]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Generic hugetlb support. | |
3 | * (C) William Irwin, April 2004 | |
4 | */ | |
1da177e4 LT |
5 | #include <linux/list.h> |
6 | #include <linux/init.h> | |
7 | #include <linux/module.h> | |
8 | #include <linux/mm.h> | |
e1759c21 | 9 | #include <linux/seq_file.h> |
1da177e4 LT |
10 | #include <linux/sysctl.h> |
11 | #include <linux/highmem.h> | |
cddb8a5c | 12 | #include <linux/mmu_notifier.h> |
1da177e4 | 13 | #include <linux/nodemask.h> |
63551ae0 | 14 | #include <linux/pagemap.h> |
5da7ca86 | 15 | #include <linux/mempolicy.h> |
aea47ff3 | 16 | #include <linux/cpuset.h> |
3935baa9 | 17 | #include <linux/mutex.h> |
aa888a74 | 18 | #include <linux/bootmem.h> |
a3437870 | 19 | #include <linux/sysfs.h> |
5a0e3ad6 | 20 | #include <linux/slab.h> |
0fe6e20b | 21 | #include <linux/rmap.h> |
fd6a03ed NH |
22 | #include <linux/swap.h> |
23 | #include <linux/swapops.h> | |
d6606683 | 24 | |
63551ae0 DG |
25 | #include <asm/page.h> |
26 | #include <asm/pgtable.h> | |
78a34ae2 | 27 | #include <asm/io.h> |
63551ae0 DG |
28 | |
29 | #include <linux/hugetlb.h> | |
9a305230 | 30 | #include <linux/node.h> |
7835e98b | 31 | #include "internal.h" |
1da177e4 LT |
32 | |
33 | const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; | |
396faf03 MG |
34 | static gfp_t htlb_alloc_mask = GFP_HIGHUSER; |
35 | unsigned long hugepages_treat_as_movable; | |
a5516438 | 36 | |
e5ff2159 AK |
37 | static int max_hstate; |
38 | unsigned int default_hstate_idx; | |
39 | struct hstate hstates[HUGE_MAX_HSTATE]; | |
40 | ||
53ba51d2 JT |
41 | __initdata LIST_HEAD(huge_boot_pages); |
42 | ||
e5ff2159 AK |
43 | /* for command line parsing */ |
44 | static struct hstate * __initdata parsed_hstate; | |
45 | static unsigned long __initdata default_hstate_max_huge_pages; | |
e11bfbfc | 46 | static unsigned long __initdata default_hstate_size; |
e5ff2159 AK |
47 | |
48 | #define for_each_hstate(h) \ | |
49 | for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) | |
396faf03 | 50 | |
3935baa9 DG |
51 | /* |
52 | * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages | |
53 | */ | |
54 | static DEFINE_SPINLOCK(hugetlb_lock); | |
0bd0f9fb | 55 | |
96822904 AW |
56 | /* |
57 | * Region tracking -- allows tracking of reservations and instantiated pages | |
58 | * across the pages in a mapping. | |
84afd99b AW |
59 | * |
60 | * The region data structures are protected by a combination of the mmap_sem | |
61 | * and the hugetlb_instantion_mutex. To access or modify a region the caller | |
62 | * must either hold the mmap_sem for write, or the mmap_sem for read and | |
63 | * the hugetlb_instantiation mutex: | |
64 | * | |
65 | * down_write(&mm->mmap_sem); | |
66 | * or | |
67 | * down_read(&mm->mmap_sem); | |
68 | * mutex_lock(&hugetlb_instantiation_mutex); | |
96822904 AW |
69 | */ |
70 | struct file_region { | |
71 | struct list_head link; | |
72 | long from; | |
73 | long to; | |
74 | }; | |
75 | ||
76 | static long region_add(struct list_head *head, long f, long t) | |
77 | { | |
78 | struct file_region *rg, *nrg, *trg; | |
79 | ||
80 | /* Locate the region we are either in or before. */ | |
81 | list_for_each_entry(rg, head, link) | |
82 | if (f <= rg->to) | |
83 | break; | |
84 | ||
85 | /* Round our left edge to the current segment if it encloses us. */ | |
86 | if (f > rg->from) | |
87 | f = rg->from; | |
88 | ||
89 | /* Check for and consume any regions we now overlap with. */ | |
90 | nrg = rg; | |
91 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | |
92 | if (&rg->link == head) | |
93 | break; | |
94 | if (rg->from > t) | |
95 | break; | |
96 | ||
97 | /* If this area reaches higher then extend our area to | |
98 | * include it completely. If this is not the first area | |
99 | * which we intend to reuse, free it. */ | |
100 | if (rg->to > t) | |
101 | t = rg->to; | |
102 | if (rg != nrg) { | |
103 | list_del(&rg->link); | |
104 | kfree(rg); | |
105 | } | |
106 | } | |
107 | nrg->from = f; | |
108 | nrg->to = t; | |
109 | return 0; | |
110 | } | |
111 | ||
112 | static long region_chg(struct list_head *head, long f, long t) | |
113 | { | |
114 | struct file_region *rg, *nrg; | |
115 | long chg = 0; | |
116 | ||
117 | /* Locate the region we are before or in. */ | |
118 | list_for_each_entry(rg, head, link) | |
119 | if (f <= rg->to) | |
120 | break; | |
121 | ||
122 | /* If we are below the current region then a new region is required. | |
123 | * Subtle, allocate a new region at the position but make it zero | |
124 | * size such that we can guarantee to record the reservation. */ | |
125 | if (&rg->link == head || t < rg->from) { | |
126 | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | |
127 | if (!nrg) | |
128 | return -ENOMEM; | |
129 | nrg->from = f; | |
130 | nrg->to = f; | |
131 | INIT_LIST_HEAD(&nrg->link); | |
132 | list_add(&nrg->link, rg->link.prev); | |
133 | ||
134 | return t - f; | |
135 | } | |
136 | ||
137 | /* Round our left edge to the current segment if it encloses us. */ | |
138 | if (f > rg->from) | |
139 | f = rg->from; | |
140 | chg = t - f; | |
141 | ||
142 | /* Check for and consume any regions we now overlap with. */ | |
143 | list_for_each_entry(rg, rg->link.prev, link) { | |
144 | if (&rg->link == head) | |
145 | break; | |
146 | if (rg->from > t) | |
147 | return chg; | |
148 | ||
149 | /* We overlap with this area, if it extends futher than | |
150 | * us then we must extend ourselves. Account for its | |
151 | * existing reservation. */ | |
152 | if (rg->to > t) { | |
153 | chg += rg->to - t; | |
154 | t = rg->to; | |
155 | } | |
156 | chg -= rg->to - rg->from; | |
157 | } | |
158 | return chg; | |
159 | } | |
160 | ||
161 | static long region_truncate(struct list_head *head, long end) | |
162 | { | |
163 | struct file_region *rg, *trg; | |
164 | long chg = 0; | |
165 | ||
166 | /* Locate the region we are either in or before. */ | |
167 | list_for_each_entry(rg, head, link) | |
168 | if (end <= rg->to) | |
169 | break; | |
170 | if (&rg->link == head) | |
171 | return 0; | |
172 | ||
173 | /* If we are in the middle of a region then adjust it. */ | |
174 | if (end > rg->from) { | |
175 | chg = rg->to - end; | |
176 | rg->to = end; | |
177 | rg = list_entry(rg->link.next, typeof(*rg), link); | |
178 | } | |
179 | ||
180 | /* Drop any remaining regions. */ | |
181 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | |
182 | if (&rg->link == head) | |
183 | break; | |
184 | chg += rg->to - rg->from; | |
185 | list_del(&rg->link); | |
186 | kfree(rg); | |
187 | } | |
188 | return chg; | |
189 | } | |
190 | ||
84afd99b AW |
191 | static long region_count(struct list_head *head, long f, long t) |
192 | { | |
193 | struct file_region *rg; | |
194 | long chg = 0; | |
195 | ||
196 | /* Locate each segment we overlap with, and count that overlap. */ | |
197 | list_for_each_entry(rg, head, link) { | |
198 | int seg_from; | |
199 | int seg_to; | |
200 | ||
201 | if (rg->to <= f) | |
202 | continue; | |
203 | if (rg->from >= t) | |
204 | break; | |
205 | ||
206 | seg_from = max(rg->from, f); | |
207 | seg_to = min(rg->to, t); | |
208 | ||
209 | chg += seg_to - seg_from; | |
210 | } | |
211 | ||
212 | return chg; | |
213 | } | |
214 | ||
e7c4b0bf AW |
215 | /* |
216 | * Convert the address within this vma to the page offset within | |
217 | * the mapping, in pagecache page units; huge pages here. | |
218 | */ | |
a5516438 AK |
219 | static pgoff_t vma_hugecache_offset(struct hstate *h, |
220 | struct vm_area_struct *vma, unsigned long address) | |
e7c4b0bf | 221 | { |
a5516438 AK |
222 | return ((address - vma->vm_start) >> huge_page_shift(h)) + |
223 | (vma->vm_pgoff >> huge_page_order(h)); | |
e7c4b0bf AW |
224 | } |
225 | ||
0fe6e20b NH |
226 | pgoff_t linear_hugepage_index(struct vm_area_struct *vma, |
227 | unsigned long address) | |
228 | { | |
229 | return vma_hugecache_offset(hstate_vma(vma), vma, address); | |
230 | } | |
231 | ||
08fba699 MG |
232 | /* |
233 | * Return the size of the pages allocated when backing a VMA. In the majority | |
234 | * cases this will be same size as used by the page table entries. | |
235 | */ | |
236 | unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) | |
237 | { | |
238 | struct hstate *hstate; | |
239 | ||
240 | if (!is_vm_hugetlb_page(vma)) | |
241 | return PAGE_SIZE; | |
242 | ||
243 | hstate = hstate_vma(vma); | |
244 | ||
245 | return 1UL << (hstate->order + PAGE_SHIFT); | |
246 | } | |
f340ca0f | 247 | EXPORT_SYMBOL_GPL(vma_kernel_pagesize); |
08fba699 | 248 | |
3340289d MG |
249 | /* |
250 | * Return the page size being used by the MMU to back a VMA. In the majority | |
251 | * of cases, the page size used by the kernel matches the MMU size. On | |
252 | * architectures where it differs, an architecture-specific version of this | |
253 | * function is required. | |
254 | */ | |
255 | #ifndef vma_mmu_pagesize | |
256 | unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) | |
257 | { | |
258 | return vma_kernel_pagesize(vma); | |
259 | } | |
260 | #endif | |
261 | ||
84afd99b AW |
262 | /* |
263 | * Flags for MAP_PRIVATE reservations. These are stored in the bottom | |
264 | * bits of the reservation map pointer, which are always clear due to | |
265 | * alignment. | |
266 | */ | |
267 | #define HPAGE_RESV_OWNER (1UL << 0) | |
268 | #define HPAGE_RESV_UNMAPPED (1UL << 1) | |
04f2cbe3 | 269 | #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) |
84afd99b | 270 | |
a1e78772 MG |
271 | /* |
272 | * These helpers are used to track how many pages are reserved for | |
273 | * faults in a MAP_PRIVATE mapping. Only the process that called mmap() | |
274 | * is guaranteed to have their future faults succeed. | |
275 | * | |
276 | * With the exception of reset_vma_resv_huge_pages() which is called at fork(), | |
277 | * the reserve counters are updated with the hugetlb_lock held. It is safe | |
278 | * to reset the VMA at fork() time as it is not in use yet and there is no | |
279 | * chance of the global counters getting corrupted as a result of the values. | |
84afd99b AW |
280 | * |
281 | * The private mapping reservation is represented in a subtly different | |
282 | * manner to a shared mapping. A shared mapping has a region map associated | |
283 | * with the underlying file, this region map represents the backing file | |
284 | * pages which have ever had a reservation assigned which this persists even | |
285 | * after the page is instantiated. A private mapping has a region map | |
286 | * associated with the original mmap which is attached to all VMAs which | |
287 | * reference it, this region map represents those offsets which have consumed | |
288 | * reservation ie. where pages have been instantiated. | |
a1e78772 | 289 | */ |
e7c4b0bf AW |
290 | static unsigned long get_vma_private_data(struct vm_area_struct *vma) |
291 | { | |
292 | return (unsigned long)vma->vm_private_data; | |
293 | } | |
294 | ||
295 | static void set_vma_private_data(struct vm_area_struct *vma, | |
296 | unsigned long value) | |
297 | { | |
298 | vma->vm_private_data = (void *)value; | |
299 | } | |
300 | ||
84afd99b AW |
301 | struct resv_map { |
302 | struct kref refs; | |
303 | struct list_head regions; | |
304 | }; | |
305 | ||
2a4b3ded | 306 | static struct resv_map *resv_map_alloc(void) |
84afd99b AW |
307 | { |
308 | struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); | |
309 | if (!resv_map) | |
310 | return NULL; | |
311 | ||
312 | kref_init(&resv_map->refs); | |
313 | INIT_LIST_HEAD(&resv_map->regions); | |
314 | ||
315 | return resv_map; | |
316 | } | |
317 | ||
2a4b3ded | 318 | static void resv_map_release(struct kref *ref) |
84afd99b AW |
319 | { |
320 | struct resv_map *resv_map = container_of(ref, struct resv_map, refs); | |
321 | ||
322 | /* Clear out any active regions before we release the map. */ | |
323 | region_truncate(&resv_map->regions, 0); | |
324 | kfree(resv_map); | |
325 | } | |
326 | ||
327 | static struct resv_map *vma_resv_map(struct vm_area_struct *vma) | |
a1e78772 MG |
328 | { |
329 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | |
f83a275d | 330 | if (!(vma->vm_flags & VM_MAYSHARE)) |
84afd99b AW |
331 | return (struct resv_map *)(get_vma_private_data(vma) & |
332 | ~HPAGE_RESV_MASK); | |
2a4b3ded | 333 | return NULL; |
a1e78772 MG |
334 | } |
335 | ||
84afd99b | 336 | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) |
a1e78772 MG |
337 | { |
338 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | |
f83a275d | 339 | VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); |
a1e78772 | 340 | |
84afd99b AW |
341 | set_vma_private_data(vma, (get_vma_private_data(vma) & |
342 | HPAGE_RESV_MASK) | (unsigned long)map); | |
04f2cbe3 MG |
343 | } |
344 | ||
345 | static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) | |
346 | { | |
04f2cbe3 | 347 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); |
f83a275d | 348 | VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); |
e7c4b0bf AW |
349 | |
350 | set_vma_private_data(vma, get_vma_private_data(vma) | flags); | |
04f2cbe3 MG |
351 | } |
352 | ||
353 | static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) | |
354 | { | |
355 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | |
e7c4b0bf AW |
356 | |
357 | return (get_vma_private_data(vma) & flag) != 0; | |
a1e78772 MG |
358 | } |
359 | ||
360 | /* Decrement the reserved pages in the hugepage pool by one */ | |
a5516438 AK |
361 | static void decrement_hugepage_resv_vma(struct hstate *h, |
362 | struct vm_area_struct *vma) | |
a1e78772 | 363 | { |
c37f9fb1 AW |
364 | if (vma->vm_flags & VM_NORESERVE) |
365 | return; | |
366 | ||
f83a275d | 367 | if (vma->vm_flags & VM_MAYSHARE) { |
a1e78772 | 368 | /* Shared mappings always use reserves */ |
a5516438 | 369 | h->resv_huge_pages--; |
84afd99b | 370 | } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { |
a1e78772 MG |
371 | /* |
372 | * Only the process that called mmap() has reserves for | |
373 | * private mappings. | |
374 | */ | |
a5516438 | 375 | h->resv_huge_pages--; |
a1e78772 MG |
376 | } |
377 | } | |
378 | ||
04f2cbe3 | 379 | /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ |
a1e78772 MG |
380 | void reset_vma_resv_huge_pages(struct vm_area_struct *vma) |
381 | { | |
382 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | |
f83a275d | 383 | if (!(vma->vm_flags & VM_MAYSHARE)) |
a1e78772 MG |
384 | vma->vm_private_data = (void *)0; |
385 | } | |
386 | ||
387 | /* Returns true if the VMA has associated reserve pages */ | |
7f09ca51 | 388 | static int vma_has_reserves(struct vm_area_struct *vma) |
a1e78772 | 389 | { |
f83a275d | 390 | if (vma->vm_flags & VM_MAYSHARE) |
7f09ca51 MG |
391 | return 1; |
392 | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) | |
393 | return 1; | |
394 | return 0; | |
a1e78772 MG |
395 | } |
396 | ||
69d177c2 AW |
397 | static void clear_gigantic_page(struct page *page, |
398 | unsigned long addr, unsigned long sz) | |
399 | { | |
400 | int i; | |
401 | struct page *p = page; | |
402 | ||
403 | might_sleep(); | |
404 | for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) { | |
405 | cond_resched(); | |
406 | clear_user_highpage(p, addr + i * PAGE_SIZE); | |
407 | } | |
408 | } | |
a5516438 AK |
409 | static void clear_huge_page(struct page *page, |
410 | unsigned long addr, unsigned long sz) | |
79ac6ba4 DG |
411 | { |
412 | int i; | |
413 | ||
74dbdd23 | 414 | if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) { |
ebdd4aea HE |
415 | clear_gigantic_page(page, addr, sz); |
416 | return; | |
417 | } | |
69d177c2 | 418 | |
79ac6ba4 | 419 | might_sleep(); |
a5516438 | 420 | for (i = 0; i < sz/PAGE_SIZE; i++) { |
79ac6ba4 | 421 | cond_resched(); |
281e0e3b | 422 | clear_user_highpage(page + i, addr + i * PAGE_SIZE); |
79ac6ba4 DG |
423 | } |
424 | } | |
425 | ||
0ebabb41 | 426 | static void copy_user_gigantic_page(struct page *dst, struct page *src, |
69d177c2 AW |
427 | unsigned long addr, struct vm_area_struct *vma) |
428 | { | |
429 | int i; | |
430 | struct hstate *h = hstate_vma(vma); | |
431 | struct page *dst_base = dst; | |
432 | struct page *src_base = src; | |
0ebabb41 | 433 | |
69d177c2 AW |
434 | for (i = 0; i < pages_per_huge_page(h); ) { |
435 | cond_resched(); | |
436 | copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); | |
437 | ||
438 | i++; | |
439 | dst = mem_map_next(dst, dst_base, i); | |
440 | src = mem_map_next(src, src_base, i); | |
441 | } | |
442 | } | |
0ebabb41 NH |
443 | |
444 | static void copy_user_huge_page(struct page *dst, struct page *src, | |
9de455b2 | 445 | unsigned long addr, struct vm_area_struct *vma) |
79ac6ba4 DG |
446 | { |
447 | int i; | |
a5516438 | 448 | struct hstate *h = hstate_vma(vma); |
79ac6ba4 | 449 | |
ebdd4aea | 450 | if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { |
0ebabb41 | 451 | copy_user_gigantic_page(dst, src, addr, vma); |
ebdd4aea HE |
452 | return; |
453 | } | |
69d177c2 | 454 | |
79ac6ba4 | 455 | might_sleep(); |
a5516438 | 456 | for (i = 0; i < pages_per_huge_page(h); i++) { |
79ac6ba4 | 457 | cond_resched(); |
9de455b2 | 458 | copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); |
79ac6ba4 DG |
459 | } |
460 | } | |
461 | ||
0ebabb41 NH |
462 | static void copy_gigantic_page(struct page *dst, struct page *src) |
463 | { | |
464 | int i; | |
465 | struct hstate *h = page_hstate(src); | |
466 | struct page *dst_base = dst; | |
467 | struct page *src_base = src; | |
468 | ||
469 | for (i = 0; i < pages_per_huge_page(h); ) { | |
470 | cond_resched(); | |
471 | copy_highpage(dst, src); | |
472 | ||
473 | i++; | |
474 | dst = mem_map_next(dst, dst_base, i); | |
475 | src = mem_map_next(src, src_base, i); | |
476 | } | |
477 | } | |
478 | ||
479 | void copy_huge_page(struct page *dst, struct page *src) | |
480 | { | |
481 | int i; | |
482 | struct hstate *h = page_hstate(src); | |
483 | ||
484 | if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { | |
485 | copy_gigantic_page(dst, src); | |
486 | return; | |
487 | } | |
488 | ||
489 | might_sleep(); | |
490 | for (i = 0; i < pages_per_huge_page(h); i++) { | |
491 | cond_resched(); | |
492 | copy_highpage(dst + i, src + i); | |
493 | } | |
494 | } | |
495 | ||
a5516438 | 496 | static void enqueue_huge_page(struct hstate *h, struct page *page) |
1da177e4 LT |
497 | { |
498 | int nid = page_to_nid(page); | |
a5516438 AK |
499 | list_add(&page->lru, &h->hugepage_freelists[nid]); |
500 | h->free_huge_pages++; | |
501 | h->free_huge_pages_node[nid]++; | |
1da177e4 LT |
502 | } |
503 | ||
bf50bab2 NH |
504 | static struct page *dequeue_huge_page_node(struct hstate *h, int nid) |
505 | { | |
506 | struct page *page; | |
507 | ||
508 | if (list_empty(&h->hugepage_freelists[nid])) | |
509 | return NULL; | |
510 | page = list_entry(h->hugepage_freelists[nid].next, struct page, lru); | |
511 | list_del(&page->lru); | |
512 | h->free_huge_pages--; | |
513 | h->free_huge_pages_node[nid]--; | |
514 | return page; | |
515 | } | |
516 | ||
a5516438 AK |
517 | static struct page *dequeue_huge_page_vma(struct hstate *h, |
518 | struct vm_area_struct *vma, | |
04f2cbe3 | 519 | unsigned long address, int avoid_reserve) |
1da177e4 | 520 | { |
1da177e4 | 521 | struct page *page = NULL; |
480eccf9 | 522 | struct mempolicy *mpol; |
19770b32 | 523 | nodemask_t *nodemask; |
c0ff7453 | 524 | struct zonelist *zonelist; |
dd1a239f MG |
525 | struct zone *zone; |
526 | struct zoneref *z; | |
1da177e4 | 527 | |
c0ff7453 MX |
528 | get_mems_allowed(); |
529 | zonelist = huge_zonelist(vma, address, | |
530 | htlb_alloc_mask, &mpol, &nodemask); | |
a1e78772 MG |
531 | /* |
532 | * A child process with MAP_PRIVATE mappings created by their parent | |
533 | * have no page reserves. This check ensures that reservations are | |
534 | * not "stolen". The child may still get SIGKILLed | |
535 | */ | |
7f09ca51 | 536 | if (!vma_has_reserves(vma) && |
a5516438 | 537 | h->free_huge_pages - h->resv_huge_pages == 0) |
c0ff7453 | 538 | goto err; |
a1e78772 | 539 | |
04f2cbe3 | 540 | /* If reserves cannot be used, ensure enough pages are in the pool */ |
a5516438 | 541 | if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) |
c0ff7453 | 542 | goto err;; |
04f2cbe3 | 543 | |
19770b32 MG |
544 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
545 | MAX_NR_ZONES - 1, nodemask) { | |
bf50bab2 NH |
546 | if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) { |
547 | page = dequeue_huge_page_node(h, zone_to_nid(zone)); | |
548 | if (page) { | |
549 | if (!avoid_reserve) | |
550 | decrement_hugepage_resv_vma(h, vma); | |
551 | break; | |
552 | } | |
3abf7afd | 553 | } |
1da177e4 | 554 | } |
c0ff7453 | 555 | err: |
52cd3b07 | 556 | mpol_cond_put(mpol); |
c0ff7453 | 557 | put_mems_allowed(); |
1da177e4 LT |
558 | return page; |
559 | } | |
560 | ||
a5516438 | 561 | static void update_and_free_page(struct hstate *h, struct page *page) |
6af2acb6 AL |
562 | { |
563 | int i; | |
a5516438 | 564 | |
18229df5 AW |
565 | VM_BUG_ON(h->order >= MAX_ORDER); |
566 | ||
a5516438 AK |
567 | h->nr_huge_pages--; |
568 | h->nr_huge_pages_node[page_to_nid(page)]--; | |
569 | for (i = 0; i < pages_per_huge_page(h); i++) { | |
6af2acb6 AL |
570 | page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | |
571 | 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | | |
572 | 1 << PG_private | 1<< PG_writeback); | |
573 | } | |
574 | set_compound_page_dtor(page, NULL); | |
575 | set_page_refcounted(page); | |
7f2e9525 | 576 | arch_release_hugepage(page); |
a5516438 | 577 | __free_pages(page, huge_page_order(h)); |
6af2acb6 AL |
578 | } |
579 | ||
e5ff2159 AK |
580 | struct hstate *size_to_hstate(unsigned long size) |
581 | { | |
582 | struct hstate *h; | |
583 | ||
584 | for_each_hstate(h) { | |
585 | if (huge_page_size(h) == size) | |
586 | return h; | |
587 | } | |
588 | return NULL; | |
589 | } | |
590 | ||
27a85ef1 DG |
591 | static void free_huge_page(struct page *page) |
592 | { | |
a5516438 AK |
593 | /* |
594 | * Can't pass hstate in here because it is called from the | |
595 | * compound page destructor. | |
596 | */ | |
e5ff2159 | 597 | struct hstate *h = page_hstate(page); |
7893d1d5 | 598 | int nid = page_to_nid(page); |
c79fb75e | 599 | struct address_space *mapping; |
27a85ef1 | 600 | |
c79fb75e | 601 | mapping = (struct address_space *) page_private(page); |
e5df70ab | 602 | set_page_private(page, 0); |
23be7468 | 603 | page->mapping = NULL; |
7893d1d5 | 604 | BUG_ON(page_count(page)); |
0fe6e20b | 605 | BUG_ON(page_mapcount(page)); |
27a85ef1 DG |
606 | INIT_LIST_HEAD(&page->lru); |
607 | ||
608 | spin_lock(&hugetlb_lock); | |
aa888a74 | 609 | if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { |
a5516438 AK |
610 | update_and_free_page(h, page); |
611 | h->surplus_huge_pages--; | |
612 | h->surplus_huge_pages_node[nid]--; | |
7893d1d5 | 613 | } else { |
a5516438 | 614 | enqueue_huge_page(h, page); |
7893d1d5 | 615 | } |
27a85ef1 | 616 | spin_unlock(&hugetlb_lock); |
c79fb75e | 617 | if (mapping) |
9a119c05 | 618 | hugetlb_put_quota(mapping, 1); |
27a85ef1 DG |
619 | } |
620 | ||
a5516438 | 621 | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) |
b7ba30c6 AK |
622 | { |
623 | set_compound_page_dtor(page, free_huge_page); | |
624 | spin_lock(&hugetlb_lock); | |
a5516438 AK |
625 | h->nr_huge_pages++; |
626 | h->nr_huge_pages_node[nid]++; | |
b7ba30c6 AK |
627 | spin_unlock(&hugetlb_lock); |
628 | put_page(page); /* free it into the hugepage allocator */ | |
629 | } | |
630 | ||
20a0307c WF |
631 | static void prep_compound_gigantic_page(struct page *page, unsigned long order) |
632 | { | |
633 | int i; | |
634 | int nr_pages = 1 << order; | |
635 | struct page *p = page + 1; | |
636 | ||
637 | /* we rely on prep_new_huge_page to set the destructor */ | |
638 | set_compound_order(page, order); | |
639 | __SetPageHead(page); | |
640 | for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { | |
641 | __SetPageTail(p); | |
642 | p->first_page = page; | |
643 | } | |
644 | } | |
645 | ||
646 | int PageHuge(struct page *page) | |
647 | { | |
648 | compound_page_dtor *dtor; | |
649 | ||
650 | if (!PageCompound(page)) | |
651 | return 0; | |
652 | ||
653 | page = compound_head(page); | |
654 | dtor = get_compound_page_dtor(page); | |
655 | ||
656 | return dtor == free_huge_page; | |
657 | } | |
658 | ||
43131e14 NH |
659 | EXPORT_SYMBOL_GPL(PageHuge); |
660 | ||
a5516438 | 661 | static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) |
1da177e4 | 662 | { |
1da177e4 | 663 | struct page *page; |
f96efd58 | 664 | |
aa888a74 AK |
665 | if (h->order >= MAX_ORDER) |
666 | return NULL; | |
667 | ||
6484eb3e | 668 | page = alloc_pages_exact_node(nid, |
551883ae NA |
669 | htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| |
670 | __GFP_REPEAT|__GFP_NOWARN, | |
a5516438 | 671 | huge_page_order(h)); |
1da177e4 | 672 | if (page) { |
7f2e9525 | 673 | if (arch_prepare_hugepage(page)) { |
caff3a2c | 674 | __free_pages(page, huge_page_order(h)); |
7b8ee84d | 675 | return NULL; |
7f2e9525 | 676 | } |
a5516438 | 677 | prep_new_huge_page(h, page, nid); |
1da177e4 | 678 | } |
63b4613c NA |
679 | |
680 | return page; | |
681 | } | |
682 | ||
9a76db09 | 683 | /* |
6ae11b27 LS |
684 | * common helper functions for hstate_next_node_to_{alloc|free}. |
685 | * We may have allocated or freed a huge page based on a different | |
686 | * nodes_allowed previously, so h->next_node_to_{alloc|free} might | |
687 | * be outside of *nodes_allowed. Ensure that we use an allowed | |
688 | * node for alloc or free. | |
9a76db09 | 689 | */ |
6ae11b27 | 690 | static int next_node_allowed(int nid, nodemask_t *nodes_allowed) |
9a76db09 | 691 | { |
6ae11b27 | 692 | nid = next_node(nid, *nodes_allowed); |
9a76db09 | 693 | if (nid == MAX_NUMNODES) |
6ae11b27 | 694 | nid = first_node(*nodes_allowed); |
9a76db09 LS |
695 | VM_BUG_ON(nid >= MAX_NUMNODES); |
696 | ||
697 | return nid; | |
698 | } | |
699 | ||
6ae11b27 LS |
700 | static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) |
701 | { | |
702 | if (!node_isset(nid, *nodes_allowed)) | |
703 | nid = next_node_allowed(nid, nodes_allowed); | |
704 | return nid; | |
705 | } | |
706 | ||
5ced66c9 | 707 | /* |
6ae11b27 LS |
708 | * returns the previously saved node ["this node"] from which to |
709 | * allocate a persistent huge page for the pool and advance the | |
710 | * next node from which to allocate, handling wrap at end of node | |
711 | * mask. | |
5ced66c9 | 712 | */ |
6ae11b27 LS |
713 | static int hstate_next_node_to_alloc(struct hstate *h, |
714 | nodemask_t *nodes_allowed) | |
5ced66c9 | 715 | { |
6ae11b27 LS |
716 | int nid; |
717 | ||
718 | VM_BUG_ON(!nodes_allowed); | |
719 | ||
720 | nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); | |
721 | h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); | |
9a76db09 | 722 | |
9a76db09 | 723 | return nid; |
5ced66c9 AK |
724 | } |
725 | ||
6ae11b27 | 726 | static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) |
63b4613c NA |
727 | { |
728 | struct page *page; | |
729 | int start_nid; | |
730 | int next_nid; | |
731 | int ret = 0; | |
732 | ||
6ae11b27 | 733 | start_nid = hstate_next_node_to_alloc(h, nodes_allowed); |
e8c5c824 | 734 | next_nid = start_nid; |
63b4613c NA |
735 | |
736 | do { | |
e8c5c824 | 737 | page = alloc_fresh_huge_page_node(h, next_nid); |
9a76db09 | 738 | if (page) { |
63b4613c | 739 | ret = 1; |
9a76db09 LS |
740 | break; |
741 | } | |
6ae11b27 | 742 | next_nid = hstate_next_node_to_alloc(h, nodes_allowed); |
9a76db09 | 743 | } while (next_nid != start_nid); |
63b4613c | 744 | |
3b116300 AL |
745 | if (ret) |
746 | count_vm_event(HTLB_BUDDY_PGALLOC); | |
747 | else | |
748 | count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); | |
749 | ||
63b4613c | 750 | return ret; |
1da177e4 LT |
751 | } |
752 | ||
e8c5c824 | 753 | /* |
6ae11b27 LS |
754 | * helper for free_pool_huge_page() - return the previously saved |
755 | * node ["this node"] from which to free a huge page. Advance the | |
756 | * next node id whether or not we find a free huge page to free so | |
757 | * that the next attempt to free addresses the next node. | |
e8c5c824 | 758 | */ |
6ae11b27 | 759 | static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) |
e8c5c824 | 760 | { |
6ae11b27 LS |
761 | int nid; |
762 | ||
763 | VM_BUG_ON(!nodes_allowed); | |
764 | ||
765 | nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); | |
766 | h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); | |
9a76db09 | 767 | |
9a76db09 | 768 | return nid; |
e8c5c824 LS |
769 | } |
770 | ||
771 | /* | |
772 | * Free huge page from pool from next node to free. | |
773 | * Attempt to keep persistent huge pages more or less | |
774 | * balanced over allowed nodes. | |
775 | * Called with hugetlb_lock locked. | |
776 | */ | |
6ae11b27 LS |
777 | static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, |
778 | bool acct_surplus) | |
e8c5c824 LS |
779 | { |
780 | int start_nid; | |
781 | int next_nid; | |
782 | int ret = 0; | |
783 | ||
6ae11b27 | 784 | start_nid = hstate_next_node_to_free(h, nodes_allowed); |
e8c5c824 LS |
785 | next_nid = start_nid; |
786 | ||
787 | do { | |
685f3457 LS |
788 | /* |
789 | * If we're returning unused surplus pages, only examine | |
790 | * nodes with surplus pages. | |
791 | */ | |
792 | if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) && | |
793 | !list_empty(&h->hugepage_freelists[next_nid])) { | |
e8c5c824 LS |
794 | struct page *page = |
795 | list_entry(h->hugepage_freelists[next_nid].next, | |
796 | struct page, lru); | |
797 | list_del(&page->lru); | |
798 | h->free_huge_pages--; | |
799 | h->free_huge_pages_node[next_nid]--; | |
685f3457 LS |
800 | if (acct_surplus) { |
801 | h->surplus_huge_pages--; | |
802 | h->surplus_huge_pages_node[next_nid]--; | |
803 | } | |
e8c5c824 LS |
804 | update_and_free_page(h, page); |
805 | ret = 1; | |
9a76db09 | 806 | break; |
e8c5c824 | 807 | } |
6ae11b27 | 808 | next_nid = hstate_next_node_to_free(h, nodes_allowed); |
9a76db09 | 809 | } while (next_nid != start_nid); |
e8c5c824 LS |
810 | |
811 | return ret; | |
812 | } | |
813 | ||
bf50bab2 | 814 | static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) |
7893d1d5 AL |
815 | { |
816 | struct page *page; | |
bf50bab2 | 817 | unsigned int r_nid; |
7893d1d5 | 818 | |
aa888a74 AK |
819 | if (h->order >= MAX_ORDER) |
820 | return NULL; | |
821 | ||
d1c3fb1f NA |
822 | /* |
823 | * Assume we will successfully allocate the surplus page to | |
824 | * prevent racing processes from causing the surplus to exceed | |
825 | * overcommit | |
826 | * | |
827 | * This however introduces a different race, where a process B | |
828 | * tries to grow the static hugepage pool while alloc_pages() is | |
829 | * called by process A. B will only examine the per-node | |
830 | * counters in determining if surplus huge pages can be | |
831 | * converted to normal huge pages in adjust_pool_surplus(). A | |
832 | * won't be able to increment the per-node counter, until the | |
833 | * lock is dropped by B, but B doesn't drop hugetlb_lock until | |
834 | * no more huge pages can be converted from surplus to normal | |
835 | * state (and doesn't try to convert again). Thus, we have a | |
836 | * case where a surplus huge page exists, the pool is grown, and | |
837 | * the surplus huge page still exists after, even though it | |
838 | * should just have been converted to a normal huge page. This | |
839 | * does not leak memory, though, as the hugepage will be freed | |
840 | * once it is out of use. It also does not allow the counters to | |
841 | * go out of whack in adjust_pool_surplus() as we don't modify | |
842 | * the node values until we've gotten the hugepage and only the | |
843 | * per-node value is checked there. | |
844 | */ | |
845 | spin_lock(&hugetlb_lock); | |
a5516438 | 846 | if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { |
d1c3fb1f NA |
847 | spin_unlock(&hugetlb_lock); |
848 | return NULL; | |
849 | } else { | |
a5516438 AK |
850 | h->nr_huge_pages++; |
851 | h->surplus_huge_pages++; | |
d1c3fb1f NA |
852 | } |
853 | spin_unlock(&hugetlb_lock); | |
854 | ||
bf50bab2 NH |
855 | if (nid == NUMA_NO_NODE) |
856 | page = alloc_pages(htlb_alloc_mask|__GFP_COMP| | |
857 | __GFP_REPEAT|__GFP_NOWARN, | |
858 | huge_page_order(h)); | |
859 | else | |
860 | page = alloc_pages_exact_node(nid, | |
861 | htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| | |
862 | __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); | |
d1c3fb1f | 863 | |
caff3a2c GS |
864 | if (page && arch_prepare_hugepage(page)) { |
865 | __free_pages(page, huge_page_order(h)); | |
866 | return NULL; | |
867 | } | |
868 | ||
d1c3fb1f | 869 | spin_lock(&hugetlb_lock); |
7893d1d5 | 870 | if (page) { |
2668db91 AL |
871 | /* |
872 | * This page is now managed by the hugetlb allocator and has | |
873 | * no users -- drop the buddy allocator's reference. | |
874 | */ | |
875 | put_page_testzero(page); | |
876 | VM_BUG_ON(page_count(page)); | |
bf50bab2 | 877 | r_nid = page_to_nid(page); |
7893d1d5 | 878 | set_compound_page_dtor(page, free_huge_page); |
d1c3fb1f NA |
879 | /* |
880 | * We incremented the global counters already | |
881 | */ | |
bf50bab2 NH |
882 | h->nr_huge_pages_node[r_nid]++; |
883 | h->surplus_huge_pages_node[r_nid]++; | |
3b116300 | 884 | __count_vm_event(HTLB_BUDDY_PGALLOC); |
d1c3fb1f | 885 | } else { |
a5516438 AK |
886 | h->nr_huge_pages--; |
887 | h->surplus_huge_pages--; | |
3b116300 | 888 | __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); |
7893d1d5 | 889 | } |
d1c3fb1f | 890 | spin_unlock(&hugetlb_lock); |
7893d1d5 AL |
891 | |
892 | return page; | |
893 | } | |
894 | ||
bf50bab2 NH |
895 | /* |
896 | * This allocation function is useful in the context where vma is irrelevant. | |
897 | * E.g. soft-offlining uses this function because it only cares physical | |
898 | * address of error page. | |
899 | */ | |
900 | struct page *alloc_huge_page_node(struct hstate *h, int nid) | |
901 | { | |
902 | struct page *page; | |
903 | ||
904 | spin_lock(&hugetlb_lock); | |
905 | page = dequeue_huge_page_node(h, nid); | |
906 | spin_unlock(&hugetlb_lock); | |
907 | ||
908 | if (!page) | |
909 | page = alloc_buddy_huge_page(h, nid); | |
910 | ||
911 | return page; | |
912 | } | |
913 | ||
e4e574b7 AL |
914 | /* |
915 | * Increase the hugetlb pool such that it can accomodate a reservation | |
916 | * of size 'delta'. | |
917 | */ | |
a5516438 | 918 | static int gather_surplus_pages(struct hstate *h, int delta) |
e4e574b7 AL |
919 | { |
920 | struct list_head surplus_list; | |
921 | struct page *page, *tmp; | |
922 | int ret, i; | |
923 | int needed, allocated; | |
924 | ||
a5516438 | 925 | needed = (h->resv_huge_pages + delta) - h->free_huge_pages; |
ac09b3a1 | 926 | if (needed <= 0) { |
a5516438 | 927 | h->resv_huge_pages += delta; |
e4e574b7 | 928 | return 0; |
ac09b3a1 | 929 | } |
e4e574b7 AL |
930 | |
931 | allocated = 0; | |
932 | INIT_LIST_HEAD(&surplus_list); | |
933 | ||
934 | ret = -ENOMEM; | |
935 | retry: | |
936 | spin_unlock(&hugetlb_lock); | |
937 | for (i = 0; i < needed; i++) { | |
bf50bab2 | 938 | page = alloc_buddy_huge_page(h, NUMA_NO_NODE); |
e4e574b7 AL |
939 | if (!page) { |
940 | /* | |
941 | * We were not able to allocate enough pages to | |
942 | * satisfy the entire reservation so we free what | |
943 | * we've allocated so far. | |
944 | */ | |
945 | spin_lock(&hugetlb_lock); | |
946 | needed = 0; | |
947 | goto free; | |
948 | } | |
949 | ||
950 | list_add(&page->lru, &surplus_list); | |
951 | } | |
952 | allocated += needed; | |
953 | ||
954 | /* | |
955 | * After retaking hugetlb_lock, we need to recalculate 'needed' | |
956 | * because either resv_huge_pages or free_huge_pages may have changed. | |
957 | */ | |
958 | spin_lock(&hugetlb_lock); | |
a5516438 AK |
959 | needed = (h->resv_huge_pages + delta) - |
960 | (h->free_huge_pages + allocated); | |
e4e574b7 AL |
961 | if (needed > 0) |
962 | goto retry; | |
963 | ||
964 | /* | |
965 | * The surplus_list now contains _at_least_ the number of extra pages | |
966 | * needed to accomodate the reservation. Add the appropriate number | |
967 | * of pages to the hugetlb pool and free the extras back to the buddy | |
ac09b3a1 AL |
968 | * allocator. Commit the entire reservation here to prevent another |
969 | * process from stealing the pages as they are added to the pool but | |
970 | * before they are reserved. | |
e4e574b7 AL |
971 | */ |
972 | needed += allocated; | |
a5516438 | 973 | h->resv_huge_pages += delta; |
e4e574b7 AL |
974 | ret = 0; |
975 | free: | |
19fc3f0a | 976 | /* Free the needed pages to the hugetlb pool */ |
e4e574b7 | 977 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { |
19fc3f0a AL |
978 | if ((--needed) < 0) |
979 | break; | |
e4e574b7 | 980 | list_del(&page->lru); |
a5516438 | 981 | enqueue_huge_page(h, page); |
19fc3f0a AL |
982 | } |
983 | ||
984 | /* Free unnecessary surplus pages to the buddy allocator */ | |
985 | if (!list_empty(&surplus_list)) { | |
986 | spin_unlock(&hugetlb_lock); | |
987 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { | |
988 | list_del(&page->lru); | |
af767cbd | 989 | /* |
2668db91 AL |
990 | * The page has a reference count of zero already, so |
991 | * call free_huge_page directly instead of using | |
992 | * put_page. This must be done with hugetlb_lock | |
af767cbd AL |
993 | * unlocked which is safe because free_huge_page takes |
994 | * hugetlb_lock before deciding how to free the page. | |
995 | */ | |
2668db91 | 996 | free_huge_page(page); |
af767cbd | 997 | } |
19fc3f0a | 998 | spin_lock(&hugetlb_lock); |
e4e574b7 AL |
999 | } |
1000 | ||
1001 | return ret; | |
1002 | } | |
1003 | ||
1004 | /* | |
1005 | * When releasing a hugetlb pool reservation, any surplus pages that were | |
1006 | * allocated to satisfy the reservation must be explicitly freed if they were | |
1007 | * never used. | |
685f3457 | 1008 | * Called with hugetlb_lock held. |
e4e574b7 | 1009 | */ |
a5516438 AK |
1010 | static void return_unused_surplus_pages(struct hstate *h, |
1011 | unsigned long unused_resv_pages) | |
e4e574b7 | 1012 | { |
e4e574b7 AL |
1013 | unsigned long nr_pages; |
1014 | ||
ac09b3a1 | 1015 | /* Uncommit the reservation */ |
a5516438 | 1016 | h->resv_huge_pages -= unused_resv_pages; |
ac09b3a1 | 1017 | |
aa888a74 AK |
1018 | /* Cannot return gigantic pages currently */ |
1019 | if (h->order >= MAX_ORDER) | |
1020 | return; | |
1021 | ||
a5516438 | 1022 | nr_pages = min(unused_resv_pages, h->surplus_huge_pages); |
e4e574b7 | 1023 | |
685f3457 LS |
1024 | /* |
1025 | * We want to release as many surplus pages as possible, spread | |
9b5e5d0f LS |
1026 | * evenly across all nodes with memory. Iterate across these nodes |
1027 | * until we can no longer free unreserved surplus pages. This occurs | |
1028 | * when the nodes with surplus pages have no free pages. | |
1029 | * free_pool_huge_page() will balance the the freed pages across the | |
1030 | * on-line nodes with memory and will handle the hstate accounting. | |
685f3457 LS |
1031 | */ |
1032 | while (nr_pages--) { | |
9b5e5d0f | 1033 | if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1)) |
685f3457 | 1034 | break; |
e4e574b7 AL |
1035 | } |
1036 | } | |
1037 | ||
c37f9fb1 AW |
1038 | /* |
1039 | * Determine if the huge page at addr within the vma has an associated | |
1040 | * reservation. Where it does not we will need to logically increase | |
1041 | * reservation and actually increase quota before an allocation can occur. | |
1042 | * Where any new reservation would be required the reservation change is | |
1043 | * prepared, but not committed. Once the page has been quota'd allocated | |
1044 | * an instantiated the change should be committed via vma_commit_reservation. | |
1045 | * No action is required on failure. | |
1046 | */ | |
e2f17d94 | 1047 | static long vma_needs_reservation(struct hstate *h, |
a5516438 | 1048 | struct vm_area_struct *vma, unsigned long addr) |
c37f9fb1 AW |
1049 | { |
1050 | struct address_space *mapping = vma->vm_file->f_mapping; | |
1051 | struct inode *inode = mapping->host; | |
1052 | ||
f83a275d | 1053 | if (vma->vm_flags & VM_MAYSHARE) { |
a5516438 | 1054 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
c37f9fb1 AW |
1055 | return region_chg(&inode->i_mapping->private_list, |
1056 | idx, idx + 1); | |
1057 | ||
84afd99b AW |
1058 | } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { |
1059 | return 1; | |
c37f9fb1 | 1060 | |
84afd99b | 1061 | } else { |
e2f17d94 | 1062 | long err; |
a5516438 | 1063 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
84afd99b AW |
1064 | struct resv_map *reservations = vma_resv_map(vma); |
1065 | ||
1066 | err = region_chg(&reservations->regions, idx, idx + 1); | |
1067 | if (err < 0) | |
1068 | return err; | |
1069 | return 0; | |
1070 | } | |
c37f9fb1 | 1071 | } |
a5516438 AK |
1072 | static void vma_commit_reservation(struct hstate *h, |
1073 | struct vm_area_struct *vma, unsigned long addr) | |
c37f9fb1 AW |
1074 | { |
1075 | struct address_space *mapping = vma->vm_file->f_mapping; | |
1076 | struct inode *inode = mapping->host; | |
1077 | ||
f83a275d | 1078 | if (vma->vm_flags & VM_MAYSHARE) { |
a5516438 | 1079 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
c37f9fb1 | 1080 | region_add(&inode->i_mapping->private_list, idx, idx + 1); |
84afd99b AW |
1081 | |
1082 | } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | |
a5516438 | 1083 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
84afd99b AW |
1084 | struct resv_map *reservations = vma_resv_map(vma); |
1085 | ||
1086 | /* Mark this page used in the map. */ | |
1087 | region_add(&reservations->regions, idx, idx + 1); | |
c37f9fb1 AW |
1088 | } |
1089 | } | |
1090 | ||
a1e78772 | 1091 | static struct page *alloc_huge_page(struct vm_area_struct *vma, |
04f2cbe3 | 1092 | unsigned long addr, int avoid_reserve) |
1da177e4 | 1093 | { |
a5516438 | 1094 | struct hstate *h = hstate_vma(vma); |
348ea204 | 1095 | struct page *page; |
a1e78772 MG |
1096 | struct address_space *mapping = vma->vm_file->f_mapping; |
1097 | struct inode *inode = mapping->host; | |
e2f17d94 | 1098 | long chg; |
a1e78772 MG |
1099 | |
1100 | /* | |
1101 | * Processes that did not create the mapping will have no reserves and | |
1102 | * will not have accounted against quota. Check that the quota can be | |
1103 | * made before satisfying the allocation | |
c37f9fb1 AW |
1104 | * MAP_NORESERVE mappings may also need pages and quota allocated |
1105 | * if no reserve mapping overlaps. | |
a1e78772 | 1106 | */ |
a5516438 | 1107 | chg = vma_needs_reservation(h, vma, addr); |
c37f9fb1 AW |
1108 | if (chg < 0) |
1109 | return ERR_PTR(chg); | |
1110 | if (chg) | |
a1e78772 MG |
1111 | if (hugetlb_get_quota(inode->i_mapping, chg)) |
1112 | return ERR_PTR(-ENOSPC); | |
1da177e4 LT |
1113 | |
1114 | spin_lock(&hugetlb_lock); | |
a5516438 | 1115 | page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); |
1da177e4 | 1116 | spin_unlock(&hugetlb_lock); |
b45b5bd6 | 1117 | |
68842c9b | 1118 | if (!page) { |
bf50bab2 | 1119 | page = alloc_buddy_huge_page(h, NUMA_NO_NODE); |
68842c9b | 1120 | if (!page) { |
a1e78772 | 1121 | hugetlb_put_quota(inode->i_mapping, chg); |
4a6018f7 | 1122 | return ERR_PTR(-VM_FAULT_SIGBUS); |
68842c9b KC |
1123 | } |
1124 | } | |
348ea204 | 1125 | |
a1e78772 MG |
1126 | set_page_refcounted(page); |
1127 | set_page_private(page, (unsigned long) mapping); | |
90d8b7e6 | 1128 | |
a5516438 | 1129 | vma_commit_reservation(h, vma, addr); |
c37f9fb1 | 1130 | |
90d8b7e6 | 1131 | return page; |
b45b5bd6 DG |
1132 | } |
1133 | ||
91f47662 | 1134 | int __weak alloc_bootmem_huge_page(struct hstate *h) |
aa888a74 AK |
1135 | { |
1136 | struct huge_bootmem_page *m; | |
9b5e5d0f | 1137 | int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); |
aa888a74 AK |
1138 | |
1139 | while (nr_nodes) { | |
1140 | void *addr; | |
1141 | ||
1142 | addr = __alloc_bootmem_node_nopanic( | |
6ae11b27 | 1143 | NODE_DATA(hstate_next_node_to_alloc(h, |
9b5e5d0f | 1144 | &node_states[N_HIGH_MEMORY])), |
aa888a74 AK |
1145 | huge_page_size(h), huge_page_size(h), 0); |
1146 | ||
1147 | if (addr) { | |
1148 | /* | |
1149 | * Use the beginning of the huge page to store the | |
1150 | * huge_bootmem_page struct (until gather_bootmem | |
1151 | * puts them into the mem_map). | |
1152 | */ | |
1153 | m = addr; | |
91f47662 | 1154 | goto found; |
aa888a74 | 1155 | } |
aa888a74 AK |
1156 | nr_nodes--; |
1157 | } | |
1158 | return 0; | |
1159 | ||
1160 | found: | |
1161 | BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); | |
1162 | /* Put them into a private list first because mem_map is not up yet */ | |
1163 | list_add(&m->list, &huge_boot_pages); | |
1164 | m->hstate = h; | |
1165 | return 1; | |
1166 | } | |
1167 | ||
18229df5 AW |
1168 | static void prep_compound_huge_page(struct page *page, int order) |
1169 | { | |
1170 | if (unlikely(order > (MAX_ORDER - 1))) | |
1171 | prep_compound_gigantic_page(page, order); | |
1172 | else | |
1173 | prep_compound_page(page, order); | |
1174 | } | |
1175 | ||
aa888a74 AK |
1176 | /* Put bootmem huge pages into the standard lists after mem_map is up */ |
1177 | static void __init gather_bootmem_prealloc(void) | |
1178 | { | |
1179 | struct huge_bootmem_page *m; | |
1180 | ||
1181 | list_for_each_entry(m, &huge_boot_pages, list) { | |
1182 | struct page *page = virt_to_page(m); | |
1183 | struct hstate *h = m->hstate; | |
1184 | __ClearPageReserved(page); | |
1185 | WARN_ON(page_count(page) != 1); | |
18229df5 | 1186 | prep_compound_huge_page(page, h->order); |
aa888a74 AK |
1187 | prep_new_huge_page(h, page, page_to_nid(page)); |
1188 | } | |
1189 | } | |
1190 | ||
8faa8b07 | 1191 | static void __init hugetlb_hstate_alloc_pages(struct hstate *h) |
1da177e4 LT |
1192 | { |
1193 | unsigned long i; | |
a5516438 | 1194 | |
e5ff2159 | 1195 | for (i = 0; i < h->max_huge_pages; ++i) { |
aa888a74 AK |
1196 | if (h->order >= MAX_ORDER) { |
1197 | if (!alloc_bootmem_huge_page(h)) | |
1198 | break; | |
9b5e5d0f LS |
1199 | } else if (!alloc_fresh_huge_page(h, |
1200 | &node_states[N_HIGH_MEMORY])) | |
1da177e4 | 1201 | break; |
1da177e4 | 1202 | } |
8faa8b07 | 1203 | h->max_huge_pages = i; |
e5ff2159 AK |
1204 | } |
1205 | ||
1206 | static void __init hugetlb_init_hstates(void) | |
1207 | { | |
1208 | struct hstate *h; | |
1209 | ||
1210 | for_each_hstate(h) { | |
8faa8b07 AK |
1211 | /* oversize hugepages were init'ed in early boot */ |
1212 | if (h->order < MAX_ORDER) | |
1213 | hugetlb_hstate_alloc_pages(h); | |
e5ff2159 AK |
1214 | } |
1215 | } | |
1216 | ||
4abd32db AK |
1217 | static char * __init memfmt(char *buf, unsigned long n) |
1218 | { | |
1219 | if (n >= (1UL << 30)) | |
1220 | sprintf(buf, "%lu GB", n >> 30); | |
1221 | else if (n >= (1UL << 20)) | |
1222 | sprintf(buf, "%lu MB", n >> 20); | |
1223 | else | |
1224 | sprintf(buf, "%lu KB", n >> 10); | |
1225 | return buf; | |
1226 | } | |
1227 | ||
e5ff2159 AK |
1228 | static void __init report_hugepages(void) |
1229 | { | |
1230 | struct hstate *h; | |
1231 | ||
1232 | for_each_hstate(h) { | |
4abd32db AK |
1233 | char buf[32]; |
1234 | printk(KERN_INFO "HugeTLB registered %s page size, " | |
1235 | "pre-allocated %ld pages\n", | |
1236 | memfmt(buf, huge_page_size(h)), | |
1237 | h->free_huge_pages); | |
e5ff2159 AK |
1238 | } |
1239 | } | |
1240 | ||
1da177e4 | 1241 | #ifdef CONFIG_HIGHMEM |
6ae11b27 LS |
1242 | static void try_to_free_low(struct hstate *h, unsigned long count, |
1243 | nodemask_t *nodes_allowed) | |
1da177e4 | 1244 | { |
4415cc8d CL |
1245 | int i; |
1246 | ||
aa888a74 AK |
1247 | if (h->order >= MAX_ORDER) |
1248 | return; | |
1249 | ||
6ae11b27 | 1250 | for_each_node_mask(i, *nodes_allowed) { |
1da177e4 | 1251 | struct page *page, *next; |
a5516438 AK |
1252 | struct list_head *freel = &h->hugepage_freelists[i]; |
1253 | list_for_each_entry_safe(page, next, freel, lru) { | |
1254 | if (count >= h->nr_huge_pages) | |
6b0c880d | 1255 | return; |
1da177e4 LT |
1256 | if (PageHighMem(page)) |
1257 | continue; | |
1258 | list_del(&page->lru); | |
e5ff2159 | 1259 | update_and_free_page(h, page); |
a5516438 AK |
1260 | h->free_huge_pages--; |
1261 | h->free_huge_pages_node[page_to_nid(page)]--; | |
1da177e4 LT |
1262 | } |
1263 | } | |
1264 | } | |
1265 | #else | |
6ae11b27 LS |
1266 | static inline void try_to_free_low(struct hstate *h, unsigned long count, |
1267 | nodemask_t *nodes_allowed) | |
1da177e4 LT |
1268 | { |
1269 | } | |
1270 | #endif | |
1271 | ||
20a0307c WF |
1272 | /* |
1273 | * Increment or decrement surplus_huge_pages. Keep node-specific counters | |
1274 | * balanced by operating on them in a round-robin fashion. | |
1275 | * Returns 1 if an adjustment was made. | |
1276 | */ | |
6ae11b27 LS |
1277 | static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, |
1278 | int delta) | |
20a0307c | 1279 | { |
e8c5c824 | 1280 | int start_nid, next_nid; |
20a0307c WF |
1281 | int ret = 0; |
1282 | ||
1283 | VM_BUG_ON(delta != -1 && delta != 1); | |
20a0307c | 1284 | |
e8c5c824 | 1285 | if (delta < 0) |
6ae11b27 | 1286 | start_nid = hstate_next_node_to_alloc(h, nodes_allowed); |
e8c5c824 | 1287 | else |
6ae11b27 | 1288 | start_nid = hstate_next_node_to_free(h, nodes_allowed); |
e8c5c824 LS |
1289 | next_nid = start_nid; |
1290 | ||
1291 | do { | |
1292 | int nid = next_nid; | |
1293 | if (delta < 0) { | |
e8c5c824 LS |
1294 | /* |
1295 | * To shrink on this node, there must be a surplus page | |
1296 | */ | |
9a76db09 | 1297 | if (!h->surplus_huge_pages_node[nid]) { |
6ae11b27 LS |
1298 | next_nid = hstate_next_node_to_alloc(h, |
1299 | nodes_allowed); | |
e8c5c824 | 1300 | continue; |
9a76db09 | 1301 | } |
e8c5c824 LS |
1302 | } |
1303 | if (delta > 0) { | |
e8c5c824 LS |
1304 | /* |
1305 | * Surplus cannot exceed the total number of pages | |
1306 | */ | |
1307 | if (h->surplus_huge_pages_node[nid] >= | |
9a76db09 | 1308 | h->nr_huge_pages_node[nid]) { |
6ae11b27 LS |
1309 | next_nid = hstate_next_node_to_free(h, |
1310 | nodes_allowed); | |
e8c5c824 | 1311 | continue; |
9a76db09 | 1312 | } |
e8c5c824 | 1313 | } |
20a0307c WF |
1314 | |
1315 | h->surplus_huge_pages += delta; | |
1316 | h->surplus_huge_pages_node[nid] += delta; | |
1317 | ret = 1; | |
1318 | break; | |
e8c5c824 | 1319 | } while (next_nid != start_nid); |
20a0307c | 1320 | |
20a0307c WF |
1321 | return ret; |
1322 | } | |
1323 | ||
a5516438 | 1324 | #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) |
6ae11b27 LS |
1325 | static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, |
1326 | nodemask_t *nodes_allowed) | |
1da177e4 | 1327 | { |
7893d1d5 | 1328 | unsigned long min_count, ret; |
1da177e4 | 1329 | |
aa888a74 AK |
1330 | if (h->order >= MAX_ORDER) |
1331 | return h->max_huge_pages; | |
1332 | ||
7893d1d5 AL |
1333 | /* |
1334 | * Increase the pool size | |
1335 | * First take pages out of surplus state. Then make up the | |
1336 | * remaining difference by allocating fresh huge pages. | |
d1c3fb1f NA |
1337 | * |
1338 | * We might race with alloc_buddy_huge_page() here and be unable | |
1339 | * to convert a surplus huge page to a normal huge page. That is | |
1340 | * not critical, though, it just means the overall size of the | |
1341 | * pool might be one hugepage larger than it needs to be, but | |
1342 | * within all the constraints specified by the sysctls. | |
7893d1d5 | 1343 | */ |
1da177e4 | 1344 | spin_lock(&hugetlb_lock); |
a5516438 | 1345 | while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { |
6ae11b27 | 1346 | if (!adjust_pool_surplus(h, nodes_allowed, -1)) |
7893d1d5 AL |
1347 | break; |
1348 | } | |
1349 | ||
a5516438 | 1350 | while (count > persistent_huge_pages(h)) { |
7893d1d5 AL |
1351 | /* |
1352 | * If this allocation races such that we no longer need the | |
1353 | * page, free_huge_page will handle it by freeing the page | |
1354 | * and reducing the surplus. | |
1355 | */ | |
1356 | spin_unlock(&hugetlb_lock); | |
6ae11b27 | 1357 | ret = alloc_fresh_huge_page(h, nodes_allowed); |
7893d1d5 AL |
1358 | spin_lock(&hugetlb_lock); |
1359 | if (!ret) | |
1360 | goto out; | |
1361 | ||
536240f2 MG |
1362 | /* Bail for signals. Probably ctrl-c from user */ |
1363 | if (signal_pending(current)) | |
1364 | goto out; | |
7893d1d5 | 1365 | } |
7893d1d5 AL |
1366 | |
1367 | /* | |
1368 | * Decrease the pool size | |
1369 | * First return free pages to the buddy allocator (being careful | |
1370 | * to keep enough around to satisfy reservations). Then place | |
1371 | * pages into surplus state as needed so the pool will shrink | |
1372 | * to the desired size as pages become free. | |
d1c3fb1f NA |
1373 | * |
1374 | * By placing pages into the surplus state independent of the | |
1375 | * overcommit value, we are allowing the surplus pool size to | |
1376 | * exceed overcommit. There are few sane options here. Since | |
1377 | * alloc_buddy_huge_page() is checking the global counter, | |
1378 | * though, we'll note that we're not allowed to exceed surplus | |
1379 | * and won't grow the pool anywhere else. Not until one of the | |
1380 | * sysctls are changed, or the surplus pages go out of use. | |
7893d1d5 | 1381 | */ |
a5516438 | 1382 | min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; |
6b0c880d | 1383 | min_count = max(count, min_count); |
6ae11b27 | 1384 | try_to_free_low(h, min_count, nodes_allowed); |
a5516438 | 1385 | while (min_count < persistent_huge_pages(h)) { |
6ae11b27 | 1386 | if (!free_pool_huge_page(h, nodes_allowed, 0)) |
1da177e4 | 1387 | break; |
1da177e4 | 1388 | } |
a5516438 | 1389 | while (count < persistent_huge_pages(h)) { |
6ae11b27 | 1390 | if (!adjust_pool_surplus(h, nodes_allowed, 1)) |
7893d1d5 AL |
1391 | break; |
1392 | } | |
1393 | out: | |
a5516438 | 1394 | ret = persistent_huge_pages(h); |
1da177e4 | 1395 | spin_unlock(&hugetlb_lock); |
7893d1d5 | 1396 | return ret; |
1da177e4 LT |
1397 | } |
1398 | ||
a3437870 NA |
1399 | #define HSTATE_ATTR_RO(_name) \ |
1400 | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | |
1401 | ||
1402 | #define HSTATE_ATTR(_name) \ | |
1403 | static struct kobj_attribute _name##_attr = \ | |
1404 | __ATTR(_name, 0644, _name##_show, _name##_store) | |
1405 | ||
1406 | static struct kobject *hugepages_kobj; | |
1407 | static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | |
1408 | ||
9a305230 LS |
1409 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); |
1410 | ||
1411 | static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) | |
a3437870 NA |
1412 | { |
1413 | int i; | |
9a305230 | 1414 | |
a3437870 | 1415 | for (i = 0; i < HUGE_MAX_HSTATE; i++) |
9a305230 LS |
1416 | if (hstate_kobjs[i] == kobj) { |
1417 | if (nidp) | |
1418 | *nidp = NUMA_NO_NODE; | |
a3437870 | 1419 | return &hstates[i]; |
9a305230 LS |
1420 | } |
1421 | ||
1422 | return kobj_to_node_hstate(kobj, nidp); | |
a3437870 NA |
1423 | } |
1424 | ||
06808b08 | 1425 | static ssize_t nr_hugepages_show_common(struct kobject *kobj, |
a3437870 NA |
1426 | struct kobj_attribute *attr, char *buf) |
1427 | { | |
9a305230 LS |
1428 | struct hstate *h; |
1429 | unsigned long nr_huge_pages; | |
1430 | int nid; | |
1431 | ||
1432 | h = kobj_to_hstate(kobj, &nid); | |
1433 | if (nid == NUMA_NO_NODE) | |
1434 | nr_huge_pages = h->nr_huge_pages; | |
1435 | else | |
1436 | nr_huge_pages = h->nr_huge_pages_node[nid]; | |
1437 | ||
1438 | return sprintf(buf, "%lu\n", nr_huge_pages); | |
a3437870 | 1439 | } |
06808b08 LS |
1440 | static ssize_t nr_hugepages_store_common(bool obey_mempolicy, |
1441 | struct kobject *kobj, struct kobj_attribute *attr, | |
1442 | const char *buf, size_t len) | |
a3437870 NA |
1443 | { |
1444 | int err; | |
9a305230 | 1445 | int nid; |
06808b08 | 1446 | unsigned long count; |
9a305230 | 1447 | struct hstate *h; |
bad44b5b | 1448 | NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); |
a3437870 | 1449 | |
06808b08 | 1450 | err = strict_strtoul(buf, 10, &count); |
a3437870 NA |
1451 | if (err) |
1452 | return 0; | |
1453 | ||
9a305230 LS |
1454 | h = kobj_to_hstate(kobj, &nid); |
1455 | if (nid == NUMA_NO_NODE) { | |
1456 | /* | |
1457 | * global hstate attribute | |
1458 | */ | |
1459 | if (!(obey_mempolicy && | |
1460 | init_nodemask_of_mempolicy(nodes_allowed))) { | |
1461 | NODEMASK_FREE(nodes_allowed); | |
1462 | nodes_allowed = &node_states[N_HIGH_MEMORY]; | |
1463 | } | |
1464 | } else if (nodes_allowed) { | |
1465 | /* | |
1466 | * per node hstate attribute: adjust count to global, | |
1467 | * but restrict alloc/free to the specified node. | |
1468 | */ | |
1469 | count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; | |
1470 | init_nodemask_of_node(nodes_allowed, nid); | |
1471 | } else | |
1472 | nodes_allowed = &node_states[N_HIGH_MEMORY]; | |
1473 | ||
06808b08 | 1474 | h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); |
a3437870 | 1475 | |
9b5e5d0f | 1476 | if (nodes_allowed != &node_states[N_HIGH_MEMORY]) |
06808b08 LS |
1477 | NODEMASK_FREE(nodes_allowed); |
1478 | ||
1479 | return len; | |
1480 | } | |
1481 | ||
1482 | static ssize_t nr_hugepages_show(struct kobject *kobj, | |
1483 | struct kobj_attribute *attr, char *buf) | |
1484 | { | |
1485 | return nr_hugepages_show_common(kobj, attr, buf); | |
1486 | } | |
1487 | ||
1488 | static ssize_t nr_hugepages_store(struct kobject *kobj, | |
1489 | struct kobj_attribute *attr, const char *buf, size_t len) | |
1490 | { | |
1491 | return nr_hugepages_store_common(false, kobj, attr, buf, len); | |
a3437870 NA |
1492 | } |
1493 | HSTATE_ATTR(nr_hugepages); | |
1494 | ||
06808b08 LS |
1495 | #ifdef CONFIG_NUMA |
1496 | ||
1497 | /* | |
1498 | * hstate attribute for optionally mempolicy-based constraint on persistent | |
1499 | * huge page alloc/free. | |
1500 | */ | |
1501 | static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, | |
1502 | struct kobj_attribute *attr, char *buf) | |
1503 | { | |
1504 | return nr_hugepages_show_common(kobj, attr, buf); | |
1505 | } | |
1506 | ||
1507 | static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, | |
1508 | struct kobj_attribute *attr, const char *buf, size_t len) | |
1509 | { | |
1510 | return nr_hugepages_store_common(true, kobj, attr, buf, len); | |
1511 | } | |
1512 | HSTATE_ATTR(nr_hugepages_mempolicy); | |
1513 | #endif | |
1514 | ||
1515 | ||
a3437870 NA |
1516 | static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, |
1517 | struct kobj_attribute *attr, char *buf) | |
1518 | { | |
9a305230 | 1519 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
a3437870 NA |
1520 | return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); |
1521 | } | |
1522 | static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, | |
1523 | struct kobj_attribute *attr, const char *buf, size_t count) | |
1524 | { | |
1525 | int err; | |
1526 | unsigned long input; | |
9a305230 | 1527 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
a3437870 NA |
1528 | |
1529 | err = strict_strtoul(buf, 10, &input); | |
1530 | if (err) | |
1531 | return 0; | |
1532 | ||
1533 | spin_lock(&hugetlb_lock); | |
1534 | h->nr_overcommit_huge_pages = input; | |
1535 | spin_unlock(&hugetlb_lock); | |
1536 | ||
1537 | return count; | |
1538 | } | |
1539 | HSTATE_ATTR(nr_overcommit_hugepages); | |
1540 | ||
1541 | static ssize_t free_hugepages_show(struct kobject *kobj, | |
1542 | struct kobj_attribute *attr, char *buf) | |
1543 | { | |
9a305230 LS |
1544 | struct hstate *h; |
1545 | unsigned long free_huge_pages; | |
1546 | int nid; | |
1547 | ||
1548 | h = kobj_to_hstate(kobj, &nid); | |
1549 | if (nid == NUMA_NO_NODE) | |
1550 | free_huge_pages = h->free_huge_pages; | |
1551 | else | |
1552 | free_huge_pages = h->free_huge_pages_node[nid]; | |
1553 | ||
1554 | return sprintf(buf, "%lu\n", free_huge_pages); | |
a3437870 NA |
1555 | } |
1556 | HSTATE_ATTR_RO(free_hugepages); | |
1557 | ||
1558 | static ssize_t resv_hugepages_show(struct kobject *kobj, | |
1559 | struct kobj_attribute *attr, char *buf) | |
1560 | { | |
9a305230 | 1561 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
a3437870 NA |
1562 | return sprintf(buf, "%lu\n", h->resv_huge_pages); |
1563 | } | |
1564 | HSTATE_ATTR_RO(resv_hugepages); | |
1565 | ||
1566 | static ssize_t surplus_hugepages_show(struct kobject *kobj, | |
1567 | struct kobj_attribute *attr, char *buf) | |
1568 | { | |
9a305230 LS |
1569 | struct hstate *h; |
1570 | unsigned long surplus_huge_pages; | |
1571 | int nid; | |
1572 | ||
1573 | h = kobj_to_hstate(kobj, &nid); | |
1574 | if (nid == NUMA_NO_NODE) | |
1575 | surplus_huge_pages = h->surplus_huge_pages; | |
1576 | else | |
1577 | surplus_huge_pages = h->surplus_huge_pages_node[nid]; | |
1578 | ||
1579 | return sprintf(buf, "%lu\n", surplus_huge_pages); | |
a3437870 NA |
1580 | } |
1581 | HSTATE_ATTR_RO(surplus_hugepages); | |
1582 | ||
1583 | static struct attribute *hstate_attrs[] = { | |
1584 | &nr_hugepages_attr.attr, | |
1585 | &nr_overcommit_hugepages_attr.attr, | |
1586 | &free_hugepages_attr.attr, | |
1587 | &resv_hugepages_attr.attr, | |
1588 | &surplus_hugepages_attr.attr, | |
06808b08 LS |
1589 | #ifdef CONFIG_NUMA |
1590 | &nr_hugepages_mempolicy_attr.attr, | |
1591 | #endif | |
a3437870 NA |
1592 | NULL, |
1593 | }; | |
1594 | ||
1595 | static struct attribute_group hstate_attr_group = { | |
1596 | .attrs = hstate_attrs, | |
1597 | }; | |
1598 | ||
094e9539 JM |
1599 | static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, |
1600 | struct kobject **hstate_kobjs, | |
1601 | struct attribute_group *hstate_attr_group) | |
a3437870 NA |
1602 | { |
1603 | int retval; | |
9a305230 | 1604 | int hi = h - hstates; |
a3437870 | 1605 | |
9a305230 LS |
1606 | hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); |
1607 | if (!hstate_kobjs[hi]) | |
a3437870 NA |
1608 | return -ENOMEM; |
1609 | ||
9a305230 | 1610 | retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); |
a3437870 | 1611 | if (retval) |
9a305230 | 1612 | kobject_put(hstate_kobjs[hi]); |
a3437870 NA |
1613 | |
1614 | return retval; | |
1615 | } | |
1616 | ||
1617 | static void __init hugetlb_sysfs_init(void) | |
1618 | { | |
1619 | struct hstate *h; | |
1620 | int err; | |
1621 | ||
1622 | hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); | |
1623 | if (!hugepages_kobj) | |
1624 | return; | |
1625 | ||
1626 | for_each_hstate(h) { | |
9a305230 LS |
1627 | err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, |
1628 | hstate_kobjs, &hstate_attr_group); | |
a3437870 NA |
1629 | if (err) |
1630 | printk(KERN_ERR "Hugetlb: Unable to add hstate %s", | |
1631 | h->name); | |
1632 | } | |
1633 | } | |
1634 | ||
9a305230 LS |
1635 | #ifdef CONFIG_NUMA |
1636 | ||
1637 | /* | |
1638 | * node_hstate/s - associate per node hstate attributes, via their kobjects, | |
1639 | * with node sysdevs in node_devices[] using a parallel array. The array | |
1640 | * index of a node sysdev or _hstate == node id. | |
1641 | * This is here to avoid any static dependency of the node sysdev driver, in | |
1642 | * the base kernel, on the hugetlb module. | |
1643 | */ | |
1644 | struct node_hstate { | |
1645 | struct kobject *hugepages_kobj; | |
1646 | struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | |
1647 | }; | |
1648 | struct node_hstate node_hstates[MAX_NUMNODES]; | |
1649 | ||
1650 | /* | |
1651 | * A subset of global hstate attributes for node sysdevs | |
1652 | */ | |
1653 | static struct attribute *per_node_hstate_attrs[] = { | |
1654 | &nr_hugepages_attr.attr, | |
1655 | &free_hugepages_attr.attr, | |
1656 | &surplus_hugepages_attr.attr, | |
1657 | NULL, | |
1658 | }; | |
1659 | ||
1660 | static struct attribute_group per_node_hstate_attr_group = { | |
1661 | .attrs = per_node_hstate_attrs, | |
1662 | }; | |
1663 | ||
1664 | /* | |
1665 | * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj. | |
1666 | * Returns node id via non-NULL nidp. | |
1667 | */ | |
1668 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | |
1669 | { | |
1670 | int nid; | |
1671 | ||
1672 | for (nid = 0; nid < nr_node_ids; nid++) { | |
1673 | struct node_hstate *nhs = &node_hstates[nid]; | |
1674 | int i; | |
1675 | for (i = 0; i < HUGE_MAX_HSTATE; i++) | |
1676 | if (nhs->hstate_kobjs[i] == kobj) { | |
1677 | if (nidp) | |
1678 | *nidp = nid; | |
1679 | return &hstates[i]; | |
1680 | } | |
1681 | } | |
1682 | ||
1683 | BUG(); | |
1684 | return NULL; | |
1685 | } | |
1686 | ||
1687 | /* | |
1688 | * Unregister hstate attributes from a single node sysdev. | |
1689 | * No-op if no hstate attributes attached. | |
1690 | */ | |
1691 | void hugetlb_unregister_node(struct node *node) | |
1692 | { | |
1693 | struct hstate *h; | |
1694 | struct node_hstate *nhs = &node_hstates[node->sysdev.id]; | |
1695 | ||
1696 | if (!nhs->hugepages_kobj) | |
9b5e5d0f | 1697 | return; /* no hstate attributes */ |
9a305230 LS |
1698 | |
1699 | for_each_hstate(h) | |
1700 | if (nhs->hstate_kobjs[h - hstates]) { | |
1701 | kobject_put(nhs->hstate_kobjs[h - hstates]); | |
1702 | nhs->hstate_kobjs[h - hstates] = NULL; | |
1703 | } | |
1704 | ||
1705 | kobject_put(nhs->hugepages_kobj); | |
1706 | nhs->hugepages_kobj = NULL; | |
1707 | } | |
1708 | ||
1709 | /* | |
1710 | * hugetlb module exit: unregister hstate attributes from node sysdevs | |
1711 | * that have them. | |
1712 | */ | |
1713 | static void hugetlb_unregister_all_nodes(void) | |
1714 | { | |
1715 | int nid; | |
1716 | ||
1717 | /* | |
1718 | * disable node sysdev registrations. | |
1719 | */ | |
1720 | register_hugetlbfs_with_node(NULL, NULL); | |
1721 | ||
1722 | /* | |
1723 | * remove hstate attributes from any nodes that have them. | |
1724 | */ | |
1725 | for (nid = 0; nid < nr_node_ids; nid++) | |
1726 | hugetlb_unregister_node(&node_devices[nid]); | |
1727 | } | |
1728 | ||
1729 | /* | |
1730 | * Register hstate attributes for a single node sysdev. | |
1731 | * No-op if attributes already registered. | |
1732 | */ | |
1733 | void hugetlb_register_node(struct node *node) | |
1734 | { | |
1735 | struct hstate *h; | |
1736 | struct node_hstate *nhs = &node_hstates[node->sysdev.id]; | |
1737 | int err; | |
1738 | ||
1739 | if (nhs->hugepages_kobj) | |
1740 | return; /* already allocated */ | |
1741 | ||
1742 | nhs->hugepages_kobj = kobject_create_and_add("hugepages", | |
1743 | &node->sysdev.kobj); | |
1744 | if (!nhs->hugepages_kobj) | |
1745 | return; | |
1746 | ||
1747 | for_each_hstate(h) { | |
1748 | err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, | |
1749 | nhs->hstate_kobjs, | |
1750 | &per_node_hstate_attr_group); | |
1751 | if (err) { | |
1752 | printk(KERN_ERR "Hugetlb: Unable to add hstate %s" | |
1753 | " for node %d\n", | |
1754 | h->name, node->sysdev.id); | |
1755 | hugetlb_unregister_node(node); | |
1756 | break; | |
1757 | } | |
1758 | } | |
1759 | } | |
1760 | ||
1761 | /* | |
9b5e5d0f LS |
1762 | * hugetlb init time: register hstate attributes for all registered node |
1763 | * sysdevs of nodes that have memory. All on-line nodes should have | |
1764 | * registered their associated sysdev by this time. | |
9a305230 LS |
1765 | */ |
1766 | static void hugetlb_register_all_nodes(void) | |
1767 | { | |
1768 | int nid; | |
1769 | ||
9b5e5d0f | 1770 | for_each_node_state(nid, N_HIGH_MEMORY) { |
9a305230 LS |
1771 | struct node *node = &node_devices[nid]; |
1772 | if (node->sysdev.id == nid) | |
1773 | hugetlb_register_node(node); | |
1774 | } | |
1775 | ||
1776 | /* | |
1777 | * Let the node sysdev driver know we're here so it can | |
1778 | * [un]register hstate attributes on node hotplug. | |
1779 | */ | |
1780 | register_hugetlbfs_with_node(hugetlb_register_node, | |
1781 | hugetlb_unregister_node); | |
1782 | } | |
1783 | #else /* !CONFIG_NUMA */ | |
1784 | ||
1785 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | |
1786 | { | |
1787 | BUG(); | |
1788 | if (nidp) | |
1789 | *nidp = -1; | |
1790 | return NULL; | |
1791 | } | |
1792 | ||
1793 | static void hugetlb_unregister_all_nodes(void) { } | |
1794 | ||
1795 | static void hugetlb_register_all_nodes(void) { } | |
1796 | ||
1797 | #endif | |
1798 | ||
a3437870 NA |
1799 | static void __exit hugetlb_exit(void) |
1800 | { | |
1801 | struct hstate *h; | |
1802 | ||
9a305230 LS |
1803 | hugetlb_unregister_all_nodes(); |
1804 | ||
a3437870 NA |
1805 | for_each_hstate(h) { |
1806 | kobject_put(hstate_kobjs[h - hstates]); | |
1807 | } | |
1808 | ||
1809 | kobject_put(hugepages_kobj); | |
1810 | } | |
1811 | module_exit(hugetlb_exit); | |
1812 | ||
1813 | static int __init hugetlb_init(void) | |
1814 | { | |
0ef89d25 BH |
1815 | /* Some platform decide whether they support huge pages at boot |
1816 | * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when | |
1817 | * there is no such support | |
1818 | */ | |
1819 | if (HPAGE_SHIFT == 0) | |
1820 | return 0; | |
a3437870 | 1821 | |
e11bfbfc NP |
1822 | if (!size_to_hstate(default_hstate_size)) { |
1823 | default_hstate_size = HPAGE_SIZE; | |
1824 | if (!size_to_hstate(default_hstate_size)) | |
1825 | hugetlb_add_hstate(HUGETLB_PAGE_ORDER); | |
a3437870 | 1826 | } |
e11bfbfc NP |
1827 | default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; |
1828 | if (default_hstate_max_huge_pages) | |
1829 | default_hstate.max_huge_pages = default_hstate_max_huge_pages; | |
a3437870 NA |
1830 | |
1831 | hugetlb_init_hstates(); | |
1832 | ||
aa888a74 AK |
1833 | gather_bootmem_prealloc(); |
1834 | ||
a3437870 NA |
1835 | report_hugepages(); |
1836 | ||
1837 | hugetlb_sysfs_init(); | |
1838 | ||
9a305230 LS |
1839 | hugetlb_register_all_nodes(); |
1840 | ||
a3437870 NA |
1841 | return 0; |
1842 | } | |
1843 | module_init(hugetlb_init); | |
1844 | ||
1845 | /* Should be called on processing a hugepagesz=... option */ | |
1846 | void __init hugetlb_add_hstate(unsigned order) | |
1847 | { | |
1848 | struct hstate *h; | |
8faa8b07 AK |
1849 | unsigned long i; |
1850 | ||
a3437870 NA |
1851 | if (size_to_hstate(PAGE_SIZE << order)) { |
1852 | printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); | |
1853 | return; | |
1854 | } | |
1855 | BUG_ON(max_hstate >= HUGE_MAX_HSTATE); | |
1856 | BUG_ON(order == 0); | |
1857 | h = &hstates[max_hstate++]; | |
1858 | h->order = order; | |
1859 | h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); | |
8faa8b07 AK |
1860 | h->nr_huge_pages = 0; |
1861 | h->free_huge_pages = 0; | |
1862 | for (i = 0; i < MAX_NUMNODES; ++i) | |
1863 | INIT_LIST_HEAD(&h->hugepage_freelists[i]); | |
9b5e5d0f LS |
1864 | h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]); |
1865 | h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]); | |
a3437870 NA |
1866 | snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", |
1867 | huge_page_size(h)/1024); | |
8faa8b07 | 1868 | |
a3437870 NA |
1869 | parsed_hstate = h; |
1870 | } | |
1871 | ||
e11bfbfc | 1872 | static int __init hugetlb_nrpages_setup(char *s) |
a3437870 NA |
1873 | { |
1874 | unsigned long *mhp; | |
8faa8b07 | 1875 | static unsigned long *last_mhp; |
a3437870 NA |
1876 | |
1877 | /* | |
1878 | * !max_hstate means we haven't parsed a hugepagesz= parameter yet, | |
1879 | * so this hugepages= parameter goes to the "default hstate". | |
1880 | */ | |
1881 | if (!max_hstate) | |
1882 | mhp = &default_hstate_max_huge_pages; | |
1883 | else | |
1884 | mhp = &parsed_hstate->max_huge_pages; | |
1885 | ||
8faa8b07 AK |
1886 | if (mhp == last_mhp) { |
1887 | printk(KERN_WARNING "hugepages= specified twice without " | |
1888 | "interleaving hugepagesz=, ignoring\n"); | |
1889 | return 1; | |
1890 | } | |
1891 | ||
a3437870 NA |
1892 | if (sscanf(s, "%lu", mhp) <= 0) |
1893 | *mhp = 0; | |
1894 | ||
8faa8b07 AK |
1895 | /* |
1896 | * Global state is always initialized later in hugetlb_init. | |
1897 | * But we need to allocate >= MAX_ORDER hstates here early to still | |
1898 | * use the bootmem allocator. | |
1899 | */ | |
1900 | if (max_hstate && parsed_hstate->order >= MAX_ORDER) | |
1901 | hugetlb_hstate_alloc_pages(parsed_hstate); | |
1902 | ||
1903 | last_mhp = mhp; | |
1904 | ||
a3437870 NA |
1905 | return 1; |
1906 | } | |
e11bfbfc NP |
1907 | __setup("hugepages=", hugetlb_nrpages_setup); |
1908 | ||
1909 | static int __init hugetlb_default_setup(char *s) | |
1910 | { | |
1911 | default_hstate_size = memparse(s, &s); | |
1912 | return 1; | |
1913 | } | |
1914 | __setup("default_hugepagesz=", hugetlb_default_setup); | |
a3437870 | 1915 | |
8a213460 NA |
1916 | static unsigned int cpuset_mems_nr(unsigned int *array) |
1917 | { | |
1918 | int node; | |
1919 | unsigned int nr = 0; | |
1920 | ||
1921 | for_each_node_mask(node, cpuset_current_mems_allowed) | |
1922 | nr += array[node]; | |
1923 | ||
1924 | return nr; | |
1925 | } | |
1926 | ||
1927 | #ifdef CONFIG_SYSCTL | |
06808b08 LS |
1928 | static int hugetlb_sysctl_handler_common(bool obey_mempolicy, |
1929 | struct ctl_table *table, int write, | |
1930 | void __user *buffer, size_t *length, loff_t *ppos) | |
1da177e4 | 1931 | { |
e5ff2159 AK |
1932 | struct hstate *h = &default_hstate; |
1933 | unsigned long tmp; | |
1934 | ||
1935 | if (!write) | |
1936 | tmp = h->max_huge_pages; | |
1937 | ||
1938 | table->data = &tmp; | |
1939 | table->maxlen = sizeof(unsigned long); | |
8d65af78 | 1940 | proc_doulongvec_minmax(table, write, buffer, length, ppos); |
e5ff2159 | 1941 | |
06808b08 | 1942 | if (write) { |
bad44b5b DR |
1943 | NODEMASK_ALLOC(nodemask_t, nodes_allowed, |
1944 | GFP_KERNEL | __GFP_NORETRY); | |
06808b08 LS |
1945 | if (!(obey_mempolicy && |
1946 | init_nodemask_of_mempolicy(nodes_allowed))) { | |
1947 | NODEMASK_FREE(nodes_allowed); | |
1948 | nodes_allowed = &node_states[N_HIGH_MEMORY]; | |
1949 | } | |
1950 | h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed); | |
1951 | ||
1952 | if (nodes_allowed != &node_states[N_HIGH_MEMORY]) | |
1953 | NODEMASK_FREE(nodes_allowed); | |
1954 | } | |
e5ff2159 | 1955 | |
1da177e4 LT |
1956 | return 0; |
1957 | } | |
396faf03 | 1958 | |
06808b08 LS |
1959 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, |
1960 | void __user *buffer, size_t *length, loff_t *ppos) | |
1961 | { | |
1962 | ||
1963 | return hugetlb_sysctl_handler_common(false, table, write, | |
1964 | buffer, length, ppos); | |
1965 | } | |
1966 | ||
1967 | #ifdef CONFIG_NUMA | |
1968 | int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, | |
1969 | void __user *buffer, size_t *length, loff_t *ppos) | |
1970 | { | |
1971 | return hugetlb_sysctl_handler_common(true, table, write, | |
1972 | buffer, length, ppos); | |
1973 | } | |
1974 | #endif /* CONFIG_NUMA */ | |
1975 | ||
396faf03 | 1976 | int hugetlb_treat_movable_handler(struct ctl_table *table, int write, |
8d65af78 | 1977 | void __user *buffer, |
396faf03 MG |
1978 | size_t *length, loff_t *ppos) |
1979 | { | |
8d65af78 | 1980 | proc_dointvec(table, write, buffer, length, ppos); |
396faf03 MG |
1981 | if (hugepages_treat_as_movable) |
1982 | htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; | |
1983 | else | |
1984 | htlb_alloc_mask = GFP_HIGHUSER; | |
1985 | return 0; | |
1986 | } | |
1987 | ||
a3d0c6aa | 1988 | int hugetlb_overcommit_handler(struct ctl_table *table, int write, |
8d65af78 | 1989 | void __user *buffer, |
a3d0c6aa NA |
1990 | size_t *length, loff_t *ppos) |
1991 | { | |
a5516438 | 1992 | struct hstate *h = &default_hstate; |
e5ff2159 AK |
1993 | unsigned long tmp; |
1994 | ||
1995 | if (!write) | |
1996 | tmp = h->nr_overcommit_huge_pages; | |
1997 | ||
1998 | table->data = &tmp; | |
1999 | table->maxlen = sizeof(unsigned long); | |
8d65af78 | 2000 | proc_doulongvec_minmax(table, write, buffer, length, ppos); |
e5ff2159 AK |
2001 | |
2002 | if (write) { | |
2003 | spin_lock(&hugetlb_lock); | |
2004 | h->nr_overcommit_huge_pages = tmp; | |
2005 | spin_unlock(&hugetlb_lock); | |
2006 | } | |
2007 | ||
a3d0c6aa NA |
2008 | return 0; |
2009 | } | |
2010 | ||
1da177e4 LT |
2011 | #endif /* CONFIG_SYSCTL */ |
2012 | ||
e1759c21 | 2013 | void hugetlb_report_meminfo(struct seq_file *m) |
1da177e4 | 2014 | { |
a5516438 | 2015 | struct hstate *h = &default_hstate; |
e1759c21 | 2016 | seq_printf(m, |
4f98a2fe RR |
2017 | "HugePages_Total: %5lu\n" |
2018 | "HugePages_Free: %5lu\n" | |
2019 | "HugePages_Rsvd: %5lu\n" | |
2020 | "HugePages_Surp: %5lu\n" | |
2021 | "Hugepagesize: %8lu kB\n", | |
a5516438 AK |
2022 | h->nr_huge_pages, |
2023 | h->free_huge_pages, | |
2024 | h->resv_huge_pages, | |
2025 | h->surplus_huge_pages, | |
2026 | 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); | |
1da177e4 LT |
2027 | } |
2028 | ||
2029 | int hugetlb_report_node_meminfo(int nid, char *buf) | |
2030 | { | |
a5516438 | 2031 | struct hstate *h = &default_hstate; |
1da177e4 LT |
2032 | return sprintf(buf, |
2033 | "Node %d HugePages_Total: %5u\n" | |
a1de0919 NA |
2034 | "Node %d HugePages_Free: %5u\n" |
2035 | "Node %d HugePages_Surp: %5u\n", | |
a5516438 AK |
2036 | nid, h->nr_huge_pages_node[nid], |
2037 | nid, h->free_huge_pages_node[nid], | |
2038 | nid, h->surplus_huge_pages_node[nid]); | |
1da177e4 LT |
2039 | } |
2040 | ||
1da177e4 LT |
2041 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ |
2042 | unsigned long hugetlb_total_pages(void) | |
2043 | { | |
a5516438 AK |
2044 | struct hstate *h = &default_hstate; |
2045 | return h->nr_huge_pages * pages_per_huge_page(h); | |
1da177e4 | 2046 | } |
1da177e4 | 2047 | |
a5516438 | 2048 | static int hugetlb_acct_memory(struct hstate *h, long delta) |
fc1b8a73 MG |
2049 | { |
2050 | int ret = -ENOMEM; | |
2051 | ||
2052 | spin_lock(&hugetlb_lock); | |
2053 | /* | |
2054 | * When cpuset is configured, it breaks the strict hugetlb page | |
2055 | * reservation as the accounting is done on a global variable. Such | |
2056 | * reservation is completely rubbish in the presence of cpuset because | |
2057 | * the reservation is not checked against page availability for the | |
2058 | * current cpuset. Application can still potentially OOM'ed by kernel | |
2059 | * with lack of free htlb page in cpuset that the task is in. | |
2060 | * Attempt to enforce strict accounting with cpuset is almost | |
2061 | * impossible (or too ugly) because cpuset is too fluid that | |
2062 | * task or memory node can be dynamically moved between cpusets. | |
2063 | * | |
2064 | * The change of semantics for shared hugetlb mapping with cpuset is | |
2065 | * undesirable. However, in order to preserve some of the semantics, | |
2066 | * we fall back to check against current free page availability as | |
2067 | * a best attempt and hopefully to minimize the impact of changing | |
2068 | * semantics that cpuset has. | |
2069 | */ | |
2070 | if (delta > 0) { | |
a5516438 | 2071 | if (gather_surplus_pages(h, delta) < 0) |
fc1b8a73 MG |
2072 | goto out; |
2073 | ||
a5516438 AK |
2074 | if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { |
2075 | return_unused_surplus_pages(h, delta); | |
fc1b8a73 MG |
2076 | goto out; |
2077 | } | |
2078 | } | |
2079 | ||
2080 | ret = 0; | |
2081 | if (delta < 0) | |
a5516438 | 2082 | return_unused_surplus_pages(h, (unsigned long) -delta); |
fc1b8a73 MG |
2083 | |
2084 | out: | |
2085 | spin_unlock(&hugetlb_lock); | |
2086 | return ret; | |
2087 | } | |
2088 | ||
84afd99b AW |
2089 | static void hugetlb_vm_op_open(struct vm_area_struct *vma) |
2090 | { | |
2091 | struct resv_map *reservations = vma_resv_map(vma); | |
2092 | ||
2093 | /* | |
2094 | * This new VMA should share its siblings reservation map if present. | |
2095 | * The VMA will only ever have a valid reservation map pointer where | |
2096 | * it is being copied for another still existing VMA. As that VMA | |
2097 | * has a reference to the reservation map it cannot dissappear until | |
2098 | * after this open call completes. It is therefore safe to take a | |
2099 | * new reference here without additional locking. | |
2100 | */ | |
2101 | if (reservations) | |
2102 | kref_get(&reservations->refs); | |
2103 | } | |
2104 | ||
a1e78772 MG |
2105 | static void hugetlb_vm_op_close(struct vm_area_struct *vma) |
2106 | { | |
a5516438 | 2107 | struct hstate *h = hstate_vma(vma); |
84afd99b AW |
2108 | struct resv_map *reservations = vma_resv_map(vma); |
2109 | unsigned long reserve; | |
2110 | unsigned long start; | |
2111 | unsigned long end; | |
2112 | ||
2113 | if (reservations) { | |
a5516438 AK |
2114 | start = vma_hugecache_offset(h, vma, vma->vm_start); |
2115 | end = vma_hugecache_offset(h, vma, vma->vm_end); | |
84afd99b AW |
2116 | |
2117 | reserve = (end - start) - | |
2118 | region_count(&reservations->regions, start, end); | |
2119 | ||
2120 | kref_put(&reservations->refs, resv_map_release); | |
2121 | ||
7251ff78 | 2122 | if (reserve) { |
a5516438 | 2123 | hugetlb_acct_memory(h, -reserve); |
7251ff78 AL |
2124 | hugetlb_put_quota(vma->vm_file->f_mapping, reserve); |
2125 | } | |
84afd99b | 2126 | } |
a1e78772 MG |
2127 | } |
2128 | ||
1da177e4 LT |
2129 | /* |
2130 | * We cannot handle pagefaults against hugetlb pages at all. They cause | |
2131 | * handle_mm_fault() to try to instantiate regular-sized pages in the | |
2132 | * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get | |
2133 | * this far. | |
2134 | */ | |
d0217ac0 | 2135 | static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
1da177e4 LT |
2136 | { |
2137 | BUG(); | |
d0217ac0 | 2138 | return 0; |
1da177e4 LT |
2139 | } |
2140 | ||
f0f37e2f | 2141 | const struct vm_operations_struct hugetlb_vm_ops = { |
d0217ac0 | 2142 | .fault = hugetlb_vm_op_fault, |
84afd99b | 2143 | .open = hugetlb_vm_op_open, |
a1e78772 | 2144 | .close = hugetlb_vm_op_close, |
1da177e4 LT |
2145 | }; |
2146 | ||
1e8f889b DG |
2147 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, |
2148 | int writable) | |
63551ae0 DG |
2149 | { |
2150 | pte_t entry; | |
2151 | ||
1e8f889b | 2152 | if (writable) { |
63551ae0 DG |
2153 | entry = |
2154 | pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); | |
2155 | } else { | |
7f2e9525 | 2156 | entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot)); |
63551ae0 DG |
2157 | } |
2158 | entry = pte_mkyoung(entry); | |
2159 | entry = pte_mkhuge(entry); | |
2160 | ||
2161 | return entry; | |
2162 | } | |
2163 | ||
1e8f889b DG |
2164 | static void set_huge_ptep_writable(struct vm_area_struct *vma, |
2165 | unsigned long address, pte_t *ptep) | |
2166 | { | |
2167 | pte_t entry; | |
2168 | ||
7f2e9525 GS |
2169 | entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep))); |
2170 | if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) { | |
4b3073e1 | 2171 | update_mmu_cache(vma, address, ptep); |
8dab5241 | 2172 | } |
1e8f889b DG |
2173 | } |
2174 | ||
2175 | ||
63551ae0 DG |
2176 | int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, |
2177 | struct vm_area_struct *vma) | |
2178 | { | |
2179 | pte_t *src_pte, *dst_pte, entry; | |
2180 | struct page *ptepage; | |
1c59827d | 2181 | unsigned long addr; |
1e8f889b | 2182 | int cow; |
a5516438 AK |
2183 | struct hstate *h = hstate_vma(vma); |
2184 | unsigned long sz = huge_page_size(h); | |
1e8f889b DG |
2185 | |
2186 | cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | |
63551ae0 | 2187 | |
a5516438 | 2188 | for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { |
c74df32c HD |
2189 | src_pte = huge_pte_offset(src, addr); |
2190 | if (!src_pte) | |
2191 | continue; | |
a5516438 | 2192 | dst_pte = huge_pte_alloc(dst, addr, sz); |
63551ae0 DG |
2193 | if (!dst_pte) |
2194 | goto nomem; | |
c5c99429 LW |
2195 | |
2196 | /* If the pagetables are shared don't copy or take references */ | |
2197 | if (dst_pte == src_pte) | |
2198 | continue; | |
2199 | ||
c74df32c | 2200 | spin_lock(&dst->page_table_lock); |
46478758 | 2201 | spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); |
7f2e9525 | 2202 | if (!huge_pte_none(huge_ptep_get(src_pte))) { |
1e8f889b | 2203 | if (cow) |
7f2e9525 GS |
2204 | huge_ptep_set_wrprotect(src, addr, src_pte); |
2205 | entry = huge_ptep_get(src_pte); | |
1c59827d HD |
2206 | ptepage = pte_page(entry); |
2207 | get_page(ptepage); | |
0fe6e20b | 2208 | page_dup_rmap(ptepage); |
1c59827d HD |
2209 | set_huge_pte_at(dst, addr, dst_pte, entry); |
2210 | } | |
2211 | spin_unlock(&src->page_table_lock); | |
c74df32c | 2212 | spin_unlock(&dst->page_table_lock); |
63551ae0 DG |
2213 | } |
2214 | return 0; | |
2215 | ||
2216 | nomem: | |
2217 | return -ENOMEM; | |
2218 | } | |
2219 | ||
290408d4 NH |
2220 | static int is_hugetlb_entry_migration(pte_t pte) |
2221 | { | |
2222 | swp_entry_t swp; | |
2223 | ||
2224 | if (huge_pte_none(pte) || pte_present(pte)) | |
2225 | return 0; | |
2226 | swp = pte_to_swp_entry(pte); | |
2227 | if (non_swap_entry(swp) && is_migration_entry(swp)) { | |
2228 | return 1; | |
2229 | } else | |
2230 | return 0; | |
2231 | } | |
2232 | ||
fd6a03ed NH |
2233 | static int is_hugetlb_entry_hwpoisoned(pte_t pte) |
2234 | { | |
2235 | swp_entry_t swp; | |
2236 | ||
2237 | if (huge_pte_none(pte) || pte_present(pte)) | |
2238 | return 0; | |
2239 | swp = pte_to_swp_entry(pte); | |
2240 | if (non_swap_entry(swp) && is_hwpoison_entry(swp)) { | |
2241 | return 1; | |
2242 | } else | |
2243 | return 0; | |
2244 | } | |
2245 | ||
502717f4 | 2246 | void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
04f2cbe3 | 2247 | unsigned long end, struct page *ref_page) |
63551ae0 DG |
2248 | { |
2249 | struct mm_struct *mm = vma->vm_mm; | |
2250 | unsigned long address; | |
c7546f8f | 2251 | pte_t *ptep; |
63551ae0 DG |
2252 | pte_t pte; |
2253 | struct page *page; | |
fe1668ae | 2254 | struct page *tmp; |
a5516438 AK |
2255 | struct hstate *h = hstate_vma(vma); |
2256 | unsigned long sz = huge_page_size(h); | |
2257 | ||
c0a499c2 KC |
2258 | /* |
2259 | * A page gathering list, protected by per file i_mmap_lock. The | |
2260 | * lock is used to avoid list corruption from multiple unmapping | |
2261 | * of the same page since we are using page->lru. | |
2262 | */ | |
fe1668ae | 2263 | LIST_HEAD(page_list); |
63551ae0 DG |
2264 | |
2265 | WARN_ON(!is_vm_hugetlb_page(vma)); | |
a5516438 AK |
2266 | BUG_ON(start & ~huge_page_mask(h)); |
2267 | BUG_ON(end & ~huge_page_mask(h)); | |
63551ae0 | 2268 | |
cddb8a5c | 2269 | mmu_notifier_invalidate_range_start(mm, start, end); |
508034a3 | 2270 | spin_lock(&mm->page_table_lock); |
a5516438 | 2271 | for (address = start; address < end; address += sz) { |
c7546f8f | 2272 | ptep = huge_pte_offset(mm, address); |
4c887265 | 2273 | if (!ptep) |
c7546f8f DG |
2274 | continue; |
2275 | ||
39dde65c KC |
2276 | if (huge_pmd_unshare(mm, &address, ptep)) |
2277 | continue; | |
2278 | ||
04f2cbe3 MG |
2279 | /* |
2280 | * If a reference page is supplied, it is because a specific | |
2281 | * page is being unmapped, not a range. Ensure the page we | |
2282 | * are about to unmap is the actual page of interest. | |
2283 | */ | |
2284 | if (ref_page) { | |
2285 | pte = huge_ptep_get(ptep); | |
2286 | if (huge_pte_none(pte)) | |
2287 | continue; | |
2288 | page = pte_page(pte); | |
2289 | if (page != ref_page) | |
2290 | continue; | |
2291 | ||
2292 | /* | |
2293 | * Mark the VMA as having unmapped its page so that | |
2294 | * future faults in this VMA will fail rather than | |
2295 | * looking like data was lost | |
2296 | */ | |
2297 | set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); | |
2298 | } | |
2299 | ||
c7546f8f | 2300 | pte = huge_ptep_get_and_clear(mm, address, ptep); |
7f2e9525 | 2301 | if (huge_pte_none(pte)) |
63551ae0 | 2302 | continue; |
c7546f8f | 2303 | |
fd6a03ed NH |
2304 | /* |
2305 | * HWPoisoned hugepage is already unmapped and dropped reference | |
2306 | */ | |
2307 | if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) | |
2308 | continue; | |
2309 | ||
63551ae0 | 2310 | page = pte_page(pte); |
6649a386 KC |
2311 | if (pte_dirty(pte)) |
2312 | set_page_dirty(page); | |
fe1668ae | 2313 | list_add(&page->lru, &page_list); |
63551ae0 | 2314 | } |
1da177e4 | 2315 | spin_unlock(&mm->page_table_lock); |
508034a3 | 2316 | flush_tlb_range(vma, start, end); |
cddb8a5c | 2317 | mmu_notifier_invalidate_range_end(mm, start, end); |
fe1668ae | 2318 | list_for_each_entry_safe(page, tmp, &page_list, lru) { |
0fe6e20b | 2319 | page_remove_rmap(page); |
fe1668ae KC |
2320 | list_del(&page->lru); |
2321 | put_page(page); | |
2322 | } | |
1da177e4 | 2323 | } |
63551ae0 | 2324 | |
502717f4 | 2325 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
04f2cbe3 | 2326 | unsigned long end, struct page *ref_page) |
502717f4 | 2327 | { |
a137e1cc AK |
2328 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); |
2329 | __unmap_hugepage_range(vma, start, end, ref_page); | |
2330 | spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); | |
502717f4 KC |
2331 | } |
2332 | ||
04f2cbe3 MG |
2333 | /* |
2334 | * This is called when the original mapper is failing to COW a MAP_PRIVATE | |
2335 | * mappping it owns the reserve page for. The intention is to unmap the page | |
2336 | * from other VMAs and let the children be SIGKILLed if they are faulting the | |
2337 | * same region. | |
2338 | */ | |
2a4b3ded HH |
2339 | static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, |
2340 | struct page *page, unsigned long address) | |
04f2cbe3 | 2341 | { |
7526674d | 2342 | struct hstate *h = hstate_vma(vma); |
04f2cbe3 MG |
2343 | struct vm_area_struct *iter_vma; |
2344 | struct address_space *mapping; | |
2345 | struct prio_tree_iter iter; | |
2346 | pgoff_t pgoff; | |
2347 | ||
2348 | /* | |
2349 | * vm_pgoff is in PAGE_SIZE units, hence the different calculation | |
2350 | * from page cache lookup which is in HPAGE_SIZE units. | |
2351 | */ | |
7526674d | 2352 | address = address & huge_page_mask(h); |
04f2cbe3 MG |
2353 | pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) |
2354 | + (vma->vm_pgoff >> PAGE_SHIFT); | |
2355 | mapping = (struct address_space *)page_private(page); | |
2356 | ||
4eb2b1dc MG |
2357 | /* |
2358 | * Take the mapping lock for the duration of the table walk. As | |
2359 | * this mapping should be shared between all the VMAs, | |
2360 | * __unmap_hugepage_range() is called as the lock is already held | |
2361 | */ | |
2362 | spin_lock(&mapping->i_mmap_lock); | |
04f2cbe3 MG |
2363 | vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { |
2364 | /* Do not unmap the current VMA */ | |
2365 | if (iter_vma == vma) | |
2366 | continue; | |
2367 | ||
2368 | /* | |
2369 | * Unmap the page from other VMAs without their own reserves. | |
2370 | * They get marked to be SIGKILLed if they fault in these | |
2371 | * areas. This is because a future no-page fault on this VMA | |
2372 | * could insert a zeroed page instead of the data existing | |
2373 | * from the time of fork. This would look like data corruption | |
2374 | */ | |
2375 | if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) | |
4eb2b1dc | 2376 | __unmap_hugepage_range(iter_vma, |
7526674d | 2377 | address, address + huge_page_size(h), |
04f2cbe3 MG |
2378 | page); |
2379 | } | |
4eb2b1dc | 2380 | spin_unlock(&mapping->i_mmap_lock); |
04f2cbe3 MG |
2381 | |
2382 | return 1; | |
2383 | } | |
2384 | ||
0fe6e20b NH |
2385 | /* |
2386 | * Hugetlb_cow() should be called with page lock of the original hugepage held. | |
2387 | */ | |
1e8f889b | 2388 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, |
04f2cbe3 MG |
2389 | unsigned long address, pte_t *ptep, pte_t pte, |
2390 | struct page *pagecache_page) | |
1e8f889b | 2391 | { |
a5516438 | 2392 | struct hstate *h = hstate_vma(vma); |
1e8f889b | 2393 | struct page *old_page, *new_page; |
79ac6ba4 | 2394 | int avoidcopy; |
04f2cbe3 | 2395 | int outside_reserve = 0; |
1e8f889b DG |
2396 | |
2397 | old_page = pte_page(pte); | |
2398 | ||
04f2cbe3 | 2399 | retry_avoidcopy: |
1e8f889b DG |
2400 | /* If no-one else is actually using this page, avoid the copy |
2401 | * and just make the page writable */ | |
0fe6e20b | 2402 | avoidcopy = (page_mapcount(old_page) == 1); |
1e8f889b | 2403 | if (avoidcopy) { |
56c9cfb1 NH |
2404 | if (PageAnon(old_page)) |
2405 | page_move_anon_rmap(old_page, vma, address); | |
1e8f889b | 2406 | set_huge_ptep_writable(vma, address, ptep); |
83c54070 | 2407 | return 0; |
1e8f889b DG |
2408 | } |
2409 | ||
04f2cbe3 MG |
2410 | /* |
2411 | * If the process that created a MAP_PRIVATE mapping is about to | |
2412 | * perform a COW due to a shared page count, attempt to satisfy | |
2413 | * the allocation without using the existing reserves. The pagecache | |
2414 | * page is used to determine if the reserve at this address was | |
2415 | * consumed or not. If reserves were used, a partial faulted mapping | |
2416 | * at the time of fork() could consume its reserves on COW instead | |
2417 | * of the full address range. | |
2418 | */ | |
f83a275d | 2419 | if (!(vma->vm_flags & VM_MAYSHARE) && |
04f2cbe3 MG |
2420 | is_vma_resv_set(vma, HPAGE_RESV_OWNER) && |
2421 | old_page != pagecache_page) | |
2422 | outside_reserve = 1; | |
2423 | ||
1e8f889b | 2424 | page_cache_get(old_page); |
b76c8cfb LW |
2425 | |
2426 | /* Drop page_table_lock as buddy allocator may be called */ | |
2427 | spin_unlock(&mm->page_table_lock); | |
04f2cbe3 | 2428 | new_page = alloc_huge_page(vma, address, outside_reserve); |
1e8f889b | 2429 | |
2fc39cec | 2430 | if (IS_ERR(new_page)) { |
1e8f889b | 2431 | page_cache_release(old_page); |
04f2cbe3 MG |
2432 | |
2433 | /* | |
2434 | * If a process owning a MAP_PRIVATE mapping fails to COW, | |
2435 | * it is due to references held by a child and an insufficient | |
2436 | * huge page pool. To guarantee the original mappers | |
2437 | * reliability, unmap the page from child processes. The child | |
2438 | * may get SIGKILLed if it later faults. | |
2439 | */ | |
2440 | if (outside_reserve) { | |
2441 | BUG_ON(huge_pte_none(pte)); | |
2442 | if (unmap_ref_private(mm, vma, old_page, address)) { | |
2443 | BUG_ON(page_count(old_page) != 1); | |
2444 | BUG_ON(huge_pte_none(pte)); | |
b76c8cfb | 2445 | spin_lock(&mm->page_table_lock); |
04f2cbe3 MG |
2446 | goto retry_avoidcopy; |
2447 | } | |
2448 | WARN_ON_ONCE(1); | |
2449 | } | |
2450 | ||
b76c8cfb LW |
2451 | /* Caller expects lock to be held */ |
2452 | spin_lock(&mm->page_table_lock); | |
2fc39cec | 2453 | return -PTR_ERR(new_page); |
1e8f889b DG |
2454 | } |
2455 | ||
0fe6e20b NH |
2456 | /* |
2457 | * When the original hugepage is shared one, it does not have | |
2458 | * anon_vma prepared. | |
2459 | */ | |
2460 | if (unlikely(anon_vma_prepare(vma))) | |
2461 | return VM_FAULT_OOM; | |
2462 | ||
0ebabb41 | 2463 | copy_user_huge_page(new_page, old_page, address, vma); |
0ed361de | 2464 | __SetPageUptodate(new_page); |
1e8f889b | 2465 | |
b76c8cfb LW |
2466 | /* |
2467 | * Retake the page_table_lock to check for racing updates | |
2468 | * before the page tables are altered | |
2469 | */ | |
2470 | spin_lock(&mm->page_table_lock); | |
a5516438 | 2471 | ptep = huge_pte_offset(mm, address & huge_page_mask(h)); |
7f2e9525 | 2472 | if (likely(pte_same(huge_ptep_get(ptep), pte))) { |
1e8f889b | 2473 | /* Break COW */ |
3edd4fc9 DD |
2474 | mmu_notifier_invalidate_range_start(mm, |
2475 | address & huge_page_mask(h), | |
2476 | (address & huge_page_mask(h)) + huge_page_size(h)); | |
8fe627ec | 2477 | huge_ptep_clear_flush(vma, address, ptep); |
1e8f889b DG |
2478 | set_huge_pte_at(mm, address, ptep, |
2479 | make_huge_pte(vma, new_page, 1)); | |
0fe6e20b | 2480 | page_remove_rmap(old_page); |
cd67f0d2 | 2481 | hugepage_add_new_anon_rmap(new_page, vma, address); |
1e8f889b DG |
2482 | /* Make the old page be freed below */ |
2483 | new_page = old_page; | |
3edd4fc9 DD |
2484 | mmu_notifier_invalidate_range_end(mm, |
2485 | address & huge_page_mask(h), | |
2486 | (address & huge_page_mask(h)) + huge_page_size(h)); | |
1e8f889b DG |
2487 | } |
2488 | page_cache_release(new_page); | |
2489 | page_cache_release(old_page); | |
83c54070 | 2490 | return 0; |
1e8f889b DG |
2491 | } |
2492 | ||
04f2cbe3 | 2493 | /* Return the pagecache page at a given address within a VMA */ |
a5516438 AK |
2494 | static struct page *hugetlbfs_pagecache_page(struct hstate *h, |
2495 | struct vm_area_struct *vma, unsigned long address) | |
04f2cbe3 MG |
2496 | { |
2497 | struct address_space *mapping; | |
e7c4b0bf | 2498 | pgoff_t idx; |
04f2cbe3 MG |
2499 | |
2500 | mapping = vma->vm_file->f_mapping; | |
a5516438 | 2501 | idx = vma_hugecache_offset(h, vma, address); |
04f2cbe3 MG |
2502 | |
2503 | return find_lock_page(mapping, idx); | |
2504 | } | |
2505 | ||
3ae77f43 HD |
2506 | /* |
2507 | * Return whether there is a pagecache page to back given address within VMA. | |
2508 | * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. | |
2509 | */ | |
2510 | static bool hugetlbfs_pagecache_present(struct hstate *h, | |
2a15efc9 HD |
2511 | struct vm_area_struct *vma, unsigned long address) |
2512 | { | |
2513 | struct address_space *mapping; | |
2514 | pgoff_t idx; | |
2515 | struct page *page; | |
2516 | ||
2517 | mapping = vma->vm_file->f_mapping; | |
2518 | idx = vma_hugecache_offset(h, vma, address); | |
2519 | ||
2520 | page = find_get_page(mapping, idx); | |
2521 | if (page) | |
2522 | put_page(page); | |
2523 | return page != NULL; | |
2524 | } | |
2525 | ||
a1ed3dda | 2526 | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, |
788c7df4 | 2527 | unsigned long address, pte_t *ptep, unsigned int flags) |
ac9b9c66 | 2528 | { |
a5516438 | 2529 | struct hstate *h = hstate_vma(vma); |
ac9b9c66 | 2530 | int ret = VM_FAULT_SIGBUS; |
e7c4b0bf | 2531 | pgoff_t idx; |
4c887265 | 2532 | unsigned long size; |
4c887265 AL |
2533 | struct page *page; |
2534 | struct address_space *mapping; | |
1e8f889b | 2535 | pte_t new_pte; |
4c887265 | 2536 | |
04f2cbe3 MG |
2537 | /* |
2538 | * Currently, we are forced to kill the process in the event the | |
2539 | * original mapper has unmapped pages from the child due to a failed | |
2540 | * COW. Warn that such a situation has occured as it may not be obvious | |
2541 | */ | |
2542 | if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { | |
2543 | printk(KERN_WARNING | |
2544 | "PID %d killed due to inadequate hugepage pool\n", | |
2545 | current->pid); | |
2546 | return ret; | |
2547 | } | |
2548 | ||
4c887265 | 2549 | mapping = vma->vm_file->f_mapping; |
a5516438 | 2550 | idx = vma_hugecache_offset(h, vma, address); |
4c887265 AL |
2551 | |
2552 | /* | |
2553 | * Use page lock to guard against racing truncation | |
2554 | * before we get page_table_lock. | |
2555 | */ | |
6bda666a CL |
2556 | retry: |
2557 | page = find_lock_page(mapping, idx); | |
2558 | if (!page) { | |
a5516438 | 2559 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
ebed4bfc HD |
2560 | if (idx >= size) |
2561 | goto out; | |
04f2cbe3 | 2562 | page = alloc_huge_page(vma, address, 0); |
2fc39cec AL |
2563 | if (IS_ERR(page)) { |
2564 | ret = -PTR_ERR(page); | |
6bda666a CL |
2565 | goto out; |
2566 | } | |
a5516438 | 2567 | clear_huge_page(page, address, huge_page_size(h)); |
0ed361de | 2568 | __SetPageUptodate(page); |
ac9b9c66 | 2569 | |
f83a275d | 2570 | if (vma->vm_flags & VM_MAYSHARE) { |
6bda666a | 2571 | int err; |
45c682a6 | 2572 | struct inode *inode = mapping->host; |
6bda666a CL |
2573 | |
2574 | err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); | |
2575 | if (err) { | |
2576 | put_page(page); | |
6bda666a CL |
2577 | if (err == -EEXIST) |
2578 | goto retry; | |
2579 | goto out; | |
2580 | } | |
45c682a6 KC |
2581 | |
2582 | spin_lock(&inode->i_lock); | |
a5516438 | 2583 | inode->i_blocks += blocks_per_huge_page(h); |
45c682a6 | 2584 | spin_unlock(&inode->i_lock); |
0fe6e20b | 2585 | page_dup_rmap(page); |
23be7468 | 2586 | } else { |
6bda666a | 2587 | lock_page(page); |
0fe6e20b NH |
2588 | if (unlikely(anon_vma_prepare(vma))) { |
2589 | ret = VM_FAULT_OOM; | |
2590 | goto backout_unlocked; | |
2591 | } | |
2592 | hugepage_add_new_anon_rmap(page, vma, address); | |
23be7468 | 2593 | } |
0fe6e20b | 2594 | } else { |
998b4382 NH |
2595 | /* |
2596 | * If memory error occurs between mmap() and fault, some process | |
2597 | * don't have hwpoisoned swap entry for errored virtual address. | |
2598 | * So we need to block hugepage fault by PG_hwpoison bit check. | |
2599 | */ | |
2600 | if (unlikely(PageHWPoison(page))) { | |
2601 | ret = VM_FAULT_HWPOISON; | |
2602 | goto backout_unlocked; | |
2603 | } | |
0fe6e20b | 2604 | page_dup_rmap(page); |
6bda666a | 2605 | } |
1e8f889b | 2606 | |
57303d80 AW |
2607 | /* |
2608 | * If we are going to COW a private mapping later, we examine the | |
2609 | * pending reservations for this page now. This will ensure that | |
2610 | * any allocations necessary to record that reservation occur outside | |
2611 | * the spinlock. | |
2612 | */ | |
788c7df4 | 2613 | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) |
2b26736c AW |
2614 | if (vma_needs_reservation(h, vma, address) < 0) { |
2615 | ret = VM_FAULT_OOM; | |
2616 | goto backout_unlocked; | |
2617 | } | |
57303d80 | 2618 | |
ac9b9c66 | 2619 | spin_lock(&mm->page_table_lock); |
a5516438 | 2620 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
4c887265 AL |
2621 | if (idx >= size) |
2622 | goto backout; | |
2623 | ||
83c54070 | 2624 | ret = 0; |
7f2e9525 | 2625 | if (!huge_pte_none(huge_ptep_get(ptep))) |
4c887265 AL |
2626 | goto backout; |
2627 | ||
1e8f889b DG |
2628 | new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) |
2629 | && (vma->vm_flags & VM_SHARED))); | |
2630 | set_huge_pte_at(mm, address, ptep, new_pte); | |
2631 | ||
788c7df4 | 2632 | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { |
1e8f889b | 2633 | /* Optimization, do the COW without a second fault */ |
04f2cbe3 | 2634 | ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); |
1e8f889b DG |
2635 | } |
2636 | ||
ac9b9c66 | 2637 | spin_unlock(&mm->page_table_lock); |
4c887265 AL |
2638 | unlock_page(page); |
2639 | out: | |
ac9b9c66 | 2640 | return ret; |
4c887265 AL |
2641 | |
2642 | backout: | |
2643 | spin_unlock(&mm->page_table_lock); | |
2b26736c | 2644 | backout_unlocked: |
4c887265 AL |
2645 | unlock_page(page); |
2646 | put_page(page); | |
2647 | goto out; | |
ac9b9c66 HD |
2648 | } |
2649 | ||
86e5216f | 2650 | int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
788c7df4 | 2651 | unsigned long address, unsigned int flags) |
86e5216f AL |
2652 | { |
2653 | pte_t *ptep; | |
2654 | pte_t entry; | |
1e8f889b | 2655 | int ret; |
0fe6e20b | 2656 | struct page *page = NULL; |
57303d80 | 2657 | struct page *pagecache_page = NULL; |
3935baa9 | 2658 | static DEFINE_MUTEX(hugetlb_instantiation_mutex); |
a5516438 | 2659 | struct hstate *h = hstate_vma(vma); |
86e5216f | 2660 | |
fd6a03ed NH |
2661 | ptep = huge_pte_offset(mm, address); |
2662 | if (ptep) { | |
2663 | entry = huge_ptep_get(ptep); | |
290408d4 NH |
2664 | if (unlikely(is_hugetlb_entry_migration(entry))) { |
2665 | migration_entry_wait(mm, (pmd_t *)ptep, address); | |
2666 | return 0; | |
2667 | } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) | |
fd6a03ed NH |
2668 | return VM_FAULT_HWPOISON; |
2669 | } | |
2670 | ||
a5516438 | 2671 | ptep = huge_pte_alloc(mm, address, huge_page_size(h)); |
86e5216f AL |
2672 | if (!ptep) |
2673 | return VM_FAULT_OOM; | |
2674 | ||
3935baa9 DG |
2675 | /* |
2676 | * Serialize hugepage allocation and instantiation, so that we don't | |
2677 | * get spurious allocation failures if two CPUs race to instantiate | |
2678 | * the same page in the page cache. | |
2679 | */ | |
2680 | mutex_lock(&hugetlb_instantiation_mutex); | |
7f2e9525 GS |
2681 | entry = huge_ptep_get(ptep); |
2682 | if (huge_pte_none(entry)) { | |
788c7df4 | 2683 | ret = hugetlb_no_page(mm, vma, address, ptep, flags); |
b4d1d99f | 2684 | goto out_mutex; |
3935baa9 | 2685 | } |
86e5216f | 2686 | |
83c54070 | 2687 | ret = 0; |
1e8f889b | 2688 | |
57303d80 AW |
2689 | /* |
2690 | * If we are going to COW the mapping later, we examine the pending | |
2691 | * reservations for this page now. This will ensure that any | |
2692 | * allocations necessary to record that reservation occur outside the | |
2693 | * spinlock. For private mappings, we also lookup the pagecache | |
2694 | * page now as it is used to determine if a reservation has been | |
2695 | * consumed. | |
2696 | */ | |
788c7df4 | 2697 | if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) { |
2b26736c AW |
2698 | if (vma_needs_reservation(h, vma, address) < 0) { |
2699 | ret = VM_FAULT_OOM; | |
b4d1d99f | 2700 | goto out_mutex; |
2b26736c | 2701 | } |
57303d80 | 2702 | |
f83a275d | 2703 | if (!(vma->vm_flags & VM_MAYSHARE)) |
57303d80 AW |
2704 | pagecache_page = hugetlbfs_pagecache_page(h, |
2705 | vma, address); | |
2706 | } | |
2707 | ||
56c9cfb1 NH |
2708 | /* |
2709 | * hugetlb_cow() requires page locks of pte_page(entry) and | |
2710 | * pagecache_page, so here we need take the former one | |
2711 | * when page != pagecache_page or !pagecache_page. | |
2712 | * Note that locking order is always pagecache_page -> page, | |
2713 | * so no worry about deadlock. | |
2714 | */ | |
2715 | page = pte_page(entry); | |
2716 | if (page != pagecache_page) | |
0fe6e20b | 2717 | lock_page(page); |
0fe6e20b | 2718 | |
1e8f889b DG |
2719 | spin_lock(&mm->page_table_lock); |
2720 | /* Check for a racing update before calling hugetlb_cow */ | |
b4d1d99f DG |
2721 | if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) |
2722 | goto out_page_table_lock; | |
2723 | ||
2724 | ||
788c7df4 | 2725 | if (flags & FAULT_FLAG_WRITE) { |
b4d1d99f | 2726 | if (!pte_write(entry)) { |
57303d80 AW |
2727 | ret = hugetlb_cow(mm, vma, address, ptep, entry, |
2728 | pagecache_page); | |
b4d1d99f DG |
2729 | goto out_page_table_lock; |
2730 | } | |
2731 | entry = pte_mkdirty(entry); | |
2732 | } | |
2733 | entry = pte_mkyoung(entry); | |
788c7df4 HD |
2734 | if (huge_ptep_set_access_flags(vma, address, ptep, entry, |
2735 | flags & FAULT_FLAG_WRITE)) | |
4b3073e1 | 2736 | update_mmu_cache(vma, address, ptep); |
b4d1d99f DG |
2737 | |
2738 | out_page_table_lock: | |
1e8f889b | 2739 | spin_unlock(&mm->page_table_lock); |
57303d80 AW |
2740 | |
2741 | if (pagecache_page) { | |
2742 | unlock_page(pagecache_page); | |
2743 | put_page(pagecache_page); | |
2744 | } | |
56c9cfb1 | 2745 | unlock_page(page); |
57303d80 | 2746 | |
b4d1d99f | 2747 | out_mutex: |
3935baa9 | 2748 | mutex_unlock(&hugetlb_instantiation_mutex); |
1e8f889b DG |
2749 | |
2750 | return ret; | |
86e5216f AL |
2751 | } |
2752 | ||
ceb86879 AK |
2753 | /* Can be overriden by architectures */ |
2754 | __attribute__((weak)) struct page * | |
2755 | follow_huge_pud(struct mm_struct *mm, unsigned long address, | |
2756 | pud_t *pud, int write) | |
2757 | { | |
2758 | BUG(); | |
2759 | return NULL; | |
2760 | } | |
2761 | ||
63551ae0 DG |
2762 | int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2763 | struct page **pages, struct vm_area_struct **vmas, | |
5b23dbe8 | 2764 | unsigned long *position, int *length, int i, |
2a15efc9 | 2765 | unsigned int flags) |
63551ae0 | 2766 | { |
d5d4b0aa KC |
2767 | unsigned long pfn_offset; |
2768 | unsigned long vaddr = *position; | |
63551ae0 | 2769 | int remainder = *length; |
a5516438 | 2770 | struct hstate *h = hstate_vma(vma); |
63551ae0 | 2771 | |
1c59827d | 2772 | spin_lock(&mm->page_table_lock); |
63551ae0 | 2773 | while (vaddr < vma->vm_end && remainder) { |
4c887265 | 2774 | pte_t *pte; |
2a15efc9 | 2775 | int absent; |
4c887265 | 2776 | struct page *page; |
63551ae0 | 2777 | |
4c887265 AL |
2778 | /* |
2779 | * Some archs (sparc64, sh*) have multiple pte_ts to | |
2a15efc9 | 2780 | * each hugepage. We have to make sure we get the |
4c887265 AL |
2781 | * first, for the page indexing below to work. |
2782 | */ | |
a5516438 | 2783 | pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); |
2a15efc9 HD |
2784 | absent = !pte || huge_pte_none(huge_ptep_get(pte)); |
2785 | ||
2786 | /* | |
2787 | * When coredumping, it suits get_dump_page if we just return | |
3ae77f43 HD |
2788 | * an error where there's an empty slot with no huge pagecache |
2789 | * to back it. This way, we avoid allocating a hugepage, and | |
2790 | * the sparse dumpfile avoids allocating disk blocks, but its | |
2791 | * huge holes still show up with zeroes where they need to be. | |
2a15efc9 | 2792 | */ |
3ae77f43 HD |
2793 | if (absent && (flags & FOLL_DUMP) && |
2794 | !hugetlbfs_pagecache_present(h, vma, vaddr)) { | |
2a15efc9 HD |
2795 | remainder = 0; |
2796 | break; | |
2797 | } | |
63551ae0 | 2798 | |
2a15efc9 HD |
2799 | if (absent || |
2800 | ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) { | |
4c887265 | 2801 | int ret; |
63551ae0 | 2802 | |
4c887265 | 2803 | spin_unlock(&mm->page_table_lock); |
2a15efc9 HD |
2804 | ret = hugetlb_fault(mm, vma, vaddr, |
2805 | (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); | |
4c887265 | 2806 | spin_lock(&mm->page_table_lock); |
a89182c7 | 2807 | if (!(ret & VM_FAULT_ERROR)) |
4c887265 | 2808 | continue; |
63551ae0 | 2809 | |
4c887265 | 2810 | remainder = 0; |
4c887265 AL |
2811 | break; |
2812 | } | |
2813 | ||
a5516438 | 2814 | pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; |
7f2e9525 | 2815 | page = pte_page(huge_ptep_get(pte)); |
d5d4b0aa | 2816 | same_page: |
d6692183 | 2817 | if (pages) { |
2a15efc9 | 2818 | pages[i] = mem_map_offset(page, pfn_offset); |
4b2e38ad | 2819 | get_page(pages[i]); |
d6692183 | 2820 | } |
63551ae0 DG |
2821 | |
2822 | if (vmas) | |
2823 | vmas[i] = vma; | |
2824 | ||
2825 | vaddr += PAGE_SIZE; | |
d5d4b0aa | 2826 | ++pfn_offset; |
63551ae0 DG |
2827 | --remainder; |
2828 | ++i; | |
d5d4b0aa | 2829 | if (vaddr < vma->vm_end && remainder && |
a5516438 | 2830 | pfn_offset < pages_per_huge_page(h)) { |
d5d4b0aa KC |
2831 | /* |
2832 | * We use pfn_offset to avoid touching the pageframes | |
2833 | * of this compound page. | |
2834 | */ | |
2835 | goto same_page; | |
2836 | } | |
63551ae0 | 2837 | } |
1c59827d | 2838 | spin_unlock(&mm->page_table_lock); |
63551ae0 DG |
2839 | *length = remainder; |
2840 | *position = vaddr; | |
2841 | ||
2a15efc9 | 2842 | return i ? i : -EFAULT; |
63551ae0 | 2843 | } |
8f860591 ZY |
2844 | |
2845 | void hugetlb_change_protection(struct vm_area_struct *vma, | |
2846 | unsigned long address, unsigned long end, pgprot_t newprot) | |
2847 | { | |
2848 | struct mm_struct *mm = vma->vm_mm; | |
2849 | unsigned long start = address; | |
2850 | pte_t *ptep; | |
2851 | pte_t pte; | |
a5516438 | 2852 | struct hstate *h = hstate_vma(vma); |
8f860591 ZY |
2853 | |
2854 | BUG_ON(address >= end); | |
2855 | flush_cache_range(vma, address, end); | |
2856 | ||
39dde65c | 2857 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); |
8f860591 | 2858 | spin_lock(&mm->page_table_lock); |
a5516438 | 2859 | for (; address < end; address += huge_page_size(h)) { |
8f860591 ZY |
2860 | ptep = huge_pte_offset(mm, address); |
2861 | if (!ptep) | |
2862 | continue; | |
39dde65c KC |
2863 | if (huge_pmd_unshare(mm, &address, ptep)) |
2864 | continue; | |
7f2e9525 | 2865 | if (!huge_pte_none(huge_ptep_get(ptep))) { |
8f860591 ZY |
2866 | pte = huge_ptep_get_and_clear(mm, address, ptep); |
2867 | pte = pte_mkhuge(pte_modify(pte, newprot)); | |
2868 | set_huge_pte_at(mm, address, ptep, pte); | |
8f860591 ZY |
2869 | } |
2870 | } | |
2871 | spin_unlock(&mm->page_table_lock); | |
39dde65c | 2872 | spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); |
8f860591 ZY |
2873 | |
2874 | flush_tlb_range(vma, start, end); | |
2875 | } | |
2876 | ||
a1e78772 MG |
2877 | int hugetlb_reserve_pages(struct inode *inode, |
2878 | long from, long to, | |
5a6fe125 MG |
2879 | struct vm_area_struct *vma, |
2880 | int acctflag) | |
e4e574b7 | 2881 | { |
17c9d12e | 2882 | long ret, chg; |
a5516438 | 2883 | struct hstate *h = hstate_inode(inode); |
e4e574b7 | 2884 | |
17c9d12e MG |
2885 | /* |
2886 | * Only apply hugepage reservation if asked. At fault time, an | |
2887 | * attempt will be made for VM_NORESERVE to allocate a page | |
2888 | * and filesystem quota without using reserves | |
2889 | */ | |
2890 | if (acctflag & VM_NORESERVE) | |
2891 | return 0; | |
2892 | ||
a1e78772 MG |
2893 | /* |
2894 | * Shared mappings base their reservation on the number of pages that | |
2895 | * are already allocated on behalf of the file. Private mappings need | |
2896 | * to reserve the full area even if read-only as mprotect() may be | |
2897 | * called to make the mapping read-write. Assume !vma is a shm mapping | |
2898 | */ | |
f83a275d | 2899 | if (!vma || vma->vm_flags & VM_MAYSHARE) |
a1e78772 | 2900 | chg = region_chg(&inode->i_mapping->private_list, from, to); |
17c9d12e MG |
2901 | else { |
2902 | struct resv_map *resv_map = resv_map_alloc(); | |
2903 | if (!resv_map) | |
2904 | return -ENOMEM; | |
2905 | ||
a1e78772 | 2906 | chg = to - from; |
84afd99b | 2907 | |
17c9d12e MG |
2908 | set_vma_resv_map(vma, resv_map); |
2909 | set_vma_resv_flags(vma, HPAGE_RESV_OWNER); | |
2910 | } | |
2911 | ||
e4e574b7 AL |
2912 | if (chg < 0) |
2913 | return chg; | |
8a630112 | 2914 | |
17c9d12e | 2915 | /* There must be enough filesystem quota for the mapping */ |
90d8b7e6 AL |
2916 | if (hugetlb_get_quota(inode->i_mapping, chg)) |
2917 | return -ENOSPC; | |
5a6fe125 MG |
2918 | |
2919 | /* | |
17c9d12e MG |
2920 | * Check enough hugepages are available for the reservation. |
2921 | * Hand back the quota if there are not | |
5a6fe125 | 2922 | */ |
a5516438 | 2923 | ret = hugetlb_acct_memory(h, chg); |
68842c9b KC |
2924 | if (ret < 0) { |
2925 | hugetlb_put_quota(inode->i_mapping, chg); | |
a43a8c39 | 2926 | return ret; |
68842c9b | 2927 | } |
17c9d12e MG |
2928 | |
2929 | /* | |
2930 | * Account for the reservations made. Shared mappings record regions | |
2931 | * that have reservations as they are shared by multiple VMAs. | |
2932 | * When the last VMA disappears, the region map says how much | |
2933 | * the reservation was and the page cache tells how much of | |
2934 | * the reservation was consumed. Private mappings are per-VMA and | |
2935 | * only the consumed reservations are tracked. When the VMA | |
2936 | * disappears, the original reservation is the VMA size and the | |
2937 | * consumed reservations are stored in the map. Hence, nothing | |
2938 | * else has to be done for private mappings here | |
2939 | */ | |
f83a275d | 2940 | if (!vma || vma->vm_flags & VM_MAYSHARE) |
a1e78772 | 2941 | region_add(&inode->i_mapping->private_list, from, to); |
a43a8c39 KC |
2942 | return 0; |
2943 | } | |
2944 | ||
2945 | void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) | |
2946 | { | |
a5516438 | 2947 | struct hstate *h = hstate_inode(inode); |
a43a8c39 | 2948 | long chg = region_truncate(&inode->i_mapping->private_list, offset); |
45c682a6 KC |
2949 | |
2950 | spin_lock(&inode->i_lock); | |
e4c6f8be | 2951 | inode->i_blocks -= (blocks_per_huge_page(h) * freed); |
45c682a6 KC |
2952 | spin_unlock(&inode->i_lock); |
2953 | ||
90d8b7e6 | 2954 | hugetlb_put_quota(inode->i_mapping, (chg - freed)); |
a5516438 | 2955 | hugetlb_acct_memory(h, -(chg - freed)); |
a43a8c39 | 2956 | } |
93f70f90 | 2957 | |
6de2b1aa NH |
2958 | /* Should be called in hugetlb_lock */ |
2959 | static int is_hugepage_on_freelist(struct page *hpage) | |
2960 | { | |
2961 | struct page *page; | |
2962 | struct page *tmp; | |
2963 | struct hstate *h = page_hstate(hpage); | |
2964 | int nid = page_to_nid(hpage); | |
2965 | ||
2966 | list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru) | |
2967 | if (page == hpage) | |
2968 | return 1; | |
2969 | return 0; | |
2970 | } | |
2971 | ||
2972 | #ifdef CONFIG_MEMORY_FAILURE | |
93f70f90 NH |
2973 | /* |
2974 | * This function is called from memory failure code. | |
2975 | * Assume the caller holds page lock of the head page. | |
2976 | */ | |
6de2b1aa | 2977 | int dequeue_hwpoisoned_huge_page(struct page *hpage) |
93f70f90 NH |
2978 | { |
2979 | struct hstate *h = page_hstate(hpage); | |
2980 | int nid = page_to_nid(hpage); | |
6de2b1aa | 2981 | int ret = -EBUSY; |
93f70f90 NH |
2982 | |
2983 | spin_lock(&hugetlb_lock); | |
6de2b1aa NH |
2984 | if (is_hugepage_on_freelist(hpage)) { |
2985 | list_del(&hpage->lru); | |
2986 | h->free_huge_pages--; | |
2987 | h->free_huge_pages_node[nid]--; | |
2988 | ret = 0; | |
2989 | } | |
93f70f90 | 2990 | spin_unlock(&hugetlb_lock); |
6de2b1aa | 2991 | return ret; |
93f70f90 | 2992 | } |
6de2b1aa | 2993 | #endif |