_code)
572 snprintf(desc, sizeof(desc), "segment-related " GPFSTR);
573 else
574 hint = get_kernel_gp_address(regs, &gp_addr);
575
576 if (hint != GP_NO_HINT)
577 snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx",
578 (hint == GP_NON_CANONICAL) ? "probably for non-canonical address"
579 : "maybe for address",
580 gp_addr);
581
582 /*
583 * KASAN is interested only in the non-canonical case, clear it
584 * otherwise.
585 */
586 if (hint != GP_NON_CANONICAL)
587 gp_addr = 0;
b5964405 588
36209766 589 die_addr(desc, regs, error_code, gp_addr);
abd4f750 590
ca4c6a98
TG
591exit:
592 cond_local_irq_disable(regs);
1da177e4
LT
593}
594
21e28290
PZ
595static bool do_int3(struct pt_regs *regs)
596{
597 int res;
598
599#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
600 if (kgdb_ll_trap(DIE_INT3, "int3", regs, 0, X86_TRAP_BP,
601 SIGTRAP) == NOTIFY_STOP)
602 return true;
603#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
604
605#ifdef CONFIG_KPROBES
606 if (kprobe_int3_handler(regs))
607 return true;
608#endif
609 res = notify_die(DIE_INT3, "int3", regs, 0, X86_TRAP_BP, SIGTRAP);
610
611 return res == NOTIFY_STOP;
612}
613
614static void do_int3_user(struct pt_regs *regs)
615{
616 if (do_int3(regs))
617 return;
618
619 cond_local_irq_enable(regs);
620 do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, 0, 0, NULL);
621 cond_local_irq_disable(regs);
622}
623
8edd7e37 624DEFINE_IDTENTRY_RAW(exc_int3)
1da177e4 625{
f64366ef
PZ
626 /*
627 * poke_int3_handler() is completely self contained code; it does (and
628 * must) *NOT* call out to anything, lest it hits upon yet another
629 * INT3.
630 */
17f41571
JK
631 if (poke_int3_handler(regs))
632 return;
633
d8ba61ba 634 /*
fa95d7dc 635 * idtentry_enter_user() uses static_branch_{,un}likely() and therefore
8edd7e37
TG
636 * can trigger INT3, hence poke_int3_handler() must be done
637 * before. If the entry came from kernel mode, then use nmi_enter()
638 * because the INT3 could have been hit in any context including
639 * NMI.
d8ba61ba 640 */
21e28290 641 if (user_mode(regs)) {
fa95d7dc 642 idtentry_enter_user(regs);
21e28290
PZ
643 instrumentation_begin();
644 do_int3_user(regs);
645 instrumentation_end();
fa95d7dc 646 idtentry_exit_user(regs);
21e28290
PZ
647 } else {
648 nmi_enter();
649 instrumentation_begin();
bf2b3008 650 trace_hardirqs_off_finish();
21e28290
PZ
651 if (!do_int3(regs))
652 die("int3", regs, 0);
3ffdfdce
TG
653 if (regs->flags & X86_EFLAGS_IF)
654 trace_hardirqs_on_prepare();
21e28290 655 instrumentation_end();
0d00449c 656 nmi_exit();
21e28290 657 }
1da177e4 658}
1da177e4 659
081f75bb 660#ifdef CONFIG_X86_64
bd8b96df 661/*
7f2590a1
AL
662 * Help handler running on a per-cpu (IST or entry trampoline) stack
663 * to switch to the normal thread stack if the interrupted code was in
664 * user mode. The actual stack switch is done in entry_64.S
bd8b96df 665 */
daf7a697 666asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs)
081f75bb 667{
7f2590a1
AL
668 struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1;
669 if (regs != eregs)
670 *regs = *eregs;
081f75bb
AH
671 return regs;
672}
b645af2d
AL
673
674struct bad_iret_stack {
675 void *error_entry_ret;
676 struct pt_regs regs;
677};
678
d73a3329 679asmlinkage __visible noinstr
b645af2d
AL
680struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s)
681{
682 /*
683 * This is called from entry_64.S early in handling a fault
684 * caused by a bad iret to user mode. To handle the fault
7f2590a1
AL
685 * correctly, we want to move our stack frame to where it would
686 * be had we entered directly on the entry stack (rather than
687 * just below the IRET frame) and we want to pretend that the
688 * exception came from the IRET target.
b645af2d 689 */
d73a3329
TG
690 struct bad_iret_stack tmp, *new_stack =
691 (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1;
b645af2d 692
d73a3329
TG
693 /* Copy the IRET target to the temporary storage. */
694 memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8);
b645af2d
AL
695
696 /* Copy the remainder of the stack from the current stack. */
d73a3329
TG
697 memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip));
698
699 /* Update the entry stack */
700 memcpy(new_stack, &tmp, sizeof(tmp));
b645af2d 701
f39b6f0e 702 BUG_ON(!user_mode(&new_stack->regs));
b645af2d
AL
703 return new_stack;
704}
081f75bb
AH
705#endif
706
f2b37575
AL
707static bool is_sysenter_singlestep(struct pt_regs *regs)
708{
709 /*
710 * We don't try for precision here. If we're anywhere in the region of
711 * code that can be single-stepped in the SYSENTER entry path, then
712 * assume that this is a useless single-step trap due to SYSENTER
713 * being invoked with TF set. (We don't know in advance exactly
714 * which instructions will be hit because BTF could plausibly
715 * be set.)
716 */
717#ifdef CONFIG_X86_32
718 return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) <
719 (unsigned long)__end_SYSENTER_singlestep_region -
720 (unsigned long)__begin_SYSENTER_singlestep_region;
721#elif defined(CONFIG_IA32_EMULATION)
722 return (regs->ip - (unsigned long)entry_SYSENTER_compat) <
723 (unsigned long)__end_entry_SYSENTER_compat -
724 (unsigned long)entry_SYSENTER_compat;
725#else
726 return false;
727#endif
728}
729
9f58fdde
PZ
730static __always_inline void debug_enter(unsigned long *dr6, unsigned long *dr7)
731{
732 /*
733 * Disable breakpoints during exception handling; recursive exceptions
734 * are exceedingly 'fun'.
735 *
736 * Since this function is NOKPROBE, and that also applies to
737 * HW_BREAKPOINT_X, we can't hit a breakpoint before this (XXX except a
738 * HW_BREAKPOINT_W on our stack)
739 *
740 * Entry text is excluded for HW_BP_X and cpu_entry_area, which
741 * includes the entry stack is excluded for everything.
742 */
e1de11d4 743 *dr7 = local_db_save();
9f58fdde
PZ
744
745 /*
746 * The Intel SDM says:
747 *
748 * Certain debug exceptions may clear bits 0-3. The remaining
749 * contents of the DR6 register are never cleared by the
750 * processor. To avoid confusion in identifying debug
751 * exceptions, debug handlers should clear the register before
752 * returning to the interrupted task.
753 *
754 * Keep it simple: clear DR6 immediately.
755 */
756 get_debugreg(*dr6, 6);
757 set_debugreg(0, 6);
758 /* Filter out all the reserved bits which are preset to 1 */
759 *dr6 &= ~DR6_RESERVED;
760}
761
762static __always_inline void debug_exit(unsigned long dr7)
763{
e1de11d4 764 local_db_restore(dr7);
9f58fdde
PZ
765}
766
1da177e4
LT
767/*
768 * Our handling of the processor debug registers is non-trivial.
769 * We do not clear them on entry and exit from the kernel. Therefore
770 * it is possible to get a watchpoint trap here from inside the kernel.
771 * However, the code in ./ptrace.c has ensured that the user can
772 * only set watchpoints on userspace addresses. Therefore the in-kernel
773 * watchpoint trap can only occur in code which is reading/writing
774 * from user space. Such code must not hold kernel locks (since it
775 * can equally take a page fault), therefore it is safe to call
776 * force_sig_info even though that claims and releases locks.
b5964405 777 *
1da177e4
LT
778 * Code in ./signal.c ensures that the debug control register
779 * is restored before we deliver any signal, and therefore that
780 * user code runs with the correct debug control register even though
781 * we clear it here.
782 *
783 * Being careful here means that we don't have to be as careful in a
784 * lot of more complicated places (task switching can be a bit lazy
785 * about restoring all the debug state, and ptrace doesn't have to
786 * find every occurrence of the TF bit that could be saved away even
787 * by user code)
c1d518c8
AH
788 *
789 * May run on IST stack.
1da177e4 790 */
5ef22793 791static void handle_debug(struct pt_regs *regs, unsigned long dr6, bool user)
1da177e4 792{
1da177e4 793 struct task_struct *tsk = current;
5ef22793 794 bool user_icebp;
da654b74 795 int si_code;
1da177e4 796
5ef22793
PZ
797 /*
798 * The SDM says "The processor clears the BTF flag when it
799 * generates a debug exception." Clear TIF_BLOCKSTEP to keep
800 * TIF_BLOCKSTEP in sync with the hardware BTF flag.
801 */
802 clear_thread_flag(TIF_BLOCKSTEP);
803
804 /*
805 * If DR6 is zero, no point in trying to handle it. The kernel is
806 * not using INT1.
807 */
808 if (!user && !dr6)
809 return;
810
811 /*
812 * If dr6 has no reason to give us about the origin of this trap,
813 * then it's very likely the result of an icebp/int01 trap.
814 * User wants a sigtrap for that.
815 */
816 user_icebp = user && !dr6;
817
08d68323
P
818 /* Store the virtualized DR6 value */
819 tsk->thread.debugreg6 = dr6;
820
6f6343f5 821#ifdef CONFIG_KPROBES
75347bb2 822 if (kprobe_debug_handler(regs)) {
4c0dcd83 823 return;
75347bb2 824 }
6f6343f5
MH
825#endif
826
2bbc68f8 827 if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, 0,
75347bb2 828 SIGTRAP) == NOTIFY_STOP) {
4c0dcd83 829 return;
75347bb2 830 }
3d2a71a5 831
1da177e4 832 /* It's safe to allow irq's after DR6 has been saved */
d99e1bd1 833 cond_local_irq_enable(regs);
1da177e4 834
d74ef111 835 if (v8086_mode(regs)) {
2bbc68f8
TG
836 handle_vm86_trap((struct kernel_vm86_regs *) regs, 0,
837 X86_TRAP_DB);
9347f413 838 goto out;
1da177e4
LT
839 }
840
f2b37575
AL
841 if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) {
842 /*
843 * Historical junk that used to handle SYSENTER single-stepping.
844 * This should be unreachable now. If we survive for a while
845 * without anyone hitting this warning, we'll turn this into
846 * an oops.
847 */
08d68323
P
848 tsk->thread.debugreg6 &= ~DR_STEP;
849 set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
850 regs->flags &= ~X86_EFLAGS_TF;
1da177e4 851 }
9347f413 852
08d68323 853 si_code = get_si_code(tsk->thread.debugreg6);
a1e80faf 854 if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp)
2bbc68f8 855 send_sigtrap(regs, 0, si_code);
9347f413
TG
856
857out:
d99e1bd1 858 cond_local_irq_disable(regs);
4c0dcd83
TG
859}
860
861static __always_inline void exc_debug_kernel(struct pt_regs *regs,
862 unsigned long dr6)
863{
864 nmi_enter();
3ffdfdce 865 instrumentation_begin();
bf2b3008 866 trace_hardirqs_off_finish();
9347f413
TG
867
868 /*
869 * Catch SYSENTER with TF set and clear DR_STEP. If this hit a
870 * watchpoint at the same time then that will still be handled.
871 */
872 if ((dr6 & DR_STEP) && is_sysenter_singlestep(regs))
873 dr6 &= ~DR_STEP;
874
5ef22793 875 handle_debug(regs, dr6, false);
9347f413 876
3ffdfdce
TG
877 if (regs->flags & X86_EFLAGS_IF)
878 trace_hardirqs_on_prepare();
879 instrumentation_end();
4c0dcd83
TG
880 nmi_exit();
881}
882
883static __always_inline void exc_debug_user(struct pt_regs *regs,
884 unsigned long dr6)
885{
fa95d7dc 886 idtentry_enter_user(regs);
5ef22793 887 instrumentation_begin();
9347f413 888
5ef22793
PZ
889 handle_debug(regs, dr6, true);
890 instrumentation_end();
fa95d7dc 891 idtentry_exit_user(regs);
4c0dcd83
TG
892}
893
894#ifdef CONFIG_X86_64
895/* IST stack entry */
896DEFINE_IDTENTRY_DEBUG(exc_debug)
897{
898 unsigned long dr6, dr7;
899
900 debug_enter(&dr6, &dr7);
901 exc_debug_kernel(regs, dr6);
902 debug_exit(dr7);
903}
904
905/* User entry, runs on regular task stack */
906DEFINE_IDTENTRY_DEBUG_USER(exc_debug)
907{
908 unsigned long dr6, dr7;
909
910 debug_enter(&dr6, &dr7);
911 exc_debug_user(regs, dr6);
912 debug_exit(dr7);
913}
914#else
915/* 32 bit does not have separate entry points. */
916DEFINE_IDTENTRY_DEBUG(exc_debug)
917{
918 unsigned long dr6, dr7;
919
920 debug_enter(&dr6, &dr7);
1da177e4 921
2bbc68f8 922 if (user_mode(regs))
4c0dcd83 923 exc_debug_user(regs, dr6);
2bbc68f8 924 else
4c0dcd83
TG
925 exc_debug_kernel(regs, dr6);
926
9f58fdde 927 debug_exit(dr7);
1da177e4 928}
4c0dcd83 929#endif
1da177e4
LT
930
931/*
932 * Note that we play around with the 'TS' bit in an attempt to get
933 * the correct behaviour even in the presence of the asynchronous
934 * IRQ13 behaviour
935 */
48227e21 936static void math_error(struct pt_regs *regs, int trapnr)
1da177e4 937{
e2e75c91 938 struct task_struct *task = current;
e1cebad4 939 struct fpu *fpu = &task->thread.fpu;
0a996c1a 940 int si_code;
c9408265
KC
941 char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" :
942 "simd exception";
e2e75c91 943
d99e1bd1 944 cond_local_irq_enable(regs);
e2e75c91 945
e1cebad4 946 if (!user_mode(regs)) {
48227e21 947 if (fixup_exception(regs, trapnr, 0, 0))
ca4c6a98 948 goto exit;
3ae6295c 949
48227e21 950 task->thread.error_code = 0;
3ae6295c
SL
951 task->thread.trap_nr = trapnr;
952
48227e21
TG
953 if (notify_die(DIE_TRAP, str, regs, 0, trapnr,
954 SIGFPE) != NOTIFY_STOP)
955 die(str, regs, 0);
ca4c6a98 956 goto exit;
e2e75c91 957 }
1da177e4
LT
958
959 /*
960 * Save the info for the exception handler and clear the error.
961 */
e1cebad4
IM
962 fpu__save(fpu);
963
964 task->thread.trap_nr = trapnr;
48227e21 965 task->thread.error_code = 0;
adf77bac 966
0a996c1a 967 si_code = fpu__exception_code(fpu, trapnr);
e1cebad4 968 /* Retry when we get spurious exceptions: */
0a996c1a 969 if (!si_code)
ca4c6a98 970 goto exit;
e1cebad4 971
0a996c1a 972 force_sig_fault(SIGFPE, si_code,
2e1661d2 973 (void __user *)uprobe_get_trap_addr(regs));
ca4c6a98
TG
974exit:
975 cond_local_irq_disable(regs);
1da177e4
LT
976}
977
14a8bd2a 978DEFINE_IDTENTRY(exc_coprocessor_error)
1da177e4 979{
48227e21 980 math_error(regs, X86_TRAP_MF);
1da177e4
LT
981}
982
48227e21 983DEFINE_IDTENTRY(exc_simd_coprocessor_error)
1da177e4 984{
48227e21
TG
985 if (IS_ENABLED(CONFIG_X86_INVD_BUG)) {
986 /* AMD 486 bug: INVD in CPL 0 raises #XF instead of #GP */
987 if (!static_cpu_has(X86_FEATURE_XMM)) {
988 __exc_general_protection(regs, 0);
989 return;
990 }
991 }
992 math_error(regs, X86_TRAP_XF);
1da177e4
LT
993}
994
dad7106f 995DEFINE_IDTENTRY(exc_spurious_interrupt_bug)
1da177e4 996{
d244d0e1
TG
997 /*
998 * This addresses a Pentium Pro Erratum:
999 *
1000 * PROBLEM: If the APIC subsystem is configured in mixed mode with
1001 * Virtual Wire mode implemented through the local APIC, an
1002 * interrupt vector of 0Fh (Intel reserved encoding) may be
1003 * generated by the local APIC (Int 15). This vector may be
1004 * generated upon receipt of a spurious interrupt (an interrupt
1005 * which is removed before the system receives the INTA sequence)
1006 * instead of the programmed 8259 spurious interrupt vector.
1007 *
1008 * IMPLICATION: The spurious interrupt vector programmed in the
1009 * 8259 is normally handled by an operating system's spurious
1010 * interrupt handler. However, a vector of 0Fh is unknown to some
1011 * operating systems, which would crash if this erratum occurred.
1012 *
1013 * In theory this could be limited to 32bit, but the handler is not
1014 * hurting and who knows which other CPUs suffer from this.
1015 */
081f75bb
AH
1016}
1017
866ae2cc 1018DEFINE_IDTENTRY(exc_device_not_available)
7643e9b9 1019{
ee35b9b9 1020 unsigned long cr0 = read_cr0();
bef8b6da 1021
a334fe43 1022#ifdef CONFIG_MATH_EMULATION
ee35b9b9 1023 if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) {
d315760f
TH
1024 struct math_emu_info info = { };
1025
d99e1bd1 1026 cond_local_irq_enable(regs);
d315760f 1027
aa78bcfa 1028 info.regs = regs;
d315760f 1029 math_emulate(&info);
ca4c6a98
TG
1030
1031 cond_local_irq_disable(regs);
a334fe43 1032 return;
7643e9b9 1033 }
a334fe43 1034#endif
bef8b6da
AL
1035
1036 /* This should not happen. */
bef8b6da
AL
1037 if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) {
1038 /* Try to fix it up and carry on. */
1039 write_cr0(cr0 & ~X86_CR0_TS);
1040 } else {
1041 /*
1042 * Something terrible happened, and we're better off trying
1043 * to kill the task than getting stuck in a never-ending
1044 * loop of #NM faults.
1045 */
866ae2cc 1046 die("unexpected #NM exception", regs, 0);
bef8b6da 1047 }
7643e9b9
AH
1048}
1049
081f75bb 1050#ifdef CONFIG_X86_32
d7729050 1051DEFINE_IDTENTRY_SW(iret_error)
f8e0870f 1052{
f8e0870f 1053 local_irq_enable();
d7729050 1054 if (notify_die(DIE_TRAP, "iret exception", regs, 0,
6ba3c97a 1055 X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) {
d7729050 1056 do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, 0,
164881b6 1057 ILL_BADSTK, (void __user *)NULL);
6ba3c97a 1058 }
ca4c6a98 1059 local_irq_disable();
f8e0870f 1060}
081f75bb 1061#endif
f8e0870f 1062
1da177e4
LT
1063void __init trap_init(void)
1064{
40e7f949
AL
1065 /* Init cpu_entry_area before IST entries are set up */
1066 setup_cpu_entry_areas();
1067
b70543a0 1068 idt_setup_traps();
bb3f0b59 1069
1da177e4 1070 /*
b5964405 1071 * Should be a barrier for any external CPU state:
1da177e4
LT
1072 */
1073 cpu_init();
1074
90f6225f 1075 idt_setup_ist_traps();
1da177e4 1076}
This page took 2.41011 seconds and 4 git commands to generate.