]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
1da177e4 | 2 | * Copyright (C) 1991, 1992 Linus Torvalds |
a8c1be9d | 3 | * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs |
1da177e4 LT |
4 | * |
5 | * Pentium III FXSR, SSE support | |
6 | * Gareth Hughes <[email protected]>, May 2000 | |
7 | */ | |
8 | ||
9 | /* | |
c1d518c8 | 10 | * Handle hardware traps and faults. |
1da177e4 | 11 | */ |
c767a54b JP |
12 | |
13 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | |
14 | ||
56dd9470 | 15 | #include <linux/context_tracking.h> |
b5964405 IM |
16 | #include <linux/interrupt.h> |
17 | #include <linux/kallsyms.h> | |
18 | #include <linux/spinlock.h> | |
b5964405 IM |
19 | #include <linux/kprobes.h> |
20 | #include <linux/uaccess.h> | |
b5964405 | 21 | #include <linux/kdebug.h> |
f503b5ae | 22 | #include <linux/kgdb.h> |
1da177e4 | 23 | #include <linux/kernel.h> |
186f4360 | 24 | #include <linux/export.h> |
b5964405 | 25 | #include <linux/ptrace.h> |
b02ef20a | 26 | #include <linux/uprobes.h> |
1da177e4 | 27 | #include <linux/string.h> |
b5964405 | 28 | #include <linux/delay.h> |
1da177e4 | 29 | #include <linux/errno.h> |
b5964405 IM |
30 | #include <linux/kexec.h> |
31 | #include <linux/sched.h> | |
68db0cf1 | 32 | #include <linux/sched/task_stack.h> |
1da177e4 | 33 | #include <linux/timer.h> |
1da177e4 | 34 | #include <linux/init.h> |
91768d6c | 35 | #include <linux/bug.h> |
b5964405 IM |
36 | #include <linux/nmi.h> |
37 | #include <linux/mm.h> | |
c1d518c8 AH |
38 | #include <linux/smp.h> |
39 | #include <linux/io.h> | |
1da177e4 | 40 | |
c0d12172 DJ |
41 | #if defined(CONFIG_EDAC) |
42 | #include <linux/edac.h> | |
43 | #endif | |
44 | ||
b5964405 | 45 | #include <asm/stacktrace.h> |
1da177e4 | 46 | #include <asm/processor.h> |
1da177e4 | 47 | #include <asm/debugreg.h> |
60063497 | 48 | #include <linux/atomic.h> |
35de5b06 | 49 | #include <asm/text-patching.h> |
08d636b6 | 50 | #include <asm/ftrace.h> |
c1d518c8 | 51 | #include <asm/traps.h> |
1da177e4 | 52 | #include <asm/desc.h> |
78f7f1e5 | 53 | #include <asm/fpu/internal.h> |
ed1bbc40 | 54 | #include <asm/cpu_entry_area.h> |
9e55e44e | 55 | #include <asm/mce.h> |
4eefbe79 | 56 | #include <asm/fixmap.h> |
1164dd00 | 57 | #include <asm/mach_traps.h> |
17f41571 | 58 | #include <asm/alternative.h> |
a84eeaa9 | 59 | #include <asm/fpu/xstate.h> |
e7126cf5 | 60 | #include <asm/trace/mpx.h> |
fe3d197f | 61 | #include <asm/mpx.h> |
ba3e127e | 62 | #include <asm/vm86.h> |
6fc9dc81 | 63 | #include <asm/umip.h> |
c1d518c8 | 64 | |
081f75bb | 65 | #ifdef CONFIG_X86_64 |
428cf902 | 66 | #include <asm/x86_init.h> |
081f75bb AH |
67 | #include <asm/pgalloc.h> |
68 | #include <asm/proto.h> | |
081f75bb | 69 | #else |
c1d518c8 | 70 | #include <asm/processor-flags.h> |
8e6dafd6 | 71 | #include <asm/setup.h> |
b2502b41 | 72 | #include <asm/proto.h> |
081f75bb | 73 | #endif |
1da177e4 | 74 | |
7854f822 | 75 | DECLARE_BITMAP(system_vectors, NR_VECTORS); |
b77b881f | 76 | |
d99e1bd1 | 77 | static inline void cond_local_irq_enable(struct pt_regs *regs) |
762db434 AH |
78 | { |
79 | if (regs->flags & X86_EFLAGS_IF) | |
80 | local_irq_enable(); | |
81 | } | |
82 | ||
d99e1bd1 | 83 | static inline void cond_local_irq_disable(struct pt_regs *regs) |
3d2a71a5 AH |
84 | { |
85 | if (regs->flags & X86_EFLAGS_IF) | |
86 | local_irq_disable(); | |
3d2a71a5 AH |
87 | } |
88 | ||
aaee8c3c AL |
89 | /* |
90 | * In IST context, we explicitly disable preemption. This serves two | |
91 | * purposes: it makes it much less likely that we would accidentally | |
92 | * schedule in IST context and it will force a warning if we somehow | |
93 | * manage to schedule by accident. | |
94 | */ | |
8c84014f | 95 | void ist_enter(struct pt_regs *regs) |
95927475 | 96 | { |
f39b6f0e | 97 | if (user_mode(regs)) { |
5778077d | 98 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
95927475 AL |
99 | } else { |
100 | /* | |
101 | * We might have interrupted pretty much anything. In | |
102 | * fact, if we're a machine check, we can even interrupt | |
103 | * NMI processing. We don't want in_nmi() to return true, | |
104 | * but we need to notify RCU. | |
105 | */ | |
106 | rcu_nmi_enter(); | |
95927475 | 107 | } |
b926e6f6 | 108 | |
aaee8c3c | 109 | preempt_disable(); |
b926e6f6 AL |
110 | |
111 | /* This code is a bit fragile. Test it. */ | |
f78f5b90 | 112 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "ist_enter didn't work"); |
95927475 AL |
113 | } |
114 | ||
8c84014f | 115 | void ist_exit(struct pt_regs *regs) |
95927475 | 116 | { |
aaee8c3c | 117 | preempt_enable_no_resched(); |
95927475 | 118 | |
8c84014f | 119 | if (!user_mode(regs)) |
95927475 AL |
120 | rcu_nmi_exit(); |
121 | } | |
122 | ||
bced35b6 AL |
123 | /** |
124 | * ist_begin_non_atomic() - begin a non-atomic section in an IST exception | |
125 | * @regs: regs passed to the IST exception handler | |
126 | * | |
127 | * IST exception handlers normally cannot schedule. As a special | |
128 | * exception, if the exception interrupted userspace code (i.e. | |
f39b6f0e | 129 | * user_mode(regs) would return true) and the exception was not |
bced35b6 AL |
130 | * a double fault, it can be safe to schedule. ist_begin_non_atomic() |
131 | * begins a non-atomic section within an ist_enter()/ist_exit() region. | |
132 | * Callers are responsible for enabling interrupts themselves inside | |
8c84014f | 133 | * the non-atomic section, and callers must call ist_end_non_atomic() |
bced35b6 AL |
134 | * before ist_exit(). |
135 | */ | |
136 | void ist_begin_non_atomic(struct pt_regs *regs) | |
137 | { | |
f39b6f0e | 138 | BUG_ON(!user_mode(regs)); |
bced35b6 AL |
139 | |
140 | /* | |
141 | * Sanity check: we need to be on the normal thread stack. This | |
142 | * will catch asm bugs and any attempt to use ist_preempt_enable | |
143 | * from double_fault. | |
144 | */ | |
3383642c | 145 | BUG_ON(!on_thread_stack()); |
bced35b6 | 146 | |
aaee8c3c | 147 | preempt_enable_no_resched(); |
bced35b6 AL |
148 | } |
149 | ||
150 | /** | |
151 | * ist_end_non_atomic() - begin a non-atomic section in an IST exception | |
152 | * | |
153 | * Ends a non-atomic section started with ist_begin_non_atomic(). | |
154 | */ | |
155 | void ist_end_non_atomic(void) | |
156 | { | |
aaee8c3c | 157 | preempt_disable(); |
bced35b6 AL |
158 | } |
159 | ||
9a93848f PZ |
160 | int is_valid_bugaddr(unsigned long addr) |
161 | { | |
162 | unsigned short ud; | |
163 | ||
164 | if (addr < TASK_SIZE_MAX) | |
165 | return 0; | |
166 | ||
167 | if (probe_kernel_address((unsigned short *)addr, ud)) | |
168 | return 0; | |
169 | ||
170 | return ud == INSN_UD0 || ud == INSN_UD2; | |
171 | } | |
172 | ||
8a524f80 | 173 | int fixup_bug(struct pt_regs *regs, int trapnr) |
9a93848f PZ |
174 | { |
175 | if (trapnr != X86_TRAP_UD) | |
176 | return 0; | |
177 | ||
178 | switch (report_bug(regs->ip, regs)) { | |
179 | case BUG_TRAP_TYPE_NONE: | |
180 | case BUG_TRAP_TYPE_BUG: | |
181 | break; | |
182 | ||
183 | case BUG_TRAP_TYPE_WARN: | |
3b3a371c | 184 | regs->ip += LEN_UD2; |
9a93848f PZ |
185 | return 1; |
186 | } | |
187 | ||
188 | return 0; | |
189 | } | |
190 | ||
9326638c | 191 | static nokprobe_inline int |
c416ddf5 FW |
192 | do_trap_no_signal(struct task_struct *tsk, int trapnr, char *str, |
193 | struct pt_regs *regs, long error_code) | |
1da177e4 | 194 | { |
d74ef111 | 195 | if (v8086_mode(regs)) { |
3c1326f8 | 196 | /* |
c416ddf5 | 197 | * Traps 0, 1, 3, 4, and 5 should be forwarded to vm86. |
3c1326f8 AH |
198 | * On nmi (interrupt 2), do_trap should not be called. |
199 | */ | |
c416ddf5 FW |
200 | if (trapnr < X86_TRAP_UD) { |
201 | if (!handle_vm86_trap((struct kernel_vm86_regs *) regs, | |
202 | error_code, trapnr)) | |
203 | return 0; | |
204 | } | |
205 | return -1; | |
1da177e4 | 206 | } |
d74ef111 | 207 | |
55474c48 | 208 | if (!user_mode(regs)) { |
9a93848f PZ |
209 | if (fixup_exception(regs, trapnr)) |
210 | return 0; | |
211 | ||
9a93848f PZ |
212 | tsk->thread.error_code = error_code; |
213 | tsk->thread.trap_nr = trapnr; | |
214 | die(str, regs, error_code); | |
c416ddf5 | 215 | } |
1da177e4 | 216 | |
c416ddf5 FW |
217 | return -1; |
218 | } | |
1da177e4 | 219 | |
1c326c4d ON |
220 | static siginfo_t *fill_trap_info(struct pt_regs *regs, int signr, int trapnr, |
221 | siginfo_t *info) | |
958d3d72 ON |
222 | { |
223 | unsigned long siaddr; | |
224 | int sicode; | |
225 | ||
226 | switch (trapnr) { | |
1c326c4d ON |
227 | default: |
228 | return SEND_SIG_PRIV; | |
229 | ||
958d3d72 ON |
230 | case X86_TRAP_DE: |
231 | sicode = FPE_INTDIV; | |
b02ef20a | 232 | siaddr = uprobe_get_trap_addr(regs); |
958d3d72 ON |
233 | break; |
234 | case X86_TRAP_UD: | |
235 | sicode = ILL_ILLOPN; | |
b02ef20a | 236 | siaddr = uprobe_get_trap_addr(regs); |
958d3d72 ON |
237 | break; |
238 | case X86_TRAP_AC: | |
239 | sicode = BUS_ADRALN; | |
240 | siaddr = 0; | |
241 | break; | |
242 | } | |
243 | ||
244 | info->si_signo = signr; | |
245 | info->si_errno = 0; | |
246 | info->si_code = sicode; | |
247 | info->si_addr = (void __user *)siaddr; | |
1c326c4d | 248 | return info; |
958d3d72 ON |
249 | } |
250 | ||
9326638c | 251 | static void |
c416ddf5 FW |
252 | do_trap(int trapnr, int signr, char *str, struct pt_regs *regs, |
253 | long error_code, siginfo_t *info) | |
254 | { | |
255 | struct task_struct *tsk = current; | |
256 | ||
257 | ||
258 | if (!do_trap_no_signal(tsk, trapnr, str, regs, error_code)) | |
259 | return; | |
b5964405 | 260 | /* |
51e7dc70 | 261 | * We want error_code and trap_nr set for userspace faults and |
b5964405 IM |
262 | * kernelspace faults which result in die(), but not |
263 | * kernelspace faults which are fixed up. die() gives the | |
264 | * process no chance to handle the signal and notice the | |
265 | * kernel fault information, so that won't result in polluting | |
266 | * the information about previously queued, but not yet | |
267 | * delivered, faults. See also do_general_protection below. | |
268 | */ | |
269 | tsk->thread.error_code = error_code; | |
51e7dc70 | 270 | tsk->thread.trap_nr = trapnr; |
d1895183 | 271 | |
081f75bb AH |
272 | if (show_unhandled_signals && unhandled_signal(tsk, signr) && |
273 | printk_ratelimit()) { | |
c767a54b JP |
274 | pr_info("%s[%d] trap %s ip:%lx sp:%lx error:%lx", |
275 | tsk->comm, tsk->pid, str, | |
276 | regs->ip, regs->sp, error_code); | |
1c99a687 | 277 | print_vma_addr(KERN_CONT " in ", regs->ip); |
c767a54b | 278 | pr_cont("\n"); |
081f75bb | 279 | } |
081f75bb | 280 | |
38cad57b | 281 | force_sig_info(signr, info ?: SEND_SIG_PRIV, tsk); |
1da177e4 | 282 | } |
9326638c | 283 | NOKPROBE_SYMBOL(do_trap); |
1da177e4 | 284 | |
dff0796e | 285 | static void do_error_trap(struct pt_regs *regs, long error_code, char *str, |
1c326c4d | 286 | unsigned long trapnr, int signr) |
dff0796e | 287 | { |
1c326c4d | 288 | siginfo_t info; |
dff0796e | 289 | |
5778077d | 290 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
02fdcd5e | 291 | |
b8347c21 AS |
292 | /* |
293 | * WARN*()s end up here; fix them up before we call the | |
294 | * notifier chain. | |
295 | */ | |
296 | if (!user_mode(regs) && fixup_bug(regs, trapnr)) | |
297 | return; | |
298 | ||
dff0796e ON |
299 | if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) != |
300 | NOTIFY_STOP) { | |
d99e1bd1 | 301 | cond_local_irq_enable(regs); |
1c326c4d ON |
302 | do_trap(trapnr, signr, str, regs, error_code, |
303 | fill_trap_info(regs, signr, trapnr, &info)); | |
dff0796e | 304 | } |
dff0796e ON |
305 | } |
306 | ||
b5964405 | 307 | #define DO_ERROR(trapnr, signr, str, name) \ |
e407d620 | 308 | dotraplinkage void do_##name(struct pt_regs *regs, long error_code) \ |
b5964405 | 309 | { \ |
1c326c4d | 310 | do_error_trap(regs, error_code, str, trapnr, signr); \ |
1da177e4 LT |
311 | } |
312 | ||
0eb14833 ON |
313 | DO_ERROR(X86_TRAP_DE, SIGFPE, "divide error", divide_error) |
314 | DO_ERROR(X86_TRAP_OF, SIGSEGV, "overflow", overflow) | |
0eb14833 ON |
315 | DO_ERROR(X86_TRAP_UD, SIGILL, "invalid opcode", invalid_op) |
316 | DO_ERROR(X86_TRAP_OLD_MF, SIGFPE, "coprocessor segment overrun",coprocessor_segment_overrun) | |
317 | DO_ERROR(X86_TRAP_TS, SIGSEGV, "invalid TSS", invalid_TSS) | |
318 | DO_ERROR(X86_TRAP_NP, SIGBUS, "segment not present", segment_not_present) | |
0eb14833 | 319 | DO_ERROR(X86_TRAP_SS, SIGBUS, "stack segment", stack_segment) |
0eb14833 | 320 | DO_ERROR(X86_TRAP_AC, SIGBUS, "alignment check", alignment_check) |
1da177e4 | 321 | |
e37e43a4 | 322 | #ifdef CONFIG_VMAP_STACK |
6271cfdf AL |
323 | __visible void __noreturn handle_stack_overflow(const char *message, |
324 | struct pt_regs *regs, | |
325 | unsigned long fault_address) | |
e37e43a4 AL |
326 | { |
327 | printk(KERN_EMERG "BUG: stack guard page was hit at %p (stack is %p..%p)\n", | |
328 | (void *)fault_address, current->stack, | |
329 | (char *)current->stack + THREAD_SIZE - 1); | |
330 | die(message, regs, 0); | |
331 | ||
332 | /* Be absolutely certain we don't return. */ | |
333 | panic(message); | |
334 | } | |
335 | #endif | |
336 | ||
081f75bb AH |
337 | #ifdef CONFIG_X86_64 |
338 | /* Runs on IST stack */ | |
081f75bb AH |
339 | dotraplinkage void do_double_fault(struct pt_regs *regs, long error_code) |
340 | { | |
341 | static const char str[] = "double fault"; | |
342 | struct task_struct *tsk = current; | |
e37e43a4 AL |
343 | #ifdef CONFIG_VMAP_STACK |
344 | unsigned long cr2; | |
345 | #endif | |
081f75bb | 346 | |
af726f21 AL |
347 | #ifdef CONFIG_X86_ESPFIX64 |
348 | extern unsigned char native_irq_return_iret[]; | |
349 | ||
350 | /* | |
351 | * If IRET takes a non-IST fault on the espfix64 stack, then we | |
6d9256f0 AL |
352 | * end up promoting it to a doublefault. In that case, take |
353 | * advantage of the fact that we're not using the normal (TSS.sp0) | |
354 | * stack right now. We can write a fake #GP(0) frame at TSS.sp0 | |
355 | * and then modify our own IRET frame so that, when we return, | |
356 | * we land directly at the #GP(0) vector with the stack already | |
357 | * set up according to its expectations. | |
358 | * | |
359 | * The net result is that our #GP handler will think that we | |
360 | * entered from usermode with the bad user context. | |
95927475 AL |
361 | * |
362 | * No need for ist_enter here because we don't use RCU. | |
af726f21 | 363 | */ |
c739f930 | 364 | if (((long)regs->sp >> P4D_SHIFT) == ESPFIX_PGD_ENTRY && |
af726f21 AL |
365 | regs->cs == __KERNEL_CS && |
366 | regs->ip == (unsigned long)native_irq_return_iret) | |
367 | { | |
c482feef | 368 | struct pt_regs *gpregs = (struct pt_regs *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; |
af726f21 | 369 | |
6d9256f0 AL |
370 | /* |
371 | * regs->sp points to the failing IRET frame on the | |
372 | * ESPFIX64 stack. Copy it to the entry stack. This fills | |
373 | * in gpregs->ss through gpregs->ip. | |
374 | * | |
375 | */ | |
376 | memmove(&gpregs->ip, (void *)regs->sp, 5*8); | |
377 | gpregs->orig_ax = 0; /* Missing (lost) #GP error code */ | |
af726f21 | 378 | |
6d9256f0 AL |
379 | /* |
380 | * Adjust our frame so that we return straight to the #GP | |
381 | * vector with the expected RSP value. This is safe because | |
382 | * we won't enable interupts or schedule before we invoke | |
383 | * general_protection, so nothing will clobber the stack | |
384 | * frame we just set up. | |
385 | */ | |
af726f21 | 386 | regs->ip = (unsigned long)general_protection; |
6d9256f0 | 387 | regs->sp = (unsigned long)&gpregs->orig_ax; |
95927475 | 388 | |
af726f21 AL |
389 | return; |
390 | } | |
391 | #endif | |
392 | ||
8c84014f | 393 | ist_enter(regs); |
c9408265 | 394 | notify_die(DIE_TRAP, str, regs, error_code, X86_TRAP_DF, SIGSEGV); |
081f75bb AH |
395 | |
396 | tsk->thread.error_code = error_code; | |
51e7dc70 | 397 | tsk->thread.trap_nr = X86_TRAP_DF; |
081f75bb | 398 | |
e37e43a4 AL |
399 | #ifdef CONFIG_VMAP_STACK |
400 | /* | |
401 | * If we overflow the stack into a guard page, the CPU will fail | |
402 | * to deliver #PF and will send #DF instead. Similarly, if we | |
403 | * take any non-IST exception while too close to the bottom of | |
404 | * the stack, the processor will get a page fault while | |
405 | * delivering the exception and will generate a double fault. | |
406 | * | |
407 | * According to the SDM (footnote in 6.15 under "Interrupt 14 - | |
408 | * Page-Fault Exception (#PF): | |
409 | * | |
410 | * Processors update CR2 whenever a page fault is detected. If a | |
411 | * second page fault occurs while an earlier page fault is being | |
6d9256f0 | 412 | * delivered, the faulting linear address of the second fault will |
e37e43a4 AL |
413 | * overwrite the contents of CR2 (replacing the previous |
414 | * address). These updates to CR2 occur even if the page fault | |
415 | * results in a double fault or occurs during the delivery of a | |
416 | * double fault. | |
417 | * | |
418 | * The logic below has a small possibility of incorrectly diagnosing | |
419 | * some errors as stack overflows. For example, if the IDT or GDT | |
420 | * gets corrupted such that #GP delivery fails due to a bad descriptor | |
421 | * causing #GP and we hit this condition while CR2 coincidentally | |
422 | * points to the stack guard page, we'll think we overflowed the | |
423 | * stack. Given that we're going to panic one way or another | |
424 | * if this happens, this isn't necessarily worth fixing. | |
425 | * | |
426 | * If necessary, we could improve the test by only diagnosing | |
427 | * a stack overflow if the saved RSP points within 47 bytes of | |
428 | * the bottom of the stack: if RSP == tsk_stack + 48 and we | |
429 | * take an exception, the stack is already aligned and there | |
430 | * will be enough room SS, RSP, RFLAGS, CS, RIP, and a | |
431 | * possible error code, so a stack overflow would *not* double | |
432 | * fault. With any less space left, exception delivery could | |
433 | * fail, and, as a practical matter, we've overflowed the | |
434 | * stack even if the actual trigger for the double fault was | |
435 | * something else. | |
436 | */ | |
437 | cr2 = read_cr2(); | |
438 | if ((unsigned long)task_stack_page(tsk) - 1 - cr2 < PAGE_SIZE) | |
439 | handle_stack_overflow("kernel stack overflow (double-fault)", regs, cr2); | |
440 | #endif | |
441 | ||
4d067d8e BP |
442 | #ifdef CONFIG_DOUBLEFAULT |
443 | df_debug(regs, error_code); | |
444 | #endif | |
bd8b96df IM |
445 | /* |
446 | * This is always a kernel trap and never fixable (and thus must | |
447 | * never return). | |
448 | */ | |
081f75bb AH |
449 | for (;;) |
450 | die(str, regs, error_code); | |
451 | } | |
452 | #endif | |
453 | ||
fe3d197f DH |
454 | dotraplinkage void do_bounds(struct pt_regs *regs, long error_code) |
455 | { | |
1126cb45 | 456 | const struct mpx_bndcsr *bndcsr; |
fe3d197f DH |
457 | siginfo_t *info; |
458 | ||
5778077d | 459 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
fe3d197f DH |
460 | if (notify_die(DIE_TRAP, "bounds", regs, error_code, |
461 | X86_TRAP_BR, SIGSEGV) == NOTIFY_STOP) | |
8c84014f | 462 | return; |
d99e1bd1 | 463 | cond_local_irq_enable(regs); |
fe3d197f | 464 | |
f39b6f0e | 465 | if (!user_mode(regs)) |
fe3d197f DH |
466 | die("bounds", regs, error_code); |
467 | ||
468 | if (!cpu_feature_enabled(X86_FEATURE_MPX)) { | |
469 | /* The exception is not from Intel MPX */ | |
470 | goto exit_trap; | |
471 | } | |
472 | ||
473 | /* | |
474 | * We need to look at BNDSTATUS to resolve this exception. | |
a84eeaa9 DH |
475 | * A NULL here might mean that it is in its 'init state', |
476 | * which is all zeros which indicates MPX was not | |
477 | * responsible for the exception. | |
fe3d197f | 478 | */ |
d91cab78 | 479 | bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR); |
fe3d197f DH |
480 | if (!bndcsr) |
481 | goto exit_trap; | |
482 | ||
e7126cf5 | 483 | trace_bounds_exception_mpx(bndcsr); |
fe3d197f DH |
484 | /* |
485 | * The error code field of the BNDSTATUS register communicates status | |
486 | * information of a bound range exception #BR or operation involving | |
487 | * bound directory. | |
488 | */ | |
489 | switch (bndcsr->bndstatus & MPX_BNDSTA_ERROR_CODE) { | |
490 | case 2: /* Bound directory has invalid entry. */ | |
46a6e0cf | 491 | if (mpx_handle_bd_fault()) |
fe3d197f DH |
492 | goto exit_trap; |
493 | break; /* Success, it was handled */ | |
494 | case 1: /* Bound violation. */ | |
46a6e0cf | 495 | info = mpx_generate_siginfo(regs); |
e10abb2f | 496 | if (IS_ERR(info)) { |
fe3d197f DH |
497 | /* |
498 | * We failed to decode the MPX instruction. Act as if | |
499 | * the exception was not caused by MPX. | |
500 | */ | |
501 | goto exit_trap; | |
502 | } | |
503 | /* | |
504 | * Success, we decoded the instruction and retrieved | |
505 | * an 'info' containing the address being accessed | |
506 | * which caused the exception. This information | |
507 | * allows and application to possibly handle the | |
508 | * #BR exception itself. | |
509 | */ | |
510 | do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, info); | |
511 | kfree(info); | |
512 | break; | |
513 | case 0: /* No exception caused by Intel MPX operations. */ | |
514 | goto exit_trap; | |
515 | default: | |
516 | die("bounds", regs, error_code); | |
517 | } | |
518 | ||
fe3d197f | 519 | return; |
8c84014f | 520 | |
fe3d197f DH |
521 | exit_trap: |
522 | /* | |
523 | * This path out is for all the cases where we could not | |
524 | * handle the exception in some way (like allocating a | |
525 | * table or telling userspace about it. We will also end | |
526 | * up here if the kernel has MPX turned off at compile | |
527 | * time.. | |
528 | */ | |
529 | do_trap(X86_TRAP_BR, SIGSEGV, "bounds", regs, error_code, NULL); | |
fe3d197f DH |
530 | } |
531 | ||
9326638c | 532 | dotraplinkage void |
13485ab5 | 533 | do_general_protection(struct pt_regs *regs, long error_code) |
1da177e4 | 534 | { |
13485ab5 | 535 | struct task_struct *tsk; |
b5964405 | 536 | |
5778077d | 537 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
d99e1bd1 | 538 | cond_local_irq_enable(regs); |
c6df0d71 | 539 | |
6fc9dc81 RN |
540 | if (static_cpu_has(X86_FEATURE_UMIP)) { |
541 | if (user_mode(regs) && fixup_umip_exception(regs)) | |
542 | return; | |
543 | } | |
544 | ||
d74ef111 | 545 | if (v8086_mode(regs)) { |
ef3f6288 FW |
546 | local_irq_enable(); |
547 | handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); | |
8c84014f | 548 | return; |
ef3f6288 | 549 | } |
1da177e4 | 550 | |
13485ab5 | 551 | tsk = current; |
55474c48 | 552 | if (!user_mode(regs)) { |
548acf19 | 553 | if (fixup_exception(regs, X86_TRAP_GP)) |
8c84014f | 554 | return; |
ef3f6288 FW |
555 | |
556 | tsk->thread.error_code = error_code; | |
557 | tsk->thread.trap_nr = X86_TRAP_GP; | |
6ba3c97a FW |
558 | if (notify_die(DIE_GPF, "general protection fault", regs, error_code, |
559 | X86_TRAP_GP, SIGSEGV) != NOTIFY_STOP) | |
ef3f6288 | 560 | die("general protection fault", regs, error_code); |
8c84014f | 561 | return; |
ef3f6288 | 562 | } |
1da177e4 | 563 | |
13485ab5 | 564 | tsk->thread.error_code = error_code; |
51e7dc70 | 565 | tsk->thread.trap_nr = X86_TRAP_GP; |
b5964405 | 566 | |
13485ab5 AH |
567 | if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) && |
568 | printk_ratelimit()) { | |
c767a54b | 569 | pr_info("%s[%d] general protection ip:%lx sp:%lx error:%lx", |
13485ab5 AH |
570 | tsk->comm, task_pid_nr(tsk), |
571 | regs->ip, regs->sp, error_code); | |
1c99a687 | 572 | print_vma_addr(KERN_CONT " in ", regs->ip); |
c767a54b | 573 | pr_cont("\n"); |
03252919 | 574 | } |
abd4f750 | 575 | |
38cad57b | 576 | force_sig_info(SIGSEGV, SEND_SIG_PRIV, tsk); |
1da177e4 | 577 | } |
9326638c | 578 | NOKPROBE_SYMBOL(do_general_protection); |
1da177e4 | 579 | |
c1d518c8 | 580 | /* May run on IST stack. */ |
9326638c | 581 | dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code) |
1da177e4 | 582 | { |
08d636b6 | 583 | #ifdef CONFIG_DYNAMIC_FTRACE |
a192cd04 SR |
584 | /* |
585 | * ftrace must be first, everything else may cause a recursive crash. | |
586 | * See note by declaration of modifying_ftrace_code in ftrace.c | |
587 | */ | |
588 | if (unlikely(atomic_read(&modifying_ftrace_code)) && | |
589 | ftrace_int3_handler(regs)) | |
08d636b6 SR |
590 | return; |
591 | #endif | |
17f41571 JK |
592 | if (poke_int3_handler(regs)) |
593 | return; | |
594 | ||
8c84014f | 595 | ist_enter(regs); |
5778077d | 596 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
f503b5ae | 597 | #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP |
c9408265 KC |
598 | if (kgdb_ll_trap(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, |
599 | SIGTRAP) == NOTIFY_STOP) | |
6ba3c97a | 600 | goto exit; |
f503b5ae | 601 | #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ |
cc3a1bf5 | 602 | |
6f6343f5 MH |
603 | #ifdef CONFIG_KPROBES |
604 | if (kprobe_int3_handler(regs)) | |
4cdf77a8 | 605 | goto exit; |
6f6343f5 MH |
606 | #endif |
607 | ||
c9408265 KC |
608 | if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP, |
609 | SIGTRAP) == NOTIFY_STOP) | |
6ba3c97a | 610 | goto exit; |
b5964405 | 611 | |
42181186 SR |
612 | /* |
613 | * Let others (NMI) know that the debug stack is in use | |
614 | * as we may switch to the interrupt stack. | |
615 | */ | |
616 | debug_stack_usage_inc(); | |
d99e1bd1 | 617 | cond_local_irq_enable(regs); |
c9408265 | 618 | do_trap(X86_TRAP_BP, SIGTRAP, "int3", regs, error_code, NULL); |
d99e1bd1 | 619 | cond_local_irq_disable(regs); |
42181186 | 620 | debug_stack_usage_dec(); |
6ba3c97a | 621 | exit: |
8c84014f | 622 | ist_exit(regs); |
1da177e4 | 623 | } |
9326638c | 624 | NOKPROBE_SYMBOL(do_int3); |
1da177e4 | 625 | |
081f75bb | 626 | #ifdef CONFIG_X86_64 |
bd8b96df | 627 | /* |
7f2590a1 AL |
628 | * Help handler running on a per-cpu (IST or entry trampoline) stack |
629 | * to switch to the normal thread stack if the interrupted code was in | |
630 | * user mode. The actual stack switch is done in entry_64.S | |
bd8b96df | 631 | */ |
7ddc6a21 | 632 | asmlinkage __visible notrace struct pt_regs *sync_regs(struct pt_regs *eregs) |
081f75bb | 633 | { |
7f2590a1 AL |
634 | struct pt_regs *regs = (struct pt_regs *)this_cpu_read(cpu_current_top_of_stack) - 1; |
635 | if (regs != eregs) | |
636 | *regs = *eregs; | |
081f75bb AH |
637 | return regs; |
638 | } | |
9326638c | 639 | NOKPROBE_SYMBOL(sync_regs); |
b645af2d AL |
640 | |
641 | struct bad_iret_stack { | |
642 | void *error_entry_ret; | |
643 | struct pt_regs regs; | |
644 | }; | |
645 | ||
7ddc6a21 | 646 | asmlinkage __visible notrace |
b645af2d AL |
647 | struct bad_iret_stack *fixup_bad_iret(struct bad_iret_stack *s) |
648 | { | |
649 | /* | |
650 | * This is called from entry_64.S early in handling a fault | |
651 | * caused by a bad iret to user mode. To handle the fault | |
7f2590a1 AL |
652 | * correctly, we want to move our stack frame to where it would |
653 | * be had we entered directly on the entry stack (rather than | |
654 | * just below the IRET frame) and we want to pretend that the | |
655 | * exception came from the IRET target. | |
b645af2d AL |
656 | */ |
657 | struct bad_iret_stack *new_stack = | |
c482feef | 658 | (struct bad_iret_stack *)this_cpu_read(cpu_tss_rw.x86_tss.sp0) - 1; |
b645af2d AL |
659 | |
660 | /* Copy the IRET target to the new stack. */ | |
661 | memmove(&new_stack->regs.ip, (void *)s->regs.sp, 5*8); | |
662 | ||
663 | /* Copy the remainder of the stack from the current stack. */ | |
664 | memmove(new_stack, s, offsetof(struct bad_iret_stack, regs.ip)); | |
665 | ||
f39b6f0e | 666 | BUG_ON(!user_mode(&new_stack->regs)); |
b645af2d AL |
667 | return new_stack; |
668 | } | |
7ddc6a21 | 669 | NOKPROBE_SYMBOL(fixup_bad_iret); |
081f75bb AH |
670 | #endif |
671 | ||
f2b37575 AL |
672 | static bool is_sysenter_singlestep(struct pt_regs *regs) |
673 | { | |
674 | /* | |
675 | * We don't try for precision here. If we're anywhere in the region of | |
676 | * code that can be single-stepped in the SYSENTER entry path, then | |
677 | * assume that this is a useless single-step trap due to SYSENTER | |
678 | * being invoked with TF set. (We don't know in advance exactly | |
679 | * which instructions will be hit because BTF could plausibly | |
680 | * be set.) | |
681 | */ | |
682 | #ifdef CONFIG_X86_32 | |
683 | return (regs->ip - (unsigned long)__begin_SYSENTER_singlestep_region) < | |
684 | (unsigned long)__end_SYSENTER_singlestep_region - | |
685 | (unsigned long)__begin_SYSENTER_singlestep_region; | |
686 | #elif defined(CONFIG_IA32_EMULATION) | |
687 | return (regs->ip - (unsigned long)entry_SYSENTER_compat) < | |
688 | (unsigned long)__end_entry_SYSENTER_compat - | |
689 | (unsigned long)entry_SYSENTER_compat; | |
690 | #else | |
691 | return false; | |
692 | #endif | |
693 | } | |
694 | ||
1da177e4 LT |
695 | /* |
696 | * Our handling of the processor debug registers is non-trivial. | |
697 | * We do not clear them on entry and exit from the kernel. Therefore | |
698 | * it is possible to get a watchpoint trap here from inside the kernel. | |
699 | * However, the code in ./ptrace.c has ensured that the user can | |
700 | * only set watchpoints on userspace addresses. Therefore the in-kernel | |
701 | * watchpoint trap can only occur in code which is reading/writing | |
702 | * from user space. Such code must not hold kernel locks (since it | |
703 | * can equally take a page fault), therefore it is safe to call | |
704 | * force_sig_info even though that claims and releases locks. | |
b5964405 | 705 | * |
1da177e4 LT |
706 | * Code in ./signal.c ensures that the debug control register |
707 | * is restored before we deliver any signal, and therefore that | |
708 | * user code runs with the correct debug control register even though | |
709 | * we clear it here. | |
710 | * | |
711 | * Being careful here means that we don't have to be as careful in a | |
712 | * lot of more complicated places (task switching can be a bit lazy | |
713 | * about restoring all the debug state, and ptrace doesn't have to | |
714 | * find every occurrence of the TF bit that could be saved away even | |
715 | * by user code) | |
c1d518c8 AH |
716 | * |
717 | * May run on IST stack. | |
1da177e4 | 718 | */ |
9326638c | 719 | dotraplinkage void do_debug(struct pt_regs *regs, long error_code) |
1da177e4 | 720 | { |
1da177e4 | 721 | struct task_struct *tsk = current; |
a1e80faf | 722 | int user_icebp = 0; |
08d68323 | 723 | unsigned long dr6; |
da654b74 | 724 | int si_code; |
1da177e4 | 725 | |
8c84014f | 726 | ist_enter(regs); |
4cdf77a8 | 727 | |
08d68323 | 728 | get_debugreg(dr6, 6); |
8bb56436 AL |
729 | /* |
730 | * The Intel SDM says: | |
731 | * | |
732 | * Certain debug exceptions may clear bits 0-3. The remaining | |
733 | * contents of the DR6 register are never cleared by the | |
734 | * processor. To avoid confusion in identifying debug | |
735 | * exceptions, debug handlers should clear the register before | |
736 | * returning to the interrupted task. | |
737 | * | |
738 | * Keep it simple: clear DR6 immediately. | |
739 | */ | |
740 | set_debugreg(0, 6); | |
1da177e4 | 741 | |
40f9249a P |
742 | /* Filter out all the reserved bits which are preset to 1 */ |
743 | dr6 &= ~DR6_RESERVED; | |
744 | ||
81edd9f6 AL |
745 | /* |
746 | * The SDM says "The processor clears the BTF flag when it | |
747 | * generates a debug exception." Clear TIF_BLOCKSTEP to keep | |
748 | * TIF_BLOCKSTEP in sync with the hardware BTF flag. | |
749 | */ | |
750 | clear_tsk_thread_flag(tsk, TIF_BLOCKSTEP); | |
751 | ||
f2b37575 AL |
752 | if (unlikely(!user_mode(regs) && (dr6 & DR_STEP) && |
753 | is_sysenter_singlestep(regs))) { | |
754 | dr6 &= ~DR_STEP; | |
755 | if (!dr6) | |
756 | goto exit; | |
757 | /* | |
758 | * else we might have gotten a single-step trap and hit a | |
759 | * watchpoint at the same time, in which case we should fall | |
760 | * through and handle the watchpoint. | |
761 | */ | |
762 | } | |
763 | ||
a1e80faf FW |
764 | /* |
765 | * If dr6 has no reason to give us about the origin of this trap, | |
766 | * then it's very likely the result of an icebp/int01 trap. | |
767 | * User wants a sigtrap for that. | |
768 | */ | |
f39b6f0e | 769 | if (!dr6 && user_mode(regs)) |
a1e80faf FW |
770 | user_icebp = 1; |
771 | ||
08d68323 P |
772 | /* Store the virtualized DR6 value */ |
773 | tsk->thread.debugreg6 = dr6; | |
774 | ||
6f6343f5 MH |
775 | #ifdef CONFIG_KPROBES |
776 | if (kprobe_debug_handler(regs)) | |
777 | goto exit; | |
778 | #endif | |
779 | ||
5a802e15 | 780 | if (notify_die(DIE_DEBUG, "debug", regs, (long)&dr6, error_code, |
62edab90 | 781 | SIGTRAP) == NOTIFY_STOP) |
6ba3c97a | 782 | goto exit; |
3d2a71a5 | 783 | |
42181186 SR |
784 | /* |
785 | * Let others (NMI) know that the debug stack is in use | |
786 | * as we may switch to the interrupt stack. | |
787 | */ | |
788 | debug_stack_usage_inc(); | |
789 | ||
1da177e4 | 790 | /* It's safe to allow irq's after DR6 has been saved */ |
d99e1bd1 | 791 | cond_local_irq_enable(regs); |
1da177e4 | 792 | |
d74ef111 | 793 | if (v8086_mode(regs)) { |
c9408265 KC |
794 | handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, |
795 | X86_TRAP_DB); | |
d99e1bd1 | 796 | cond_local_irq_disable(regs); |
42181186 | 797 | debug_stack_usage_dec(); |
6ba3c97a | 798 | goto exit; |
1da177e4 LT |
799 | } |
800 | ||
f2b37575 AL |
801 | if (WARN_ON_ONCE((dr6 & DR_STEP) && !user_mode(regs))) { |
802 | /* | |
803 | * Historical junk that used to handle SYSENTER single-stepping. | |
804 | * This should be unreachable now. If we survive for a while | |
805 | * without anyone hitting this warning, we'll turn this into | |
806 | * an oops. | |
807 | */ | |
08d68323 P |
808 | tsk->thread.debugreg6 &= ~DR_STEP; |
809 | set_tsk_thread_flag(tsk, TIF_SINGLESTEP); | |
810 | regs->flags &= ~X86_EFLAGS_TF; | |
1da177e4 | 811 | } |
08d68323 | 812 | si_code = get_si_code(tsk->thread.debugreg6); |
a1e80faf | 813 | if (tsk->thread.debugreg6 & (DR_STEP | DR_TRAP_BITS) || user_icebp) |
08d68323 | 814 | send_sigtrap(tsk, regs, error_code, si_code); |
d99e1bd1 | 815 | cond_local_irq_disable(regs); |
42181186 | 816 | debug_stack_usage_dec(); |
1da177e4 | 817 | |
6ba3c97a | 818 | exit: |
8c84014f | 819 | ist_exit(regs); |
1da177e4 | 820 | } |
9326638c | 821 | NOKPROBE_SYMBOL(do_debug); |
1da177e4 LT |
822 | |
823 | /* | |
824 | * Note that we play around with the 'TS' bit in an attempt to get | |
825 | * the correct behaviour even in the presence of the asynchronous | |
826 | * IRQ13 behaviour | |
827 | */ | |
5e1b05be | 828 | static void math_error(struct pt_regs *regs, int error_code, int trapnr) |
1da177e4 | 829 | { |
e2e75c91 | 830 | struct task_struct *task = current; |
e1cebad4 | 831 | struct fpu *fpu = &task->thread.fpu; |
1da177e4 | 832 | siginfo_t info; |
c9408265 KC |
833 | char *str = (trapnr == X86_TRAP_MF) ? "fpu exception" : |
834 | "simd exception"; | |
e2e75c91 BG |
835 | |
836 | if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, SIGFPE) == NOTIFY_STOP) | |
837 | return; | |
d99e1bd1 | 838 | cond_local_irq_enable(regs); |
e2e75c91 | 839 | |
e1cebad4 | 840 | if (!user_mode(regs)) { |
548acf19 | 841 | if (!fixup_exception(regs, trapnr)) { |
e2e75c91 | 842 | task->thread.error_code = error_code; |
51e7dc70 | 843 | task->thread.trap_nr = trapnr; |
e2e75c91 BG |
844 | die(str, regs, error_code); |
845 | } | |
846 | return; | |
847 | } | |
1da177e4 LT |
848 | |
849 | /* | |
850 | * Save the info for the exception handler and clear the error. | |
851 | */ | |
e1cebad4 IM |
852 | fpu__save(fpu); |
853 | ||
854 | task->thread.trap_nr = trapnr; | |
9b6dba9e | 855 | task->thread.error_code = error_code; |
e1cebad4 IM |
856 | info.si_signo = SIGFPE; |
857 | info.si_errno = 0; | |
858 | info.si_addr = (void __user *)uprobe_get_trap_addr(regs); | |
adf77bac | 859 | |
e1cebad4 | 860 | info.si_code = fpu__exception_code(fpu, trapnr); |
adf77bac | 861 | |
e1cebad4 IM |
862 | /* Retry when we get spurious exceptions: */ |
863 | if (!info.si_code) | |
c9408265 | 864 | return; |
e1cebad4 | 865 | |
1da177e4 LT |
866 | force_sig_info(SIGFPE, &info, task); |
867 | } | |
868 | ||
e407d620 | 869 | dotraplinkage void do_coprocessor_error(struct pt_regs *regs, long error_code) |
1da177e4 | 870 | { |
5778077d | 871 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
c9408265 | 872 | math_error(regs, error_code, X86_TRAP_MF); |
1da177e4 LT |
873 | } |
874 | ||
e407d620 AH |
875 | dotraplinkage void |
876 | do_simd_coprocessor_error(struct pt_regs *regs, long error_code) | |
1da177e4 | 877 | { |
5778077d | 878 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
c9408265 | 879 | math_error(regs, error_code, X86_TRAP_XF); |
1da177e4 LT |
880 | } |
881 | ||
e407d620 AH |
882 | dotraplinkage void |
883 | do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) | |
1da177e4 | 884 | { |
d99e1bd1 | 885 | cond_local_irq_enable(regs); |
081f75bb AH |
886 | } |
887 | ||
9326638c | 888 | dotraplinkage void |
aa78bcfa | 889 | do_device_not_available(struct pt_regs *regs, long error_code) |
7643e9b9 | 890 | { |
bef8b6da AL |
891 | unsigned long cr0; |
892 | ||
5778077d | 893 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
304bceda | 894 | |
a334fe43 | 895 | #ifdef CONFIG_MATH_EMULATION |
c6ab109f | 896 | if (!boot_cpu_has(X86_FEATURE_FPU) && (read_cr0() & X86_CR0_EM)) { |
d315760f TH |
897 | struct math_emu_info info = { }; |
898 | ||
d99e1bd1 | 899 | cond_local_irq_enable(regs); |
d315760f | 900 | |
aa78bcfa | 901 | info.regs = regs; |
d315760f | 902 | math_emulate(&info); |
a334fe43 | 903 | return; |
7643e9b9 | 904 | } |
a334fe43 | 905 | #endif |
bef8b6da AL |
906 | |
907 | /* This should not happen. */ | |
908 | cr0 = read_cr0(); | |
909 | if (WARN(cr0 & X86_CR0_TS, "CR0.TS was set")) { | |
910 | /* Try to fix it up and carry on. */ | |
911 | write_cr0(cr0 & ~X86_CR0_TS); | |
912 | } else { | |
913 | /* | |
914 | * Something terrible happened, and we're better off trying | |
915 | * to kill the task than getting stuck in a never-ending | |
916 | * loop of #NM faults. | |
917 | */ | |
918 | die("unexpected #NM exception", regs, error_code); | |
919 | } | |
7643e9b9 | 920 | } |
9326638c | 921 | NOKPROBE_SYMBOL(do_device_not_available); |
7643e9b9 | 922 | |
081f75bb | 923 | #ifdef CONFIG_X86_32 |
e407d620 | 924 | dotraplinkage void do_iret_error(struct pt_regs *regs, long error_code) |
f8e0870f AH |
925 | { |
926 | siginfo_t info; | |
6ba3c97a | 927 | |
5778077d | 928 | RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); |
f8e0870f AH |
929 | local_irq_enable(); |
930 | ||
931 | info.si_signo = SIGILL; | |
932 | info.si_errno = 0; | |
933 | info.si_code = ILL_BADSTK; | |
fc6fcdfb | 934 | info.si_addr = NULL; |
c9408265 | 935 | if (notify_die(DIE_TRAP, "iret exception", regs, error_code, |
6ba3c97a FW |
936 | X86_TRAP_IRET, SIGILL) != NOTIFY_STOP) { |
937 | do_trap(X86_TRAP_IRET, SIGILL, "iret exception", regs, error_code, | |
938 | &info); | |
939 | } | |
f8e0870f | 940 | } |
081f75bb | 941 | #endif |
f8e0870f | 942 | |
1da177e4 LT |
943 | void __init trap_init(void) |
944 | { | |
40e7f949 AL |
945 | /* Init cpu_entry_area before IST entries are set up */ |
946 | setup_cpu_entry_areas(); | |
947 | ||
b70543a0 | 948 | idt_setup_traps(); |
bb3f0b59 | 949 | |
4eefbe79 KC |
950 | /* |
951 | * Set the IDT descriptor to a fixed read-only location, so that the | |
952 | * "sidt" instruction will not leak the location of the kernel, and | |
953 | * to defend the IDT against arbitrary memory write vulnerabilities. | |
954 | * It will be reloaded in cpu_init() */ | |
92a0f81d TG |
955 | cea_set_pte(CPU_ENTRY_AREA_RO_IDT_VADDR, __pa_symbol(idt_table), |
956 | PAGE_KERNEL_RO); | |
957 | idt_descr.address = CPU_ENTRY_AREA_RO_IDT; | |
4eefbe79 | 958 | |
1da177e4 | 959 | /* |
b5964405 | 960 | * Should be a barrier for any external CPU state: |
1da177e4 LT |
961 | */ |
962 | cpu_init(); | |
963 | ||
90f6225f | 964 | idt_setup_ist_traps(); |
b4d83270 | 965 | |
428cf902 | 966 | x86_init.irqs.trap_init(); |
228bdaa9 | 967 | |
0a30908b | 968 | idt_setup_debugidt_traps(); |
1da177e4 | 969 | } |