]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Generic hugetlb support. | |
6d49e352 | 3 | * (C) Nadia Yvette Chambers, April 2004 |
1da177e4 | 4 | */ |
1da177e4 LT |
5 | #include <linux/list.h> |
6 | #include <linux/init.h> | |
7 | #include <linux/module.h> | |
8 | #include <linux/mm.h> | |
e1759c21 | 9 | #include <linux/seq_file.h> |
1da177e4 LT |
10 | #include <linux/sysctl.h> |
11 | #include <linux/highmem.h> | |
cddb8a5c | 12 | #include <linux/mmu_notifier.h> |
1da177e4 | 13 | #include <linux/nodemask.h> |
63551ae0 | 14 | #include <linux/pagemap.h> |
5da7ca86 | 15 | #include <linux/mempolicy.h> |
aea47ff3 | 16 | #include <linux/cpuset.h> |
3935baa9 | 17 | #include <linux/mutex.h> |
aa888a74 | 18 | #include <linux/bootmem.h> |
a3437870 | 19 | #include <linux/sysfs.h> |
5a0e3ad6 | 20 | #include <linux/slab.h> |
0fe6e20b | 21 | #include <linux/rmap.h> |
fd6a03ed NH |
22 | #include <linux/swap.h> |
23 | #include <linux/swapops.h> | |
d6606683 | 24 | |
63551ae0 DG |
25 | #include <asm/page.h> |
26 | #include <asm/pgtable.h> | |
24669e58 | 27 | #include <asm/tlb.h> |
63551ae0 | 28 | |
24669e58 | 29 | #include <linux/io.h> |
63551ae0 | 30 | #include <linux/hugetlb.h> |
9dd540e2 | 31 | #include <linux/hugetlb_cgroup.h> |
9a305230 | 32 | #include <linux/node.h> |
7835e98b | 33 | #include "internal.h" |
1da177e4 LT |
34 | |
35 | const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; | |
396faf03 MG |
36 | static gfp_t htlb_alloc_mask = GFP_HIGHUSER; |
37 | unsigned long hugepages_treat_as_movable; | |
a5516438 | 38 | |
c3f38a38 | 39 | int hugetlb_max_hstate __read_mostly; |
e5ff2159 AK |
40 | unsigned int default_hstate_idx; |
41 | struct hstate hstates[HUGE_MAX_HSTATE]; | |
42 | ||
53ba51d2 JT |
43 | __initdata LIST_HEAD(huge_boot_pages); |
44 | ||
e5ff2159 AK |
45 | /* for command line parsing */ |
46 | static struct hstate * __initdata parsed_hstate; | |
47 | static unsigned long __initdata default_hstate_max_huge_pages; | |
e11bfbfc | 48 | static unsigned long __initdata default_hstate_size; |
e5ff2159 | 49 | |
3935baa9 DG |
50 | /* |
51 | * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages | |
52 | */ | |
c3f38a38 | 53 | DEFINE_SPINLOCK(hugetlb_lock); |
0bd0f9fb | 54 | |
90481622 DG |
55 | static inline void unlock_or_release_subpool(struct hugepage_subpool *spool) |
56 | { | |
57 | bool free = (spool->count == 0) && (spool->used_hpages == 0); | |
58 | ||
59 | spin_unlock(&spool->lock); | |
60 | ||
61 | /* If no pages are used, and no other handles to the subpool | |
62 | * remain, free the subpool the subpool remain */ | |
63 | if (free) | |
64 | kfree(spool); | |
65 | } | |
66 | ||
67 | struct hugepage_subpool *hugepage_new_subpool(long nr_blocks) | |
68 | { | |
69 | struct hugepage_subpool *spool; | |
70 | ||
71 | spool = kmalloc(sizeof(*spool), GFP_KERNEL); | |
72 | if (!spool) | |
73 | return NULL; | |
74 | ||
75 | spin_lock_init(&spool->lock); | |
76 | spool->count = 1; | |
77 | spool->max_hpages = nr_blocks; | |
78 | spool->used_hpages = 0; | |
79 | ||
80 | return spool; | |
81 | } | |
82 | ||
83 | void hugepage_put_subpool(struct hugepage_subpool *spool) | |
84 | { | |
85 | spin_lock(&spool->lock); | |
86 | BUG_ON(!spool->count); | |
87 | spool->count--; | |
88 | unlock_or_release_subpool(spool); | |
89 | } | |
90 | ||
91 | static int hugepage_subpool_get_pages(struct hugepage_subpool *spool, | |
92 | long delta) | |
93 | { | |
94 | int ret = 0; | |
95 | ||
96 | if (!spool) | |
97 | return 0; | |
98 | ||
99 | spin_lock(&spool->lock); | |
100 | if ((spool->used_hpages + delta) <= spool->max_hpages) { | |
101 | spool->used_hpages += delta; | |
102 | } else { | |
103 | ret = -ENOMEM; | |
104 | } | |
105 | spin_unlock(&spool->lock); | |
106 | ||
107 | return ret; | |
108 | } | |
109 | ||
110 | static void hugepage_subpool_put_pages(struct hugepage_subpool *spool, | |
111 | long delta) | |
112 | { | |
113 | if (!spool) | |
114 | return; | |
115 | ||
116 | spin_lock(&spool->lock); | |
117 | spool->used_hpages -= delta; | |
118 | /* If hugetlbfs_put_super couldn't free spool due to | |
119 | * an outstanding quota reference, free it now. */ | |
120 | unlock_or_release_subpool(spool); | |
121 | } | |
122 | ||
123 | static inline struct hugepage_subpool *subpool_inode(struct inode *inode) | |
124 | { | |
125 | return HUGETLBFS_SB(inode->i_sb)->spool; | |
126 | } | |
127 | ||
128 | static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) | |
129 | { | |
496ad9aa | 130 | return subpool_inode(file_inode(vma->vm_file)); |
90481622 DG |
131 | } |
132 | ||
96822904 AW |
133 | /* |
134 | * Region tracking -- allows tracking of reservations and instantiated pages | |
135 | * across the pages in a mapping. | |
84afd99b AW |
136 | * |
137 | * The region data structures are protected by a combination of the mmap_sem | |
c748c262 | 138 | * and the hugetlb_instantiation_mutex. To access or modify a region the caller |
84afd99b | 139 | * must either hold the mmap_sem for write, or the mmap_sem for read and |
c748c262 | 140 | * the hugetlb_instantiation_mutex: |
84afd99b | 141 | * |
32f84528 | 142 | * down_write(&mm->mmap_sem); |
84afd99b | 143 | * or |
32f84528 CF |
144 | * down_read(&mm->mmap_sem); |
145 | * mutex_lock(&hugetlb_instantiation_mutex); | |
96822904 AW |
146 | */ |
147 | struct file_region { | |
148 | struct list_head link; | |
149 | long from; | |
150 | long to; | |
151 | }; | |
152 | ||
153 | static long region_add(struct list_head *head, long f, long t) | |
154 | { | |
155 | struct file_region *rg, *nrg, *trg; | |
156 | ||
157 | /* Locate the region we are either in or before. */ | |
158 | list_for_each_entry(rg, head, link) | |
159 | if (f <= rg->to) | |
160 | break; | |
161 | ||
162 | /* Round our left edge to the current segment if it encloses us. */ | |
163 | if (f > rg->from) | |
164 | f = rg->from; | |
165 | ||
166 | /* Check for and consume any regions we now overlap with. */ | |
167 | nrg = rg; | |
168 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | |
169 | if (&rg->link == head) | |
170 | break; | |
171 | if (rg->from > t) | |
172 | break; | |
173 | ||
174 | /* If this area reaches higher then extend our area to | |
175 | * include it completely. If this is not the first area | |
176 | * which we intend to reuse, free it. */ | |
177 | if (rg->to > t) | |
178 | t = rg->to; | |
179 | if (rg != nrg) { | |
180 | list_del(&rg->link); | |
181 | kfree(rg); | |
182 | } | |
183 | } | |
184 | nrg->from = f; | |
185 | nrg->to = t; | |
186 | return 0; | |
187 | } | |
188 | ||
189 | static long region_chg(struct list_head *head, long f, long t) | |
190 | { | |
191 | struct file_region *rg, *nrg; | |
192 | long chg = 0; | |
193 | ||
194 | /* Locate the region we are before or in. */ | |
195 | list_for_each_entry(rg, head, link) | |
196 | if (f <= rg->to) | |
197 | break; | |
198 | ||
199 | /* If we are below the current region then a new region is required. | |
200 | * Subtle, allocate a new region at the position but make it zero | |
201 | * size such that we can guarantee to record the reservation. */ | |
202 | if (&rg->link == head || t < rg->from) { | |
203 | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | |
204 | if (!nrg) | |
205 | return -ENOMEM; | |
206 | nrg->from = f; | |
207 | nrg->to = f; | |
208 | INIT_LIST_HEAD(&nrg->link); | |
209 | list_add(&nrg->link, rg->link.prev); | |
210 | ||
211 | return t - f; | |
212 | } | |
213 | ||
214 | /* Round our left edge to the current segment if it encloses us. */ | |
215 | if (f > rg->from) | |
216 | f = rg->from; | |
217 | chg = t - f; | |
218 | ||
219 | /* Check for and consume any regions we now overlap with. */ | |
220 | list_for_each_entry(rg, rg->link.prev, link) { | |
221 | if (&rg->link == head) | |
222 | break; | |
223 | if (rg->from > t) | |
224 | return chg; | |
225 | ||
25985edc | 226 | /* We overlap with this area, if it extends further than |
96822904 AW |
227 | * us then we must extend ourselves. Account for its |
228 | * existing reservation. */ | |
229 | if (rg->to > t) { | |
230 | chg += rg->to - t; | |
231 | t = rg->to; | |
232 | } | |
233 | chg -= rg->to - rg->from; | |
234 | } | |
235 | return chg; | |
236 | } | |
237 | ||
238 | static long region_truncate(struct list_head *head, long end) | |
239 | { | |
240 | struct file_region *rg, *trg; | |
241 | long chg = 0; | |
242 | ||
243 | /* Locate the region we are either in or before. */ | |
244 | list_for_each_entry(rg, head, link) | |
245 | if (end <= rg->to) | |
246 | break; | |
247 | if (&rg->link == head) | |
248 | return 0; | |
249 | ||
250 | /* If we are in the middle of a region then adjust it. */ | |
251 | if (end > rg->from) { | |
252 | chg = rg->to - end; | |
253 | rg->to = end; | |
254 | rg = list_entry(rg->link.next, typeof(*rg), link); | |
255 | } | |
256 | ||
257 | /* Drop any remaining regions. */ | |
258 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | |
259 | if (&rg->link == head) | |
260 | break; | |
261 | chg += rg->to - rg->from; | |
262 | list_del(&rg->link); | |
263 | kfree(rg); | |
264 | } | |
265 | return chg; | |
266 | } | |
267 | ||
84afd99b AW |
268 | static long region_count(struct list_head *head, long f, long t) |
269 | { | |
270 | struct file_region *rg; | |
271 | long chg = 0; | |
272 | ||
273 | /* Locate each segment we overlap with, and count that overlap. */ | |
274 | list_for_each_entry(rg, head, link) { | |
f2135a4a WSH |
275 | long seg_from; |
276 | long seg_to; | |
84afd99b AW |
277 | |
278 | if (rg->to <= f) | |
279 | continue; | |
280 | if (rg->from >= t) | |
281 | break; | |
282 | ||
283 | seg_from = max(rg->from, f); | |
284 | seg_to = min(rg->to, t); | |
285 | ||
286 | chg += seg_to - seg_from; | |
287 | } | |
288 | ||
289 | return chg; | |
290 | } | |
291 | ||
e7c4b0bf AW |
292 | /* |
293 | * Convert the address within this vma to the page offset within | |
294 | * the mapping, in pagecache page units; huge pages here. | |
295 | */ | |
a5516438 AK |
296 | static pgoff_t vma_hugecache_offset(struct hstate *h, |
297 | struct vm_area_struct *vma, unsigned long address) | |
e7c4b0bf | 298 | { |
a5516438 AK |
299 | return ((address - vma->vm_start) >> huge_page_shift(h)) + |
300 | (vma->vm_pgoff >> huge_page_order(h)); | |
e7c4b0bf AW |
301 | } |
302 | ||
0fe6e20b NH |
303 | pgoff_t linear_hugepage_index(struct vm_area_struct *vma, |
304 | unsigned long address) | |
305 | { | |
306 | return vma_hugecache_offset(hstate_vma(vma), vma, address); | |
307 | } | |
308 | ||
08fba699 MG |
309 | /* |
310 | * Return the size of the pages allocated when backing a VMA. In the majority | |
311 | * cases this will be same size as used by the page table entries. | |
312 | */ | |
313 | unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) | |
314 | { | |
315 | struct hstate *hstate; | |
316 | ||
317 | if (!is_vm_hugetlb_page(vma)) | |
318 | return PAGE_SIZE; | |
319 | ||
320 | hstate = hstate_vma(vma); | |
321 | ||
2415cf12 | 322 | return 1UL << huge_page_shift(hstate); |
08fba699 | 323 | } |
f340ca0f | 324 | EXPORT_SYMBOL_GPL(vma_kernel_pagesize); |
08fba699 | 325 | |
3340289d MG |
326 | /* |
327 | * Return the page size being used by the MMU to back a VMA. In the majority | |
328 | * of cases, the page size used by the kernel matches the MMU size. On | |
329 | * architectures where it differs, an architecture-specific version of this | |
330 | * function is required. | |
331 | */ | |
332 | #ifndef vma_mmu_pagesize | |
333 | unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) | |
334 | { | |
335 | return vma_kernel_pagesize(vma); | |
336 | } | |
337 | #endif | |
338 | ||
84afd99b AW |
339 | /* |
340 | * Flags for MAP_PRIVATE reservations. These are stored in the bottom | |
341 | * bits of the reservation map pointer, which are always clear due to | |
342 | * alignment. | |
343 | */ | |
344 | #define HPAGE_RESV_OWNER (1UL << 0) | |
345 | #define HPAGE_RESV_UNMAPPED (1UL << 1) | |
04f2cbe3 | 346 | #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) |
84afd99b | 347 | |
a1e78772 MG |
348 | /* |
349 | * These helpers are used to track how many pages are reserved for | |
350 | * faults in a MAP_PRIVATE mapping. Only the process that called mmap() | |
351 | * is guaranteed to have their future faults succeed. | |
352 | * | |
353 | * With the exception of reset_vma_resv_huge_pages() which is called at fork(), | |
354 | * the reserve counters are updated with the hugetlb_lock held. It is safe | |
355 | * to reset the VMA at fork() time as it is not in use yet and there is no | |
356 | * chance of the global counters getting corrupted as a result of the values. | |
84afd99b AW |
357 | * |
358 | * The private mapping reservation is represented in a subtly different | |
359 | * manner to a shared mapping. A shared mapping has a region map associated | |
360 | * with the underlying file, this region map represents the backing file | |
361 | * pages which have ever had a reservation assigned which this persists even | |
362 | * after the page is instantiated. A private mapping has a region map | |
363 | * associated with the original mmap which is attached to all VMAs which | |
364 | * reference it, this region map represents those offsets which have consumed | |
365 | * reservation ie. where pages have been instantiated. | |
a1e78772 | 366 | */ |
e7c4b0bf AW |
367 | static unsigned long get_vma_private_data(struct vm_area_struct *vma) |
368 | { | |
369 | return (unsigned long)vma->vm_private_data; | |
370 | } | |
371 | ||
372 | static void set_vma_private_data(struct vm_area_struct *vma, | |
373 | unsigned long value) | |
374 | { | |
375 | vma->vm_private_data = (void *)value; | |
376 | } | |
377 | ||
84afd99b AW |
378 | struct resv_map { |
379 | struct kref refs; | |
380 | struct list_head regions; | |
381 | }; | |
382 | ||
2a4b3ded | 383 | static struct resv_map *resv_map_alloc(void) |
84afd99b AW |
384 | { |
385 | struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); | |
386 | if (!resv_map) | |
387 | return NULL; | |
388 | ||
389 | kref_init(&resv_map->refs); | |
390 | INIT_LIST_HEAD(&resv_map->regions); | |
391 | ||
392 | return resv_map; | |
393 | } | |
394 | ||
2a4b3ded | 395 | static void resv_map_release(struct kref *ref) |
84afd99b AW |
396 | { |
397 | struct resv_map *resv_map = container_of(ref, struct resv_map, refs); | |
398 | ||
399 | /* Clear out any active regions before we release the map. */ | |
400 | region_truncate(&resv_map->regions, 0); | |
401 | kfree(resv_map); | |
402 | } | |
403 | ||
404 | static struct resv_map *vma_resv_map(struct vm_area_struct *vma) | |
a1e78772 MG |
405 | { |
406 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | |
f83a275d | 407 | if (!(vma->vm_flags & VM_MAYSHARE)) |
84afd99b AW |
408 | return (struct resv_map *)(get_vma_private_data(vma) & |
409 | ~HPAGE_RESV_MASK); | |
2a4b3ded | 410 | return NULL; |
a1e78772 MG |
411 | } |
412 | ||
84afd99b | 413 | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) |
a1e78772 MG |
414 | { |
415 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | |
f83a275d | 416 | VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); |
a1e78772 | 417 | |
84afd99b AW |
418 | set_vma_private_data(vma, (get_vma_private_data(vma) & |
419 | HPAGE_RESV_MASK) | (unsigned long)map); | |
04f2cbe3 MG |
420 | } |
421 | ||
422 | static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) | |
423 | { | |
04f2cbe3 | 424 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); |
f83a275d | 425 | VM_BUG_ON(vma->vm_flags & VM_MAYSHARE); |
e7c4b0bf AW |
426 | |
427 | set_vma_private_data(vma, get_vma_private_data(vma) | flags); | |
04f2cbe3 MG |
428 | } |
429 | ||
430 | static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) | |
431 | { | |
432 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | |
e7c4b0bf AW |
433 | |
434 | return (get_vma_private_data(vma) & flag) != 0; | |
a1e78772 MG |
435 | } |
436 | ||
437 | /* Decrement the reserved pages in the hugepage pool by one */ | |
a5516438 AK |
438 | static void decrement_hugepage_resv_vma(struct hstate *h, |
439 | struct vm_area_struct *vma) | |
a1e78772 | 440 | { |
c37f9fb1 AW |
441 | if (vma->vm_flags & VM_NORESERVE) |
442 | return; | |
443 | ||
f83a275d | 444 | if (vma->vm_flags & VM_MAYSHARE) { |
a1e78772 | 445 | /* Shared mappings always use reserves */ |
a5516438 | 446 | h->resv_huge_pages--; |
84afd99b | 447 | } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { |
a1e78772 MG |
448 | /* |
449 | * Only the process that called mmap() has reserves for | |
450 | * private mappings. | |
451 | */ | |
a5516438 | 452 | h->resv_huge_pages--; |
a1e78772 MG |
453 | } |
454 | } | |
455 | ||
04f2cbe3 | 456 | /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ |
a1e78772 MG |
457 | void reset_vma_resv_huge_pages(struct vm_area_struct *vma) |
458 | { | |
459 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | |
f83a275d | 460 | if (!(vma->vm_flags & VM_MAYSHARE)) |
a1e78772 MG |
461 | vma->vm_private_data = (void *)0; |
462 | } | |
463 | ||
464 | /* Returns true if the VMA has associated reserve pages */ | |
7f09ca51 | 465 | static int vma_has_reserves(struct vm_area_struct *vma) |
a1e78772 | 466 | { |
f83a275d | 467 | if (vma->vm_flags & VM_MAYSHARE) |
7f09ca51 MG |
468 | return 1; |
469 | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) | |
470 | return 1; | |
471 | return 0; | |
a1e78772 MG |
472 | } |
473 | ||
0ebabb41 NH |
474 | static void copy_gigantic_page(struct page *dst, struct page *src) |
475 | { | |
476 | int i; | |
477 | struct hstate *h = page_hstate(src); | |
478 | struct page *dst_base = dst; | |
479 | struct page *src_base = src; | |
480 | ||
481 | for (i = 0; i < pages_per_huge_page(h); ) { | |
482 | cond_resched(); | |
483 | copy_highpage(dst, src); | |
484 | ||
485 | i++; | |
486 | dst = mem_map_next(dst, dst_base, i); | |
487 | src = mem_map_next(src, src_base, i); | |
488 | } | |
489 | } | |
490 | ||
491 | void copy_huge_page(struct page *dst, struct page *src) | |
492 | { | |
493 | int i; | |
494 | struct hstate *h = page_hstate(src); | |
495 | ||
496 | if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { | |
497 | copy_gigantic_page(dst, src); | |
498 | return; | |
499 | } | |
500 | ||
501 | might_sleep(); | |
502 | for (i = 0; i < pages_per_huge_page(h); i++) { | |
503 | cond_resched(); | |
504 | copy_highpage(dst + i, src + i); | |
505 | } | |
506 | } | |
507 | ||
a5516438 | 508 | static void enqueue_huge_page(struct hstate *h, struct page *page) |
1da177e4 LT |
509 | { |
510 | int nid = page_to_nid(page); | |
0edaecfa | 511 | list_move(&page->lru, &h->hugepage_freelists[nid]); |
a5516438 AK |
512 | h->free_huge_pages++; |
513 | h->free_huge_pages_node[nid]++; | |
1da177e4 LT |
514 | } |
515 | ||
bf50bab2 NH |
516 | static struct page *dequeue_huge_page_node(struct hstate *h, int nid) |
517 | { | |
518 | struct page *page; | |
519 | ||
520 | if (list_empty(&h->hugepage_freelists[nid])) | |
521 | return NULL; | |
522 | page = list_entry(h->hugepage_freelists[nid].next, struct page, lru); | |
0edaecfa | 523 | list_move(&page->lru, &h->hugepage_activelist); |
a9869b83 | 524 | set_page_refcounted(page); |
bf50bab2 NH |
525 | h->free_huge_pages--; |
526 | h->free_huge_pages_node[nid]--; | |
527 | return page; | |
528 | } | |
529 | ||
a5516438 AK |
530 | static struct page *dequeue_huge_page_vma(struct hstate *h, |
531 | struct vm_area_struct *vma, | |
04f2cbe3 | 532 | unsigned long address, int avoid_reserve) |
1da177e4 | 533 | { |
b1c12cbc | 534 | struct page *page = NULL; |
480eccf9 | 535 | struct mempolicy *mpol; |
19770b32 | 536 | nodemask_t *nodemask; |
c0ff7453 | 537 | struct zonelist *zonelist; |
dd1a239f MG |
538 | struct zone *zone; |
539 | struct zoneref *z; | |
cc9a6c87 | 540 | unsigned int cpuset_mems_cookie; |
1da177e4 | 541 | |
a1e78772 MG |
542 | /* |
543 | * A child process with MAP_PRIVATE mappings created by their parent | |
544 | * have no page reserves. This check ensures that reservations are | |
545 | * not "stolen". The child may still get SIGKILLed | |
546 | */ | |
7f09ca51 | 547 | if (!vma_has_reserves(vma) && |
a5516438 | 548 | h->free_huge_pages - h->resv_huge_pages == 0) |
c0ff7453 | 549 | goto err; |
a1e78772 | 550 | |
04f2cbe3 | 551 | /* If reserves cannot be used, ensure enough pages are in the pool */ |
a5516438 | 552 | if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) |
6eab04a8 | 553 | goto err; |
04f2cbe3 | 554 | |
9966c4bb JK |
555 | retry_cpuset: |
556 | cpuset_mems_cookie = get_mems_allowed(); | |
557 | zonelist = huge_zonelist(vma, address, | |
558 | htlb_alloc_mask, &mpol, &nodemask); | |
559 | ||
19770b32 MG |
560 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
561 | MAX_NR_ZONES - 1, nodemask) { | |
bf50bab2 NH |
562 | if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) { |
563 | page = dequeue_huge_page_node(h, zone_to_nid(zone)); | |
564 | if (page) { | |
565 | if (!avoid_reserve) | |
566 | decrement_hugepage_resv_vma(h, vma); | |
567 | break; | |
568 | } | |
3abf7afd | 569 | } |
1da177e4 | 570 | } |
cc9a6c87 | 571 | |
52cd3b07 | 572 | mpol_cond_put(mpol); |
cc9a6c87 MG |
573 | if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) |
574 | goto retry_cpuset; | |
1da177e4 | 575 | return page; |
cc9a6c87 MG |
576 | |
577 | err: | |
cc9a6c87 | 578 | return NULL; |
1da177e4 LT |
579 | } |
580 | ||
a5516438 | 581 | static void update_and_free_page(struct hstate *h, struct page *page) |
6af2acb6 AL |
582 | { |
583 | int i; | |
a5516438 | 584 | |
18229df5 AW |
585 | VM_BUG_ON(h->order >= MAX_ORDER); |
586 | ||
a5516438 AK |
587 | h->nr_huge_pages--; |
588 | h->nr_huge_pages_node[page_to_nid(page)]--; | |
589 | for (i = 0; i < pages_per_huge_page(h); i++) { | |
32f84528 CF |
590 | page[i].flags &= ~(1 << PG_locked | 1 << PG_error | |
591 | 1 << PG_referenced | 1 << PG_dirty | | |
592 | 1 << PG_active | 1 << PG_reserved | | |
593 | 1 << PG_private | 1 << PG_writeback); | |
6af2acb6 | 594 | } |
9dd540e2 | 595 | VM_BUG_ON(hugetlb_cgroup_from_page(page)); |
6af2acb6 AL |
596 | set_compound_page_dtor(page, NULL); |
597 | set_page_refcounted(page); | |
7f2e9525 | 598 | arch_release_hugepage(page); |
a5516438 | 599 | __free_pages(page, huge_page_order(h)); |
6af2acb6 AL |
600 | } |
601 | ||
e5ff2159 AK |
602 | struct hstate *size_to_hstate(unsigned long size) |
603 | { | |
604 | struct hstate *h; | |
605 | ||
606 | for_each_hstate(h) { | |
607 | if (huge_page_size(h) == size) | |
608 | return h; | |
609 | } | |
610 | return NULL; | |
611 | } | |
612 | ||
27a85ef1 DG |
613 | static void free_huge_page(struct page *page) |
614 | { | |
a5516438 AK |
615 | /* |
616 | * Can't pass hstate in here because it is called from the | |
617 | * compound page destructor. | |
618 | */ | |
e5ff2159 | 619 | struct hstate *h = page_hstate(page); |
7893d1d5 | 620 | int nid = page_to_nid(page); |
90481622 DG |
621 | struct hugepage_subpool *spool = |
622 | (struct hugepage_subpool *)page_private(page); | |
27a85ef1 | 623 | |
e5df70ab | 624 | set_page_private(page, 0); |
23be7468 | 625 | page->mapping = NULL; |
7893d1d5 | 626 | BUG_ON(page_count(page)); |
0fe6e20b | 627 | BUG_ON(page_mapcount(page)); |
27a85ef1 DG |
628 | |
629 | spin_lock(&hugetlb_lock); | |
6d76dcf4 AK |
630 | hugetlb_cgroup_uncharge_page(hstate_index(h), |
631 | pages_per_huge_page(h), page); | |
aa888a74 | 632 | if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { |
0edaecfa AK |
633 | /* remove the page from active list */ |
634 | list_del(&page->lru); | |
a5516438 AK |
635 | update_and_free_page(h, page); |
636 | h->surplus_huge_pages--; | |
637 | h->surplus_huge_pages_node[nid]--; | |
7893d1d5 | 638 | } else { |
5d3a551c | 639 | arch_clear_hugepage_flags(page); |
a5516438 | 640 | enqueue_huge_page(h, page); |
7893d1d5 | 641 | } |
27a85ef1 | 642 | spin_unlock(&hugetlb_lock); |
90481622 | 643 | hugepage_subpool_put_pages(spool, 1); |
27a85ef1 DG |
644 | } |
645 | ||
a5516438 | 646 | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) |
b7ba30c6 | 647 | { |
0edaecfa | 648 | INIT_LIST_HEAD(&page->lru); |
b7ba30c6 AK |
649 | set_compound_page_dtor(page, free_huge_page); |
650 | spin_lock(&hugetlb_lock); | |
9dd540e2 | 651 | set_hugetlb_cgroup(page, NULL); |
a5516438 AK |
652 | h->nr_huge_pages++; |
653 | h->nr_huge_pages_node[nid]++; | |
b7ba30c6 AK |
654 | spin_unlock(&hugetlb_lock); |
655 | put_page(page); /* free it into the hugepage allocator */ | |
656 | } | |
657 | ||
20a0307c WF |
658 | static void prep_compound_gigantic_page(struct page *page, unsigned long order) |
659 | { | |
660 | int i; | |
661 | int nr_pages = 1 << order; | |
662 | struct page *p = page + 1; | |
663 | ||
664 | /* we rely on prep_new_huge_page to set the destructor */ | |
665 | set_compound_order(page, order); | |
666 | __SetPageHead(page); | |
667 | for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { | |
668 | __SetPageTail(p); | |
58a84aa9 | 669 | set_page_count(p, 0); |
20a0307c WF |
670 | p->first_page = page; |
671 | } | |
672 | } | |
673 | ||
7795912c AM |
674 | /* |
675 | * PageHuge() only returns true for hugetlbfs pages, but not for normal or | |
676 | * transparent huge pages. See the PageTransHuge() documentation for more | |
677 | * details. | |
678 | */ | |
20a0307c WF |
679 | int PageHuge(struct page *page) |
680 | { | |
681 | compound_page_dtor *dtor; | |
682 | ||
683 | if (!PageCompound(page)) | |
684 | return 0; | |
685 | ||
686 | page = compound_head(page); | |
687 | dtor = get_compound_page_dtor(page); | |
688 | ||
689 | return dtor == free_huge_page; | |
690 | } | |
43131e14 NH |
691 | EXPORT_SYMBOL_GPL(PageHuge); |
692 | ||
13d60f4b ZY |
693 | pgoff_t __basepage_index(struct page *page) |
694 | { | |
695 | struct page *page_head = compound_head(page); | |
696 | pgoff_t index = page_index(page_head); | |
697 | unsigned long compound_idx; | |
698 | ||
699 | if (!PageHuge(page_head)) | |
700 | return page_index(page); | |
701 | ||
702 | if (compound_order(page_head) >= MAX_ORDER) | |
703 | compound_idx = page_to_pfn(page) - page_to_pfn(page_head); | |
704 | else | |
705 | compound_idx = page - page_head; | |
706 | ||
707 | return (index << compound_order(page_head)) + compound_idx; | |
708 | } | |
709 | ||
a5516438 | 710 | static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) |
1da177e4 | 711 | { |
1da177e4 | 712 | struct page *page; |
f96efd58 | 713 | |
aa888a74 AK |
714 | if (h->order >= MAX_ORDER) |
715 | return NULL; | |
716 | ||
6484eb3e | 717 | page = alloc_pages_exact_node(nid, |
551883ae NA |
718 | htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| |
719 | __GFP_REPEAT|__GFP_NOWARN, | |
a5516438 | 720 | huge_page_order(h)); |
1da177e4 | 721 | if (page) { |
7f2e9525 | 722 | if (arch_prepare_hugepage(page)) { |
caff3a2c | 723 | __free_pages(page, huge_page_order(h)); |
7b8ee84d | 724 | return NULL; |
7f2e9525 | 725 | } |
a5516438 | 726 | prep_new_huge_page(h, page, nid); |
1da177e4 | 727 | } |
63b4613c NA |
728 | |
729 | return page; | |
730 | } | |
731 | ||
9a76db09 | 732 | /* |
6ae11b27 LS |
733 | * common helper functions for hstate_next_node_to_{alloc|free}. |
734 | * We may have allocated or freed a huge page based on a different | |
735 | * nodes_allowed previously, so h->next_node_to_{alloc|free} might | |
736 | * be outside of *nodes_allowed. Ensure that we use an allowed | |
737 | * node for alloc or free. | |
9a76db09 | 738 | */ |
6ae11b27 | 739 | static int next_node_allowed(int nid, nodemask_t *nodes_allowed) |
9a76db09 | 740 | { |
6ae11b27 | 741 | nid = next_node(nid, *nodes_allowed); |
9a76db09 | 742 | if (nid == MAX_NUMNODES) |
6ae11b27 | 743 | nid = first_node(*nodes_allowed); |
9a76db09 LS |
744 | VM_BUG_ON(nid >= MAX_NUMNODES); |
745 | ||
746 | return nid; | |
747 | } | |
748 | ||
6ae11b27 LS |
749 | static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed) |
750 | { | |
751 | if (!node_isset(nid, *nodes_allowed)) | |
752 | nid = next_node_allowed(nid, nodes_allowed); | |
753 | return nid; | |
754 | } | |
755 | ||
5ced66c9 | 756 | /* |
6ae11b27 LS |
757 | * returns the previously saved node ["this node"] from which to |
758 | * allocate a persistent huge page for the pool and advance the | |
759 | * next node from which to allocate, handling wrap at end of node | |
760 | * mask. | |
5ced66c9 | 761 | */ |
6ae11b27 LS |
762 | static int hstate_next_node_to_alloc(struct hstate *h, |
763 | nodemask_t *nodes_allowed) | |
5ced66c9 | 764 | { |
6ae11b27 LS |
765 | int nid; |
766 | ||
767 | VM_BUG_ON(!nodes_allowed); | |
768 | ||
769 | nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed); | |
770 | h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed); | |
9a76db09 | 771 | |
9a76db09 | 772 | return nid; |
5ced66c9 AK |
773 | } |
774 | ||
6ae11b27 | 775 | static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) |
63b4613c NA |
776 | { |
777 | struct page *page; | |
778 | int start_nid; | |
779 | int next_nid; | |
780 | int ret = 0; | |
781 | ||
6ae11b27 | 782 | start_nid = hstate_next_node_to_alloc(h, nodes_allowed); |
e8c5c824 | 783 | next_nid = start_nid; |
63b4613c NA |
784 | |
785 | do { | |
e8c5c824 | 786 | page = alloc_fresh_huge_page_node(h, next_nid); |
9a76db09 | 787 | if (page) { |
63b4613c | 788 | ret = 1; |
9a76db09 LS |
789 | break; |
790 | } | |
6ae11b27 | 791 | next_nid = hstate_next_node_to_alloc(h, nodes_allowed); |
9a76db09 | 792 | } while (next_nid != start_nid); |
63b4613c | 793 | |
3b116300 AL |
794 | if (ret) |
795 | count_vm_event(HTLB_BUDDY_PGALLOC); | |
796 | else | |
797 | count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); | |
798 | ||
63b4613c | 799 | return ret; |
1da177e4 LT |
800 | } |
801 | ||
e8c5c824 | 802 | /* |
6ae11b27 LS |
803 | * helper for free_pool_huge_page() - return the previously saved |
804 | * node ["this node"] from which to free a huge page. Advance the | |
805 | * next node id whether or not we find a free huge page to free so | |
806 | * that the next attempt to free addresses the next node. | |
e8c5c824 | 807 | */ |
6ae11b27 | 808 | static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) |
e8c5c824 | 809 | { |
6ae11b27 LS |
810 | int nid; |
811 | ||
812 | VM_BUG_ON(!nodes_allowed); | |
813 | ||
814 | nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed); | |
815 | h->next_nid_to_free = next_node_allowed(nid, nodes_allowed); | |
9a76db09 | 816 | |
9a76db09 | 817 | return nid; |
e8c5c824 LS |
818 | } |
819 | ||
820 | /* | |
821 | * Free huge page from pool from next node to free. | |
822 | * Attempt to keep persistent huge pages more or less | |
823 | * balanced over allowed nodes. | |
824 | * Called with hugetlb_lock locked. | |
825 | */ | |
6ae11b27 LS |
826 | static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, |
827 | bool acct_surplus) | |
e8c5c824 LS |
828 | { |
829 | int start_nid; | |
830 | int next_nid; | |
831 | int ret = 0; | |
832 | ||
6ae11b27 | 833 | start_nid = hstate_next_node_to_free(h, nodes_allowed); |
e8c5c824 LS |
834 | next_nid = start_nid; |
835 | ||
836 | do { | |
685f3457 LS |
837 | /* |
838 | * If we're returning unused surplus pages, only examine | |
839 | * nodes with surplus pages. | |
840 | */ | |
841 | if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) && | |
842 | !list_empty(&h->hugepage_freelists[next_nid])) { | |
e8c5c824 LS |
843 | struct page *page = |
844 | list_entry(h->hugepage_freelists[next_nid].next, | |
845 | struct page, lru); | |
846 | list_del(&page->lru); | |
847 | h->free_huge_pages--; | |
848 | h->free_huge_pages_node[next_nid]--; | |
685f3457 LS |
849 | if (acct_surplus) { |
850 | h->surplus_huge_pages--; | |
851 | h->surplus_huge_pages_node[next_nid]--; | |
852 | } | |
e8c5c824 LS |
853 | update_and_free_page(h, page); |
854 | ret = 1; | |
9a76db09 | 855 | break; |
e8c5c824 | 856 | } |
6ae11b27 | 857 | next_nid = hstate_next_node_to_free(h, nodes_allowed); |
9a76db09 | 858 | } while (next_nid != start_nid); |
e8c5c824 LS |
859 | |
860 | return ret; | |
861 | } | |
862 | ||
bf50bab2 | 863 | static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) |
7893d1d5 AL |
864 | { |
865 | struct page *page; | |
bf50bab2 | 866 | unsigned int r_nid; |
7893d1d5 | 867 | |
aa888a74 AK |
868 | if (h->order >= MAX_ORDER) |
869 | return NULL; | |
870 | ||
d1c3fb1f NA |
871 | /* |
872 | * Assume we will successfully allocate the surplus page to | |
873 | * prevent racing processes from causing the surplus to exceed | |
874 | * overcommit | |
875 | * | |
876 | * This however introduces a different race, where a process B | |
877 | * tries to grow the static hugepage pool while alloc_pages() is | |
878 | * called by process A. B will only examine the per-node | |
879 | * counters in determining if surplus huge pages can be | |
880 | * converted to normal huge pages in adjust_pool_surplus(). A | |
881 | * won't be able to increment the per-node counter, until the | |
882 | * lock is dropped by B, but B doesn't drop hugetlb_lock until | |
883 | * no more huge pages can be converted from surplus to normal | |
884 | * state (and doesn't try to convert again). Thus, we have a | |
885 | * case where a surplus huge page exists, the pool is grown, and | |
886 | * the surplus huge page still exists after, even though it | |
887 | * should just have been converted to a normal huge page. This | |
888 | * does not leak memory, though, as the hugepage will be freed | |
889 | * once it is out of use. It also does not allow the counters to | |
890 | * go out of whack in adjust_pool_surplus() as we don't modify | |
891 | * the node values until we've gotten the hugepage and only the | |
892 | * per-node value is checked there. | |
893 | */ | |
894 | spin_lock(&hugetlb_lock); | |
a5516438 | 895 | if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { |
d1c3fb1f NA |
896 | spin_unlock(&hugetlb_lock); |
897 | return NULL; | |
898 | } else { | |
a5516438 AK |
899 | h->nr_huge_pages++; |
900 | h->surplus_huge_pages++; | |
d1c3fb1f NA |
901 | } |
902 | spin_unlock(&hugetlb_lock); | |
903 | ||
bf50bab2 NH |
904 | if (nid == NUMA_NO_NODE) |
905 | page = alloc_pages(htlb_alloc_mask|__GFP_COMP| | |
906 | __GFP_REPEAT|__GFP_NOWARN, | |
907 | huge_page_order(h)); | |
908 | else | |
909 | page = alloc_pages_exact_node(nid, | |
910 | htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| | |
911 | __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); | |
d1c3fb1f | 912 | |
caff3a2c GS |
913 | if (page && arch_prepare_hugepage(page)) { |
914 | __free_pages(page, huge_page_order(h)); | |
ea5768c7 | 915 | page = NULL; |
caff3a2c GS |
916 | } |
917 | ||
d1c3fb1f | 918 | spin_lock(&hugetlb_lock); |
7893d1d5 | 919 | if (page) { |
0edaecfa | 920 | INIT_LIST_HEAD(&page->lru); |
bf50bab2 | 921 | r_nid = page_to_nid(page); |
7893d1d5 | 922 | set_compound_page_dtor(page, free_huge_page); |
9dd540e2 | 923 | set_hugetlb_cgroup(page, NULL); |
d1c3fb1f NA |
924 | /* |
925 | * We incremented the global counters already | |
926 | */ | |
bf50bab2 NH |
927 | h->nr_huge_pages_node[r_nid]++; |
928 | h->surplus_huge_pages_node[r_nid]++; | |
3b116300 | 929 | __count_vm_event(HTLB_BUDDY_PGALLOC); |
d1c3fb1f | 930 | } else { |
a5516438 AK |
931 | h->nr_huge_pages--; |
932 | h->surplus_huge_pages--; | |
3b116300 | 933 | __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); |
7893d1d5 | 934 | } |
d1c3fb1f | 935 | spin_unlock(&hugetlb_lock); |
7893d1d5 AL |
936 | |
937 | return page; | |
938 | } | |
939 | ||
bf50bab2 NH |
940 | /* |
941 | * This allocation function is useful in the context where vma is irrelevant. | |
942 | * E.g. soft-offlining uses this function because it only cares physical | |
943 | * address of error page. | |
944 | */ | |
945 | struct page *alloc_huge_page_node(struct hstate *h, int nid) | |
946 | { | |
947 | struct page *page; | |
948 | ||
949 | spin_lock(&hugetlb_lock); | |
950 | page = dequeue_huge_page_node(h, nid); | |
951 | spin_unlock(&hugetlb_lock); | |
952 | ||
94ae8ba7 | 953 | if (!page) |
bf50bab2 NH |
954 | page = alloc_buddy_huge_page(h, nid); |
955 | ||
956 | return page; | |
957 | } | |
958 | ||
e4e574b7 | 959 | /* |
25985edc | 960 | * Increase the hugetlb pool such that it can accommodate a reservation |
e4e574b7 AL |
961 | * of size 'delta'. |
962 | */ | |
a5516438 | 963 | static int gather_surplus_pages(struct hstate *h, int delta) |
e4e574b7 AL |
964 | { |
965 | struct list_head surplus_list; | |
966 | struct page *page, *tmp; | |
967 | int ret, i; | |
968 | int needed, allocated; | |
28073b02 | 969 | bool alloc_ok = true; |
e4e574b7 | 970 | |
a5516438 | 971 | needed = (h->resv_huge_pages + delta) - h->free_huge_pages; |
ac09b3a1 | 972 | if (needed <= 0) { |
a5516438 | 973 | h->resv_huge_pages += delta; |
e4e574b7 | 974 | return 0; |
ac09b3a1 | 975 | } |
e4e574b7 AL |
976 | |
977 | allocated = 0; | |
978 | INIT_LIST_HEAD(&surplus_list); | |
979 | ||
980 | ret = -ENOMEM; | |
981 | retry: | |
982 | spin_unlock(&hugetlb_lock); | |
983 | for (i = 0; i < needed; i++) { | |
bf50bab2 | 984 | page = alloc_buddy_huge_page(h, NUMA_NO_NODE); |
28073b02 HD |
985 | if (!page) { |
986 | alloc_ok = false; | |
987 | break; | |
988 | } | |
e4e574b7 AL |
989 | list_add(&page->lru, &surplus_list); |
990 | } | |
28073b02 | 991 | allocated += i; |
e4e574b7 AL |
992 | |
993 | /* | |
994 | * After retaking hugetlb_lock, we need to recalculate 'needed' | |
995 | * because either resv_huge_pages or free_huge_pages may have changed. | |
996 | */ | |
997 | spin_lock(&hugetlb_lock); | |
a5516438 AK |
998 | needed = (h->resv_huge_pages + delta) - |
999 | (h->free_huge_pages + allocated); | |
28073b02 HD |
1000 | if (needed > 0) { |
1001 | if (alloc_ok) | |
1002 | goto retry; | |
1003 | /* | |
1004 | * We were not able to allocate enough pages to | |
1005 | * satisfy the entire reservation so we free what | |
1006 | * we've allocated so far. | |
1007 | */ | |
1008 | goto free; | |
1009 | } | |
e4e574b7 AL |
1010 | /* |
1011 | * The surplus_list now contains _at_least_ the number of extra pages | |
25985edc | 1012 | * needed to accommodate the reservation. Add the appropriate number |
e4e574b7 | 1013 | * of pages to the hugetlb pool and free the extras back to the buddy |
ac09b3a1 AL |
1014 | * allocator. Commit the entire reservation here to prevent another |
1015 | * process from stealing the pages as they are added to the pool but | |
1016 | * before they are reserved. | |
e4e574b7 AL |
1017 | */ |
1018 | needed += allocated; | |
a5516438 | 1019 | h->resv_huge_pages += delta; |
e4e574b7 | 1020 | ret = 0; |
a9869b83 | 1021 | |
19fc3f0a | 1022 | /* Free the needed pages to the hugetlb pool */ |
e4e574b7 | 1023 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { |
19fc3f0a AL |
1024 | if ((--needed) < 0) |
1025 | break; | |
a9869b83 NH |
1026 | /* |
1027 | * This page is now managed by the hugetlb allocator and has | |
1028 | * no users -- drop the buddy allocator's reference. | |
1029 | */ | |
1030 | put_page_testzero(page); | |
1031 | VM_BUG_ON(page_count(page)); | |
a5516438 | 1032 | enqueue_huge_page(h, page); |
19fc3f0a | 1033 | } |
28073b02 | 1034 | free: |
b0365c8d | 1035 | spin_unlock(&hugetlb_lock); |
19fc3f0a AL |
1036 | |
1037 | /* Free unnecessary surplus pages to the buddy allocator */ | |
1038 | if (!list_empty(&surplus_list)) { | |
19fc3f0a | 1039 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { |
a9869b83 | 1040 | put_page(page); |
af767cbd | 1041 | } |
e4e574b7 | 1042 | } |
a9869b83 | 1043 | spin_lock(&hugetlb_lock); |
e4e574b7 AL |
1044 | |
1045 | return ret; | |
1046 | } | |
1047 | ||
1048 | /* | |
1049 | * When releasing a hugetlb pool reservation, any surplus pages that were | |
1050 | * allocated to satisfy the reservation must be explicitly freed if they were | |
1051 | * never used. | |
685f3457 | 1052 | * Called with hugetlb_lock held. |
e4e574b7 | 1053 | */ |
a5516438 AK |
1054 | static void return_unused_surplus_pages(struct hstate *h, |
1055 | unsigned long unused_resv_pages) | |
e4e574b7 | 1056 | { |
e4e574b7 AL |
1057 | unsigned long nr_pages; |
1058 | ||
ac09b3a1 | 1059 | /* Uncommit the reservation */ |
a5516438 | 1060 | h->resv_huge_pages -= unused_resv_pages; |
ac09b3a1 | 1061 | |
aa888a74 AK |
1062 | /* Cannot return gigantic pages currently */ |
1063 | if (h->order >= MAX_ORDER) | |
1064 | return; | |
1065 | ||
a5516438 | 1066 | nr_pages = min(unused_resv_pages, h->surplus_huge_pages); |
e4e574b7 | 1067 | |
685f3457 LS |
1068 | /* |
1069 | * We want to release as many surplus pages as possible, spread | |
9b5e5d0f LS |
1070 | * evenly across all nodes with memory. Iterate across these nodes |
1071 | * until we can no longer free unreserved surplus pages. This occurs | |
1072 | * when the nodes with surplus pages have no free pages. | |
1073 | * free_pool_huge_page() will balance the the freed pages across the | |
1074 | * on-line nodes with memory and will handle the hstate accounting. | |
685f3457 LS |
1075 | */ |
1076 | while (nr_pages--) { | |
8cebfcd0 | 1077 | if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1)) |
685f3457 | 1078 | break; |
e4e574b7 AL |
1079 | } |
1080 | } | |
1081 | ||
c37f9fb1 AW |
1082 | /* |
1083 | * Determine if the huge page at addr within the vma has an associated | |
1084 | * reservation. Where it does not we will need to logically increase | |
90481622 DG |
1085 | * reservation and actually increase subpool usage before an allocation |
1086 | * can occur. Where any new reservation would be required the | |
1087 | * reservation change is prepared, but not committed. Once the page | |
1088 | * has been allocated from the subpool and instantiated the change should | |
1089 | * be committed via vma_commit_reservation. No action is required on | |
1090 | * failure. | |
c37f9fb1 | 1091 | */ |
e2f17d94 | 1092 | static long vma_needs_reservation(struct hstate *h, |
a5516438 | 1093 | struct vm_area_struct *vma, unsigned long addr) |
c37f9fb1 AW |
1094 | { |
1095 | struct address_space *mapping = vma->vm_file->f_mapping; | |
1096 | struct inode *inode = mapping->host; | |
1097 | ||
f83a275d | 1098 | if (vma->vm_flags & VM_MAYSHARE) { |
a5516438 | 1099 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
c37f9fb1 AW |
1100 | return region_chg(&inode->i_mapping->private_list, |
1101 | idx, idx + 1); | |
1102 | ||
84afd99b AW |
1103 | } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { |
1104 | return 1; | |
c37f9fb1 | 1105 | |
84afd99b | 1106 | } else { |
e2f17d94 | 1107 | long err; |
a5516438 | 1108 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
84afd99b AW |
1109 | struct resv_map *reservations = vma_resv_map(vma); |
1110 | ||
1111 | err = region_chg(&reservations->regions, idx, idx + 1); | |
1112 | if (err < 0) | |
1113 | return err; | |
1114 | return 0; | |
1115 | } | |
c37f9fb1 | 1116 | } |
a5516438 AK |
1117 | static void vma_commit_reservation(struct hstate *h, |
1118 | struct vm_area_struct *vma, unsigned long addr) | |
c37f9fb1 AW |
1119 | { |
1120 | struct address_space *mapping = vma->vm_file->f_mapping; | |
1121 | struct inode *inode = mapping->host; | |
1122 | ||
f83a275d | 1123 | if (vma->vm_flags & VM_MAYSHARE) { |
a5516438 | 1124 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
c37f9fb1 | 1125 | region_add(&inode->i_mapping->private_list, idx, idx + 1); |
84afd99b AW |
1126 | |
1127 | } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | |
a5516438 | 1128 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
84afd99b AW |
1129 | struct resv_map *reservations = vma_resv_map(vma); |
1130 | ||
1131 | /* Mark this page used in the map. */ | |
1132 | region_add(&reservations->regions, idx, idx + 1); | |
c37f9fb1 AW |
1133 | } |
1134 | } | |
1135 | ||
a1e78772 | 1136 | static struct page *alloc_huge_page(struct vm_area_struct *vma, |
04f2cbe3 | 1137 | unsigned long addr, int avoid_reserve) |
1da177e4 | 1138 | { |
90481622 | 1139 | struct hugepage_subpool *spool = subpool_vma(vma); |
a5516438 | 1140 | struct hstate *h = hstate_vma(vma); |
348ea204 | 1141 | struct page *page; |
e2f17d94 | 1142 | long chg; |
6d76dcf4 AK |
1143 | int ret, idx; |
1144 | struct hugetlb_cgroup *h_cg; | |
a1e78772 | 1145 | |
6d76dcf4 | 1146 | idx = hstate_index(h); |
a1e78772 | 1147 | /* |
90481622 DG |
1148 | * Processes that did not create the mapping will have no |
1149 | * reserves and will not have accounted against subpool | |
1150 | * limit. Check that the subpool limit can be made before | |
1151 | * satisfying the allocation MAP_NORESERVE mappings may also | |
1152 | * need pages and subpool limit allocated allocated if no reserve | |
1153 | * mapping overlaps. | |
a1e78772 | 1154 | */ |
a5516438 | 1155 | chg = vma_needs_reservation(h, vma, addr); |
c37f9fb1 | 1156 | if (chg < 0) |
76dcee75 | 1157 | return ERR_PTR(-ENOMEM); |
c37f9fb1 | 1158 | if (chg) |
90481622 | 1159 | if (hugepage_subpool_get_pages(spool, chg)) |
76dcee75 | 1160 | return ERR_PTR(-ENOSPC); |
1da177e4 | 1161 | |
6d76dcf4 AK |
1162 | ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); |
1163 | if (ret) { | |
1164 | hugepage_subpool_put_pages(spool, chg); | |
1165 | return ERR_PTR(-ENOSPC); | |
1166 | } | |
1da177e4 | 1167 | spin_lock(&hugetlb_lock); |
a5516438 | 1168 | page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); |
81a6fcae | 1169 | if (!page) { |
94ae8ba7 | 1170 | spin_unlock(&hugetlb_lock); |
bf50bab2 | 1171 | page = alloc_buddy_huge_page(h, NUMA_NO_NODE); |
68842c9b | 1172 | if (!page) { |
6d76dcf4 AK |
1173 | hugetlb_cgroup_uncharge_cgroup(idx, |
1174 | pages_per_huge_page(h), | |
1175 | h_cg); | |
90481622 | 1176 | hugepage_subpool_put_pages(spool, chg); |
76dcee75 | 1177 | return ERR_PTR(-ENOSPC); |
68842c9b | 1178 | } |
79dbb236 AK |
1179 | spin_lock(&hugetlb_lock); |
1180 | list_move(&page->lru, &h->hugepage_activelist); | |
81a6fcae | 1181 | /* Fall through */ |
68842c9b | 1182 | } |
81a6fcae JK |
1183 | hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); |
1184 | spin_unlock(&hugetlb_lock); | |
348ea204 | 1185 | |
90481622 | 1186 | set_page_private(page, (unsigned long)spool); |
90d8b7e6 | 1187 | |
a5516438 | 1188 | vma_commit_reservation(h, vma, addr); |
90d8b7e6 | 1189 | return page; |
b45b5bd6 DG |
1190 | } |
1191 | ||
91f47662 | 1192 | int __weak alloc_bootmem_huge_page(struct hstate *h) |
aa888a74 AK |
1193 | { |
1194 | struct huge_bootmem_page *m; | |
8cebfcd0 | 1195 | int nr_nodes = nodes_weight(node_states[N_MEMORY]); |
aa888a74 AK |
1196 | |
1197 | while (nr_nodes) { | |
1198 | void *addr; | |
1199 | ||
1200 | addr = __alloc_bootmem_node_nopanic( | |
6ae11b27 | 1201 | NODE_DATA(hstate_next_node_to_alloc(h, |
8cebfcd0 | 1202 | &node_states[N_MEMORY])), |
aa888a74 AK |
1203 | huge_page_size(h), huge_page_size(h), 0); |
1204 | ||
1205 | if (addr) { | |
1206 | /* | |
1207 | * Use the beginning of the huge page to store the | |
1208 | * huge_bootmem_page struct (until gather_bootmem | |
1209 | * puts them into the mem_map). | |
1210 | */ | |
1211 | m = addr; | |
91f47662 | 1212 | goto found; |
aa888a74 | 1213 | } |
aa888a74 AK |
1214 | nr_nodes--; |
1215 | } | |
1216 | return 0; | |
1217 | ||
1218 | found: | |
1219 | BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); | |
1220 | /* Put them into a private list first because mem_map is not up yet */ | |
1221 | list_add(&m->list, &huge_boot_pages); | |
1222 | m->hstate = h; | |
1223 | return 1; | |
1224 | } | |
1225 | ||
18229df5 AW |
1226 | static void prep_compound_huge_page(struct page *page, int order) |
1227 | { | |
1228 | if (unlikely(order > (MAX_ORDER - 1))) | |
1229 | prep_compound_gigantic_page(page, order); | |
1230 | else | |
1231 | prep_compound_page(page, order); | |
1232 | } | |
1233 | ||
aa888a74 AK |
1234 | /* Put bootmem huge pages into the standard lists after mem_map is up */ |
1235 | static void __init gather_bootmem_prealloc(void) | |
1236 | { | |
1237 | struct huge_bootmem_page *m; | |
1238 | ||
1239 | list_for_each_entry(m, &huge_boot_pages, list) { | |
aa888a74 | 1240 | struct hstate *h = m->hstate; |
ee8f248d BB |
1241 | struct page *page; |
1242 | ||
1243 | #ifdef CONFIG_HIGHMEM | |
1244 | page = pfn_to_page(m->phys >> PAGE_SHIFT); | |
1245 | free_bootmem_late((unsigned long)m, | |
1246 | sizeof(struct huge_bootmem_page)); | |
1247 | #else | |
1248 | page = virt_to_page(m); | |
1249 | #endif | |
aa888a74 AK |
1250 | __ClearPageReserved(page); |
1251 | WARN_ON(page_count(page) != 1); | |
18229df5 | 1252 | prep_compound_huge_page(page, h->order); |
aa888a74 | 1253 | prep_new_huge_page(h, page, page_to_nid(page)); |
b0320c7b RA |
1254 | /* |
1255 | * If we had gigantic hugepages allocated at boot time, we need | |
1256 | * to restore the 'stolen' pages to totalram_pages in order to | |
1257 | * fix confusing memory reports from free(1) and another | |
1258 | * side-effects, like CommitLimit going negative. | |
1259 | */ | |
1260 | if (h->order > (MAX_ORDER - 1)) | |
3dcc0571 | 1261 | adjust_managed_page_count(page, 1 << h->order); |
aa888a74 AK |
1262 | } |
1263 | } | |
1264 | ||
8faa8b07 | 1265 | static void __init hugetlb_hstate_alloc_pages(struct hstate *h) |
1da177e4 LT |
1266 | { |
1267 | unsigned long i; | |
a5516438 | 1268 | |
e5ff2159 | 1269 | for (i = 0; i < h->max_huge_pages; ++i) { |
aa888a74 AK |
1270 | if (h->order >= MAX_ORDER) { |
1271 | if (!alloc_bootmem_huge_page(h)) | |
1272 | break; | |
9b5e5d0f | 1273 | } else if (!alloc_fresh_huge_page(h, |
8cebfcd0 | 1274 | &node_states[N_MEMORY])) |
1da177e4 | 1275 | break; |
1da177e4 | 1276 | } |
8faa8b07 | 1277 | h->max_huge_pages = i; |
e5ff2159 AK |
1278 | } |
1279 | ||
1280 | static void __init hugetlb_init_hstates(void) | |
1281 | { | |
1282 | struct hstate *h; | |
1283 | ||
1284 | for_each_hstate(h) { | |
8faa8b07 AK |
1285 | /* oversize hugepages were init'ed in early boot */ |
1286 | if (h->order < MAX_ORDER) | |
1287 | hugetlb_hstate_alloc_pages(h); | |
e5ff2159 AK |
1288 | } |
1289 | } | |
1290 | ||
4abd32db AK |
1291 | static char * __init memfmt(char *buf, unsigned long n) |
1292 | { | |
1293 | if (n >= (1UL << 30)) | |
1294 | sprintf(buf, "%lu GB", n >> 30); | |
1295 | else if (n >= (1UL << 20)) | |
1296 | sprintf(buf, "%lu MB", n >> 20); | |
1297 | else | |
1298 | sprintf(buf, "%lu KB", n >> 10); | |
1299 | return buf; | |
1300 | } | |
1301 | ||
e5ff2159 AK |
1302 | static void __init report_hugepages(void) |
1303 | { | |
1304 | struct hstate *h; | |
1305 | ||
1306 | for_each_hstate(h) { | |
4abd32db | 1307 | char buf[32]; |
ffb22af5 | 1308 | pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n", |
4abd32db AK |
1309 | memfmt(buf, huge_page_size(h)), |
1310 | h->free_huge_pages); | |
e5ff2159 AK |
1311 | } |
1312 | } | |
1313 | ||
1da177e4 | 1314 | #ifdef CONFIG_HIGHMEM |
6ae11b27 LS |
1315 | static void try_to_free_low(struct hstate *h, unsigned long count, |
1316 | nodemask_t *nodes_allowed) | |
1da177e4 | 1317 | { |
4415cc8d CL |
1318 | int i; |
1319 | ||
aa888a74 AK |
1320 | if (h->order >= MAX_ORDER) |
1321 | return; | |
1322 | ||
6ae11b27 | 1323 | for_each_node_mask(i, *nodes_allowed) { |
1da177e4 | 1324 | struct page *page, *next; |
a5516438 AK |
1325 | struct list_head *freel = &h->hugepage_freelists[i]; |
1326 | list_for_each_entry_safe(page, next, freel, lru) { | |
1327 | if (count >= h->nr_huge_pages) | |
6b0c880d | 1328 | return; |
1da177e4 LT |
1329 | if (PageHighMem(page)) |
1330 | continue; | |
1331 | list_del(&page->lru); | |
e5ff2159 | 1332 | update_and_free_page(h, page); |
a5516438 AK |
1333 | h->free_huge_pages--; |
1334 | h->free_huge_pages_node[page_to_nid(page)]--; | |
1da177e4 LT |
1335 | } |
1336 | } | |
1337 | } | |
1338 | #else | |
6ae11b27 LS |
1339 | static inline void try_to_free_low(struct hstate *h, unsigned long count, |
1340 | nodemask_t *nodes_allowed) | |
1da177e4 LT |
1341 | { |
1342 | } | |
1343 | #endif | |
1344 | ||
20a0307c WF |
1345 | /* |
1346 | * Increment or decrement surplus_huge_pages. Keep node-specific counters | |
1347 | * balanced by operating on them in a round-robin fashion. | |
1348 | * Returns 1 if an adjustment was made. | |
1349 | */ | |
6ae11b27 LS |
1350 | static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, |
1351 | int delta) | |
20a0307c | 1352 | { |
e8c5c824 | 1353 | int start_nid, next_nid; |
20a0307c WF |
1354 | int ret = 0; |
1355 | ||
1356 | VM_BUG_ON(delta != -1 && delta != 1); | |
20a0307c | 1357 | |
e8c5c824 | 1358 | if (delta < 0) |
6ae11b27 | 1359 | start_nid = hstate_next_node_to_alloc(h, nodes_allowed); |
e8c5c824 | 1360 | else |
6ae11b27 | 1361 | start_nid = hstate_next_node_to_free(h, nodes_allowed); |
e8c5c824 LS |
1362 | next_nid = start_nid; |
1363 | ||
1364 | do { | |
1365 | int nid = next_nid; | |
1366 | if (delta < 0) { | |
e8c5c824 LS |
1367 | /* |
1368 | * To shrink on this node, there must be a surplus page | |
1369 | */ | |
9a76db09 | 1370 | if (!h->surplus_huge_pages_node[nid]) { |
6ae11b27 LS |
1371 | next_nid = hstate_next_node_to_alloc(h, |
1372 | nodes_allowed); | |
e8c5c824 | 1373 | continue; |
9a76db09 | 1374 | } |
e8c5c824 LS |
1375 | } |
1376 | if (delta > 0) { | |
e8c5c824 LS |
1377 | /* |
1378 | * Surplus cannot exceed the total number of pages | |
1379 | */ | |
1380 | if (h->surplus_huge_pages_node[nid] >= | |
9a76db09 | 1381 | h->nr_huge_pages_node[nid]) { |
6ae11b27 LS |
1382 | next_nid = hstate_next_node_to_free(h, |
1383 | nodes_allowed); | |
e8c5c824 | 1384 | continue; |
9a76db09 | 1385 | } |
e8c5c824 | 1386 | } |
20a0307c WF |
1387 | |
1388 | h->surplus_huge_pages += delta; | |
1389 | h->surplus_huge_pages_node[nid] += delta; | |
1390 | ret = 1; | |
1391 | break; | |
e8c5c824 | 1392 | } while (next_nid != start_nid); |
20a0307c | 1393 | |
20a0307c WF |
1394 | return ret; |
1395 | } | |
1396 | ||
a5516438 | 1397 | #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) |
6ae11b27 LS |
1398 | static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count, |
1399 | nodemask_t *nodes_allowed) | |
1da177e4 | 1400 | { |
7893d1d5 | 1401 | unsigned long min_count, ret; |
1da177e4 | 1402 | |
aa888a74 AK |
1403 | if (h->order >= MAX_ORDER) |
1404 | return h->max_huge_pages; | |
1405 | ||
7893d1d5 AL |
1406 | /* |
1407 | * Increase the pool size | |
1408 | * First take pages out of surplus state. Then make up the | |
1409 | * remaining difference by allocating fresh huge pages. | |
d1c3fb1f NA |
1410 | * |
1411 | * We might race with alloc_buddy_huge_page() here and be unable | |
1412 | * to convert a surplus huge page to a normal huge page. That is | |
1413 | * not critical, though, it just means the overall size of the | |
1414 | * pool might be one hugepage larger than it needs to be, but | |
1415 | * within all the constraints specified by the sysctls. | |
7893d1d5 | 1416 | */ |
1da177e4 | 1417 | spin_lock(&hugetlb_lock); |
a5516438 | 1418 | while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { |
6ae11b27 | 1419 | if (!adjust_pool_surplus(h, nodes_allowed, -1)) |
7893d1d5 AL |
1420 | break; |
1421 | } | |
1422 | ||
a5516438 | 1423 | while (count > persistent_huge_pages(h)) { |
7893d1d5 AL |
1424 | /* |
1425 | * If this allocation races such that we no longer need the | |
1426 | * page, free_huge_page will handle it by freeing the page | |
1427 | * and reducing the surplus. | |
1428 | */ | |
1429 | spin_unlock(&hugetlb_lock); | |
6ae11b27 | 1430 | ret = alloc_fresh_huge_page(h, nodes_allowed); |
7893d1d5 AL |
1431 | spin_lock(&hugetlb_lock); |
1432 | if (!ret) | |
1433 | goto out; | |
1434 | ||
536240f2 MG |
1435 | /* Bail for signals. Probably ctrl-c from user */ |
1436 | if (signal_pending(current)) | |
1437 | goto out; | |
7893d1d5 | 1438 | } |
7893d1d5 AL |
1439 | |
1440 | /* | |
1441 | * Decrease the pool size | |
1442 | * First return free pages to the buddy allocator (being careful | |
1443 | * to keep enough around to satisfy reservations). Then place | |
1444 | * pages into surplus state as needed so the pool will shrink | |
1445 | * to the desired size as pages become free. | |
d1c3fb1f NA |
1446 | * |
1447 | * By placing pages into the surplus state independent of the | |
1448 | * overcommit value, we are allowing the surplus pool size to | |
1449 | * exceed overcommit. There are few sane options here. Since | |
1450 | * alloc_buddy_huge_page() is checking the global counter, | |
1451 | * though, we'll note that we're not allowed to exceed surplus | |
1452 | * and won't grow the pool anywhere else. Not until one of the | |
1453 | * sysctls are changed, or the surplus pages go out of use. | |
7893d1d5 | 1454 | */ |
a5516438 | 1455 | min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; |
6b0c880d | 1456 | min_count = max(count, min_count); |
6ae11b27 | 1457 | try_to_free_low(h, min_count, nodes_allowed); |
a5516438 | 1458 | while (min_count < persistent_huge_pages(h)) { |
6ae11b27 | 1459 | if (!free_pool_huge_page(h, nodes_allowed, 0)) |
1da177e4 | 1460 | break; |
1da177e4 | 1461 | } |
a5516438 | 1462 | while (count < persistent_huge_pages(h)) { |
6ae11b27 | 1463 | if (!adjust_pool_surplus(h, nodes_allowed, 1)) |
7893d1d5 AL |
1464 | break; |
1465 | } | |
1466 | out: | |
a5516438 | 1467 | ret = persistent_huge_pages(h); |
1da177e4 | 1468 | spin_unlock(&hugetlb_lock); |
7893d1d5 | 1469 | return ret; |
1da177e4 LT |
1470 | } |
1471 | ||
a3437870 NA |
1472 | #define HSTATE_ATTR_RO(_name) \ |
1473 | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | |
1474 | ||
1475 | #define HSTATE_ATTR(_name) \ | |
1476 | static struct kobj_attribute _name##_attr = \ | |
1477 | __ATTR(_name, 0644, _name##_show, _name##_store) | |
1478 | ||
1479 | static struct kobject *hugepages_kobj; | |
1480 | static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | |
1481 | ||
9a305230 LS |
1482 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp); |
1483 | ||
1484 | static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp) | |
a3437870 NA |
1485 | { |
1486 | int i; | |
9a305230 | 1487 | |
a3437870 | 1488 | for (i = 0; i < HUGE_MAX_HSTATE; i++) |
9a305230 LS |
1489 | if (hstate_kobjs[i] == kobj) { |
1490 | if (nidp) | |
1491 | *nidp = NUMA_NO_NODE; | |
a3437870 | 1492 | return &hstates[i]; |
9a305230 LS |
1493 | } |
1494 | ||
1495 | return kobj_to_node_hstate(kobj, nidp); | |
a3437870 NA |
1496 | } |
1497 | ||
06808b08 | 1498 | static ssize_t nr_hugepages_show_common(struct kobject *kobj, |
a3437870 NA |
1499 | struct kobj_attribute *attr, char *buf) |
1500 | { | |
9a305230 LS |
1501 | struct hstate *h; |
1502 | unsigned long nr_huge_pages; | |
1503 | int nid; | |
1504 | ||
1505 | h = kobj_to_hstate(kobj, &nid); | |
1506 | if (nid == NUMA_NO_NODE) | |
1507 | nr_huge_pages = h->nr_huge_pages; | |
1508 | else | |
1509 | nr_huge_pages = h->nr_huge_pages_node[nid]; | |
1510 | ||
1511 | return sprintf(buf, "%lu\n", nr_huge_pages); | |
a3437870 | 1512 | } |
adbe8726 | 1513 | |
06808b08 LS |
1514 | static ssize_t nr_hugepages_store_common(bool obey_mempolicy, |
1515 | struct kobject *kobj, struct kobj_attribute *attr, | |
1516 | const char *buf, size_t len) | |
a3437870 NA |
1517 | { |
1518 | int err; | |
9a305230 | 1519 | int nid; |
06808b08 | 1520 | unsigned long count; |
9a305230 | 1521 | struct hstate *h; |
bad44b5b | 1522 | NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); |
a3437870 | 1523 | |
3dbb95f7 | 1524 | err = kstrtoul(buf, 10, &count); |
73ae31e5 | 1525 | if (err) |
adbe8726 | 1526 | goto out; |
a3437870 | 1527 | |
9a305230 | 1528 | h = kobj_to_hstate(kobj, &nid); |
adbe8726 EM |
1529 | if (h->order >= MAX_ORDER) { |
1530 | err = -EINVAL; | |
1531 | goto out; | |
1532 | } | |
1533 | ||
9a305230 LS |
1534 | if (nid == NUMA_NO_NODE) { |
1535 | /* | |
1536 | * global hstate attribute | |
1537 | */ | |
1538 | if (!(obey_mempolicy && | |
1539 | init_nodemask_of_mempolicy(nodes_allowed))) { | |
1540 | NODEMASK_FREE(nodes_allowed); | |
8cebfcd0 | 1541 | nodes_allowed = &node_states[N_MEMORY]; |
9a305230 LS |
1542 | } |
1543 | } else if (nodes_allowed) { | |
1544 | /* | |
1545 | * per node hstate attribute: adjust count to global, | |
1546 | * but restrict alloc/free to the specified node. | |
1547 | */ | |
1548 | count += h->nr_huge_pages - h->nr_huge_pages_node[nid]; | |
1549 | init_nodemask_of_node(nodes_allowed, nid); | |
1550 | } else | |
8cebfcd0 | 1551 | nodes_allowed = &node_states[N_MEMORY]; |
9a305230 | 1552 | |
06808b08 | 1553 | h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed); |
a3437870 | 1554 | |
8cebfcd0 | 1555 | if (nodes_allowed != &node_states[N_MEMORY]) |
06808b08 LS |
1556 | NODEMASK_FREE(nodes_allowed); |
1557 | ||
1558 | return len; | |
adbe8726 EM |
1559 | out: |
1560 | NODEMASK_FREE(nodes_allowed); | |
1561 | return err; | |
06808b08 LS |
1562 | } |
1563 | ||
1564 | static ssize_t nr_hugepages_show(struct kobject *kobj, | |
1565 | struct kobj_attribute *attr, char *buf) | |
1566 | { | |
1567 | return nr_hugepages_show_common(kobj, attr, buf); | |
1568 | } | |
1569 | ||
1570 | static ssize_t nr_hugepages_store(struct kobject *kobj, | |
1571 | struct kobj_attribute *attr, const char *buf, size_t len) | |
1572 | { | |
1573 | return nr_hugepages_store_common(false, kobj, attr, buf, len); | |
a3437870 NA |
1574 | } |
1575 | HSTATE_ATTR(nr_hugepages); | |
1576 | ||
06808b08 LS |
1577 | #ifdef CONFIG_NUMA |
1578 | ||
1579 | /* | |
1580 | * hstate attribute for optionally mempolicy-based constraint on persistent | |
1581 | * huge page alloc/free. | |
1582 | */ | |
1583 | static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj, | |
1584 | struct kobj_attribute *attr, char *buf) | |
1585 | { | |
1586 | return nr_hugepages_show_common(kobj, attr, buf); | |
1587 | } | |
1588 | ||
1589 | static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj, | |
1590 | struct kobj_attribute *attr, const char *buf, size_t len) | |
1591 | { | |
1592 | return nr_hugepages_store_common(true, kobj, attr, buf, len); | |
1593 | } | |
1594 | HSTATE_ATTR(nr_hugepages_mempolicy); | |
1595 | #endif | |
1596 | ||
1597 | ||
a3437870 NA |
1598 | static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, |
1599 | struct kobj_attribute *attr, char *buf) | |
1600 | { | |
9a305230 | 1601 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
a3437870 NA |
1602 | return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); |
1603 | } | |
adbe8726 | 1604 | |
a3437870 NA |
1605 | static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, |
1606 | struct kobj_attribute *attr, const char *buf, size_t count) | |
1607 | { | |
1608 | int err; | |
1609 | unsigned long input; | |
9a305230 | 1610 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
a3437870 | 1611 | |
adbe8726 EM |
1612 | if (h->order >= MAX_ORDER) |
1613 | return -EINVAL; | |
1614 | ||
3dbb95f7 | 1615 | err = kstrtoul(buf, 10, &input); |
a3437870 | 1616 | if (err) |
73ae31e5 | 1617 | return err; |
a3437870 NA |
1618 | |
1619 | spin_lock(&hugetlb_lock); | |
1620 | h->nr_overcommit_huge_pages = input; | |
1621 | spin_unlock(&hugetlb_lock); | |
1622 | ||
1623 | return count; | |
1624 | } | |
1625 | HSTATE_ATTR(nr_overcommit_hugepages); | |
1626 | ||
1627 | static ssize_t free_hugepages_show(struct kobject *kobj, | |
1628 | struct kobj_attribute *attr, char *buf) | |
1629 | { | |
9a305230 LS |
1630 | struct hstate *h; |
1631 | unsigned long free_huge_pages; | |
1632 | int nid; | |
1633 | ||
1634 | h = kobj_to_hstate(kobj, &nid); | |
1635 | if (nid == NUMA_NO_NODE) | |
1636 | free_huge_pages = h->free_huge_pages; | |
1637 | else | |
1638 | free_huge_pages = h->free_huge_pages_node[nid]; | |
1639 | ||
1640 | return sprintf(buf, "%lu\n", free_huge_pages); | |
a3437870 NA |
1641 | } |
1642 | HSTATE_ATTR_RO(free_hugepages); | |
1643 | ||
1644 | static ssize_t resv_hugepages_show(struct kobject *kobj, | |
1645 | struct kobj_attribute *attr, char *buf) | |
1646 | { | |
9a305230 | 1647 | struct hstate *h = kobj_to_hstate(kobj, NULL); |
a3437870 NA |
1648 | return sprintf(buf, "%lu\n", h->resv_huge_pages); |
1649 | } | |
1650 | HSTATE_ATTR_RO(resv_hugepages); | |
1651 | ||
1652 | static ssize_t surplus_hugepages_show(struct kobject *kobj, | |
1653 | struct kobj_attribute *attr, char *buf) | |
1654 | { | |
9a305230 LS |
1655 | struct hstate *h; |
1656 | unsigned long surplus_huge_pages; | |
1657 | int nid; | |
1658 | ||
1659 | h = kobj_to_hstate(kobj, &nid); | |
1660 | if (nid == NUMA_NO_NODE) | |
1661 | surplus_huge_pages = h->surplus_huge_pages; | |
1662 | else | |
1663 | surplus_huge_pages = h->surplus_huge_pages_node[nid]; | |
1664 | ||
1665 | return sprintf(buf, "%lu\n", surplus_huge_pages); | |
a3437870 NA |
1666 | } |
1667 | HSTATE_ATTR_RO(surplus_hugepages); | |
1668 | ||
1669 | static struct attribute *hstate_attrs[] = { | |
1670 | &nr_hugepages_attr.attr, | |
1671 | &nr_overcommit_hugepages_attr.attr, | |
1672 | &free_hugepages_attr.attr, | |
1673 | &resv_hugepages_attr.attr, | |
1674 | &surplus_hugepages_attr.attr, | |
06808b08 LS |
1675 | #ifdef CONFIG_NUMA |
1676 | &nr_hugepages_mempolicy_attr.attr, | |
1677 | #endif | |
a3437870 NA |
1678 | NULL, |
1679 | }; | |
1680 | ||
1681 | static struct attribute_group hstate_attr_group = { | |
1682 | .attrs = hstate_attrs, | |
1683 | }; | |
1684 | ||
094e9539 JM |
1685 | static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent, |
1686 | struct kobject **hstate_kobjs, | |
1687 | struct attribute_group *hstate_attr_group) | |
a3437870 NA |
1688 | { |
1689 | int retval; | |
972dc4de | 1690 | int hi = hstate_index(h); |
a3437870 | 1691 | |
9a305230 LS |
1692 | hstate_kobjs[hi] = kobject_create_and_add(h->name, parent); |
1693 | if (!hstate_kobjs[hi]) | |
a3437870 NA |
1694 | return -ENOMEM; |
1695 | ||
9a305230 | 1696 | retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group); |
a3437870 | 1697 | if (retval) |
9a305230 | 1698 | kobject_put(hstate_kobjs[hi]); |
a3437870 NA |
1699 | |
1700 | return retval; | |
1701 | } | |
1702 | ||
1703 | static void __init hugetlb_sysfs_init(void) | |
1704 | { | |
1705 | struct hstate *h; | |
1706 | int err; | |
1707 | ||
1708 | hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); | |
1709 | if (!hugepages_kobj) | |
1710 | return; | |
1711 | ||
1712 | for_each_hstate(h) { | |
9a305230 LS |
1713 | err = hugetlb_sysfs_add_hstate(h, hugepages_kobj, |
1714 | hstate_kobjs, &hstate_attr_group); | |
a3437870 | 1715 | if (err) |
ffb22af5 | 1716 | pr_err("Hugetlb: Unable to add hstate %s", h->name); |
a3437870 NA |
1717 | } |
1718 | } | |
1719 | ||
9a305230 LS |
1720 | #ifdef CONFIG_NUMA |
1721 | ||
1722 | /* | |
1723 | * node_hstate/s - associate per node hstate attributes, via their kobjects, | |
10fbcf4c KS |
1724 | * with node devices in node_devices[] using a parallel array. The array |
1725 | * index of a node device or _hstate == node id. | |
1726 | * This is here to avoid any static dependency of the node device driver, in | |
9a305230 LS |
1727 | * the base kernel, on the hugetlb module. |
1728 | */ | |
1729 | struct node_hstate { | |
1730 | struct kobject *hugepages_kobj; | |
1731 | struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | |
1732 | }; | |
1733 | struct node_hstate node_hstates[MAX_NUMNODES]; | |
1734 | ||
1735 | /* | |
10fbcf4c | 1736 | * A subset of global hstate attributes for node devices |
9a305230 LS |
1737 | */ |
1738 | static struct attribute *per_node_hstate_attrs[] = { | |
1739 | &nr_hugepages_attr.attr, | |
1740 | &free_hugepages_attr.attr, | |
1741 | &surplus_hugepages_attr.attr, | |
1742 | NULL, | |
1743 | }; | |
1744 | ||
1745 | static struct attribute_group per_node_hstate_attr_group = { | |
1746 | .attrs = per_node_hstate_attrs, | |
1747 | }; | |
1748 | ||
1749 | /* | |
10fbcf4c | 1750 | * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj. |
9a305230 LS |
1751 | * Returns node id via non-NULL nidp. |
1752 | */ | |
1753 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | |
1754 | { | |
1755 | int nid; | |
1756 | ||
1757 | for (nid = 0; nid < nr_node_ids; nid++) { | |
1758 | struct node_hstate *nhs = &node_hstates[nid]; | |
1759 | int i; | |
1760 | for (i = 0; i < HUGE_MAX_HSTATE; i++) | |
1761 | if (nhs->hstate_kobjs[i] == kobj) { | |
1762 | if (nidp) | |
1763 | *nidp = nid; | |
1764 | return &hstates[i]; | |
1765 | } | |
1766 | } | |
1767 | ||
1768 | BUG(); | |
1769 | return NULL; | |
1770 | } | |
1771 | ||
1772 | /* | |
10fbcf4c | 1773 | * Unregister hstate attributes from a single node device. |
9a305230 LS |
1774 | * No-op if no hstate attributes attached. |
1775 | */ | |
3cd8b44f | 1776 | static void hugetlb_unregister_node(struct node *node) |
9a305230 LS |
1777 | { |
1778 | struct hstate *h; | |
10fbcf4c | 1779 | struct node_hstate *nhs = &node_hstates[node->dev.id]; |
9a305230 LS |
1780 | |
1781 | if (!nhs->hugepages_kobj) | |
9b5e5d0f | 1782 | return; /* no hstate attributes */ |
9a305230 | 1783 | |
972dc4de AK |
1784 | for_each_hstate(h) { |
1785 | int idx = hstate_index(h); | |
1786 | if (nhs->hstate_kobjs[idx]) { | |
1787 | kobject_put(nhs->hstate_kobjs[idx]); | |
1788 | nhs->hstate_kobjs[idx] = NULL; | |
9a305230 | 1789 | } |
972dc4de | 1790 | } |
9a305230 LS |
1791 | |
1792 | kobject_put(nhs->hugepages_kobj); | |
1793 | nhs->hugepages_kobj = NULL; | |
1794 | } | |
1795 | ||
1796 | /* | |
10fbcf4c | 1797 | * hugetlb module exit: unregister hstate attributes from node devices |
9a305230 LS |
1798 | * that have them. |
1799 | */ | |
1800 | static void hugetlb_unregister_all_nodes(void) | |
1801 | { | |
1802 | int nid; | |
1803 | ||
1804 | /* | |
10fbcf4c | 1805 | * disable node device registrations. |
9a305230 LS |
1806 | */ |
1807 | register_hugetlbfs_with_node(NULL, NULL); | |
1808 | ||
1809 | /* | |
1810 | * remove hstate attributes from any nodes that have them. | |
1811 | */ | |
1812 | for (nid = 0; nid < nr_node_ids; nid++) | |
8732794b | 1813 | hugetlb_unregister_node(node_devices[nid]); |
9a305230 LS |
1814 | } |
1815 | ||
1816 | /* | |
10fbcf4c | 1817 | * Register hstate attributes for a single node device. |
9a305230 LS |
1818 | * No-op if attributes already registered. |
1819 | */ | |
3cd8b44f | 1820 | static void hugetlb_register_node(struct node *node) |
9a305230 LS |
1821 | { |
1822 | struct hstate *h; | |
10fbcf4c | 1823 | struct node_hstate *nhs = &node_hstates[node->dev.id]; |
9a305230 LS |
1824 | int err; |
1825 | ||
1826 | if (nhs->hugepages_kobj) | |
1827 | return; /* already allocated */ | |
1828 | ||
1829 | nhs->hugepages_kobj = kobject_create_and_add("hugepages", | |
10fbcf4c | 1830 | &node->dev.kobj); |
9a305230 LS |
1831 | if (!nhs->hugepages_kobj) |
1832 | return; | |
1833 | ||
1834 | for_each_hstate(h) { | |
1835 | err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj, | |
1836 | nhs->hstate_kobjs, | |
1837 | &per_node_hstate_attr_group); | |
1838 | if (err) { | |
ffb22af5 AM |
1839 | pr_err("Hugetlb: Unable to add hstate %s for node %d\n", |
1840 | h->name, node->dev.id); | |
9a305230 LS |
1841 | hugetlb_unregister_node(node); |
1842 | break; | |
1843 | } | |
1844 | } | |
1845 | } | |
1846 | ||
1847 | /* | |
9b5e5d0f | 1848 | * hugetlb init time: register hstate attributes for all registered node |
10fbcf4c KS |
1849 | * devices of nodes that have memory. All on-line nodes should have |
1850 | * registered their associated device by this time. | |
9a305230 LS |
1851 | */ |
1852 | static void hugetlb_register_all_nodes(void) | |
1853 | { | |
1854 | int nid; | |
1855 | ||
8cebfcd0 | 1856 | for_each_node_state(nid, N_MEMORY) { |
8732794b | 1857 | struct node *node = node_devices[nid]; |
10fbcf4c | 1858 | if (node->dev.id == nid) |
9a305230 LS |
1859 | hugetlb_register_node(node); |
1860 | } | |
1861 | ||
1862 | /* | |
10fbcf4c | 1863 | * Let the node device driver know we're here so it can |
9a305230 LS |
1864 | * [un]register hstate attributes on node hotplug. |
1865 | */ | |
1866 | register_hugetlbfs_with_node(hugetlb_register_node, | |
1867 | hugetlb_unregister_node); | |
1868 | } | |
1869 | #else /* !CONFIG_NUMA */ | |
1870 | ||
1871 | static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp) | |
1872 | { | |
1873 | BUG(); | |
1874 | if (nidp) | |
1875 | *nidp = -1; | |
1876 | return NULL; | |
1877 | } | |
1878 | ||
1879 | static void hugetlb_unregister_all_nodes(void) { } | |
1880 | ||
1881 | static void hugetlb_register_all_nodes(void) { } | |
1882 | ||
1883 | #endif | |
1884 | ||
a3437870 NA |
1885 | static void __exit hugetlb_exit(void) |
1886 | { | |
1887 | struct hstate *h; | |
1888 | ||
9a305230 LS |
1889 | hugetlb_unregister_all_nodes(); |
1890 | ||
a3437870 | 1891 | for_each_hstate(h) { |
972dc4de | 1892 | kobject_put(hstate_kobjs[hstate_index(h)]); |
a3437870 NA |
1893 | } |
1894 | ||
1895 | kobject_put(hugepages_kobj); | |
1896 | } | |
1897 | module_exit(hugetlb_exit); | |
1898 | ||
1899 | static int __init hugetlb_init(void) | |
1900 | { | |
0ef89d25 BH |
1901 | /* Some platform decide whether they support huge pages at boot |
1902 | * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when | |
1903 | * there is no such support | |
1904 | */ | |
1905 | if (HPAGE_SHIFT == 0) | |
1906 | return 0; | |
a3437870 | 1907 | |
e11bfbfc NP |
1908 | if (!size_to_hstate(default_hstate_size)) { |
1909 | default_hstate_size = HPAGE_SIZE; | |
1910 | if (!size_to_hstate(default_hstate_size)) | |
1911 | hugetlb_add_hstate(HUGETLB_PAGE_ORDER); | |
a3437870 | 1912 | } |
972dc4de | 1913 | default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size)); |
e11bfbfc NP |
1914 | if (default_hstate_max_huge_pages) |
1915 | default_hstate.max_huge_pages = default_hstate_max_huge_pages; | |
a3437870 NA |
1916 | |
1917 | hugetlb_init_hstates(); | |
aa888a74 | 1918 | gather_bootmem_prealloc(); |
a3437870 NA |
1919 | report_hugepages(); |
1920 | ||
1921 | hugetlb_sysfs_init(); | |
9a305230 | 1922 | hugetlb_register_all_nodes(); |
7179e7bf | 1923 | hugetlb_cgroup_file_init(); |
9a305230 | 1924 | |
a3437870 NA |
1925 | return 0; |
1926 | } | |
1927 | module_init(hugetlb_init); | |
1928 | ||
1929 | /* Should be called on processing a hugepagesz=... option */ | |
1930 | void __init hugetlb_add_hstate(unsigned order) | |
1931 | { | |
1932 | struct hstate *h; | |
8faa8b07 AK |
1933 | unsigned long i; |
1934 | ||
a3437870 | 1935 | if (size_to_hstate(PAGE_SIZE << order)) { |
ffb22af5 | 1936 | pr_warning("hugepagesz= specified twice, ignoring\n"); |
a3437870 NA |
1937 | return; |
1938 | } | |
47d38344 | 1939 | BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); |
a3437870 | 1940 | BUG_ON(order == 0); |
47d38344 | 1941 | h = &hstates[hugetlb_max_hstate++]; |
a3437870 NA |
1942 | h->order = order; |
1943 | h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); | |
8faa8b07 AK |
1944 | h->nr_huge_pages = 0; |
1945 | h->free_huge_pages = 0; | |
1946 | for (i = 0; i < MAX_NUMNODES; ++i) | |
1947 | INIT_LIST_HEAD(&h->hugepage_freelists[i]); | |
0edaecfa | 1948 | INIT_LIST_HEAD(&h->hugepage_activelist); |
8cebfcd0 LJ |
1949 | h->next_nid_to_alloc = first_node(node_states[N_MEMORY]); |
1950 | h->next_nid_to_free = first_node(node_states[N_MEMORY]); | |
a3437870 NA |
1951 | snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", |
1952 | huge_page_size(h)/1024); | |
8faa8b07 | 1953 | |
a3437870 NA |
1954 | parsed_hstate = h; |
1955 | } | |
1956 | ||
e11bfbfc | 1957 | static int __init hugetlb_nrpages_setup(char *s) |
a3437870 NA |
1958 | { |
1959 | unsigned long *mhp; | |
8faa8b07 | 1960 | static unsigned long *last_mhp; |
a3437870 NA |
1961 | |
1962 | /* | |
47d38344 | 1963 | * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet, |
a3437870 NA |
1964 | * so this hugepages= parameter goes to the "default hstate". |
1965 | */ | |
47d38344 | 1966 | if (!hugetlb_max_hstate) |
a3437870 NA |
1967 | mhp = &default_hstate_max_huge_pages; |
1968 | else | |
1969 | mhp = &parsed_hstate->max_huge_pages; | |
1970 | ||
8faa8b07 | 1971 | if (mhp == last_mhp) { |
ffb22af5 AM |
1972 | pr_warning("hugepages= specified twice without " |
1973 | "interleaving hugepagesz=, ignoring\n"); | |
8faa8b07 AK |
1974 | return 1; |
1975 | } | |
1976 | ||
a3437870 NA |
1977 | if (sscanf(s, "%lu", mhp) <= 0) |
1978 | *mhp = 0; | |
1979 | ||
8faa8b07 AK |
1980 | /* |
1981 | * Global state is always initialized later in hugetlb_init. | |
1982 | * But we need to allocate >= MAX_ORDER hstates here early to still | |
1983 | * use the bootmem allocator. | |
1984 | */ | |
47d38344 | 1985 | if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER) |
8faa8b07 AK |
1986 | hugetlb_hstate_alloc_pages(parsed_hstate); |
1987 | ||
1988 | last_mhp = mhp; | |
1989 | ||
a3437870 NA |
1990 | return 1; |
1991 | } | |
e11bfbfc NP |
1992 | __setup("hugepages=", hugetlb_nrpages_setup); |
1993 | ||
1994 | static int __init hugetlb_default_setup(char *s) | |
1995 | { | |
1996 | default_hstate_size = memparse(s, &s); | |
1997 | return 1; | |
1998 | } | |
1999 | __setup("default_hugepagesz=", hugetlb_default_setup); | |
a3437870 | 2000 | |
8a213460 NA |
2001 | static unsigned int cpuset_mems_nr(unsigned int *array) |
2002 | { | |
2003 | int node; | |
2004 | unsigned int nr = 0; | |
2005 | ||
2006 | for_each_node_mask(node, cpuset_current_mems_allowed) | |
2007 | nr += array[node]; | |
2008 | ||
2009 | return nr; | |
2010 | } | |
2011 | ||
2012 | #ifdef CONFIG_SYSCTL | |
06808b08 LS |
2013 | static int hugetlb_sysctl_handler_common(bool obey_mempolicy, |
2014 | struct ctl_table *table, int write, | |
2015 | void __user *buffer, size_t *length, loff_t *ppos) | |
1da177e4 | 2016 | { |
e5ff2159 AK |
2017 | struct hstate *h = &default_hstate; |
2018 | unsigned long tmp; | |
08d4a246 | 2019 | int ret; |
e5ff2159 | 2020 | |
c033a93c | 2021 | tmp = h->max_huge_pages; |
e5ff2159 | 2022 | |
adbe8726 EM |
2023 | if (write && h->order >= MAX_ORDER) |
2024 | return -EINVAL; | |
2025 | ||
e5ff2159 AK |
2026 | table->data = &tmp; |
2027 | table->maxlen = sizeof(unsigned long); | |
08d4a246 MH |
2028 | ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); |
2029 | if (ret) | |
2030 | goto out; | |
e5ff2159 | 2031 | |
06808b08 | 2032 | if (write) { |
bad44b5b DR |
2033 | NODEMASK_ALLOC(nodemask_t, nodes_allowed, |
2034 | GFP_KERNEL | __GFP_NORETRY); | |
06808b08 LS |
2035 | if (!(obey_mempolicy && |
2036 | init_nodemask_of_mempolicy(nodes_allowed))) { | |
2037 | NODEMASK_FREE(nodes_allowed); | |
8cebfcd0 | 2038 | nodes_allowed = &node_states[N_MEMORY]; |
06808b08 LS |
2039 | } |
2040 | h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed); | |
2041 | ||
8cebfcd0 | 2042 | if (nodes_allowed != &node_states[N_MEMORY]) |
06808b08 LS |
2043 | NODEMASK_FREE(nodes_allowed); |
2044 | } | |
08d4a246 MH |
2045 | out: |
2046 | return ret; | |
1da177e4 | 2047 | } |
396faf03 | 2048 | |
06808b08 LS |
2049 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, |
2050 | void __user *buffer, size_t *length, loff_t *ppos) | |
2051 | { | |
2052 | ||
2053 | return hugetlb_sysctl_handler_common(false, table, write, | |
2054 | buffer, length, ppos); | |
2055 | } | |
2056 | ||
2057 | #ifdef CONFIG_NUMA | |
2058 | int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, | |
2059 | void __user *buffer, size_t *length, loff_t *ppos) | |
2060 | { | |
2061 | return hugetlb_sysctl_handler_common(true, table, write, | |
2062 | buffer, length, ppos); | |
2063 | } | |
2064 | #endif /* CONFIG_NUMA */ | |
2065 | ||
396faf03 | 2066 | int hugetlb_treat_movable_handler(struct ctl_table *table, int write, |
8d65af78 | 2067 | void __user *buffer, |
396faf03 MG |
2068 | size_t *length, loff_t *ppos) |
2069 | { | |
8d65af78 | 2070 | proc_dointvec(table, write, buffer, length, ppos); |
396faf03 MG |
2071 | if (hugepages_treat_as_movable) |
2072 | htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; | |
2073 | else | |
2074 | htlb_alloc_mask = GFP_HIGHUSER; | |
2075 | return 0; | |
2076 | } | |
2077 | ||
a3d0c6aa | 2078 | int hugetlb_overcommit_handler(struct ctl_table *table, int write, |
8d65af78 | 2079 | void __user *buffer, |
a3d0c6aa NA |
2080 | size_t *length, loff_t *ppos) |
2081 | { | |
a5516438 | 2082 | struct hstate *h = &default_hstate; |
e5ff2159 | 2083 | unsigned long tmp; |
08d4a246 | 2084 | int ret; |
e5ff2159 | 2085 | |
c033a93c | 2086 | tmp = h->nr_overcommit_huge_pages; |
e5ff2159 | 2087 | |
adbe8726 EM |
2088 | if (write && h->order >= MAX_ORDER) |
2089 | return -EINVAL; | |
2090 | ||
e5ff2159 AK |
2091 | table->data = &tmp; |
2092 | table->maxlen = sizeof(unsigned long); | |
08d4a246 MH |
2093 | ret = proc_doulongvec_minmax(table, write, buffer, length, ppos); |
2094 | if (ret) | |
2095 | goto out; | |
e5ff2159 AK |
2096 | |
2097 | if (write) { | |
2098 | spin_lock(&hugetlb_lock); | |
2099 | h->nr_overcommit_huge_pages = tmp; | |
2100 | spin_unlock(&hugetlb_lock); | |
2101 | } | |
08d4a246 MH |
2102 | out: |
2103 | return ret; | |
a3d0c6aa NA |
2104 | } |
2105 | ||
1da177e4 LT |
2106 | #endif /* CONFIG_SYSCTL */ |
2107 | ||
e1759c21 | 2108 | void hugetlb_report_meminfo(struct seq_file *m) |
1da177e4 | 2109 | { |
a5516438 | 2110 | struct hstate *h = &default_hstate; |
e1759c21 | 2111 | seq_printf(m, |
4f98a2fe RR |
2112 | "HugePages_Total: %5lu\n" |
2113 | "HugePages_Free: %5lu\n" | |
2114 | "HugePages_Rsvd: %5lu\n" | |
2115 | "HugePages_Surp: %5lu\n" | |
2116 | "Hugepagesize: %8lu kB\n", | |
a5516438 AK |
2117 | h->nr_huge_pages, |
2118 | h->free_huge_pages, | |
2119 | h->resv_huge_pages, | |
2120 | h->surplus_huge_pages, | |
2121 | 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); | |
1da177e4 LT |
2122 | } |
2123 | ||
2124 | int hugetlb_report_node_meminfo(int nid, char *buf) | |
2125 | { | |
a5516438 | 2126 | struct hstate *h = &default_hstate; |
1da177e4 LT |
2127 | return sprintf(buf, |
2128 | "Node %d HugePages_Total: %5u\n" | |
a1de0919 NA |
2129 | "Node %d HugePages_Free: %5u\n" |
2130 | "Node %d HugePages_Surp: %5u\n", | |
a5516438 AK |
2131 | nid, h->nr_huge_pages_node[nid], |
2132 | nid, h->free_huge_pages_node[nid], | |
2133 | nid, h->surplus_huge_pages_node[nid]); | |
1da177e4 LT |
2134 | } |
2135 | ||
949f7ec5 DR |
2136 | void hugetlb_show_meminfo(void) |
2137 | { | |
2138 | struct hstate *h; | |
2139 | int nid; | |
2140 | ||
2141 | for_each_node_state(nid, N_MEMORY) | |
2142 | for_each_hstate(h) | |
2143 | pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", | |
2144 | nid, | |
2145 | h->nr_huge_pages_node[nid], | |
2146 | h->free_huge_pages_node[nid], | |
2147 | h->surplus_huge_pages_node[nid], | |
2148 | 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); | |
2149 | } | |
2150 | ||
1da177e4 LT |
2151 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ |
2152 | unsigned long hugetlb_total_pages(void) | |
2153 | { | |
d0028588 WL |
2154 | struct hstate *h; |
2155 | unsigned long nr_total_pages = 0; | |
2156 | ||
2157 | for_each_hstate(h) | |
2158 | nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); | |
2159 | return nr_total_pages; | |
1da177e4 | 2160 | } |
1da177e4 | 2161 | |
a5516438 | 2162 | static int hugetlb_acct_memory(struct hstate *h, long delta) |
fc1b8a73 MG |
2163 | { |
2164 | int ret = -ENOMEM; | |
2165 | ||
2166 | spin_lock(&hugetlb_lock); | |
2167 | /* | |
2168 | * When cpuset is configured, it breaks the strict hugetlb page | |
2169 | * reservation as the accounting is done on a global variable. Such | |
2170 | * reservation is completely rubbish in the presence of cpuset because | |
2171 | * the reservation is not checked against page availability for the | |
2172 | * current cpuset. Application can still potentially OOM'ed by kernel | |
2173 | * with lack of free htlb page in cpuset that the task is in. | |
2174 | * Attempt to enforce strict accounting with cpuset is almost | |
2175 | * impossible (or too ugly) because cpuset is too fluid that | |
2176 | * task or memory node can be dynamically moved between cpusets. | |
2177 | * | |
2178 | * The change of semantics for shared hugetlb mapping with cpuset is | |
2179 | * undesirable. However, in order to preserve some of the semantics, | |
2180 | * we fall back to check against current free page availability as | |
2181 | * a best attempt and hopefully to minimize the impact of changing | |
2182 | * semantics that cpuset has. | |
2183 | */ | |
2184 | if (delta > 0) { | |
a5516438 | 2185 | if (gather_surplus_pages(h, delta) < 0) |
fc1b8a73 MG |
2186 | goto out; |
2187 | ||
a5516438 AK |
2188 | if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { |
2189 | return_unused_surplus_pages(h, delta); | |
fc1b8a73 MG |
2190 | goto out; |
2191 | } | |
2192 | } | |
2193 | ||
2194 | ret = 0; | |
2195 | if (delta < 0) | |
a5516438 | 2196 | return_unused_surplus_pages(h, (unsigned long) -delta); |
fc1b8a73 MG |
2197 | |
2198 | out: | |
2199 | spin_unlock(&hugetlb_lock); | |
2200 | return ret; | |
2201 | } | |
2202 | ||
84afd99b AW |
2203 | static void hugetlb_vm_op_open(struct vm_area_struct *vma) |
2204 | { | |
2205 | struct resv_map *reservations = vma_resv_map(vma); | |
2206 | ||
2207 | /* | |
2208 | * This new VMA should share its siblings reservation map if present. | |
2209 | * The VMA will only ever have a valid reservation map pointer where | |
2210 | * it is being copied for another still existing VMA. As that VMA | |
25985edc | 2211 | * has a reference to the reservation map it cannot disappear until |
84afd99b AW |
2212 | * after this open call completes. It is therefore safe to take a |
2213 | * new reference here without additional locking. | |
2214 | */ | |
2215 | if (reservations) | |
2216 | kref_get(&reservations->refs); | |
2217 | } | |
2218 | ||
c50ac050 DH |
2219 | static void resv_map_put(struct vm_area_struct *vma) |
2220 | { | |
2221 | struct resv_map *reservations = vma_resv_map(vma); | |
2222 | ||
2223 | if (!reservations) | |
2224 | return; | |
2225 | kref_put(&reservations->refs, resv_map_release); | |
2226 | } | |
2227 | ||
a1e78772 MG |
2228 | static void hugetlb_vm_op_close(struct vm_area_struct *vma) |
2229 | { | |
a5516438 | 2230 | struct hstate *h = hstate_vma(vma); |
84afd99b | 2231 | struct resv_map *reservations = vma_resv_map(vma); |
90481622 | 2232 | struct hugepage_subpool *spool = subpool_vma(vma); |
84afd99b AW |
2233 | unsigned long reserve; |
2234 | unsigned long start; | |
2235 | unsigned long end; | |
2236 | ||
2237 | if (reservations) { | |
a5516438 AK |
2238 | start = vma_hugecache_offset(h, vma, vma->vm_start); |
2239 | end = vma_hugecache_offset(h, vma, vma->vm_end); | |
84afd99b AW |
2240 | |
2241 | reserve = (end - start) - | |
2242 | region_count(&reservations->regions, start, end); | |
2243 | ||
c50ac050 | 2244 | resv_map_put(vma); |
84afd99b | 2245 | |
7251ff78 | 2246 | if (reserve) { |
a5516438 | 2247 | hugetlb_acct_memory(h, -reserve); |
90481622 | 2248 | hugepage_subpool_put_pages(spool, reserve); |
7251ff78 | 2249 | } |
84afd99b | 2250 | } |
a1e78772 MG |
2251 | } |
2252 | ||
1da177e4 LT |
2253 | /* |
2254 | * We cannot handle pagefaults against hugetlb pages at all. They cause | |
2255 | * handle_mm_fault() to try to instantiate regular-sized pages in the | |
2256 | * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get | |
2257 | * this far. | |
2258 | */ | |
d0217ac0 | 2259 | static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
1da177e4 LT |
2260 | { |
2261 | BUG(); | |
d0217ac0 | 2262 | return 0; |
1da177e4 LT |
2263 | } |
2264 | ||
f0f37e2f | 2265 | const struct vm_operations_struct hugetlb_vm_ops = { |
d0217ac0 | 2266 | .fault = hugetlb_vm_op_fault, |
84afd99b | 2267 | .open = hugetlb_vm_op_open, |
a1e78772 | 2268 | .close = hugetlb_vm_op_close, |
1da177e4 LT |
2269 | }; |
2270 | ||
1e8f889b DG |
2271 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, |
2272 | int writable) | |
63551ae0 DG |
2273 | { |
2274 | pte_t entry; | |
2275 | ||
1e8f889b | 2276 | if (writable) { |
106c992a GS |
2277 | entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page, |
2278 | vma->vm_page_prot))); | |
63551ae0 | 2279 | } else { |
106c992a GS |
2280 | entry = huge_pte_wrprotect(mk_huge_pte(page, |
2281 | vma->vm_page_prot)); | |
63551ae0 DG |
2282 | } |
2283 | entry = pte_mkyoung(entry); | |
2284 | entry = pte_mkhuge(entry); | |
d9ed9faa | 2285 | entry = arch_make_huge_pte(entry, vma, page, writable); |
63551ae0 DG |
2286 | |
2287 | return entry; | |
2288 | } | |
2289 | ||
1e8f889b DG |
2290 | static void set_huge_ptep_writable(struct vm_area_struct *vma, |
2291 | unsigned long address, pte_t *ptep) | |
2292 | { | |
2293 | pte_t entry; | |
2294 | ||
106c992a | 2295 | entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep))); |
32f84528 | 2296 | if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) |
4b3073e1 | 2297 | update_mmu_cache(vma, address, ptep); |
1e8f889b DG |
2298 | } |
2299 | ||
2300 | ||
63551ae0 DG |
2301 | int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, |
2302 | struct vm_area_struct *vma) | |
2303 | { | |
2304 | pte_t *src_pte, *dst_pte, entry; | |
2305 | struct page *ptepage; | |
1c59827d | 2306 | unsigned long addr; |
1e8f889b | 2307 | int cow; |
a5516438 AK |
2308 | struct hstate *h = hstate_vma(vma); |
2309 | unsigned long sz = huge_page_size(h); | |
1e8f889b DG |
2310 | |
2311 | cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | |
63551ae0 | 2312 | |
a5516438 | 2313 | for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { |
c74df32c HD |
2314 | src_pte = huge_pte_offset(src, addr); |
2315 | if (!src_pte) | |
2316 | continue; | |
a5516438 | 2317 | dst_pte = huge_pte_alloc(dst, addr, sz); |
63551ae0 DG |
2318 | if (!dst_pte) |
2319 | goto nomem; | |
c5c99429 LW |
2320 | |
2321 | /* If the pagetables are shared don't copy or take references */ | |
2322 | if (dst_pte == src_pte) | |
2323 | continue; | |
2324 | ||
c74df32c | 2325 | spin_lock(&dst->page_table_lock); |
46478758 | 2326 | spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); |
7f2e9525 | 2327 | if (!huge_pte_none(huge_ptep_get(src_pte))) { |
1e8f889b | 2328 | if (cow) |
7f2e9525 GS |
2329 | huge_ptep_set_wrprotect(src, addr, src_pte); |
2330 | entry = huge_ptep_get(src_pte); | |
1c59827d HD |
2331 | ptepage = pte_page(entry); |
2332 | get_page(ptepage); | |
0fe6e20b | 2333 | page_dup_rmap(ptepage); |
1c59827d HD |
2334 | set_huge_pte_at(dst, addr, dst_pte, entry); |
2335 | } | |
2336 | spin_unlock(&src->page_table_lock); | |
c74df32c | 2337 | spin_unlock(&dst->page_table_lock); |
63551ae0 DG |
2338 | } |
2339 | return 0; | |
2340 | ||
2341 | nomem: | |
2342 | return -ENOMEM; | |
2343 | } | |
2344 | ||
290408d4 NH |
2345 | static int is_hugetlb_entry_migration(pte_t pte) |
2346 | { | |
2347 | swp_entry_t swp; | |
2348 | ||
2349 | if (huge_pte_none(pte) || pte_present(pte)) | |
2350 | return 0; | |
2351 | swp = pte_to_swp_entry(pte); | |
32f84528 | 2352 | if (non_swap_entry(swp) && is_migration_entry(swp)) |
290408d4 | 2353 | return 1; |
32f84528 | 2354 | else |
290408d4 NH |
2355 | return 0; |
2356 | } | |
2357 | ||
fd6a03ed NH |
2358 | static int is_hugetlb_entry_hwpoisoned(pte_t pte) |
2359 | { | |
2360 | swp_entry_t swp; | |
2361 | ||
2362 | if (huge_pte_none(pte) || pte_present(pte)) | |
2363 | return 0; | |
2364 | swp = pte_to_swp_entry(pte); | |
32f84528 | 2365 | if (non_swap_entry(swp) && is_hwpoison_entry(swp)) |
fd6a03ed | 2366 | return 1; |
32f84528 | 2367 | else |
fd6a03ed NH |
2368 | return 0; |
2369 | } | |
2370 | ||
24669e58 AK |
2371 | void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, |
2372 | unsigned long start, unsigned long end, | |
2373 | struct page *ref_page) | |
63551ae0 | 2374 | { |
24669e58 | 2375 | int force_flush = 0; |
63551ae0 DG |
2376 | struct mm_struct *mm = vma->vm_mm; |
2377 | unsigned long address; | |
c7546f8f | 2378 | pte_t *ptep; |
63551ae0 DG |
2379 | pte_t pte; |
2380 | struct page *page; | |
a5516438 AK |
2381 | struct hstate *h = hstate_vma(vma); |
2382 | unsigned long sz = huge_page_size(h); | |
2ec74c3e SG |
2383 | const unsigned long mmun_start = start; /* For mmu_notifiers */ |
2384 | const unsigned long mmun_end = end; /* For mmu_notifiers */ | |
a5516438 | 2385 | |
63551ae0 | 2386 | WARN_ON(!is_vm_hugetlb_page(vma)); |
a5516438 AK |
2387 | BUG_ON(start & ~huge_page_mask(h)); |
2388 | BUG_ON(end & ~huge_page_mask(h)); | |
63551ae0 | 2389 | |
24669e58 | 2390 | tlb_start_vma(tlb, vma); |
2ec74c3e | 2391 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); |
24669e58 | 2392 | again: |
508034a3 | 2393 | spin_lock(&mm->page_table_lock); |
a5516438 | 2394 | for (address = start; address < end; address += sz) { |
c7546f8f | 2395 | ptep = huge_pte_offset(mm, address); |
4c887265 | 2396 | if (!ptep) |
c7546f8f DG |
2397 | continue; |
2398 | ||
39dde65c KC |
2399 | if (huge_pmd_unshare(mm, &address, ptep)) |
2400 | continue; | |
2401 | ||
6629326b HD |
2402 | pte = huge_ptep_get(ptep); |
2403 | if (huge_pte_none(pte)) | |
2404 | continue; | |
2405 | ||
2406 | /* | |
2407 | * HWPoisoned hugepage is already unmapped and dropped reference | |
2408 | */ | |
8c4894c6 | 2409 | if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) { |
106c992a | 2410 | huge_pte_clear(mm, address, ptep); |
6629326b | 2411 | continue; |
8c4894c6 | 2412 | } |
6629326b HD |
2413 | |
2414 | page = pte_page(pte); | |
04f2cbe3 MG |
2415 | /* |
2416 | * If a reference page is supplied, it is because a specific | |
2417 | * page is being unmapped, not a range. Ensure the page we | |
2418 | * are about to unmap is the actual page of interest. | |
2419 | */ | |
2420 | if (ref_page) { | |
04f2cbe3 MG |
2421 | if (page != ref_page) |
2422 | continue; | |
2423 | ||
2424 | /* | |
2425 | * Mark the VMA as having unmapped its page so that | |
2426 | * future faults in this VMA will fail rather than | |
2427 | * looking like data was lost | |
2428 | */ | |
2429 | set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); | |
2430 | } | |
2431 | ||
c7546f8f | 2432 | pte = huge_ptep_get_and_clear(mm, address, ptep); |
24669e58 | 2433 | tlb_remove_tlb_entry(tlb, ptep, address); |
106c992a | 2434 | if (huge_pte_dirty(pte)) |
6649a386 | 2435 | set_page_dirty(page); |
9e81130b | 2436 | |
24669e58 AK |
2437 | page_remove_rmap(page); |
2438 | force_flush = !__tlb_remove_page(tlb, page); | |
2439 | if (force_flush) | |
2440 | break; | |
9e81130b HD |
2441 | /* Bail out after unmapping reference page if supplied */ |
2442 | if (ref_page) | |
2443 | break; | |
63551ae0 | 2444 | } |
cd2934a3 | 2445 | spin_unlock(&mm->page_table_lock); |
24669e58 AK |
2446 | /* |
2447 | * mmu_gather ran out of room to batch pages, we break out of | |
2448 | * the PTE lock to avoid doing the potential expensive TLB invalidate | |
2449 | * and page-free while holding it. | |
2450 | */ | |
2451 | if (force_flush) { | |
2452 | force_flush = 0; | |
2453 | tlb_flush_mmu(tlb); | |
2454 | if (address < end && !ref_page) | |
2455 | goto again; | |
fe1668ae | 2456 | } |
2ec74c3e | 2457 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); |
24669e58 | 2458 | tlb_end_vma(tlb, vma); |
1da177e4 | 2459 | } |
63551ae0 | 2460 | |
d833352a MG |
2461 | void __unmap_hugepage_range_final(struct mmu_gather *tlb, |
2462 | struct vm_area_struct *vma, unsigned long start, | |
2463 | unsigned long end, struct page *ref_page) | |
2464 | { | |
2465 | __unmap_hugepage_range(tlb, vma, start, end, ref_page); | |
2466 | ||
2467 | /* | |
2468 | * Clear this flag so that x86's huge_pmd_share page_table_shareable | |
2469 | * test will fail on a vma being torn down, and not grab a page table | |
2470 | * on its way out. We're lucky that the flag has such an appropriate | |
2471 | * name, and can in fact be safely cleared here. We could clear it | |
2472 | * before the __unmap_hugepage_range above, but all that's necessary | |
2473 | * is to clear it before releasing the i_mmap_mutex. This works | |
2474 | * because in the context this is called, the VMA is about to be | |
2475 | * destroyed and the i_mmap_mutex is held. | |
2476 | */ | |
2477 | vma->vm_flags &= ~VM_MAYSHARE; | |
2478 | } | |
2479 | ||
502717f4 | 2480 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
04f2cbe3 | 2481 | unsigned long end, struct page *ref_page) |
502717f4 | 2482 | { |
24669e58 AK |
2483 | struct mm_struct *mm; |
2484 | struct mmu_gather tlb; | |
2485 | ||
2486 | mm = vma->vm_mm; | |
2487 | ||
2b047252 | 2488 | tlb_gather_mmu(&tlb, mm, start, end); |
24669e58 AK |
2489 | __unmap_hugepage_range(&tlb, vma, start, end, ref_page); |
2490 | tlb_finish_mmu(&tlb, start, end); | |
502717f4 KC |
2491 | } |
2492 | ||
04f2cbe3 MG |
2493 | /* |
2494 | * This is called when the original mapper is failing to COW a MAP_PRIVATE | |
2495 | * mappping it owns the reserve page for. The intention is to unmap the page | |
2496 | * from other VMAs and let the children be SIGKILLed if they are faulting the | |
2497 | * same region. | |
2498 | */ | |
2a4b3ded HH |
2499 | static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, |
2500 | struct page *page, unsigned long address) | |
04f2cbe3 | 2501 | { |
7526674d | 2502 | struct hstate *h = hstate_vma(vma); |
04f2cbe3 MG |
2503 | struct vm_area_struct *iter_vma; |
2504 | struct address_space *mapping; | |
04f2cbe3 MG |
2505 | pgoff_t pgoff; |
2506 | ||
2507 | /* | |
2508 | * vm_pgoff is in PAGE_SIZE units, hence the different calculation | |
2509 | * from page cache lookup which is in HPAGE_SIZE units. | |
2510 | */ | |
7526674d | 2511 | address = address & huge_page_mask(h); |
36e4f20a MH |
2512 | pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + |
2513 | vma->vm_pgoff; | |
496ad9aa | 2514 | mapping = file_inode(vma->vm_file)->i_mapping; |
04f2cbe3 | 2515 | |
4eb2b1dc MG |
2516 | /* |
2517 | * Take the mapping lock for the duration of the table walk. As | |
2518 | * this mapping should be shared between all the VMAs, | |
2519 | * __unmap_hugepage_range() is called as the lock is already held | |
2520 | */ | |
3d48ae45 | 2521 | mutex_lock(&mapping->i_mmap_mutex); |
6b2dbba8 | 2522 | vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { |
04f2cbe3 MG |
2523 | /* Do not unmap the current VMA */ |
2524 | if (iter_vma == vma) | |
2525 | continue; | |
2526 | ||
2527 | /* | |
2528 | * Unmap the page from other VMAs without their own reserves. | |
2529 | * They get marked to be SIGKILLed if they fault in these | |
2530 | * areas. This is because a future no-page fault on this VMA | |
2531 | * could insert a zeroed page instead of the data existing | |
2532 | * from the time of fork. This would look like data corruption | |
2533 | */ | |
2534 | if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) | |
24669e58 AK |
2535 | unmap_hugepage_range(iter_vma, address, |
2536 | address + huge_page_size(h), page); | |
04f2cbe3 | 2537 | } |
3d48ae45 | 2538 | mutex_unlock(&mapping->i_mmap_mutex); |
04f2cbe3 MG |
2539 | |
2540 | return 1; | |
2541 | } | |
2542 | ||
0fe6e20b NH |
2543 | /* |
2544 | * Hugetlb_cow() should be called with page lock of the original hugepage held. | |
ef009b25 MH |
2545 | * Called with hugetlb_instantiation_mutex held and pte_page locked so we |
2546 | * cannot race with other handlers or page migration. | |
2547 | * Keep the pte_same checks anyway to make transition from the mutex easier. | |
0fe6e20b | 2548 | */ |
1e8f889b | 2549 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, |
04f2cbe3 MG |
2550 | unsigned long address, pte_t *ptep, pte_t pte, |
2551 | struct page *pagecache_page) | |
1e8f889b | 2552 | { |
a5516438 | 2553 | struct hstate *h = hstate_vma(vma); |
1e8f889b | 2554 | struct page *old_page, *new_page; |
79ac6ba4 | 2555 | int avoidcopy; |
04f2cbe3 | 2556 | int outside_reserve = 0; |
2ec74c3e SG |
2557 | unsigned long mmun_start; /* For mmu_notifiers */ |
2558 | unsigned long mmun_end; /* For mmu_notifiers */ | |
1e8f889b DG |
2559 | |
2560 | old_page = pte_page(pte); | |
2561 | ||
04f2cbe3 | 2562 | retry_avoidcopy: |
1e8f889b DG |
2563 | /* If no-one else is actually using this page, avoid the copy |
2564 | * and just make the page writable */ | |
0fe6e20b | 2565 | avoidcopy = (page_mapcount(old_page) == 1); |
1e8f889b | 2566 | if (avoidcopy) { |
56c9cfb1 NH |
2567 | if (PageAnon(old_page)) |
2568 | page_move_anon_rmap(old_page, vma, address); | |
1e8f889b | 2569 | set_huge_ptep_writable(vma, address, ptep); |
83c54070 | 2570 | return 0; |
1e8f889b DG |
2571 | } |
2572 | ||
04f2cbe3 MG |
2573 | /* |
2574 | * If the process that created a MAP_PRIVATE mapping is about to | |
2575 | * perform a COW due to a shared page count, attempt to satisfy | |
2576 | * the allocation without using the existing reserves. The pagecache | |
2577 | * page is used to determine if the reserve at this address was | |
2578 | * consumed or not. If reserves were used, a partial faulted mapping | |
2579 | * at the time of fork() could consume its reserves on COW instead | |
2580 | * of the full address range. | |
2581 | */ | |
f83a275d | 2582 | if (!(vma->vm_flags & VM_MAYSHARE) && |
04f2cbe3 MG |
2583 | is_vma_resv_set(vma, HPAGE_RESV_OWNER) && |
2584 | old_page != pagecache_page) | |
2585 | outside_reserve = 1; | |
2586 | ||
1e8f889b | 2587 | page_cache_get(old_page); |
b76c8cfb LW |
2588 | |
2589 | /* Drop page_table_lock as buddy allocator may be called */ | |
2590 | spin_unlock(&mm->page_table_lock); | |
04f2cbe3 | 2591 | new_page = alloc_huge_page(vma, address, outside_reserve); |
1e8f889b | 2592 | |
2fc39cec | 2593 | if (IS_ERR(new_page)) { |
76dcee75 | 2594 | long err = PTR_ERR(new_page); |
1e8f889b | 2595 | page_cache_release(old_page); |
04f2cbe3 MG |
2596 | |
2597 | /* | |
2598 | * If a process owning a MAP_PRIVATE mapping fails to COW, | |
2599 | * it is due to references held by a child and an insufficient | |
2600 | * huge page pool. To guarantee the original mappers | |
2601 | * reliability, unmap the page from child processes. The child | |
2602 | * may get SIGKILLed if it later faults. | |
2603 | */ | |
2604 | if (outside_reserve) { | |
2605 | BUG_ON(huge_pte_none(pte)); | |
2606 | if (unmap_ref_private(mm, vma, old_page, address)) { | |
04f2cbe3 | 2607 | BUG_ON(huge_pte_none(pte)); |
b76c8cfb | 2608 | spin_lock(&mm->page_table_lock); |
a734bcc8 HD |
2609 | ptep = huge_pte_offset(mm, address & huge_page_mask(h)); |
2610 | if (likely(pte_same(huge_ptep_get(ptep), pte))) | |
2611 | goto retry_avoidcopy; | |
2612 | /* | |
2613 | * race occurs while re-acquiring page_table_lock, and | |
2614 | * our job is done. | |
2615 | */ | |
2616 | return 0; | |
04f2cbe3 MG |
2617 | } |
2618 | WARN_ON_ONCE(1); | |
2619 | } | |
2620 | ||
b76c8cfb LW |
2621 | /* Caller expects lock to be held */ |
2622 | spin_lock(&mm->page_table_lock); | |
76dcee75 AK |
2623 | if (err == -ENOMEM) |
2624 | return VM_FAULT_OOM; | |
2625 | else | |
2626 | return VM_FAULT_SIGBUS; | |
1e8f889b DG |
2627 | } |
2628 | ||
0fe6e20b NH |
2629 | /* |
2630 | * When the original hugepage is shared one, it does not have | |
2631 | * anon_vma prepared. | |
2632 | */ | |
44e2aa93 | 2633 | if (unlikely(anon_vma_prepare(vma))) { |
ea4039a3 HD |
2634 | page_cache_release(new_page); |
2635 | page_cache_release(old_page); | |
44e2aa93 DN |
2636 | /* Caller expects lock to be held */ |
2637 | spin_lock(&mm->page_table_lock); | |
0fe6e20b | 2638 | return VM_FAULT_OOM; |
44e2aa93 | 2639 | } |
0fe6e20b | 2640 | |
47ad8475 AA |
2641 | copy_user_huge_page(new_page, old_page, address, vma, |
2642 | pages_per_huge_page(h)); | |
0ed361de | 2643 | __SetPageUptodate(new_page); |
1e8f889b | 2644 | |
2ec74c3e SG |
2645 | mmun_start = address & huge_page_mask(h); |
2646 | mmun_end = mmun_start + huge_page_size(h); | |
2647 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | |
b76c8cfb LW |
2648 | /* |
2649 | * Retake the page_table_lock to check for racing updates | |
2650 | * before the page tables are altered | |
2651 | */ | |
2652 | spin_lock(&mm->page_table_lock); | |
a5516438 | 2653 | ptep = huge_pte_offset(mm, address & huge_page_mask(h)); |
7f2e9525 | 2654 | if (likely(pte_same(huge_ptep_get(ptep), pte))) { |
1e8f889b | 2655 | /* Break COW */ |
8fe627ec | 2656 | huge_ptep_clear_flush(vma, address, ptep); |
1e8f889b DG |
2657 | set_huge_pte_at(mm, address, ptep, |
2658 | make_huge_pte(vma, new_page, 1)); | |
0fe6e20b | 2659 | page_remove_rmap(old_page); |
cd67f0d2 | 2660 | hugepage_add_new_anon_rmap(new_page, vma, address); |
1e8f889b DG |
2661 | /* Make the old page be freed below */ |
2662 | new_page = old_page; | |
2663 | } | |
2ec74c3e SG |
2664 | spin_unlock(&mm->page_table_lock); |
2665 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | |
2666 | /* Caller expects lock to be held */ | |
2667 | spin_lock(&mm->page_table_lock); | |
1e8f889b DG |
2668 | page_cache_release(new_page); |
2669 | page_cache_release(old_page); | |
83c54070 | 2670 | return 0; |
1e8f889b DG |
2671 | } |
2672 | ||
04f2cbe3 | 2673 | /* Return the pagecache page at a given address within a VMA */ |
a5516438 AK |
2674 | static struct page *hugetlbfs_pagecache_page(struct hstate *h, |
2675 | struct vm_area_struct *vma, unsigned long address) | |
04f2cbe3 MG |
2676 | { |
2677 | struct address_space *mapping; | |
e7c4b0bf | 2678 | pgoff_t idx; |
04f2cbe3 MG |
2679 | |
2680 | mapping = vma->vm_file->f_mapping; | |
a5516438 | 2681 | idx = vma_hugecache_offset(h, vma, address); |
04f2cbe3 MG |
2682 | |
2683 | return find_lock_page(mapping, idx); | |
2684 | } | |
2685 | ||
3ae77f43 HD |
2686 | /* |
2687 | * Return whether there is a pagecache page to back given address within VMA. | |
2688 | * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page. | |
2689 | */ | |
2690 | static bool hugetlbfs_pagecache_present(struct hstate *h, | |
2a15efc9 HD |
2691 | struct vm_area_struct *vma, unsigned long address) |
2692 | { | |
2693 | struct address_space *mapping; | |
2694 | pgoff_t idx; | |
2695 | struct page *page; | |
2696 | ||
2697 | mapping = vma->vm_file->f_mapping; | |
2698 | idx = vma_hugecache_offset(h, vma, address); | |
2699 | ||
2700 | page = find_get_page(mapping, idx); | |
2701 | if (page) | |
2702 | put_page(page); | |
2703 | return page != NULL; | |
2704 | } | |
2705 | ||
a1ed3dda | 2706 | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, |
788c7df4 | 2707 | unsigned long address, pte_t *ptep, unsigned int flags) |
ac9b9c66 | 2708 | { |
a5516438 | 2709 | struct hstate *h = hstate_vma(vma); |
ac9b9c66 | 2710 | int ret = VM_FAULT_SIGBUS; |
409eb8c2 | 2711 | int anon_rmap = 0; |
e7c4b0bf | 2712 | pgoff_t idx; |
4c887265 | 2713 | unsigned long size; |
4c887265 AL |
2714 | struct page *page; |
2715 | struct address_space *mapping; | |
1e8f889b | 2716 | pte_t new_pte; |
4c887265 | 2717 | |
04f2cbe3 MG |
2718 | /* |
2719 | * Currently, we are forced to kill the process in the event the | |
2720 | * original mapper has unmapped pages from the child due to a failed | |
25985edc | 2721 | * COW. Warn that such a situation has occurred as it may not be obvious |
04f2cbe3 MG |
2722 | */ |
2723 | if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { | |
ffb22af5 AM |
2724 | pr_warning("PID %d killed due to inadequate hugepage pool\n", |
2725 | current->pid); | |
04f2cbe3 MG |
2726 | return ret; |
2727 | } | |
2728 | ||
4c887265 | 2729 | mapping = vma->vm_file->f_mapping; |
a5516438 | 2730 | idx = vma_hugecache_offset(h, vma, address); |
4c887265 AL |
2731 | |
2732 | /* | |
2733 | * Use page lock to guard against racing truncation | |
2734 | * before we get page_table_lock. | |
2735 | */ | |
6bda666a CL |
2736 | retry: |
2737 | page = find_lock_page(mapping, idx); | |
2738 | if (!page) { | |
a5516438 | 2739 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
ebed4bfc HD |
2740 | if (idx >= size) |
2741 | goto out; | |
04f2cbe3 | 2742 | page = alloc_huge_page(vma, address, 0); |
2fc39cec | 2743 | if (IS_ERR(page)) { |
76dcee75 AK |
2744 | ret = PTR_ERR(page); |
2745 | if (ret == -ENOMEM) | |
2746 | ret = VM_FAULT_OOM; | |
2747 | else | |
2748 | ret = VM_FAULT_SIGBUS; | |
6bda666a CL |
2749 | goto out; |
2750 | } | |
47ad8475 | 2751 | clear_huge_page(page, address, pages_per_huge_page(h)); |
0ed361de | 2752 | __SetPageUptodate(page); |
ac9b9c66 | 2753 | |
f83a275d | 2754 | if (vma->vm_flags & VM_MAYSHARE) { |
6bda666a | 2755 | int err; |
45c682a6 | 2756 | struct inode *inode = mapping->host; |
6bda666a CL |
2757 | |
2758 | err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); | |
2759 | if (err) { | |
2760 | put_page(page); | |
6bda666a CL |
2761 | if (err == -EEXIST) |
2762 | goto retry; | |
2763 | goto out; | |
2764 | } | |
45c682a6 KC |
2765 | |
2766 | spin_lock(&inode->i_lock); | |
a5516438 | 2767 | inode->i_blocks += blocks_per_huge_page(h); |
45c682a6 | 2768 | spin_unlock(&inode->i_lock); |
23be7468 | 2769 | } else { |
6bda666a | 2770 | lock_page(page); |
0fe6e20b NH |
2771 | if (unlikely(anon_vma_prepare(vma))) { |
2772 | ret = VM_FAULT_OOM; | |
2773 | goto backout_unlocked; | |
2774 | } | |
409eb8c2 | 2775 | anon_rmap = 1; |
23be7468 | 2776 | } |
0fe6e20b | 2777 | } else { |
998b4382 NH |
2778 | /* |
2779 | * If memory error occurs between mmap() and fault, some process | |
2780 | * don't have hwpoisoned swap entry for errored virtual address. | |
2781 | * So we need to block hugepage fault by PG_hwpoison bit check. | |
2782 | */ | |
2783 | if (unlikely(PageHWPoison(page))) { | |
32f84528 | 2784 | ret = VM_FAULT_HWPOISON | |
972dc4de | 2785 | VM_FAULT_SET_HINDEX(hstate_index(h)); |
998b4382 NH |
2786 | goto backout_unlocked; |
2787 | } | |
6bda666a | 2788 | } |
1e8f889b | 2789 | |
57303d80 AW |
2790 | /* |
2791 | * If we are going to COW a private mapping later, we examine the | |
2792 | * pending reservations for this page now. This will ensure that | |
2793 | * any allocations necessary to record that reservation occur outside | |
2794 | * the spinlock. | |
2795 | */ | |
788c7df4 | 2796 | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) |
2b26736c AW |
2797 | if (vma_needs_reservation(h, vma, address) < 0) { |
2798 | ret = VM_FAULT_OOM; | |
2799 | goto backout_unlocked; | |
2800 | } | |
57303d80 | 2801 | |
ac9b9c66 | 2802 | spin_lock(&mm->page_table_lock); |
a5516438 | 2803 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
4c887265 AL |
2804 | if (idx >= size) |
2805 | goto backout; | |
2806 | ||
83c54070 | 2807 | ret = 0; |
7f2e9525 | 2808 | if (!huge_pte_none(huge_ptep_get(ptep))) |
4c887265 AL |
2809 | goto backout; |
2810 | ||
409eb8c2 HD |
2811 | if (anon_rmap) |
2812 | hugepage_add_new_anon_rmap(page, vma, address); | |
2813 | else | |
2814 | page_dup_rmap(page); | |
1e8f889b DG |
2815 | new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) |
2816 | && (vma->vm_flags & VM_SHARED))); | |
2817 | set_huge_pte_at(mm, address, ptep, new_pte); | |
2818 | ||
788c7df4 | 2819 | if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { |
1e8f889b | 2820 | /* Optimization, do the COW without a second fault */ |
04f2cbe3 | 2821 | ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); |
1e8f889b DG |
2822 | } |
2823 | ||
ac9b9c66 | 2824 | spin_unlock(&mm->page_table_lock); |
4c887265 AL |
2825 | unlock_page(page); |
2826 | out: | |
ac9b9c66 | 2827 | return ret; |
4c887265 AL |
2828 | |
2829 | backout: | |
2830 | spin_unlock(&mm->page_table_lock); | |
2b26736c | 2831 | backout_unlocked: |
4c887265 AL |
2832 | unlock_page(page); |
2833 | put_page(page); | |
2834 | goto out; | |
ac9b9c66 HD |
2835 | } |
2836 | ||
86e5216f | 2837 | int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
788c7df4 | 2838 | unsigned long address, unsigned int flags) |
86e5216f AL |
2839 | { |
2840 | pte_t *ptep; | |
2841 | pte_t entry; | |
1e8f889b | 2842 | int ret; |
0fe6e20b | 2843 | struct page *page = NULL; |
57303d80 | 2844 | struct page *pagecache_page = NULL; |
3935baa9 | 2845 | static DEFINE_MUTEX(hugetlb_instantiation_mutex); |
a5516438 | 2846 | struct hstate *h = hstate_vma(vma); |
86e5216f | 2847 | |
1e16a539 KH |
2848 | address &= huge_page_mask(h); |
2849 | ||
fd6a03ed NH |
2850 | ptep = huge_pte_offset(mm, address); |
2851 | if (ptep) { | |
2852 | entry = huge_ptep_get(ptep); | |
290408d4 | 2853 | if (unlikely(is_hugetlb_entry_migration(entry))) { |
30dad309 | 2854 | migration_entry_wait_huge(mm, ptep); |
290408d4 NH |
2855 | return 0; |
2856 | } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) | |
32f84528 | 2857 | return VM_FAULT_HWPOISON_LARGE | |
972dc4de | 2858 | VM_FAULT_SET_HINDEX(hstate_index(h)); |
fd6a03ed NH |
2859 | } |
2860 | ||
a5516438 | 2861 | ptep = huge_pte_alloc(mm, address, huge_page_size(h)); |
86e5216f AL |
2862 | if (!ptep) |
2863 | return VM_FAULT_OOM; | |
2864 | ||
3935baa9 DG |
2865 | /* |
2866 | * Serialize hugepage allocation and instantiation, so that we don't | |
2867 | * get spurious allocation failures if two CPUs race to instantiate | |
2868 | * the same page in the page cache. | |
2869 | */ | |
2870 | mutex_lock(&hugetlb_instantiation_mutex); | |
7f2e9525 GS |
2871 | entry = huge_ptep_get(ptep); |
2872 | if (huge_pte_none(entry)) { | |
788c7df4 | 2873 | ret = hugetlb_no_page(mm, vma, address, ptep, flags); |
b4d1d99f | 2874 | goto out_mutex; |
3935baa9 | 2875 | } |
86e5216f | 2876 | |
83c54070 | 2877 | ret = 0; |
1e8f889b | 2878 | |
57303d80 AW |
2879 | /* |
2880 | * If we are going to COW the mapping later, we examine the pending | |
2881 | * reservations for this page now. This will ensure that any | |
2882 | * allocations necessary to record that reservation occur outside the | |
2883 | * spinlock. For private mappings, we also lookup the pagecache | |
2884 | * page now as it is used to determine if a reservation has been | |
2885 | * consumed. | |
2886 | */ | |
106c992a | 2887 | if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) { |
2b26736c AW |
2888 | if (vma_needs_reservation(h, vma, address) < 0) { |
2889 | ret = VM_FAULT_OOM; | |
b4d1d99f | 2890 | goto out_mutex; |
2b26736c | 2891 | } |
57303d80 | 2892 | |
f83a275d | 2893 | if (!(vma->vm_flags & VM_MAYSHARE)) |
57303d80 AW |
2894 | pagecache_page = hugetlbfs_pagecache_page(h, |
2895 | vma, address); | |
2896 | } | |
2897 | ||
56c9cfb1 NH |
2898 | /* |
2899 | * hugetlb_cow() requires page locks of pte_page(entry) and | |
2900 | * pagecache_page, so here we need take the former one | |
2901 | * when page != pagecache_page or !pagecache_page. | |
2902 | * Note that locking order is always pagecache_page -> page, | |
2903 | * so no worry about deadlock. | |
2904 | */ | |
2905 | page = pte_page(entry); | |
66aebce7 | 2906 | get_page(page); |
56c9cfb1 | 2907 | if (page != pagecache_page) |
0fe6e20b | 2908 | lock_page(page); |
0fe6e20b | 2909 | |
1e8f889b DG |
2910 | spin_lock(&mm->page_table_lock); |
2911 | /* Check for a racing update before calling hugetlb_cow */ | |
b4d1d99f DG |
2912 | if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) |
2913 | goto out_page_table_lock; | |
2914 | ||
2915 | ||
788c7df4 | 2916 | if (flags & FAULT_FLAG_WRITE) { |
106c992a | 2917 | if (!huge_pte_write(entry)) { |
57303d80 AW |
2918 | ret = hugetlb_cow(mm, vma, address, ptep, entry, |
2919 | pagecache_page); | |
b4d1d99f DG |
2920 | goto out_page_table_lock; |
2921 | } | |
106c992a | 2922 | entry = huge_pte_mkdirty(entry); |
b4d1d99f DG |
2923 | } |
2924 | entry = pte_mkyoung(entry); | |
788c7df4 HD |
2925 | if (huge_ptep_set_access_flags(vma, address, ptep, entry, |
2926 | flags & FAULT_FLAG_WRITE)) | |
4b3073e1 | 2927 | update_mmu_cache(vma, address, ptep); |
b4d1d99f DG |
2928 | |
2929 | out_page_table_lock: | |
1e8f889b | 2930 | spin_unlock(&mm->page_table_lock); |
57303d80 AW |
2931 | |
2932 | if (pagecache_page) { | |
2933 | unlock_page(pagecache_page); | |
2934 | put_page(pagecache_page); | |
2935 | } | |
1f64d69c DN |
2936 | if (page != pagecache_page) |
2937 | unlock_page(page); | |
66aebce7 | 2938 | put_page(page); |
57303d80 | 2939 | |
b4d1d99f | 2940 | out_mutex: |
3935baa9 | 2941 | mutex_unlock(&hugetlb_instantiation_mutex); |
1e8f889b DG |
2942 | |
2943 | return ret; | |
86e5216f AL |
2944 | } |
2945 | ||
28a35716 ML |
2946 | long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2947 | struct page **pages, struct vm_area_struct **vmas, | |
2948 | unsigned long *position, unsigned long *nr_pages, | |
2949 | long i, unsigned int flags) | |
63551ae0 | 2950 | { |
d5d4b0aa KC |
2951 | unsigned long pfn_offset; |
2952 | unsigned long vaddr = *position; | |
28a35716 | 2953 | unsigned long remainder = *nr_pages; |
a5516438 | 2954 | struct hstate *h = hstate_vma(vma); |
63551ae0 | 2955 | |
1c59827d | 2956 | spin_lock(&mm->page_table_lock); |
63551ae0 | 2957 | while (vaddr < vma->vm_end && remainder) { |
4c887265 | 2958 | pte_t *pte; |
2a15efc9 | 2959 | int absent; |
4c887265 | 2960 | struct page *page; |
63551ae0 | 2961 | |
4c887265 AL |
2962 | /* |
2963 | * Some archs (sparc64, sh*) have multiple pte_ts to | |
2a15efc9 | 2964 | * each hugepage. We have to make sure we get the |
4c887265 AL |
2965 | * first, for the page indexing below to work. |
2966 | */ | |
a5516438 | 2967 | pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); |
2a15efc9 HD |
2968 | absent = !pte || huge_pte_none(huge_ptep_get(pte)); |
2969 | ||
2970 | /* | |
2971 | * When coredumping, it suits get_dump_page if we just return | |
3ae77f43 HD |
2972 | * an error where there's an empty slot with no huge pagecache |
2973 | * to back it. This way, we avoid allocating a hugepage, and | |
2974 | * the sparse dumpfile avoids allocating disk blocks, but its | |
2975 | * huge holes still show up with zeroes where they need to be. | |
2a15efc9 | 2976 | */ |
3ae77f43 HD |
2977 | if (absent && (flags & FOLL_DUMP) && |
2978 | !hugetlbfs_pagecache_present(h, vma, vaddr)) { | |
2a15efc9 HD |
2979 | remainder = 0; |
2980 | break; | |
2981 | } | |
63551ae0 | 2982 | |
9cc3a5bd NH |
2983 | /* |
2984 | * We need call hugetlb_fault for both hugepages under migration | |
2985 | * (in which case hugetlb_fault waits for the migration,) and | |
2986 | * hwpoisoned hugepages (in which case we need to prevent the | |
2987 | * caller from accessing to them.) In order to do this, we use | |
2988 | * here is_swap_pte instead of is_hugetlb_entry_migration and | |
2989 | * is_hugetlb_entry_hwpoisoned. This is because it simply covers | |
2990 | * both cases, and because we can't follow correct pages | |
2991 | * directly from any kind of swap entries. | |
2992 | */ | |
2993 | if (absent || is_swap_pte(huge_ptep_get(pte)) || | |
106c992a GS |
2994 | ((flags & FOLL_WRITE) && |
2995 | !huge_pte_write(huge_ptep_get(pte)))) { | |
4c887265 | 2996 | int ret; |
63551ae0 | 2997 | |
4c887265 | 2998 | spin_unlock(&mm->page_table_lock); |
2a15efc9 HD |
2999 | ret = hugetlb_fault(mm, vma, vaddr, |
3000 | (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0); | |
4c887265 | 3001 | spin_lock(&mm->page_table_lock); |
a89182c7 | 3002 | if (!(ret & VM_FAULT_ERROR)) |
4c887265 | 3003 | continue; |
63551ae0 | 3004 | |
4c887265 | 3005 | remainder = 0; |
4c887265 AL |
3006 | break; |
3007 | } | |
3008 | ||
a5516438 | 3009 | pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; |
7f2e9525 | 3010 | page = pte_page(huge_ptep_get(pte)); |
d5d4b0aa | 3011 | same_page: |
d6692183 | 3012 | if (pages) { |
2a15efc9 | 3013 | pages[i] = mem_map_offset(page, pfn_offset); |
4b2e38ad | 3014 | get_page(pages[i]); |
d6692183 | 3015 | } |
63551ae0 DG |
3016 | |
3017 | if (vmas) | |
3018 | vmas[i] = vma; | |
3019 | ||
3020 | vaddr += PAGE_SIZE; | |
d5d4b0aa | 3021 | ++pfn_offset; |
63551ae0 DG |
3022 | --remainder; |
3023 | ++i; | |
d5d4b0aa | 3024 | if (vaddr < vma->vm_end && remainder && |
a5516438 | 3025 | pfn_offset < pages_per_huge_page(h)) { |
d5d4b0aa KC |
3026 | /* |
3027 | * We use pfn_offset to avoid touching the pageframes | |
3028 | * of this compound page. | |
3029 | */ | |
3030 | goto same_page; | |
3031 | } | |
63551ae0 | 3032 | } |
1c59827d | 3033 | spin_unlock(&mm->page_table_lock); |
28a35716 | 3034 | *nr_pages = remainder; |
63551ae0 DG |
3035 | *position = vaddr; |
3036 | ||
2a15efc9 | 3037 | return i ? i : -EFAULT; |
63551ae0 | 3038 | } |
8f860591 | 3039 | |
7da4d641 | 3040 | unsigned long hugetlb_change_protection(struct vm_area_struct *vma, |
8f860591 ZY |
3041 | unsigned long address, unsigned long end, pgprot_t newprot) |
3042 | { | |
3043 | struct mm_struct *mm = vma->vm_mm; | |
3044 | unsigned long start = address; | |
3045 | pte_t *ptep; | |
3046 | pte_t pte; | |
a5516438 | 3047 | struct hstate *h = hstate_vma(vma); |
7da4d641 | 3048 | unsigned long pages = 0; |
8f860591 ZY |
3049 | |
3050 | BUG_ON(address >= end); | |
3051 | flush_cache_range(vma, address, end); | |
3052 | ||
3d48ae45 | 3053 | mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); |
8f860591 | 3054 | spin_lock(&mm->page_table_lock); |
a5516438 | 3055 | for (; address < end; address += huge_page_size(h)) { |
8f860591 ZY |
3056 | ptep = huge_pte_offset(mm, address); |
3057 | if (!ptep) | |
3058 | continue; | |
7da4d641 PZ |
3059 | if (huge_pmd_unshare(mm, &address, ptep)) { |
3060 | pages++; | |
39dde65c | 3061 | continue; |
7da4d641 | 3062 | } |
7f2e9525 | 3063 | if (!huge_pte_none(huge_ptep_get(ptep))) { |
8f860591 | 3064 | pte = huge_ptep_get_and_clear(mm, address, ptep); |
106c992a | 3065 | pte = pte_mkhuge(huge_pte_modify(pte, newprot)); |
be7517d6 | 3066 | pte = arch_make_huge_pte(pte, vma, NULL, 0); |
8f860591 | 3067 | set_huge_pte_at(mm, address, ptep, pte); |
7da4d641 | 3068 | pages++; |
8f860591 ZY |
3069 | } |
3070 | } | |
3071 | spin_unlock(&mm->page_table_lock); | |
d833352a MG |
3072 | /* |
3073 | * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare | |
3074 | * may have cleared our pud entry and done put_page on the page table: | |
3075 | * once we release i_mmap_mutex, another task can do the final put_page | |
3076 | * and that page table be reused and filled with junk. | |
3077 | */ | |
8f860591 | 3078 | flush_tlb_range(vma, start, end); |
d833352a | 3079 | mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); |
7da4d641 PZ |
3080 | |
3081 | return pages << h->order; | |
8f860591 ZY |
3082 | } |
3083 | ||
a1e78772 MG |
3084 | int hugetlb_reserve_pages(struct inode *inode, |
3085 | long from, long to, | |
5a6fe125 | 3086 | struct vm_area_struct *vma, |
ca16d140 | 3087 | vm_flags_t vm_flags) |
e4e574b7 | 3088 | { |
17c9d12e | 3089 | long ret, chg; |
a5516438 | 3090 | struct hstate *h = hstate_inode(inode); |
90481622 | 3091 | struct hugepage_subpool *spool = subpool_inode(inode); |
e4e574b7 | 3092 | |
17c9d12e MG |
3093 | /* |
3094 | * Only apply hugepage reservation if asked. At fault time, an | |
3095 | * attempt will be made for VM_NORESERVE to allocate a page | |
90481622 | 3096 | * without using reserves |
17c9d12e | 3097 | */ |
ca16d140 | 3098 | if (vm_flags & VM_NORESERVE) |
17c9d12e MG |
3099 | return 0; |
3100 | ||
a1e78772 MG |
3101 | /* |
3102 | * Shared mappings base their reservation on the number of pages that | |
3103 | * are already allocated on behalf of the file. Private mappings need | |
3104 | * to reserve the full area even if read-only as mprotect() may be | |
3105 | * called to make the mapping read-write. Assume !vma is a shm mapping | |
3106 | */ | |
f83a275d | 3107 | if (!vma || vma->vm_flags & VM_MAYSHARE) |
a1e78772 | 3108 | chg = region_chg(&inode->i_mapping->private_list, from, to); |
17c9d12e MG |
3109 | else { |
3110 | struct resv_map *resv_map = resv_map_alloc(); | |
3111 | if (!resv_map) | |
3112 | return -ENOMEM; | |
3113 | ||
a1e78772 | 3114 | chg = to - from; |
84afd99b | 3115 | |
17c9d12e MG |
3116 | set_vma_resv_map(vma, resv_map); |
3117 | set_vma_resv_flags(vma, HPAGE_RESV_OWNER); | |
3118 | } | |
3119 | ||
c50ac050 DH |
3120 | if (chg < 0) { |
3121 | ret = chg; | |
3122 | goto out_err; | |
3123 | } | |
8a630112 | 3124 | |
90481622 | 3125 | /* There must be enough pages in the subpool for the mapping */ |
c50ac050 DH |
3126 | if (hugepage_subpool_get_pages(spool, chg)) { |
3127 | ret = -ENOSPC; | |
3128 | goto out_err; | |
3129 | } | |
5a6fe125 MG |
3130 | |
3131 | /* | |
17c9d12e | 3132 | * Check enough hugepages are available for the reservation. |
90481622 | 3133 | * Hand the pages back to the subpool if there are not |
5a6fe125 | 3134 | */ |
a5516438 | 3135 | ret = hugetlb_acct_memory(h, chg); |
68842c9b | 3136 | if (ret < 0) { |
90481622 | 3137 | hugepage_subpool_put_pages(spool, chg); |
c50ac050 | 3138 | goto out_err; |
68842c9b | 3139 | } |
17c9d12e MG |
3140 | |
3141 | /* | |
3142 | * Account for the reservations made. Shared mappings record regions | |
3143 | * that have reservations as they are shared by multiple VMAs. | |
3144 | * When the last VMA disappears, the region map says how much | |
3145 | * the reservation was and the page cache tells how much of | |
3146 | * the reservation was consumed. Private mappings are per-VMA and | |
3147 | * only the consumed reservations are tracked. When the VMA | |
3148 | * disappears, the original reservation is the VMA size and the | |
3149 | * consumed reservations are stored in the map. Hence, nothing | |
3150 | * else has to be done for private mappings here | |
3151 | */ | |
f83a275d | 3152 | if (!vma || vma->vm_flags & VM_MAYSHARE) |
a1e78772 | 3153 | region_add(&inode->i_mapping->private_list, from, to); |
a43a8c39 | 3154 | return 0; |
c50ac050 | 3155 | out_err: |
4523e145 DH |
3156 | if (vma) |
3157 | resv_map_put(vma); | |
c50ac050 | 3158 | return ret; |
a43a8c39 KC |
3159 | } |
3160 | ||
3161 | void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) | |
3162 | { | |
a5516438 | 3163 | struct hstate *h = hstate_inode(inode); |
a43a8c39 | 3164 | long chg = region_truncate(&inode->i_mapping->private_list, offset); |
90481622 | 3165 | struct hugepage_subpool *spool = subpool_inode(inode); |
45c682a6 KC |
3166 | |
3167 | spin_lock(&inode->i_lock); | |
e4c6f8be | 3168 | inode->i_blocks -= (blocks_per_huge_page(h) * freed); |
45c682a6 KC |
3169 | spin_unlock(&inode->i_lock); |
3170 | ||
90481622 | 3171 | hugepage_subpool_put_pages(spool, (chg - freed)); |
a5516438 | 3172 | hugetlb_acct_memory(h, -(chg - freed)); |
a43a8c39 | 3173 | } |
93f70f90 | 3174 | |
3212b535 SC |
3175 | #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE |
3176 | static unsigned long page_table_shareable(struct vm_area_struct *svma, | |
3177 | struct vm_area_struct *vma, | |
3178 | unsigned long addr, pgoff_t idx) | |
3179 | { | |
3180 | unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + | |
3181 | svma->vm_start; | |
3182 | unsigned long sbase = saddr & PUD_MASK; | |
3183 | unsigned long s_end = sbase + PUD_SIZE; | |
3184 | ||
3185 | /* Allow segments to share if only one is marked locked */ | |
3186 | unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED; | |
3187 | unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED; | |
3188 | ||
3189 | /* | |
3190 | * match the virtual addresses, permission and the alignment of the | |
3191 | * page table page. | |
3192 | */ | |
3193 | if (pmd_index(addr) != pmd_index(saddr) || | |
3194 | vm_flags != svm_flags || | |
3195 | sbase < svma->vm_start || svma->vm_end < s_end) | |
3196 | return 0; | |
3197 | ||
3198 | return saddr; | |
3199 | } | |
3200 | ||
3201 | static int vma_shareable(struct vm_area_struct *vma, unsigned long addr) | |
3202 | { | |
3203 | unsigned long base = addr & PUD_MASK; | |
3204 | unsigned long end = base + PUD_SIZE; | |
3205 | ||
3206 | /* | |
3207 | * check on proper vm_flags and page table alignment | |
3208 | */ | |
3209 | if (vma->vm_flags & VM_MAYSHARE && | |
3210 | vma->vm_start <= base && end <= vma->vm_end) | |
3211 | return 1; | |
3212 | return 0; | |
3213 | } | |
3214 | ||
3215 | /* | |
3216 | * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() | |
3217 | * and returns the corresponding pte. While this is not necessary for the | |
3218 | * !shared pmd case because we can allocate the pmd later as well, it makes the | |
3219 | * code much cleaner. pmd allocation is essential for the shared case because | |
3220 | * pud has to be populated inside the same i_mmap_mutex section - otherwise | |
3221 | * racing tasks could either miss the sharing (see huge_pte_offset) or select a | |
3222 | * bad pmd for sharing. | |
3223 | */ | |
3224 | pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) | |
3225 | { | |
3226 | struct vm_area_struct *vma = find_vma(mm, addr); | |
3227 | struct address_space *mapping = vma->vm_file->f_mapping; | |
3228 | pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + | |
3229 | vma->vm_pgoff; | |
3230 | struct vm_area_struct *svma; | |
3231 | unsigned long saddr; | |
3232 | pte_t *spte = NULL; | |
3233 | pte_t *pte; | |
3234 | ||
3235 | if (!vma_shareable(vma, addr)) | |
3236 | return (pte_t *)pmd_alloc(mm, pud, addr); | |
3237 | ||
3238 | mutex_lock(&mapping->i_mmap_mutex); | |
3239 | vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { | |
3240 | if (svma == vma) | |
3241 | continue; | |
3242 | ||
3243 | saddr = page_table_shareable(svma, vma, addr, idx); | |
3244 | if (saddr) { | |
3245 | spte = huge_pte_offset(svma->vm_mm, saddr); | |
3246 | if (spte) { | |
3247 | get_page(virt_to_page(spte)); | |
3248 | break; | |
3249 | } | |
3250 | } | |
3251 | } | |
3252 | ||
3253 | if (!spte) | |
3254 | goto out; | |
3255 | ||
3256 | spin_lock(&mm->page_table_lock); | |
3257 | if (pud_none(*pud)) | |
3258 | pud_populate(mm, pud, | |
3259 | (pmd_t *)((unsigned long)spte & PAGE_MASK)); | |
3260 | else | |
3261 | put_page(virt_to_page(spte)); | |
3262 | spin_unlock(&mm->page_table_lock); | |
3263 | out: | |
3264 | pte = (pte_t *)pmd_alloc(mm, pud, addr); | |
3265 | mutex_unlock(&mapping->i_mmap_mutex); | |
3266 | return pte; | |
3267 | } | |
3268 | ||
3269 | /* | |
3270 | * unmap huge page backed by shared pte. | |
3271 | * | |
3272 | * Hugetlb pte page is ref counted at the time of mapping. If pte is shared | |
3273 | * indicated by page_count > 1, unmap is achieved by clearing pud and | |
3274 | * decrementing the ref count. If count == 1, the pte page is not shared. | |
3275 | * | |
3276 | * called with vma->vm_mm->page_table_lock held. | |
3277 | * | |
3278 | * returns: 1 successfully unmapped a shared pte page | |
3279 | * 0 the underlying pte page is not shared, or it is the last user | |
3280 | */ | |
3281 | int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) | |
3282 | { | |
3283 | pgd_t *pgd = pgd_offset(mm, *addr); | |
3284 | pud_t *pud = pud_offset(pgd, *addr); | |
3285 | ||
3286 | BUG_ON(page_count(virt_to_page(ptep)) == 0); | |
3287 | if (page_count(virt_to_page(ptep)) == 1) | |
3288 | return 0; | |
3289 | ||
3290 | pud_clear(pud); | |
3291 | put_page(virt_to_page(ptep)); | |
3292 | *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE; | |
3293 | return 1; | |
3294 | } | |
9e5fc74c SC |
3295 | #define want_pmd_share() (1) |
3296 | #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ | |
3297 | pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud) | |
3298 | { | |
3299 | return NULL; | |
3300 | } | |
3301 | #define want_pmd_share() (0) | |
3212b535 SC |
3302 | #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */ |
3303 | ||
9e5fc74c SC |
3304 | #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB |
3305 | pte_t *huge_pte_alloc(struct mm_struct *mm, | |
3306 | unsigned long addr, unsigned long sz) | |
3307 | { | |
3308 | pgd_t *pgd; | |
3309 | pud_t *pud; | |
3310 | pte_t *pte = NULL; | |
3311 | ||
3312 | pgd = pgd_offset(mm, addr); | |
3313 | pud = pud_alloc(mm, pgd, addr); | |
3314 | if (pud) { | |
3315 | if (sz == PUD_SIZE) { | |
3316 | pte = (pte_t *)pud; | |
3317 | } else { | |
3318 | BUG_ON(sz != PMD_SIZE); | |
3319 | if (want_pmd_share() && pud_none(*pud)) | |
3320 | pte = huge_pmd_share(mm, addr, pud); | |
3321 | else | |
3322 | pte = (pte_t *)pmd_alloc(mm, pud, addr); | |
3323 | } | |
3324 | } | |
3325 | BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte)); | |
3326 | ||
3327 | return pte; | |
3328 | } | |
3329 | ||
3330 | pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) | |
3331 | { | |
3332 | pgd_t *pgd; | |
3333 | pud_t *pud; | |
3334 | pmd_t *pmd = NULL; | |
3335 | ||
3336 | pgd = pgd_offset(mm, addr); | |
3337 | if (pgd_present(*pgd)) { | |
3338 | pud = pud_offset(pgd, addr); | |
3339 | if (pud_present(*pud)) { | |
3340 | if (pud_huge(*pud)) | |
3341 | return (pte_t *)pud; | |
3342 | pmd = pmd_offset(pud, addr); | |
3343 | } | |
3344 | } | |
3345 | return (pte_t *) pmd; | |
3346 | } | |
3347 | ||
3348 | struct page * | |
3349 | follow_huge_pmd(struct mm_struct *mm, unsigned long address, | |
3350 | pmd_t *pmd, int write) | |
3351 | { | |
3352 | struct page *page; | |
3353 | ||
3354 | page = pte_page(*(pte_t *)pmd); | |
3355 | if (page) | |
3356 | page += ((address & ~PMD_MASK) >> PAGE_SHIFT); | |
3357 | return page; | |
3358 | } | |
3359 | ||
3360 | struct page * | |
3361 | follow_huge_pud(struct mm_struct *mm, unsigned long address, | |
3362 | pud_t *pud, int write) | |
3363 | { | |
3364 | struct page *page; | |
3365 | ||
3366 | page = pte_page(*(pte_t *)pud); | |
3367 | if (page) | |
3368 | page += ((address & ~PUD_MASK) >> PAGE_SHIFT); | |
3369 | return page; | |
3370 | } | |
3371 | ||
3372 | #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */ | |
3373 | ||
3374 | /* Can be overriden by architectures */ | |
3375 | __attribute__((weak)) struct page * | |
3376 | follow_huge_pud(struct mm_struct *mm, unsigned long address, | |
3377 | pud_t *pud, int write) | |
3378 | { | |
3379 | BUG(); | |
3380 | return NULL; | |
3381 | } | |
3382 | ||
3383 | #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ | |
3384 | ||
d5bd9106 AK |
3385 | #ifdef CONFIG_MEMORY_FAILURE |
3386 | ||
6de2b1aa NH |
3387 | /* Should be called in hugetlb_lock */ |
3388 | static int is_hugepage_on_freelist(struct page *hpage) | |
3389 | { | |
3390 | struct page *page; | |
3391 | struct page *tmp; | |
3392 | struct hstate *h = page_hstate(hpage); | |
3393 | int nid = page_to_nid(hpage); | |
3394 | ||
3395 | list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru) | |
3396 | if (page == hpage) | |
3397 | return 1; | |
3398 | return 0; | |
3399 | } | |
3400 | ||
93f70f90 NH |
3401 | /* |
3402 | * This function is called from memory failure code. | |
3403 | * Assume the caller holds page lock of the head page. | |
3404 | */ | |
6de2b1aa | 3405 | int dequeue_hwpoisoned_huge_page(struct page *hpage) |
93f70f90 NH |
3406 | { |
3407 | struct hstate *h = page_hstate(hpage); | |
3408 | int nid = page_to_nid(hpage); | |
6de2b1aa | 3409 | int ret = -EBUSY; |
93f70f90 NH |
3410 | |
3411 | spin_lock(&hugetlb_lock); | |
6de2b1aa | 3412 | if (is_hugepage_on_freelist(hpage)) { |
56f2fb14 NH |
3413 | /* |
3414 | * Hwpoisoned hugepage isn't linked to activelist or freelist, | |
3415 | * but dangling hpage->lru can trigger list-debug warnings | |
3416 | * (this happens when we call unpoison_memory() on it), | |
3417 | * so let it point to itself with list_del_init(). | |
3418 | */ | |
3419 | list_del_init(&hpage->lru); | |
8c6c2ecb | 3420 | set_page_refcounted(hpage); |
6de2b1aa NH |
3421 | h->free_huge_pages--; |
3422 | h->free_huge_pages_node[nid]--; | |
3423 | ret = 0; | |
3424 | } | |
93f70f90 | 3425 | spin_unlock(&hugetlb_lock); |
6de2b1aa | 3426 | return ret; |
93f70f90 | 3427 | } |
6de2b1aa | 3428 | #endif |