]> Git Repo - linux.git/blame - mm/hugetlb.c
hugetlb, mempolicy: fix the mbind hugetlb migration
[linux.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
174cd4b1 21#include <linux/sched/signal.h>
0fe6e20b 22#include <linux/rmap.h>
c6247f72 23#include <linux/string_helpers.h>
fd6a03ed
NH
24#include <linux/swap.h>
25#include <linux/swapops.h>
8382d914 26#include <linux/jhash.h>
d6606683 27
63551ae0
DG
28#include <asm/page.h>
29#include <asm/pgtable.h>
24669e58 30#include <asm/tlb.h>
63551ae0 31
24669e58 32#include <linux/io.h>
63551ae0 33#include <linux/hugetlb.h>
9dd540e2 34#include <linux/hugetlb_cgroup.h>
9a305230 35#include <linux/node.h>
1a1aad8a 36#include <linux/userfaultfd_k.h>
ab5ac90a 37#include <linux/page_owner.h>
7835e98b 38#include "internal.h"
1da177e4 39
c3f38a38 40int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
41unsigned int default_hstate_idx;
42struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
43/*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 48
53ba51d2
JT
49__initdata LIST_HEAD(huge_boot_pages);
50
e5ff2159
AK
51/* for command line parsing */
52static struct hstate * __initdata parsed_hstate;
53static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 54static unsigned long __initdata default_hstate_size;
9fee021d 55static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 56
3935baa9 57/*
31caf665
NH
58 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
59 * free_huge_pages, and surplus_huge_pages.
3935baa9 60 */
c3f38a38 61DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 62
8382d914
DB
63/*
64 * Serializes faults on the same logical page. This is used to
65 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 */
67static int num_fault_mutexes;
c672c7f2 68struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 69
7ca02d0a
MK
70/* Forward declaration */
71static int hugetlb_acct_memory(struct hstate *h, long delta);
72
90481622
DG
73static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74{
75 bool free = (spool->count == 0) && (spool->used_hpages == 0);
76
77 spin_unlock(&spool->lock);
78
79 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
80 * remain, give up any reservations mased on minimum size and
81 * free the subpool */
82 if (free) {
83 if (spool->min_hpages != -1)
84 hugetlb_acct_memory(spool->hstate,
85 -spool->min_hpages);
90481622 86 kfree(spool);
7ca02d0a 87 }
90481622
DG
88}
89
7ca02d0a
MK
90struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
91 long min_hpages)
90481622
DG
92{
93 struct hugepage_subpool *spool;
94
c6a91820 95 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
96 if (!spool)
97 return NULL;
98
99 spin_lock_init(&spool->lock);
100 spool->count = 1;
7ca02d0a
MK
101 spool->max_hpages = max_hpages;
102 spool->hstate = h;
103 spool->min_hpages = min_hpages;
104
105 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
106 kfree(spool);
107 return NULL;
108 }
109 spool->rsv_hpages = min_hpages;
90481622
DG
110
111 return spool;
112}
113
114void hugepage_put_subpool(struct hugepage_subpool *spool)
115{
116 spin_lock(&spool->lock);
117 BUG_ON(!spool->count);
118 spool->count--;
119 unlock_or_release_subpool(spool);
120}
121
1c5ecae3
MK
122/*
123 * Subpool accounting for allocating and reserving pages.
124 * Return -ENOMEM if there are not enough resources to satisfy the
125 * the request. Otherwise, return the number of pages by which the
126 * global pools must be adjusted (upward). The returned value may
127 * only be different than the passed value (delta) in the case where
128 * a subpool minimum size must be manitained.
129 */
130static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
131 long delta)
132{
1c5ecae3 133 long ret = delta;
90481622
DG
134
135 if (!spool)
1c5ecae3 136 return ret;
90481622
DG
137
138 spin_lock(&spool->lock);
1c5ecae3
MK
139
140 if (spool->max_hpages != -1) { /* maximum size accounting */
141 if ((spool->used_hpages + delta) <= spool->max_hpages)
142 spool->used_hpages += delta;
143 else {
144 ret = -ENOMEM;
145 goto unlock_ret;
146 }
90481622 147 }
90481622 148
09a95e29
MK
149 /* minimum size accounting */
150 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
151 if (delta > spool->rsv_hpages) {
152 /*
153 * Asking for more reserves than those already taken on
154 * behalf of subpool. Return difference.
155 */
156 ret = delta - spool->rsv_hpages;
157 spool->rsv_hpages = 0;
158 } else {
159 ret = 0; /* reserves already accounted for */
160 spool->rsv_hpages -= delta;
161 }
162 }
163
164unlock_ret:
165 spin_unlock(&spool->lock);
90481622
DG
166 return ret;
167}
168
1c5ecae3
MK
169/*
170 * Subpool accounting for freeing and unreserving pages.
171 * Return the number of global page reservations that must be dropped.
172 * The return value may only be different than the passed value (delta)
173 * in the case where a subpool minimum size must be maintained.
174 */
175static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
176 long delta)
177{
1c5ecae3
MK
178 long ret = delta;
179
90481622 180 if (!spool)
1c5ecae3 181 return delta;
90481622
DG
182
183 spin_lock(&spool->lock);
1c5ecae3
MK
184
185 if (spool->max_hpages != -1) /* maximum size accounting */
186 spool->used_hpages -= delta;
187
09a95e29
MK
188 /* minimum size accounting */
189 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
190 if (spool->rsv_hpages + delta <= spool->min_hpages)
191 ret = 0;
192 else
193 ret = spool->rsv_hpages + delta - spool->min_hpages;
194
195 spool->rsv_hpages += delta;
196 if (spool->rsv_hpages > spool->min_hpages)
197 spool->rsv_hpages = spool->min_hpages;
198 }
199
200 /*
201 * If hugetlbfs_put_super couldn't free spool due to an outstanding
202 * quota reference, free it now.
203 */
90481622 204 unlock_or_release_subpool(spool);
1c5ecae3
MK
205
206 return ret;
90481622
DG
207}
208
209static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
210{
211 return HUGETLBFS_SB(inode->i_sb)->spool;
212}
213
214static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
215{
496ad9aa 216 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
217}
218
96822904
AW
219/*
220 * Region tracking -- allows tracking of reservations and instantiated pages
221 * across the pages in a mapping.
84afd99b 222 *
1dd308a7
MK
223 * The region data structures are embedded into a resv_map and protected
224 * by a resv_map's lock. The set of regions within the resv_map represent
225 * reservations for huge pages, or huge pages that have already been
226 * instantiated within the map. The from and to elements are huge page
227 * indicies into the associated mapping. from indicates the starting index
228 * of the region. to represents the first index past the end of the region.
229 *
230 * For example, a file region structure with from == 0 and to == 4 represents
231 * four huge pages in a mapping. It is important to note that the to element
232 * represents the first element past the end of the region. This is used in
233 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
234 *
235 * Interval notation of the form [from, to) will be used to indicate that
236 * the endpoint from is inclusive and to is exclusive.
96822904
AW
237 */
238struct file_region {
239 struct list_head link;
240 long from;
241 long to;
242};
243
1dd308a7
MK
244/*
245 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
246 * map. In the normal case, existing regions will be expanded
247 * to accommodate the specified range. Sufficient regions should
248 * exist for expansion due to the previous call to region_chg
249 * with the same range. However, it is possible that region_del
250 * could have been called after region_chg and modifed the map
251 * in such a way that no region exists to be expanded. In this
252 * case, pull a region descriptor from the cache associated with
253 * the map and use that for the new range.
cf3ad20b
MK
254 *
255 * Return the number of new huge pages added to the map. This
256 * number is greater than or equal to zero.
1dd308a7 257 */
1406ec9b 258static long region_add(struct resv_map *resv, long f, long t)
96822904 259{
1406ec9b 260 struct list_head *head = &resv->regions;
96822904 261 struct file_region *rg, *nrg, *trg;
cf3ad20b 262 long add = 0;
96822904 263
7b24d861 264 spin_lock(&resv->lock);
96822904
AW
265 /* Locate the region we are either in or before. */
266 list_for_each_entry(rg, head, link)
267 if (f <= rg->to)
268 break;
269
5e911373
MK
270 /*
271 * If no region exists which can be expanded to include the
272 * specified range, the list must have been modified by an
273 * interleving call to region_del(). Pull a region descriptor
274 * from the cache and use it for this range.
275 */
276 if (&rg->link == head || t < rg->from) {
277 VM_BUG_ON(resv->region_cache_count <= 0);
278
279 resv->region_cache_count--;
280 nrg = list_first_entry(&resv->region_cache, struct file_region,
281 link);
282 list_del(&nrg->link);
283
284 nrg->from = f;
285 nrg->to = t;
286 list_add(&nrg->link, rg->link.prev);
287
288 add += t - f;
289 goto out_locked;
290 }
291
96822904
AW
292 /* Round our left edge to the current segment if it encloses us. */
293 if (f > rg->from)
294 f = rg->from;
295
296 /* Check for and consume any regions we now overlap with. */
297 nrg = rg;
298 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
299 if (&rg->link == head)
300 break;
301 if (rg->from > t)
302 break;
303
304 /* If this area reaches higher then extend our area to
305 * include it completely. If this is not the first area
306 * which we intend to reuse, free it. */
307 if (rg->to > t)
308 t = rg->to;
309 if (rg != nrg) {
cf3ad20b
MK
310 /* Decrement return value by the deleted range.
311 * Another range will span this area so that by
312 * end of routine add will be >= zero
313 */
314 add -= (rg->to - rg->from);
96822904
AW
315 list_del(&rg->link);
316 kfree(rg);
317 }
318 }
cf3ad20b
MK
319
320 add += (nrg->from - f); /* Added to beginning of region */
96822904 321 nrg->from = f;
cf3ad20b 322 add += t - nrg->to; /* Added to end of region */
96822904 323 nrg->to = t;
cf3ad20b 324
5e911373
MK
325out_locked:
326 resv->adds_in_progress--;
7b24d861 327 spin_unlock(&resv->lock);
cf3ad20b
MK
328 VM_BUG_ON(add < 0);
329 return add;
96822904
AW
330}
331
1dd308a7
MK
332/*
333 * Examine the existing reserve map and determine how many
334 * huge pages in the specified range [f, t) are NOT currently
335 * represented. This routine is called before a subsequent
336 * call to region_add that will actually modify the reserve
337 * map to add the specified range [f, t). region_chg does
338 * not change the number of huge pages represented by the
339 * map. However, if the existing regions in the map can not
340 * be expanded to represent the new range, a new file_region
341 * structure is added to the map as a placeholder. This is
342 * so that the subsequent region_add call will have all the
343 * regions it needs and will not fail.
344 *
5e911373
MK
345 * Upon entry, region_chg will also examine the cache of region descriptors
346 * associated with the map. If there are not enough descriptors cached, one
347 * will be allocated for the in progress add operation.
348 *
349 * Returns the number of huge pages that need to be added to the existing
350 * reservation map for the range [f, t). This number is greater or equal to
351 * zero. -ENOMEM is returned if a new file_region structure or cache entry
352 * is needed and can not be allocated.
1dd308a7 353 */
1406ec9b 354static long region_chg(struct resv_map *resv, long f, long t)
96822904 355{
1406ec9b 356 struct list_head *head = &resv->regions;
7b24d861 357 struct file_region *rg, *nrg = NULL;
96822904
AW
358 long chg = 0;
359
7b24d861
DB
360retry:
361 spin_lock(&resv->lock);
5e911373
MK
362retry_locked:
363 resv->adds_in_progress++;
364
365 /*
366 * Check for sufficient descriptors in the cache to accommodate
367 * the number of in progress add operations.
368 */
369 if (resv->adds_in_progress > resv->region_cache_count) {
370 struct file_region *trg;
371
372 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
373 /* Must drop lock to allocate a new descriptor. */
374 resv->adds_in_progress--;
375 spin_unlock(&resv->lock);
376
377 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
378 if (!trg) {
379 kfree(nrg);
5e911373 380 return -ENOMEM;
dbe409e4 381 }
5e911373
MK
382
383 spin_lock(&resv->lock);
384 list_add(&trg->link, &resv->region_cache);
385 resv->region_cache_count++;
386 goto retry_locked;
387 }
388
96822904
AW
389 /* Locate the region we are before or in. */
390 list_for_each_entry(rg, head, link)
391 if (f <= rg->to)
392 break;
393
394 /* If we are below the current region then a new region is required.
395 * Subtle, allocate a new region at the position but make it zero
396 * size such that we can guarantee to record the reservation. */
397 if (&rg->link == head || t < rg->from) {
7b24d861 398 if (!nrg) {
5e911373 399 resv->adds_in_progress--;
7b24d861
DB
400 spin_unlock(&resv->lock);
401 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
402 if (!nrg)
403 return -ENOMEM;
404
405 nrg->from = f;
406 nrg->to = f;
407 INIT_LIST_HEAD(&nrg->link);
408 goto retry;
409 }
96822904 410
7b24d861
DB
411 list_add(&nrg->link, rg->link.prev);
412 chg = t - f;
413 goto out_nrg;
96822904
AW
414 }
415
416 /* Round our left edge to the current segment if it encloses us. */
417 if (f > rg->from)
418 f = rg->from;
419 chg = t - f;
420
421 /* Check for and consume any regions we now overlap with. */
422 list_for_each_entry(rg, rg->link.prev, link) {
423 if (&rg->link == head)
424 break;
425 if (rg->from > t)
7b24d861 426 goto out;
96822904 427
25985edc 428 /* We overlap with this area, if it extends further than
96822904
AW
429 * us then we must extend ourselves. Account for its
430 * existing reservation. */
431 if (rg->to > t) {
432 chg += rg->to - t;
433 t = rg->to;
434 }
435 chg -= rg->to - rg->from;
436 }
7b24d861
DB
437
438out:
439 spin_unlock(&resv->lock);
440 /* We already know we raced and no longer need the new region */
441 kfree(nrg);
442 return chg;
443out_nrg:
444 spin_unlock(&resv->lock);
96822904
AW
445 return chg;
446}
447
5e911373
MK
448/*
449 * Abort the in progress add operation. The adds_in_progress field
450 * of the resv_map keeps track of the operations in progress between
451 * calls to region_chg and region_add. Operations are sometimes
452 * aborted after the call to region_chg. In such cases, region_abort
453 * is called to decrement the adds_in_progress counter.
454 *
455 * NOTE: The range arguments [f, t) are not needed or used in this
456 * routine. They are kept to make reading the calling code easier as
457 * arguments will match the associated region_chg call.
458 */
459static void region_abort(struct resv_map *resv, long f, long t)
460{
461 spin_lock(&resv->lock);
462 VM_BUG_ON(!resv->region_cache_count);
463 resv->adds_in_progress--;
464 spin_unlock(&resv->lock);
465}
466
1dd308a7 467/*
feba16e2
MK
468 * Delete the specified range [f, t) from the reserve map. If the
469 * t parameter is LONG_MAX, this indicates that ALL regions after f
470 * should be deleted. Locate the regions which intersect [f, t)
471 * and either trim, delete or split the existing regions.
472 *
473 * Returns the number of huge pages deleted from the reserve map.
474 * In the normal case, the return value is zero or more. In the
475 * case where a region must be split, a new region descriptor must
476 * be allocated. If the allocation fails, -ENOMEM will be returned.
477 * NOTE: If the parameter t == LONG_MAX, then we will never split
478 * a region and possibly return -ENOMEM. Callers specifying
479 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 480 */
feba16e2 481static long region_del(struct resv_map *resv, long f, long t)
96822904 482{
1406ec9b 483 struct list_head *head = &resv->regions;
96822904 484 struct file_region *rg, *trg;
feba16e2
MK
485 struct file_region *nrg = NULL;
486 long del = 0;
96822904 487
feba16e2 488retry:
7b24d861 489 spin_lock(&resv->lock);
feba16e2 490 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
491 /*
492 * Skip regions before the range to be deleted. file_region
493 * ranges are normally of the form [from, to). However, there
494 * may be a "placeholder" entry in the map which is of the form
495 * (from, to) with from == to. Check for placeholder entries
496 * at the beginning of the range to be deleted.
497 */
498 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 499 continue;
dbe409e4 500
feba16e2 501 if (rg->from >= t)
96822904 502 break;
96822904 503
feba16e2
MK
504 if (f > rg->from && t < rg->to) { /* Must split region */
505 /*
506 * Check for an entry in the cache before dropping
507 * lock and attempting allocation.
508 */
509 if (!nrg &&
510 resv->region_cache_count > resv->adds_in_progress) {
511 nrg = list_first_entry(&resv->region_cache,
512 struct file_region,
513 link);
514 list_del(&nrg->link);
515 resv->region_cache_count--;
516 }
96822904 517
feba16e2
MK
518 if (!nrg) {
519 spin_unlock(&resv->lock);
520 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
521 if (!nrg)
522 return -ENOMEM;
523 goto retry;
524 }
525
526 del += t - f;
527
528 /* New entry for end of split region */
529 nrg->from = t;
530 nrg->to = rg->to;
531 INIT_LIST_HEAD(&nrg->link);
532
533 /* Original entry is trimmed */
534 rg->to = f;
535
536 list_add(&nrg->link, &rg->link);
537 nrg = NULL;
96822904 538 break;
feba16e2
MK
539 }
540
541 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
542 del += rg->to - rg->from;
543 list_del(&rg->link);
544 kfree(rg);
545 continue;
546 }
547
548 if (f <= rg->from) { /* Trim beginning of region */
549 del += t - rg->from;
550 rg->from = t;
551 } else { /* Trim end of region */
552 del += rg->to - f;
553 rg->to = f;
554 }
96822904 555 }
7b24d861 556
7b24d861 557 spin_unlock(&resv->lock);
feba16e2
MK
558 kfree(nrg);
559 return del;
96822904
AW
560}
561
b5cec28d
MK
562/*
563 * A rare out of memory error was encountered which prevented removal of
564 * the reserve map region for a page. The huge page itself was free'ed
565 * and removed from the page cache. This routine will adjust the subpool
566 * usage count, and the global reserve count if needed. By incrementing
567 * these counts, the reserve map entry which could not be deleted will
568 * appear as a "reserved" entry instead of simply dangling with incorrect
569 * counts.
570 */
72e2936c 571void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
572{
573 struct hugepage_subpool *spool = subpool_inode(inode);
574 long rsv_adjust;
575
576 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 577 if (rsv_adjust) {
b5cec28d
MK
578 struct hstate *h = hstate_inode(inode);
579
580 hugetlb_acct_memory(h, 1);
581 }
582}
583
1dd308a7
MK
584/*
585 * Count and return the number of huge pages in the reserve map
586 * that intersect with the range [f, t).
587 */
1406ec9b 588static long region_count(struct resv_map *resv, long f, long t)
84afd99b 589{
1406ec9b 590 struct list_head *head = &resv->regions;
84afd99b
AW
591 struct file_region *rg;
592 long chg = 0;
593
7b24d861 594 spin_lock(&resv->lock);
84afd99b
AW
595 /* Locate each segment we overlap with, and count that overlap. */
596 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
597 long seg_from;
598 long seg_to;
84afd99b
AW
599
600 if (rg->to <= f)
601 continue;
602 if (rg->from >= t)
603 break;
604
605 seg_from = max(rg->from, f);
606 seg_to = min(rg->to, t);
607
608 chg += seg_to - seg_from;
609 }
7b24d861 610 spin_unlock(&resv->lock);
84afd99b
AW
611
612 return chg;
613}
614
e7c4b0bf
AW
615/*
616 * Convert the address within this vma to the page offset within
617 * the mapping, in pagecache page units; huge pages here.
618 */
a5516438
AK
619static pgoff_t vma_hugecache_offset(struct hstate *h,
620 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 621{
a5516438
AK
622 return ((address - vma->vm_start) >> huge_page_shift(h)) +
623 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
624}
625
0fe6e20b
NH
626pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
627 unsigned long address)
628{
629 return vma_hugecache_offset(hstate_vma(vma), vma, address);
630}
dee41079 631EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 632
08fba699
MG
633/*
634 * Return the size of the pages allocated when backing a VMA. In the majority
635 * cases this will be same size as used by the page table entries.
636 */
637unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
638{
639 struct hstate *hstate;
640
641 if (!is_vm_hugetlb_page(vma))
642 return PAGE_SIZE;
643
644 hstate = hstate_vma(vma);
645
2415cf12 646 return 1UL << huge_page_shift(hstate);
08fba699 647}
f340ca0f 648EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 649
3340289d
MG
650/*
651 * Return the page size being used by the MMU to back a VMA. In the majority
652 * of cases, the page size used by the kernel matches the MMU size. On
653 * architectures where it differs, an architecture-specific version of this
654 * function is required.
655 */
656#ifndef vma_mmu_pagesize
657unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
658{
659 return vma_kernel_pagesize(vma);
660}
661#endif
662
84afd99b
AW
663/*
664 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
665 * bits of the reservation map pointer, which are always clear due to
666 * alignment.
667 */
668#define HPAGE_RESV_OWNER (1UL << 0)
669#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 670#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 671
a1e78772
MG
672/*
673 * These helpers are used to track how many pages are reserved for
674 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
675 * is guaranteed to have their future faults succeed.
676 *
677 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
678 * the reserve counters are updated with the hugetlb_lock held. It is safe
679 * to reset the VMA at fork() time as it is not in use yet and there is no
680 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
681 *
682 * The private mapping reservation is represented in a subtly different
683 * manner to a shared mapping. A shared mapping has a region map associated
684 * with the underlying file, this region map represents the backing file
685 * pages which have ever had a reservation assigned which this persists even
686 * after the page is instantiated. A private mapping has a region map
687 * associated with the original mmap which is attached to all VMAs which
688 * reference it, this region map represents those offsets which have consumed
689 * reservation ie. where pages have been instantiated.
a1e78772 690 */
e7c4b0bf
AW
691static unsigned long get_vma_private_data(struct vm_area_struct *vma)
692{
693 return (unsigned long)vma->vm_private_data;
694}
695
696static void set_vma_private_data(struct vm_area_struct *vma,
697 unsigned long value)
698{
699 vma->vm_private_data = (void *)value;
700}
701
9119a41e 702struct resv_map *resv_map_alloc(void)
84afd99b
AW
703{
704 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
705 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
706
707 if (!resv_map || !rg) {
708 kfree(resv_map);
709 kfree(rg);
84afd99b 710 return NULL;
5e911373 711 }
84afd99b
AW
712
713 kref_init(&resv_map->refs);
7b24d861 714 spin_lock_init(&resv_map->lock);
84afd99b
AW
715 INIT_LIST_HEAD(&resv_map->regions);
716
5e911373
MK
717 resv_map->adds_in_progress = 0;
718
719 INIT_LIST_HEAD(&resv_map->region_cache);
720 list_add(&rg->link, &resv_map->region_cache);
721 resv_map->region_cache_count = 1;
722
84afd99b
AW
723 return resv_map;
724}
725
9119a41e 726void resv_map_release(struct kref *ref)
84afd99b
AW
727{
728 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
729 struct list_head *head = &resv_map->region_cache;
730 struct file_region *rg, *trg;
84afd99b
AW
731
732 /* Clear out any active regions before we release the map. */
feba16e2 733 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
734
735 /* ... and any entries left in the cache */
736 list_for_each_entry_safe(rg, trg, head, link) {
737 list_del(&rg->link);
738 kfree(rg);
739 }
740
741 VM_BUG_ON(resv_map->adds_in_progress);
742
84afd99b
AW
743 kfree(resv_map);
744}
745
4e35f483
JK
746static inline struct resv_map *inode_resv_map(struct inode *inode)
747{
748 return inode->i_mapping->private_data;
749}
750
84afd99b 751static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 752{
81d1b09c 753 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
754 if (vma->vm_flags & VM_MAYSHARE) {
755 struct address_space *mapping = vma->vm_file->f_mapping;
756 struct inode *inode = mapping->host;
757
758 return inode_resv_map(inode);
759
760 } else {
84afd99b
AW
761 return (struct resv_map *)(get_vma_private_data(vma) &
762 ~HPAGE_RESV_MASK);
4e35f483 763 }
a1e78772
MG
764}
765
84afd99b 766static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 767{
81d1b09c
SL
768 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
769 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 770
84afd99b
AW
771 set_vma_private_data(vma, (get_vma_private_data(vma) &
772 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
773}
774
775static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
776{
81d1b09c
SL
777 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
778 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
779
780 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
781}
782
783static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
784{
81d1b09c 785 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
786
787 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
788}
789
04f2cbe3 790/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
791void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
792{
81d1b09c 793 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 794 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
795 vma->vm_private_data = (void *)0;
796}
797
798/* Returns true if the VMA has associated reserve pages */
559ec2f8 799static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 800{
af0ed73e
JK
801 if (vma->vm_flags & VM_NORESERVE) {
802 /*
803 * This address is already reserved by other process(chg == 0),
804 * so, we should decrement reserved count. Without decrementing,
805 * reserve count remains after releasing inode, because this
806 * allocated page will go into page cache and is regarded as
807 * coming from reserved pool in releasing step. Currently, we
808 * don't have any other solution to deal with this situation
809 * properly, so add work-around here.
810 */
811 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 812 return true;
af0ed73e 813 else
559ec2f8 814 return false;
af0ed73e 815 }
a63884e9
JK
816
817 /* Shared mappings always use reserves */
1fb1b0e9
MK
818 if (vma->vm_flags & VM_MAYSHARE) {
819 /*
820 * We know VM_NORESERVE is not set. Therefore, there SHOULD
821 * be a region map for all pages. The only situation where
822 * there is no region map is if a hole was punched via
823 * fallocate. In this case, there really are no reverves to
824 * use. This situation is indicated if chg != 0.
825 */
826 if (chg)
827 return false;
828 else
829 return true;
830 }
a63884e9
JK
831
832 /*
833 * Only the process that called mmap() has reserves for
834 * private mappings.
835 */
67961f9d
MK
836 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
837 /*
838 * Like the shared case above, a hole punch or truncate
839 * could have been performed on the private mapping.
840 * Examine the value of chg to determine if reserves
841 * actually exist or were previously consumed.
842 * Very Subtle - The value of chg comes from a previous
843 * call to vma_needs_reserves(). The reserve map for
844 * private mappings has different (opposite) semantics
845 * than that of shared mappings. vma_needs_reserves()
846 * has already taken this difference in semantics into
847 * account. Therefore, the meaning of chg is the same
848 * as in the shared case above. Code could easily be
849 * combined, but keeping it separate draws attention to
850 * subtle differences.
851 */
852 if (chg)
853 return false;
854 else
855 return true;
856 }
a63884e9 857
559ec2f8 858 return false;
a1e78772
MG
859}
860
a5516438 861static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
862{
863 int nid = page_to_nid(page);
0edaecfa 864 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
865 h->free_huge_pages++;
866 h->free_huge_pages_node[nid]++;
1da177e4
LT
867}
868
94310cbc 869static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
870{
871 struct page *page;
872
c8721bbb 873 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 874 if (!PageHWPoison(page))
c8721bbb
NH
875 break;
876 /*
877 * if 'non-isolated free hugepage' not found on the list,
878 * the allocation fails.
879 */
880 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 881 return NULL;
0edaecfa 882 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 883 set_page_refcounted(page);
bf50bab2
NH
884 h->free_huge_pages--;
885 h->free_huge_pages_node[nid]--;
886 return page;
887}
888
3e59fcb0
MH
889static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
890 nodemask_t *nmask)
94310cbc 891{
3e59fcb0
MH
892 unsigned int cpuset_mems_cookie;
893 struct zonelist *zonelist;
894 struct zone *zone;
895 struct zoneref *z;
896 int node = -1;
94310cbc 897
3e59fcb0
MH
898 zonelist = node_zonelist(nid, gfp_mask);
899
900retry_cpuset:
901 cpuset_mems_cookie = read_mems_allowed_begin();
902 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
903 struct page *page;
904
905 if (!cpuset_zone_allowed(zone, gfp_mask))
906 continue;
907 /*
908 * no need to ask again on the same node. Pool is node rather than
909 * zone aware
910 */
911 if (zone_to_nid(zone) == node)
912 continue;
913 node = zone_to_nid(zone);
94310cbc 914
94310cbc
AK
915 page = dequeue_huge_page_node_exact(h, node);
916 if (page)
917 return page;
918 }
3e59fcb0
MH
919 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
920 goto retry_cpuset;
921
94310cbc
AK
922 return NULL;
923}
924
86cdb465
NH
925/* Movability of hugepages depends on migration support. */
926static inline gfp_t htlb_alloc_mask(struct hstate *h)
927{
d6cb41cc 928 if (hugepage_migration_supported(h))
86cdb465
NH
929 return GFP_HIGHUSER_MOVABLE;
930 else
931 return GFP_HIGHUSER;
932}
933
a5516438
AK
934static struct page *dequeue_huge_page_vma(struct hstate *h,
935 struct vm_area_struct *vma,
af0ed73e
JK
936 unsigned long address, int avoid_reserve,
937 long chg)
1da177e4 938{
3e59fcb0 939 struct page *page;
480eccf9 940 struct mempolicy *mpol;
04ec6264 941 gfp_t gfp_mask;
3e59fcb0 942 nodemask_t *nodemask;
04ec6264 943 int nid;
1da177e4 944
a1e78772
MG
945 /*
946 * A child process with MAP_PRIVATE mappings created by their parent
947 * have no page reserves. This check ensures that reservations are
948 * not "stolen". The child may still get SIGKILLed
949 */
af0ed73e 950 if (!vma_has_reserves(vma, chg) &&
a5516438 951 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 952 goto err;
a1e78772 953
04f2cbe3 954 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 955 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 956 goto err;
04f2cbe3 957
04ec6264
VB
958 gfp_mask = htlb_alloc_mask(h);
959 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
960 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
961 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
962 SetPagePrivate(page);
963 h->resv_huge_pages--;
1da177e4 964 }
cc9a6c87 965
52cd3b07 966 mpol_cond_put(mpol);
1da177e4 967 return page;
cc9a6c87
MG
968
969err:
cc9a6c87 970 return NULL;
1da177e4
LT
971}
972
1cac6f2c
LC
973/*
974 * common helper functions for hstate_next_node_to_{alloc|free}.
975 * We may have allocated or freed a huge page based on a different
976 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
977 * be outside of *nodes_allowed. Ensure that we use an allowed
978 * node for alloc or free.
979 */
980static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
981{
0edaf86c 982 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
983 VM_BUG_ON(nid >= MAX_NUMNODES);
984
985 return nid;
986}
987
988static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
989{
990 if (!node_isset(nid, *nodes_allowed))
991 nid = next_node_allowed(nid, nodes_allowed);
992 return nid;
993}
994
995/*
996 * returns the previously saved node ["this node"] from which to
997 * allocate a persistent huge page for the pool and advance the
998 * next node from which to allocate, handling wrap at end of node
999 * mask.
1000 */
1001static int hstate_next_node_to_alloc(struct hstate *h,
1002 nodemask_t *nodes_allowed)
1003{
1004 int nid;
1005
1006 VM_BUG_ON(!nodes_allowed);
1007
1008 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1009 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1010
1011 return nid;
1012}
1013
1014/*
1015 * helper for free_pool_huge_page() - return the previously saved
1016 * node ["this node"] from which to free a huge page. Advance the
1017 * next node id whether or not we find a free huge page to free so
1018 * that the next attempt to free addresses the next node.
1019 */
1020static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1021{
1022 int nid;
1023
1024 VM_BUG_ON(!nodes_allowed);
1025
1026 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1027 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1028
1029 return nid;
1030}
1031
1032#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1033 for (nr_nodes = nodes_weight(*mask); \
1034 nr_nodes > 0 && \
1035 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1036 nr_nodes--)
1037
1038#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1039 for (nr_nodes = nodes_weight(*mask); \
1040 nr_nodes > 0 && \
1041 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1042 nr_nodes--)
1043
e1073d1e 1044#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1045static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1046 unsigned int order)
944d9fec
LC
1047{
1048 int i;
1049 int nr_pages = 1 << order;
1050 struct page *p = page + 1;
1051
c8cc708a 1052 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1053 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1054 clear_compound_head(p);
944d9fec 1055 set_page_refcounted(p);
944d9fec
LC
1056 }
1057
1058 set_compound_order(page, 0);
1059 __ClearPageHead(page);
1060}
1061
d00181b9 1062static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1063{
1064 free_contig_range(page_to_pfn(page), 1 << order);
1065}
1066
1067static int __alloc_gigantic_page(unsigned long start_pfn,
79b63f12 1068 unsigned long nr_pages, gfp_t gfp_mask)
944d9fec
LC
1069{
1070 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625 1071 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
79b63f12 1072 gfp_mask);
944d9fec
LC
1073}
1074
f44b2dda
JK
1075static bool pfn_range_valid_gigantic(struct zone *z,
1076 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1077{
1078 unsigned long i, end_pfn = start_pfn + nr_pages;
1079 struct page *page;
1080
1081 for (i = start_pfn; i < end_pfn; i++) {
1082 if (!pfn_valid(i))
1083 return false;
1084
1085 page = pfn_to_page(i);
1086
f44b2dda
JK
1087 if (page_zone(page) != z)
1088 return false;
1089
944d9fec
LC
1090 if (PageReserved(page))
1091 return false;
1092
1093 if (page_count(page) > 0)
1094 return false;
1095
1096 if (PageHuge(page))
1097 return false;
1098 }
1099
1100 return true;
1101}
1102
1103static bool zone_spans_last_pfn(const struct zone *zone,
1104 unsigned long start_pfn, unsigned long nr_pages)
1105{
1106 unsigned long last_pfn = start_pfn + nr_pages - 1;
1107 return zone_spans_pfn(zone, last_pfn);
1108}
1109
d9cc948f
MH
1110static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1111 int nid, nodemask_t *nodemask)
944d9fec 1112{
79b63f12 1113 unsigned int order = huge_page_order(h);
944d9fec
LC
1114 unsigned long nr_pages = 1 << order;
1115 unsigned long ret, pfn, flags;
79b63f12
MH
1116 struct zonelist *zonelist;
1117 struct zone *zone;
1118 struct zoneref *z;
944d9fec 1119
79b63f12 1120 zonelist = node_zonelist(nid, gfp_mask);
d9cc948f 1121 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nodemask) {
79b63f12 1122 spin_lock_irqsave(&zone->lock, flags);
944d9fec 1123
79b63f12
MH
1124 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1125 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1126 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
944d9fec
LC
1127 /*
1128 * We release the zone lock here because
1129 * alloc_contig_range() will also lock the zone
1130 * at some point. If there's an allocation
1131 * spinning on this lock, it may win the race
1132 * and cause alloc_contig_range() to fail...
1133 */
79b63f12
MH
1134 spin_unlock_irqrestore(&zone->lock, flags);
1135 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
944d9fec
LC
1136 if (!ret)
1137 return pfn_to_page(pfn);
79b63f12 1138 spin_lock_irqsave(&zone->lock, flags);
944d9fec
LC
1139 }
1140 pfn += nr_pages;
1141 }
1142
79b63f12 1143 spin_unlock_irqrestore(&zone->lock, flags);
944d9fec
LC
1144 }
1145
1146 return NULL;
1147}
1148
1149static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1150static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec 1151
e1073d1e 1152#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
944d9fec 1153static inline bool gigantic_page_supported(void) { return false; }
d9cc948f
MH
1154static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1155 int nid, nodemask_t *nodemask) { return NULL; }
d00181b9 1156static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1157static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1158 unsigned int order) { }
944d9fec
LC
1159#endif
1160
a5516438 1161static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1162{
1163 int i;
a5516438 1164
944d9fec
LC
1165 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1166 return;
18229df5 1167
a5516438
AK
1168 h->nr_huge_pages--;
1169 h->nr_huge_pages_node[page_to_nid(page)]--;
1170 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1171 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1172 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1173 1 << PG_active | 1 << PG_private |
1174 1 << PG_writeback);
6af2acb6 1175 }
309381fe 1176 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1177 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1178 set_page_refcounted(page);
944d9fec
LC
1179 if (hstate_is_gigantic(h)) {
1180 destroy_compound_gigantic_page(page, huge_page_order(h));
1181 free_gigantic_page(page, huge_page_order(h));
1182 } else {
944d9fec
LC
1183 __free_pages(page, huge_page_order(h));
1184 }
6af2acb6
AL
1185}
1186
e5ff2159
AK
1187struct hstate *size_to_hstate(unsigned long size)
1188{
1189 struct hstate *h;
1190
1191 for_each_hstate(h) {
1192 if (huge_page_size(h) == size)
1193 return h;
1194 }
1195 return NULL;
1196}
1197
bcc54222
NH
1198/*
1199 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1200 * to hstate->hugepage_activelist.)
1201 *
1202 * This function can be called for tail pages, but never returns true for them.
1203 */
1204bool page_huge_active(struct page *page)
1205{
1206 VM_BUG_ON_PAGE(!PageHuge(page), page);
1207 return PageHead(page) && PagePrivate(&page[1]);
1208}
1209
1210/* never called for tail page */
1211static void set_page_huge_active(struct page *page)
1212{
1213 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1214 SetPagePrivate(&page[1]);
1215}
1216
1217static void clear_page_huge_active(struct page *page)
1218{
1219 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1220 ClearPagePrivate(&page[1]);
1221}
1222
ab5ac90a
MH
1223/*
1224 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1225 * code
1226 */
1227static inline bool PageHugeTemporary(struct page *page)
1228{
1229 if (!PageHuge(page))
1230 return false;
1231
1232 return (unsigned long)page[2].mapping == -1U;
1233}
1234
1235static inline void SetPageHugeTemporary(struct page *page)
1236{
1237 page[2].mapping = (void *)-1U;
1238}
1239
1240static inline void ClearPageHugeTemporary(struct page *page)
1241{
1242 page[2].mapping = NULL;
1243}
1244
8f1d26d0 1245void free_huge_page(struct page *page)
27a85ef1 1246{
a5516438
AK
1247 /*
1248 * Can't pass hstate in here because it is called from the
1249 * compound page destructor.
1250 */
e5ff2159 1251 struct hstate *h = page_hstate(page);
7893d1d5 1252 int nid = page_to_nid(page);
90481622
DG
1253 struct hugepage_subpool *spool =
1254 (struct hugepage_subpool *)page_private(page);
07443a85 1255 bool restore_reserve;
27a85ef1 1256
e5df70ab 1257 set_page_private(page, 0);
23be7468 1258 page->mapping = NULL;
b4330afb
MK
1259 VM_BUG_ON_PAGE(page_count(page), page);
1260 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1261 restore_reserve = PagePrivate(page);
16c794b4 1262 ClearPagePrivate(page);
27a85ef1 1263
1c5ecae3
MK
1264 /*
1265 * A return code of zero implies that the subpool will be under its
1266 * minimum size if the reservation is not restored after page is free.
1267 * Therefore, force restore_reserve operation.
1268 */
1269 if (hugepage_subpool_put_pages(spool, 1) == 0)
1270 restore_reserve = true;
1271
27a85ef1 1272 spin_lock(&hugetlb_lock);
bcc54222 1273 clear_page_huge_active(page);
6d76dcf4
AK
1274 hugetlb_cgroup_uncharge_page(hstate_index(h),
1275 pages_per_huge_page(h), page);
07443a85
JK
1276 if (restore_reserve)
1277 h->resv_huge_pages++;
1278
ab5ac90a
MH
1279 if (PageHugeTemporary(page)) {
1280 list_del(&page->lru);
1281 ClearPageHugeTemporary(page);
1282 update_and_free_page(h, page);
1283 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1284 /* remove the page from active list */
1285 list_del(&page->lru);
a5516438
AK
1286 update_and_free_page(h, page);
1287 h->surplus_huge_pages--;
1288 h->surplus_huge_pages_node[nid]--;
7893d1d5 1289 } else {
5d3a551c 1290 arch_clear_hugepage_flags(page);
a5516438 1291 enqueue_huge_page(h, page);
7893d1d5 1292 }
27a85ef1
DG
1293 spin_unlock(&hugetlb_lock);
1294}
1295
a5516438 1296static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1297{
0edaecfa 1298 INIT_LIST_HEAD(&page->lru);
f1e61557 1299 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1300 spin_lock(&hugetlb_lock);
9dd540e2 1301 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1302 h->nr_huge_pages++;
1303 h->nr_huge_pages_node[nid]++;
b7ba30c6 1304 spin_unlock(&hugetlb_lock);
b7ba30c6
AK
1305}
1306
d00181b9 1307static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1308{
1309 int i;
1310 int nr_pages = 1 << order;
1311 struct page *p = page + 1;
1312
1313 /* we rely on prep_new_huge_page to set the destructor */
1314 set_compound_order(page, order);
ef5a22be 1315 __ClearPageReserved(page);
de09d31d 1316 __SetPageHead(page);
20a0307c 1317 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1318 /*
1319 * For gigantic hugepages allocated through bootmem at
1320 * boot, it's safer to be consistent with the not-gigantic
1321 * hugepages and clear the PG_reserved bit from all tail pages
1322 * too. Otherwse drivers using get_user_pages() to access tail
1323 * pages may get the reference counting wrong if they see
1324 * PG_reserved set on a tail page (despite the head page not
1325 * having PG_reserved set). Enforcing this consistency between
1326 * head and tail pages allows drivers to optimize away a check
1327 * on the head page when they need know if put_page() is needed
1328 * after get_user_pages().
1329 */
1330 __ClearPageReserved(p);
58a84aa9 1331 set_page_count(p, 0);
1d798ca3 1332 set_compound_head(p, page);
20a0307c 1333 }
b4330afb 1334 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1335}
1336
7795912c
AM
1337/*
1338 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1339 * transparent huge pages. See the PageTransHuge() documentation for more
1340 * details.
1341 */
20a0307c
WF
1342int PageHuge(struct page *page)
1343{
20a0307c
WF
1344 if (!PageCompound(page))
1345 return 0;
1346
1347 page = compound_head(page);
f1e61557 1348 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1349}
43131e14
NH
1350EXPORT_SYMBOL_GPL(PageHuge);
1351
27c73ae7
AA
1352/*
1353 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1354 * normal or transparent huge pages.
1355 */
1356int PageHeadHuge(struct page *page_head)
1357{
27c73ae7
AA
1358 if (!PageHead(page_head))
1359 return 0;
1360
758f66a2 1361 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1362}
27c73ae7 1363
13d60f4b
ZY
1364pgoff_t __basepage_index(struct page *page)
1365{
1366 struct page *page_head = compound_head(page);
1367 pgoff_t index = page_index(page_head);
1368 unsigned long compound_idx;
1369
1370 if (!PageHuge(page_head))
1371 return page_index(page);
1372
1373 if (compound_order(page_head) >= MAX_ORDER)
1374 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1375 else
1376 compound_idx = page - page_head;
1377
1378 return (index << compound_order(page_head)) + compound_idx;
1379}
1380
0c397dae 1381static struct page *alloc_buddy_huge_page(struct hstate *h,
af0fb9df 1382 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1da177e4 1383{
af0fb9df 1384 int order = huge_page_order(h);
1da177e4 1385 struct page *page;
f96efd58 1386
af0fb9df
MH
1387 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
1388 if (nid == NUMA_NO_NODE)
1389 nid = numa_mem_id();
1390 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1391 if (page)
1392 __count_vm_event(HTLB_BUDDY_PGALLOC);
1393 else
1394 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
63b4613c
NA
1395
1396 return page;
1397}
1398
0c397dae
MH
1399/*
1400 * Common helper to allocate a fresh hugetlb page. All specific allocators
1401 * should use this function to get new hugetlb pages
1402 */
1403static struct page *alloc_fresh_huge_page(struct hstate *h,
1404 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1405{
1406 struct page *page;
1407
1408 if (hstate_is_gigantic(h))
1409 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1410 else
1411 page = alloc_buddy_huge_page(h, gfp_mask,
1412 nid, nmask);
1413 if (!page)
1414 return NULL;
1415
1416 if (hstate_is_gigantic(h))
1417 prep_compound_gigantic_page(page, huge_page_order(h));
1418 prep_new_huge_page(h, page, page_to_nid(page));
1419
1420 return page;
1421}
1422
af0fb9df
MH
1423/*
1424 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1425 * manner.
1426 */
0c397dae 1427static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
b2261026
JK
1428{
1429 struct page *page;
1430 int nr_nodes, node;
af0fb9df 1431 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
b2261026
JK
1432
1433 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
0c397dae 1434 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed);
af0fb9df 1435 if (page)
b2261026 1436 break;
b2261026
JK
1437 }
1438
af0fb9df
MH
1439 if (!page)
1440 return 0;
b2261026 1441
af0fb9df
MH
1442 put_page(page); /* free it into the hugepage allocator */
1443
1444 return 1;
b2261026
JK
1445}
1446
e8c5c824
LS
1447/*
1448 * Free huge page from pool from next node to free.
1449 * Attempt to keep persistent huge pages more or less
1450 * balanced over allowed nodes.
1451 * Called with hugetlb_lock locked.
1452 */
6ae11b27
LS
1453static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1454 bool acct_surplus)
e8c5c824 1455{
b2261026 1456 int nr_nodes, node;
e8c5c824
LS
1457 int ret = 0;
1458
b2261026 1459 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1460 /*
1461 * If we're returning unused surplus pages, only examine
1462 * nodes with surplus pages.
1463 */
b2261026
JK
1464 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1465 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1466 struct page *page =
b2261026 1467 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1468 struct page, lru);
1469 list_del(&page->lru);
1470 h->free_huge_pages--;
b2261026 1471 h->free_huge_pages_node[node]--;
685f3457
LS
1472 if (acct_surplus) {
1473 h->surplus_huge_pages--;
b2261026 1474 h->surplus_huge_pages_node[node]--;
685f3457 1475 }
e8c5c824
LS
1476 update_and_free_page(h, page);
1477 ret = 1;
9a76db09 1478 break;
e8c5c824 1479 }
b2261026 1480 }
e8c5c824
LS
1481
1482 return ret;
1483}
1484
c8721bbb
NH
1485/*
1486 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b
GS
1487 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1488 * number of free hugepages would be reduced below the number of reserved
1489 * hugepages.
c8721bbb 1490 */
c3114a84 1491int dissolve_free_huge_page(struct page *page)
c8721bbb 1492{
082d5b6b
GS
1493 int rc = 0;
1494
c8721bbb
NH
1495 spin_lock(&hugetlb_lock);
1496 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1497 struct page *head = compound_head(page);
1498 struct hstate *h = page_hstate(head);
1499 int nid = page_to_nid(head);
082d5b6b
GS
1500 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1501 rc = -EBUSY;
1502 goto out;
1503 }
c3114a84
AK
1504 /*
1505 * Move PageHWPoison flag from head page to the raw error page,
1506 * which makes any subpages rather than the error page reusable.
1507 */
1508 if (PageHWPoison(head) && page != head) {
1509 SetPageHWPoison(page);
1510 ClearPageHWPoison(head);
1511 }
2247bb33 1512 list_del(&head->lru);
c8721bbb
NH
1513 h->free_huge_pages--;
1514 h->free_huge_pages_node[nid]--;
c1470b33 1515 h->max_huge_pages--;
2247bb33 1516 update_and_free_page(h, head);
c8721bbb 1517 }
082d5b6b 1518out:
c8721bbb 1519 spin_unlock(&hugetlb_lock);
082d5b6b 1520 return rc;
c8721bbb
NH
1521}
1522
1523/*
1524 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1525 * make specified memory blocks removable from the system.
2247bb33
GS
1526 * Note that this will dissolve a free gigantic hugepage completely, if any
1527 * part of it lies within the given range.
082d5b6b
GS
1528 * Also note that if dissolve_free_huge_page() returns with an error, all
1529 * free hugepages that were dissolved before that error are lost.
c8721bbb 1530 */
082d5b6b 1531int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1532{
c8721bbb 1533 unsigned long pfn;
eb03aa00 1534 struct page *page;
082d5b6b 1535 int rc = 0;
c8721bbb 1536
d0177639 1537 if (!hugepages_supported())
082d5b6b 1538 return rc;
d0177639 1539
eb03aa00
GS
1540 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1541 page = pfn_to_page(pfn);
1542 if (PageHuge(page) && !page_count(page)) {
1543 rc = dissolve_free_huge_page(page);
1544 if (rc)
1545 break;
1546 }
1547 }
082d5b6b
GS
1548
1549 return rc;
c8721bbb
NH
1550}
1551
ab5ac90a
MH
1552/*
1553 * Allocates a fresh surplus page from the page allocator.
1554 */
0c397dae 1555static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
aaf14e40 1556 int nid, nodemask_t *nmask)
7893d1d5 1557{
9980d744 1558 struct page *page = NULL;
7893d1d5 1559
bae7f4ae 1560 if (hstate_is_gigantic(h))
aa888a74
AK
1561 return NULL;
1562
d1c3fb1f 1563 spin_lock(&hugetlb_lock);
9980d744
MH
1564 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1565 goto out_unlock;
d1c3fb1f
NA
1566 spin_unlock(&hugetlb_lock);
1567
0c397dae 1568 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
9980d744 1569 if (!page)
0c397dae 1570 return NULL;
d1c3fb1f
NA
1571
1572 spin_lock(&hugetlb_lock);
9980d744
MH
1573 /*
1574 * We could have raced with the pool size change.
1575 * Double check that and simply deallocate the new page
1576 * if we would end up overcommiting the surpluses. Abuse
1577 * temporary page to workaround the nasty free_huge_page
1578 * codeflow
1579 */
1580 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1581 SetPageHugeTemporary(page);
1582 put_page(page);
1583 page = NULL;
1584 } else {
9980d744 1585 h->surplus_huge_pages++;
0c397dae 1586 h->nr_huge_pages_node[page_to_nid(page)]++;
7893d1d5 1587 }
9980d744
MH
1588
1589out_unlock:
d1c3fb1f 1590 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1591
1592 return page;
1593}
1594
0c397dae 1595static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
ab5ac90a
MH
1596 int nid, nodemask_t *nmask)
1597{
1598 struct page *page;
1599
1600 if (hstate_is_gigantic(h))
1601 return NULL;
1602
0c397dae 1603 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask);
ab5ac90a
MH
1604 if (!page)
1605 return NULL;
1606
1607 /*
1608 * We do not account these pages as surplus because they are only
1609 * temporary and will be released properly on the last reference
1610 */
ab5ac90a
MH
1611 SetPageHugeTemporary(page);
1612
1613 return page;
1614}
1615
099730d6
DH
1616/*
1617 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1618 */
e0ec90ee 1619static
0c397dae 1620struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
099730d6
DH
1621 struct vm_area_struct *vma, unsigned long addr)
1622{
aaf14e40
MH
1623 struct page *page;
1624 struct mempolicy *mpol;
1625 gfp_t gfp_mask = htlb_alloc_mask(h);
1626 int nid;
1627 nodemask_t *nodemask;
1628
1629 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
0c397dae 1630 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
aaf14e40
MH
1631 mpol_cond_put(mpol);
1632
1633 return page;
099730d6
DH
1634}
1635
ab5ac90a 1636/* page migration callback function */
bf50bab2
NH
1637struct page *alloc_huge_page_node(struct hstate *h, int nid)
1638{
aaf14e40 1639 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1640 struct page *page = NULL;
bf50bab2 1641
aaf14e40
MH
1642 if (nid != NUMA_NO_NODE)
1643 gfp_mask |= __GFP_THISNODE;
1644
bf50bab2 1645 spin_lock(&hugetlb_lock);
4ef91848 1646 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1647 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1648 spin_unlock(&hugetlb_lock);
1649
94ae8ba7 1650 if (!page)
0c397dae 1651 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1652
1653 return page;
1654}
1655
ab5ac90a 1656/* page migration callback function */
3e59fcb0
MH
1657struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1658 nodemask_t *nmask)
4db9b2ef 1659{
aaf14e40 1660 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1661
1662 spin_lock(&hugetlb_lock);
1663 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1664 struct page *page;
1665
1666 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1667 if (page) {
1668 spin_unlock(&hugetlb_lock);
1669 return page;
4db9b2ef
MH
1670 }
1671 }
1672 spin_unlock(&hugetlb_lock);
4db9b2ef 1673
0c397dae 1674 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1675}
1676
ebd63723
MH
1677/* mempolicy aware migration callback */
1678struct page *alloc_huge_page_vma(struct vm_area_struct *vma, unsigned long address)
1679{
1680 struct mempolicy *mpol;
1681 nodemask_t *nodemask;
1682 struct page *page;
1683 struct hstate *h;
1684 gfp_t gfp_mask;
1685 int node;
1686
1687 h = hstate_vma(vma);
1688 gfp_mask = htlb_alloc_mask(h);
1689 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1690 page = alloc_huge_page_nodemask(h, node, nodemask);
1691 mpol_cond_put(mpol);
1692
1693 return page;
1694}
1695
e4e574b7 1696/*
25985edc 1697 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1698 * of size 'delta'.
1699 */
a5516438 1700static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1701{
1702 struct list_head surplus_list;
1703 struct page *page, *tmp;
1704 int ret, i;
1705 int needed, allocated;
28073b02 1706 bool alloc_ok = true;
e4e574b7 1707
a5516438 1708 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1709 if (needed <= 0) {
a5516438 1710 h->resv_huge_pages += delta;
e4e574b7 1711 return 0;
ac09b3a1 1712 }
e4e574b7
AL
1713
1714 allocated = 0;
1715 INIT_LIST_HEAD(&surplus_list);
1716
1717 ret = -ENOMEM;
1718retry:
1719 spin_unlock(&hugetlb_lock);
1720 for (i = 0; i < needed; i++) {
0c397dae 1721 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
aaf14e40 1722 NUMA_NO_NODE, NULL);
28073b02
HD
1723 if (!page) {
1724 alloc_ok = false;
1725 break;
1726 }
e4e574b7 1727 list_add(&page->lru, &surplus_list);
69ed779a 1728 cond_resched();
e4e574b7 1729 }
28073b02 1730 allocated += i;
e4e574b7
AL
1731
1732 /*
1733 * After retaking hugetlb_lock, we need to recalculate 'needed'
1734 * because either resv_huge_pages or free_huge_pages may have changed.
1735 */
1736 spin_lock(&hugetlb_lock);
a5516438
AK
1737 needed = (h->resv_huge_pages + delta) -
1738 (h->free_huge_pages + allocated);
28073b02
HD
1739 if (needed > 0) {
1740 if (alloc_ok)
1741 goto retry;
1742 /*
1743 * We were not able to allocate enough pages to
1744 * satisfy the entire reservation so we free what
1745 * we've allocated so far.
1746 */
1747 goto free;
1748 }
e4e574b7
AL
1749 /*
1750 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1751 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1752 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1753 * allocator. Commit the entire reservation here to prevent another
1754 * process from stealing the pages as they are added to the pool but
1755 * before they are reserved.
e4e574b7
AL
1756 */
1757 needed += allocated;
a5516438 1758 h->resv_huge_pages += delta;
e4e574b7 1759 ret = 0;
a9869b83 1760
19fc3f0a 1761 /* Free the needed pages to the hugetlb pool */
e4e574b7 1762 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1763 if ((--needed) < 0)
1764 break;
a9869b83
NH
1765 /*
1766 * This page is now managed by the hugetlb allocator and has
1767 * no users -- drop the buddy allocator's reference.
1768 */
1769 put_page_testzero(page);
309381fe 1770 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1771 enqueue_huge_page(h, page);
19fc3f0a 1772 }
28073b02 1773free:
b0365c8d 1774 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1775
1776 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1777 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1778 put_page(page);
a9869b83 1779 spin_lock(&hugetlb_lock);
e4e574b7
AL
1780
1781 return ret;
1782}
1783
1784/*
e5bbc8a6
MK
1785 * This routine has two main purposes:
1786 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1787 * in unused_resv_pages. This corresponds to the prior adjustments made
1788 * to the associated reservation map.
1789 * 2) Free any unused surplus pages that may have been allocated to satisfy
1790 * the reservation. As many as unused_resv_pages may be freed.
1791 *
1792 * Called with hugetlb_lock held. However, the lock could be dropped (and
1793 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1794 * we must make sure nobody else can claim pages we are in the process of
1795 * freeing. Do this by ensuring resv_huge_page always is greater than the
1796 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1797 */
a5516438
AK
1798static void return_unused_surplus_pages(struct hstate *h,
1799 unsigned long unused_resv_pages)
e4e574b7 1800{
e4e574b7
AL
1801 unsigned long nr_pages;
1802
aa888a74 1803 /* Cannot return gigantic pages currently */
bae7f4ae 1804 if (hstate_is_gigantic(h))
e5bbc8a6 1805 goto out;
aa888a74 1806
e5bbc8a6
MK
1807 /*
1808 * Part (or even all) of the reservation could have been backed
1809 * by pre-allocated pages. Only free surplus pages.
1810 */
a5516438 1811 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1812
685f3457
LS
1813 /*
1814 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1815 * evenly across all nodes with memory. Iterate across these nodes
1816 * until we can no longer free unreserved surplus pages. This occurs
1817 * when the nodes with surplus pages have no free pages.
1818 * free_pool_huge_page() will balance the the freed pages across the
1819 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1820 *
1821 * Note that we decrement resv_huge_pages as we free the pages. If
1822 * we drop the lock, resv_huge_pages will still be sufficiently large
1823 * to cover subsequent pages we may free.
685f3457
LS
1824 */
1825 while (nr_pages--) {
e5bbc8a6
MK
1826 h->resv_huge_pages--;
1827 unused_resv_pages--;
8cebfcd0 1828 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1829 goto out;
7848a4bf 1830 cond_resched_lock(&hugetlb_lock);
e4e574b7 1831 }
e5bbc8a6
MK
1832
1833out:
1834 /* Fully uncommit the reservation */
1835 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1836}
1837
5e911373 1838
c37f9fb1 1839/*
feba16e2 1840 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1841 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1842 *
1843 * vma_needs_reservation is called to determine if the huge page at addr
1844 * within the vma has an associated reservation. If a reservation is
1845 * needed, the value 1 is returned. The caller is then responsible for
1846 * managing the global reservation and subpool usage counts. After
1847 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1848 * to add the page to the reservation map. If the page allocation fails,
1849 * the reservation must be ended instead of committed. vma_end_reservation
1850 * is called in such cases.
cf3ad20b
MK
1851 *
1852 * In the normal case, vma_commit_reservation returns the same value
1853 * as the preceding vma_needs_reservation call. The only time this
1854 * is not the case is if a reserve map was changed between calls. It
1855 * is the responsibility of the caller to notice the difference and
1856 * take appropriate action.
96b96a96
MK
1857 *
1858 * vma_add_reservation is used in error paths where a reservation must
1859 * be restored when a newly allocated huge page must be freed. It is
1860 * to be called after calling vma_needs_reservation to determine if a
1861 * reservation exists.
c37f9fb1 1862 */
5e911373
MK
1863enum vma_resv_mode {
1864 VMA_NEEDS_RESV,
1865 VMA_COMMIT_RESV,
feba16e2 1866 VMA_END_RESV,
96b96a96 1867 VMA_ADD_RESV,
5e911373 1868};
cf3ad20b
MK
1869static long __vma_reservation_common(struct hstate *h,
1870 struct vm_area_struct *vma, unsigned long addr,
5e911373 1871 enum vma_resv_mode mode)
c37f9fb1 1872{
4e35f483
JK
1873 struct resv_map *resv;
1874 pgoff_t idx;
cf3ad20b 1875 long ret;
c37f9fb1 1876
4e35f483
JK
1877 resv = vma_resv_map(vma);
1878 if (!resv)
84afd99b 1879 return 1;
c37f9fb1 1880
4e35f483 1881 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1882 switch (mode) {
1883 case VMA_NEEDS_RESV:
cf3ad20b 1884 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1885 break;
1886 case VMA_COMMIT_RESV:
1887 ret = region_add(resv, idx, idx + 1);
1888 break;
feba16e2 1889 case VMA_END_RESV:
5e911373
MK
1890 region_abort(resv, idx, idx + 1);
1891 ret = 0;
1892 break;
96b96a96
MK
1893 case VMA_ADD_RESV:
1894 if (vma->vm_flags & VM_MAYSHARE)
1895 ret = region_add(resv, idx, idx + 1);
1896 else {
1897 region_abort(resv, idx, idx + 1);
1898 ret = region_del(resv, idx, idx + 1);
1899 }
1900 break;
5e911373
MK
1901 default:
1902 BUG();
1903 }
84afd99b 1904
4e35f483 1905 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1906 return ret;
67961f9d
MK
1907 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1908 /*
1909 * In most cases, reserves always exist for private mappings.
1910 * However, a file associated with mapping could have been
1911 * hole punched or truncated after reserves were consumed.
1912 * As subsequent fault on such a range will not use reserves.
1913 * Subtle - The reserve map for private mappings has the
1914 * opposite meaning than that of shared mappings. If NO
1915 * entry is in the reserve map, it means a reservation exists.
1916 * If an entry exists in the reserve map, it means the
1917 * reservation has already been consumed. As a result, the
1918 * return value of this routine is the opposite of the
1919 * value returned from reserve map manipulation routines above.
1920 */
1921 if (ret)
1922 return 0;
1923 else
1924 return 1;
1925 }
4e35f483 1926 else
cf3ad20b 1927 return ret < 0 ? ret : 0;
c37f9fb1 1928}
cf3ad20b
MK
1929
1930static long vma_needs_reservation(struct hstate *h,
a5516438 1931 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1932{
5e911373 1933 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1934}
84afd99b 1935
cf3ad20b
MK
1936static long vma_commit_reservation(struct hstate *h,
1937 struct vm_area_struct *vma, unsigned long addr)
1938{
5e911373
MK
1939 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1940}
1941
feba16e2 1942static void vma_end_reservation(struct hstate *h,
5e911373
MK
1943 struct vm_area_struct *vma, unsigned long addr)
1944{
feba16e2 1945 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1946}
1947
96b96a96
MK
1948static long vma_add_reservation(struct hstate *h,
1949 struct vm_area_struct *vma, unsigned long addr)
1950{
1951 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1952}
1953
1954/*
1955 * This routine is called to restore a reservation on error paths. In the
1956 * specific error paths, a huge page was allocated (via alloc_huge_page)
1957 * and is about to be freed. If a reservation for the page existed,
1958 * alloc_huge_page would have consumed the reservation and set PagePrivate
1959 * in the newly allocated page. When the page is freed via free_huge_page,
1960 * the global reservation count will be incremented if PagePrivate is set.
1961 * However, free_huge_page can not adjust the reserve map. Adjust the
1962 * reserve map here to be consistent with global reserve count adjustments
1963 * to be made by free_huge_page.
1964 */
1965static void restore_reserve_on_error(struct hstate *h,
1966 struct vm_area_struct *vma, unsigned long address,
1967 struct page *page)
1968{
1969 if (unlikely(PagePrivate(page))) {
1970 long rc = vma_needs_reservation(h, vma, address);
1971
1972 if (unlikely(rc < 0)) {
1973 /*
1974 * Rare out of memory condition in reserve map
1975 * manipulation. Clear PagePrivate so that
1976 * global reserve count will not be incremented
1977 * by free_huge_page. This will make it appear
1978 * as though the reservation for this page was
1979 * consumed. This may prevent the task from
1980 * faulting in the page at a later time. This
1981 * is better than inconsistent global huge page
1982 * accounting of reserve counts.
1983 */
1984 ClearPagePrivate(page);
1985 } else if (rc) {
1986 rc = vma_add_reservation(h, vma, address);
1987 if (unlikely(rc < 0))
1988 /*
1989 * See above comment about rare out of
1990 * memory condition.
1991 */
1992 ClearPagePrivate(page);
1993 } else
1994 vma_end_reservation(h, vma, address);
1995 }
1996}
1997
70c3547e 1998struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1999 unsigned long addr, int avoid_reserve)
1da177e4 2000{
90481622 2001 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 2002 struct hstate *h = hstate_vma(vma);
348ea204 2003 struct page *page;
d85f69b0
MK
2004 long map_chg, map_commit;
2005 long gbl_chg;
6d76dcf4
AK
2006 int ret, idx;
2007 struct hugetlb_cgroup *h_cg;
a1e78772 2008
6d76dcf4 2009 idx = hstate_index(h);
a1e78772 2010 /*
d85f69b0
MK
2011 * Examine the region/reserve map to determine if the process
2012 * has a reservation for the page to be allocated. A return
2013 * code of zero indicates a reservation exists (no change).
a1e78772 2014 */
d85f69b0
MK
2015 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2016 if (map_chg < 0)
76dcee75 2017 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2018
2019 /*
2020 * Processes that did not create the mapping will have no
2021 * reserves as indicated by the region/reserve map. Check
2022 * that the allocation will not exceed the subpool limit.
2023 * Allocations for MAP_NORESERVE mappings also need to be
2024 * checked against any subpool limit.
2025 */
2026 if (map_chg || avoid_reserve) {
2027 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2028 if (gbl_chg < 0) {
feba16e2 2029 vma_end_reservation(h, vma, addr);
76dcee75 2030 return ERR_PTR(-ENOSPC);
5e911373 2031 }
1da177e4 2032
d85f69b0
MK
2033 /*
2034 * Even though there was no reservation in the region/reserve
2035 * map, there could be reservations associated with the
2036 * subpool that can be used. This would be indicated if the
2037 * return value of hugepage_subpool_get_pages() is zero.
2038 * However, if avoid_reserve is specified we still avoid even
2039 * the subpool reservations.
2040 */
2041 if (avoid_reserve)
2042 gbl_chg = 1;
2043 }
2044
6d76dcf4 2045 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2046 if (ret)
2047 goto out_subpool_put;
2048
1da177e4 2049 spin_lock(&hugetlb_lock);
d85f69b0
MK
2050 /*
2051 * glb_chg is passed to indicate whether or not a page must be taken
2052 * from the global free pool (global change). gbl_chg == 0 indicates
2053 * a reservation exists for the allocation.
2054 */
2055 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2056 if (!page) {
94ae8ba7 2057 spin_unlock(&hugetlb_lock);
0c397dae 2058 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2059 if (!page)
2060 goto out_uncharge_cgroup;
a88c7695
NH
2061 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2062 SetPagePrivate(page);
2063 h->resv_huge_pages--;
2064 }
79dbb236
AK
2065 spin_lock(&hugetlb_lock);
2066 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2067 /* Fall through */
68842c9b 2068 }
81a6fcae
JK
2069 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2070 spin_unlock(&hugetlb_lock);
348ea204 2071
90481622 2072 set_page_private(page, (unsigned long)spool);
90d8b7e6 2073
d85f69b0
MK
2074 map_commit = vma_commit_reservation(h, vma, addr);
2075 if (unlikely(map_chg > map_commit)) {
33039678
MK
2076 /*
2077 * The page was added to the reservation map between
2078 * vma_needs_reservation and vma_commit_reservation.
2079 * This indicates a race with hugetlb_reserve_pages.
2080 * Adjust for the subpool count incremented above AND
2081 * in hugetlb_reserve_pages for the same page. Also,
2082 * the reservation count added in hugetlb_reserve_pages
2083 * no longer applies.
2084 */
2085 long rsv_adjust;
2086
2087 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2088 hugetlb_acct_memory(h, -rsv_adjust);
2089 }
90d8b7e6 2090 return page;
8f34af6f
JZ
2091
2092out_uncharge_cgroup:
2093 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2094out_subpool_put:
d85f69b0 2095 if (map_chg || avoid_reserve)
8f34af6f 2096 hugepage_subpool_put_pages(spool, 1);
feba16e2 2097 vma_end_reservation(h, vma, addr);
8f34af6f 2098 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2099}
2100
e24a1307
AK
2101int alloc_bootmem_huge_page(struct hstate *h)
2102 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2103int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2104{
2105 struct huge_bootmem_page *m;
b2261026 2106 int nr_nodes, node;
aa888a74 2107
b2261026 2108 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2109 void *addr;
2110
8b89a116
GS
2111 addr = memblock_virt_alloc_try_nid_nopanic(
2112 huge_page_size(h), huge_page_size(h),
2113 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2114 if (addr) {
2115 /*
2116 * Use the beginning of the huge page to store the
2117 * huge_bootmem_page struct (until gather_bootmem
2118 * puts them into the mem_map).
2119 */
2120 m = addr;
91f47662 2121 goto found;
aa888a74 2122 }
aa888a74
AK
2123 }
2124 return 0;
2125
2126found:
df994ead 2127 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
2128 /* Put them into a private list first because mem_map is not up yet */
2129 list_add(&m->list, &huge_boot_pages);
2130 m->hstate = h;
2131 return 1;
2132}
2133
d00181b9
KS
2134static void __init prep_compound_huge_page(struct page *page,
2135 unsigned int order)
18229df5
AW
2136{
2137 if (unlikely(order > (MAX_ORDER - 1)))
2138 prep_compound_gigantic_page(page, order);
2139 else
2140 prep_compound_page(page, order);
2141}
2142
aa888a74
AK
2143/* Put bootmem huge pages into the standard lists after mem_map is up */
2144static void __init gather_bootmem_prealloc(void)
2145{
2146 struct huge_bootmem_page *m;
2147
2148 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 2149 struct hstate *h = m->hstate;
ee8f248d
BB
2150 struct page *page;
2151
2152#ifdef CONFIG_HIGHMEM
2153 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2154 memblock_free_late(__pa(m),
2155 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2156#else
2157 page = virt_to_page(m);
2158#endif
aa888a74 2159 WARN_ON(page_count(page) != 1);
18229df5 2160 prep_compound_huge_page(page, h->order);
ef5a22be 2161 WARN_ON(PageReserved(page));
aa888a74 2162 prep_new_huge_page(h, page, page_to_nid(page));
af0fb9df
MH
2163 put_page(page); /* free it into the hugepage allocator */
2164
b0320c7b
RA
2165 /*
2166 * If we had gigantic hugepages allocated at boot time, we need
2167 * to restore the 'stolen' pages to totalram_pages in order to
2168 * fix confusing memory reports from free(1) and another
2169 * side-effects, like CommitLimit going negative.
2170 */
bae7f4ae 2171 if (hstate_is_gigantic(h))
3dcc0571 2172 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
2173 }
2174}
2175
8faa8b07 2176static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2177{
2178 unsigned long i;
a5516438 2179
e5ff2159 2180 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2181 if (hstate_is_gigantic(h)) {
aa888a74
AK
2182 if (!alloc_bootmem_huge_page(h))
2183 break;
0c397dae 2184 } else if (!alloc_pool_huge_page(h,
8cebfcd0 2185 &node_states[N_MEMORY]))
1da177e4 2186 break;
69ed779a 2187 cond_resched();
1da177e4 2188 }
d715cf80
LH
2189 if (i < h->max_huge_pages) {
2190 char buf[32];
2191
c6247f72 2192 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2193 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2194 h->max_huge_pages, buf, i);
2195 h->max_huge_pages = i;
2196 }
e5ff2159
AK
2197}
2198
2199static void __init hugetlb_init_hstates(void)
2200{
2201 struct hstate *h;
2202
2203 for_each_hstate(h) {
641844f5
NH
2204 if (minimum_order > huge_page_order(h))
2205 minimum_order = huge_page_order(h);
2206
8faa8b07 2207 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2208 if (!hstate_is_gigantic(h))
8faa8b07 2209 hugetlb_hstate_alloc_pages(h);
e5ff2159 2210 }
641844f5 2211 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2212}
2213
2214static void __init report_hugepages(void)
2215{
2216 struct hstate *h;
2217
2218 for_each_hstate(h) {
4abd32db 2219 char buf[32];
c6247f72
MW
2220
2221 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2222 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2223 buf, h->free_huge_pages);
e5ff2159
AK
2224 }
2225}
2226
1da177e4 2227#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2228static void try_to_free_low(struct hstate *h, unsigned long count,
2229 nodemask_t *nodes_allowed)
1da177e4 2230{
4415cc8d
CL
2231 int i;
2232
bae7f4ae 2233 if (hstate_is_gigantic(h))
aa888a74
AK
2234 return;
2235
6ae11b27 2236 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2237 struct page *page, *next;
a5516438
AK
2238 struct list_head *freel = &h->hugepage_freelists[i];
2239 list_for_each_entry_safe(page, next, freel, lru) {
2240 if (count >= h->nr_huge_pages)
6b0c880d 2241 return;
1da177e4
LT
2242 if (PageHighMem(page))
2243 continue;
2244 list_del(&page->lru);
e5ff2159 2245 update_and_free_page(h, page);
a5516438
AK
2246 h->free_huge_pages--;
2247 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2248 }
2249 }
2250}
2251#else
6ae11b27
LS
2252static inline void try_to_free_low(struct hstate *h, unsigned long count,
2253 nodemask_t *nodes_allowed)
1da177e4
LT
2254{
2255}
2256#endif
2257
20a0307c
WF
2258/*
2259 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2260 * balanced by operating on them in a round-robin fashion.
2261 * Returns 1 if an adjustment was made.
2262 */
6ae11b27
LS
2263static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2264 int delta)
20a0307c 2265{
b2261026 2266 int nr_nodes, node;
20a0307c
WF
2267
2268 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2269
b2261026
JK
2270 if (delta < 0) {
2271 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2272 if (h->surplus_huge_pages_node[node])
2273 goto found;
e8c5c824 2274 }
b2261026
JK
2275 } else {
2276 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2277 if (h->surplus_huge_pages_node[node] <
2278 h->nr_huge_pages_node[node])
2279 goto found;
e8c5c824 2280 }
b2261026
JK
2281 }
2282 return 0;
20a0307c 2283
b2261026
JK
2284found:
2285 h->surplus_huge_pages += delta;
2286 h->surplus_huge_pages_node[node] += delta;
2287 return 1;
20a0307c
WF
2288}
2289
a5516438 2290#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2291static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2292 nodemask_t *nodes_allowed)
1da177e4 2293{
7893d1d5 2294 unsigned long min_count, ret;
1da177e4 2295
944d9fec 2296 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2297 return h->max_huge_pages;
2298
7893d1d5
AL
2299 /*
2300 * Increase the pool size
2301 * First take pages out of surplus state. Then make up the
2302 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2303 *
0c397dae 2304 * We might race with alloc_surplus_huge_page() here and be unable
d1c3fb1f
NA
2305 * to convert a surplus huge page to a normal huge page. That is
2306 * not critical, though, it just means the overall size of the
2307 * pool might be one hugepage larger than it needs to be, but
2308 * within all the constraints specified by the sysctls.
7893d1d5 2309 */
1da177e4 2310 spin_lock(&hugetlb_lock);
a5516438 2311 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2312 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2313 break;
2314 }
2315
a5516438 2316 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2317 /*
2318 * If this allocation races such that we no longer need the
2319 * page, free_huge_page will handle it by freeing the page
2320 * and reducing the surplus.
2321 */
2322 spin_unlock(&hugetlb_lock);
649920c6
JH
2323
2324 /* yield cpu to avoid soft lockup */
2325 cond_resched();
2326
0c397dae 2327 ret = alloc_pool_huge_page(h, nodes_allowed);
7893d1d5
AL
2328 spin_lock(&hugetlb_lock);
2329 if (!ret)
2330 goto out;
2331
536240f2
MG
2332 /* Bail for signals. Probably ctrl-c from user */
2333 if (signal_pending(current))
2334 goto out;
7893d1d5 2335 }
7893d1d5
AL
2336
2337 /*
2338 * Decrease the pool size
2339 * First return free pages to the buddy allocator (being careful
2340 * to keep enough around to satisfy reservations). Then place
2341 * pages into surplus state as needed so the pool will shrink
2342 * to the desired size as pages become free.
d1c3fb1f
NA
2343 *
2344 * By placing pages into the surplus state independent of the
2345 * overcommit value, we are allowing the surplus pool size to
2346 * exceed overcommit. There are few sane options here. Since
0c397dae 2347 * alloc_surplus_huge_page() is checking the global counter,
d1c3fb1f
NA
2348 * though, we'll note that we're not allowed to exceed surplus
2349 * and won't grow the pool anywhere else. Not until one of the
2350 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2351 */
a5516438 2352 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2353 min_count = max(count, min_count);
6ae11b27 2354 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2355 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2356 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2357 break;
55f67141 2358 cond_resched_lock(&hugetlb_lock);
1da177e4 2359 }
a5516438 2360 while (count < persistent_huge_pages(h)) {
6ae11b27 2361 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2362 break;
2363 }
2364out:
a5516438 2365 ret = persistent_huge_pages(h);
1da177e4 2366 spin_unlock(&hugetlb_lock);
7893d1d5 2367 return ret;
1da177e4
LT
2368}
2369
a3437870
NA
2370#define HSTATE_ATTR_RO(_name) \
2371 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2372
2373#define HSTATE_ATTR(_name) \
2374 static struct kobj_attribute _name##_attr = \
2375 __ATTR(_name, 0644, _name##_show, _name##_store)
2376
2377static struct kobject *hugepages_kobj;
2378static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2379
9a305230
LS
2380static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2381
2382static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2383{
2384 int i;
9a305230 2385
a3437870 2386 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2387 if (hstate_kobjs[i] == kobj) {
2388 if (nidp)
2389 *nidp = NUMA_NO_NODE;
a3437870 2390 return &hstates[i];
9a305230
LS
2391 }
2392
2393 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2394}
2395
06808b08 2396static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2397 struct kobj_attribute *attr, char *buf)
2398{
9a305230
LS
2399 struct hstate *h;
2400 unsigned long nr_huge_pages;
2401 int nid;
2402
2403 h = kobj_to_hstate(kobj, &nid);
2404 if (nid == NUMA_NO_NODE)
2405 nr_huge_pages = h->nr_huge_pages;
2406 else
2407 nr_huge_pages = h->nr_huge_pages_node[nid];
2408
2409 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2410}
adbe8726 2411
238d3c13
DR
2412static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2413 struct hstate *h, int nid,
2414 unsigned long count, size_t len)
a3437870
NA
2415{
2416 int err;
bad44b5b 2417 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2418
944d9fec 2419 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2420 err = -EINVAL;
2421 goto out;
2422 }
2423
9a305230
LS
2424 if (nid == NUMA_NO_NODE) {
2425 /*
2426 * global hstate attribute
2427 */
2428 if (!(obey_mempolicy &&
2429 init_nodemask_of_mempolicy(nodes_allowed))) {
2430 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2431 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2432 }
2433 } else if (nodes_allowed) {
2434 /*
2435 * per node hstate attribute: adjust count to global,
2436 * but restrict alloc/free to the specified node.
2437 */
2438 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2439 init_nodemask_of_node(nodes_allowed, nid);
2440 } else
8cebfcd0 2441 nodes_allowed = &node_states[N_MEMORY];
9a305230 2442
06808b08 2443 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2444
8cebfcd0 2445 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2446 NODEMASK_FREE(nodes_allowed);
2447
2448 return len;
adbe8726
EM
2449out:
2450 NODEMASK_FREE(nodes_allowed);
2451 return err;
06808b08
LS
2452}
2453
238d3c13
DR
2454static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2455 struct kobject *kobj, const char *buf,
2456 size_t len)
2457{
2458 struct hstate *h;
2459 unsigned long count;
2460 int nid;
2461 int err;
2462
2463 err = kstrtoul(buf, 10, &count);
2464 if (err)
2465 return err;
2466
2467 h = kobj_to_hstate(kobj, &nid);
2468 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2469}
2470
06808b08
LS
2471static ssize_t nr_hugepages_show(struct kobject *kobj,
2472 struct kobj_attribute *attr, char *buf)
2473{
2474 return nr_hugepages_show_common(kobj, attr, buf);
2475}
2476
2477static ssize_t nr_hugepages_store(struct kobject *kobj,
2478 struct kobj_attribute *attr, const char *buf, size_t len)
2479{
238d3c13 2480 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2481}
2482HSTATE_ATTR(nr_hugepages);
2483
06808b08
LS
2484#ifdef CONFIG_NUMA
2485
2486/*
2487 * hstate attribute for optionally mempolicy-based constraint on persistent
2488 * huge page alloc/free.
2489 */
2490static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2491 struct kobj_attribute *attr, char *buf)
2492{
2493 return nr_hugepages_show_common(kobj, attr, buf);
2494}
2495
2496static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2497 struct kobj_attribute *attr, const char *buf, size_t len)
2498{
238d3c13 2499 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2500}
2501HSTATE_ATTR(nr_hugepages_mempolicy);
2502#endif
2503
2504
a3437870
NA
2505static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2506 struct kobj_attribute *attr, char *buf)
2507{
9a305230 2508 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2509 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2510}
adbe8726 2511
a3437870
NA
2512static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2513 struct kobj_attribute *attr, const char *buf, size_t count)
2514{
2515 int err;
2516 unsigned long input;
9a305230 2517 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2518
bae7f4ae 2519 if (hstate_is_gigantic(h))
adbe8726
EM
2520 return -EINVAL;
2521
3dbb95f7 2522 err = kstrtoul(buf, 10, &input);
a3437870 2523 if (err)
73ae31e5 2524 return err;
a3437870
NA
2525
2526 spin_lock(&hugetlb_lock);
2527 h->nr_overcommit_huge_pages = input;
2528 spin_unlock(&hugetlb_lock);
2529
2530 return count;
2531}
2532HSTATE_ATTR(nr_overcommit_hugepages);
2533
2534static ssize_t free_hugepages_show(struct kobject *kobj,
2535 struct kobj_attribute *attr, char *buf)
2536{
9a305230
LS
2537 struct hstate *h;
2538 unsigned long free_huge_pages;
2539 int nid;
2540
2541 h = kobj_to_hstate(kobj, &nid);
2542 if (nid == NUMA_NO_NODE)
2543 free_huge_pages = h->free_huge_pages;
2544 else
2545 free_huge_pages = h->free_huge_pages_node[nid];
2546
2547 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2548}
2549HSTATE_ATTR_RO(free_hugepages);
2550
2551static ssize_t resv_hugepages_show(struct kobject *kobj,
2552 struct kobj_attribute *attr, char *buf)
2553{
9a305230 2554 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2555 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2556}
2557HSTATE_ATTR_RO(resv_hugepages);
2558
2559static ssize_t surplus_hugepages_show(struct kobject *kobj,
2560 struct kobj_attribute *attr, char *buf)
2561{
9a305230
LS
2562 struct hstate *h;
2563 unsigned long surplus_huge_pages;
2564 int nid;
2565
2566 h = kobj_to_hstate(kobj, &nid);
2567 if (nid == NUMA_NO_NODE)
2568 surplus_huge_pages = h->surplus_huge_pages;
2569 else
2570 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2571
2572 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2573}
2574HSTATE_ATTR_RO(surplus_hugepages);
2575
2576static struct attribute *hstate_attrs[] = {
2577 &nr_hugepages_attr.attr,
2578 &nr_overcommit_hugepages_attr.attr,
2579 &free_hugepages_attr.attr,
2580 &resv_hugepages_attr.attr,
2581 &surplus_hugepages_attr.attr,
06808b08
LS
2582#ifdef CONFIG_NUMA
2583 &nr_hugepages_mempolicy_attr.attr,
2584#endif
a3437870
NA
2585 NULL,
2586};
2587
67e5ed96 2588static const struct attribute_group hstate_attr_group = {
a3437870
NA
2589 .attrs = hstate_attrs,
2590};
2591
094e9539
JM
2592static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2593 struct kobject **hstate_kobjs,
67e5ed96 2594 const struct attribute_group *hstate_attr_group)
a3437870
NA
2595{
2596 int retval;
972dc4de 2597 int hi = hstate_index(h);
a3437870 2598
9a305230
LS
2599 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2600 if (!hstate_kobjs[hi])
a3437870
NA
2601 return -ENOMEM;
2602
9a305230 2603 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2604 if (retval)
9a305230 2605 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2606
2607 return retval;
2608}
2609
2610static void __init hugetlb_sysfs_init(void)
2611{
2612 struct hstate *h;
2613 int err;
2614
2615 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2616 if (!hugepages_kobj)
2617 return;
2618
2619 for_each_hstate(h) {
9a305230
LS
2620 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2621 hstate_kobjs, &hstate_attr_group);
a3437870 2622 if (err)
ffb22af5 2623 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2624 }
2625}
2626
9a305230
LS
2627#ifdef CONFIG_NUMA
2628
2629/*
2630 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2631 * with node devices in node_devices[] using a parallel array. The array
2632 * index of a node device or _hstate == node id.
2633 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2634 * the base kernel, on the hugetlb module.
2635 */
2636struct node_hstate {
2637 struct kobject *hugepages_kobj;
2638 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2639};
b4e289a6 2640static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2641
2642/*
10fbcf4c 2643 * A subset of global hstate attributes for node devices
9a305230
LS
2644 */
2645static struct attribute *per_node_hstate_attrs[] = {
2646 &nr_hugepages_attr.attr,
2647 &free_hugepages_attr.attr,
2648 &surplus_hugepages_attr.attr,
2649 NULL,
2650};
2651
67e5ed96 2652static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2653 .attrs = per_node_hstate_attrs,
2654};
2655
2656/*
10fbcf4c 2657 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2658 * Returns node id via non-NULL nidp.
2659 */
2660static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2661{
2662 int nid;
2663
2664 for (nid = 0; nid < nr_node_ids; nid++) {
2665 struct node_hstate *nhs = &node_hstates[nid];
2666 int i;
2667 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2668 if (nhs->hstate_kobjs[i] == kobj) {
2669 if (nidp)
2670 *nidp = nid;
2671 return &hstates[i];
2672 }
2673 }
2674
2675 BUG();
2676 return NULL;
2677}
2678
2679/*
10fbcf4c 2680 * Unregister hstate attributes from a single node device.
9a305230
LS
2681 * No-op if no hstate attributes attached.
2682 */
3cd8b44f 2683static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2684{
2685 struct hstate *h;
10fbcf4c 2686 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2687
2688 if (!nhs->hugepages_kobj)
9b5e5d0f 2689 return; /* no hstate attributes */
9a305230 2690
972dc4de
AK
2691 for_each_hstate(h) {
2692 int idx = hstate_index(h);
2693 if (nhs->hstate_kobjs[idx]) {
2694 kobject_put(nhs->hstate_kobjs[idx]);
2695 nhs->hstate_kobjs[idx] = NULL;
9a305230 2696 }
972dc4de 2697 }
9a305230
LS
2698
2699 kobject_put(nhs->hugepages_kobj);
2700 nhs->hugepages_kobj = NULL;
2701}
2702
9a305230
LS
2703
2704/*
10fbcf4c 2705 * Register hstate attributes for a single node device.
9a305230
LS
2706 * No-op if attributes already registered.
2707 */
3cd8b44f 2708static void hugetlb_register_node(struct node *node)
9a305230
LS
2709{
2710 struct hstate *h;
10fbcf4c 2711 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2712 int err;
2713
2714 if (nhs->hugepages_kobj)
2715 return; /* already allocated */
2716
2717 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2718 &node->dev.kobj);
9a305230
LS
2719 if (!nhs->hugepages_kobj)
2720 return;
2721
2722 for_each_hstate(h) {
2723 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2724 nhs->hstate_kobjs,
2725 &per_node_hstate_attr_group);
2726 if (err) {
ffb22af5
AM
2727 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2728 h->name, node->dev.id);
9a305230
LS
2729 hugetlb_unregister_node(node);
2730 break;
2731 }
2732 }
2733}
2734
2735/*
9b5e5d0f 2736 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2737 * devices of nodes that have memory. All on-line nodes should have
2738 * registered their associated device by this time.
9a305230 2739 */
7d9ca000 2740static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2741{
2742 int nid;
2743
8cebfcd0 2744 for_each_node_state(nid, N_MEMORY) {
8732794b 2745 struct node *node = node_devices[nid];
10fbcf4c 2746 if (node->dev.id == nid)
9a305230
LS
2747 hugetlb_register_node(node);
2748 }
2749
2750 /*
10fbcf4c 2751 * Let the node device driver know we're here so it can
9a305230
LS
2752 * [un]register hstate attributes on node hotplug.
2753 */
2754 register_hugetlbfs_with_node(hugetlb_register_node,
2755 hugetlb_unregister_node);
2756}
2757#else /* !CONFIG_NUMA */
2758
2759static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2760{
2761 BUG();
2762 if (nidp)
2763 *nidp = -1;
2764 return NULL;
2765}
2766
9a305230
LS
2767static void hugetlb_register_all_nodes(void) { }
2768
2769#endif
2770
a3437870
NA
2771static int __init hugetlb_init(void)
2772{
8382d914
DB
2773 int i;
2774
457c1b27 2775 if (!hugepages_supported())
0ef89d25 2776 return 0;
a3437870 2777
e11bfbfc 2778 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2779 if (default_hstate_size != 0) {
2780 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2781 default_hstate_size, HPAGE_SIZE);
2782 }
2783
e11bfbfc
NP
2784 default_hstate_size = HPAGE_SIZE;
2785 if (!size_to_hstate(default_hstate_size))
2786 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2787 }
972dc4de 2788 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2789 if (default_hstate_max_huge_pages) {
2790 if (!default_hstate.max_huge_pages)
2791 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2792 }
a3437870
NA
2793
2794 hugetlb_init_hstates();
aa888a74 2795 gather_bootmem_prealloc();
a3437870
NA
2796 report_hugepages();
2797
2798 hugetlb_sysfs_init();
9a305230 2799 hugetlb_register_all_nodes();
7179e7bf 2800 hugetlb_cgroup_file_init();
9a305230 2801
8382d914
DB
2802#ifdef CONFIG_SMP
2803 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2804#else
2805 num_fault_mutexes = 1;
2806#endif
c672c7f2 2807 hugetlb_fault_mutex_table =
8382d914 2808 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2809 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2810
2811 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2812 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2813 return 0;
2814}
3e89e1c5 2815subsys_initcall(hugetlb_init);
a3437870
NA
2816
2817/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2818void __init hugetlb_bad_size(void)
2819{
2820 parsed_valid_hugepagesz = false;
2821}
2822
d00181b9 2823void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2824{
2825 struct hstate *h;
8faa8b07
AK
2826 unsigned long i;
2827
a3437870 2828 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2829 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2830 return;
2831 }
47d38344 2832 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2833 BUG_ON(order == 0);
47d38344 2834 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2835 h->order = order;
2836 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2837 h->nr_huge_pages = 0;
2838 h->free_huge_pages = 0;
2839 for (i = 0; i < MAX_NUMNODES; ++i)
2840 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2841 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2842 h->next_nid_to_alloc = first_memory_node;
2843 h->next_nid_to_free = first_memory_node;
a3437870
NA
2844 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2845 huge_page_size(h)/1024);
8faa8b07 2846
a3437870
NA
2847 parsed_hstate = h;
2848}
2849
e11bfbfc 2850static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2851{
2852 unsigned long *mhp;
8faa8b07 2853 static unsigned long *last_mhp;
a3437870 2854
9fee021d
VT
2855 if (!parsed_valid_hugepagesz) {
2856 pr_warn("hugepages = %s preceded by "
2857 "an unsupported hugepagesz, ignoring\n", s);
2858 parsed_valid_hugepagesz = true;
2859 return 1;
2860 }
a3437870 2861 /*
47d38344 2862 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2863 * so this hugepages= parameter goes to the "default hstate".
2864 */
9fee021d 2865 else if (!hugetlb_max_hstate)
a3437870
NA
2866 mhp = &default_hstate_max_huge_pages;
2867 else
2868 mhp = &parsed_hstate->max_huge_pages;
2869
8faa8b07 2870 if (mhp == last_mhp) {
598d8091 2871 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2872 return 1;
2873 }
2874
a3437870
NA
2875 if (sscanf(s, "%lu", mhp) <= 0)
2876 *mhp = 0;
2877
8faa8b07
AK
2878 /*
2879 * Global state is always initialized later in hugetlb_init.
2880 * But we need to allocate >= MAX_ORDER hstates here early to still
2881 * use the bootmem allocator.
2882 */
47d38344 2883 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2884 hugetlb_hstate_alloc_pages(parsed_hstate);
2885
2886 last_mhp = mhp;
2887
a3437870
NA
2888 return 1;
2889}
e11bfbfc
NP
2890__setup("hugepages=", hugetlb_nrpages_setup);
2891
2892static int __init hugetlb_default_setup(char *s)
2893{
2894 default_hstate_size = memparse(s, &s);
2895 return 1;
2896}
2897__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2898
8a213460
NA
2899static unsigned int cpuset_mems_nr(unsigned int *array)
2900{
2901 int node;
2902 unsigned int nr = 0;
2903
2904 for_each_node_mask(node, cpuset_current_mems_allowed)
2905 nr += array[node];
2906
2907 return nr;
2908}
2909
2910#ifdef CONFIG_SYSCTL
06808b08
LS
2911static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2912 struct ctl_table *table, int write,
2913 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2914{
e5ff2159 2915 struct hstate *h = &default_hstate;
238d3c13 2916 unsigned long tmp = h->max_huge_pages;
08d4a246 2917 int ret;
e5ff2159 2918
457c1b27 2919 if (!hugepages_supported())
86613628 2920 return -EOPNOTSUPP;
457c1b27 2921
e5ff2159
AK
2922 table->data = &tmp;
2923 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2924 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2925 if (ret)
2926 goto out;
e5ff2159 2927
238d3c13
DR
2928 if (write)
2929 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2930 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2931out:
2932 return ret;
1da177e4 2933}
396faf03 2934
06808b08
LS
2935int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2936 void __user *buffer, size_t *length, loff_t *ppos)
2937{
2938
2939 return hugetlb_sysctl_handler_common(false, table, write,
2940 buffer, length, ppos);
2941}
2942
2943#ifdef CONFIG_NUMA
2944int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2945 void __user *buffer, size_t *length, loff_t *ppos)
2946{
2947 return hugetlb_sysctl_handler_common(true, table, write,
2948 buffer, length, ppos);
2949}
2950#endif /* CONFIG_NUMA */
2951
a3d0c6aa 2952int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2953 void __user *buffer,
a3d0c6aa
NA
2954 size_t *length, loff_t *ppos)
2955{
a5516438 2956 struct hstate *h = &default_hstate;
e5ff2159 2957 unsigned long tmp;
08d4a246 2958 int ret;
e5ff2159 2959
457c1b27 2960 if (!hugepages_supported())
86613628 2961 return -EOPNOTSUPP;
457c1b27 2962
c033a93c 2963 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2964
bae7f4ae 2965 if (write && hstate_is_gigantic(h))
adbe8726
EM
2966 return -EINVAL;
2967
e5ff2159
AK
2968 table->data = &tmp;
2969 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2970 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2971 if (ret)
2972 goto out;
e5ff2159
AK
2973
2974 if (write) {
2975 spin_lock(&hugetlb_lock);
2976 h->nr_overcommit_huge_pages = tmp;
2977 spin_unlock(&hugetlb_lock);
2978 }
08d4a246
MH
2979out:
2980 return ret;
a3d0c6aa
NA
2981}
2982
1da177e4
LT
2983#endif /* CONFIG_SYSCTL */
2984
e1759c21 2985void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2986{
fcb2b0c5
RG
2987 struct hstate *h;
2988 unsigned long total = 0;
2989
457c1b27
NA
2990 if (!hugepages_supported())
2991 return;
fcb2b0c5
RG
2992
2993 for_each_hstate(h) {
2994 unsigned long count = h->nr_huge_pages;
2995
2996 total += (PAGE_SIZE << huge_page_order(h)) * count;
2997
2998 if (h == &default_hstate)
2999 seq_printf(m,
3000 "HugePages_Total: %5lu\n"
3001 "HugePages_Free: %5lu\n"
3002 "HugePages_Rsvd: %5lu\n"
3003 "HugePages_Surp: %5lu\n"
3004 "Hugepagesize: %8lu kB\n",
3005 count,
3006 h->free_huge_pages,
3007 h->resv_huge_pages,
3008 h->surplus_huge_pages,
3009 (PAGE_SIZE << huge_page_order(h)) / 1024);
3010 }
3011
3012 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
1da177e4
LT
3013}
3014
3015int hugetlb_report_node_meminfo(int nid, char *buf)
3016{
a5516438 3017 struct hstate *h = &default_hstate;
457c1b27
NA
3018 if (!hugepages_supported())
3019 return 0;
1da177e4
LT
3020 return sprintf(buf,
3021 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3022 "Node %d HugePages_Free: %5u\n"
3023 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3024 nid, h->nr_huge_pages_node[nid],
3025 nid, h->free_huge_pages_node[nid],
3026 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3027}
3028
949f7ec5
DR
3029void hugetlb_show_meminfo(void)
3030{
3031 struct hstate *h;
3032 int nid;
3033
457c1b27
NA
3034 if (!hugepages_supported())
3035 return;
3036
949f7ec5
DR
3037 for_each_node_state(nid, N_MEMORY)
3038 for_each_hstate(h)
3039 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3040 nid,
3041 h->nr_huge_pages_node[nid],
3042 h->free_huge_pages_node[nid],
3043 h->surplus_huge_pages_node[nid],
3044 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3045}
3046
5d317b2b
NH
3047void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3048{
3049 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3050 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3051}
3052
1da177e4
LT
3053/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3054unsigned long hugetlb_total_pages(void)
3055{
d0028588
WL
3056 struct hstate *h;
3057 unsigned long nr_total_pages = 0;
3058
3059 for_each_hstate(h)
3060 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3061 return nr_total_pages;
1da177e4 3062}
1da177e4 3063
a5516438 3064static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3065{
3066 int ret = -ENOMEM;
3067
3068 spin_lock(&hugetlb_lock);
3069 /*
3070 * When cpuset is configured, it breaks the strict hugetlb page
3071 * reservation as the accounting is done on a global variable. Such
3072 * reservation is completely rubbish in the presence of cpuset because
3073 * the reservation is not checked against page availability for the
3074 * current cpuset. Application can still potentially OOM'ed by kernel
3075 * with lack of free htlb page in cpuset that the task is in.
3076 * Attempt to enforce strict accounting with cpuset is almost
3077 * impossible (or too ugly) because cpuset is too fluid that
3078 * task or memory node can be dynamically moved between cpusets.
3079 *
3080 * The change of semantics for shared hugetlb mapping with cpuset is
3081 * undesirable. However, in order to preserve some of the semantics,
3082 * we fall back to check against current free page availability as
3083 * a best attempt and hopefully to minimize the impact of changing
3084 * semantics that cpuset has.
3085 */
3086 if (delta > 0) {
a5516438 3087 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3088 goto out;
3089
a5516438
AK
3090 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3091 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3092 goto out;
3093 }
3094 }
3095
3096 ret = 0;
3097 if (delta < 0)
a5516438 3098 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3099
3100out:
3101 spin_unlock(&hugetlb_lock);
3102 return ret;
3103}
3104
84afd99b
AW
3105static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3106{
f522c3ac 3107 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3108
3109 /*
3110 * This new VMA should share its siblings reservation map if present.
3111 * The VMA will only ever have a valid reservation map pointer where
3112 * it is being copied for another still existing VMA. As that VMA
25985edc 3113 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3114 * after this open call completes. It is therefore safe to take a
3115 * new reference here without additional locking.
3116 */
4e35f483 3117 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3118 kref_get(&resv->refs);
84afd99b
AW
3119}
3120
a1e78772
MG
3121static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3122{
a5516438 3123 struct hstate *h = hstate_vma(vma);
f522c3ac 3124 struct resv_map *resv = vma_resv_map(vma);
90481622 3125 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3126 unsigned long reserve, start, end;
1c5ecae3 3127 long gbl_reserve;
84afd99b 3128
4e35f483
JK
3129 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3130 return;
84afd99b 3131
4e35f483
JK
3132 start = vma_hugecache_offset(h, vma, vma->vm_start);
3133 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3134
4e35f483 3135 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3136
4e35f483
JK
3137 kref_put(&resv->refs, resv_map_release);
3138
3139 if (reserve) {
1c5ecae3
MK
3140 /*
3141 * Decrement reserve counts. The global reserve count may be
3142 * adjusted if the subpool has a minimum size.
3143 */
3144 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3145 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3146 }
a1e78772
MG
3147}
3148
31383c68
DW
3149static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3150{
3151 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3152 return -EINVAL;
3153 return 0;
3154}
3155
1da177e4
LT
3156/*
3157 * We cannot handle pagefaults against hugetlb pages at all. They cause
3158 * handle_mm_fault() to try to instantiate regular-sized pages in the
3159 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3160 * this far.
3161 */
11bac800 3162static int hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3163{
3164 BUG();
d0217ac0 3165 return 0;
1da177e4
LT
3166}
3167
f0f37e2f 3168const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3169 .fault = hugetlb_vm_op_fault,
84afd99b 3170 .open = hugetlb_vm_op_open,
a1e78772 3171 .close = hugetlb_vm_op_close,
31383c68 3172 .split = hugetlb_vm_op_split,
1da177e4
LT
3173};
3174
1e8f889b
DG
3175static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3176 int writable)
63551ae0
DG
3177{
3178 pte_t entry;
3179
1e8f889b 3180 if (writable) {
106c992a
GS
3181 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3182 vma->vm_page_prot)));
63551ae0 3183 } else {
106c992a
GS
3184 entry = huge_pte_wrprotect(mk_huge_pte(page,
3185 vma->vm_page_prot));
63551ae0
DG
3186 }
3187 entry = pte_mkyoung(entry);
3188 entry = pte_mkhuge(entry);
d9ed9faa 3189 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3190
3191 return entry;
3192}
3193
1e8f889b
DG
3194static void set_huge_ptep_writable(struct vm_area_struct *vma,
3195 unsigned long address, pte_t *ptep)
3196{
3197 pte_t entry;
3198
106c992a 3199 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3200 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3201 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3202}
3203
d5ed7444 3204bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3205{
3206 swp_entry_t swp;
3207
3208 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3209 return false;
4a705fef
NH
3210 swp = pte_to_swp_entry(pte);
3211 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3212 return true;
4a705fef 3213 else
d5ed7444 3214 return false;
4a705fef
NH
3215}
3216
3217static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3218{
3219 swp_entry_t swp;
3220
3221 if (huge_pte_none(pte) || pte_present(pte))
3222 return 0;
3223 swp = pte_to_swp_entry(pte);
3224 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3225 return 1;
3226 else
3227 return 0;
3228}
1e8f889b 3229
63551ae0
DG
3230int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3231 struct vm_area_struct *vma)
3232{
3233 pte_t *src_pte, *dst_pte, entry;
3234 struct page *ptepage;
1c59827d 3235 unsigned long addr;
1e8f889b 3236 int cow;
a5516438
AK
3237 struct hstate *h = hstate_vma(vma);
3238 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3239 unsigned long mmun_start; /* For mmu_notifiers */
3240 unsigned long mmun_end; /* For mmu_notifiers */
3241 int ret = 0;
1e8f889b
DG
3242
3243 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3244
e8569dd2
AS
3245 mmun_start = vma->vm_start;
3246 mmun_end = vma->vm_end;
3247 if (cow)
3248 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3249
a5516438 3250 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3251 spinlock_t *src_ptl, *dst_ptl;
7868a208 3252 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3253 if (!src_pte)
3254 continue;
a5516438 3255 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3256 if (!dst_pte) {
3257 ret = -ENOMEM;
3258 break;
3259 }
c5c99429
LW
3260
3261 /* If the pagetables are shared don't copy or take references */
3262 if (dst_pte == src_pte)
3263 continue;
3264
cb900f41
KS
3265 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3266 src_ptl = huge_pte_lockptr(h, src, src_pte);
3267 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3268 entry = huge_ptep_get(src_pte);
3269 if (huge_pte_none(entry)) { /* skip none entry */
3270 ;
3271 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3272 is_hugetlb_entry_hwpoisoned(entry))) {
3273 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3274
3275 if (is_write_migration_entry(swp_entry) && cow) {
3276 /*
3277 * COW mappings require pages in both
3278 * parent and child to be set to read.
3279 */
3280 make_migration_entry_read(&swp_entry);
3281 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3282 set_huge_swap_pte_at(src, addr, src_pte,
3283 entry, sz);
4a705fef 3284 }
e5251fd4 3285 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3286 } else {
34ee645e 3287 if (cow) {
0f10851e
JG
3288 /*
3289 * No need to notify as we are downgrading page
3290 * table protection not changing it to point
3291 * to a new page.
3292 *
3293 * See Documentation/vm/mmu_notifier.txt
3294 */
7f2e9525 3295 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3296 }
0253d634 3297 entry = huge_ptep_get(src_pte);
1c59827d
HD
3298 ptepage = pte_page(entry);
3299 get_page(ptepage);
53f9263b 3300 page_dup_rmap(ptepage, true);
1c59827d 3301 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3302 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3303 }
cb900f41
KS
3304 spin_unlock(src_ptl);
3305 spin_unlock(dst_ptl);
63551ae0 3306 }
63551ae0 3307
e8569dd2
AS
3308 if (cow)
3309 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3310
3311 return ret;
63551ae0
DG
3312}
3313
24669e58
AK
3314void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3315 unsigned long start, unsigned long end,
3316 struct page *ref_page)
63551ae0
DG
3317{
3318 struct mm_struct *mm = vma->vm_mm;
3319 unsigned long address;
c7546f8f 3320 pte_t *ptep;
63551ae0 3321 pte_t pte;
cb900f41 3322 spinlock_t *ptl;
63551ae0 3323 struct page *page;
a5516438
AK
3324 struct hstate *h = hstate_vma(vma);
3325 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3326 const unsigned long mmun_start = start; /* For mmu_notifiers */
3327 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3328
63551ae0 3329 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3330 BUG_ON(start & ~huge_page_mask(h));
3331 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3332
07e32661
AK
3333 /*
3334 * This is a hugetlb vma, all the pte entries should point
3335 * to huge page.
3336 */
3337 tlb_remove_check_page_size_change(tlb, sz);
24669e58 3338 tlb_start_vma(tlb, vma);
2ec74c3e 3339 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3340 address = start;
569f48b8 3341 for (; address < end; address += sz) {
7868a208 3342 ptep = huge_pte_offset(mm, address, sz);
4c887265 3343 if (!ptep)
c7546f8f
DG
3344 continue;
3345
cb900f41 3346 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3347 if (huge_pmd_unshare(mm, &address, ptep)) {
3348 spin_unlock(ptl);
3349 continue;
3350 }
39dde65c 3351
6629326b 3352 pte = huge_ptep_get(ptep);
31d49da5
AK
3353 if (huge_pte_none(pte)) {
3354 spin_unlock(ptl);
3355 continue;
3356 }
6629326b
HD
3357
3358 /*
9fbc1f63
NH
3359 * Migrating hugepage or HWPoisoned hugepage is already
3360 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3361 */
9fbc1f63 3362 if (unlikely(!pte_present(pte))) {
9386fac3 3363 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3364 spin_unlock(ptl);
3365 continue;
8c4894c6 3366 }
6629326b
HD
3367
3368 page = pte_page(pte);
04f2cbe3
MG
3369 /*
3370 * If a reference page is supplied, it is because a specific
3371 * page is being unmapped, not a range. Ensure the page we
3372 * are about to unmap is the actual page of interest.
3373 */
3374 if (ref_page) {
31d49da5
AK
3375 if (page != ref_page) {
3376 spin_unlock(ptl);
3377 continue;
3378 }
04f2cbe3
MG
3379 /*
3380 * Mark the VMA as having unmapped its page so that
3381 * future faults in this VMA will fail rather than
3382 * looking like data was lost
3383 */
3384 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3385 }
3386
c7546f8f 3387 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3388 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3389 if (huge_pte_dirty(pte))
6649a386 3390 set_page_dirty(page);
9e81130b 3391
5d317b2b 3392 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3393 page_remove_rmap(page, true);
31d49da5 3394
cb900f41 3395 spin_unlock(ptl);
e77b0852 3396 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3397 /*
3398 * Bail out after unmapping reference page if supplied
3399 */
3400 if (ref_page)
3401 break;
fe1668ae 3402 }
2ec74c3e 3403 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3404 tlb_end_vma(tlb, vma);
1da177e4 3405}
63551ae0 3406
d833352a
MG
3407void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3408 struct vm_area_struct *vma, unsigned long start,
3409 unsigned long end, struct page *ref_page)
3410{
3411 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3412
3413 /*
3414 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3415 * test will fail on a vma being torn down, and not grab a page table
3416 * on its way out. We're lucky that the flag has such an appropriate
3417 * name, and can in fact be safely cleared here. We could clear it
3418 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3419 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3420 * because in the context this is called, the VMA is about to be
c8c06efa 3421 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3422 */
3423 vma->vm_flags &= ~VM_MAYSHARE;
3424}
3425
502717f4 3426void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3427 unsigned long end, struct page *ref_page)
502717f4 3428{
24669e58
AK
3429 struct mm_struct *mm;
3430 struct mmu_gather tlb;
3431
3432 mm = vma->vm_mm;
3433
2b047252 3434 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3435 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3436 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
3437}
3438
04f2cbe3
MG
3439/*
3440 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3441 * mappping it owns the reserve page for. The intention is to unmap the page
3442 * from other VMAs and let the children be SIGKILLed if they are faulting the
3443 * same region.
3444 */
2f4612af
DB
3445static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3446 struct page *page, unsigned long address)
04f2cbe3 3447{
7526674d 3448 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3449 struct vm_area_struct *iter_vma;
3450 struct address_space *mapping;
04f2cbe3
MG
3451 pgoff_t pgoff;
3452
3453 /*
3454 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3455 * from page cache lookup which is in HPAGE_SIZE units.
3456 */
7526674d 3457 address = address & huge_page_mask(h);
36e4f20a
MH
3458 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3459 vma->vm_pgoff;
93c76a3d 3460 mapping = vma->vm_file->f_mapping;
04f2cbe3 3461
4eb2b1dc
MG
3462 /*
3463 * Take the mapping lock for the duration of the table walk. As
3464 * this mapping should be shared between all the VMAs,
3465 * __unmap_hugepage_range() is called as the lock is already held
3466 */
83cde9e8 3467 i_mmap_lock_write(mapping);
6b2dbba8 3468 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3469 /* Do not unmap the current VMA */
3470 if (iter_vma == vma)
3471 continue;
3472
2f84a899
MG
3473 /*
3474 * Shared VMAs have their own reserves and do not affect
3475 * MAP_PRIVATE accounting but it is possible that a shared
3476 * VMA is using the same page so check and skip such VMAs.
3477 */
3478 if (iter_vma->vm_flags & VM_MAYSHARE)
3479 continue;
3480
04f2cbe3
MG
3481 /*
3482 * Unmap the page from other VMAs without their own reserves.
3483 * They get marked to be SIGKILLed if they fault in these
3484 * areas. This is because a future no-page fault on this VMA
3485 * could insert a zeroed page instead of the data existing
3486 * from the time of fork. This would look like data corruption
3487 */
3488 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3489 unmap_hugepage_range(iter_vma, address,
3490 address + huge_page_size(h), page);
04f2cbe3 3491 }
83cde9e8 3492 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3493}
3494
0fe6e20b
NH
3495/*
3496 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3497 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3498 * cannot race with other handlers or page migration.
3499 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3500 */
1e8f889b 3501static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3999f52e
AK
3502 unsigned long address, pte_t *ptep,
3503 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3504{
3999f52e 3505 pte_t pte;
a5516438 3506 struct hstate *h = hstate_vma(vma);
1e8f889b 3507 struct page *old_page, *new_page;
ad4404a2 3508 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3509 unsigned long mmun_start; /* For mmu_notifiers */
3510 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b 3511
3999f52e 3512 pte = huge_ptep_get(ptep);
1e8f889b
DG
3513 old_page = pte_page(pte);
3514
04f2cbe3 3515retry_avoidcopy:
1e8f889b
DG
3516 /* If no-one else is actually using this page, avoid the copy
3517 * and just make the page writable */
37a2140d 3518 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3519 page_move_anon_rmap(old_page, vma);
1e8f889b 3520 set_huge_ptep_writable(vma, address, ptep);
83c54070 3521 return 0;
1e8f889b
DG
3522 }
3523
04f2cbe3
MG
3524 /*
3525 * If the process that created a MAP_PRIVATE mapping is about to
3526 * perform a COW due to a shared page count, attempt to satisfy
3527 * the allocation without using the existing reserves. The pagecache
3528 * page is used to determine if the reserve at this address was
3529 * consumed or not. If reserves were used, a partial faulted mapping
3530 * at the time of fork() could consume its reserves on COW instead
3531 * of the full address range.
3532 */
5944d011 3533 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3534 old_page != pagecache_page)
3535 outside_reserve = 1;
3536
09cbfeaf 3537 get_page(old_page);
b76c8cfb 3538
ad4404a2
DB
3539 /*
3540 * Drop page table lock as buddy allocator may be called. It will
3541 * be acquired again before returning to the caller, as expected.
3542 */
cb900f41 3543 spin_unlock(ptl);
04f2cbe3 3544 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3545
2fc39cec 3546 if (IS_ERR(new_page)) {
04f2cbe3
MG
3547 /*
3548 * If a process owning a MAP_PRIVATE mapping fails to COW,
3549 * it is due to references held by a child and an insufficient
3550 * huge page pool. To guarantee the original mappers
3551 * reliability, unmap the page from child processes. The child
3552 * may get SIGKILLed if it later faults.
3553 */
3554 if (outside_reserve) {
09cbfeaf 3555 put_page(old_page);
04f2cbe3 3556 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3557 unmap_ref_private(mm, vma, old_page, address);
3558 BUG_ON(huge_pte_none(pte));
3559 spin_lock(ptl);
7868a208
PA
3560 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3561 huge_page_size(h));
2f4612af
DB
3562 if (likely(ptep &&
3563 pte_same(huge_ptep_get(ptep), pte)))
3564 goto retry_avoidcopy;
3565 /*
3566 * race occurs while re-acquiring page table
3567 * lock, and our job is done.
3568 */
3569 return 0;
04f2cbe3
MG
3570 }
3571
ad4404a2
DB
3572 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3573 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3574 goto out_release_old;
1e8f889b
DG
3575 }
3576
0fe6e20b
NH
3577 /*
3578 * When the original hugepage is shared one, it does not have
3579 * anon_vma prepared.
3580 */
44e2aa93 3581 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3582 ret = VM_FAULT_OOM;
3583 goto out_release_all;
44e2aa93 3584 }
0fe6e20b 3585
47ad8475
AA
3586 copy_user_huge_page(new_page, old_page, address, vma,
3587 pages_per_huge_page(h));
0ed361de 3588 __SetPageUptodate(new_page);
bcc54222 3589 set_page_huge_active(new_page);
1e8f889b 3590
2ec74c3e
SG
3591 mmun_start = address & huge_page_mask(h);
3592 mmun_end = mmun_start + huge_page_size(h);
3593 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3594
b76c8cfb 3595 /*
cb900f41 3596 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3597 * before the page tables are altered
3598 */
cb900f41 3599 spin_lock(ptl);
7868a208
PA
3600 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3601 huge_page_size(h));
a9af0c5d 3602 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3603 ClearPagePrivate(new_page);
3604
1e8f889b 3605 /* Break COW */
8fe627ec 3606 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3607 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3608 set_huge_pte_at(mm, address, ptep,
3609 make_huge_pte(vma, new_page, 1));
d281ee61 3610 page_remove_rmap(old_page, true);
cd67f0d2 3611 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3612 /* Make the old page be freed below */
3613 new_page = old_page;
3614 }
cb900f41 3615 spin_unlock(ptl);
2ec74c3e 3616 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3617out_release_all:
96b96a96 3618 restore_reserve_on_error(h, vma, address, new_page);
09cbfeaf 3619 put_page(new_page);
ad4404a2 3620out_release_old:
09cbfeaf 3621 put_page(old_page);
8312034f 3622
ad4404a2
DB
3623 spin_lock(ptl); /* Caller expects lock to be held */
3624 return ret;
1e8f889b
DG
3625}
3626
04f2cbe3 3627/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3628static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3629 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3630{
3631 struct address_space *mapping;
e7c4b0bf 3632 pgoff_t idx;
04f2cbe3
MG
3633
3634 mapping = vma->vm_file->f_mapping;
a5516438 3635 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3636
3637 return find_lock_page(mapping, idx);
3638}
3639
3ae77f43
HD
3640/*
3641 * Return whether there is a pagecache page to back given address within VMA.
3642 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3643 */
3644static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3645 struct vm_area_struct *vma, unsigned long address)
3646{
3647 struct address_space *mapping;
3648 pgoff_t idx;
3649 struct page *page;
3650
3651 mapping = vma->vm_file->f_mapping;
3652 idx = vma_hugecache_offset(h, vma, address);
3653
3654 page = find_get_page(mapping, idx);
3655 if (page)
3656 put_page(page);
3657 return page != NULL;
3658}
3659
ab76ad54
MK
3660int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3661 pgoff_t idx)
3662{
3663 struct inode *inode = mapping->host;
3664 struct hstate *h = hstate_inode(inode);
3665 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3666
3667 if (err)
3668 return err;
3669 ClearPagePrivate(page);
3670
3671 spin_lock(&inode->i_lock);
3672 inode->i_blocks += blocks_per_huge_page(h);
3673 spin_unlock(&inode->i_lock);
3674 return 0;
3675}
3676
a1ed3dda 3677static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3678 struct address_space *mapping, pgoff_t idx,
3679 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3680{
a5516438 3681 struct hstate *h = hstate_vma(vma);
ac9b9c66 3682 int ret = VM_FAULT_SIGBUS;
409eb8c2 3683 int anon_rmap = 0;
4c887265 3684 unsigned long size;
4c887265 3685 struct page *page;
1e8f889b 3686 pte_t new_pte;
cb900f41 3687 spinlock_t *ptl;
4c887265 3688
04f2cbe3
MG
3689 /*
3690 * Currently, we are forced to kill the process in the event the
3691 * original mapper has unmapped pages from the child due to a failed
25985edc 3692 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3693 */
3694 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3695 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3696 current->pid);
04f2cbe3
MG
3697 return ret;
3698 }
3699
4c887265
AL
3700 /*
3701 * Use page lock to guard against racing truncation
3702 * before we get page_table_lock.
3703 */
6bda666a
CL
3704retry:
3705 page = find_lock_page(mapping, idx);
3706 if (!page) {
a5516438 3707 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3708 if (idx >= size)
3709 goto out;
1a1aad8a
MK
3710
3711 /*
3712 * Check for page in userfault range
3713 */
3714 if (userfaultfd_missing(vma)) {
3715 u32 hash;
3716 struct vm_fault vmf = {
3717 .vma = vma,
3718 .address = address,
3719 .flags = flags,
3720 /*
3721 * Hard to debug if it ends up being
3722 * used by a callee that assumes
3723 * something about the other
3724 * uninitialized fields... same as in
3725 * memory.c
3726 */
3727 };
3728
3729 /*
3730 * hugetlb_fault_mutex must be dropped before
3731 * handling userfault. Reacquire after handling
3732 * fault to make calling code simpler.
3733 */
3734 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3735 idx, address);
3736 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3737 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3738 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3739 goto out;
3740 }
3741
04f2cbe3 3742 page = alloc_huge_page(vma, address, 0);
2fc39cec 3743 if (IS_ERR(page)) {
76dcee75
AK
3744 ret = PTR_ERR(page);
3745 if (ret == -ENOMEM)
3746 ret = VM_FAULT_OOM;
3747 else
3748 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3749 goto out;
3750 }
47ad8475 3751 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3752 __SetPageUptodate(page);
bcc54222 3753 set_page_huge_active(page);
ac9b9c66 3754
f83a275d 3755 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3756 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3757 if (err) {
3758 put_page(page);
6bda666a
CL
3759 if (err == -EEXIST)
3760 goto retry;
3761 goto out;
3762 }
23be7468 3763 } else {
6bda666a 3764 lock_page(page);
0fe6e20b
NH
3765 if (unlikely(anon_vma_prepare(vma))) {
3766 ret = VM_FAULT_OOM;
3767 goto backout_unlocked;
3768 }
409eb8c2 3769 anon_rmap = 1;
23be7468 3770 }
0fe6e20b 3771 } else {
998b4382
NH
3772 /*
3773 * If memory error occurs between mmap() and fault, some process
3774 * don't have hwpoisoned swap entry for errored virtual address.
3775 * So we need to block hugepage fault by PG_hwpoison bit check.
3776 */
3777 if (unlikely(PageHWPoison(page))) {
32f84528 3778 ret = VM_FAULT_HWPOISON |
972dc4de 3779 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3780 goto backout_unlocked;
3781 }
6bda666a 3782 }
1e8f889b 3783
57303d80
AW
3784 /*
3785 * If we are going to COW a private mapping later, we examine the
3786 * pending reservations for this page now. This will ensure that
3787 * any allocations necessary to record that reservation occur outside
3788 * the spinlock.
3789 */
5e911373 3790 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3791 if (vma_needs_reservation(h, vma, address) < 0) {
3792 ret = VM_FAULT_OOM;
3793 goto backout_unlocked;
3794 }
5e911373 3795 /* Just decrements count, does not deallocate */
feba16e2 3796 vma_end_reservation(h, vma, address);
5e911373 3797 }
57303d80 3798
8bea8052 3799 ptl = huge_pte_lock(h, mm, ptep);
a5516438 3800 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3801 if (idx >= size)
3802 goto backout;
3803
83c54070 3804 ret = 0;
7f2e9525 3805 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3806 goto backout;
3807
07443a85
JK
3808 if (anon_rmap) {
3809 ClearPagePrivate(page);
409eb8c2 3810 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3811 } else
53f9263b 3812 page_dup_rmap(page, true);
1e8f889b
DG
3813 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3814 && (vma->vm_flags & VM_SHARED)));
3815 set_huge_pte_at(mm, address, ptep, new_pte);
3816
5d317b2b 3817 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3818 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3819 /* Optimization, do the COW without a second fault */
3999f52e 3820 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3821 }
3822
cb900f41 3823 spin_unlock(ptl);
4c887265
AL
3824 unlock_page(page);
3825out:
ac9b9c66 3826 return ret;
4c887265
AL
3827
3828backout:
cb900f41 3829 spin_unlock(ptl);
2b26736c 3830backout_unlocked:
4c887265 3831 unlock_page(page);
96b96a96 3832 restore_reserve_on_error(h, vma, address, page);
4c887265
AL
3833 put_page(page);
3834 goto out;
ac9b9c66
HD
3835}
3836
8382d914 3837#ifdef CONFIG_SMP
c672c7f2 3838u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3839 struct vm_area_struct *vma,
3840 struct address_space *mapping,
3841 pgoff_t idx, unsigned long address)
3842{
3843 unsigned long key[2];
3844 u32 hash;
3845
3846 if (vma->vm_flags & VM_SHARED) {
3847 key[0] = (unsigned long) mapping;
3848 key[1] = idx;
3849 } else {
3850 key[0] = (unsigned long) mm;
3851 key[1] = address >> huge_page_shift(h);
3852 }
3853
3854 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3855
3856 return hash & (num_fault_mutexes - 1);
3857}
3858#else
3859/*
3860 * For uniprocesor systems we always use a single mutex, so just
3861 * return 0 and avoid the hashing overhead.
3862 */
c672c7f2 3863u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3864 struct vm_area_struct *vma,
3865 struct address_space *mapping,
3866 pgoff_t idx, unsigned long address)
3867{
3868 return 0;
3869}
3870#endif
3871
86e5216f 3872int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3873 unsigned long address, unsigned int flags)
86e5216f 3874{
8382d914 3875 pte_t *ptep, entry;
cb900f41 3876 spinlock_t *ptl;
1e8f889b 3877 int ret;
8382d914
DB
3878 u32 hash;
3879 pgoff_t idx;
0fe6e20b 3880 struct page *page = NULL;
57303d80 3881 struct page *pagecache_page = NULL;
a5516438 3882 struct hstate *h = hstate_vma(vma);
8382d914 3883 struct address_space *mapping;
0f792cf9 3884 int need_wait_lock = 0;
86e5216f 3885
1e16a539
KH
3886 address &= huge_page_mask(h);
3887
7868a208 3888 ptep = huge_pte_offset(mm, address, huge_page_size(h));
fd6a03ed
NH
3889 if (ptep) {
3890 entry = huge_ptep_get(ptep);
290408d4 3891 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3892 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3893 return 0;
3894 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3895 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3896 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5
NH
3897 } else {
3898 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3899 if (!ptep)
3900 return VM_FAULT_OOM;
fd6a03ed
NH
3901 }
3902
8382d914
DB
3903 mapping = vma->vm_file->f_mapping;
3904 idx = vma_hugecache_offset(h, vma, address);
3905
3935baa9
DG
3906 /*
3907 * Serialize hugepage allocation and instantiation, so that we don't
3908 * get spurious allocation failures if two CPUs race to instantiate
3909 * the same page in the page cache.
3910 */
c672c7f2
MK
3911 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3912 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3913
7f2e9525
GS
3914 entry = huge_ptep_get(ptep);
3915 if (huge_pte_none(entry)) {
8382d914 3916 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3917 goto out_mutex;
3935baa9 3918 }
86e5216f 3919
83c54070 3920 ret = 0;
1e8f889b 3921
0f792cf9
NH
3922 /*
3923 * entry could be a migration/hwpoison entry at this point, so this
3924 * check prevents the kernel from going below assuming that we have
3925 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3926 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3927 * handle it.
3928 */
3929 if (!pte_present(entry))
3930 goto out_mutex;
3931
57303d80
AW
3932 /*
3933 * If we are going to COW the mapping later, we examine the pending
3934 * reservations for this page now. This will ensure that any
3935 * allocations necessary to record that reservation occur outside the
3936 * spinlock. For private mappings, we also lookup the pagecache
3937 * page now as it is used to determine if a reservation has been
3938 * consumed.
3939 */
106c992a 3940 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3941 if (vma_needs_reservation(h, vma, address) < 0) {
3942 ret = VM_FAULT_OOM;
b4d1d99f 3943 goto out_mutex;
2b26736c 3944 }
5e911373 3945 /* Just decrements count, does not deallocate */
feba16e2 3946 vma_end_reservation(h, vma, address);
57303d80 3947
f83a275d 3948 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3949 pagecache_page = hugetlbfs_pagecache_page(h,
3950 vma, address);
3951 }
3952
0f792cf9
NH
3953 ptl = huge_pte_lock(h, mm, ptep);
3954
3955 /* Check for a racing update before calling hugetlb_cow */
3956 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3957 goto out_ptl;
3958
56c9cfb1
NH
3959 /*
3960 * hugetlb_cow() requires page locks of pte_page(entry) and
3961 * pagecache_page, so here we need take the former one
3962 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3963 */
3964 page = pte_page(entry);
3965 if (page != pagecache_page)
0f792cf9
NH
3966 if (!trylock_page(page)) {
3967 need_wait_lock = 1;
3968 goto out_ptl;
3969 }
b4d1d99f 3970
0f792cf9 3971 get_page(page);
b4d1d99f 3972
788c7df4 3973 if (flags & FAULT_FLAG_WRITE) {
106c992a 3974 if (!huge_pte_write(entry)) {
3999f52e
AK
3975 ret = hugetlb_cow(mm, vma, address, ptep,
3976 pagecache_page, ptl);
0f792cf9 3977 goto out_put_page;
b4d1d99f 3978 }
106c992a 3979 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3980 }
3981 entry = pte_mkyoung(entry);
788c7df4
HD
3982 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3983 flags & FAULT_FLAG_WRITE))
4b3073e1 3984 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3985out_put_page:
3986 if (page != pagecache_page)
3987 unlock_page(page);
3988 put_page(page);
cb900f41
KS
3989out_ptl:
3990 spin_unlock(ptl);
57303d80
AW
3991
3992 if (pagecache_page) {
3993 unlock_page(pagecache_page);
3994 put_page(pagecache_page);
3995 }
b4d1d99f 3996out_mutex:
c672c7f2 3997 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
3998 /*
3999 * Generally it's safe to hold refcount during waiting page lock. But
4000 * here we just wait to defer the next page fault to avoid busy loop and
4001 * the page is not used after unlocked before returning from the current
4002 * page fault. So we are safe from accessing freed page, even if we wait
4003 * here without taking refcount.
4004 */
4005 if (need_wait_lock)
4006 wait_on_page_locked(page);
1e8f889b 4007 return ret;
86e5216f
AL
4008}
4009
8fb5debc
MK
4010/*
4011 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4012 * modifications for huge pages.
4013 */
4014int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4015 pte_t *dst_pte,
4016 struct vm_area_struct *dst_vma,
4017 unsigned long dst_addr,
4018 unsigned long src_addr,
4019 struct page **pagep)
4020{
1e392147
AA
4021 struct address_space *mapping;
4022 pgoff_t idx;
4023 unsigned long size;
1c9e8def 4024 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4025 struct hstate *h = hstate_vma(dst_vma);
4026 pte_t _dst_pte;
4027 spinlock_t *ptl;
4028 int ret;
4029 struct page *page;
4030
4031 if (!*pagep) {
4032 ret = -ENOMEM;
4033 page = alloc_huge_page(dst_vma, dst_addr, 0);
4034 if (IS_ERR(page))
4035 goto out;
4036
4037 ret = copy_huge_page_from_user(page,
4038 (const void __user *) src_addr,
810a56b9 4039 pages_per_huge_page(h), false);
8fb5debc
MK
4040
4041 /* fallback to copy_from_user outside mmap_sem */
4042 if (unlikely(ret)) {
4043 ret = -EFAULT;
4044 *pagep = page;
4045 /* don't free the page */
4046 goto out;
4047 }
4048 } else {
4049 page = *pagep;
4050 *pagep = NULL;
4051 }
4052
4053 /*
4054 * The memory barrier inside __SetPageUptodate makes sure that
4055 * preceding stores to the page contents become visible before
4056 * the set_pte_at() write.
4057 */
4058 __SetPageUptodate(page);
4059 set_page_huge_active(page);
4060
1e392147
AA
4061 mapping = dst_vma->vm_file->f_mapping;
4062 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4063
1c9e8def
MK
4064 /*
4065 * If shared, add to page cache
4066 */
4067 if (vm_shared) {
1e392147
AA
4068 size = i_size_read(mapping->host) >> huge_page_shift(h);
4069 ret = -EFAULT;
4070 if (idx >= size)
4071 goto out_release_nounlock;
1c9e8def 4072
1e392147
AA
4073 /*
4074 * Serialization between remove_inode_hugepages() and
4075 * huge_add_to_page_cache() below happens through the
4076 * hugetlb_fault_mutex_table that here must be hold by
4077 * the caller.
4078 */
1c9e8def
MK
4079 ret = huge_add_to_page_cache(page, mapping, idx);
4080 if (ret)
4081 goto out_release_nounlock;
4082 }
4083
8fb5debc
MK
4084 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4085 spin_lock(ptl);
4086
1e392147
AA
4087 /*
4088 * Recheck the i_size after holding PT lock to make sure not
4089 * to leave any page mapped (as page_mapped()) beyond the end
4090 * of the i_size (remove_inode_hugepages() is strict about
4091 * enforcing that). If we bail out here, we'll also leave a
4092 * page in the radix tree in the vm_shared case beyond the end
4093 * of the i_size, but remove_inode_hugepages() will take care
4094 * of it as soon as we drop the hugetlb_fault_mutex_table.
4095 */
4096 size = i_size_read(mapping->host) >> huge_page_shift(h);
4097 ret = -EFAULT;
4098 if (idx >= size)
4099 goto out_release_unlock;
4100
8fb5debc
MK
4101 ret = -EEXIST;
4102 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4103 goto out_release_unlock;
4104
1c9e8def
MK
4105 if (vm_shared) {
4106 page_dup_rmap(page, true);
4107 } else {
4108 ClearPagePrivate(page);
4109 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4110 }
8fb5debc
MK
4111
4112 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4113 if (dst_vma->vm_flags & VM_WRITE)
4114 _dst_pte = huge_pte_mkdirty(_dst_pte);
4115 _dst_pte = pte_mkyoung(_dst_pte);
4116
4117 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4118
4119 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4120 dst_vma->vm_flags & VM_WRITE);
4121 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4122
4123 /* No need to invalidate - it was non-present before */
4124 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4125
4126 spin_unlock(ptl);
1c9e8def
MK
4127 if (vm_shared)
4128 unlock_page(page);
8fb5debc
MK
4129 ret = 0;
4130out:
4131 return ret;
4132out_release_unlock:
4133 spin_unlock(ptl);
1c9e8def
MK
4134 if (vm_shared)
4135 unlock_page(page);
5af10dfd 4136out_release_nounlock:
8fb5debc
MK
4137 put_page(page);
4138 goto out;
4139}
4140
28a35716
ML
4141long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4142 struct page **pages, struct vm_area_struct **vmas,
4143 unsigned long *position, unsigned long *nr_pages,
87ffc118 4144 long i, unsigned int flags, int *nonblocking)
63551ae0 4145{
d5d4b0aa
KC
4146 unsigned long pfn_offset;
4147 unsigned long vaddr = *position;
28a35716 4148 unsigned long remainder = *nr_pages;
a5516438 4149 struct hstate *h = hstate_vma(vma);
2be7cfed 4150 int err = -EFAULT;
63551ae0 4151
63551ae0 4152 while (vaddr < vma->vm_end && remainder) {
4c887265 4153 pte_t *pte;
cb900f41 4154 spinlock_t *ptl = NULL;
2a15efc9 4155 int absent;
4c887265 4156 struct page *page;
63551ae0 4157
02057967
DR
4158 /*
4159 * If we have a pending SIGKILL, don't keep faulting pages and
4160 * potentially allocating memory.
4161 */
4162 if (unlikely(fatal_signal_pending(current))) {
4163 remainder = 0;
4164 break;
4165 }
4166
4c887265
AL
4167 /*
4168 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4169 * each hugepage. We have to make sure we get the
4c887265 4170 * first, for the page indexing below to work.
cb900f41
KS
4171 *
4172 * Note that page table lock is not held when pte is null.
4c887265 4173 */
7868a208
PA
4174 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4175 huge_page_size(h));
cb900f41
KS
4176 if (pte)
4177 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4178 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4179
4180 /*
4181 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4182 * an error where there's an empty slot with no huge pagecache
4183 * to back it. This way, we avoid allocating a hugepage, and
4184 * the sparse dumpfile avoids allocating disk blocks, but its
4185 * huge holes still show up with zeroes where they need to be.
2a15efc9 4186 */
3ae77f43
HD
4187 if (absent && (flags & FOLL_DUMP) &&
4188 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4189 if (pte)
4190 spin_unlock(ptl);
2a15efc9
HD
4191 remainder = 0;
4192 break;
4193 }
63551ae0 4194
9cc3a5bd
NH
4195 /*
4196 * We need call hugetlb_fault for both hugepages under migration
4197 * (in which case hugetlb_fault waits for the migration,) and
4198 * hwpoisoned hugepages (in which case we need to prevent the
4199 * caller from accessing to them.) In order to do this, we use
4200 * here is_swap_pte instead of is_hugetlb_entry_migration and
4201 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4202 * both cases, and because we can't follow correct pages
4203 * directly from any kind of swap entries.
4204 */
4205 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4206 ((flags & FOLL_WRITE) &&
4207 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 4208 int ret;
87ffc118 4209 unsigned int fault_flags = 0;
63551ae0 4210
cb900f41
KS
4211 if (pte)
4212 spin_unlock(ptl);
87ffc118
AA
4213 if (flags & FOLL_WRITE)
4214 fault_flags |= FAULT_FLAG_WRITE;
4215 if (nonblocking)
4216 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4217 if (flags & FOLL_NOWAIT)
4218 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4219 FAULT_FLAG_RETRY_NOWAIT;
4220 if (flags & FOLL_TRIED) {
4221 VM_WARN_ON_ONCE(fault_flags &
4222 FAULT_FLAG_ALLOW_RETRY);
4223 fault_flags |= FAULT_FLAG_TRIED;
4224 }
4225 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4226 if (ret & VM_FAULT_ERROR) {
2be7cfed 4227 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4228 remainder = 0;
4229 break;
4230 }
4231 if (ret & VM_FAULT_RETRY) {
4232 if (nonblocking)
4233 *nonblocking = 0;
4234 *nr_pages = 0;
4235 /*
4236 * VM_FAULT_RETRY must not return an
4237 * error, it will return zero
4238 * instead.
4239 *
4240 * No need to update "position" as the
4241 * caller will not check it after
4242 * *nr_pages is set to 0.
4243 */
4244 return i;
4245 }
4246 continue;
4c887265
AL
4247 }
4248
a5516438 4249 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4250 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 4251same_page:
d6692183 4252 if (pages) {
2a15efc9 4253 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4254 get_page(pages[i]);
d6692183 4255 }
63551ae0
DG
4256
4257 if (vmas)
4258 vmas[i] = vma;
4259
4260 vaddr += PAGE_SIZE;
d5d4b0aa 4261 ++pfn_offset;
63551ae0
DG
4262 --remainder;
4263 ++i;
d5d4b0aa 4264 if (vaddr < vma->vm_end && remainder &&
a5516438 4265 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4266 /*
4267 * We use pfn_offset to avoid touching the pageframes
4268 * of this compound page.
4269 */
4270 goto same_page;
4271 }
cb900f41 4272 spin_unlock(ptl);
63551ae0 4273 }
28a35716 4274 *nr_pages = remainder;
87ffc118
AA
4275 /*
4276 * setting position is actually required only if remainder is
4277 * not zero but it's faster not to add a "if (remainder)"
4278 * branch.
4279 */
63551ae0
DG
4280 *position = vaddr;
4281
2be7cfed 4282 return i ? i : err;
63551ae0 4283}
8f860591 4284
5491ae7b
AK
4285#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4286/*
4287 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4288 * implement this.
4289 */
4290#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4291#endif
4292
7da4d641 4293unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4294 unsigned long address, unsigned long end, pgprot_t newprot)
4295{
4296 struct mm_struct *mm = vma->vm_mm;
4297 unsigned long start = address;
4298 pte_t *ptep;
4299 pte_t pte;
a5516438 4300 struct hstate *h = hstate_vma(vma);
7da4d641 4301 unsigned long pages = 0;
8f860591
ZY
4302
4303 BUG_ON(address >= end);
4304 flush_cache_range(vma, address, end);
4305
a5338093 4306 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 4307 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4308 for (; address < end; address += huge_page_size(h)) {
cb900f41 4309 spinlock_t *ptl;
7868a208 4310 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4311 if (!ptep)
4312 continue;
cb900f41 4313 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4314 if (huge_pmd_unshare(mm, &address, ptep)) {
4315 pages++;
cb900f41 4316 spin_unlock(ptl);
39dde65c 4317 continue;
7da4d641 4318 }
a8bda28d
NH
4319 pte = huge_ptep_get(ptep);
4320 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4321 spin_unlock(ptl);
4322 continue;
4323 }
4324 if (unlikely(is_hugetlb_entry_migration(pte))) {
4325 swp_entry_t entry = pte_to_swp_entry(pte);
4326
4327 if (is_write_migration_entry(entry)) {
4328 pte_t newpte;
4329
4330 make_migration_entry_read(&entry);
4331 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4332 set_huge_swap_pte_at(mm, address, ptep,
4333 newpte, huge_page_size(h));
a8bda28d
NH
4334 pages++;
4335 }
4336 spin_unlock(ptl);
4337 continue;
4338 }
4339 if (!huge_pte_none(pte)) {
8f860591 4340 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 4341 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 4342 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 4343 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 4344 pages++;
8f860591 4345 }
cb900f41 4346 spin_unlock(ptl);
8f860591 4347 }
d833352a 4348 /*
c8c06efa 4349 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4350 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4351 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
4352 * and that page table be reused and filled with junk.
4353 */
5491ae7b 4354 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4355 /*
4356 * No need to call mmu_notifier_invalidate_range() we are downgrading
4357 * page table protection not changing it to point to a new page.
4358 *
4359 * See Documentation/vm/mmu_notifier.txt
4360 */
83cde9e8 4361 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 4362 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
4363
4364 return pages << h->order;
8f860591
ZY
4365}
4366
a1e78772
MG
4367int hugetlb_reserve_pages(struct inode *inode,
4368 long from, long to,
5a6fe125 4369 struct vm_area_struct *vma,
ca16d140 4370 vm_flags_t vm_flags)
e4e574b7 4371{
17c9d12e 4372 long ret, chg;
a5516438 4373 struct hstate *h = hstate_inode(inode);
90481622 4374 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4375 struct resv_map *resv_map;
1c5ecae3 4376 long gbl_reserve;
e4e574b7 4377
17c9d12e
MG
4378 /*
4379 * Only apply hugepage reservation if asked. At fault time, an
4380 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4381 * without using reserves
17c9d12e 4382 */
ca16d140 4383 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4384 return 0;
4385
a1e78772
MG
4386 /*
4387 * Shared mappings base their reservation on the number of pages that
4388 * are already allocated on behalf of the file. Private mappings need
4389 * to reserve the full area even if read-only as mprotect() may be
4390 * called to make the mapping read-write. Assume !vma is a shm mapping
4391 */
9119a41e 4392 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4393 resv_map = inode_resv_map(inode);
9119a41e 4394
1406ec9b 4395 chg = region_chg(resv_map, from, to);
9119a41e
JK
4396
4397 } else {
4398 resv_map = resv_map_alloc();
17c9d12e
MG
4399 if (!resv_map)
4400 return -ENOMEM;
4401
a1e78772 4402 chg = to - from;
84afd99b 4403
17c9d12e
MG
4404 set_vma_resv_map(vma, resv_map);
4405 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4406 }
4407
c50ac050
DH
4408 if (chg < 0) {
4409 ret = chg;
4410 goto out_err;
4411 }
8a630112 4412
1c5ecae3
MK
4413 /*
4414 * There must be enough pages in the subpool for the mapping. If
4415 * the subpool has a minimum size, there may be some global
4416 * reservations already in place (gbl_reserve).
4417 */
4418 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4419 if (gbl_reserve < 0) {
c50ac050
DH
4420 ret = -ENOSPC;
4421 goto out_err;
4422 }
5a6fe125
MG
4423
4424 /*
17c9d12e 4425 * Check enough hugepages are available for the reservation.
90481622 4426 * Hand the pages back to the subpool if there are not
5a6fe125 4427 */
1c5ecae3 4428 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4429 if (ret < 0) {
1c5ecae3
MK
4430 /* put back original number of pages, chg */
4431 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4432 goto out_err;
68842c9b 4433 }
17c9d12e
MG
4434
4435 /*
4436 * Account for the reservations made. Shared mappings record regions
4437 * that have reservations as they are shared by multiple VMAs.
4438 * When the last VMA disappears, the region map says how much
4439 * the reservation was and the page cache tells how much of
4440 * the reservation was consumed. Private mappings are per-VMA and
4441 * only the consumed reservations are tracked. When the VMA
4442 * disappears, the original reservation is the VMA size and the
4443 * consumed reservations are stored in the map. Hence, nothing
4444 * else has to be done for private mappings here
4445 */
33039678
MK
4446 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4447 long add = region_add(resv_map, from, to);
4448
4449 if (unlikely(chg > add)) {
4450 /*
4451 * pages in this range were added to the reserve
4452 * map between region_chg and region_add. This
4453 * indicates a race with alloc_huge_page. Adjust
4454 * the subpool and reserve counts modified above
4455 * based on the difference.
4456 */
4457 long rsv_adjust;
4458
4459 rsv_adjust = hugepage_subpool_put_pages(spool,
4460 chg - add);
4461 hugetlb_acct_memory(h, -rsv_adjust);
4462 }
4463 }
a43a8c39 4464 return 0;
c50ac050 4465out_err:
5e911373 4466 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4467 /* Don't call region_abort if region_chg failed */
4468 if (chg >= 0)
4469 region_abort(resv_map, from, to);
f031dd27
JK
4470 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4471 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4472 return ret;
a43a8c39
KC
4473}
4474
b5cec28d
MK
4475long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4476 long freed)
a43a8c39 4477{
a5516438 4478 struct hstate *h = hstate_inode(inode);
4e35f483 4479 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4480 long chg = 0;
90481622 4481 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4482 long gbl_reserve;
45c682a6 4483
b5cec28d
MK
4484 if (resv_map) {
4485 chg = region_del(resv_map, start, end);
4486 /*
4487 * region_del() can fail in the rare case where a region
4488 * must be split and another region descriptor can not be
4489 * allocated. If end == LONG_MAX, it will not fail.
4490 */
4491 if (chg < 0)
4492 return chg;
4493 }
4494
45c682a6 4495 spin_lock(&inode->i_lock);
e4c6f8be 4496 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4497 spin_unlock(&inode->i_lock);
4498
1c5ecae3
MK
4499 /*
4500 * If the subpool has a minimum size, the number of global
4501 * reservations to be released may be adjusted.
4502 */
4503 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4504 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4505
4506 return 0;
a43a8c39 4507}
93f70f90 4508
3212b535
SC
4509#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4510static unsigned long page_table_shareable(struct vm_area_struct *svma,
4511 struct vm_area_struct *vma,
4512 unsigned long addr, pgoff_t idx)
4513{
4514 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4515 svma->vm_start;
4516 unsigned long sbase = saddr & PUD_MASK;
4517 unsigned long s_end = sbase + PUD_SIZE;
4518
4519 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4520 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4521 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4522
4523 /*
4524 * match the virtual addresses, permission and the alignment of the
4525 * page table page.
4526 */
4527 if (pmd_index(addr) != pmd_index(saddr) ||
4528 vm_flags != svm_flags ||
4529 sbase < svma->vm_start || svma->vm_end < s_end)
4530 return 0;
4531
4532 return saddr;
4533}
4534
31aafb45 4535static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4536{
4537 unsigned long base = addr & PUD_MASK;
4538 unsigned long end = base + PUD_SIZE;
4539
4540 /*
4541 * check on proper vm_flags and page table alignment
4542 */
4543 if (vma->vm_flags & VM_MAYSHARE &&
4544 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4545 return true;
4546 return false;
3212b535
SC
4547}
4548
4549/*
4550 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4551 * and returns the corresponding pte. While this is not necessary for the
4552 * !shared pmd case because we can allocate the pmd later as well, it makes the
4553 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4554 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4555 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4556 * bad pmd for sharing.
4557 */
4558pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4559{
4560 struct vm_area_struct *vma = find_vma(mm, addr);
4561 struct address_space *mapping = vma->vm_file->f_mapping;
4562 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4563 vma->vm_pgoff;
4564 struct vm_area_struct *svma;
4565 unsigned long saddr;
4566 pte_t *spte = NULL;
4567 pte_t *pte;
cb900f41 4568 spinlock_t *ptl;
3212b535
SC
4569
4570 if (!vma_shareable(vma, addr))
4571 return (pte_t *)pmd_alloc(mm, pud, addr);
4572
83cde9e8 4573 i_mmap_lock_write(mapping);
3212b535
SC
4574 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4575 if (svma == vma)
4576 continue;
4577
4578 saddr = page_table_shareable(svma, vma, addr, idx);
4579 if (saddr) {
7868a208
PA
4580 spte = huge_pte_offset(svma->vm_mm, saddr,
4581 vma_mmu_pagesize(svma));
3212b535
SC
4582 if (spte) {
4583 get_page(virt_to_page(spte));
4584 break;
4585 }
4586 }
4587 }
4588
4589 if (!spte)
4590 goto out;
4591
8bea8052 4592 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4593 if (pud_none(*pud)) {
3212b535
SC
4594 pud_populate(mm, pud,
4595 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4596 mm_inc_nr_pmds(mm);
dc6c9a35 4597 } else {
3212b535 4598 put_page(virt_to_page(spte));
dc6c9a35 4599 }
cb900f41 4600 spin_unlock(ptl);
3212b535
SC
4601out:
4602 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4603 i_mmap_unlock_write(mapping);
3212b535
SC
4604 return pte;
4605}
4606
4607/*
4608 * unmap huge page backed by shared pte.
4609 *
4610 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4611 * indicated by page_count > 1, unmap is achieved by clearing pud and
4612 * decrementing the ref count. If count == 1, the pte page is not shared.
4613 *
cb900f41 4614 * called with page table lock held.
3212b535
SC
4615 *
4616 * returns: 1 successfully unmapped a shared pte page
4617 * 0 the underlying pte page is not shared, or it is the last user
4618 */
4619int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4620{
4621 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4622 p4d_t *p4d = p4d_offset(pgd, *addr);
4623 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4624
4625 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4626 if (page_count(virt_to_page(ptep)) == 1)
4627 return 0;
4628
4629 pud_clear(pud);
4630 put_page(virt_to_page(ptep));
dc6c9a35 4631 mm_dec_nr_pmds(mm);
3212b535
SC
4632 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4633 return 1;
4634}
9e5fc74c
SC
4635#define want_pmd_share() (1)
4636#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4637pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4638{
4639 return NULL;
4640}
e81f2d22
ZZ
4641
4642int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4643{
4644 return 0;
4645}
9e5fc74c 4646#define want_pmd_share() (0)
3212b535
SC
4647#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4648
9e5fc74c
SC
4649#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4650pte_t *huge_pte_alloc(struct mm_struct *mm,
4651 unsigned long addr, unsigned long sz)
4652{
4653 pgd_t *pgd;
c2febafc 4654 p4d_t *p4d;
9e5fc74c
SC
4655 pud_t *pud;
4656 pte_t *pte = NULL;
4657
4658 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
4659 p4d = p4d_alloc(mm, pgd, addr);
4660 if (!p4d)
4661 return NULL;
c2febafc 4662 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4663 if (pud) {
4664 if (sz == PUD_SIZE) {
4665 pte = (pte_t *)pud;
4666 } else {
4667 BUG_ON(sz != PMD_SIZE);
4668 if (want_pmd_share() && pud_none(*pud))
4669 pte = huge_pmd_share(mm, addr, pud);
4670 else
4671 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4672 }
4673 }
4e666314 4674 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4675
4676 return pte;
4677}
4678
9b19df29
PA
4679/*
4680 * huge_pte_offset() - Walk the page table to resolve the hugepage
4681 * entry at address @addr
4682 *
4683 * Return: Pointer to page table or swap entry (PUD or PMD) for
4684 * address @addr, or NULL if a p*d_none() entry is encountered and the
4685 * size @sz doesn't match the hugepage size at this level of the page
4686 * table.
4687 */
7868a208
PA
4688pte_t *huge_pte_offset(struct mm_struct *mm,
4689 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4690{
4691 pgd_t *pgd;
c2febafc 4692 p4d_t *p4d;
9e5fc74c 4693 pud_t *pud;
c2febafc 4694 pmd_t *pmd;
9e5fc74c
SC
4695
4696 pgd = pgd_offset(mm, addr);
c2febafc
KS
4697 if (!pgd_present(*pgd))
4698 return NULL;
4699 p4d = p4d_offset(pgd, addr);
4700 if (!p4d_present(*p4d))
4701 return NULL;
9b19df29 4702
c2febafc 4703 pud = pud_offset(p4d, addr);
9b19df29 4704 if (sz != PUD_SIZE && pud_none(*pud))
c2febafc 4705 return NULL;
9b19df29
PA
4706 /* hugepage or swap? */
4707 if (pud_huge(*pud) || !pud_present(*pud))
c2febafc 4708 return (pte_t *)pud;
9b19df29 4709
c2febafc 4710 pmd = pmd_offset(pud, addr);
9b19df29
PA
4711 if (sz != PMD_SIZE && pmd_none(*pmd))
4712 return NULL;
4713 /* hugepage or swap? */
4714 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4715 return (pte_t *)pmd;
4716
4717 return NULL;
9e5fc74c
SC
4718}
4719
61f77eda
NH
4720#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4721
4722/*
4723 * These functions are overwritable if your architecture needs its own
4724 * behavior.
4725 */
4726struct page * __weak
4727follow_huge_addr(struct mm_struct *mm, unsigned long address,
4728 int write)
4729{
4730 return ERR_PTR(-EINVAL);
4731}
4732
4dc71451
AK
4733struct page * __weak
4734follow_huge_pd(struct vm_area_struct *vma,
4735 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4736{
4737 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4738 return NULL;
4739}
4740
61f77eda 4741struct page * __weak
9e5fc74c 4742follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4743 pmd_t *pmd, int flags)
9e5fc74c 4744{
e66f17ff
NH
4745 struct page *page = NULL;
4746 spinlock_t *ptl;
c9d398fa 4747 pte_t pte;
e66f17ff
NH
4748retry:
4749 ptl = pmd_lockptr(mm, pmd);
4750 spin_lock(ptl);
4751 /*
4752 * make sure that the address range covered by this pmd is not
4753 * unmapped from other threads.
4754 */
4755 if (!pmd_huge(*pmd))
4756 goto out;
c9d398fa
NH
4757 pte = huge_ptep_get((pte_t *)pmd);
4758 if (pte_present(pte)) {
97534127 4759 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4760 if (flags & FOLL_GET)
4761 get_page(page);
4762 } else {
c9d398fa 4763 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4764 spin_unlock(ptl);
4765 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4766 goto retry;
4767 }
4768 /*
4769 * hwpoisoned entry is treated as no_page_table in
4770 * follow_page_mask().
4771 */
4772 }
4773out:
4774 spin_unlock(ptl);
9e5fc74c
SC
4775 return page;
4776}
4777
61f77eda 4778struct page * __weak
9e5fc74c 4779follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4780 pud_t *pud, int flags)
9e5fc74c 4781{
e66f17ff
NH
4782 if (flags & FOLL_GET)
4783 return NULL;
9e5fc74c 4784
e66f17ff 4785 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4786}
4787
faaa5b62
AK
4788struct page * __weak
4789follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4790{
4791 if (flags & FOLL_GET)
4792 return NULL;
4793
4794 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4795}
4796
31caf665
NH
4797bool isolate_huge_page(struct page *page, struct list_head *list)
4798{
bcc54222
NH
4799 bool ret = true;
4800
309381fe 4801 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4802 spin_lock(&hugetlb_lock);
bcc54222
NH
4803 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4804 ret = false;
4805 goto unlock;
4806 }
4807 clear_page_huge_active(page);
31caf665 4808 list_move_tail(&page->lru, list);
bcc54222 4809unlock:
31caf665 4810 spin_unlock(&hugetlb_lock);
bcc54222 4811 return ret;
31caf665
NH
4812}
4813
4814void putback_active_hugepage(struct page *page)
4815{
309381fe 4816 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4817 spin_lock(&hugetlb_lock);
bcc54222 4818 set_page_huge_active(page);
31caf665
NH
4819 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4820 spin_unlock(&hugetlb_lock);
4821 put_page(page);
4822}
ab5ac90a
MH
4823
4824void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
4825{
4826 struct hstate *h = page_hstate(oldpage);
4827
4828 hugetlb_cgroup_migrate(oldpage, newpage);
4829 set_page_owner_migrate_reason(newpage, reason);
4830
4831 /*
4832 * transfer temporary state of the new huge page. This is
4833 * reverse to other transitions because the newpage is going to
4834 * be final while the old one will be freed so it takes over
4835 * the temporary status.
4836 *
4837 * Also note that we have to transfer the per-node surplus state
4838 * here as well otherwise the global surplus count will not match
4839 * the per-node's.
4840 */
4841 if (PageHugeTemporary(newpage)) {
4842 int old_nid = page_to_nid(oldpage);
4843 int new_nid = page_to_nid(newpage);
4844
4845 SetPageHugeTemporary(oldpage);
4846 ClearPageHugeTemporary(newpage);
4847
4848 spin_lock(&hugetlb_lock);
4849 if (h->surplus_huge_pages_node[old_nid]) {
4850 h->surplus_huge_pages_node[old_nid]--;
4851 h->surplus_huge_pages_node[new_nid]++;
4852 }
4853 spin_unlock(&hugetlb_lock);
4854 }
4855}
This page took 2.031321 seconds and 4 git commands to generate.