]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
1da177e4 | 2 | * Copyright (C) 1991, 1992 Linus Torvalds |
a8c1be9d | 3 | * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs |
1da177e4 LT |
4 | * |
5 | * Pentium III FXSR, SSE support | |
6 | * Gareth Hughes <[email protected]>, May 2000 | |
7 | */ | |
8 | ||
9 | /* | |
c1d518c8 | 10 | * Handle hardware traps and faults. |
1da177e4 | 11 | */ |
c767a54b JP |
12 | |
13 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | |
14 | ||
56dd9470 | 15 | #include <linux/context_tracking.h> |
b5964405 IM |
16 | #include <linux/interrupt.h> |
17 | #include <linux/kallsyms.h> | |
18 | #include <linux/spinlock.h> | |
b5964405 IM |
19 | #include <linux/kprobes.h> |
20 | #include <linux/uaccess.h> | |
b5964405 | 21 | #include <linux/kdebug.h> |
f503b5ae | 22 | #include <linux/kgdb.h> |
1da177e4 | 23 | #include <linux/kernel.h> |
186f4360 | 24 | #include <linux/export.h> |
b5964405 | 25 | #include <linux/ptrace.h> |
b02ef20a | 26 | #include <linux/uprobes.h> |
1da177e4 | 27 | #include <linux/string.h> |
b5964405 | 28 | #include <linux/delay.h> |
1da177e4 | 29 | #include <linux/errno.h> |
b5964405 IM |
30 | #include <linux/kexec.h> |
31 | #include <linux/sched.h> | |
68db0cf1 | 32 | #include <linux/sched/task_stack.h> |
1da177e4 | 33 | #include <linux/timer.h> |
1da177e4 | 34 | #include <linux/init.h> |
91768d6c | 35 | #include <linux/bug.h> |
b5964405 IM |
36 | #include <linux/nmi.h> |
37 | #include <linux/mm.h> | |
c1d518c8 AH |
38 | #include <linux/smp.h> |
39 | #include <linux/io.h> | |
0d00449c PZ |
40 | #include <linux/hardirq.h> |
41 | #include <linux/atomic.h> | |
42 | ||
b5964405 | 43 | #include <asm/stacktrace.h> |
1da177e4 | 44 | #include <asm/processor.h> |
1da177e4 | 45 | #include <asm/debugreg.h> |
35de5b06 | 46 | #include <asm/text-patching.h> |
08d636b6 | 47 | #include <asm/ftrace.h> |
c1d518c8 | 48 | #include <asm/traps.h> |
1da177e4 | 49 | #include <asm/desc.h> |
78f7f1e5 | 50 | #include <asm/fpu/internal.h> |
6650cdd9 | 51 | #include <asm/cpu.h> |
ed1bbc40 | 52 | #include <asm/cpu_entry_area.h> |
9e55e44e | 53 | #include <asm/mce.h> |
4eefbe79 | 54 | #include <asm/fixmap.h> |
1164dd00 | 55 | #include <asm/mach_traps.h> |
17f41571 | 56 | #include <asm/alternative.h> |
a84eeaa9 | 57 | #include <asm/fpu/xstate.h> |
ba3e127e | 58 | #include <asm/vm86.h> |
6fc9dc81 | 59 | #include <asm/umip.h> |
59c1dcbe JH |
60 | #include <asm/insn.h> |
61 | #include <asm/insn-eval.h> | |
c1d518c8 | 62 | |
081f75bb | 63 | #ifdef CONFIG_X86_64 |
428cf902 | 64 | #include <asm/x86_init.h> |
081f75bb AH |
65 | #include <asm/pgalloc.h> |
66 | #include <asm/proto.h> | |
081f75bb | 67 | #else |
c1d518c8 | 68 | #include <asm/processor-flags.h> |
8e6dafd6 | 69 | #include <asm/setup.h> |
b2502b41 | 70 | #include <asm/proto.h> |
081f75bb | 71 | #endif |
1da177e4 | 72 | |
7854f822 | 73 | DECLARE_BITMAP(system_vectors, NR_VECTORS); |
b77b881f | 74 | |
d99e1bd1 | 75 | static inline void cond_local_irq_enable(struct pt_regs *regs) |
762db434 AH |
76 | { |
77 | if (regs->flags & X86_EFLAGS_IF) | |
78 | local_irq_enable(); | |
79 | } | |
80 | ||
d99e1bd1 | 81 | static inline void cond_local_irq_disable(struct pt_regs *regs) |
3d2a71a5 AH |
82 | { |
83 | if (regs->flags & X86_EFLAGS_IF) | |
84 | local_irq_disable(); | |
3d2a71a5 AH |
85 | } |
86 | ||
9a93848f PZ |
87 | int is_valid_bugaddr(unsigned long addr) |
88 | { | |
89 | unsigned short ud; | |
90 | ||
91 | if (addr < TASK_SIZE_MAX) | |
92 | return 0; | |
93 | ||
94 | if (probe_kernel_address((unsigned short *)addr, ud)) | |
95 | return 0; | |
96 | ||
97 | return ud == INSN_UD0 || ud == INSN_UD2; | |
98 | } | |
99 | ||
8a524f80 | 100 | int fixup_bug(struct pt_regs *regs, int trapnr) |
9a93848f PZ |
101 | { |
102 | if (trapnr != X86_TRAP_UD) | |
103 | return 0; | |
104 | ||
105 | switch (report_bug(regs->ip, regs)) { | |
106 | case BUG_TRAP_TYPE_NONE: | |
107 | case BUG_TRAP_TYPE_BUG: | |
108 | break; | |
109 | ||
110 | case BUG_TRAP_TYPE_WARN: | |
3b3a371c | 111 | regs->ip += LEN_UD2; |
9a93848f PZ |
112 | return 1; |
113 | } | |
114 | ||
115 | return 0; | |
116 | } | |
117 | ||
9326638c | 118 | static nokprobe_inline int |
79e21d65 | 119 | do_trap_no_signal(struct task_struct *tsk, int trapnr, const char *str, |
c416ddf5 | 120 | struct pt_regs *regs, long error_code) |
1da177e4 | 121 | { |
d74ef111 | 122 | if (v8086_mode(regs)) { |
3c1326f8 | 123 | /* |
c416ddf5 | 124 | * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. |
3c1326f8 AH |
125 | * On nmi (interrupt 2), do_trap should not be called. |
126 | */ | |
c416ddf5 FW |
127 | if (trapnr < X86_TRAP_UD) { |
128 | if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, | |
129 | error_code, trapnr)) | |
130 | return 0; | |
131 | } | |
79e21d65 | 132 | } else if (!user_mode(regs)) { |
81fd9c18 | 133 | if (fixup_exception(regs, trapnr, error_code, 0)) |
9a93848f PZ |
134 | return 0; |
135 | ||
9a93848f PZ |
136 | tsk->thread.error_code = error_code; |
137 | tsk->thread.trap_nr = trapnr; | |
138 | die(str, regs, error_code); | |
c416ddf5 | 139 | } |
1da177e4 | 140 | |
b5964405 | 141 | /* |
51e7dc70 | 142 | * We want error_code and trap_nr set for userspace faults and |
b5964405 IM |
143 | * kernelspace faults which result in die(), but not |
144 | * kernelspace faults which are fixed up. die() gives the | |
145 | * process no chance to handle the signal and notice the | |
146 | * kernel fault information, so that won't result in polluting | |
147 | * the information about previously queued, but not yet | |
148 | * delivered, faults. See also do_general_protection below. | |
149 | */ | |
150 | tsk->thread.error_code = error_code; | |
51e7dc70 | 151 | tsk->thread.trap_nr = trapnr; |
d1895183 | 152 | |
c416ddf5 FW |
153 | return -1; |
154 | } | |
1da177e4 | 155 | |
6ace1098 EB |
156 | static void show_signal(struct task_struct *tsk, int signr, |
157 | const char *type, const char *desc, | |
158 | struct pt_regs *regs, long error_code) | |
159 | { | |
081f75bb AH |
160 | if (show_unhandled_signals && unhandled_signal(tsk, signr) && |
161 | printk_ratelimit()) { | |
6ace1098 EB |
162 | pr_info("%s[%d] %s%s ip:%lx sp:%lx error:%lx", |
163 | tsk->comm, task_pid_nr(tsk), type, desc, | |
c767a54b | 164 | regs->ip, regs->sp, error_code); |
1c99a687 | 165 | print_vma_addr(KERN_CONT " in ", regs->ip); |
c767a54b | 166 | pr_cont("\n"); |
081f75bb | 167 | } |
6ace1098 EB |
168 | } |
169 | ||
9326638c | 170 | static void |
c416ddf5 | 171 | do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, |
164881b6 | 172 | long error_code, int sicode, void __user *addr) |
c416ddf5 FW |
173 | { |
174 | struct task_struct *tsk = current; | |
175 | ||
c416ddf5 FW |
176 | if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) |
177 | return; | |
d1895183 | 178 | |
6ace1098 | 179 | show_signal(tsk, signr, "trap ", str, regs, error_code); |
081f75bb | 180 | |
164881b6 | 181 | if (!sicode) |
3cf5d076 | 182 | force_sig(signr); |
164881b6 | 183 | else |
2e1661d2 | 184 | force_sig_fault(signr, sicode, addr); |
1da177e4 | 185 | } |
9326638c | 186 | NOKPROBE_SYMBOL(do_trap); |
1da177e4 | 187 | |
dff0796e | 188 | static void do_error_trap(struct pt_regs *regs, long error_code, char *str, |
164881b6 | 189 | unsigned long trapnr, int signr, int sicode, void __user *addr) |
dff0796e | 190 | { |
5778077d | 191 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
02fdcd5e | 192 | |
b8347c21 AS |
193 | /* |
194 | * WARN*()s end up here; fix them up before we call the | |
195 | * notifier chain. | |
196 | */ | |
197 | if (!user_mode(regs) && fixup_bug(regs, trapnr)) | |
198 | return; | |
199 | ||
dff0796e ON |
200 | if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != |
201 | NOTIFY_STOP) { | |
d99e1bd1 | 202 | cond_local_irq_enable(regs); |
164881b6 | 203 | do_trap(trapnr, signr, str, regs, error_code, sicode, addr); |
ca4c6a98 | 204 | cond_local_irq_disable(regs); |
dff0796e | 205 | } |
dff0796e ON |
206 | } |
207 | ||
218e31b6 TG |
208 | /* |
209 | * Posix requires to provide the address of the faulting instruction for | |
210 | * SIGILL (#UD) and SIGFPE (#DE) in the si_addr member of siginfo_t. | |
211 | * | |
212 | * This address is usually regs->ip, but when an uprobe moved the code out | |
213 | * of line then regs->ip points to the XOL code which would confuse | |
214 | * anything which analyzes the fault address vs. the unmodified binary. If | |
215 | * a trap happened in XOL code then uprobe maps regs->ip back to the | |
216 | * original instruction address. | |
217 | */ | |
218 | static __always_inline void __user *error_get_trap_addr(struct pt_regs *regs) | |
219 | { | |
220 | return (void __user *)uprobe_get_trap_addr(regs); | |
221 | } | |
222 | ||
164881b6 EB |
223 | #define IP ((void __user *)uprobe_get_trap_addr(regs)) |
224 | #define DO_ERROR(trapnr, signr, sicode, addr, str, name) \ | |
225 | dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ | |
226 | { \ | |
227 | do_error_trap(regs, error_code, str, trapnr, signr, sicode, addr); \ | |
1da177e4 LT |
228 | } |
229 | ||
164881b6 EB |
230 | DO_ERROR(X86_TRAP_DE, SIGFPE, FPE_INTDIV, IP, "divide error", divide_error) |
231 | DO_ERROR(X86_TRAP_OF, SIGSEGV, 0, NULL, "overflow", overflow) | |
232 | DO_ERROR(X86_TRAP_UD, SIGILL, ILL_ILLOPN, IP, "invalid opcode", invalid_op) | |
233 | DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, 0, NULL, "coprocessor segment overrun", coprocessor_segment_overrun) | |
234 | DO_ERROR(X86_TRAP_TS, SIGSEGV, 0, NULL, "invalid TSS", invalid_TSS) | |
235 | DO_ERROR(X86_TRAP_NP, SIGBUS, 0, NULL, "segment not present", segment_not_present) | |
236 | DO_ERROR(X86_TRAP_SS, SIGBUS, 0, NULL, "stack segment", stack_segment) | |
164881b6 | 237 | #undef IP |
1da177e4 | 238 | |
6650cdd9 PZI |
239 | dotraplinkage void do_alignment_check(struct pt_regs *regs, long error_code) |
240 | { | |
241 | char *str = "alignment check"; | |
242 | ||
243 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); | |
244 | ||
245 | if (notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_AC, SIGBUS) == NOTIFY_STOP) | |
246 | return; | |
247 | ||
248 | if (!user_mode(regs)) | |
249 | die("Split lock detected\n", regs, error_code); | |
250 | ||
251 | local_irq_enable(); | |
252 | ||
253 | if (handle_user_split_lock(regs, error_code)) | |
254 | return; | |
255 | ||
256 | do_trap(X86_TRAP_AC, SIGBUS, "alignment check", regs, | |
257 | error_code, BUS_ADRALN, NULL); | |
258 | } | |
259 | ||
e37e43a4 | 260 | #ifdef CONFIG_VMAP_STACK |
6271cfdf AL |
261 | __visible void __noreturn handle_stack_overflow(const char *message, |
262 | struct pt_regs *regs, | |
263 | unsigned long fault_address) | |
e37e43a4 AL |
264 | { |
265 | printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", | |
266 | (void *)fault_address, current->stack, | |
267 | (char *)current->stack + THREAD_SIZE - 1); | |
268 | die(message, regs, 0); | |
269 | ||
270 | /* Be absolutely certain we don't return. */ | |
2022cceb | 271 | panic("%s", message); |
e37e43a4 AL |
272 | } |
273 | #endif | |
274 | ||
7d8d8cfd AL |
275 | /* |
276 | * Runs on an IST stack for x86_64 and on a special task stack for x86_32. | |
277 | * | |
278 | * On x86_64, this is more or less a normal kernel entry. Notwithstanding the | |
279 | * SDM's warnings about double faults being unrecoverable, returning works as | |
280 | * expected. Presumably what the SDM actually means is that the CPU may get | |
281 | * the register state wrong on entry, so returning could be a bad idea. | |
282 | * | |
283 | * Various CPU engineers have promised that double faults due to an IRET fault | |
284 | * while the stack is read-only are, in fact, recoverable. | |
285 | * | |
286 | * On x86_32, this is entered through a task gate, and regs are synthesized | |
287 | * from the TSS. Returning is, in principle, okay, but changes to regs will | |
288 | * be lost. If, for some reason, we need to return to a context with modified | |
289 | * regs, the shim code could be adjusted to synchronize the registers. | |
290 | */ | |
a0d14b89 | 291 | dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code, unsigned long cr2) |
081f75bb AH |
292 | { |
293 | static const char str[] = "double fault"; | |
294 | struct task_struct *tsk = current; | |
295 | ||
af726f21 AL |
296 | #ifdef CONFIG_X86_ESPFIX64 |
297 | extern unsigned char native_irq_return_iret[]; | |
298 | ||
299 | /* | |
300 | * If IRET takes a non-IST fault on the espfix64 stack, then we | |
6d9256f0 AL |
301 | * end up promoting it to a doublefault. In that case, take |
302 | * advantage of the fact that we're not using the normal (TSS.sp0) | |
303 | * stack right now. We can write a fake #GP(0) frame at TSS.sp0 | |
304 | * and then modify our own IRET frame so that, when we return, | |
305 | * we land directly at the #GP(0) vector with the stack already | |
306 | * set up according to its expectations. | |
307 | * | |
308 | * The net result is that our #GP handler will think that we | |
309 | * entered from usermode with the bad user context. | |
95927475 | 310 | * |
0d00449c | 311 | * No need for nmi_enter() here because we don't use RCU. |
af726f21 | 312 | */ |
c739f930 | 313 | if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && |
af726f21 AL |
314 | regs->cs == __KERNEL_CS && |
315 | regs->ip == (unsigned long)native_irq_return_iret) | |
316 | { | |
c482feef | 317 | struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; |
e9660391 | 318 | unsigned long *p = (unsigned long *)regs->sp; |
af726f21 | 319 | |
6d9256f0 AL |
320 | /* |
321 | * regs->sp points to the failing IRET frame on the | |
322 | * ESPFIX64 stack. Copy it to the entry stack. This fills | |
323 | * in gpregs->ss through gpregs->ip. | |
324 | * | |
325 | */ | |
e9660391 PZ |
326 | gpregs->ip = p[0]; |
327 | gpregs->cs = p[1]; | |
328 | gpregs->flags = p[2]; | |
329 | gpregs->sp = p[3]; | |
330 | gpregs->ss = p[4]; | |
6d9256f0 | 331 | gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ |
af726f21 | 332 | |
6d9256f0 AL |
333 | /* |
334 | * Adjust our frame so that we return straight to the #GP | |
335 | * vector with the expected RSP value. This is safe because | |
336 | * we won't enable interupts or schedule before we invoke | |
337 | * general_protection, so nothing will clobber the stack | |
338 | * frame we just set up. | |
bd7b1f7c AL |
339 | * |
340 | * We will enter general_protection with kernel GSBASE, | |
341 | * which is what the stub expects, given that the faulting | |
342 | * RIP will be the IRET instruction. | |
6d9256f0 | 343 | */ |
af726f21 | 344 | regs->ip = (unsigned long)general_protection; |
6d9256f0 | 345 | regs->sp = (unsigned long)&gpregs->orig_ax; |
95927475 | 346 | |
af726f21 AL |
347 | return; |
348 | } | |
349 | #endif | |
350 | ||
0d00449c | 351 | nmi_enter(); |
c9408265 | 352 | notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); |
081f75bb AH |
353 | |
354 | tsk->thread.error_code = error_code; | |
51e7dc70 | 355 | tsk->thread.trap_nr = X86_TRAP_DF; |
081f75bb | 356 | |
e37e43a4 AL |
357 | #ifdef CONFIG_VMAP_STACK |
358 | /* | |
359 | * If we overflow the stack into a guard page, the CPU will fail | |
360 | * to deliver #PF and will send #DF instead. Similarly, if we | |
361 | * take any non-IST exception while too close to the bottom of | |
362 | * the stack, the processor will get a page fault while | |
363 | * delivering the exception and will generate a double fault. | |
364 | * | |
365 | * According to the SDM (footnote in 6.15 under "Interrupt 14 - | |
366 | * Page-Fault Exception (#PF): | |
367 | * | |
368 | * Processors update CR2 whenever a page fault is detected. If a | |
369 | * second page fault occurs while an earlier page fault is being | |
6d9256f0 | 370 | * delivered, the faulting linear address of the second fault will |
e37e43a4 AL |
371 | * overwrite the contents of CR2 (replacing the previous |
372 | * address). These updates to CR2 occur even if the page fault | |
373 | * results in a double fault or occurs during the delivery of a | |
374 | * double fault. | |
375 | * | |
376 | * The logic below has a small possibility of incorrectly diagnosing | |
377 | * some errors as stack overflows. For example, if the IDT or GDT | |
378 | * gets corrupted such that #GP delivery fails due to a bad descriptor | |
379 | * causing #GP and we hit this condition while CR2 coincidentally | |
380 | * points to the stack guard page, we'll think we overflowed the | |
381 | * stack. Given that we're going to panic one way or another | |
382 | * if this happens, this isn't necessarily worth fixing. | |
383 | * | |
384 | * If necessary, we could improve the test by only diagnosing | |
385 | * a stack overflow if the saved RSP points within 47 bytes of | |
386 | * the bottom of the stack: if RSP == tsk_stack + 48 and we | |
387 | * take an exception, the stack is already aligned and there | |
388 | * will be enough room SS, RSP, RFLAGS, CS, RIP, and a | |
389 | * possible error code, so a stack overflow would *not* double | |
390 | * fault. With any less space left, exception delivery could | |
391 | * fail, and, as a practical matter, we've overflowed the | |
392 | * stack even if the actual trigger for the double fault was | |
393 | * something else. | |
394 | */ | |
e37e43a4 AL |
395 | if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE) |
396 | handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2); | |
397 | #endif | |
398 | ||
93efbde2 | 399 | pr_emerg("PANIC: double fault, error_code: 0x%lx\n", error_code); |
0337b7eb | 400 | die("double fault", regs, error_code); |
93efbde2 | 401 | panic("Machine halted."); |
081f75bb | 402 | } |
081f75bb | 403 | |
fe3d197f DH |
404 | dotraplinkage void do_bounds(struct pt_regs *regs, long error_code) |
405 | { | |
5778077d | 406 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
fe3d197f DH |
407 | if (notify_die(DIE_TRAP, "bounds", regs, error_code, |
408 | X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) | |
8c84014f | 409 | return; |
d99e1bd1 | 410 | cond_local_irq_enable(regs); |
fe3d197f | 411 | |
f39b6f0e | 412 | if (!user_mode(regs)) |
fe3d197f DH |
413 | die("bounds", regs, error_code); |
414 | ||
164881b6 | 415 | do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, 0, NULL); |
ca4c6a98 TG |
416 | |
417 | cond_local_irq_disable(regs); | |
fe3d197f DH |
418 | } |
419 | ||
59c1dcbe JH |
420 | enum kernel_gp_hint { |
421 | GP_NO_HINT, | |
422 | GP_NON_CANONICAL, | |
423 | GP_CANONICAL | |
424 | }; | |
425 | ||
426 | /* | |
427 | * When an uncaught #GP occurs, try to determine the memory address accessed by | |
428 | * the instruction and return that address to the caller. Also, try to figure | |
429 | * out whether any part of the access to that address was non-canonical. | |
430 | */ | |
431 | static enum kernel_gp_hint get_kernel_gp_address(struct pt_regs *regs, | |
432 | unsigned long *addr) | |
1da177e4 | 433 | { |
59c1dcbe JH |
434 | u8 insn_buf[MAX_INSN_SIZE]; |
435 | struct insn insn; | |
436 | ||
437 | if (probe_kernel_read(insn_buf, (void *)regs->ip, MAX_INSN_SIZE)) | |
438 | return GP_NO_HINT; | |
439 | ||
440 | kernel_insn_init(&insn, insn_buf, MAX_INSN_SIZE); | |
441 | insn_get_modrm(&insn); | |
442 | insn_get_sib(&insn); | |
443 | ||
444 | *addr = (unsigned long)insn_get_addr_ref(&insn, regs); | |
445 | if (*addr == -1UL) | |
446 | return GP_NO_HINT; | |
447 | ||
448 | #ifdef CONFIG_X86_64 | |
449 | /* | |
450 | * Check that: | |
451 | * - the operand is not in the kernel half | |
452 | * - the last byte of the operand is not in the user canonical half | |
453 | */ | |
454 | if (*addr < ~__VIRTUAL_MASK && | |
455 | *addr + insn.opnd_bytes - 1 > __VIRTUAL_MASK) | |
456 | return GP_NON_CANONICAL; | |
457 | #endif | |
458 | ||
459 | return GP_CANONICAL; | |
460 | } | |
461 | ||
462 | #define GPFSTR "general protection fault" | |
463 | ||
464 | dotraplinkage void do_general_protection(struct pt_regs *regs, long error_code) | |
1da177e4 | 465 | { |
59c1dcbe | 466 | char desc[sizeof(GPFSTR) + 50 + 2*sizeof(unsigned long) + 1] = GPFSTR; |
36209766 | 467 | enum kernel_gp_hint hint = GP_NO_HINT; |
13485ab5 | 468 | struct task_struct *tsk; |
36209766 BP |
469 | unsigned long gp_addr; |
470 | int ret; | |
b5964405 | 471 | |
5778077d | 472 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
d99e1bd1 | 473 | cond_local_irq_enable(regs); |
c6df0d71 | 474 | |
6fc9dc81 RN |
475 | if (static_cpu_has(X86_FEATURE_UMIP)) { |
476 | if (user_mode(regs) && fixup_umip_exception(regs)) | |
ca4c6a98 | 477 | goto exit; |
6fc9dc81 RN |
478 | } |
479 | ||
d74ef111 | 480 | if (v8086_mode(regs)) { |
ef3f6288 FW |
481 | local_irq_enable(); |
482 | handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); | |
ca4c6a98 | 483 | local_irq_disable(); |
8c84014f | 484 | return; |
ef3f6288 | 485 | } |
1da177e4 | 486 | |
13485ab5 | 487 | tsk = current; |
ef3f6288 | 488 | |
36209766 | 489 | if (user_mode(regs)) { |
ef3f6288 FW |
490 | tsk->thread.error_code = error_code; |
491 | tsk->thread.trap_nr = X86_TRAP_GP; | |
76dee4a7 | 492 | |
36209766 BP |
493 | show_signal(tsk, SIGSEGV, "", desc, regs, error_code); |
494 | force_sig(SIGSEGV); | |
ca4c6a98 | 495 | goto exit; |
ef3f6288 | 496 | } |
1da177e4 | 497 | |
36209766 | 498 | if (fixup_exception(regs, X86_TRAP_GP, error_code, 0)) |
ca4c6a98 | 499 | goto exit; |
59c1dcbe | 500 | |
13485ab5 | 501 | tsk->thread.error_code = error_code; |
51e7dc70 | 502 | tsk->thread.trap_nr = X86_TRAP_GP; |
b5964405 | 503 | |
36209766 BP |
504 | /* |
505 | * To be potentially processing a kprobe fault and to trust the result | |
506 | * from kprobe_running(), we have to be non-preemptible. | |
507 | */ | |
508 | if (!preemptible() && | |
509 | kprobe_running() && | |
510 | kprobe_fault_handler(regs, X86_TRAP_GP)) | |
ca4c6a98 | 511 | goto exit; |
aa49f204 | 512 | |
36209766 BP |
513 | ret = notify_die(DIE_GPF, desc, regs, error_code, X86_TRAP_GP, SIGSEGV); |
514 | if (ret == NOTIFY_STOP) | |
ca4c6a98 | 515 | goto exit; |
1da177e4 | 516 | |
36209766 BP |
517 | if (error_code) |
518 | snprintf(desc, sizeof(desc), "segment-related " GPFSTR); | |
519 | else | |
520 | hint = get_kernel_gp_address(regs, &gp_addr); | |
521 | ||
522 | if (hint != GP_NO_HINT) | |
523 | snprintf(desc, sizeof(desc), GPFSTR ", %s 0x%lx", | |
524 | (hint == GP_NON_CANONICAL) ? "probably for non-canonical address" | |
525 | : "maybe for address", | |
526 | gp_addr); | |
527 | ||
528 | /* | |
529 | * KASAN is interested only in the non-canonical case, clear it | |
530 | * otherwise. | |
531 | */ | |
532 | if (hint != GP_NON_CANONICAL) | |
533 | gp_addr = 0; | |
b5964405 | 534 | |
36209766 | 535 | die_addr(desc, regs, error_code, gp_addr); |
abd4f750 | 536 | |
ca4c6a98 TG |
537 | exit: |
538 | cond_local_irq_disable(regs); | |
1da177e4 | 539 | } |
9326638c | 540 | NOKPROBE_SYMBOL(do_general_protection); |
1da177e4 | 541 | |
9326638c | 542 | dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code) |
1da177e4 | 543 | { |
17f41571 JK |
544 | if (poke_int3_handler(regs)) |
545 | return; | |
546 | ||
d8ba61ba | 547 | /* |
0d00449c PZ |
548 | * Unlike any other non-IST entry, we can be called from pretty much |
549 | * any location in the kernel through kprobes -- text_poke() will most | |
550 | * likely be handled by poke_int3_handler() above. This means this | |
551 | * handler is effectively NMI-like. | |
d8ba61ba | 552 | */ |
0d00449c PZ |
553 | if (!user_mode(regs)) |
554 | nmi_enter(); | |
65c668f5 | 555 | |
f503b5ae | 556 | #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP |
c9408265 KC |
557 | if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, |
558 | SIGTRAP) == NOTIFY_STOP) | |
6ba3c97a | 559 | goto exit; |
f503b5ae | 560 | #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ |
cc3a1bf5 | 561 | |
6f6343f5 MH |
562 | #ifdef CONFIG_KPROBES |
563 | if (kprobe_int3_handler(regs)) | |
4cdf77a8 | 564 | goto exit; |
6f6343f5 MH |
565 | #endif |
566 | ||
c9408265 KC |
567 | if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, |
568 | SIGTRAP) == NOTIFY_STOP) | |
6ba3c97a | 569 | goto exit; |
b5964405 | 570 | |
d99e1bd1 | 571 | cond_local_irq_enable(regs); |
164881b6 | 572 | do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, 0, NULL); |
d99e1bd1 | 573 | cond_local_irq_disable(regs); |
d8ba61ba | 574 | |
6ba3c97a | 575 | exit: |
0d00449c PZ |
576 | if (!user_mode(regs)) |
577 | nmi_exit(); | |
1da177e4 | 578 | } |
9326638c | 579 | NOKPROBE_SYMBOL(do_int3); |
1da177e4 | 580 | |
081f75bb | 581 | #ifdef CONFIG_X86_64 |
bd8b96df | 582 | /* |
7f2590a1 AL |
583 | * Help handler running on a per-cpu (IST or entry trampoline) stack |
584 | * to switch to the normal thread stack if the interrupted code was in | |
585 | * user mode. The actual stack switch is done in entry_64.S | |
bd8b96df | 586 | */ |
daf7a697 | 587 | asmlinkage __visible noinstr struct pt_regs *sync_regs(struct pt_regs *eregs) |
081f75bb | 588 | { |
7f2590a1 AL |
589 | struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; |
590 | if (regs != eregs) | |
591 | *regs = *eregs; | |
081f75bb AH |
592 | return regs; |
593 | } | |
b645af2d AL |
594 | |
595 | struct bad_iret_stack { | |
596 | void *error_entry_ret; | |
597 | struct pt_regs regs; | |
598 | }; | |
599 | ||
d73a3329 | 600 | asmlinkage __visible noinstr |
b645af2d AL |
601 | struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) |
602 | { | |
603 | /* | |
604 | * This is called from entry_64.S early in handling a fault | |
605 | * caused by a bad iret to user mode. To handle the fault | |
7f2590a1 AL |
606 | * correctly, we want to move our stack frame to where it would |
607 | * be had we entered directly on the entry stack (rather than | |
608 | * just below the IRET frame) and we want to pretend that the | |
609 | * exception came from the IRET target. | |
b645af2d | 610 | */ |
d73a3329 TG |
611 | struct bad_iret_stack tmp, *new_stack = |
612 | (struct bad_iret_stack *)__this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; | |
b645af2d | 613 | |
d73a3329 TG |
614 | /* Copy the IRET target to the temporary storage. */ |
615 | memcpy(&tmp.regs.ip, (void *)s->regs.sp, 5*8); | |
b645af2d AL |
616 | |
617 | /* Copy the remainder of the stack from the current stack. */ | |
d73a3329 TG |
618 | memcpy(&tmp, s, offsetof(struct bad_iret_stack, regs.ip)); |
619 | ||
620 | /* Update the entry stack */ | |
621 | memcpy(new_stack, &tmp, sizeof(tmp)); | |
b645af2d | 622 | |
f39b6f0e | 623 | BUG_ON(!user_mode(&new_stack->regs)); |
b645af2d AL |
624 | return new_stack; |
625 | } | |
081f75bb AH |
626 | #endif |
627 | ||
f2b37575 AL |
628 | static bool is_sysenter_singlestep(struct pt_regs *regs) |
629 | { | |
630 | /* | |
631 | * We don't try for precision here. If we're anywhere in the region of | |
632 | * code that can be single-stepped in the SYSENTER entry path, then | |
633 | * assume that this is a useless single-step trap due to SYSENTER | |
634 | * being invoked with TF set. (We don't know in advance exactly | |
635 | * which instructions will be hit because BTF could plausibly | |
636 | * be set.) | |
637 | */ | |
638 | #ifdef CONFIG_X86_32 | |
639 | return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < | |
640 | (unsigned long)__end_SYSENTER_singlestep_region - | |
641 | (unsigned long)__begin_SYSENTER_singlestep_region; | |
642 | #elif defined(CONFIG_IA32_EMULATION) | |
643 | return (regs->ip - (unsigned long)entry_SYSENTER_compat) < | |
644 | (unsigned long)__end_entry_SYSENTER_compat - | |
645 | (unsigned long)entry_SYSENTER_compat; | |
646 | #else | |
647 | return false; | |
648 | #endif | |
649 | } | |
650 | ||
1da177e4 LT |
651 | /* |
652 | * Our handling of the processor debug registers is non-trivial. | |
653 | * We do not clear them on entry and exit from the kernel. Therefore | |
654 | * it is possible to get a watchpoint trap here from inside the kernel. | |
655 | * However, the code in ./ptrace.c has ensured that the user can | |
656 | * only set watchpoints on userspace addresses. Therefore the in-kernel | |
657 | * watchpoint trap can only occur in code which is reading/writing | |
658 | * from user space. Such code must not hold kernel locks (since it | |
659 | * can equally take a page fault), therefore it is safe to call | |
660 | * force_sig_info even though that claims and releases locks. | |
b5964405 | 661 | * |
1da177e4 LT |
662 | * Code in ./signal.c ensures that the debug control register |
663 | * is restored before we deliver any signal, and therefore that | |
664 | * user code runs with the correct debug control register even though | |
665 | * we clear it here. | |
666 | * | |
667 | * Being careful here means that we don't have to be as careful in a | |
668 | * lot of more complicated places (task switching can be a bit lazy | |
669 | * about restoring all the debug state, and ptrace doesn't have to | |
670 | * find every occurrence of the TF bit that could be saved away even | |
671 | * by user code) | |
c1d518c8 AH |
672 | * |
673 | * May run on IST stack. | |
1da177e4 | 674 | */ |
9326638c | 675 | dotraplinkage void do_debug(struct pt_regs *regs, long error_code) |
1da177e4 | 676 | { |
1da177e4 | 677 | struct task_struct *tsk = current; |
a1e80faf | 678 | int user_icebp = 0; |
08d68323 | 679 | unsigned long dr6; |
da654b74 | 680 | int si_code; |
1da177e4 | 681 | |
0d00449c | 682 | nmi_enter(); |
4cdf77a8 | 683 | |
08d68323 | 684 | get_debugreg(dr6, 6); |
8bb56436 AL |
685 | /* |
686 | * The Intel SDM says: | |
687 | * | |
688 | * Certain debug exceptions may clear bits 0-3. The remaining | |
689 | * contents of the DR6 register are never cleared by the | |
690 | * processor. To avoid confusion in identifying debug | |
691 | * exceptions, debug handlers should clear the register before | |
692 | * returning to the interrupted task. | |
693 | * | |
694 | * Keep it simple: clear DR6 immediately. | |
695 | */ | |
696 | set_debugreg(0, 6); | |
1da177e4 | 697 | |
40f9249a P |
698 | /* Filter out all the reserved bits which are preset to 1 */ |
699 | dr6 &= ~DR6_RESERVED; | |
700 | ||
81edd9f6 AL |
701 | /* |
702 | * The SDM says "The processor clears the BTF flag when it | |
703 | * generates a debug exception." Clear TIF_BLOCKSTEP to keep | |
704 | * TIF_BLOCKSTEP in sync with the hardware BTF flag. | |
705 | */ | |
706 | clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); | |
707 | ||
f2b37575 AL |
708 | if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) && |
709 | is_sysenter_singlestep(regs))) { | |
710 | dr6 &= ~DR_STEP; | |
711 | if (!dr6) | |
712 | goto exit; | |
713 | /* | |
714 | * else we might have gotten a single-step trap and hit a | |
715 | * watchpoint at the same time, in which case we should fall | |
716 | * through and handle the watchpoint. | |
717 | */ | |
718 | } | |
719 | ||
a1e80faf FW |
720 | /* |
721 | * If dr6 has no reason to give us about the origin of this trap, | |
722 | * then it's very likely the result of an icebp/int01 trap. | |
723 | * User wants a sigtrap for that. | |
724 | */ | |
f39b6f0e | 725 | if (!dr6 && user_mode(regs)) |
a1e80faf FW |
726 | user_icebp = 1; |
727 | ||
08d68323 P |
728 | /* Store the virtualized DR6 value */ |
729 | tsk->thread.debugreg6 = dr6; | |
730 | ||
6f6343f5 MH |
731 | #ifdef CONFIG_KPROBES |
732 | if (kprobe_debug_handler(regs)) | |
733 | goto exit; | |
734 | #endif | |
735 | ||
5a802e15 | 736 | if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code, |
62edab90 | 737 | SIGTRAP) == NOTIFY_STOP) |
6ba3c97a | 738 | goto exit; |
3d2a71a5 | 739 | |
42181186 SR |
740 | /* |
741 | * Let others (NMI) know that the debug stack is in use | |
742 | * as we may switch to the interrupt stack. | |
743 | */ | |
744 | debug_stack_usage_inc(); | |
745 | ||
1da177e4 | 746 | /* It's safe to allow irq's after DR6 has been saved */ |
d99e1bd1 | 747 | cond_local_irq_enable(regs); |
1da177e4 | 748 | |
d74ef111 | 749 | if (v8086_mode(regs)) { |
c9408265 KC |
750 | handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, |
751 | X86_TRAP_DB); | |
d99e1bd1 | 752 | cond_local_irq_disable(regs); |
42181186 | 753 | debug_stack_usage_dec(); |
6ba3c97a | 754 | goto exit; |
1da177e4 LT |
755 | } |
756 | ||
f2b37575 AL |
757 | if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { |
758 | /* | |
759 | * Historical junk that used to handle SYSENTER single-stepping. | |
760 | * This should be unreachable now. If we survive for a while | |
761 | * without anyone hitting this warning, we'll turn this into | |
762 | * an oops. | |
763 | */ | |
08d68323 P |
764 | tsk->thread.debugreg6 &= ~DR_STEP; |
765 | set_tsk_thread_flag(tsk, TIF_SINGLESTEP); | |
766 | regs->flags &= ~X86_EFLAGS_TF; | |
1da177e4 | 767 | } |
08d68323 | 768 | si_code = get_si_code(tsk->thread.debugreg6); |
a1e80faf | 769 | if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) |
28d42ea1 | 770 | send_sigtrap(regs, error_code, si_code); |
d99e1bd1 | 771 | cond_local_irq_disable(regs); |
42181186 | 772 | debug_stack_usage_dec(); |
1da177e4 | 773 | |
6ba3c97a | 774 | exit: |
0d00449c | 775 | nmi_exit(); |
1da177e4 | 776 | } |
9326638c | 777 | NOKPROBE_SYMBOL(do_debug); |
1da177e4 LT |
778 | |
779 | /* | |
780 | * Note that we play around with the 'TS' bit in an attempt to get | |
781 | * the correct behaviour even in the presence of the asynchronous | |
782 | * IRQ13 behaviour | |
783 | */ | |
5e1b05be | 784 | static void math_error(struct pt_regs *regs, int error_code, int trapnr) |
1da177e4 | 785 | { |
e2e75c91 | 786 | struct task_struct *task = current; |
e1cebad4 | 787 | struct fpu *fpu = &task->thread.fpu; |
0a996c1a | 788 | int si_code; |
c9408265 KC |
789 | char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : |
790 | "simd exception"; | |
e2e75c91 | 791 | |
d99e1bd1 | 792 | cond_local_irq_enable(regs); |
e2e75c91 | 793 | |
e1cebad4 | 794 | if (!user_mode(regs)) { |
81fd9c18 | 795 | if (fixup_exception(regs, trapnr, error_code, 0)) |
ca4c6a98 | 796 | goto exit; |
3ae6295c SL |
797 | |
798 | task->thread.error_code = error_code; | |
799 | task->thread.trap_nr = trapnr; | |
800 | ||
801 | if (notify_die(DIE_TRAP, str, regs, error_code, | |
802 | trapnr, SIGFPE) != NOTIFY_STOP) | |
e2e75c91 | 803 | die(str, regs, error_code); |
ca4c6a98 | 804 | goto exit; |
e2e75c91 | 805 | } |
1da177e4 LT |
806 | |
807 | /* | |
808 | * Save the info for the exception handler and clear the error. | |
809 | */ | |
e1cebad4 IM |
810 | fpu__save(fpu); |
811 | ||
812 | task->thread.trap_nr = trapnr; | |
9b6dba9e | 813 | task->thread.error_code = error_code; |
adf77bac | 814 | |
0a996c1a | 815 | si_code = fpu__exception_code(fpu, trapnr); |
e1cebad4 | 816 | /* Retry when we get spurious exceptions: */ |
0a996c1a | 817 | if (!si_code) |
ca4c6a98 | 818 | goto exit; |
e1cebad4 | 819 | |
0a996c1a | 820 | force_sig_fault(SIGFPE, si_code, |
2e1661d2 | 821 | (void __user *)uprobe_get_trap_addr(regs)); |
ca4c6a98 TG |
822 | exit: |
823 | cond_local_irq_disable(regs); | |
1da177e4 LT |
824 | } |
825 | ||
e407d620 | 826 | dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) |
1da177e4 | 827 | { |
5778077d | 828 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
c9408265 | 829 | math_error(regs, error_code, X86_TRAP_MF); |
1da177e4 LT |
830 | } |
831 | ||
e407d620 AH |
832 | dotraplinkage void |
833 | do_simd_coprocessor_error(struct pt_regs *regs, long error_code) | |
1da177e4 | 834 | { |
5778077d | 835 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
c9408265 | 836 | math_error(regs, error_code, X86_TRAP_XF); |
1da177e4 LT |
837 | } |
838 | ||
e407d620 AH |
839 | dotraplinkage void |
840 | do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) | |
1da177e4 | 841 | { |
d244d0e1 TG |
842 | /* |
843 | * This addresses a Pentium Pro Erratum: | |
844 | * | |
845 | * PROBLEM: If the APIC subsystem is configured in mixed mode with | |
846 | * Virtual Wire mode implemented through the local APIC, an | |
847 | * interrupt vector of 0Fh (Intel reserved encoding) may be | |
848 | * generated by the local APIC (Int 15). This vector may be | |
849 | * generated upon receipt of a spurious interrupt (an interrupt | |
850 | * which is removed before the system receives the INTA sequence) | |
851 | * instead of the programmed 8259 spurious interrupt vector. | |
852 | * | |
853 | * IMPLICATION: The spurious interrupt vector programmed in the | |
854 | * 8259 is normally handled by an operating system's spurious | |
855 | * interrupt handler. However, a vector of 0Fh is unknown to some | |
856 | * operating systems, which would crash if this erratum occurred. | |
857 | * | |
858 | * In theory this could be limited to 32bit, but the handler is not | |
859 | * hurting and who knows which other CPUs suffer from this. | |
860 | */ | |
081f75bb AH |
861 | } |
862 | ||
9326638c | 863 | dotraplinkage void |
aa78bcfa | 864 | do_device_not_available(struct pt_regs *regs, long error_code) |
7643e9b9 | 865 | { |
ee35b9b9 | 866 | unsigned long cr0 = read_cr0(); |
bef8b6da | 867 | |
5778077d | 868 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
304bceda | 869 | |
a334fe43 | 870 | #ifdef CONFIG_MATH_EMULATION |
ee35b9b9 | 871 | if (!boot_cpu_has(X86_FEATURE_FPU) && (cr0 & X86_CR0_EM)) { |
d315760f TH |
872 | struct math_emu_info info = { }; |
873 | ||
d99e1bd1 | 874 | cond_local_irq_enable(regs); |
d315760f | 875 | |
aa78bcfa | 876 | info.regs = regs; |
d315760f | 877 | math_emulate(&info); |
ca4c6a98 TG |
878 | |
879 | cond_local_irq_disable(regs); | |
a334fe43 | 880 | return; |
7643e9b9 | 881 | } |
a334fe43 | 882 | #endif |
bef8b6da AL |
883 | |
884 | /* This should not happen. */ | |
bef8b6da AL |
885 | if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { |
886 | /* Try to fix it up and carry on. */ | |
887 | write_cr0(cr0 & ~X86_CR0_TS); | |
888 | } else { | |
889 | /* | |
890 | * Something terrible happened, and we're better off trying | |
891 | * to kill the task than getting stuck in a never-ending | |
892 | * loop of #NM faults. | |
893 | */ | |
894 | die("unexpected #NM exception", regs, error_code); | |
895 | } | |
7643e9b9 | 896 | } |
9326638c | 897 | NOKPROBE_SYMBOL(do_device_not_available); |
7643e9b9 | 898 | |
081f75bb | 899 | #ifdef CONFIG_X86_32 |
e407d620 | 900 | dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) |
f8e0870f | 901 | { |
5778077d | 902 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
f8e0870f AH |
903 | local_irq_enable(); |
904 | ||
c9408265 | 905 | if (notify_die(DIE_TRAP, "iret exception", regs, error_code, |
6ba3c97a FW |
906 | X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { |
907 | do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code, | |
164881b6 | 908 | ILL_BADSTK, (void __user *)NULL); |
6ba3c97a | 909 | } |
ca4c6a98 | 910 | local_irq_disable(); |
f8e0870f | 911 | } |
081f75bb | 912 | #endif |
f8e0870f | 913 | |
1da177e4 LT |
914 | void __init trap_init(void) |
915 | { | |
40e7f949 AL |
916 | /* Init cpu_entry_area before IST entries are set up */ |
917 | setup_cpu_entry_areas(); | |
918 | ||
b70543a0 | 919 | idt_setup_traps(); |
bb3f0b59 | 920 | |
4eefbe79 KC |
921 | /* |
922 | * Set the IDT descriptor to a fixed read-only location, so that the | |
923 | * "sidt" instruction will not leak the location of the kernel, and | |
924 | * to defend the IDT against arbitrary memory write vulnerabilities. | |
925 | * It will be reloaded in cpu_init() */ | |
92a0f81d TG |
926 | cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table), |
927 | PAGE_KERNEL_RO); | |
928 | idt_descr.address = CPU_ENTRY_AREA_RO_IDT; | |
4eefbe79 | 929 | |
1da177e4 | 930 | /* |
b5964405 | 931 | * Should be a barrier for any external CPU state: |
1da177e4 LT |
932 | */ |
933 | cpu_init(); | |
934 | ||
90f6225f | 935 | idt_setup_ist_traps(); |
b4d83270 | 936 | |
0a30908b | 937 | idt_setup_debugidt_traps(); |
1da177e4 | 938 | } |