]>
Commit | Line | Data |
---|---|---|
81819f0f CL |
1 | /* |
2 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
3 | * objects in per cpu and per node lists. | |
4 | * | |
5 | * The allocator synchronizes using per slab locks and only | |
6 | * uses a centralized lock to manage a pool of partial slabs. | |
7 | * | |
8 | * (C) 2007 SGI, Christoph Lameter <[email protected]> | |
9 | */ | |
10 | ||
11 | #include <linux/mm.h> | |
12 | #include <linux/module.h> | |
13 | #include <linux/bit_spinlock.h> | |
14 | #include <linux/interrupt.h> | |
15 | #include <linux/bitops.h> | |
16 | #include <linux/slab.h> | |
17 | #include <linux/seq_file.h> | |
18 | #include <linux/cpu.h> | |
19 | #include <linux/cpuset.h> | |
20 | #include <linux/mempolicy.h> | |
21 | #include <linux/ctype.h> | |
22 | #include <linux/kallsyms.h> | |
b9049e23 | 23 | #include <linux/memory.h> |
81819f0f CL |
24 | |
25 | /* | |
26 | * Lock order: | |
27 | * 1. slab_lock(page) | |
28 | * 2. slab->list_lock | |
29 | * | |
30 | * The slab_lock protects operations on the object of a particular | |
31 | * slab and its metadata in the page struct. If the slab lock | |
32 | * has been taken then no allocations nor frees can be performed | |
33 | * on the objects in the slab nor can the slab be added or removed | |
34 | * from the partial or full lists since this would mean modifying | |
35 | * the page_struct of the slab. | |
36 | * | |
37 | * The list_lock protects the partial and full list on each node and | |
38 | * the partial slab counter. If taken then no new slabs may be added or | |
39 | * removed from the lists nor make the number of partial slabs be modified. | |
40 | * (Note that the total number of slabs is an atomic value that may be | |
41 | * modified without taking the list lock). | |
42 | * | |
43 | * The list_lock is a centralized lock and thus we avoid taking it as | |
44 | * much as possible. As long as SLUB does not have to handle partial | |
45 | * slabs, operations can continue without any centralized lock. F.e. | |
46 | * allocating a long series of objects that fill up slabs does not require | |
47 | * the list lock. | |
48 | * | |
49 | * The lock order is sometimes inverted when we are trying to get a slab | |
50 | * off a list. We take the list_lock and then look for a page on the list | |
51 | * to use. While we do that objects in the slabs may be freed. We can | |
52 | * only operate on the slab if we have also taken the slab_lock. So we use | |
53 | * a slab_trylock() on the slab. If trylock was successful then no frees | |
54 | * can occur anymore and we can use the slab for allocations etc. If the | |
55 | * slab_trylock() does not succeed then frees are in progress in the slab and | |
56 | * we must stay away from it for a while since we may cause a bouncing | |
57 | * cacheline if we try to acquire the lock. So go onto the next slab. | |
58 | * If all pages are busy then we may allocate a new slab instead of reusing | |
59 | * a partial slab. A new slab has noone operating on it and thus there is | |
60 | * no danger of cacheline contention. | |
61 | * | |
62 | * Interrupts are disabled during allocation and deallocation in order to | |
63 | * make the slab allocator safe to use in the context of an irq. In addition | |
64 | * interrupts are disabled to ensure that the processor does not change | |
65 | * while handling per_cpu slabs, due to kernel preemption. | |
66 | * | |
67 | * SLUB assigns one slab for allocation to each processor. | |
68 | * Allocations only occur from these slabs called cpu slabs. | |
69 | * | |
672bba3a CL |
70 | * Slabs with free elements are kept on a partial list and during regular |
71 | * operations no list for full slabs is used. If an object in a full slab is | |
81819f0f | 72 | * freed then the slab will show up again on the partial lists. |
672bba3a CL |
73 | * We track full slabs for debugging purposes though because otherwise we |
74 | * cannot scan all objects. | |
81819f0f CL |
75 | * |
76 | * Slabs are freed when they become empty. Teardown and setup is | |
77 | * minimal so we rely on the page allocators per cpu caches for | |
78 | * fast frees and allocs. | |
79 | * | |
80 | * Overloading of page flags that are otherwise used for LRU management. | |
81 | * | |
4b6f0750 CL |
82 | * PageActive The slab is frozen and exempt from list processing. |
83 | * This means that the slab is dedicated to a purpose | |
84 | * such as satisfying allocations for a specific | |
85 | * processor. Objects may be freed in the slab while | |
86 | * it is frozen but slab_free will then skip the usual | |
87 | * list operations. It is up to the processor holding | |
88 | * the slab to integrate the slab into the slab lists | |
89 | * when the slab is no longer needed. | |
90 | * | |
91 | * One use of this flag is to mark slabs that are | |
92 | * used for allocations. Then such a slab becomes a cpu | |
93 | * slab. The cpu slab may be equipped with an additional | |
dfb4f096 | 94 | * freelist that allows lockless access to |
894b8788 CL |
95 | * free objects in addition to the regular freelist |
96 | * that requires the slab lock. | |
81819f0f CL |
97 | * |
98 | * PageError Slab requires special handling due to debug | |
99 | * options set. This moves slab handling out of | |
894b8788 | 100 | * the fast path and disables lockless freelists. |
81819f0f CL |
101 | */ |
102 | ||
5577bd8a CL |
103 | #define FROZEN (1 << PG_active) |
104 | ||
105 | #ifdef CONFIG_SLUB_DEBUG | |
106 | #define SLABDEBUG (1 << PG_error) | |
107 | #else | |
108 | #define SLABDEBUG 0 | |
109 | #endif | |
110 | ||
4b6f0750 CL |
111 | static inline int SlabFrozen(struct page *page) |
112 | { | |
5577bd8a | 113 | return page->flags & FROZEN; |
4b6f0750 CL |
114 | } |
115 | ||
116 | static inline void SetSlabFrozen(struct page *page) | |
117 | { | |
5577bd8a | 118 | page->flags |= FROZEN; |
4b6f0750 CL |
119 | } |
120 | ||
121 | static inline void ClearSlabFrozen(struct page *page) | |
122 | { | |
5577bd8a | 123 | page->flags &= ~FROZEN; |
4b6f0750 CL |
124 | } |
125 | ||
35e5d7ee CL |
126 | static inline int SlabDebug(struct page *page) |
127 | { | |
5577bd8a | 128 | return page->flags & SLABDEBUG; |
35e5d7ee CL |
129 | } |
130 | ||
131 | static inline void SetSlabDebug(struct page *page) | |
132 | { | |
5577bd8a | 133 | page->flags |= SLABDEBUG; |
35e5d7ee CL |
134 | } |
135 | ||
136 | static inline void ClearSlabDebug(struct page *page) | |
137 | { | |
5577bd8a | 138 | page->flags &= ~SLABDEBUG; |
35e5d7ee CL |
139 | } |
140 | ||
81819f0f CL |
141 | /* |
142 | * Issues still to be resolved: | |
143 | * | |
81819f0f CL |
144 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
145 | * | |
81819f0f CL |
146 | * - Variable sizing of the per node arrays |
147 | */ | |
148 | ||
149 | /* Enable to test recovery from slab corruption on boot */ | |
150 | #undef SLUB_RESILIENCY_TEST | |
151 | ||
152 | #if PAGE_SHIFT <= 12 | |
153 | ||
154 | /* | |
155 | * Small page size. Make sure that we do not fragment memory | |
156 | */ | |
157 | #define DEFAULT_MAX_ORDER 1 | |
158 | #define DEFAULT_MIN_OBJECTS 4 | |
159 | ||
160 | #else | |
161 | ||
162 | /* | |
163 | * Large page machines are customarily able to handle larger | |
164 | * page orders. | |
165 | */ | |
166 | #define DEFAULT_MAX_ORDER 2 | |
167 | #define DEFAULT_MIN_OBJECTS 8 | |
168 | ||
169 | #endif | |
170 | ||
2086d26a CL |
171 | /* |
172 | * Mininum number of partial slabs. These will be left on the partial | |
173 | * lists even if they are empty. kmem_cache_shrink may reclaim them. | |
174 | */ | |
e95eed57 CL |
175 | #define MIN_PARTIAL 2 |
176 | ||
2086d26a CL |
177 | /* |
178 | * Maximum number of desirable partial slabs. | |
179 | * The existence of more partial slabs makes kmem_cache_shrink | |
180 | * sort the partial list by the number of objects in the. | |
181 | */ | |
182 | #define MAX_PARTIAL 10 | |
183 | ||
81819f0f CL |
184 | #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ |
185 | SLAB_POISON | SLAB_STORE_USER) | |
672bba3a | 186 | |
81819f0f CL |
187 | /* |
188 | * Set of flags that will prevent slab merging | |
189 | */ | |
190 | #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | |
191 | SLAB_TRACE | SLAB_DESTROY_BY_RCU) | |
192 | ||
193 | #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ | |
194 | SLAB_CACHE_DMA) | |
195 | ||
196 | #ifndef ARCH_KMALLOC_MINALIGN | |
47bfdc0d | 197 | #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) |
81819f0f CL |
198 | #endif |
199 | ||
200 | #ifndef ARCH_SLAB_MINALIGN | |
47bfdc0d | 201 | #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) |
81819f0f CL |
202 | #endif |
203 | ||
204 | /* Internal SLUB flags */ | |
1ceef402 CL |
205 | #define __OBJECT_POISON 0x80000000 /* Poison object */ |
206 | #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ | |
81819f0f | 207 | |
65c02d4c CL |
208 | /* Not all arches define cache_line_size */ |
209 | #ifndef cache_line_size | |
210 | #define cache_line_size() L1_CACHE_BYTES | |
211 | #endif | |
212 | ||
81819f0f CL |
213 | static int kmem_size = sizeof(struct kmem_cache); |
214 | ||
215 | #ifdef CONFIG_SMP | |
216 | static struct notifier_block slab_notifier; | |
217 | #endif | |
218 | ||
219 | static enum { | |
220 | DOWN, /* No slab functionality available */ | |
221 | PARTIAL, /* kmem_cache_open() works but kmalloc does not */ | |
672bba3a | 222 | UP, /* Everything works but does not show up in sysfs */ |
81819f0f CL |
223 | SYSFS /* Sysfs up */ |
224 | } slab_state = DOWN; | |
225 | ||
226 | /* A list of all slab caches on the system */ | |
227 | static DECLARE_RWSEM(slub_lock); | |
5af328a5 | 228 | static LIST_HEAD(slab_caches); |
81819f0f | 229 | |
02cbc874 CL |
230 | /* |
231 | * Tracking user of a slab. | |
232 | */ | |
233 | struct track { | |
234 | void *addr; /* Called from address */ | |
235 | int cpu; /* Was running on cpu */ | |
236 | int pid; /* Pid context */ | |
237 | unsigned long when; /* When did the operation occur */ | |
238 | }; | |
239 | ||
240 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
241 | ||
41ecc55b | 242 | #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG) |
81819f0f CL |
243 | static int sysfs_slab_add(struct kmem_cache *); |
244 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
245 | static void sysfs_slab_remove(struct kmem_cache *); | |
246 | #else | |
0c710013 CL |
247 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
248 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | |
249 | { return 0; } | |
250 | static inline void sysfs_slab_remove(struct kmem_cache *s) {} | |
81819f0f CL |
251 | #endif |
252 | ||
253 | /******************************************************************** | |
254 | * Core slab cache functions | |
255 | *******************************************************************/ | |
256 | ||
257 | int slab_is_available(void) | |
258 | { | |
259 | return slab_state >= UP; | |
260 | } | |
261 | ||
262 | static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) | |
263 | { | |
264 | #ifdef CONFIG_NUMA | |
265 | return s->node[node]; | |
266 | #else | |
267 | return &s->local_node; | |
268 | #endif | |
269 | } | |
270 | ||
dfb4f096 CL |
271 | static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu) |
272 | { | |
4c93c355 CL |
273 | #ifdef CONFIG_SMP |
274 | return s->cpu_slab[cpu]; | |
275 | #else | |
276 | return &s->cpu_slab; | |
277 | #endif | |
dfb4f096 CL |
278 | } |
279 | ||
02cbc874 CL |
280 | static inline int check_valid_pointer(struct kmem_cache *s, |
281 | struct page *page, const void *object) | |
282 | { | |
283 | void *base; | |
284 | ||
285 | if (!object) | |
286 | return 1; | |
287 | ||
288 | base = page_address(page); | |
289 | if (object < base || object >= base + s->objects * s->size || | |
290 | (object - base) % s->size) { | |
291 | return 0; | |
292 | } | |
293 | ||
294 | return 1; | |
295 | } | |
296 | ||
7656c72b CL |
297 | /* |
298 | * Slow version of get and set free pointer. | |
299 | * | |
300 | * This version requires touching the cache lines of kmem_cache which | |
301 | * we avoid to do in the fast alloc free paths. There we obtain the offset | |
302 | * from the page struct. | |
303 | */ | |
304 | static inline void *get_freepointer(struct kmem_cache *s, void *object) | |
305 | { | |
306 | return *(void **)(object + s->offset); | |
307 | } | |
308 | ||
309 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) | |
310 | { | |
311 | *(void **)(object + s->offset) = fp; | |
312 | } | |
313 | ||
314 | /* Loop over all objects in a slab */ | |
315 | #define for_each_object(__p, __s, __addr) \ | |
316 | for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\ | |
317 | __p += (__s)->size) | |
318 | ||
319 | /* Scan freelist */ | |
320 | #define for_each_free_object(__p, __s, __free) \ | |
321 | for (__p = (__free); __p; __p = get_freepointer((__s), __p)) | |
322 | ||
323 | /* Determine object index from a given position */ | |
324 | static inline int slab_index(void *p, struct kmem_cache *s, void *addr) | |
325 | { | |
326 | return (p - addr) / s->size; | |
327 | } | |
328 | ||
41ecc55b CL |
329 | #ifdef CONFIG_SLUB_DEBUG |
330 | /* | |
331 | * Debug settings: | |
332 | */ | |
f0630fff CL |
333 | #ifdef CONFIG_SLUB_DEBUG_ON |
334 | static int slub_debug = DEBUG_DEFAULT_FLAGS; | |
335 | #else | |
41ecc55b | 336 | static int slub_debug; |
f0630fff | 337 | #endif |
41ecc55b CL |
338 | |
339 | static char *slub_debug_slabs; | |
340 | ||
81819f0f CL |
341 | /* |
342 | * Object debugging | |
343 | */ | |
344 | static void print_section(char *text, u8 *addr, unsigned int length) | |
345 | { | |
346 | int i, offset; | |
347 | int newline = 1; | |
348 | char ascii[17]; | |
349 | ||
350 | ascii[16] = 0; | |
351 | ||
352 | for (i = 0; i < length; i++) { | |
353 | if (newline) { | |
24922684 | 354 | printk(KERN_ERR "%8s 0x%p: ", text, addr + i); |
81819f0f CL |
355 | newline = 0; |
356 | } | |
357 | printk(" %02x", addr[i]); | |
358 | offset = i % 16; | |
359 | ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; | |
360 | if (offset == 15) { | |
361 | printk(" %s\n",ascii); | |
362 | newline = 1; | |
363 | } | |
364 | } | |
365 | if (!newline) { | |
366 | i %= 16; | |
367 | while (i < 16) { | |
368 | printk(" "); | |
369 | ascii[i] = ' '; | |
370 | i++; | |
371 | } | |
372 | printk(" %s\n", ascii); | |
373 | } | |
374 | } | |
375 | ||
81819f0f CL |
376 | static struct track *get_track(struct kmem_cache *s, void *object, |
377 | enum track_item alloc) | |
378 | { | |
379 | struct track *p; | |
380 | ||
381 | if (s->offset) | |
382 | p = object + s->offset + sizeof(void *); | |
383 | else | |
384 | p = object + s->inuse; | |
385 | ||
386 | return p + alloc; | |
387 | } | |
388 | ||
389 | static void set_track(struct kmem_cache *s, void *object, | |
390 | enum track_item alloc, void *addr) | |
391 | { | |
392 | struct track *p; | |
393 | ||
394 | if (s->offset) | |
395 | p = object + s->offset + sizeof(void *); | |
396 | else | |
397 | p = object + s->inuse; | |
398 | ||
399 | p += alloc; | |
400 | if (addr) { | |
401 | p->addr = addr; | |
402 | p->cpu = smp_processor_id(); | |
403 | p->pid = current ? current->pid : -1; | |
404 | p->when = jiffies; | |
405 | } else | |
406 | memset(p, 0, sizeof(struct track)); | |
407 | } | |
408 | ||
81819f0f CL |
409 | static void init_tracking(struct kmem_cache *s, void *object) |
410 | { | |
24922684 CL |
411 | if (!(s->flags & SLAB_STORE_USER)) |
412 | return; | |
413 | ||
414 | set_track(s, object, TRACK_FREE, NULL); | |
415 | set_track(s, object, TRACK_ALLOC, NULL); | |
81819f0f CL |
416 | } |
417 | ||
418 | static void print_track(const char *s, struct track *t) | |
419 | { | |
420 | if (!t->addr) | |
421 | return; | |
422 | ||
24922684 | 423 | printk(KERN_ERR "INFO: %s in ", s); |
81819f0f | 424 | __print_symbol("%s", (unsigned long)t->addr); |
24922684 CL |
425 | printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid); |
426 | } | |
427 | ||
428 | static void print_tracking(struct kmem_cache *s, void *object) | |
429 | { | |
430 | if (!(s->flags & SLAB_STORE_USER)) | |
431 | return; | |
432 | ||
433 | print_track("Allocated", get_track(s, object, TRACK_ALLOC)); | |
434 | print_track("Freed", get_track(s, object, TRACK_FREE)); | |
435 | } | |
436 | ||
437 | static void print_page_info(struct page *page) | |
438 | { | |
439 | printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n", | |
440 | page, page->inuse, page->freelist, page->flags); | |
441 | ||
442 | } | |
443 | ||
444 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | |
445 | { | |
446 | va_list args; | |
447 | char buf[100]; | |
448 | ||
449 | va_start(args, fmt); | |
450 | vsnprintf(buf, sizeof(buf), fmt, args); | |
451 | va_end(args); | |
452 | printk(KERN_ERR "========================================" | |
453 | "=====================================\n"); | |
454 | printk(KERN_ERR "BUG %s: %s\n", s->name, buf); | |
455 | printk(KERN_ERR "----------------------------------------" | |
456 | "-------------------------------------\n\n"); | |
81819f0f CL |
457 | } |
458 | ||
24922684 CL |
459 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
460 | { | |
461 | va_list args; | |
462 | char buf[100]; | |
463 | ||
464 | va_start(args, fmt); | |
465 | vsnprintf(buf, sizeof(buf), fmt, args); | |
466 | va_end(args); | |
467 | printk(KERN_ERR "FIX %s: %s\n", s->name, buf); | |
468 | } | |
469 | ||
470 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | |
81819f0f CL |
471 | { |
472 | unsigned int off; /* Offset of last byte */ | |
24922684 CL |
473 | u8 *addr = page_address(page); |
474 | ||
475 | print_tracking(s, p); | |
476 | ||
477 | print_page_info(page); | |
478 | ||
479 | printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", | |
480 | p, p - addr, get_freepointer(s, p)); | |
481 | ||
482 | if (p > addr + 16) | |
483 | print_section("Bytes b4", p - 16, 16); | |
484 | ||
485 | print_section("Object", p, min(s->objsize, 128)); | |
81819f0f CL |
486 | |
487 | if (s->flags & SLAB_RED_ZONE) | |
488 | print_section("Redzone", p + s->objsize, | |
489 | s->inuse - s->objsize); | |
490 | ||
81819f0f CL |
491 | if (s->offset) |
492 | off = s->offset + sizeof(void *); | |
493 | else | |
494 | off = s->inuse; | |
495 | ||
24922684 | 496 | if (s->flags & SLAB_STORE_USER) |
81819f0f | 497 | off += 2 * sizeof(struct track); |
81819f0f CL |
498 | |
499 | if (off != s->size) | |
500 | /* Beginning of the filler is the free pointer */ | |
24922684 CL |
501 | print_section("Padding", p + off, s->size - off); |
502 | ||
503 | dump_stack(); | |
81819f0f CL |
504 | } |
505 | ||
506 | static void object_err(struct kmem_cache *s, struct page *page, | |
507 | u8 *object, char *reason) | |
508 | { | |
24922684 CL |
509 | slab_bug(s, reason); |
510 | print_trailer(s, page, object); | |
81819f0f CL |
511 | } |
512 | ||
24922684 | 513 | static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) |
81819f0f CL |
514 | { |
515 | va_list args; | |
516 | char buf[100]; | |
517 | ||
24922684 CL |
518 | va_start(args, fmt); |
519 | vsnprintf(buf, sizeof(buf), fmt, args); | |
81819f0f | 520 | va_end(args); |
24922684 CL |
521 | slab_bug(s, fmt); |
522 | print_page_info(page); | |
81819f0f CL |
523 | dump_stack(); |
524 | } | |
525 | ||
526 | static void init_object(struct kmem_cache *s, void *object, int active) | |
527 | { | |
528 | u8 *p = object; | |
529 | ||
530 | if (s->flags & __OBJECT_POISON) { | |
531 | memset(p, POISON_FREE, s->objsize - 1); | |
532 | p[s->objsize -1] = POISON_END; | |
533 | } | |
534 | ||
535 | if (s->flags & SLAB_RED_ZONE) | |
536 | memset(p + s->objsize, | |
537 | active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, | |
538 | s->inuse - s->objsize); | |
539 | } | |
540 | ||
24922684 | 541 | static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) |
81819f0f CL |
542 | { |
543 | while (bytes) { | |
544 | if (*start != (u8)value) | |
24922684 | 545 | return start; |
81819f0f CL |
546 | start++; |
547 | bytes--; | |
548 | } | |
24922684 CL |
549 | return NULL; |
550 | } | |
551 | ||
552 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, | |
553 | void *from, void *to) | |
554 | { | |
555 | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | |
556 | memset(from, data, to - from); | |
557 | } | |
558 | ||
559 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | |
560 | u8 *object, char *what, | |
561 | u8* start, unsigned int value, unsigned int bytes) | |
562 | { | |
563 | u8 *fault; | |
564 | u8 *end; | |
565 | ||
566 | fault = check_bytes(start, value, bytes); | |
567 | if (!fault) | |
568 | return 1; | |
569 | ||
570 | end = start + bytes; | |
571 | while (end > fault && end[-1] == value) | |
572 | end--; | |
573 | ||
574 | slab_bug(s, "%s overwritten", what); | |
575 | printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", | |
576 | fault, end - 1, fault[0], value); | |
577 | print_trailer(s, page, object); | |
578 | ||
579 | restore_bytes(s, what, value, fault, end); | |
580 | return 0; | |
81819f0f CL |
581 | } |
582 | ||
81819f0f CL |
583 | /* |
584 | * Object layout: | |
585 | * | |
586 | * object address | |
587 | * Bytes of the object to be managed. | |
588 | * If the freepointer may overlay the object then the free | |
589 | * pointer is the first word of the object. | |
672bba3a | 590 | * |
81819f0f CL |
591 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
592 | * 0xa5 (POISON_END) | |
593 | * | |
594 | * object + s->objsize | |
595 | * Padding to reach word boundary. This is also used for Redzoning. | |
672bba3a CL |
596 | * Padding is extended by another word if Redzoning is enabled and |
597 | * objsize == inuse. | |
598 | * | |
81819f0f CL |
599 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
600 | * 0xcc (RED_ACTIVE) for objects in use. | |
601 | * | |
602 | * object + s->inuse | |
672bba3a CL |
603 | * Meta data starts here. |
604 | * | |
81819f0f CL |
605 | * A. Free pointer (if we cannot overwrite object on free) |
606 | * B. Tracking data for SLAB_STORE_USER | |
672bba3a CL |
607 | * C. Padding to reach required alignment boundary or at mininum |
608 | * one word if debuggin is on to be able to detect writes | |
609 | * before the word boundary. | |
610 | * | |
611 | * Padding is done using 0x5a (POISON_INUSE) | |
81819f0f CL |
612 | * |
613 | * object + s->size | |
672bba3a | 614 | * Nothing is used beyond s->size. |
81819f0f | 615 | * |
672bba3a CL |
616 | * If slabcaches are merged then the objsize and inuse boundaries are mostly |
617 | * ignored. And therefore no slab options that rely on these boundaries | |
81819f0f CL |
618 | * may be used with merged slabcaches. |
619 | */ | |
620 | ||
81819f0f CL |
621 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) |
622 | { | |
623 | unsigned long off = s->inuse; /* The end of info */ | |
624 | ||
625 | if (s->offset) | |
626 | /* Freepointer is placed after the object. */ | |
627 | off += sizeof(void *); | |
628 | ||
629 | if (s->flags & SLAB_STORE_USER) | |
630 | /* We also have user information there */ | |
631 | off += 2 * sizeof(struct track); | |
632 | ||
633 | if (s->size == off) | |
634 | return 1; | |
635 | ||
24922684 CL |
636 | return check_bytes_and_report(s, page, p, "Object padding", |
637 | p + off, POISON_INUSE, s->size - off); | |
81819f0f CL |
638 | } |
639 | ||
640 | static int slab_pad_check(struct kmem_cache *s, struct page *page) | |
641 | { | |
24922684 CL |
642 | u8 *start; |
643 | u8 *fault; | |
644 | u8 *end; | |
645 | int length; | |
646 | int remainder; | |
81819f0f CL |
647 | |
648 | if (!(s->flags & SLAB_POISON)) | |
649 | return 1; | |
650 | ||
24922684 CL |
651 | start = page_address(page); |
652 | end = start + (PAGE_SIZE << s->order); | |
81819f0f | 653 | length = s->objects * s->size; |
24922684 | 654 | remainder = end - (start + length); |
81819f0f CL |
655 | if (!remainder) |
656 | return 1; | |
657 | ||
24922684 CL |
658 | fault = check_bytes(start + length, POISON_INUSE, remainder); |
659 | if (!fault) | |
660 | return 1; | |
661 | while (end > fault && end[-1] == POISON_INUSE) | |
662 | end--; | |
663 | ||
664 | slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); | |
665 | print_section("Padding", start, length); | |
666 | ||
667 | restore_bytes(s, "slab padding", POISON_INUSE, start, end); | |
668 | return 0; | |
81819f0f CL |
669 | } |
670 | ||
671 | static int check_object(struct kmem_cache *s, struct page *page, | |
672 | void *object, int active) | |
673 | { | |
674 | u8 *p = object; | |
675 | u8 *endobject = object + s->objsize; | |
676 | ||
677 | if (s->flags & SLAB_RED_ZONE) { | |
678 | unsigned int red = | |
679 | active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; | |
680 | ||
24922684 CL |
681 | if (!check_bytes_and_report(s, page, object, "Redzone", |
682 | endobject, red, s->inuse - s->objsize)) | |
81819f0f | 683 | return 0; |
81819f0f | 684 | } else { |
24922684 CL |
685 | if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) |
686 | check_bytes_and_report(s, page, p, "Alignment padding", endobject, | |
687 | POISON_INUSE, s->inuse - s->objsize); | |
81819f0f CL |
688 | } |
689 | ||
690 | if (s->flags & SLAB_POISON) { | |
691 | if (!active && (s->flags & __OBJECT_POISON) && | |
24922684 CL |
692 | (!check_bytes_and_report(s, page, p, "Poison", p, |
693 | POISON_FREE, s->objsize - 1) || | |
694 | !check_bytes_and_report(s, page, p, "Poison", | |
695 | p + s->objsize -1, POISON_END, 1))) | |
81819f0f | 696 | return 0; |
81819f0f CL |
697 | /* |
698 | * check_pad_bytes cleans up on its own. | |
699 | */ | |
700 | check_pad_bytes(s, page, p); | |
701 | } | |
702 | ||
703 | if (!s->offset && active) | |
704 | /* | |
705 | * Object and freepointer overlap. Cannot check | |
706 | * freepointer while object is allocated. | |
707 | */ | |
708 | return 1; | |
709 | ||
710 | /* Check free pointer validity */ | |
711 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | |
712 | object_err(s, page, p, "Freepointer corrupt"); | |
713 | /* | |
714 | * No choice but to zap it and thus loose the remainder | |
715 | * of the free objects in this slab. May cause | |
672bba3a | 716 | * another error because the object count is now wrong. |
81819f0f CL |
717 | */ |
718 | set_freepointer(s, p, NULL); | |
719 | return 0; | |
720 | } | |
721 | return 1; | |
722 | } | |
723 | ||
724 | static int check_slab(struct kmem_cache *s, struct page *page) | |
725 | { | |
726 | VM_BUG_ON(!irqs_disabled()); | |
727 | ||
728 | if (!PageSlab(page)) { | |
24922684 | 729 | slab_err(s, page, "Not a valid slab page"); |
81819f0f CL |
730 | return 0; |
731 | } | |
81819f0f | 732 | if (page->inuse > s->objects) { |
24922684 CL |
733 | slab_err(s, page, "inuse %u > max %u", |
734 | s->name, page->inuse, s->objects); | |
81819f0f CL |
735 | return 0; |
736 | } | |
737 | /* Slab_pad_check fixes things up after itself */ | |
738 | slab_pad_check(s, page); | |
739 | return 1; | |
740 | } | |
741 | ||
742 | /* | |
672bba3a CL |
743 | * Determine if a certain object on a page is on the freelist. Must hold the |
744 | * slab lock to guarantee that the chains are in a consistent state. | |
81819f0f CL |
745 | */ |
746 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | |
747 | { | |
748 | int nr = 0; | |
749 | void *fp = page->freelist; | |
750 | void *object = NULL; | |
751 | ||
752 | while (fp && nr <= s->objects) { | |
753 | if (fp == search) | |
754 | return 1; | |
755 | if (!check_valid_pointer(s, page, fp)) { | |
756 | if (object) { | |
757 | object_err(s, page, object, | |
758 | "Freechain corrupt"); | |
759 | set_freepointer(s, object, NULL); | |
760 | break; | |
761 | } else { | |
24922684 | 762 | slab_err(s, page, "Freepointer corrupt"); |
81819f0f CL |
763 | page->freelist = NULL; |
764 | page->inuse = s->objects; | |
24922684 | 765 | slab_fix(s, "Freelist cleared"); |
81819f0f CL |
766 | return 0; |
767 | } | |
768 | break; | |
769 | } | |
770 | object = fp; | |
771 | fp = get_freepointer(s, object); | |
772 | nr++; | |
773 | } | |
774 | ||
775 | if (page->inuse != s->objects - nr) { | |
70d71228 | 776 | slab_err(s, page, "Wrong object count. Counter is %d but " |
24922684 | 777 | "counted were %d", page->inuse, s->objects - nr); |
81819f0f | 778 | page->inuse = s->objects - nr; |
24922684 | 779 | slab_fix(s, "Object count adjusted."); |
81819f0f CL |
780 | } |
781 | return search == NULL; | |
782 | } | |
783 | ||
3ec09742 CL |
784 | static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc) |
785 | { | |
786 | if (s->flags & SLAB_TRACE) { | |
787 | printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", | |
788 | s->name, | |
789 | alloc ? "alloc" : "free", | |
790 | object, page->inuse, | |
791 | page->freelist); | |
792 | ||
793 | if (!alloc) | |
794 | print_section("Object", (void *)object, s->objsize); | |
795 | ||
796 | dump_stack(); | |
797 | } | |
798 | } | |
799 | ||
643b1138 | 800 | /* |
672bba3a | 801 | * Tracking of fully allocated slabs for debugging purposes. |
643b1138 | 802 | */ |
e95eed57 | 803 | static void add_full(struct kmem_cache_node *n, struct page *page) |
643b1138 | 804 | { |
643b1138 CL |
805 | spin_lock(&n->list_lock); |
806 | list_add(&page->lru, &n->full); | |
807 | spin_unlock(&n->list_lock); | |
808 | } | |
809 | ||
810 | static void remove_full(struct kmem_cache *s, struct page *page) | |
811 | { | |
812 | struct kmem_cache_node *n; | |
813 | ||
814 | if (!(s->flags & SLAB_STORE_USER)) | |
815 | return; | |
816 | ||
817 | n = get_node(s, page_to_nid(page)); | |
818 | ||
819 | spin_lock(&n->list_lock); | |
820 | list_del(&page->lru); | |
821 | spin_unlock(&n->list_lock); | |
822 | } | |
823 | ||
3ec09742 CL |
824 | static void setup_object_debug(struct kmem_cache *s, struct page *page, |
825 | void *object) | |
826 | { | |
827 | if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | |
828 | return; | |
829 | ||
830 | init_object(s, object, 0); | |
831 | init_tracking(s, object); | |
832 | } | |
833 | ||
834 | static int alloc_debug_processing(struct kmem_cache *s, struct page *page, | |
835 | void *object, void *addr) | |
81819f0f CL |
836 | { |
837 | if (!check_slab(s, page)) | |
838 | goto bad; | |
839 | ||
840 | if (object && !on_freelist(s, page, object)) { | |
24922684 | 841 | object_err(s, page, object, "Object already allocated"); |
70d71228 | 842 | goto bad; |
81819f0f CL |
843 | } |
844 | ||
845 | if (!check_valid_pointer(s, page, object)) { | |
846 | object_err(s, page, object, "Freelist Pointer check fails"); | |
70d71228 | 847 | goto bad; |
81819f0f CL |
848 | } |
849 | ||
3ec09742 | 850 | if (object && !check_object(s, page, object, 0)) |
81819f0f | 851 | goto bad; |
81819f0f | 852 | |
3ec09742 CL |
853 | /* Success perform special debug activities for allocs */ |
854 | if (s->flags & SLAB_STORE_USER) | |
855 | set_track(s, object, TRACK_ALLOC, addr); | |
856 | trace(s, page, object, 1); | |
857 | init_object(s, object, 1); | |
81819f0f | 858 | return 1; |
3ec09742 | 859 | |
81819f0f CL |
860 | bad: |
861 | if (PageSlab(page)) { | |
862 | /* | |
863 | * If this is a slab page then lets do the best we can | |
864 | * to avoid issues in the future. Marking all objects | |
672bba3a | 865 | * as used avoids touching the remaining objects. |
81819f0f | 866 | */ |
24922684 | 867 | slab_fix(s, "Marking all objects used"); |
81819f0f CL |
868 | page->inuse = s->objects; |
869 | page->freelist = NULL; | |
81819f0f CL |
870 | } |
871 | return 0; | |
872 | } | |
873 | ||
3ec09742 CL |
874 | static int free_debug_processing(struct kmem_cache *s, struct page *page, |
875 | void *object, void *addr) | |
81819f0f CL |
876 | { |
877 | if (!check_slab(s, page)) | |
878 | goto fail; | |
879 | ||
880 | if (!check_valid_pointer(s, page, object)) { | |
70d71228 | 881 | slab_err(s, page, "Invalid object pointer 0x%p", object); |
81819f0f CL |
882 | goto fail; |
883 | } | |
884 | ||
885 | if (on_freelist(s, page, object)) { | |
24922684 | 886 | object_err(s, page, object, "Object already free"); |
81819f0f CL |
887 | goto fail; |
888 | } | |
889 | ||
890 | if (!check_object(s, page, object, 1)) | |
891 | return 0; | |
892 | ||
893 | if (unlikely(s != page->slab)) { | |
894 | if (!PageSlab(page)) | |
70d71228 CL |
895 | slab_err(s, page, "Attempt to free object(0x%p) " |
896 | "outside of slab", object); | |
81819f0f | 897 | else |
70d71228 | 898 | if (!page->slab) { |
81819f0f | 899 | printk(KERN_ERR |
70d71228 | 900 | "SLUB <none>: no slab for object 0x%p.\n", |
81819f0f | 901 | object); |
70d71228 CL |
902 | dump_stack(); |
903 | } | |
81819f0f | 904 | else |
24922684 CL |
905 | object_err(s, page, object, |
906 | "page slab pointer corrupt."); | |
81819f0f CL |
907 | goto fail; |
908 | } | |
3ec09742 CL |
909 | |
910 | /* Special debug activities for freeing objects */ | |
911 | if (!SlabFrozen(page) && !page->freelist) | |
912 | remove_full(s, page); | |
913 | if (s->flags & SLAB_STORE_USER) | |
914 | set_track(s, object, TRACK_FREE, addr); | |
915 | trace(s, page, object, 0); | |
916 | init_object(s, object, 0); | |
81819f0f | 917 | return 1; |
3ec09742 | 918 | |
81819f0f | 919 | fail: |
24922684 | 920 | slab_fix(s, "Object at 0x%p not freed", object); |
81819f0f CL |
921 | return 0; |
922 | } | |
923 | ||
41ecc55b CL |
924 | static int __init setup_slub_debug(char *str) |
925 | { | |
f0630fff CL |
926 | slub_debug = DEBUG_DEFAULT_FLAGS; |
927 | if (*str++ != '=' || !*str) | |
928 | /* | |
929 | * No options specified. Switch on full debugging. | |
930 | */ | |
931 | goto out; | |
932 | ||
933 | if (*str == ',') | |
934 | /* | |
935 | * No options but restriction on slabs. This means full | |
936 | * debugging for slabs matching a pattern. | |
937 | */ | |
938 | goto check_slabs; | |
939 | ||
940 | slub_debug = 0; | |
941 | if (*str == '-') | |
942 | /* | |
943 | * Switch off all debugging measures. | |
944 | */ | |
945 | goto out; | |
946 | ||
947 | /* | |
948 | * Determine which debug features should be switched on | |
949 | */ | |
950 | for ( ;*str && *str != ','; str++) { | |
951 | switch (tolower(*str)) { | |
952 | case 'f': | |
953 | slub_debug |= SLAB_DEBUG_FREE; | |
954 | break; | |
955 | case 'z': | |
956 | slub_debug |= SLAB_RED_ZONE; | |
957 | break; | |
958 | case 'p': | |
959 | slub_debug |= SLAB_POISON; | |
960 | break; | |
961 | case 'u': | |
962 | slub_debug |= SLAB_STORE_USER; | |
963 | break; | |
964 | case 't': | |
965 | slub_debug |= SLAB_TRACE; | |
966 | break; | |
967 | default: | |
968 | printk(KERN_ERR "slub_debug option '%c' " | |
969 | "unknown. skipped\n",*str); | |
970 | } | |
41ecc55b CL |
971 | } |
972 | ||
f0630fff | 973 | check_slabs: |
41ecc55b CL |
974 | if (*str == ',') |
975 | slub_debug_slabs = str + 1; | |
f0630fff | 976 | out: |
41ecc55b CL |
977 | return 1; |
978 | } | |
979 | ||
980 | __setup("slub_debug", setup_slub_debug); | |
981 | ||
ba0268a8 CL |
982 | static unsigned long kmem_cache_flags(unsigned long objsize, |
983 | unsigned long flags, const char *name, | |
4ba9b9d0 | 984 | void (*ctor)(struct kmem_cache *, void *)) |
41ecc55b CL |
985 | { |
986 | /* | |
987 | * The page->offset field is only 16 bit wide. This is an offset | |
988 | * in units of words from the beginning of an object. If the slab | |
989 | * size is bigger then we cannot move the free pointer behind the | |
990 | * object anymore. | |
991 | * | |
992 | * On 32 bit platforms the limit is 256k. On 64bit platforms | |
993 | * the limit is 512k. | |
994 | * | |
c59def9f | 995 | * Debugging or ctor may create a need to move the free |
41ecc55b CL |
996 | * pointer. Fail if this happens. |
997 | */ | |
ba0268a8 CL |
998 | if (objsize >= 65535 * sizeof(void *)) { |
999 | BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON | | |
41ecc55b | 1000 | SLAB_STORE_USER | SLAB_DESTROY_BY_RCU)); |
ba0268a8 CL |
1001 | BUG_ON(ctor); |
1002 | } else { | |
41ecc55b CL |
1003 | /* |
1004 | * Enable debugging if selected on the kernel commandline. | |
1005 | */ | |
1006 | if (slub_debug && (!slub_debug_slabs || | |
ba0268a8 | 1007 | strncmp(slub_debug_slabs, name, |
41ecc55b | 1008 | strlen(slub_debug_slabs)) == 0)) |
ba0268a8 CL |
1009 | flags |= slub_debug; |
1010 | } | |
1011 | ||
1012 | return flags; | |
41ecc55b CL |
1013 | } |
1014 | #else | |
3ec09742 CL |
1015 | static inline void setup_object_debug(struct kmem_cache *s, |
1016 | struct page *page, void *object) {} | |
41ecc55b | 1017 | |
3ec09742 CL |
1018 | static inline int alloc_debug_processing(struct kmem_cache *s, |
1019 | struct page *page, void *object, void *addr) { return 0; } | |
41ecc55b | 1020 | |
3ec09742 CL |
1021 | static inline int free_debug_processing(struct kmem_cache *s, |
1022 | struct page *page, void *object, void *addr) { return 0; } | |
41ecc55b | 1023 | |
41ecc55b CL |
1024 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) |
1025 | { return 1; } | |
1026 | static inline int check_object(struct kmem_cache *s, struct page *page, | |
1027 | void *object, int active) { return 1; } | |
3ec09742 | 1028 | static inline void add_full(struct kmem_cache_node *n, struct page *page) {} |
ba0268a8 CL |
1029 | static inline unsigned long kmem_cache_flags(unsigned long objsize, |
1030 | unsigned long flags, const char *name, | |
4ba9b9d0 | 1031 | void (*ctor)(struct kmem_cache *, void *)) |
ba0268a8 CL |
1032 | { |
1033 | return flags; | |
1034 | } | |
41ecc55b CL |
1035 | #define slub_debug 0 |
1036 | #endif | |
81819f0f CL |
1037 | /* |
1038 | * Slab allocation and freeing | |
1039 | */ | |
1040 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) | |
1041 | { | |
1042 | struct page * page; | |
1043 | int pages = 1 << s->order; | |
1044 | ||
1045 | if (s->order) | |
1046 | flags |= __GFP_COMP; | |
1047 | ||
1048 | if (s->flags & SLAB_CACHE_DMA) | |
1049 | flags |= SLUB_DMA; | |
1050 | ||
e12ba74d MG |
1051 | if (s->flags & SLAB_RECLAIM_ACCOUNT) |
1052 | flags |= __GFP_RECLAIMABLE; | |
1053 | ||
81819f0f CL |
1054 | if (node == -1) |
1055 | page = alloc_pages(flags, s->order); | |
1056 | else | |
1057 | page = alloc_pages_node(node, flags, s->order); | |
1058 | ||
1059 | if (!page) | |
1060 | return NULL; | |
1061 | ||
1062 | mod_zone_page_state(page_zone(page), | |
1063 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | |
1064 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
1065 | pages); | |
1066 | ||
1067 | return page; | |
1068 | } | |
1069 | ||
1070 | static void setup_object(struct kmem_cache *s, struct page *page, | |
1071 | void *object) | |
1072 | { | |
3ec09742 | 1073 | setup_object_debug(s, page, object); |
4f104934 | 1074 | if (unlikely(s->ctor)) |
4ba9b9d0 | 1075 | s->ctor(s, object); |
81819f0f CL |
1076 | } |
1077 | ||
1078 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | |
1079 | { | |
1080 | struct page *page; | |
1081 | struct kmem_cache_node *n; | |
1082 | void *start; | |
1083 | void *end; | |
1084 | void *last; | |
1085 | void *p; | |
1086 | ||
6cb06229 | 1087 | BUG_ON(flags & GFP_SLAB_BUG_MASK); |
81819f0f | 1088 | |
6cb06229 CL |
1089 | page = allocate_slab(s, |
1090 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | |
81819f0f CL |
1091 | if (!page) |
1092 | goto out; | |
1093 | ||
1094 | n = get_node(s, page_to_nid(page)); | |
1095 | if (n) | |
1096 | atomic_long_inc(&n->nr_slabs); | |
81819f0f CL |
1097 | page->slab = s; |
1098 | page->flags |= 1 << PG_slab; | |
1099 | if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | | |
1100 | SLAB_STORE_USER | SLAB_TRACE)) | |
35e5d7ee | 1101 | SetSlabDebug(page); |
81819f0f CL |
1102 | |
1103 | start = page_address(page); | |
1104 | end = start + s->objects * s->size; | |
1105 | ||
1106 | if (unlikely(s->flags & SLAB_POISON)) | |
1107 | memset(start, POISON_INUSE, PAGE_SIZE << s->order); | |
1108 | ||
1109 | last = start; | |
7656c72b | 1110 | for_each_object(p, s, start) { |
81819f0f CL |
1111 | setup_object(s, page, last); |
1112 | set_freepointer(s, last, p); | |
1113 | last = p; | |
1114 | } | |
1115 | setup_object(s, page, last); | |
1116 | set_freepointer(s, last, NULL); | |
1117 | ||
1118 | page->freelist = start; | |
1119 | page->inuse = 0; | |
1120 | out: | |
81819f0f CL |
1121 | return page; |
1122 | } | |
1123 | ||
1124 | static void __free_slab(struct kmem_cache *s, struct page *page) | |
1125 | { | |
1126 | int pages = 1 << s->order; | |
1127 | ||
c59def9f | 1128 | if (unlikely(SlabDebug(page))) { |
81819f0f CL |
1129 | void *p; |
1130 | ||
1131 | slab_pad_check(s, page); | |
c59def9f | 1132 | for_each_object(p, s, page_address(page)) |
81819f0f | 1133 | check_object(s, page, p, 0); |
2208b764 | 1134 | ClearSlabDebug(page); |
81819f0f CL |
1135 | } |
1136 | ||
1137 | mod_zone_page_state(page_zone(page), | |
1138 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | |
1139 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
1140 | - pages); | |
1141 | ||
81819f0f CL |
1142 | __free_pages(page, s->order); |
1143 | } | |
1144 | ||
1145 | static void rcu_free_slab(struct rcu_head *h) | |
1146 | { | |
1147 | struct page *page; | |
1148 | ||
1149 | page = container_of((struct list_head *)h, struct page, lru); | |
1150 | __free_slab(page->slab, page); | |
1151 | } | |
1152 | ||
1153 | static void free_slab(struct kmem_cache *s, struct page *page) | |
1154 | { | |
1155 | if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { | |
1156 | /* | |
1157 | * RCU free overloads the RCU head over the LRU | |
1158 | */ | |
1159 | struct rcu_head *head = (void *)&page->lru; | |
1160 | ||
1161 | call_rcu(head, rcu_free_slab); | |
1162 | } else | |
1163 | __free_slab(s, page); | |
1164 | } | |
1165 | ||
1166 | static void discard_slab(struct kmem_cache *s, struct page *page) | |
1167 | { | |
1168 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | |
1169 | ||
1170 | atomic_long_dec(&n->nr_slabs); | |
1171 | reset_page_mapcount(page); | |
35e5d7ee | 1172 | __ClearPageSlab(page); |
81819f0f CL |
1173 | free_slab(s, page); |
1174 | } | |
1175 | ||
1176 | /* | |
1177 | * Per slab locking using the pagelock | |
1178 | */ | |
1179 | static __always_inline void slab_lock(struct page *page) | |
1180 | { | |
1181 | bit_spin_lock(PG_locked, &page->flags); | |
1182 | } | |
1183 | ||
1184 | static __always_inline void slab_unlock(struct page *page) | |
1185 | { | |
1186 | bit_spin_unlock(PG_locked, &page->flags); | |
1187 | } | |
1188 | ||
1189 | static __always_inline int slab_trylock(struct page *page) | |
1190 | { | |
1191 | int rc = 1; | |
1192 | ||
1193 | rc = bit_spin_trylock(PG_locked, &page->flags); | |
1194 | return rc; | |
1195 | } | |
1196 | ||
1197 | /* | |
1198 | * Management of partially allocated slabs | |
1199 | */ | |
e95eed57 | 1200 | static void add_partial_tail(struct kmem_cache_node *n, struct page *page) |
81819f0f | 1201 | { |
e95eed57 CL |
1202 | spin_lock(&n->list_lock); |
1203 | n->nr_partial++; | |
1204 | list_add_tail(&page->lru, &n->partial); | |
1205 | spin_unlock(&n->list_lock); | |
1206 | } | |
81819f0f | 1207 | |
e95eed57 CL |
1208 | static void add_partial(struct kmem_cache_node *n, struct page *page) |
1209 | { | |
81819f0f CL |
1210 | spin_lock(&n->list_lock); |
1211 | n->nr_partial++; | |
1212 | list_add(&page->lru, &n->partial); | |
1213 | spin_unlock(&n->list_lock); | |
1214 | } | |
1215 | ||
1216 | static void remove_partial(struct kmem_cache *s, | |
1217 | struct page *page) | |
1218 | { | |
1219 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | |
1220 | ||
1221 | spin_lock(&n->list_lock); | |
1222 | list_del(&page->lru); | |
1223 | n->nr_partial--; | |
1224 | spin_unlock(&n->list_lock); | |
1225 | } | |
1226 | ||
1227 | /* | |
672bba3a | 1228 | * Lock slab and remove from the partial list. |
81819f0f | 1229 | * |
672bba3a | 1230 | * Must hold list_lock. |
81819f0f | 1231 | */ |
4b6f0750 | 1232 | static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page) |
81819f0f CL |
1233 | { |
1234 | if (slab_trylock(page)) { | |
1235 | list_del(&page->lru); | |
1236 | n->nr_partial--; | |
4b6f0750 | 1237 | SetSlabFrozen(page); |
81819f0f CL |
1238 | return 1; |
1239 | } | |
1240 | return 0; | |
1241 | } | |
1242 | ||
1243 | /* | |
672bba3a | 1244 | * Try to allocate a partial slab from a specific node. |
81819f0f CL |
1245 | */ |
1246 | static struct page *get_partial_node(struct kmem_cache_node *n) | |
1247 | { | |
1248 | struct page *page; | |
1249 | ||
1250 | /* | |
1251 | * Racy check. If we mistakenly see no partial slabs then we | |
1252 | * just allocate an empty slab. If we mistakenly try to get a | |
672bba3a CL |
1253 | * partial slab and there is none available then get_partials() |
1254 | * will return NULL. | |
81819f0f CL |
1255 | */ |
1256 | if (!n || !n->nr_partial) | |
1257 | return NULL; | |
1258 | ||
1259 | spin_lock(&n->list_lock); | |
1260 | list_for_each_entry(page, &n->partial, lru) | |
4b6f0750 | 1261 | if (lock_and_freeze_slab(n, page)) |
81819f0f CL |
1262 | goto out; |
1263 | page = NULL; | |
1264 | out: | |
1265 | spin_unlock(&n->list_lock); | |
1266 | return page; | |
1267 | } | |
1268 | ||
1269 | /* | |
672bba3a | 1270 | * Get a page from somewhere. Search in increasing NUMA distances. |
81819f0f CL |
1271 | */ |
1272 | static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) | |
1273 | { | |
1274 | #ifdef CONFIG_NUMA | |
1275 | struct zonelist *zonelist; | |
1276 | struct zone **z; | |
1277 | struct page *page; | |
1278 | ||
1279 | /* | |
672bba3a CL |
1280 | * The defrag ratio allows a configuration of the tradeoffs between |
1281 | * inter node defragmentation and node local allocations. A lower | |
1282 | * defrag_ratio increases the tendency to do local allocations | |
1283 | * instead of attempting to obtain partial slabs from other nodes. | |
81819f0f | 1284 | * |
672bba3a CL |
1285 | * If the defrag_ratio is set to 0 then kmalloc() always |
1286 | * returns node local objects. If the ratio is higher then kmalloc() | |
1287 | * may return off node objects because partial slabs are obtained | |
1288 | * from other nodes and filled up. | |
81819f0f CL |
1289 | * |
1290 | * If /sys/slab/xx/defrag_ratio is set to 100 (which makes | |
672bba3a CL |
1291 | * defrag_ratio = 1000) then every (well almost) allocation will |
1292 | * first attempt to defrag slab caches on other nodes. This means | |
1293 | * scanning over all nodes to look for partial slabs which may be | |
1294 | * expensive if we do it every time we are trying to find a slab | |
1295 | * with available objects. | |
81819f0f CL |
1296 | */ |
1297 | if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio) | |
1298 | return NULL; | |
1299 | ||
1300 | zonelist = &NODE_DATA(slab_node(current->mempolicy)) | |
1301 | ->node_zonelists[gfp_zone(flags)]; | |
1302 | for (z = zonelist->zones; *z; z++) { | |
1303 | struct kmem_cache_node *n; | |
1304 | ||
1305 | n = get_node(s, zone_to_nid(*z)); | |
1306 | ||
1307 | if (n && cpuset_zone_allowed_hardwall(*z, flags) && | |
e95eed57 | 1308 | n->nr_partial > MIN_PARTIAL) { |
81819f0f CL |
1309 | page = get_partial_node(n); |
1310 | if (page) | |
1311 | return page; | |
1312 | } | |
1313 | } | |
1314 | #endif | |
1315 | return NULL; | |
1316 | } | |
1317 | ||
1318 | /* | |
1319 | * Get a partial page, lock it and return it. | |
1320 | */ | |
1321 | static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) | |
1322 | { | |
1323 | struct page *page; | |
1324 | int searchnode = (node == -1) ? numa_node_id() : node; | |
1325 | ||
1326 | page = get_partial_node(get_node(s, searchnode)); | |
1327 | if (page || (flags & __GFP_THISNODE)) | |
1328 | return page; | |
1329 | ||
1330 | return get_any_partial(s, flags); | |
1331 | } | |
1332 | ||
1333 | /* | |
1334 | * Move a page back to the lists. | |
1335 | * | |
1336 | * Must be called with the slab lock held. | |
1337 | * | |
1338 | * On exit the slab lock will have been dropped. | |
1339 | */ | |
4b6f0750 | 1340 | static void unfreeze_slab(struct kmem_cache *s, struct page *page) |
81819f0f | 1341 | { |
e95eed57 CL |
1342 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
1343 | ||
4b6f0750 | 1344 | ClearSlabFrozen(page); |
81819f0f | 1345 | if (page->inuse) { |
e95eed57 | 1346 | |
81819f0f | 1347 | if (page->freelist) |
e95eed57 | 1348 | add_partial(n, page); |
35e5d7ee | 1349 | else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER)) |
e95eed57 | 1350 | add_full(n, page); |
81819f0f | 1351 | slab_unlock(page); |
e95eed57 | 1352 | |
81819f0f | 1353 | } else { |
e95eed57 CL |
1354 | if (n->nr_partial < MIN_PARTIAL) { |
1355 | /* | |
672bba3a CL |
1356 | * Adding an empty slab to the partial slabs in order |
1357 | * to avoid page allocator overhead. This slab needs | |
1358 | * to come after the other slabs with objects in | |
1359 | * order to fill them up. That way the size of the | |
1360 | * partial list stays small. kmem_cache_shrink can | |
1361 | * reclaim empty slabs from the partial list. | |
e95eed57 CL |
1362 | */ |
1363 | add_partial_tail(n, page); | |
1364 | slab_unlock(page); | |
1365 | } else { | |
1366 | slab_unlock(page); | |
1367 | discard_slab(s, page); | |
1368 | } | |
81819f0f CL |
1369 | } |
1370 | } | |
1371 | ||
1372 | /* | |
1373 | * Remove the cpu slab | |
1374 | */ | |
dfb4f096 | 1375 | static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 1376 | { |
dfb4f096 | 1377 | struct page *page = c->page; |
894b8788 CL |
1378 | /* |
1379 | * Merge cpu freelist into freelist. Typically we get here | |
1380 | * because both freelists are empty. So this is unlikely | |
1381 | * to occur. | |
1382 | */ | |
dfb4f096 | 1383 | while (unlikely(c->freelist)) { |
894b8788 CL |
1384 | void **object; |
1385 | ||
1386 | /* Retrieve object from cpu_freelist */ | |
dfb4f096 | 1387 | object = c->freelist; |
b3fba8da | 1388 | c->freelist = c->freelist[c->offset]; |
894b8788 CL |
1389 | |
1390 | /* And put onto the regular freelist */ | |
b3fba8da | 1391 | object[c->offset] = page->freelist; |
894b8788 CL |
1392 | page->freelist = object; |
1393 | page->inuse--; | |
1394 | } | |
dfb4f096 | 1395 | c->page = NULL; |
4b6f0750 | 1396 | unfreeze_slab(s, page); |
81819f0f CL |
1397 | } |
1398 | ||
dfb4f096 | 1399 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 1400 | { |
dfb4f096 CL |
1401 | slab_lock(c->page); |
1402 | deactivate_slab(s, c); | |
81819f0f CL |
1403 | } |
1404 | ||
1405 | /* | |
1406 | * Flush cpu slab. | |
1407 | * Called from IPI handler with interrupts disabled. | |
1408 | */ | |
0c710013 | 1409 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
81819f0f | 1410 | { |
dfb4f096 | 1411 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); |
81819f0f | 1412 | |
dfb4f096 CL |
1413 | if (likely(c && c->page)) |
1414 | flush_slab(s, c); | |
81819f0f CL |
1415 | } |
1416 | ||
1417 | static void flush_cpu_slab(void *d) | |
1418 | { | |
1419 | struct kmem_cache *s = d; | |
81819f0f | 1420 | |
dfb4f096 | 1421 | __flush_cpu_slab(s, smp_processor_id()); |
81819f0f CL |
1422 | } |
1423 | ||
1424 | static void flush_all(struct kmem_cache *s) | |
1425 | { | |
1426 | #ifdef CONFIG_SMP | |
1427 | on_each_cpu(flush_cpu_slab, s, 1, 1); | |
1428 | #else | |
1429 | unsigned long flags; | |
1430 | ||
1431 | local_irq_save(flags); | |
1432 | flush_cpu_slab(s); | |
1433 | local_irq_restore(flags); | |
1434 | #endif | |
1435 | } | |
1436 | ||
dfb4f096 CL |
1437 | /* |
1438 | * Check if the objects in a per cpu structure fit numa | |
1439 | * locality expectations. | |
1440 | */ | |
1441 | static inline int node_match(struct kmem_cache_cpu *c, int node) | |
1442 | { | |
1443 | #ifdef CONFIG_NUMA | |
1444 | if (node != -1 && c->node != node) | |
1445 | return 0; | |
1446 | #endif | |
1447 | return 1; | |
1448 | } | |
1449 | ||
81819f0f | 1450 | /* |
894b8788 CL |
1451 | * Slow path. The lockless freelist is empty or we need to perform |
1452 | * debugging duties. | |
1453 | * | |
1454 | * Interrupts are disabled. | |
81819f0f | 1455 | * |
894b8788 CL |
1456 | * Processing is still very fast if new objects have been freed to the |
1457 | * regular freelist. In that case we simply take over the regular freelist | |
1458 | * as the lockless freelist and zap the regular freelist. | |
81819f0f | 1459 | * |
894b8788 CL |
1460 | * If that is not working then we fall back to the partial lists. We take the |
1461 | * first element of the freelist as the object to allocate now and move the | |
1462 | * rest of the freelist to the lockless freelist. | |
81819f0f | 1463 | * |
894b8788 CL |
1464 | * And if we were unable to get a new slab from the partial slab lists then |
1465 | * we need to allocate a new slab. This is slowest path since we may sleep. | |
81819f0f | 1466 | */ |
894b8788 | 1467 | static void *__slab_alloc(struct kmem_cache *s, |
dfb4f096 | 1468 | gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c) |
81819f0f | 1469 | { |
81819f0f | 1470 | void **object; |
dfb4f096 | 1471 | struct page *new; |
81819f0f | 1472 | |
dfb4f096 | 1473 | if (!c->page) |
81819f0f CL |
1474 | goto new_slab; |
1475 | ||
dfb4f096 CL |
1476 | slab_lock(c->page); |
1477 | if (unlikely(!node_match(c, node))) | |
81819f0f | 1478 | goto another_slab; |
894b8788 | 1479 | load_freelist: |
dfb4f096 | 1480 | object = c->page->freelist; |
81819f0f CL |
1481 | if (unlikely(!object)) |
1482 | goto another_slab; | |
dfb4f096 | 1483 | if (unlikely(SlabDebug(c->page))) |
81819f0f CL |
1484 | goto debug; |
1485 | ||
dfb4f096 | 1486 | object = c->page->freelist; |
b3fba8da | 1487 | c->freelist = object[c->offset]; |
dfb4f096 CL |
1488 | c->page->inuse = s->objects; |
1489 | c->page->freelist = NULL; | |
1490 | c->node = page_to_nid(c->page); | |
1491 | slab_unlock(c->page); | |
81819f0f CL |
1492 | return object; |
1493 | ||
1494 | another_slab: | |
dfb4f096 | 1495 | deactivate_slab(s, c); |
81819f0f CL |
1496 | |
1497 | new_slab: | |
dfb4f096 CL |
1498 | new = get_partial(s, gfpflags, node); |
1499 | if (new) { | |
1500 | c->page = new; | |
894b8788 | 1501 | goto load_freelist; |
81819f0f CL |
1502 | } |
1503 | ||
b811c202 CL |
1504 | if (gfpflags & __GFP_WAIT) |
1505 | local_irq_enable(); | |
1506 | ||
dfb4f096 | 1507 | new = new_slab(s, gfpflags, node); |
b811c202 CL |
1508 | |
1509 | if (gfpflags & __GFP_WAIT) | |
1510 | local_irq_disable(); | |
1511 | ||
dfb4f096 CL |
1512 | if (new) { |
1513 | c = get_cpu_slab(s, smp_processor_id()); | |
1514 | if (c->page) { | |
81819f0f | 1515 | /* |
672bba3a CL |
1516 | * Someone else populated the cpu_slab while we |
1517 | * enabled interrupts, or we have gotten scheduled | |
1518 | * on another cpu. The page may not be on the | |
1519 | * requested node even if __GFP_THISNODE was | |
1520 | * specified. So we need to recheck. | |
81819f0f | 1521 | */ |
dfb4f096 | 1522 | if (node_match(c, node)) { |
81819f0f CL |
1523 | /* |
1524 | * Current cpuslab is acceptable and we | |
1525 | * want the current one since its cache hot | |
1526 | */ | |
dfb4f096 CL |
1527 | discard_slab(s, new); |
1528 | slab_lock(c->page); | |
894b8788 | 1529 | goto load_freelist; |
81819f0f | 1530 | } |
672bba3a | 1531 | /* New slab does not fit our expectations */ |
dfb4f096 | 1532 | flush_slab(s, c); |
81819f0f | 1533 | } |
dfb4f096 CL |
1534 | slab_lock(new); |
1535 | SetSlabFrozen(new); | |
1536 | c->page = new; | |
4b6f0750 | 1537 | goto load_freelist; |
81819f0f | 1538 | } |
81819f0f CL |
1539 | return NULL; |
1540 | debug: | |
dfb4f096 CL |
1541 | object = c->page->freelist; |
1542 | if (!alloc_debug_processing(s, c->page, object, addr)) | |
81819f0f | 1543 | goto another_slab; |
894b8788 | 1544 | |
dfb4f096 | 1545 | c->page->inuse++; |
b3fba8da | 1546 | c->page->freelist = object[c->offset]; |
ee3c72a1 | 1547 | c->node = -1; |
dfb4f096 | 1548 | slab_unlock(c->page); |
894b8788 CL |
1549 | return object; |
1550 | } | |
1551 | ||
1552 | /* | |
1553 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
1554 | * have the fastpath folded into their functions. So no function call | |
1555 | * overhead for requests that can be satisfied on the fastpath. | |
1556 | * | |
1557 | * The fastpath works by first checking if the lockless freelist can be used. | |
1558 | * If not then __slab_alloc is called for slow processing. | |
1559 | * | |
1560 | * Otherwise we can simply pick the next object from the lockless free list. | |
1561 | */ | |
1562 | static void __always_inline *slab_alloc(struct kmem_cache *s, | |
ce15fea8 | 1563 | gfp_t gfpflags, int node, void *addr) |
894b8788 | 1564 | { |
894b8788 CL |
1565 | void **object; |
1566 | unsigned long flags; | |
dfb4f096 | 1567 | struct kmem_cache_cpu *c; |
894b8788 CL |
1568 | |
1569 | local_irq_save(flags); | |
dfb4f096 | 1570 | c = get_cpu_slab(s, smp_processor_id()); |
ee3c72a1 | 1571 | if (unlikely(!c->freelist || !node_match(c, node))) |
894b8788 | 1572 | |
dfb4f096 | 1573 | object = __slab_alloc(s, gfpflags, node, addr, c); |
894b8788 CL |
1574 | |
1575 | else { | |
dfb4f096 | 1576 | object = c->freelist; |
b3fba8da | 1577 | c->freelist = object[c->offset]; |
894b8788 CL |
1578 | } |
1579 | local_irq_restore(flags); | |
d07dbea4 CL |
1580 | |
1581 | if (unlikely((gfpflags & __GFP_ZERO) && object)) | |
42a9fdbb | 1582 | memset(object, 0, c->objsize); |
d07dbea4 | 1583 | |
894b8788 | 1584 | return object; |
81819f0f CL |
1585 | } |
1586 | ||
1587 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | |
1588 | { | |
ce15fea8 | 1589 | return slab_alloc(s, gfpflags, -1, __builtin_return_address(0)); |
81819f0f CL |
1590 | } |
1591 | EXPORT_SYMBOL(kmem_cache_alloc); | |
1592 | ||
1593 | #ifdef CONFIG_NUMA | |
1594 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | |
1595 | { | |
ce15fea8 | 1596 | return slab_alloc(s, gfpflags, node, __builtin_return_address(0)); |
81819f0f CL |
1597 | } |
1598 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
1599 | #endif | |
1600 | ||
1601 | /* | |
894b8788 CL |
1602 | * Slow patch handling. This may still be called frequently since objects |
1603 | * have a longer lifetime than the cpu slabs in most processing loads. | |
81819f0f | 1604 | * |
894b8788 CL |
1605 | * So we still attempt to reduce cache line usage. Just take the slab |
1606 | * lock and free the item. If there is no additional partial page | |
1607 | * handling required then we can return immediately. | |
81819f0f | 1608 | */ |
894b8788 | 1609 | static void __slab_free(struct kmem_cache *s, struct page *page, |
b3fba8da | 1610 | void *x, void *addr, unsigned int offset) |
81819f0f CL |
1611 | { |
1612 | void *prior; | |
1613 | void **object = (void *)x; | |
81819f0f | 1614 | |
81819f0f CL |
1615 | slab_lock(page); |
1616 | ||
35e5d7ee | 1617 | if (unlikely(SlabDebug(page))) |
81819f0f CL |
1618 | goto debug; |
1619 | checks_ok: | |
b3fba8da | 1620 | prior = object[offset] = page->freelist; |
81819f0f CL |
1621 | page->freelist = object; |
1622 | page->inuse--; | |
1623 | ||
4b6f0750 | 1624 | if (unlikely(SlabFrozen(page))) |
81819f0f CL |
1625 | goto out_unlock; |
1626 | ||
1627 | if (unlikely(!page->inuse)) | |
1628 | goto slab_empty; | |
1629 | ||
1630 | /* | |
1631 | * Objects left in the slab. If it | |
1632 | * was not on the partial list before | |
1633 | * then add it. | |
1634 | */ | |
1635 | if (unlikely(!prior)) | |
e95eed57 | 1636 | add_partial(get_node(s, page_to_nid(page)), page); |
81819f0f CL |
1637 | |
1638 | out_unlock: | |
1639 | slab_unlock(page); | |
81819f0f CL |
1640 | return; |
1641 | ||
1642 | slab_empty: | |
1643 | if (prior) | |
1644 | /* | |
672bba3a | 1645 | * Slab still on the partial list. |
81819f0f CL |
1646 | */ |
1647 | remove_partial(s, page); | |
1648 | ||
1649 | slab_unlock(page); | |
1650 | discard_slab(s, page); | |
81819f0f CL |
1651 | return; |
1652 | ||
1653 | debug: | |
3ec09742 | 1654 | if (!free_debug_processing(s, page, x, addr)) |
77c5e2d0 | 1655 | goto out_unlock; |
77c5e2d0 | 1656 | goto checks_ok; |
81819f0f CL |
1657 | } |
1658 | ||
894b8788 CL |
1659 | /* |
1660 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
1661 | * can perform fastpath freeing without additional function calls. | |
1662 | * | |
1663 | * The fastpath is only possible if we are freeing to the current cpu slab | |
1664 | * of this processor. This typically the case if we have just allocated | |
1665 | * the item before. | |
1666 | * | |
1667 | * If fastpath is not possible then fall back to __slab_free where we deal | |
1668 | * with all sorts of special processing. | |
1669 | */ | |
1670 | static void __always_inline slab_free(struct kmem_cache *s, | |
1671 | struct page *page, void *x, void *addr) | |
1672 | { | |
1673 | void **object = (void *)x; | |
1674 | unsigned long flags; | |
dfb4f096 | 1675 | struct kmem_cache_cpu *c; |
894b8788 CL |
1676 | |
1677 | local_irq_save(flags); | |
02febdf7 | 1678 | debug_check_no_locks_freed(object, s->objsize); |
dfb4f096 | 1679 | c = get_cpu_slab(s, smp_processor_id()); |
ee3c72a1 | 1680 | if (likely(page == c->page && c->node >= 0)) { |
b3fba8da | 1681 | object[c->offset] = c->freelist; |
dfb4f096 | 1682 | c->freelist = object; |
894b8788 | 1683 | } else |
b3fba8da | 1684 | __slab_free(s, page, x, addr, c->offset); |
894b8788 CL |
1685 | |
1686 | local_irq_restore(flags); | |
1687 | } | |
1688 | ||
81819f0f CL |
1689 | void kmem_cache_free(struct kmem_cache *s, void *x) |
1690 | { | |
77c5e2d0 | 1691 | struct page *page; |
81819f0f | 1692 | |
b49af68f | 1693 | page = virt_to_head_page(x); |
81819f0f | 1694 | |
77c5e2d0 | 1695 | slab_free(s, page, x, __builtin_return_address(0)); |
81819f0f CL |
1696 | } |
1697 | EXPORT_SYMBOL(kmem_cache_free); | |
1698 | ||
1699 | /* Figure out on which slab object the object resides */ | |
1700 | static struct page *get_object_page(const void *x) | |
1701 | { | |
b49af68f | 1702 | struct page *page = virt_to_head_page(x); |
81819f0f CL |
1703 | |
1704 | if (!PageSlab(page)) | |
1705 | return NULL; | |
1706 | ||
1707 | return page; | |
1708 | } | |
1709 | ||
1710 | /* | |
672bba3a CL |
1711 | * Object placement in a slab is made very easy because we always start at |
1712 | * offset 0. If we tune the size of the object to the alignment then we can | |
1713 | * get the required alignment by putting one properly sized object after | |
1714 | * another. | |
81819f0f CL |
1715 | * |
1716 | * Notice that the allocation order determines the sizes of the per cpu | |
1717 | * caches. Each processor has always one slab available for allocations. | |
1718 | * Increasing the allocation order reduces the number of times that slabs | |
672bba3a | 1719 | * must be moved on and off the partial lists and is therefore a factor in |
81819f0f | 1720 | * locking overhead. |
81819f0f CL |
1721 | */ |
1722 | ||
1723 | /* | |
1724 | * Mininum / Maximum order of slab pages. This influences locking overhead | |
1725 | * and slab fragmentation. A higher order reduces the number of partial slabs | |
1726 | * and increases the number of allocations possible without having to | |
1727 | * take the list_lock. | |
1728 | */ | |
1729 | static int slub_min_order; | |
1730 | static int slub_max_order = DEFAULT_MAX_ORDER; | |
81819f0f CL |
1731 | static int slub_min_objects = DEFAULT_MIN_OBJECTS; |
1732 | ||
1733 | /* | |
1734 | * Merge control. If this is set then no merging of slab caches will occur. | |
672bba3a | 1735 | * (Could be removed. This was introduced to pacify the merge skeptics.) |
81819f0f CL |
1736 | */ |
1737 | static int slub_nomerge; | |
1738 | ||
81819f0f CL |
1739 | /* |
1740 | * Calculate the order of allocation given an slab object size. | |
1741 | * | |
672bba3a CL |
1742 | * The order of allocation has significant impact on performance and other |
1743 | * system components. Generally order 0 allocations should be preferred since | |
1744 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
1745 | * be problematic to put into order 0 slabs because there may be too much | |
1746 | * unused space left. We go to a higher order if more than 1/8th of the slab | |
1747 | * would be wasted. | |
1748 | * | |
1749 | * In order to reach satisfactory performance we must ensure that a minimum | |
1750 | * number of objects is in one slab. Otherwise we may generate too much | |
1751 | * activity on the partial lists which requires taking the list_lock. This is | |
1752 | * less a concern for large slabs though which are rarely used. | |
81819f0f | 1753 | * |
672bba3a CL |
1754 | * slub_max_order specifies the order where we begin to stop considering the |
1755 | * number of objects in a slab as critical. If we reach slub_max_order then | |
1756 | * we try to keep the page order as low as possible. So we accept more waste | |
1757 | * of space in favor of a small page order. | |
81819f0f | 1758 | * |
672bba3a CL |
1759 | * Higher order allocations also allow the placement of more objects in a |
1760 | * slab and thereby reduce object handling overhead. If the user has | |
1761 | * requested a higher mininum order then we start with that one instead of | |
1762 | * the smallest order which will fit the object. | |
81819f0f | 1763 | */ |
5e6d444e CL |
1764 | static inline int slab_order(int size, int min_objects, |
1765 | int max_order, int fract_leftover) | |
81819f0f CL |
1766 | { |
1767 | int order; | |
1768 | int rem; | |
6300ea75 | 1769 | int min_order = slub_min_order; |
81819f0f | 1770 | |
6300ea75 | 1771 | for (order = max(min_order, |
5e6d444e CL |
1772 | fls(min_objects * size - 1) - PAGE_SHIFT); |
1773 | order <= max_order; order++) { | |
81819f0f | 1774 | |
5e6d444e | 1775 | unsigned long slab_size = PAGE_SIZE << order; |
81819f0f | 1776 | |
5e6d444e | 1777 | if (slab_size < min_objects * size) |
81819f0f CL |
1778 | continue; |
1779 | ||
1780 | rem = slab_size % size; | |
1781 | ||
5e6d444e | 1782 | if (rem <= slab_size / fract_leftover) |
81819f0f CL |
1783 | break; |
1784 | ||
1785 | } | |
672bba3a | 1786 | |
81819f0f CL |
1787 | return order; |
1788 | } | |
1789 | ||
5e6d444e CL |
1790 | static inline int calculate_order(int size) |
1791 | { | |
1792 | int order; | |
1793 | int min_objects; | |
1794 | int fraction; | |
1795 | ||
1796 | /* | |
1797 | * Attempt to find best configuration for a slab. This | |
1798 | * works by first attempting to generate a layout with | |
1799 | * the best configuration and backing off gradually. | |
1800 | * | |
1801 | * First we reduce the acceptable waste in a slab. Then | |
1802 | * we reduce the minimum objects required in a slab. | |
1803 | */ | |
1804 | min_objects = slub_min_objects; | |
1805 | while (min_objects > 1) { | |
1806 | fraction = 8; | |
1807 | while (fraction >= 4) { | |
1808 | order = slab_order(size, min_objects, | |
1809 | slub_max_order, fraction); | |
1810 | if (order <= slub_max_order) | |
1811 | return order; | |
1812 | fraction /= 2; | |
1813 | } | |
1814 | min_objects /= 2; | |
1815 | } | |
1816 | ||
1817 | /* | |
1818 | * We were unable to place multiple objects in a slab. Now | |
1819 | * lets see if we can place a single object there. | |
1820 | */ | |
1821 | order = slab_order(size, 1, slub_max_order, 1); | |
1822 | if (order <= slub_max_order) | |
1823 | return order; | |
1824 | ||
1825 | /* | |
1826 | * Doh this slab cannot be placed using slub_max_order. | |
1827 | */ | |
1828 | order = slab_order(size, 1, MAX_ORDER, 1); | |
1829 | if (order <= MAX_ORDER) | |
1830 | return order; | |
1831 | return -ENOSYS; | |
1832 | } | |
1833 | ||
81819f0f | 1834 | /* |
672bba3a | 1835 | * Figure out what the alignment of the objects will be. |
81819f0f CL |
1836 | */ |
1837 | static unsigned long calculate_alignment(unsigned long flags, | |
1838 | unsigned long align, unsigned long size) | |
1839 | { | |
1840 | /* | |
1841 | * If the user wants hardware cache aligned objects then | |
1842 | * follow that suggestion if the object is sufficiently | |
1843 | * large. | |
1844 | * | |
1845 | * The hardware cache alignment cannot override the | |
1846 | * specified alignment though. If that is greater | |
1847 | * then use it. | |
1848 | */ | |
5af60839 | 1849 | if ((flags & SLAB_HWCACHE_ALIGN) && |
65c02d4c CL |
1850 | size > cache_line_size() / 2) |
1851 | return max_t(unsigned long, align, cache_line_size()); | |
81819f0f CL |
1852 | |
1853 | if (align < ARCH_SLAB_MINALIGN) | |
1854 | return ARCH_SLAB_MINALIGN; | |
1855 | ||
1856 | return ALIGN(align, sizeof(void *)); | |
1857 | } | |
1858 | ||
dfb4f096 CL |
1859 | static void init_kmem_cache_cpu(struct kmem_cache *s, |
1860 | struct kmem_cache_cpu *c) | |
1861 | { | |
1862 | c->page = NULL; | |
1863 | c->freelist = NULL; | |
1864 | c->node = 0; | |
42a9fdbb CL |
1865 | c->offset = s->offset / sizeof(void *); |
1866 | c->objsize = s->objsize; | |
dfb4f096 CL |
1867 | } |
1868 | ||
81819f0f CL |
1869 | static void init_kmem_cache_node(struct kmem_cache_node *n) |
1870 | { | |
1871 | n->nr_partial = 0; | |
1872 | atomic_long_set(&n->nr_slabs, 0); | |
1873 | spin_lock_init(&n->list_lock); | |
1874 | INIT_LIST_HEAD(&n->partial); | |
8ab1372f | 1875 | #ifdef CONFIG_SLUB_DEBUG |
643b1138 | 1876 | INIT_LIST_HEAD(&n->full); |
8ab1372f | 1877 | #endif |
81819f0f CL |
1878 | } |
1879 | ||
4c93c355 CL |
1880 | #ifdef CONFIG_SMP |
1881 | /* | |
1882 | * Per cpu array for per cpu structures. | |
1883 | * | |
1884 | * The per cpu array places all kmem_cache_cpu structures from one processor | |
1885 | * close together meaning that it becomes possible that multiple per cpu | |
1886 | * structures are contained in one cacheline. This may be particularly | |
1887 | * beneficial for the kmalloc caches. | |
1888 | * | |
1889 | * A desktop system typically has around 60-80 slabs. With 100 here we are | |
1890 | * likely able to get per cpu structures for all caches from the array defined | |
1891 | * here. We must be able to cover all kmalloc caches during bootstrap. | |
1892 | * | |
1893 | * If the per cpu array is exhausted then fall back to kmalloc | |
1894 | * of individual cachelines. No sharing is possible then. | |
1895 | */ | |
1896 | #define NR_KMEM_CACHE_CPU 100 | |
1897 | ||
1898 | static DEFINE_PER_CPU(struct kmem_cache_cpu, | |
1899 | kmem_cache_cpu)[NR_KMEM_CACHE_CPU]; | |
1900 | ||
1901 | static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free); | |
1902 | static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE; | |
1903 | ||
1904 | static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s, | |
1905 | int cpu, gfp_t flags) | |
1906 | { | |
1907 | struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu); | |
1908 | ||
1909 | if (c) | |
1910 | per_cpu(kmem_cache_cpu_free, cpu) = | |
1911 | (void *)c->freelist; | |
1912 | else { | |
1913 | /* Table overflow: So allocate ourselves */ | |
1914 | c = kmalloc_node( | |
1915 | ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()), | |
1916 | flags, cpu_to_node(cpu)); | |
1917 | if (!c) | |
1918 | return NULL; | |
1919 | } | |
1920 | ||
1921 | init_kmem_cache_cpu(s, c); | |
1922 | return c; | |
1923 | } | |
1924 | ||
1925 | static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu) | |
1926 | { | |
1927 | if (c < per_cpu(kmem_cache_cpu, cpu) || | |
1928 | c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) { | |
1929 | kfree(c); | |
1930 | return; | |
1931 | } | |
1932 | c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu); | |
1933 | per_cpu(kmem_cache_cpu_free, cpu) = c; | |
1934 | } | |
1935 | ||
1936 | static void free_kmem_cache_cpus(struct kmem_cache *s) | |
1937 | { | |
1938 | int cpu; | |
1939 | ||
1940 | for_each_online_cpu(cpu) { | |
1941 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | |
1942 | ||
1943 | if (c) { | |
1944 | s->cpu_slab[cpu] = NULL; | |
1945 | free_kmem_cache_cpu(c, cpu); | |
1946 | } | |
1947 | } | |
1948 | } | |
1949 | ||
1950 | static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) | |
1951 | { | |
1952 | int cpu; | |
1953 | ||
1954 | for_each_online_cpu(cpu) { | |
1955 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | |
1956 | ||
1957 | if (c) | |
1958 | continue; | |
1959 | ||
1960 | c = alloc_kmem_cache_cpu(s, cpu, flags); | |
1961 | if (!c) { | |
1962 | free_kmem_cache_cpus(s); | |
1963 | return 0; | |
1964 | } | |
1965 | s->cpu_slab[cpu] = c; | |
1966 | } | |
1967 | return 1; | |
1968 | } | |
1969 | ||
1970 | /* | |
1971 | * Initialize the per cpu array. | |
1972 | */ | |
1973 | static void init_alloc_cpu_cpu(int cpu) | |
1974 | { | |
1975 | int i; | |
1976 | ||
1977 | if (cpu_isset(cpu, kmem_cach_cpu_free_init_once)) | |
1978 | return; | |
1979 | ||
1980 | for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--) | |
1981 | free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu); | |
1982 | ||
1983 | cpu_set(cpu, kmem_cach_cpu_free_init_once); | |
1984 | } | |
1985 | ||
1986 | static void __init init_alloc_cpu(void) | |
1987 | { | |
1988 | int cpu; | |
1989 | ||
1990 | for_each_online_cpu(cpu) | |
1991 | init_alloc_cpu_cpu(cpu); | |
1992 | } | |
1993 | ||
1994 | #else | |
1995 | static inline void free_kmem_cache_cpus(struct kmem_cache *s) {} | |
1996 | static inline void init_alloc_cpu(void) {} | |
1997 | ||
1998 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) | |
1999 | { | |
2000 | init_kmem_cache_cpu(s, &s->cpu_slab); | |
2001 | return 1; | |
2002 | } | |
2003 | #endif | |
2004 | ||
81819f0f CL |
2005 | #ifdef CONFIG_NUMA |
2006 | /* | |
2007 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
2008 | * slab on the node for this slabcache. There are no concurrent accesses | |
2009 | * possible. | |
2010 | * | |
2011 | * Note that this function only works on the kmalloc_node_cache | |
4c93c355 CL |
2012 | * when allocating for the kmalloc_node_cache. This is used for bootstrapping |
2013 | * memory on a fresh node that has no slab structures yet. | |
81819f0f | 2014 | */ |
1cd7daa5 AB |
2015 | static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags, |
2016 | int node) | |
81819f0f CL |
2017 | { |
2018 | struct page *page; | |
2019 | struct kmem_cache_node *n; | |
2020 | ||
2021 | BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); | |
2022 | ||
a2f92ee7 | 2023 | page = new_slab(kmalloc_caches, gfpflags, node); |
81819f0f CL |
2024 | |
2025 | BUG_ON(!page); | |
a2f92ee7 CL |
2026 | if (page_to_nid(page) != node) { |
2027 | printk(KERN_ERR "SLUB: Unable to allocate memory from " | |
2028 | "node %d\n", node); | |
2029 | printk(KERN_ERR "SLUB: Allocating a useless per node structure " | |
2030 | "in order to be able to continue\n"); | |
2031 | } | |
2032 | ||
81819f0f CL |
2033 | n = page->freelist; |
2034 | BUG_ON(!n); | |
2035 | page->freelist = get_freepointer(kmalloc_caches, n); | |
2036 | page->inuse++; | |
2037 | kmalloc_caches->node[node] = n; | |
8ab1372f | 2038 | #ifdef CONFIG_SLUB_DEBUG |
d45f39cb CL |
2039 | init_object(kmalloc_caches, n, 1); |
2040 | init_tracking(kmalloc_caches, n); | |
8ab1372f | 2041 | #endif |
81819f0f CL |
2042 | init_kmem_cache_node(n); |
2043 | atomic_long_inc(&n->nr_slabs); | |
e95eed57 | 2044 | add_partial(n, page); |
81819f0f CL |
2045 | return n; |
2046 | } | |
2047 | ||
2048 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
2049 | { | |
2050 | int node; | |
2051 | ||
f64dc58c | 2052 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
2053 | struct kmem_cache_node *n = s->node[node]; |
2054 | if (n && n != &s->local_node) | |
2055 | kmem_cache_free(kmalloc_caches, n); | |
2056 | s->node[node] = NULL; | |
2057 | } | |
2058 | } | |
2059 | ||
2060 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | |
2061 | { | |
2062 | int node; | |
2063 | int local_node; | |
2064 | ||
2065 | if (slab_state >= UP) | |
2066 | local_node = page_to_nid(virt_to_page(s)); | |
2067 | else | |
2068 | local_node = 0; | |
2069 | ||
f64dc58c | 2070 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
2071 | struct kmem_cache_node *n; |
2072 | ||
2073 | if (local_node == node) | |
2074 | n = &s->local_node; | |
2075 | else { | |
2076 | if (slab_state == DOWN) { | |
2077 | n = early_kmem_cache_node_alloc(gfpflags, | |
2078 | node); | |
2079 | continue; | |
2080 | } | |
2081 | n = kmem_cache_alloc_node(kmalloc_caches, | |
2082 | gfpflags, node); | |
2083 | ||
2084 | if (!n) { | |
2085 | free_kmem_cache_nodes(s); | |
2086 | return 0; | |
2087 | } | |
2088 | ||
2089 | } | |
2090 | s->node[node] = n; | |
2091 | init_kmem_cache_node(n); | |
2092 | } | |
2093 | return 1; | |
2094 | } | |
2095 | #else | |
2096 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
2097 | { | |
2098 | } | |
2099 | ||
2100 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | |
2101 | { | |
2102 | init_kmem_cache_node(&s->local_node); | |
2103 | return 1; | |
2104 | } | |
2105 | #endif | |
2106 | ||
2107 | /* | |
2108 | * calculate_sizes() determines the order and the distribution of data within | |
2109 | * a slab object. | |
2110 | */ | |
2111 | static int calculate_sizes(struct kmem_cache *s) | |
2112 | { | |
2113 | unsigned long flags = s->flags; | |
2114 | unsigned long size = s->objsize; | |
2115 | unsigned long align = s->align; | |
2116 | ||
2117 | /* | |
2118 | * Determine if we can poison the object itself. If the user of | |
2119 | * the slab may touch the object after free or before allocation | |
2120 | * then we should never poison the object itself. | |
2121 | */ | |
2122 | if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && | |
c59def9f | 2123 | !s->ctor) |
81819f0f CL |
2124 | s->flags |= __OBJECT_POISON; |
2125 | else | |
2126 | s->flags &= ~__OBJECT_POISON; | |
2127 | ||
2128 | /* | |
2129 | * Round up object size to the next word boundary. We can only | |
2130 | * place the free pointer at word boundaries and this determines | |
2131 | * the possible location of the free pointer. | |
2132 | */ | |
2133 | size = ALIGN(size, sizeof(void *)); | |
2134 | ||
41ecc55b | 2135 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f | 2136 | /* |
672bba3a | 2137 | * If we are Redzoning then check if there is some space between the |
81819f0f | 2138 | * end of the object and the free pointer. If not then add an |
672bba3a | 2139 | * additional word to have some bytes to store Redzone information. |
81819f0f CL |
2140 | */ |
2141 | if ((flags & SLAB_RED_ZONE) && size == s->objsize) | |
2142 | size += sizeof(void *); | |
41ecc55b | 2143 | #endif |
81819f0f CL |
2144 | |
2145 | /* | |
672bba3a CL |
2146 | * With that we have determined the number of bytes in actual use |
2147 | * by the object. This is the potential offset to the free pointer. | |
81819f0f CL |
2148 | */ |
2149 | s->inuse = size; | |
2150 | ||
2151 | if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || | |
c59def9f | 2152 | s->ctor)) { |
81819f0f CL |
2153 | /* |
2154 | * Relocate free pointer after the object if it is not | |
2155 | * permitted to overwrite the first word of the object on | |
2156 | * kmem_cache_free. | |
2157 | * | |
2158 | * This is the case if we do RCU, have a constructor or | |
2159 | * destructor or are poisoning the objects. | |
2160 | */ | |
2161 | s->offset = size; | |
2162 | size += sizeof(void *); | |
2163 | } | |
2164 | ||
c12b3c62 | 2165 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
2166 | if (flags & SLAB_STORE_USER) |
2167 | /* | |
2168 | * Need to store information about allocs and frees after | |
2169 | * the object. | |
2170 | */ | |
2171 | size += 2 * sizeof(struct track); | |
2172 | ||
be7b3fbc | 2173 | if (flags & SLAB_RED_ZONE) |
81819f0f CL |
2174 | /* |
2175 | * Add some empty padding so that we can catch | |
2176 | * overwrites from earlier objects rather than let | |
2177 | * tracking information or the free pointer be | |
2178 | * corrupted if an user writes before the start | |
2179 | * of the object. | |
2180 | */ | |
2181 | size += sizeof(void *); | |
41ecc55b | 2182 | #endif |
672bba3a | 2183 | |
81819f0f CL |
2184 | /* |
2185 | * Determine the alignment based on various parameters that the | |
65c02d4c CL |
2186 | * user specified and the dynamic determination of cache line size |
2187 | * on bootup. | |
81819f0f CL |
2188 | */ |
2189 | align = calculate_alignment(flags, align, s->objsize); | |
2190 | ||
2191 | /* | |
2192 | * SLUB stores one object immediately after another beginning from | |
2193 | * offset 0. In order to align the objects we have to simply size | |
2194 | * each object to conform to the alignment. | |
2195 | */ | |
2196 | size = ALIGN(size, align); | |
2197 | s->size = size; | |
2198 | ||
2199 | s->order = calculate_order(size); | |
2200 | if (s->order < 0) | |
2201 | return 0; | |
2202 | ||
2203 | /* | |
2204 | * Determine the number of objects per slab | |
2205 | */ | |
2206 | s->objects = (PAGE_SIZE << s->order) / size; | |
2207 | ||
b3fba8da | 2208 | return !!s->objects; |
81819f0f CL |
2209 | |
2210 | } | |
2211 | ||
81819f0f CL |
2212 | static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, |
2213 | const char *name, size_t size, | |
2214 | size_t align, unsigned long flags, | |
4ba9b9d0 | 2215 | void (*ctor)(struct kmem_cache *, void *)) |
81819f0f CL |
2216 | { |
2217 | memset(s, 0, kmem_size); | |
2218 | s->name = name; | |
2219 | s->ctor = ctor; | |
81819f0f | 2220 | s->objsize = size; |
81819f0f | 2221 | s->align = align; |
ba0268a8 | 2222 | s->flags = kmem_cache_flags(size, flags, name, ctor); |
81819f0f CL |
2223 | |
2224 | if (!calculate_sizes(s)) | |
2225 | goto error; | |
2226 | ||
2227 | s->refcount = 1; | |
2228 | #ifdef CONFIG_NUMA | |
2229 | s->defrag_ratio = 100; | |
2230 | #endif | |
dfb4f096 CL |
2231 | if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) |
2232 | goto error; | |
81819f0f | 2233 | |
dfb4f096 | 2234 | if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) |
81819f0f | 2235 | return 1; |
4c93c355 | 2236 | free_kmem_cache_nodes(s); |
81819f0f CL |
2237 | error: |
2238 | if (flags & SLAB_PANIC) | |
2239 | panic("Cannot create slab %s size=%lu realsize=%u " | |
2240 | "order=%u offset=%u flags=%lx\n", | |
2241 | s->name, (unsigned long)size, s->size, s->order, | |
2242 | s->offset, flags); | |
2243 | return 0; | |
2244 | } | |
81819f0f CL |
2245 | |
2246 | /* | |
2247 | * Check if a given pointer is valid | |
2248 | */ | |
2249 | int kmem_ptr_validate(struct kmem_cache *s, const void *object) | |
2250 | { | |
2251 | struct page * page; | |
81819f0f CL |
2252 | |
2253 | page = get_object_page(object); | |
2254 | ||
2255 | if (!page || s != page->slab) | |
2256 | /* No slab or wrong slab */ | |
2257 | return 0; | |
2258 | ||
abcd08a6 | 2259 | if (!check_valid_pointer(s, page, object)) |
81819f0f CL |
2260 | return 0; |
2261 | ||
2262 | /* | |
2263 | * We could also check if the object is on the slabs freelist. | |
2264 | * But this would be too expensive and it seems that the main | |
2265 | * purpose of kmem_ptr_valid is to check if the object belongs | |
2266 | * to a certain slab. | |
2267 | */ | |
2268 | return 1; | |
2269 | } | |
2270 | EXPORT_SYMBOL(kmem_ptr_validate); | |
2271 | ||
2272 | /* | |
2273 | * Determine the size of a slab object | |
2274 | */ | |
2275 | unsigned int kmem_cache_size(struct kmem_cache *s) | |
2276 | { | |
2277 | return s->objsize; | |
2278 | } | |
2279 | EXPORT_SYMBOL(kmem_cache_size); | |
2280 | ||
2281 | const char *kmem_cache_name(struct kmem_cache *s) | |
2282 | { | |
2283 | return s->name; | |
2284 | } | |
2285 | EXPORT_SYMBOL(kmem_cache_name); | |
2286 | ||
2287 | /* | |
672bba3a CL |
2288 | * Attempt to free all slabs on a node. Return the number of slabs we |
2289 | * were unable to free. | |
81819f0f CL |
2290 | */ |
2291 | static int free_list(struct kmem_cache *s, struct kmem_cache_node *n, | |
2292 | struct list_head *list) | |
2293 | { | |
2294 | int slabs_inuse = 0; | |
2295 | unsigned long flags; | |
2296 | struct page *page, *h; | |
2297 | ||
2298 | spin_lock_irqsave(&n->list_lock, flags); | |
2299 | list_for_each_entry_safe(page, h, list, lru) | |
2300 | if (!page->inuse) { | |
2301 | list_del(&page->lru); | |
2302 | discard_slab(s, page); | |
2303 | } else | |
2304 | slabs_inuse++; | |
2305 | spin_unlock_irqrestore(&n->list_lock, flags); | |
2306 | return slabs_inuse; | |
2307 | } | |
2308 | ||
2309 | /* | |
672bba3a | 2310 | * Release all resources used by a slab cache. |
81819f0f | 2311 | */ |
0c710013 | 2312 | static inline int kmem_cache_close(struct kmem_cache *s) |
81819f0f CL |
2313 | { |
2314 | int node; | |
2315 | ||
2316 | flush_all(s); | |
2317 | ||
2318 | /* Attempt to free all objects */ | |
4c93c355 | 2319 | free_kmem_cache_cpus(s); |
f64dc58c | 2320 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
2321 | struct kmem_cache_node *n = get_node(s, node); |
2322 | ||
2086d26a | 2323 | n->nr_partial -= free_list(s, n, &n->partial); |
81819f0f CL |
2324 | if (atomic_long_read(&n->nr_slabs)) |
2325 | return 1; | |
2326 | } | |
2327 | free_kmem_cache_nodes(s); | |
2328 | return 0; | |
2329 | } | |
2330 | ||
2331 | /* | |
2332 | * Close a cache and release the kmem_cache structure | |
2333 | * (must be used for caches created using kmem_cache_create) | |
2334 | */ | |
2335 | void kmem_cache_destroy(struct kmem_cache *s) | |
2336 | { | |
2337 | down_write(&slub_lock); | |
2338 | s->refcount--; | |
2339 | if (!s->refcount) { | |
2340 | list_del(&s->list); | |
a0e1d1be | 2341 | up_write(&slub_lock); |
81819f0f CL |
2342 | if (kmem_cache_close(s)) |
2343 | WARN_ON(1); | |
2344 | sysfs_slab_remove(s); | |
2345 | kfree(s); | |
a0e1d1be CL |
2346 | } else |
2347 | up_write(&slub_lock); | |
81819f0f CL |
2348 | } |
2349 | EXPORT_SYMBOL(kmem_cache_destroy); | |
2350 | ||
2351 | /******************************************************************** | |
2352 | * Kmalloc subsystem | |
2353 | *******************************************************************/ | |
2354 | ||
aadb4bc4 | 2355 | struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned; |
81819f0f CL |
2356 | EXPORT_SYMBOL(kmalloc_caches); |
2357 | ||
2358 | #ifdef CONFIG_ZONE_DMA | |
aadb4bc4 | 2359 | static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT]; |
81819f0f CL |
2360 | #endif |
2361 | ||
2362 | static int __init setup_slub_min_order(char *str) | |
2363 | { | |
2364 | get_option (&str, &slub_min_order); | |
2365 | ||
2366 | return 1; | |
2367 | } | |
2368 | ||
2369 | __setup("slub_min_order=", setup_slub_min_order); | |
2370 | ||
2371 | static int __init setup_slub_max_order(char *str) | |
2372 | { | |
2373 | get_option (&str, &slub_max_order); | |
2374 | ||
2375 | return 1; | |
2376 | } | |
2377 | ||
2378 | __setup("slub_max_order=", setup_slub_max_order); | |
2379 | ||
2380 | static int __init setup_slub_min_objects(char *str) | |
2381 | { | |
2382 | get_option (&str, &slub_min_objects); | |
2383 | ||
2384 | return 1; | |
2385 | } | |
2386 | ||
2387 | __setup("slub_min_objects=", setup_slub_min_objects); | |
2388 | ||
2389 | static int __init setup_slub_nomerge(char *str) | |
2390 | { | |
2391 | slub_nomerge = 1; | |
2392 | return 1; | |
2393 | } | |
2394 | ||
2395 | __setup("slub_nomerge", setup_slub_nomerge); | |
2396 | ||
81819f0f CL |
2397 | static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, |
2398 | const char *name, int size, gfp_t gfp_flags) | |
2399 | { | |
2400 | unsigned int flags = 0; | |
2401 | ||
2402 | if (gfp_flags & SLUB_DMA) | |
2403 | flags = SLAB_CACHE_DMA; | |
2404 | ||
2405 | down_write(&slub_lock); | |
2406 | if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, | |
c59def9f | 2407 | flags, NULL)) |
81819f0f CL |
2408 | goto panic; |
2409 | ||
2410 | list_add(&s->list, &slab_caches); | |
2411 | up_write(&slub_lock); | |
2412 | if (sysfs_slab_add(s)) | |
2413 | goto panic; | |
2414 | return s; | |
2415 | ||
2416 | panic: | |
2417 | panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); | |
2418 | } | |
2419 | ||
2e443fd0 | 2420 | #ifdef CONFIG_ZONE_DMA |
1ceef402 CL |
2421 | |
2422 | static void sysfs_add_func(struct work_struct *w) | |
2423 | { | |
2424 | struct kmem_cache *s; | |
2425 | ||
2426 | down_write(&slub_lock); | |
2427 | list_for_each_entry(s, &slab_caches, list) { | |
2428 | if (s->flags & __SYSFS_ADD_DEFERRED) { | |
2429 | s->flags &= ~__SYSFS_ADD_DEFERRED; | |
2430 | sysfs_slab_add(s); | |
2431 | } | |
2432 | } | |
2433 | up_write(&slub_lock); | |
2434 | } | |
2435 | ||
2436 | static DECLARE_WORK(sysfs_add_work, sysfs_add_func); | |
2437 | ||
2e443fd0 CL |
2438 | static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) |
2439 | { | |
2440 | struct kmem_cache *s; | |
2e443fd0 CL |
2441 | char *text; |
2442 | size_t realsize; | |
2443 | ||
2444 | s = kmalloc_caches_dma[index]; | |
2445 | if (s) | |
2446 | return s; | |
2447 | ||
2448 | /* Dynamically create dma cache */ | |
1ceef402 CL |
2449 | if (flags & __GFP_WAIT) |
2450 | down_write(&slub_lock); | |
2451 | else { | |
2452 | if (!down_write_trylock(&slub_lock)) | |
2453 | goto out; | |
2454 | } | |
2455 | ||
2456 | if (kmalloc_caches_dma[index]) | |
2457 | goto unlock_out; | |
2e443fd0 | 2458 | |
7b55f620 | 2459 | realsize = kmalloc_caches[index].objsize; |
1ceef402 CL |
2460 | text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize), |
2461 | s = kmalloc(kmem_size, flags & ~SLUB_DMA); | |
2462 | ||
2463 | if (!s || !text || !kmem_cache_open(s, flags, text, | |
2464 | realsize, ARCH_KMALLOC_MINALIGN, | |
2465 | SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) { | |
2466 | kfree(s); | |
2467 | kfree(text); | |
2468 | goto unlock_out; | |
dfce8648 | 2469 | } |
1ceef402 CL |
2470 | |
2471 | list_add(&s->list, &slab_caches); | |
2472 | kmalloc_caches_dma[index] = s; | |
2473 | ||
2474 | schedule_work(&sysfs_add_work); | |
2475 | ||
2476 | unlock_out: | |
dfce8648 | 2477 | up_write(&slub_lock); |
1ceef402 | 2478 | out: |
dfce8648 | 2479 | return kmalloc_caches_dma[index]; |
2e443fd0 CL |
2480 | } |
2481 | #endif | |
2482 | ||
f1b26339 CL |
2483 | /* |
2484 | * Conversion table for small slabs sizes / 8 to the index in the | |
2485 | * kmalloc array. This is necessary for slabs < 192 since we have non power | |
2486 | * of two cache sizes there. The size of larger slabs can be determined using | |
2487 | * fls. | |
2488 | */ | |
2489 | static s8 size_index[24] = { | |
2490 | 3, /* 8 */ | |
2491 | 4, /* 16 */ | |
2492 | 5, /* 24 */ | |
2493 | 5, /* 32 */ | |
2494 | 6, /* 40 */ | |
2495 | 6, /* 48 */ | |
2496 | 6, /* 56 */ | |
2497 | 6, /* 64 */ | |
2498 | 1, /* 72 */ | |
2499 | 1, /* 80 */ | |
2500 | 1, /* 88 */ | |
2501 | 1, /* 96 */ | |
2502 | 7, /* 104 */ | |
2503 | 7, /* 112 */ | |
2504 | 7, /* 120 */ | |
2505 | 7, /* 128 */ | |
2506 | 2, /* 136 */ | |
2507 | 2, /* 144 */ | |
2508 | 2, /* 152 */ | |
2509 | 2, /* 160 */ | |
2510 | 2, /* 168 */ | |
2511 | 2, /* 176 */ | |
2512 | 2, /* 184 */ | |
2513 | 2 /* 192 */ | |
2514 | }; | |
2515 | ||
81819f0f CL |
2516 | static struct kmem_cache *get_slab(size_t size, gfp_t flags) |
2517 | { | |
f1b26339 | 2518 | int index; |
81819f0f | 2519 | |
f1b26339 CL |
2520 | if (size <= 192) { |
2521 | if (!size) | |
2522 | return ZERO_SIZE_PTR; | |
81819f0f | 2523 | |
f1b26339 | 2524 | index = size_index[(size - 1) / 8]; |
aadb4bc4 | 2525 | } else |
f1b26339 | 2526 | index = fls(size - 1); |
81819f0f CL |
2527 | |
2528 | #ifdef CONFIG_ZONE_DMA | |
f1b26339 | 2529 | if (unlikely((flags & SLUB_DMA))) |
2e443fd0 | 2530 | return dma_kmalloc_cache(index, flags); |
f1b26339 | 2531 | |
81819f0f CL |
2532 | #endif |
2533 | return &kmalloc_caches[index]; | |
2534 | } | |
2535 | ||
2536 | void *__kmalloc(size_t size, gfp_t flags) | |
2537 | { | |
aadb4bc4 | 2538 | struct kmem_cache *s; |
81819f0f | 2539 | |
aadb4bc4 CL |
2540 | if (unlikely(size > PAGE_SIZE / 2)) |
2541 | return (void *)__get_free_pages(flags | __GFP_COMP, | |
2542 | get_order(size)); | |
2543 | ||
2544 | s = get_slab(size, flags); | |
2545 | ||
2546 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
2547 | return s; |
2548 | ||
ce15fea8 | 2549 | return slab_alloc(s, flags, -1, __builtin_return_address(0)); |
81819f0f CL |
2550 | } |
2551 | EXPORT_SYMBOL(__kmalloc); | |
2552 | ||
2553 | #ifdef CONFIG_NUMA | |
2554 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | |
2555 | { | |
aadb4bc4 | 2556 | struct kmem_cache *s; |
81819f0f | 2557 | |
aadb4bc4 CL |
2558 | if (unlikely(size > PAGE_SIZE / 2)) |
2559 | return (void *)__get_free_pages(flags | __GFP_COMP, | |
2560 | get_order(size)); | |
2561 | ||
2562 | s = get_slab(size, flags); | |
2563 | ||
2564 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
2565 | return s; |
2566 | ||
ce15fea8 | 2567 | return slab_alloc(s, flags, node, __builtin_return_address(0)); |
81819f0f CL |
2568 | } |
2569 | EXPORT_SYMBOL(__kmalloc_node); | |
2570 | #endif | |
2571 | ||
2572 | size_t ksize(const void *object) | |
2573 | { | |
272c1d21 | 2574 | struct page *page; |
81819f0f CL |
2575 | struct kmem_cache *s; |
2576 | ||
ef8b4520 CL |
2577 | BUG_ON(!object); |
2578 | if (unlikely(object == ZERO_SIZE_PTR)) | |
272c1d21 CL |
2579 | return 0; |
2580 | ||
2581 | page = get_object_page(object); | |
81819f0f CL |
2582 | BUG_ON(!page); |
2583 | s = page->slab; | |
2584 | BUG_ON(!s); | |
2585 | ||
2586 | /* | |
2587 | * Debugging requires use of the padding between object | |
2588 | * and whatever may come after it. | |
2589 | */ | |
2590 | if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) | |
2591 | return s->objsize; | |
2592 | ||
2593 | /* | |
2594 | * If we have the need to store the freelist pointer | |
2595 | * back there or track user information then we can | |
2596 | * only use the space before that information. | |
2597 | */ | |
2598 | if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) | |
2599 | return s->inuse; | |
2600 | ||
2601 | /* | |
2602 | * Else we can use all the padding etc for the allocation | |
2603 | */ | |
2604 | return s->size; | |
2605 | } | |
2606 | EXPORT_SYMBOL(ksize); | |
2607 | ||
2608 | void kfree(const void *x) | |
2609 | { | |
81819f0f CL |
2610 | struct page *page; |
2611 | ||
2408c550 | 2612 | if (unlikely(ZERO_OR_NULL_PTR(x))) |
81819f0f CL |
2613 | return; |
2614 | ||
b49af68f | 2615 | page = virt_to_head_page(x); |
aadb4bc4 CL |
2616 | if (unlikely(!PageSlab(page))) { |
2617 | put_page(page); | |
2618 | return; | |
2619 | } | |
2620 | slab_free(page->slab, page, (void *)x, __builtin_return_address(0)); | |
81819f0f CL |
2621 | } |
2622 | EXPORT_SYMBOL(kfree); | |
2623 | ||
2086d26a | 2624 | /* |
672bba3a CL |
2625 | * kmem_cache_shrink removes empty slabs from the partial lists and sorts |
2626 | * the remaining slabs by the number of items in use. The slabs with the | |
2627 | * most items in use come first. New allocations will then fill those up | |
2628 | * and thus they can be removed from the partial lists. | |
2629 | * | |
2630 | * The slabs with the least items are placed last. This results in them | |
2631 | * being allocated from last increasing the chance that the last objects | |
2632 | * are freed in them. | |
2086d26a CL |
2633 | */ |
2634 | int kmem_cache_shrink(struct kmem_cache *s) | |
2635 | { | |
2636 | int node; | |
2637 | int i; | |
2638 | struct kmem_cache_node *n; | |
2639 | struct page *page; | |
2640 | struct page *t; | |
2641 | struct list_head *slabs_by_inuse = | |
2642 | kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL); | |
2643 | unsigned long flags; | |
2644 | ||
2645 | if (!slabs_by_inuse) | |
2646 | return -ENOMEM; | |
2647 | ||
2648 | flush_all(s); | |
f64dc58c | 2649 | for_each_node_state(node, N_NORMAL_MEMORY) { |
2086d26a CL |
2650 | n = get_node(s, node); |
2651 | ||
2652 | if (!n->nr_partial) | |
2653 | continue; | |
2654 | ||
2655 | for (i = 0; i < s->objects; i++) | |
2656 | INIT_LIST_HEAD(slabs_by_inuse + i); | |
2657 | ||
2658 | spin_lock_irqsave(&n->list_lock, flags); | |
2659 | ||
2660 | /* | |
672bba3a | 2661 | * Build lists indexed by the items in use in each slab. |
2086d26a | 2662 | * |
672bba3a CL |
2663 | * Note that concurrent frees may occur while we hold the |
2664 | * list_lock. page->inuse here is the upper limit. | |
2086d26a CL |
2665 | */ |
2666 | list_for_each_entry_safe(page, t, &n->partial, lru) { | |
2667 | if (!page->inuse && slab_trylock(page)) { | |
2668 | /* | |
2669 | * Must hold slab lock here because slab_free | |
2670 | * may have freed the last object and be | |
2671 | * waiting to release the slab. | |
2672 | */ | |
2673 | list_del(&page->lru); | |
2674 | n->nr_partial--; | |
2675 | slab_unlock(page); | |
2676 | discard_slab(s, page); | |
2677 | } else { | |
fcda3d89 CL |
2678 | list_move(&page->lru, |
2679 | slabs_by_inuse + page->inuse); | |
2086d26a CL |
2680 | } |
2681 | } | |
2682 | ||
2086d26a | 2683 | /* |
672bba3a CL |
2684 | * Rebuild the partial list with the slabs filled up most |
2685 | * first and the least used slabs at the end. | |
2086d26a CL |
2686 | */ |
2687 | for (i = s->objects - 1; i >= 0; i--) | |
2688 | list_splice(slabs_by_inuse + i, n->partial.prev); | |
2689 | ||
2086d26a CL |
2690 | spin_unlock_irqrestore(&n->list_lock, flags); |
2691 | } | |
2692 | ||
2693 | kfree(slabs_by_inuse); | |
2694 | return 0; | |
2695 | } | |
2696 | EXPORT_SYMBOL(kmem_cache_shrink); | |
2697 | ||
b9049e23 YG |
2698 | #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) |
2699 | static int slab_mem_going_offline_callback(void *arg) | |
2700 | { | |
2701 | struct kmem_cache *s; | |
2702 | ||
2703 | down_read(&slub_lock); | |
2704 | list_for_each_entry(s, &slab_caches, list) | |
2705 | kmem_cache_shrink(s); | |
2706 | up_read(&slub_lock); | |
2707 | ||
2708 | return 0; | |
2709 | } | |
2710 | ||
2711 | static void slab_mem_offline_callback(void *arg) | |
2712 | { | |
2713 | struct kmem_cache_node *n; | |
2714 | struct kmem_cache *s; | |
2715 | struct memory_notify *marg = arg; | |
2716 | int offline_node; | |
2717 | ||
2718 | offline_node = marg->status_change_nid; | |
2719 | ||
2720 | /* | |
2721 | * If the node still has available memory. we need kmem_cache_node | |
2722 | * for it yet. | |
2723 | */ | |
2724 | if (offline_node < 0) | |
2725 | return; | |
2726 | ||
2727 | down_read(&slub_lock); | |
2728 | list_for_each_entry(s, &slab_caches, list) { | |
2729 | n = get_node(s, offline_node); | |
2730 | if (n) { | |
2731 | /* | |
2732 | * if n->nr_slabs > 0, slabs still exist on the node | |
2733 | * that is going down. We were unable to free them, | |
2734 | * and offline_pages() function shoudn't call this | |
2735 | * callback. So, we must fail. | |
2736 | */ | |
2737 | BUG_ON(atomic_read(&n->nr_slabs)); | |
2738 | ||
2739 | s->node[offline_node] = NULL; | |
2740 | kmem_cache_free(kmalloc_caches, n); | |
2741 | } | |
2742 | } | |
2743 | up_read(&slub_lock); | |
2744 | } | |
2745 | ||
2746 | static int slab_mem_going_online_callback(void *arg) | |
2747 | { | |
2748 | struct kmem_cache_node *n; | |
2749 | struct kmem_cache *s; | |
2750 | struct memory_notify *marg = arg; | |
2751 | int nid = marg->status_change_nid; | |
2752 | int ret = 0; | |
2753 | ||
2754 | /* | |
2755 | * If the node's memory is already available, then kmem_cache_node is | |
2756 | * already created. Nothing to do. | |
2757 | */ | |
2758 | if (nid < 0) | |
2759 | return 0; | |
2760 | ||
2761 | /* | |
2762 | * We are bringing a node online. No memory is availabe yet. We must | |
2763 | * allocate a kmem_cache_node structure in order to bring the node | |
2764 | * online. | |
2765 | */ | |
2766 | down_read(&slub_lock); | |
2767 | list_for_each_entry(s, &slab_caches, list) { | |
2768 | /* | |
2769 | * XXX: kmem_cache_alloc_node will fallback to other nodes | |
2770 | * since memory is not yet available from the node that | |
2771 | * is brought up. | |
2772 | */ | |
2773 | n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); | |
2774 | if (!n) { | |
2775 | ret = -ENOMEM; | |
2776 | goto out; | |
2777 | } | |
2778 | init_kmem_cache_node(n); | |
2779 | s->node[nid] = n; | |
2780 | } | |
2781 | out: | |
2782 | up_read(&slub_lock); | |
2783 | return ret; | |
2784 | } | |
2785 | ||
2786 | static int slab_memory_callback(struct notifier_block *self, | |
2787 | unsigned long action, void *arg) | |
2788 | { | |
2789 | int ret = 0; | |
2790 | ||
2791 | switch (action) { | |
2792 | case MEM_GOING_ONLINE: | |
2793 | ret = slab_mem_going_online_callback(arg); | |
2794 | break; | |
2795 | case MEM_GOING_OFFLINE: | |
2796 | ret = slab_mem_going_offline_callback(arg); | |
2797 | break; | |
2798 | case MEM_OFFLINE: | |
2799 | case MEM_CANCEL_ONLINE: | |
2800 | slab_mem_offline_callback(arg); | |
2801 | break; | |
2802 | case MEM_ONLINE: | |
2803 | case MEM_CANCEL_OFFLINE: | |
2804 | break; | |
2805 | } | |
2806 | ||
2807 | ret = notifier_from_errno(ret); | |
2808 | return ret; | |
2809 | } | |
2810 | ||
2811 | #endif /* CONFIG_MEMORY_HOTPLUG */ | |
2812 | ||
81819f0f CL |
2813 | /******************************************************************** |
2814 | * Basic setup of slabs | |
2815 | *******************************************************************/ | |
2816 | ||
2817 | void __init kmem_cache_init(void) | |
2818 | { | |
2819 | int i; | |
4b356be0 | 2820 | int caches = 0; |
81819f0f | 2821 | |
4c93c355 CL |
2822 | init_alloc_cpu(); |
2823 | ||
81819f0f CL |
2824 | #ifdef CONFIG_NUMA |
2825 | /* | |
2826 | * Must first have the slab cache available for the allocations of the | |
672bba3a | 2827 | * struct kmem_cache_node's. There is special bootstrap code in |
81819f0f CL |
2828 | * kmem_cache_open for slab_state == DOWN. |
2829 | */ | |
2830 | create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", | |
2831 | sizeof(struct kmem_cache_node), GFP_KERNEL); | |
8ffa6875 | 2832 | kmalloc_caches[0].refcount = -1; |
4b356be0 | 2833 | caches++; |
b9049e23 YG |
2834 | |
2835 | hotplug_memory_notifier(slab_memory_callback, 1); | |
81819f0f CL |
2836 | #endif |
2837 | ||
2838 | /* Able to allocate the per node structures */ | |
2839 | slab_state = PARTIAL; | |
2840 | ||
2841 | /* Caches that are not of the two-to-the-power-of size */ | |
4b356be0 CL |
2842 | if (KMALLOC_MIN_SIZE <= 64) { |
2843 | create_kmalloc_cache(&kmalloc_caches[1], | |
81819f0f | 2844 | "kmalloc-96", 96, GFP_KERNEL); |
4b356be0 CL |
2845 | caches++; |
2846 | } | |
2847 | if (KMALLOC_MIN_SIZE <= 128) { | |
2848 | create_kmalloc_cache(&kmalloc_caches[2], | |
81819f0f | 2849 | "kmalloc-192", 192, GFP_KERNEL); |
4b356be0 CL |
2850 | caches++; |
2851 | } | |
81819f0f | 2852 | |
aadb4bc4 | 2853 | for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) { |
81819f0f CL |
2854 | create_kmalloc_cache(&kmalloc_caches[i], |
2855 | "kmalloc", 1 << i, GFP_KERNEL); | |
4b356be0 CL |
2856 | caches++; |
2857 | } | |
81819f0f | 2858 | |
f1b26339 CL |
2859 | |
2860 | /* | |
2861 | * Patch up the size_index table if we have strange large alignment | |
2862 | * requirements for the kmalloc array. This is only the case for | |
2863 | * mips it seems. The standard arches will not generate any code here. | |
2864 | * | |
2865 | * Largest permitted alignment is 256 bytes due to the way we | |
2866 | * handle the index determination for the smaller caches. | |
2867 | * | |
2868 | * Make sure that nothing crazy happens if someone starts tinkering | |
2869 | * around with ARCH_KMALLOC_MINALIGN | |
2870 | */ | |
2871 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || | |
2872 | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | |
2873 | ||
12ad6843 | 2874 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) |
f1b26339 CL |
2875 | size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW; |
2876 | ||
81819f0f CL |
2877 | slab_state = UP; |
2878 | ||
2879 | /* Provide the correct kmalloc names now that the caches are up */ | |
aadb4bc4 | 2880 | for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) |
81819f0f CL |
2881 | kmalloc_caches[i]. name = |
2882 | kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); | |
2883 | ||
2884 | #ifdef CONFIG_SMP | |
2885 | register_cpu_notifier(&slab_notifier); | |
4c93c355 CL |
2886 | kmem_size = offsetof(struct kmem_cache, cpu_slab) + |
2887 | nr_cpu_ids * sizeof(struct kmem_cache_cpu *); | |
2888 | #else | |
2889 | kmem_size = sizeof(struct kmem_cache); | |
81819f0f CL |
2890 | #endif |
2891 | ||
81819f0f CL |
2892 | |
2893 | printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," | |
4b356be0 CL |
2894 | " CPUs=%d, Nodes=%d\n", |
2895 | caches, cache_line_size(), | |
81819f0f CL |
2896 | slub_min_order, slub_max_order, slub_min_objects, |
2897 | nr_cpu_ids, nr_node_ids); | |
2898 | } | |
2899 | ||
2900 | /* | |
2901 | * Find a mergeable slab cache | |
2902 | */ | |
2903 | static int slab_unmergeable(struct kmem_cache *s) | |
2904 | { | |
2905 | if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) | |
2906 | return 1; | |
2907 | ||
c59def9f | 2908 | if (s->ctor) |
81819f0f CL |
2909 | return 1; |
2910 | ||
8ffa6875 CL |
2911 | /* |
2912 | * We may have set a slab to be unmergeable during bootstrap. | |
2913 | */ | |
2914 | if (s->refcount < 0) | |
2915 | return 1; | |
2916 | ||
81819f0f CL |
2917 | return 0; |
2918 | } | |
2919 | ||
2920 | static struct kmem_cache *find_mergeable(size_t size, | |
ba0268a8 | 2921 | size_t align, unsigned long flags, const char *name, |
4ba9b9d0 | 2922 | void (*ctor)(struct kmem_cache *, void *)) |
81819f0f | 2923 | { |
5b95a4ac | 2924 | struct kmem_cache *s; |
81819f0f CL |
2925 | |
2926 | if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) | |
2927 | return NULL; | |
2928 | ||
c59def9f | 2929 | if (ctor) |
81819f0f CL |
2930 | return NULL; |
2931 | ||
2932 | size = ALIGN(size, sizeof(void *)); | |
2933 | align = calculate_alignment(flags, align, size); | |
2934 | size = ALIGN(size, align); | |
ba0268a8 | 2935 | flags = kmem_cache_flags(size, flags, name, NULL); |
81819f0f | 2936 | |
5b95a4ac | 2937 | list_for_each_entry(s, &slab_caches, list) { |
81819f0f CL |
2938 | if (slab_unmergeable(s)) |
2939 | continue; | |
2940 | ||
2941 | if (size > s->size) | |
2942 | continue; | |
2943 | ||
ba0268a8 | 2944 | if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) |
81819f0f CL |
2945 | continue; |
2946 | /* | |
2947 | * Check if alignment is compatible. | |
2948 | * Courtesy of Adrian Drzewiecki | |
2949 | */ | |
2950 | if ((s->size & ~(align -1)) != s->size) | |
2951 | continue; | |
2952 | ||
2953 | if (s->size - size >= sizeof(void *)) | |
2954 | continue; | |
2955 | ||
2956 | return s; | |
2957 | } | |
2958 | return NULL; | |
2959 | } | |
2960 | ||
2961 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, | |
2962 | size_t align, unsigned long flags, | |
4ba9b9d0 | 2963 | void (*ctor)(struct kmem_cache *, void *)) |
81819f0f CL |
2964 | { |
2965 | struct kmem_cache *s; | |
2966 | ||
2967 | down_write(&slub_lock); | |
ba0268a8 | 2968 | s = find_mergeable(size, align, flags, name, ctor); |
81819f0f | 2969 | if (s) { |
42a9fdbb CL |
2970 | int cpu; |
2971 | ||
81819f0f CL |
2972 | s->refcount++; |
2973 | /* | |
2974 | * Adjust the object sizes so that we clear | |
2975 | * the complete object on kzalloc. | |
2976 | */ | |
2977 | s->objsize = max(s->objsize, (int)size); | |
42a9fdbb CL |
2978 | |
2979 | /* | |
2980 | * And then we need to update the object size in the | |
2981 | * per cpu structures | |
2982 | */ | |
2983 | for_each_online_cpu(cpu) | |
2984 | get_cpu_slab(s, cpu)->objsize = s->objsize; | |
81819f0f | 2985 | s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); |
a0e1d1be | 2986 | up_write(&slub_lock); |
81819f0f CL |
2987 | if (sysfs_slab_alias(s, name)) |
2988 | goto err; | |
a0e1d1be CL |
2989 | return s; |
2990 | } | |
2991 | s = kmalloc(kmem_size, GFP_KERNEL); | |
2992 | if (s) { | |
2993 | if (kmem_cache_open(s, GFP_KERNEL, name, | |
c59def9f | 2994 | size, align, flags, ctor)) { |
81819f0f | 2995 | list_add(&s->list, &slab_caches); |
a0e1d1be CL |
2996 | up_write(&slub_lock); |
2997 | if (sysfs_slab_add(s)) | |
2998 | goto err; | |
2999 | return s; | |
3000 | } | |
3001 | kfree(s); | |
81819f0f CL |
3002 | } |
3003 | up_write(&slub_lock); | |
81819f0f CL |
3004 | |
3005 | err: | |
81819f0f CL |
3006 | if (flags & SLAB_PANIC) |
3007 | panic("Cannot create slabcache %s\n", name); | |
3008 | else | |
3009 | s = NULL; | |
3010 | return s; | |
3011 | } | |
3012 | EXPORT_SYMBOL(kmem_cache_create); | |
3013 | ||
81819f0f | 3014 | #ifdef CONFIG_SMP |
81819f0f | 3015 | /* |
672bba3a CL |
3016 | * Use the cpu notifier to insure that the cpu slabs are flushed when |
3017 | * necessary. | |
81819f0f CL |
3018 | */ |
3019 | static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, | |
3020 | unsigned long action, void *hcpu) | |
3021 | { | |
3022 | long cpu = (long)hcpu; | |
5b95a4ac CL |
3023 | struct kmem_cache *s; |
3024 | unsigned long flags; | |
81819f0f CL |
3025 | |
3026 | switch (action) { | |
4c93c355 CL |
3027 | case CPU_UP_PREPARE: |
3028 | case CPU_UP_PREPARE_FROZEN: | |
3029 | init_alloc_cpu_cpu(cpu); | |
3030 | down_read(&slub_lock); | |
3031 | list_for_each_entry(s, &slab_caches, list) | |
3032 | s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu, | |
3033 | GFP_KERNEL); | |
3034 | up_read(&slub_lock); | |
3035 | break; | |
3036 | ||
81819f0f | 3037 | case CPU_UP_CANCELED: |
8bb78442 | 3038 | case CPU_UP_CANCELED_FROZEN: |
81819f0f | 3039 | case CPU_DEAD: |
8bb78442 | 3040 | case CPU_DEAD_FROZEN: |
5b95a4ac CL |
3041 | down_read(&slub_lock); |
3042 | list_for_each_entry(s, &slab_caches, list) { | |
4c93c355 CL |
3043 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); |
3044 | ||
5b95a4ac CL |
3045 | local_irq_save(flags); |
3046 | __flush_cpu_slab(s, cpu); | |
3047 | local_irq_restore(flags); | |
4c93c355 CL |
3048 | free_kmem_cache_cpu(c, cpu); |
3049 | s->cpu_slab[cpu] = NULL; | |
5b95a4ac CL |
3050 | } |
3051 | up_read(&slub_lock); | |
81819f0f CL |
3052 | break; |
3053 | default: | |
3054 | break; | |
3055 | } | |
3056 | return NOTIFY_OK; | |
3057 | } | |
3058 | ||
3059 | static struct notifier_block __cpuinitdata slab_notifier = | |
3060 | { &slab_cpuup_callback, NULL, 0 }; | |
3061 | ||
3062 | #endif | |
3063 | ||
81819f0f CL |
3064 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller) |
3065 | { | |
aadb4bc4 CL |
3066 | struct kmem_cache *s; |
3067 | ||
3068 | if (unlikely(size > PAGE_SIZE / 2)) | |
3069 | return (void *)__get_free_pages(gfpflags | __GFP_COMP, | |
3070 | get_order(size)); | |
3071 | s = get_slab(size, gfpflags); | |
81819f0f | 3072 | |
2408c550 | 3073 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 3074 | return s; |
81819f0f | 3075 | |
ce15fea8 | 3076 | return slab_alloc(s, gfpflags, -1, caller); |
81819f0f CL |
3077 | } |
3078 | ||
3079 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | |
3080 | int node, void *caller) | |
3081 | { | |
aadb4bc4 CL |
3082 | struct kmem_cache *s; |
3083 | ||
3084 | if (unlikely(size > PAGE_SIZE / 2)) | |
3085 | return (void *)__get_free_pages(gfpflags | __GFP_COMP, | |
3086 | get_order(size)); | |
3087 | s = get_slab(size, gfpflags); | |
81819f0f | 3088 | |
2408c550 | 3089 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 3090 | return s; |
81819f0f | 3091 | |
ce15fea8 | 3092 | return slab_alloc(s, gfpflags, node, caller); |
81819f0f CL |
3093 | } |
3094 | ||
41ecc55b | 3095 | #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG) |
434e245d CL |
3096 | static int validate_slab(struct kmem_cache *s, struct page *page, |
3097 | unsigned long *map) | |
53e15af0 CL |
3098 | { |
3099 | void *p; | |
3100 | void *addr = page_address(page); | |
53e15af0 CL |
3101 | |
3102 | if (!check_slab(s, page) || | |
3103 | !on_freelist(s, page, NULL)) | |
3104 | return 0; | |
3105 | ||
3106 | /* Now we know that a valid freelist exists */ | |
3107 | bitmap_zero(map, s->objects); | |
3108 | ||
7656c72b CL |
3109 | for_each_free_object(p, s, page->freelist) { |
3110 | set_bit(slab_index(p, s, addr), map); | |
53e15af0 CL |
3111 | if (!check_object(s, page, p, 0)) |
3112 | return 0; | |
3113 | } | |
3114 | ||
7656c72b CL |
3115 | for_each_object(p, s, addr) |
3116 | if (!test_bit(slab_index(p, s, addr), map)) | |
53e15af0 CL |
3117 | if (!check_object(s, page, p, 1)) |
3118 | return 0; | |
3119 | return 1; | |
3120 | } | |
3121 | ||
434e245d CL |
3122 | static void validate_slab_slab(struct kmem_cache *s, struct page *page, |
3123 | unsigned long *map) | |
53e15af0 CL |
3124 | { |
3125 | if (slab_trylock(page)) { | |
434e245d | 3126 | validate_slab(s, page, map); |
53e15af0 CL |
3127 | slab_unlock(page); |
3128 | } else | |
3129 | printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", | |
3130 | s->name, page); | |
3131 | ||
3132 | if (s->flags & DEBUG_DEFAULT_FLAGS) { | |
35e5d7ee CL |
3133 | if (!SlabDebug(page)) |
3134 | printk(KERN_ERR "SLUB %s: SlabDebug not set " | |
53e15af0 CL |
3135 | "on slab 0x%p\n", s->name, page); |
3136 | } else { | |
35e5d7ee CL |
3137 | if (SlabDebug(page)) |
3138 | printk(KERN_ERR "SLUB %s: SlabDebug set on " | |
53e15af0 CL |
3139 | "slab 0x%p\n", s->name, page); |
3140 | } | |
3141 | } | |
3142 | ||
434e245d CL |
3143 | static int validate_slab_node(struct kmem_cache *s, |
3144 | struct kmem_cache_node *n, unsigned long *map) | |
53e15af0 CL |
3145 | { |
3146 | unsigned long count = 0; | |
3147 | struct page *page; | |
3148 | unsigned long flags; | |
3149 | ||
3150 | spin_lock_irqsave(&n->list_lock, flags); | |
3151 | ||
3152 | list_for_each_entry(page, &n->partial, lru) { | |
434e245d | 3153 | validate_slab_slab(s, page, map); |
53e15af0 CL |
3154 | count++; |
3155 | } | |
3156 | if (count != n->nr_partial) | |
3157 | printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " | |
3158 | "counter=%ld\n", s->name, count, n->nr_partial); | |
3159 | ||
3160 | if (!(s->flags & SLAB_STORE_USER)) | |
3161 | goto out; | |
3162 | ||
3163 | list_for_each_entry(page, &n->full, lru) { | |
434e245d | 3164 | validate_slab_slab(s, page, map); |
53e15af0 CL |
3165 | count++; |
3166 | } | |
3167 | if (count != atomic_long_read(&n->nr_slabs)) | |
3168 | printk(KERN_ERR "SLUB: %s %ld slabs counted but " | |
3169 | "counter=%ld\n", s->name, count, | |
3170 | atomic_long_read(&n->nr_slabs)); | |
3171 | ||
3172 | out: | |
3173 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3174 | return count; | |
3175 | } | |
3176 | ||
434e245d | 3177 | static long validate_slab_cache(struct kmem_cache *s) |
53e15af0 CL |
3178 | { |
3179 | int node; | |
3180 | unsigned long count = 0; | |
434e245d CL |
3181 | unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) * |
3182 | sizeof(unsigned long), GFP_KERNEL); | |
3183 | ||
3184 | if (!map) | |
3185 | return -ENOMEM; | |
53e15af0 CL |
3186 | |
3187 | flush_all(s); | |
f64dc58c | 3188 | for_each_node_state(node, N_NORMAL_MEMORY) { |
53e15af0 CL |
3189 | struct kmem_cache_node *n = get_node(s, node); |
3190 | ||
434e245d | 3191 | count += validate_slab_node(s, n, map); |
53e15af0 | 3192 | } |
434e245d | 3193 | kfree(map); |
53e15af0 CL |
3194 | return count; |
3195 | } | |
3196 | ||
b3459709 CL |
3197 | #ifdef SLUB_RESILIENCY_TEST |
3198 | static void resiliency_test(void) | |
3199 | { | |
3200 | u8 *p; | |
3201 | ||
3202 | printk(KERN_ERR "SLUB resiliency testing\n"); | |
3203 | printk(KERN_ERR "-----------------------\n"); | |
3204 | printk(KERN_ERR "A. Corruption after allocation\n"); | |
3205 | ||
3206 | p = kzalloc(16, GFP_KERNEL); | |
3207 | p[16] = 0x12; | |
3208 | printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" | |
3209 | " 0x12->0x%p\n\n", p + 16); | |
3210 | ||
3211 | validate_slab_cache(kmalloc_caches + 4); | |
3212 | ||
3213 | /* Hmmm... The next two are dangerous */ | |
3214 | p = kzalloc(32, GFP_KERNEL); | |
3215 | p[32 + sizeof(void *)] = 0x34; | |
3216 | printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" | |
3217 | " 0x34 -> -0x%p\n", p); | |
3218 | printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n"); | |
3219 | ||
3220 | validate_slab_cache(kmalloc_caches + 5); | |
3221 | p = kzalloc(64, GFP_KERNEL); | |
3222 | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | |
3223 | *p = 0x56; | |
3224 | printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", | |
3225 | p); | |
3226 | printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n"); | |
3227 | validate_slab_cache(kmalloc_caches + 6); | |
3228 | ||
3229 | printk(KERN_ERR "\nB. Corruption after free\n"); | |
3230 | p = kzalloc(128, GFP_KERNEL); | |
3231 | kfree(p); | |
3232 | *p = 0x78; | |
3233 | printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); | |
3234 | validate_slab_cache(kmalloc_caches + 7); | |
3235 | ||
3236 | p = kzalloc(256, GFP_KERNEL); | |
3237 | kfree(p); | |
3238 | p[50] = 0x9a; | |
3239 | printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); | |
3240 | validate_slab_cache(kmalloc_caches + 8); | |
3241 | ||
3242 | p = kzalloc(512, GFP_KERNEL); | |
3243 | kfree(p); | |
3244 | p[512] = 0xab; | |
3245 | printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); | |
3246 | validate_slab_cache(kmalloc_caches + 9); | |
3247 | } | |
3248 | #else | |
3249 | static void resiliency_test(void) {}; | |
3250 | #endif | |
3251 | ||
88a420e4 | 3252 | /* |
672bba3a | 3253 | * Generate lists of code addresses where slabcache objects are allocated |
88a420e4 CL |
3254 | * and freed. |
3255 | */ | |
3256 | ||
3257 | struct location { | |
3258 | unsigned long count; | |
3259 | void *addr; | |
45edfa58 CL |
3260 | long long sum_time; |
3261 | long min_time; | |
3262 | long max_time; | |
3263 | long min_pid; | |
3264 | long max_pid; | |
3265 | cpumask_t cpus; | |
3266 | nodemask_t nodes; | |
88a420e4 CL |
3267 | }; |
3268 | ||
3269 | struct loc_track { | |
3270 | unsigned long max; | |
3271 | unsigned long count; | |
3272 | struct location *loc; | |
3273 | }; | |
3274 | ||
3275 | static void free_loc_track(struct loc_track *t) | |
3276 | { | |
3277 | if (t->max) | |
3278 | free_pages((unsigned long)t->loc, | |
3279 | get_order(sizeof(struct location) * t->max)); | |
3280 | } | |
3281 | ||
68dff6a9 | 3282 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
88a420e4 CL |
3283 | { |
3284 | struct location *l; | |
3285 | int order; | |
3286 | ||
88a420e4 CL |
3287 | order = get_order(sizeof(struct location) * max); |
3288 | ||
68dff6a9 | 3289 | l = (void *)__get_free_pages(flags, order); |
88a420e4 CL |
3290 | if (!l) |
3291 | return 0; | |
3292 | ||
3293 | if (t->count) { | |
3294 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
3295 | free_loc_track(t); | |
3296 | } | |
3297 | t->max = max; | |
3298 | t->loc = l; | |
3299 | return 1; | |
3300 | } | |
3301 | ||
3302 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
45edfa58 | 3303 | const struct track *track) |
88a420e4 CL |
3304 | { |
3305 | long start, end, pos; | |
3306 | struct location *l; | |
3307 | void *caddr; | |
45edfa58 | 3308 | unsigned long age = jiffies - track->when; |
88a420e4 CL |
3309 | |
3310 | start = -1; | |
3311 | end = t->count; | |
3312 | ||
3313 | for ( ; ; ) { | |
3314 | pos = start + (end - start + 1) / 2; | |
3315 | ||
3316 | /* | |
3317 | * There is nothing at "end". If we end up there | |
3318 | * we need to add something to before end. | |
3319 | */ | |
3320 | if (pos == end) | |
3321 | break; | |
3322 | ||
3323 | caddr = t->loc[pos].addr; | |
45edfa58 CL |
3324 | if (track->addr == caddr) { |
3325 | ||
3326 | l = &t->loc[pos]; | |
3327 | l->count++; | |
3328 | if (track->when) { | |
3329 | l->sum_time += age; | |
3330 | if (age < l->min_time) | |
3331 | l->min_time = age; | |
3332 | if (age > l->max_time) | |
3333 | l->max_time = age; | |
3334 | ||
3335 | if (track->pid < l->min_pid) | |
3336 | l->min_pid = track->pid; | |
3337 | if (track->pid > l->max_pid) | |
3338 | l->max_pid = track->pid; | |
3339 | ||
3340 | cpu_set(track->cpu, l->cpus); | |
3341 | } | |
3342 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
3343 | return 1; |
3344 | } | |
3345 | ||
45edfa58 | 3346 | if (track->addr < caddr) |
88a420e4 CL |
3347 | end = pos; |
3348 | else | |
3349 | start = pos; | |
3350 | } | |
3351 | ||
3352 | /* | |
672bba3a | 3353 | * Not found. Insert new tracking element. |
88a420e4 | 3354 | */ |
68dff6a9 | 3355 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
88a420e4 CL |
3356 | return 0; |
3357 | ||
3358 | l = t->loc + pos; | |
3359 | if (pos < t->count) | |
3360 | memmove(l + 1, l, | |
3361 | (t->count - pos) * sizeof(struct location)); | |
3362 | t->count++; | |
3363 | l->count = 1; | |
45edfa58 CL |
3364 | l->addr = track->addr; |
3365 | l->sum_time = age; | |
3366 | l->min_time = age; | |
3367 | l->max_time = age; | |
3368 | l->min_pid = track->pid; | |
3369 | l->max_pid = track->pid; | |
3370 | cpus_clear(l->cpus); | |
3371 | cpu_set(track->cpu, l->cpus); | |
3372 | nodes_clear(l->nodes); | |
3373 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
3374 | return 1; |
3375 | } | |
3376 | ||
3377 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
3378 | struct page *page, enum track_item alloc) | |
3379 | { | |
3380 | void *addr = page_address(page); | |
7656c72b | 3381 | DECLARE_BITMAP(map, s->objects); |
88a420e4 CL |
3382 | void *p; |
3383 | ||
3384 | bitmap_zero(map, s->objects); | |
7656c72b CL |
3385 | for_each_free_object(p, s, page->freelist) |
3386 | set_bit(slab_index(p, s, addr), map); | |
88a420e4 | 3387 | |
7656c72b | 3388 | for_each_object(p, s, addr) |
45edfa58 CL |
3389 | if (!test_bit(slab_index(p, s, addr), map)) |
3390 | add_location(t, s, get_track(s, p, alloc)); | |
88a420e4 CL |
3391 | } |
3392 | ||
3393 | static int list_locations(struct kmem_cache *s, char *buf, | |
3394 | enum track_item alloc) | |
3395 | { | |
3396 | int n = 0; | |
3397 | unsigned long i; | |
68dff6a9 | 3398 | struct loc_track t = { 0, 0, NULL }; |
88a420e4 CL |
3399 | int node; |
3400 | ||
68dff6a9 | 3401 | if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), |
ea3061d2 | 3402 | GFP_TEMPORARY)) |
68dff6a9 | 3403 | return sprintf(buf, "Out of memory\n"); |
88a420e4 CL |
3404 | |
3405 | /* Push back cpu slabs */ | |
3406 | flush_all(s); | |
3407 | ||
f64dc58c | 3408 | for_each_node_state(node, N_NORMAL_MEMORY) { |
88a420e4 CL |
3409 | struct kmem_cache_node *n = get_node(s, node); |
3410 | unsigned long flags; | |
3411 | struct page *page; | |
3412 | ||
9e86943b | 3413 | if (!atomic_long_read(&n->nr_slabs)) |
88a420e4 CL |
3414 | continue; |
3415 | ||
3416 | spin_lock_irqsave(&n->list_lock, flags); | |
3417 | list_for_each_entry(page, &n->partial, lru) | |
3418 | process_slab(&t, s, page, alloc); | |
3419 | list_for_each_entry(page, &n->full, lru) | |
3420 | process_slab(&t, s, page, alloc); | |
3421 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3422 | } | |
3423 | ||
3424 | for (i = 0; i < t.count; i++) { | |
45edfa58 | 3425 | struct location *l = &t.loc[i]; |
88a420e4 CL |
3426 | |
3427 | if (n > PAGE_SIZE - 100) | |
3428 | break; | |
45edfa58 CL |
3429 | n += sprintf(buf + n, "%7ld ", l->count); |
3430 | ||
3431 | if (l->addr) | |
3432 | n += sprint_symbol(buf + n, (unsigned long)l->addr); | |
88a420e4 CL |
3433 | else |
3434 | n += sprintf(buf + n, "<not-available>"); | |
45edfa58 CL |
3435 | |
3436 | if (l->sum_time != l->min_time) { | |
3437 | unsigned long remainder; | |
3438 | ||
3439 | n += sprintf(buf + n, " age=%ld/%ld/%ld", | |
3440 | l->min_time, | |
3441 | div_long_long_rem(l->sum_time, l->count, &remainder), | |
3442 | l->max_time); | |
3443 | } else | |
3444 | n += sprintf(buf + n, " age=%ld", | |
3445 | l->min_time); | |
3446 | ||
3447 | if (l->min_pid != l->max_pid) | |
3448 | n += sprintf(buf + n, " pid=%ld-%ld", | |
3449 | l->min_pid, l->max_pid); | |
3450 | else | |
3451 | n += sprintf(buf + n, " pid=%ld", | |
3452 | l->min_pid); | |
3453 | ||
84966343 CL |
3454 | if (num_online_cpus() > 1 && !cpus_empty(l->cpus) && |
3455 | n < PAGE_SIZE - 60) { | |
45edfa58 CL |
3456 | n += sprintf(buf + n, " cpus="); |
3457 | n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50, | |
3458 | l->cpus); | |
3459 | } | |
3460 | ||
84966343 CL |
3461 | if (num_online_nodes() > 1 && !nodes_empty(l->nodes) && |
3462 | n < PAGE_SIZE - 60) { | |
45edfa58 CL |
3463 | n += sprintf(buf + n, " nodes="); |
3464 | n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50, | |
3465 | l->nodes); | |
3466 | } | |
3467 | ||
88a420e4 CL |
3468 | n += sprintf(buf + n, "\n"); |
3469 | } | |
3470 | ||
3471 | free_loc_track(&t); | |
3472 | if (!t.count) | |
3473 | n += sprintf(buf, "No data\n"); | |
3474 | return n; | |
3475 | } | |
3476 | ||
81819f0f CL |
3477 | static unsigned long count_partial(struct kmem_cache_node *n) |
3478 | { | |
3479 | unsigned long flags; | |
3480 | unsigned long x = 0; | |
3481 | struct page *page; | |
3482 | ||
3483 | spin_lock_irqsave(&n->list_lock, flags); | |
3484 | list_for_each_entry(page, &n->partial, lru) | |
3485 | x += page->inuse; | |
3486 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3487 | return x; | |
3488 | } | |
3489 | ||
3490 | enum slab_stat_type { | |
3491 | SL_FULL, | |
3492 | SL_PARTIAL, | |
3493 | SL_CPU, | |
3494 | SL_OBJECTS | |
3495 | }; | |
3496 | ||
3497 | #define SO_FULL (1 << SL_FULL) | |
3498 | #define SO_PARTIAL (1 << SL_PARTIAL) | |
3499 | #define SO_CPU (1 << SL_CPU) | |
3500 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
3501 | ||
3502 | static unsigned long slab_objects(struct kmem_cache *s, | |
3503 | char *buf, unsigned long flags) | |
3504 | { | |
3505 | unsigned long total = 0; | |
3506 | int cpu; | |
3507 | int node; | |
3508 | int x; | |
3509 | unsigned long *nodes; | |
3510 | unsigned long *per_cpu; | |
3511 | ||
3512 | nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); | |
3513 | per_cpu = nodes + nr_node_ids; | |
3514 | ||
3515 | for_each_possible_cpu(cpu) { | |
dfb4f096 | 3516 | struct page *page; |
ee3c72a1 | 3517 | int node; |
dfb4f096 | 3518 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); |
81819f0f | 3519 | |
dfb4f096 CL |
3520 | if (!c) |
3521 | continue; | |
3522 | ||
3523 | page = c->page; | |
ee3c72a1 CL |
3524 | node = c->node; |
3525 | if (node < 0) | |
3526 | continue; | |
81819f0f | 3527 | if (page) { |
81819f0f CL |
3528 | if (flags & SO_CPU) { |
3529 | int x = 0; | |
3530 | ||
3531 | if (flags & SO_OBJECTS) | |
3532 | x = page->inuse; | |
3533 | else | |
3534 | x = 1; | |
3535 | total += x; | |
ee3c72a1 | 3536 | nodes[node] += x; |
81819f0f | 3537 | } |
ee3c72a1 | 3538 | per_cpu[node]++; |
81819f0f CL |
3539 | } |
3540 | } | |
3541 | ||
f64dc58c | 3542 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
3543 | struct kmem_cache_node *n = get_node(s, node); |
3544 | ||
3545 | if (flags & SO_PARTIAL) { | |
3546 | if (flags & SO_OBJECTS) | |
3547 | x = count_partial(n); | |
3548 | else | |
3549 | x = n->nr_partial; | |
3550 | total += x; | |
3551 | nodes[node] += x; | |
3552 | } | |
3553 | ||
3554 | if (flags & SO_FULL) { | |
9e86943b | 3555 | int full_slabs = atomic_long_read(&n->nr_slabs) |
81819f0f CL |
3556 | - per_cpu[node] |
3557 | - n->nr_partial; | |
3558 | ||
3559 | if (flags & SO_OBJECTS) | |
3560 | x = full_slabs * s->objects; | |
3561 | else | |
3562 | x = full_slabs; | |
3563 | total += x; | |
3564 | nodes[node] += x; | |
3565 | } | |
3566 | } | |
3567 | ||
3568 | x = sprintf(buf, "%lu", total); | |
3569 | #ifdef CONFIG_NUMA | |
f64dc58c | 3570 | for_each_node_state(node, N_NORMAL_MEMORY) |
81819f0f CL |
3571 | if (nodes[node]) |
3572 | x += sprintf(buf + x, " N%d=%lu", | |
3573 | node, nodes[node]); | |
3574 | #endif | |
3575 | kfree(nodes); | |
3576 | return x + sprintf(buf + x, "\n"); | |
3577 | } | |
3578 | ||
3579 | static int any_slab_objects(struct kmem_cache *s) | |
3580 | { | |
3581 | int node; | |
3582 | int cpu; | |
3583 | ||
dfb4f096 CL |
3584 | for_each_possible_cpu(cpu) { |
3585 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | |
3586 | ||
3587 | if (c && c->page) | |
81819f0f | 3588 | return 1; |
dfb4f096 | 3589 | } |
81819f0f | 3590 | |
dfb4f096 | 3591 | for_each_online_node(node) { |
81819f0f CL |
3592 | struct kmem_cache_node *n = get_node(s, node); |
3593 | ||
dfb4f096 CL |
3594 | if (!n) |
3595 | continue; | |
3596 | ||
9e86943b | 3597 | if (n->nr_partial || atomic_long_read(&n->nr_slabs)) |
81819f0f CL |
3598 | return 1; |
3599 | } | |
3600 | return 0; | |
3601 | } | |
3602 | ||
3603 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | |
3604 | #define to_slab(n) container_of(n, struct kmem_cache, kobj); | |
3605 | ||
3606 | struct slab_attribute { | |
3607 | struct attribute attr; | |
3608 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
3609 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
3610 | }; | |
3611 | ||
3612 | #define SLAB_ATTR_RO(_name) \ | |
3613 | static struct slab_attribute _name##_attr = __ATTR_RO(_name) | |
3614 | ||
3615 | #define SLAB_ATTR(_name) \ | |
3616 | static struct slab_attribute _name##_attr = \ | |
3617 | __ATTR(_name, 0644, _name##_show, _name##_store) | |
3618 | ||
81819f0f CL |
3619 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
3620 | { | |
3621 | return sprintf(buf, "%d\n", s->size); | |
3622 | } | |
3623 | SLAB_ATTR_RO(slab_size); | |
3624 | ||
3625 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
3626 | { | |
3627 | return sprintf(buf, "%d\n", s->align); | |
3628 | } | |
3629 | SLAB_ATTR_RO(align); | |
3630 | ||
3631 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
3632 | { | |
3633 | return sprintf(buf, "%d\n", s->objsize); | |
3634 | } | |
3635 | SLAB_ATTR_RO(object_size); | |
3636 | ||
3637 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
3638 | { | |
3639 | return sprintf(buf, "%d\n", s->objects); | |
3640 | } | |
3641 | SLAB_ATTR_RO(objs_per_slab); | |
3642 | ||
3643 | static ssize_t order_show(struct kmem_cache *s, char *buf) | |
3644 | { | |
3645 | return sprintf(buf, "%d\n", s->order); | |
3646 | } | |
3647 | SLAB_ATTR_RO(order); | |
3648 | ||
3649 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) | |
3650 | { | |
3651 | if (s->ctor) { | |
3652 | int n = sprint_symbol(buf, (unsigned long)s->ctor); | |
3653 | ||
3654 | return n + sprintf(buf + n, "\n"); | |
3655 | } | |
3656 | return 0; | |
3657 | } | |
3658 | SLAB_ATTR_RO(ctor); | |
3659 | ||
81819f0f CL |
3660 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
3661 | { | |
3662 | return sprintf(buf, "%d\n", s->refcount - 1); | |
3663 | } | |
3664 | SLAB_ATTR_RO(aliases); | |
3665 | ||
3666 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) | |
3667 | { | |
3668 | return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU); | |
3669 | } | |
3670 | SLAB_ATTR_RO(slabs); | |
3671 | ||
3672 | static ssize_t partial_show(struct kmem_cache *s, char *buf) | |
3673 | { | |
3674 | return slab_objects(s, buf, SO_PARTIAL); | |
3675 | } | |
3676 | SLAB_ATTR_RO(partial); | |
3677 | ||
3678 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
3679 | { | |
3680 | return slab_objects(s, buf, SO_CPU); | |
3681 | } | |
3682 | SLAB_ATTR_RO(cpu_slabs); | |
3683 | ||
3684 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | |
3685 | { | |
3686 | return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS); | |
3687 | } | |
3688 | SLAB_ATTR_RO(objects); | |
3689 | ||
3690 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) | |
3691 | { | |
3692 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); | |
3693 | } | |
3694 | ||
3695 | static ssize_t sanity_checks_store(struct kmem_cache *s, | |
3696 | const char *buf, size_t length) | |
3697 | { | |
3698 | s->flags &= ~SLAB_DEBUG_FREE; | |
3699 | if (buf[0] == '1') | |
3700 | s->flags |= SLAB_DEBUG_FREE; | |
3701 | return length; | |
3702 | } | |
3703 | SLAB_ATTR(sanity_checks); | |
3704 | ||
3705 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
3706 | { | |
3707 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | |
3708 | } | |
3709 | ||
3710 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | |
3711 | size_t length) | |
3712 | { | |
3713 | s->flags &= ~SLAB_TRACE; | |
3714 | if (buf[0] == '1') | |
3715 | s->flags |= SLAB_TRACE; | |
3716 | return length; | |
3717 | } | |
3718 | SLAB_ATTR(trace); | |
3719 | ||
3720 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) | |
3721 | { | |
3722 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | |
3723 | } | |
3724 | ||
3725 | static ssize_t reclaim_account_store(struct kmem_cache *s, | |
3726 | const char *buf, size_t length) | |
3727 | { | |
3728 | s->flags &= ~SLAB_RECLAIM_ACCOUNT; | |
3729 | if (buf[0] == '1') | |
3730 | s->flags |= SLAB_RECLAIM_ACCOUNT; | |
3731 | return length; | |
3732 | } | |
3733 | SLAB_ATTR(reclaim_account); | |
3734 | ||
3735 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
3736 | { | |
5af60839 | 3737 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); |
81819f0f CL |
3738 | } |
3739 | SLAB_ATTR_RO(hwcache_align); | |
3740 | ||
3741 | #ifdef CONFIG_ZONE_DMA | |
3742 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
3743 | { | |
3744 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | |
3745 | } | |
3746 | SLAB_ATTR_RO(cache_dma); | |
3747 | #endif | |
3748 | ||
3749 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) | |
3750 | { | |
3751 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); | |
3752 | } | |
3753 | SLAB_ATTR_RO(destroy_by_rcu); | |
3754 | ||
3755 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) | |
3756 | { | |
3757 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | |
3758 | } | |
3759 | ||
3760 | static ssize_t red_zone_store(struct kmem_cache *s, | |
3761 | const char *buf, size_t length) | |
3762 | { | |
3763 | if (any_slab_objects(s)) | |
3764 | return -EBUSY; | |
3765 | ||
3766 | s->flags &= ~SLAB_RED_ZONE; | |
3767 | if (buf[0] == '1') | |
3768 | s->flags |= SLAB_RED_ZONE; | |
3769 | calculate_sizes(s); | |
3770 | return length; | |
3771 | } | |
3772 | SLAB_ATTR(red_zone); | |
3773 | ||
3774 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
3775 | { | |
3776 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | |
3777 | } | |
3778 | ||
3779 | static ssize_t poison_store(struct kmem_cache *s, | |
3780 | const char *buf, size_t length) | |
3781 | { | |
3782 | if (any_slab_objects(s)) | |
3783 | return -EBUSY; | |
3784 | ||
3785 | s->flags &= ~SLAB_POISON; | |
3786 | if (buf[0] == '1') | |
3787 | s->flags |= SLAB_POISON; | |
3788 | calculate_sizes(s); | |
3789 | return length; | |
3790 | } | |
3791 | SLAB_ATTR(poison); | |
3792 | ||
3793 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
3794 | { | |
3795 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | |
3796 | } | |
3797 | ||
3798 | static ssize_t store_user_store(struct kmem_cache *s, | |
3799 | const char *buf, size_t length) | |
3800 | { | |
3801 | if (any_slab_objects(s)) | |
3802 | return -EBUSY; | |
3803 | ||
3804 | s->flags &= ~SLAB_STORE_USER; | |
3805 | if (buf[0] == '1') | |
3806 | s->flags |= SLAB_STORE_USER; | |
3807 | calculate_sizes(s); | |
3808 | return length; | |
3809 | } | |
3810 | SLAB_ATTR(store_user); | |
3811 | ||
53e15af0 CL |
3812 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
3813 | { | |
3814 | return 0; | |
3815 | } | |
3816 | ||
3817 | static ssize_t validate_store(struct kmem_cache *s, | |
3818 | const char *buf, size_t length) | |
3819 | { | |
434e245d CL |
3820 | int ret = -EINVAL; |
3821 | ||
3822 | if (buf[0] == '1') { | |
3823 | ret = validate_slab_cache(s); | |
3824 | if (ret >= 0) | |
3825 | ret = length; | |
3826 | } | |
3827 | return ret; | |
53e15af0 CL |
3828 | } |
3829 | SLAB_ATTR(validate); | |
3830 | ||
2086d26a CL |
3831 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
3832 | { | |
3833 | return 0; | |
3834 | } | |
3835 | ||
3836 | static ssize_t shrink_store(struct kmem_cache *s, | |
3837 | const char *buf, size_t length) | |
3838 | { | |
3839 | if (buf[0] == '1') { | |
3840 | int rc = kmem_cache_shrink(s); | |
3841 | ||
3842 | if (rc) | |
3843 | return rc; | |
3844 | } else | |
3845 | return -EINVAL; | |
3846 | return length; | |
3847 | } | |
3848 | SLAB_ATTR(shrink); | |
3849 | ||
88a420e4 CL |
3850 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) |
3851 | { | |
3852 | if (!(s->flags & SLAB_STORE_USER)) | |
3853 | return -ENOSYS; | |
3854 | return list_locations(s, buf, TRACK_ALLOC); | |
3855 | } | |
3856 | SLAB_ATTR_RO(alloc_calls); | |
3857 | ||
3858 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | |
3859 | { | |
3860 | if (!(s->flags & SLAB_STORE_USER)) | |
3861 | return -ENOSYS; | |
3862 | return list_locations(s, buf, TRACK_FREE); | |
3863 | } | |
3864 | SLAB_ATTR_RO(free_calls); | |
3865 | ||
81819f0f CL |
3866 | #ifdef CONFIG_NUMA |
3867 | static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf) | |
3868 | { | |
3869 | return sprintf(buf, "%d\n", s->defrag_ratio / 10); | |
3870 | } | |
3871 | ||
3872 | static ssize_t defrag_ratio_store(struct kmem_cache *s, | |
3873 | const char *buf, size_t length) | |
3874 | { | |
3875 | int n = simple_strtoul(buf, NULL, 10); | |
3876 | ||
3877 | if (n < 100) | |
3878 | s->defrag_ratio = n * 10; | |
3879 | return length; | |
3880 | } | |
3881 | SLAB_ATTR(defrag_ratio); | |
3882 | #endif | |
3883 | ||
3884 | static struct attribute * slab_attrs[] = { | |
3885 | &slab_size_attr.attr, | |
3886 | &object_size_attr.attr, | |
3887 | &objs_per_slab_attr.attr, | |
3888 | &order_attr.attr, | |
3889 | &objects_attr.attr, | |
3890 | &slabs_attr.attr, | |
3891 | &partial_attr.attr, | |
3892 | &cpu_slabs_attr.attr, | |
3893 | &ctor_attr.attr, | |
81819f0f CL |
3894 | &aliases_attr.attr, |
3895 | &align_attr.attr, | |
3896 | &sanity_checks_attr.attr, | |
3897 | &trace_attr.attr, | |
3898 | &hwcache_align_attr.attr, | |
3899 | &reclaim_account_attr.attr, | |
3900 | &destroy_by_rcu_attr.attr, | |
3901 | &red_zone_attr.attr, | |
3902 | &poison_attr.attr, | |
3903 | &store_user_attr.attr, | |
53e15af0 | 3904 | &validate_attr.attr, |
2086d26a | 3905 | &shrink_attr.attr, |
88a420e4 CL |
3906 | &alloc_calls_attr.attr, |
3907 | &free_calls_attr.attr, | |
81819f0f CL |
3908 | #ifdef CONFIG_ZONE_DMA |
3909 | &cache_dma_attr.attr, | |
3910 | #endif | |
3911 | #ifdef CONFIG_NUMA | |
3912 | &defrag_ratio_attr.attr, | |
3913 | #endif | |
3914 | NULL | |
3915 | }; | |
3916 | ||
3917 | static struct attribute_group slab_attr_group = { | |
3918 | .attrs = slab_attrs, | |
3919 | }; | |
3920 | ||
3921 | static ssize_t slab_attr_show(struct kobject *kobj, | |
3922 | struct attribute *attr, | |
3923 | char *buf) | |
3924 | { | |
3925 | struct slab_attribute *attribute; | |
3926 | struct kmem_cache *s; | |
3927 | int err; | |
3928 | ||
3929 | attribute = to_slab_attr(attr); | |
3930 | s = to_slab(kobj); | |
3931 | ||
3932 | if (!attribute->show) | |
3933 | return -EIO; | |
3934 | ||
3935 | err = attribute->show(s, buf); | |
3936 | ||
3937 | return err; | |
3938 | } | |
3939 | ||
3940 | static ssize_t slab_attr_store(struct kobject *kobj, | |
3941 | struct attribute *attr, | |
3942 | const char *buf, size_t len) | |
3943 | { | |
3944 | struct slab_attribute *attribute; | |
3945 | struct kmem_cache *s; | |
3946 | int err; | |
3947 | ||
3948 | attribute = to_slab_attr(attr); | |
3949 | s = to_slab(kobj); | |
3950 | ||
3951 | if (!attribute->store) | |
3952 | return -EIO; | |
3953 | ||
3954 | err = attribute->store(s, buf, len); | |
3955 | ||
3956 | return err; | |
3957 | } | |
3958 | ||
3959 | static struct sysfs_ops slab_sysfs_ops = { | |
3960 | .show = slab_attr_show, | |
3961 | .store = slab_attr_store, | |
3962 | }; | |
3963 | ||
3964 | static struct kobj_type slab_ktype = { | |
3965 | .sysfs_ops = &slab_sysfs_ops, | |
3966 | }; | |
3967 | ||
3968 | static int uevent_filter(struct kset *kset, struct kobject *kobj) | |
3969 | { | |
3970 | struct kobj_type *ktype = get_ktype(kobj); | |
3971 | ||
3972 | if (ktype == &slab_ktype) | |
3973 | return 1; | |
3974 | return 0; | |
3975 | } | |
3976 | ||
3977 | static struct kset_uevent_ops slab_uevent_ops = { | |
3978 | .filter = uevent_filter, | |
3979 | }; | |
3980 | ||
5af328a5 | 3981 | static decl_subsys(slab, &slab_ktype, &slab_uevent_ops); |
81819f0f CL |
3982 | |
3983 | #define ID_STR_LENGTH 64 | |
3984 | ||
3985 | /* Create a unique string id for a slab cache: | |
3986 | * format | |
3987 | * :[flags-]size:[memory address of kmemcache] | |
3988 | */ | |
3989 | static char *create_unique_id(struct kmem_cache *s) | |
3990 | { | |
3991 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
3992 | char *p = name; | |
3993 | ||
3994 | BUG_ON(!name); | |
3995 | ||
3996 | *p++ = ':'; | |
3997 | /* | |
3998 | * First flags affecting slabcache operations. We will only | |
3999 | * get here for aliasable slabs so we do not need to support | |
4000 | * too many flags. The flags here must cover all flags that | |
4001 | * are matched during merging to guarantee that the id is | |
4002 | * unique. | |
4003 | */ | |
4004 | if (s->flags & SLAB_CACHE_DMA) | |
4005 | *p++ = 'd'; | |
4006 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
4007 | *p++ = 'a'; | |
4008 | if (s->flags & SLAB_DEBUG_FREE) | |
4009 | *p++ = 'F'; | |
4010 | if (p != name + 1) | |
4011 | *p++ = '-'; | |
4012 | p += sprintf(p, "%07d", s->size); | |
4013 | BUG_ON(p > name + ID_STR_LENGTH - 1); | |
4014 | return name; | |
4015 | } | |
4016 | ||
4017 | static int sysfs_slab_add(struct kmem_cache *s) | |
4018 | { | |
4019 | int err; | |
4020 | const char *name; | |
4021 | int unmergeable; | |
4022 | ||
4023 | if (slab_state < SYSFS) | |
4024 | /* Defer until later */ | |
4025 | return 0; | |
4026 | ||
4027 | unmergeable = slab_unmergeable(s); | |
4028 | if (unmergeable) { | |
4029 | /* | |
4030 | * Slabcache can never be merged so we can use the name proper. | |
4031 | * This is typically the case for debug situations. In that | |
4032 | * case we can catch duplicate names easily. | |
4033 | */ | |
0f9008ef | 4034 | sysfs_remove_link(&slab_subsys.kobj, s->name); |
81819f0f CL |
4035 | name = s->name; |
4036 | } else { | |
4037 | /* | |
4038 | * Create a unique name for the slab as a target | |
4039 | * for the symlinks. | |
4040 | */ | |
4041 | name = create_unique_id(s); | |
4042 | } | |
4043 | ||
4044 | kobj_set_kset_s(s, slab_subsys); | |
4045 | kobject_set_name(&s->kobj, name); | |
4046 | kobject_init(&s->kobj); | |
4047 | err = kobject_add(&s->kobj); | |
4048 | if (err) | |
4049 | return err; | |
4050 | ||
4051 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
4052 | if (err) | |
4053 | return err; | |
4054 | kobject_uevent(&s->kobj, KOBJ_ADD); | |
4055 | if (!unmergeable) { | |
4056 | /* Setup first alias */ | |
4057 | sysfs_slab_alias(s, s->name); | |
4058 | kfree(name); | |
4059 | } | |
4060 | return 0; | |
4061 | } | |
4062 | ||
4063 | static void sysfs_slab_remove(struct kmem_cache *s) | |
4064 | { | |
4065 | kobject_uevent(&s->kobj, KOBJ_REMOVE); | |
4066 | kobject_del(&s->kobj); | |
4067 | } | |
4068 | ||
4069 | /* | |
4070 | * Need to buffer aliases during bootup until sysfs becomes | |
4071 | * available lest we loose that information. | |
4072 | */ | |
4073 | struct saved_alias { | |
4074 | struct kmem_cache *s; | |
4075 | const char *name; | |
4076 | struct saved_alias *next; | |
4077 | }; | |
4078 | ||
5af328a5 | 4079 | static struct saved_alias *alias_list; |
81819f0f CL |
4080 | |
4081 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
4082 | { | |
4083 | struct saved_alias *al; | |
4084 | ||
4085 | if (slab_state == SYSFS) { | |
4086 | /* | |
4087 | * If we have a leftover link then remove it. | |
4088 | */ | |
0f9008ef LT |
4089 | sysfs_remove_link(&slab_subsys.kobj, name); |
4090 | return sysfs_create_link(&slab_subsys.kobj, | |
81819f0f CL |
4091 | &s->kobj, name); |
4092 | } | |
4093 | ||
4094 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
4095 | if (!al) | |
4096 | return -ENOMEM; | |
4097 | ||
4098 | al->s = s; | |
4099 | al->name = name; | |
4100 | al->next = alias_list; | |
4101 | alias_list = al; | |
4102 | return 0; | |
4103 | } | |
4104 | ||
4105 | static int __init slab_sysfs_init(void) | |
4106 | { | |
5b95a4ac | 4107 | struct kmem_cache *s; |
81819f0f CL |
4108 | int err; |
4109 | ||
4110 | err = subsystem_register(&slab_subsys); | |
4111 | if (err) { | |
4112 | printk(KERN_ERR "Cannot register slab subsystem.\n"); | |
4113 | return -ENOSYS; | |
4114 | } | |
4115 | ||
26a7bd03 CL |
4116 | slab_state = SYSFS; |
4117 | ||
5b95a4ac | 4118 | list_for_each_entry(s, &slab_caches, list) { |
26a7bd03 | 4119 | err = sysfs_slab_add(s); |
5d540fb7 CL |
4120 | if (err) |
4121 | printk(KERN_ERR "SLUB: Unable to add boot slab %s" | |
4122 | " to sysfs\n", s->name); | |
26a7bd03 | 4123 | } |
81819f0f CL |
4124 | |
4125 | while (alias_list) { | |
4126 | struct saved_alias *al = alias_list; | |
4127 | ||
4128 | alias_list = alias_list->next; | |
4129 | err = sysfs_slab_alias(al->s, al->name); | |
5d540fb7 CL |
4130 | if (err) |
4131 | printk(KERN_ERR "SLUB: Unable to add boot slab alias" | |
4132 | " %s to sysfs\n", s->name); | |
81819f0f CL |
4133 | kfree(al); |
4134 | } | |
4135 | ||
4136 | resiliency_test(); | |
4137 | return 0; | |
4138 | } | |
4139 | ||
4140 | __initcall(slab_sysfs_init); | |
81819f0f | 4141 | #endif |