]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
4bbd4c77 KS |
2 | #include <linux/kernel.h> |
3 | #include <linux/errno.h> | |
4 | #include <linux/err.h> | |
5 | #include <linux/spinlock.h> | |
6 | ||
4bbd4c77 | 7 | #include <linux/mm.h> |
3565fce3 | 8 | #include <linux/memremap.h> |
4bbd4c77 KS |
9 | #include <linux/pagemap.h> |
10 | #include <linux/rmap.h> | |
11 | #include <linux/swap.h> | |
12 | #include <linux/swapops.h> | |
1507f512 | 13 | #include <linux/secretmem.h> |
4bbd4c77 | 14 | |
174cd4b1 | 15 | #include <linux/sched/signal.h> |
2667f50e | 16 | #include <linux/rwsem.h> |
f30c59e9 | 17 | #include <linux/hugetlb.h> |
9a4e9f3b AK |
18 | #include <linux/migrate.h> |
19 | #include <linux/mm_inline.h> | |
20 | #include <linux/sched/mm.h> | |
a6e79df9 | 21 | #include <linux/shmem_fs.h> |
1027e443 | 22 | |
33a709b2 | 23 | #include <asm/mmu_context.h> |
1027e443 | 24 | #include <asm/tlbflush.h> |
2667f50e | 25 | |
4bbd4c77 KS |
26 | #include "internal.h" |
27 | ||
df06b37f KB |
28 | struct follow_page_context { |
29 | struct dev_pagemap *pgmap; | |
30 | unsigned int page_mask; | |
31 | }; | |
32 | ||
b6a2619c DH |
33 | static inline void sanity_check_pinned_pages(struct page **pages, |
34 | unsigned long npages) | |
35 | { | |
36 | if (!IS_ENABLED(CONFIG_DEBUG_VM)) | |
37 | return; | |
38 | ||
39 | /* | |
40 | * We only pin anonymous pages if they are exclusive. Once pinned, we | |
41 | * can no longer turn them possibly shared and PageAnonExclusive() will | |
42 | * stick around until the page is freed. | |
43 | * | |
44 | * We'd like to verify that our pinned anonymous pages are still mapped | |
45 | * exclusively. The issue with anon THP is that we don't know how | |
46 | * they are/were mapped when pinning them. However, for anon | |
47 | * THP we can assume that either the given page (PTE-mapped THP) or | |
48 | * the head page (PMD-mapped THP) should be PageAnonExclusive(). If | |
49 | * neither is the case, there is certainly something wrong. | |
50 | */ | |
51 | for (; npages; npages--, pages++) { | |
52 | struct page *page = *pages; | |
53 | struct folio *folio = page_folio(page); | |
54 | ||
c8070b78 DH |
55 | if (is_zero_page(page) || |
56 | !folio_test_anon(folio)) | |
b6a2619c DH |
57 | continue; |
58 | if (!folio_test_large(folio) || folio_test_hugetlb(folio)) | |
59 | VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page); | |
60 | else | |
61 | /* Either a PTE-mapped or a PMD-mapped THP. */ | |
62 | VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) && | |
63 | !PageAnonExclusive(page), page); | |
64 | } | |
65 | } | |
66 | ||
cd1adf1b | 67 | /* |
ece1ed7b | 68 | * Return the folio with ref appropriately incremented, |
cd1adf1b | 69 | * or NULL if that failed. |
a707cdd5 | 70 | */ |
ece1ed7b | 71 | static inline struct folio *try_get_folio(struct page *page, int refs) |
a707cdd5 | 72 | { |
ece1ed7b | 73 | struct folio *folio; |
a707cdd5 | 74 | |
59409373 | 75 | retry: |
ece1ed7b MWO |
76 | folio = page_folio(page); |
77 | if (WARN_ON_ONCE(folio_ref_count(folio) < 0)) | |
a707cdd5 | 78 | return NULL; |
ece1ed7b | 79 | if (unlikely(!folio_ref_try_add_rcu(folio, refs))) |
a707cdd5 | 80 | return NULL; |
c24d3732 JH |
81 | |
82 | /* | |
ece1ed7b MWO |
83 | * At this point we have a stable reference to the folio; but it |
84 | * could be that between calling page_folio() and the refcount | |
85 | * increment, the folio was split, in which case we'd end up | |
86 | * holding a reference on a folio that has nothing to do with the page | |
c24d3732 | 87 | * we were given anymore. |
ece1ed7b MWO |
88 | * So now that the folio is stable, recheck that the page still |
89 | * belongs to this folio. | |
c24d3732 | 90 | */ |
ece1ed7b | 91 | if (unlikely(page_folio(page) != folio)) { |
53e45c4f | 92 | if (!put_devmap_managed_folio_refs(folio, refs)) |
f4f451a1 | 93 | folio_put_refs(folio, refs); |
59409373 | 94 | goto retry; |
c24d3732 JH |
95 | } |
96 | ||
ece1ed7b | 97 | return folio; |
a707cdd5 JH |
98 | } |
99 | ||
3967db22 | 100 | /** |
ece1ed7b | 101 | * try_grab_folio() - Attempt to get or pin a folio. |
3967db22 | 102 | * @page: pointer to page to be grabbed |
ece1ed7b | 103 | * @refs: the value to (effectively) add to the folio's refcount |
3967db22 JH |
104 | * @flags: gup flags: these are the FOLL_* flag values. |
105 | * | |
3faa52c0 | 106 | * "grab" names in this file mean, "look at flags to decide whether to use |
ece1ed7b | 107 | * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount. |
3faa52c0 JH |
108 | * |
109 | * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the | |
110 | * same time. (That's true throughout the get_user_pages*() and | |
111 | * pin_user_pages*() APIs.) Cases: | |
112 | * | |
ece1ed7b | 113 | * FOLL_GET: folio's refcount will be incremented by @refs. |
3967db22 | 114 | * |
ece1ed7b | 115 | * FOLL_PIN on large folios: folio's refcount will be incremented by |
94688e8e | 116 | * @refs, and its pincount will be incremented by @refs. |
3967db22 | 117 | * |
ece1ed7b | 118 | * FOLL_PIN on single-page folios: folio's refcount will be incremented by |
5232c63f | 119 | * @refs * GUP_PIN_COUNTING_BIAS. |
3faa52c0 | 120 | * |
ece1ed7b MWO |
121 | * Return: The folio containing @page (with refcount appropriately |
122 | * incremented) for success, or NULL upon failure. If neither FOLL_GET | |
123 | * nor FOLL_PIN was set, that's considered failure, and furthermore, | |
124 | * a likely bug in the caller, so a warning is also emitted. | |
3faa52c0 | 125 | */ |
ece1ed7b | 126 | struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags) |
3faa52c0 | 127 | { |
503670ee VMO |
128 | struct folio *folio; |
129 | ||
130 | if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0)) | |
131 | return NULL; | |
132 | ||
4003f107 LG |
133 | if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) |
134 | return NULL; | |
135 | ||
3faa52c0 | 136 | if (flags & FOLL_GET) |
ece1ed7b | 137 | return try_get_folio(page, refs); |
ece1ed7b | 138 | |
503670ee | 139 | /* FOLL_PIN is set */ |
c8070b78 | 140 | |
6e17c6de LT |
141 | /* |
142 | * Don't take a pin on the zero page - it's not going anywhere | |
143 | * and it is used in a *lot* of places. | |
144 | */ | |
145 | if (is_zero_page(page)) | |
146 | return page_folio(page); | |
df3a0a21 | 147 | |
6e17c6de | 148 | folio = try_get_folio(page, refs); |
503670ee VMO |
149 | if (!folio) |
150 | return NULL; | |
c24d3732 | 151 | |
503670ee VMO |
152 | /* |
153 | * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a | |
154 | * right zone, so fail and let the caller fall back to the slow | |
155 | * path. | |
156 | */ | |
157 | if (unlikely((flags & FOLL_LONGTERM) && | |
158 | !folio_is_longterm_pinnable(folio))) { | |
53e45c4f | 159 | if (!put_devmap_managed_folio_refs(folio, refs)) |
503670ee VMO |
160 | folio_put_refs(folio, refs); |
161 | return NULL; | |
3faa52c0 | 162 | } |
088b8aa5 | 163 | |
503670ee VMO |
164 | /* |
165 | * When pinning a large folio, use an exact count to track it. | |
166 | * | |
167 | * However, be sure to *also* increment the normal folio | |
168 | * refcount field at least once, so that the folio really | |
169 | * is pinned. That's why the refcount from the earlier | |
170 | * try_get_folio() is left intact. | |
171 | */ | |
172 | if (folio_test_large(folio)) | |
173 | atomic_add(refs, &folio->_pincount); | |
174 | else | |
175 | folio_ref_add(folio, | |
176 | refs * (GUP_PIN_COUNTING_BIAS - 1)); | |
177 | /* | |
178 | * Adjust the pincount before re-checking the PTE for changes. | |
179 | * This is essentially a smp_mb() and is paired with a memory | |
e3b4b137 | 180 | * barrier in folio_try_share_anon_rmap_*(). |
503670ee VMO |
181 | */ |
182 | smp_mb__after_atomic(); | |
47e29d32 | 183 | |
503670ee | 184 | node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs); |
3faa52c0 | 185 | |
503670ee | 186 | return folio; |
3faa52c0 JH |
187 | } |
188 | ||
d8ddc099 | 189 | static void gup_put_folio(struct folio *folio, int refs, unsigned int flags) |
4509b42c JG |
190 | { |
191 | if (flags & FOLL_PIN) { | |
c8070b78 DH |
192 | if (is_zero_folio(folio)) |
193 | return; | |
d8ddc099 MWO |
194 | node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs); |
195 | if (folio_test_large(folio)) | |
94688e8e | 196 | atomic_sub(refs, &folio->_pincount); |
4509b42c JG |
197 | else |
198 | refs *= GUP_PIN_COUNTING_BIAS; | |
199 | } | |
200 | ||
53e45c4f | 201 | if (!put_devmap_managed_folio_refs(folio, refs)) |
f4f451a1 | 202 | folio_put_refs(folio, refs); |
4509b42c JG |
203 | } |
204 | ||
3faa52c0 JH |
205 | /** |
206 | * try_grab_page() - elevate a page's refcount by a flag-dependent amount | |
5fec0719 MWO |
207 | * @page: pointer to page to be grabbed |
208 | * @flags: gup flags: these are the FOLL_* flag values. | |
3faa52c0 JH |
209 | * |
210 | * This might not do anything at all, depending on the flags argument. | |
211 | * | |
212 | * "grab" names in this file mean, "look at flags to decide whether to use | |
213 | * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount. | |
214 | * | |
3faa52c0 | 215 | * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same |
ece1ed7b | 216 | * time. Cases: please see the try_grab_folio() documentation, with |
3967db22 | 217 | * "refs=1". |
3faa52c0 | 218 | * |
0f089235 LG |
219 | * Return: 0 for success, or if no action was required (if neither FOLL_PIN |
220 | * nor FOLL_GET was set, nothing is done). A negative error code for failure: | |
221 | * | |
222 | * -ENOMEM FOLL_GET or FOLL_PIN was set, but the page could not | |
223 | * be grabbed. | |
3faa52c0 | 224 | */ |
0f089235 | 225 | int __must_check try_grab_page(struct page *page, unsigned int flags) |
3faa52c0 | 226 | { |
5fec0719 MWO |
227 | struct folio *folio = page_folio(page); |
228 | ||
5fec0719 | 229 | if (WARN_ON_ONCE(folio_ref_count(folio) <= 0)) |
0f089235 | 230 | return -ENOMEM; |
3faa52c0 | 231 | |
4003f107 LG |
232 | if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page))) |
233 | return -EREMOTEIO; | |
3faa52c0 | 234 | |
c36c04c2 | 235 | if (flags & FOLL_GET) |
5fec0719 | 236 | folio_ref_inc(folio); |
c36c04c2 | 237 | else if (flags & FOLL_PIN) { |
c8070b78 DH |
238 | /* |
239 | * Don't take a pin on the zero page - it's not going anywhere | |
240 | * and it is used in a *lot* of places. | |
241 | */ | |
242 | if (is_zero_page(page)) | |
243 | return 0; | |
244 | ||
c36c04c2 | 245 | /* |
5fec0719 | 246 | * Similar to try_grab_folio(): be sure to *also* |
78d9d6ce MWO |
247 | * increment the normal page refcount field at least once, |
248 | * so that the page really is pinned. | |
c36c04c2 | 249 | */ |
5fec0719 MWO |
250 | if (folio_test_large(folio)) { |
251 | folio_ref_add(folio, 1); | |
94688e8e | 252 | atomic_add(1, &folio->_pincount); |
8ea2979c | 253 | } else { |
5fec0719 | 254 | folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); |
8ea2979c | 255 | } |
c36c04c2 | 256 | |
5fec0719 | 257 | node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1); |
c36c04c2 JH |
258 | } |
259 | ||
0f089235 | 260 | return 0; |
3faa52c0 JH |
261 | } |
262 | ||
3faa52c0 JH |
263 | /** |
264 | * unpin_user_page() - release a dma-pinned page | |
265 | * @page: pointer to page to be released | |
266 | * | |
267 | * Pages that were pinned via pin_user_pages*() must be released via either | |
268 | * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so | |
269 | * that such pages can be separately tracked and uniquely handled. In | |
270 | * particular, interactions with RDMA and filesystems need special handling. | |
271 | */ | |
272 | void unpin_user_page(struct page *page) | |
273 | { | |
b6a2619c | 274 | sanity_check_pinned_pages(&page, 1); |
d8ddc099 | 275 | gup_put_folio(page_folio(page), 1, FOLL_PIN); |
3faa52c0 JH |
276 | } |
277 | EXPORT_SYMBOL(unpin_user_page); | |
278 | ||
1101fb8f DH |
279 | /** |
280 | * folio_add_pin - Try to get an additional pin on a pinned folio | |
281 | * @folio: The folio to be pinned | |
282 | * | |
283 | * Get an additional pin on a folio we already have a pin on. Makes no change | |
284 | * if the folio is a zero_page. | |
285 | */ | |
286 | void folio_add_pin(struct folio *folio) | |
287 | { | |
288 | if (is_zero_folio(folio)) | |
289 | return; | |
290 | ||
291 | /* | |
292 | * Similar to try_grab_folio(): be sure to *also* increment the normal | |
293 | * page refcount field at least once, so that the page really is | |
294 | * pinned. | |
295 | */ | |
296 | if (folio_test_large(folio)) { | |
297 | WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1); | |
298 | folio_ref_inc(folio); | |
299 | atomic_inc(&folio->_pincount); | |
300 | } else { | |
301 | WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS); | |
302 | folio_ref_add(folio, GUP_PIN_COUNTING_BIAS); | |
303 | } | |
304 | } | |
305 | ||
659508f9 | 306 | static inline struct folio *gup_folio_range_next(struct page *start, |
8f39f5fc | 307 | unsigned long npages, unsigned long i, unsigned int *ntails) |
458a4f78 | 308 | { |
659508f9 MWO |
309 | struct page *next = nth_page(start, i); |
310 | struct folio *folio = page_folio(next); | |
458a4f78 JM |
311 | unsigned int nr = 1; |
312 | ||
659508f9 | 313 | if (folio_test_large(folio)) |
4c654229 | 314 | nr = min_t(unsigned int, npages - i, |
659508f9 | 315 | folio_nr_pages(folio) - folio_page_idx(folio, next)); |
458a4f78 | 316 | |
458a4f78 | 317 | *ntails = nr; |
659508f9 | 318 | return folio; |
458a4f78 JM |
319 | } |
320 | ||
12521c76 | 321 | static inline struct folio *gup_folio_next(struct page **list, |
28297dbc | 322 | unsigned long npages, unsigned long i, unsigned int *ntails) |
8745d7f6 | 323 | { |
12521c76 | 324 | struct folio *folio = page_folio(list[i]); |
8745d7f6 JM |
325 | unsigned int nr; |
326 | ||
8745d7f6 | 327 | for (nr = i + 1; nr < npages; nr++) { |
12521c76 | 328 | if (page_folio(list[nr]) != folio) |
8745d7f6 JM |
329 | break; |
330 | } | |
331 | ||
8745d7f6 | 332 | *ntails = nr - i; |
12521c76 | 333 | return folio; |
8745d7f6 JM |
334 | } |
335 | ||
fc1d8e7c | 336 | /** |
f1f6a7dd | 337 | * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages |
2d15eb31 | 338 | * @pages: array of pages to be maybe marked dirty, and definitely released. |
fc1d8e7c | 339 | * @npages: number of pages in the @pages array. |
2d15eb31 | 340 | * @make_dirty: whether to mark the pages dirty |
fc1d8e7c JH |
341 | * |
342 | * "gup-pinned page" refers to a page that has had one of the get_user_pages() | |
343 | * variants called on that page. | |
344 | * | |
345 | * For each page in the @pages array, make that page (or its head page, if a | |
2d15eb31 | 346 | * compound page) dirty, if @make_dirty is true, and if the page was previously |
f1f6a7dd JH |
347 | * listed as clean. In any case, releases all pages using unpin_user_page(), |
348 | * possibly via unpin_user_pages(), for the non-dirty case. | |
fc1d8e7c | 349 | * |
f1f6a7dd | 350 | * Please see the unpin_user_page() documentation for details. |
fc1d8e7c | 351 | * |
2d15eb31 AM |
352 | * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is |
353 | * required, then the caller should a) verify that this is really correct, | |
354 | * because _lock() is usually required, and b) hand code it: | |
f1f6a7dd | 355 | * set_page_dirty_lock(), unpin_user_page(). |
fc1d8e7c JH |
356 | * |
357 | */ | |
f1f6a7dd JH |
358 | void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, |
359 | bool make_dirty) | |
fc1d8e7c | 360 | { |
12521c76 MWO |
361 | unsigned long i; |
362 | struct folio *folio; | |
363 | unsigned int nr; | |
2d15eb31 AM |
364 | |
365 | if (!make_dirty) { | |
f1f6a7dd | 366 | unpin_user_pages(pages, npages); |
2d15eb31 AM |
367 | return; |
368 | } | |
369 | ||
b6a2619c | 370 | sanity_check_pinned_pages(pages, npages); |
12521c76 MWO |
371 | for (i = 0; i < npages; i += nr) { |
372 | folio = gup_folio_next(pages, npages, i, &nr); | |
2d15eb31 AM |
373 | /* |
374 | * Checking PageDirty at this point may race with | |
375 | * clear_page_dirty_for_io(), but that's OK. Two key | |
376 | * cases: | |
377 | * | |
378 | * 1) This code sees the page as already dirty, so it | |
379 | * skips the call to set_page_dirty(). That could happen | |
380 | * because clear_page_dirty_for_io() called | |
381 | * page_mkclean(), followed by set_page_dirty(). | |
382 | * However, now the page is going to get written back, | |
383 | * which meets the original intention of setting it | |
384 | * dirty, so all is well: clear_page_dirty_for_io() goes | |
385 | * on to call TestClearPageDirty(), and write the page | |
386 | * back. | |
387 | * | |
388 | * 2) This code sees the page as clean, so it calls | |
389 | * set_page_dirty(). The page stays dirty, despite being | |
390 | * written back, so it gets written back again in the | |
391 | * next writeback cycle. This is harmless. | |
392 | */ | |
12521c76 MWO |
393 | if (!folio_test_dirty(folio)) { |
394 | folio_lock(folio); | |
395 | folio_mark_dirty(folio); | |
396 | folio_unlock(folio); | |
397 | } | |
398 | gup_put_folio(folio, nr, FOLL_PIN); | |
2d15eb31 | 399 | } |
fc1d8e7c | 400 | } |
f1f6a7dd | 401 | EXPORT_SYMBOL(unpin_user_pages_dirty_lock); |
fc1d8e7c | 402 | |
458a4f78 JM |
403 | /** |
404 | * unpin_user_page_range_dirty_lock() - release and optionally dirty | |
405 | * gup-pinned page range | |
406 | * | |
407 | * @page: the starting page of a range maybe marked dirty, and definitely released. | |
408 | * @npages: number of consecutive pages to release. | |
409 | * @make_dirty: whether to mark the pages dirty | |
410 | * | |
411 | * "gup-pinned page range" refers to a range of pages that has had one of the | |
412 | * pin_user_pages() variants called on that page. | |
413 | * | |
414 | * For the page ranges defined by [page .. page+npages], make that range (or | |
415 | * its head pages, if a compound page) dirty, if @make_dirty is true, and if the | |
416 | * page range was previously listed as clean. | |
417 | * | |
418 | * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is | |
419 | * required, then the caller should a) verify that this is really correct, | |
420 | * because _lock() is usually required, and b) hand code it: | |
421 | * set_page_dirty_lock(), unpin_user_page(). | |
422 | * | |
423 | */ | |
424 | void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, | |
425 | bool make_dirty) | |
426 | { | |
659508f9 MWO |
427 | unsigned long i; |
428 | struct folio *folio; | |
429 | unsigned int nr; | |
430 | ||
431 | for (i = 0; i < npages; i += nr) { | |
432 | folio = gup_folio_range_next(page, npages, i, &nr); | |
433 | if (make_dirty && !folio_test_dirty(folio)) { | |
434 | folio_lock(folio); | |
435 | folio_mark_dirty(folio); | |
436 | folio_unlock(folio); | |
437 | } | |
438 | gup_put_folio(folio, nr, FOLL_PIN); | |
458a4f78 JM |
439 | } |
440 | } | |
441 | EXPORT_SYMBOL(unpin_user_page_range_dirty_lock); | |
442 | ||
23babe19 | 443 | static void gup_fast_unpin_user_pages(struct page **pages, unsigned long npages) |
b6a2619c DH |
444 | { |
445 | unsigned long i; | |
446 | struct folio *folio; | |
447 | unsigned int nr; | |
448 | ||
449 | /* | |
450 | * Don't perform any sanity checks because we might have raced with | |
451 | * fork() and some anonymous pages might now actually be shared -- | |
452 | * which is why we're unpinning after all. | |
453 | */ | |
454 | for (i = 0; i < npages; i += nr) { | |
455 | folio = gup_folio_next(pages, npages, i, &nr); | |
456 | gup_put_folio(folio, nr, FOLL_PIN); | |
457 | } | |
458 | } | |
459 | ||
fc1d8e7c | 460 | /** |
f1f6a7dd | 461 | * unpin_user_pages() - release an array of gup-pinned pages. |
fc1d8e7c JH |
462 | * @pages: array of pages to be marked dirty and released. |
463 | * @npages: number of pages in the @pages array. | |
464 | * | |
f1f6a7dd | 465 | * For each page in the @pages array, release the page using unpin_user_page(). |
fc1d8e7c | 466 | * |
f1f6a7dd | 467 | * Please see the unpin_user_page() documentation for details. |
fc1d8e7c | 468 | */ |
f1f6a7dd | 469 | void unpin_user_pages(struct page **pages, unsigned long npages) |
fc1d8e7c | 470 | { |
12521c76 MWO |
471 | unsigned long i; |
472 | struct folio *folio; | |
473 | unsigned int nr; | |
fc1d8e7c | 474 | |
146608bb JH |
475 | /* |
476 | * If this WARN_ON() fires, then the system *might* be leaking pages (by | |
477 | * leaving them pinned), but probably not. More likely, gup/pup returned | |
478 | * a hard -ERRNO error to the caller, who erroneously passed it here. | |
479 | */ | |
480 | if (WARN_ON(IS_ERR_VALUE(npages))) | |
481 | return; | |
31b912de | 482 | |
b6a2619c | 483 | sanity_check_pinned_pages(pages, npages); |
12521c76 MWO |
484 | for (i = 0; i < npages; i += nr) { |
485 | folio = gup_folio_next(pages, npages, i, &nr); | |
486 | gup_put_folio(folio, nr, FOLL_PIN); | |
e7602748 | 487 | } |
fc1d8e7c | 488 | } |
f1f6a7dd | 489 | EXPORT_SYMBOL(unpin_user_pages); |
fc1d8e7c | 490 | |
a458b76a AA |
491 | /* |
492 | * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's | |
493 | * lifecycle. Avoid setting the bit unless necessary, or it might cause write | |
494 | * cache bouncing on large SMP machines for concurrent pinned gups. | |
495 | */ | |
496 | static inline void mm_set_has_pinned_flag(unsigned long *mm_flags) | |
497 | { | |
498 | if (!test_bit(MMF_HAS_PINNED, mm_flags)) | |
499 | set_bit(MMF_HAS_PINNED, mm_flags); | |
500 | } | |
501 | ||
050a9adc | 502 | #ifdef CONFIG_MMU |
a12083d7 | 503 | |
25176ad0 | 504 | #if defined(CONFIG_ARCH_HAS_HUGEPD) || defined(CONFIG_HAVE_GUP_FAST) |
a12083d7 PX |
505 | static int record_subpages(struct page *page, unsigned long sz, |
506 | unsigned long addr, unsigned long end, | |
507 | struct page **pages) | |
508 | { | |
509 | struct page *start_page; | |
510 | int nr; | |
511 | ||
512 | start_page = nth_page(page, (addr & (sz - 1)) >> PAGE_SHIFT); | |
513 | for (nr = 0; addr != end; nr++, addr += PAGE_SIZE) | |
514 | pages[nr] = nth_page(start_page, nr); | |
515 | ||
516 | return nr; | |
517 | } | |
25176ad0 | 518 | #endif /* CONFIG_ARCH_HAS_HUGEPD || CONFIG_HAVE_GUP_FAST */ |
a12083d7 PX |
519 | |
520 | #ifdef CONFIG_ARCH_HAS_HUGEPD | |
521 | static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, | |
522 | unsigned long sz) | |
523 | { | |
524 | unsigned long __boundary = (addr + sz) & ~(sz-1); | |
525 | return (__boundary - 1 < end - 1) ? __boundary : end; | |
526 | } | |
527 | ||
01d89b93 PX |
528 | /* |
529 | * Returns 1 if succeeded, 0 if failed, -EMLINK if unshare needed. | |
530 | * | |
531 | * NOTE: for the same entry, gup-fast and gup-slow can return different | |
532 | * results (0 v.s. -EMLINK) depending on whether vma is available. This is | |
533 | * the expected behavior, where we simply want gup-fast to fallback to | |
534 | * gup-slow to take the vma reference first. | |
535 | */ | |
536 | static int gup_hugepte(struct vm_area_struct *vma, pte_t *ptep, unsigned long sz, | |
537 | unsigned long addr, unsigned long end, unsigned int flags, | |
538 | struct page **pages, int *nr) | |
a12083d7 PX |
539 | { |
540 | unsigned long pte_end; | |
541 | struct page *page; | |
542 | struct folio *folio; | |
543 | pte_t pte; | |
544 | int refs; | |
545 | ||
546 | pte_end = (addr + sz) & ~(sz-1); | |
547 | if (pte_end < end) | |
548 | end = pte_end; | |
549 | ||
550 | pte = huge_ptep_get(ptep); | |
551 | ||
552 | if (!pte_access_permitted(pte, flags & FOLL_WRITE)) | |
553 | return 0; | |
554 | ||
555 | /* hugepages are never "special" */ | |
556 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
557 | ||
558 | page = pte_page(pte); | |
559 | refs = record_subpages(page, sz, addr, end, pages + *nr); | |
560 | ||
561 | folio = try_grab_folio(page, refs, flags); | |
562 | if (!folio) | |
563 | return 0; | |
564 | ||
565 | if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { | |
566 | gup_put_folio(folio, refs, flags); | |
567 | return 0; | |
568 | } | |
569 | ||
01d89b93 | 570 | if (!pte_write(pte) && gup_must_unshare(vma, flags, &folio->page)) { |
a12083d7 | 571 | gup_put_folio(folio, refs, flags); |
01d89b93 | 572 | return -EMLINK; |
a12083d7 PX |
573 | } |
574 | ||
575 | *nr += refs; | |
576 | folio_set_referenced(folio); | |
577 | return 1; | |
578 | } | |
579 | ||
580 | /* | |
581 | * NOTE: currently GUP for a hugepd is only possible on hugetlbfs file | |
582 | * systems on Power, which does not have issue with folio writeback against | |
583 | * GUP updates. When hugepd will be extended to support non-hugetlbfs or | |
584 | * even anonymous memory, we need to do extra check as what we do with most | |
585 | * of the other folios. See writable_file_mapping_allowed() and | |
586 | * gup_fast_folio_allowed() for more information. | |
587 | */ | |
01d89b93 PX |
588 | static int gup_hugepd(struct vm_area_struct *vma, hugepd_t hugepd, |
589 | unsigned long addr, unsigned int pdshift, | |
590 | unsigned long end, unsigned int flags, | |
591 | struct page **pages, int *nr) | |
a12083d7 PX |
592 | { |
593 | pte_t *ptep; | |
594 | unsigned long sz = 1UL << hugepd_shift(hugepd); | |
595 | unsigned long next; | |
01d89b93 | 596 | int ret; |
a12083d7 PX |
597 | |
598 | ptep = hugepte_offset(hugepd, addr, pdshift); | |
599 | do { | |
600 | next = hugepte_addr_end(addr, end, sz); | |
01d89b93 PX |
601 | ret = gup_hugepte(vma, ptep, sz, addr, end, flags, pages, nr); |
602 | if (ret != 1) | |
603 | return ret; | |
a12083d7 PX |
604 | } while (ptep++, addr = next, addr != end); |
605 | ||
606 | return 1; | |
607 | } | |
608 | ||
609 | static struct page *follow_hugepd(struct vm_area_struct *vma, hugepd_t hugepd, | |
610 | unsigned long addr, unsigned int pdshift, | |
611 | unsigned int flags, | |
612 | struct follow_page_context *ctx) | |
613 | { | |
614 | struct page *page; | |
615 | struct hstate *h; | |
616 | spinlock_t *ptl; | |
617 | int nr = 0, ret; | |
618 | pte_t *ptep; | |
619 | ||
620 | /* Only hugetlb supports hugepd */ | |
621 | if (WARN_ON_ONCE(!is_vm_hugetlb_page(vma))) | |
622 | return ERR_PTR(-EFAULT); | |
623 | ||
624 | h = hstate_vma(vma); | |
625 | ptep = hugepte_offset(hugepd, addr, pdshift); | |
626 | ptl = huge_pte_lock(h, vma->vm_mm, ptep); | |
01d89b93 PX |
627 | ret = gup_hugepd(vma, hugepd, addr, pdshift, addr + PAGE_SIZE, |
628 | flags, &page, &nr); | |
a12083d7 PX |
629 | spin_unlock(ptl); |
630 | ||
01d89b93 PX |
631 | if (ret == 1) { |
632 | /* GUP succeeded */ | |
a12083d7 PX |
633 | WARN_ON_ONCE(nr != 1); |
634 | ctx->page_mask = (1U << huge_page_order(h)) - 1; | |
635 | return page; | |
636 | } | |
637 | ||
01d89b93 PX |
638 | /* ret can be either 0 (translates to NULL) or negative */ |
639 | return ERR_PTR(ret); | |
a12083d7 PX |
640 | } |
641 | #else /* CONFIG_ARCH_HAS_HUGEPD */ | |
01d89b93 PX |
642 | static inline int gup_hugepd(struct vm_area_struct *vma, hugepd_t hugepd, |
643 | unsigned long addr, unsigned int pdshift, | |
644 | unsigned long end, unsigned int flags, | |
645 | struct page **pages, int *nr) | |
a12083d7 PX |
646 | { |
647 | return 0; | |
648 | } | |
649 | ||
650 | static struct page *follow_hugepd(struct vm_area_struct *vma, hugepd_t hugepd, | |
651 | unsigned long addr, unsigned int pdshift, | |
652 | unsigned int flags, | |
653 | struct follow_page_context *ctx) | |
654 | { | |
655 | return NULL; | |
656 | } | |
657 | #endif /* CONFIG_ARCH_HAS_HUGEPD */ | |
658 | ||
659 | ||
69e68b4f | 660 | static struct page *no_page_table(struct vm_area_struct *vma, |
878b0c45 | 661 | unsigned int flags, unsigned long address) |
4bbd4c77 | 662 | { |
878b0c45 PX |
663 | if (!(flags & FOLL_DUMP)) |
664 | return NULL; | |
665 | ||
69e68b4f | 666 | /* |
878b0c45 | 667 | * When core dumping, we don't want to allocate unnecessary pages or |
69e68b4f KS |
668 | * page tables. Return error instead of NULL to skip handle_mm_fault, |
669 | * then get_dump_page() will return NULL to leave a hole in the dump. | |
670 | * But we can only make this optimization where a hole would surely | |
671 | * be zero-filled if handle_mm_fault() actually did handle it. | |
672 | */ | |
878b0c45 PX |
673 | if (is_vm_hugetlb_page(vma)) { |
674 | struct hstate *h = hstate_vma(vma); | |
675 | ||
676 | if (!hugetlbfs_pagecache_present(h, vma, address)) | |
677 | return ERR_PTR(-EFAULT); | |
678 | } else if ((vma_is_anonymous(vma) || !vma->vm_ops->fault)) { | |
69e68b4f | 679 | return ERR_PTR(-EFAULT); |
878b0c45 PX |
680 | } |
681 | ||
69e68b4f KS |
682 | return NULL; |
683 | } | |
4bbd4c77 | 684 | |
1b167618 PX |
685 | #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES |
686 | static struct page *follow_huge_pud(struct vm_area_struct *vma, | |
687 | unsigned long addr, pud_t *pudp, | |
688 | int flags, struct follow_page_context *ctx) | |
689 | { | |
690 | struct mm_struct *mm = vma->vm_mm; | |
691 | struct page *page; | |
692 | pud_t pud = *pudp; | |
693 | unsigned long pfn = pud_pfn(pud); | |
694 | int ret; | |
695 | ||
696 | assert_spin_locked(pud_lockptr(mm, pudp)); | |
697 | ||
698 | if ((flags & FOLL_WRITE) && !pud_write(pud)) | |
699 | return NULL; | |
700 | ||
701 | if (!pud_present(pud)) | |
702 | return NULL; | |
703 | ||
704 | pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT; | |
705 | ||
706 | if (IS_ENABLED(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) && | |
707 | pud_devmap(pud)) { | |
708 | /* | |
709 | * device mapped pages can only be returned if the caller | |
710 | * will manage the page reference count. | |
711 | * | |
712 | * At least one of FOLL_GET | FOLL_PIN must be set, so | |
713 | * assert that here: | |
714 | */ | |
715 | if (!(flags & (FOLL_GET | FOLL_PIN))) | |
716 | return ERR_PTR(-EEXIST); | |
717 | ||
718 | if (flags & FOLL_TOUCH) | |
719 | touch_pud(vma, addr, pudp, flags & FOLL_WRITE); | |
720 | ||
721 | ctx->pgmap = get_dev_pagemap(pfn, ctx->pgmap); | |
722 | if (!ctx->pgmap) | |
723 | return ERR_PTR(-EFAULT); | |
724 | } | |
725 | ||
726 | page = pfn_to_page(pfn); | |
727 | ||
728 | if (!pud_devmap(pud) && !pud_write(pud) && | |
729 | gup_must_unshare(vma, flags, page)) | |
730 | return ERR_PTR(-EMLINK); | |
731 | ||
732 | ret = try_grab_page(page, flags); | |
733 | if (ret) | |
734 | page = ERR_PTR(ret); | |
735 | else | |
736 | ctx->page_mask = HPAGE_PUD_NR - 1; | |
737 | ||
738 | return page; | |
739 | } | |
4418c522 PX |
740 | |
741 | /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */ | |
742 | static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page, | |
743 | struct vm_area_struct *vma, | |
744 | unsigned int flags) | |
745 | { | |
746 | /* If the pmd is writable, we can write to the page. */ | |
747 | if (pmd_write(pmd)) | |
748 | return true; | |
749 | ||
750 | /* Maybe FOLL_FORCE is set to override it? */ | |
751 | if (!(flags & FOLL_FORCE)) | |
752 | return false; | |
753 | ||
754 | /* But FOLL_FORCE has no effect on shared mappings */ | |
755 | if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) | |
756 | return false; | |
757 | ||
758 | /* ... or read-only private ones */ | |
759 | if (!(vma->vm_flags & VM_MAYWRITE)) | |
760 | return false; | |
761 | ||
762 | /* ... or already writable ones that just need to take a write fault */ | |
763 | if (vma->vm_flags & VM_WRITE) | |
764 | return false; | |
765 | ||
766 | /* | |
767 | * See can_change_pte_writable(): we broke COW and could map the page | |
768 | * writable if we have an exclusive anonymous page ... | |
769 | */ | |
770 | if (!page || !PageAnon(page) || !PageAnonExclusive(page)) | |
771 | return false; | |
772 | ||
773 | /* ... and a write-fault isn't required for other reasons. */ | |
774 | if (vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd)) | |
775 | return false; | |
776 | return !userfaultfd_huge_pmd_wp(vma, pmd); | |
777 | } | |
778 | ||
779 | static struct page *follow_huge_pmd(struct vm_area_struct *vma, | |
780 | unsigned long addr, pmd_t *pmd, | |
781 | unsigned int flags, | |
782 | struct follow_page_context *ctx) | |
783 | { | |
784 | struct mm_struct *mm = vma->vm_mm; | |
785 | pmd_t pmdval = *pmd; | |
786 | struct page *page; | |
787 | int ret; | |
788 | ||
789 | assert_spin_locked(pmd_lockptr(mm, pmd)); | |
790 | ||
791 | page = pmd_page(pmdval); | |
792 | if ((flags & FOLL_WRITE) && | |
793 | !can_follow_write_pmd(pmdval, page, vma, flags)) | |
794 | return NULL; | |
795 | ||
796 | /* Avoid dumping huge zero page */ | |
797 | if ((flags & FOLL_DUMP) && is_huge_zero_pmd(pmdval)) | |
798 | return ERR_PTR(-EFAULT); | |
799 | ||
800 | if (pmd_protnone(*pmd) && !gup_can_follow_protnone(vma, flags)) | |
801 | return NULL; | |
802 | ||
803 | if (!pmd_write(pmdval) && gup_must_unshare(vma, flags, page)) | |
804 | return ERR_PTR(-EMLINK); | |
805 | ||
806 | VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && | |
807 | !PageAnonExclusive(page), page); | |
808 | ||
809 | ret = try_grab_page(page, flags); | |
810 | if (ret) | |
811 | return ERR_PTR(ret); | |
812 | ||
813 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
814 | if (pmd_trans_huge(pmdval) && (flags & FOLL_TOUCH)) | |
815 | touch_pmd(vma, addr, pmd, flags & FOLL_WRITE); | |
816 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | |
817 | ||
818 | page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT; | |
819 | ctx->page_mask = HPAGE_PMD_NR - 1; | |
820 | ||
821 | return page; | |
822 | } | |
823 | ||
1b167618 PX |
824 | #else /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ |
825 | static struct page *follow_huge_pud(struct vm_area_struct *vma, | |
826 | unsigned long addr, pud_t *pudp, | |
827 | int flags, struct follow_page_context *ctx) | |
828 | { | |
829 | return NULL; | |
830 | } | |
4418c522 PX |
831 | |
832 | static struct page *follow_huge_pmd(struct vm_area_struct *vma, | |
833 | unsigned long addr, pmd_t *pmd, | |
834 | unsigned int flags, | |
835 | struct follow_page_context *ctx) | |
836 | { | |
837 | return NULL; | |
838 | } | |
1b167618 PX |
839 | #endif /* CONFIG_PGTABLE_HAS_HUGE_LEAVES */ |
840 | ||
1027e443 KS |
841 | static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address, |
842 | pte_t *pte, unsigned int flags) | |
843 | { | |
1027e443 | 844 | if (flags & FOLL_TOUCH) { |
c33c7948 RR |
845 | pte_t orig_entry = ptep_get(pte); |
846 | pte_t entry = orig_entry; | |
1027e443 KS |
847 | |
848 | if (flags & FOLL_WRITE) | |
849 | entry = pte_mkdirty(entry); | |
850 | entry = pte_mkyoung(entry); | |
851 | ||
c33c7948 | 852 | if (!pte_same(orig_entry, entry)) { |
1027e443 KS |
853 | set_pte_at(vma->vm_mm, address, pte, entry); |
854 | update_mmu_cache(vma, address, pte); | |
855 | } | |
856 | } | |
857 | ||
858 | /* Proper page table entry exists, but no corresponding struct page */ | |
859 | return -EEXIST; | |
860 | } | |
861 | ||
5535be30 DH |
862 | /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */ |
863 | static inline bool can_follow_write_pte(pte_t pte, struct page *page, | |
864 | struct vm_area_struct *vma, | |
865 | unsigned int flags) | |
19be0eaf | 866 | { |
5535be30 DH |
867 | /* If the pte is writable, we can write to the page. */ |
868 | if (pte_write(pte)) | |
869 | return true; | |
870 | ||
871 | /* Maybe FOLL_FORCE is set to override it? */ | |
872 | if (!(flags & FOLL_FORCE)) | |
873 | return false; | |
874 | ||
875 | /* But FOLL_FORCE has no effect on shared mappings */ | |
876 | if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED)) | |
877 | return false; | |
878 | ||
879 | /* ... or read-only private ones */ | |
880 | if (!(vma->vm_flags & VM_MAYWRITE)) | |
881 | return false; | |
882 | ||
883 | /* ... or already writable ones that just need to take a write fault */ | |
884 | if (vma->vm_flags & VM_WRITE) | |
885 | return false; | |
886 | ||
887 | /* | |
888 | * See can_change_pte_writable(): we broke COW and could map the page | |
889 | * writable if we have an exclusive anonymous page ... | |
890 | */ | |
891 | if (!page || !PageAnon(page) || !PageAnonExclusive(page)) | |
892 | return false; | |
893 | ||
894 | /* ... and a write-fault isn't required for other reasons. */ | |
895 | if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte)) | |
896 | return false; | |
897 | return !userfaultfd_pte_wp(vma, pte); | |
19be0eaf LT |
898 | } |
899 | ||
69e68b4f | 900 | static struct page *follow_page_pte(struct vm_area_struct *vma, |
df06b37f KB |
901 | unsigned long address, pmd_t *pmd, unsigned int flags, |
902 | struct dev_pagemap **pgmap) | |
69e68b4f KS |
903 | { |
904 | struct mm_struct *mm = vma->vm_mm; | |
905 | struct page *page; | |
906 | spinlock_t *ptl; | |
907 | pte_t *ptep, pte; | |
f28d4363 | 908 | int ret; |
4bbd4c77 | 909 | |
eddb1c22 JH |
910 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ |
911 | if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) == | |
912 | (FOLL_PIN | FOLL_GET))) | |
913 | return ERR_PTR(-EINVAL); | |
4bbd4c77 KS |
914 | |
915 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | |
04dee9e8 | 916 | if (!ptep) |
878b0c45 | 917 | return no_page_table(vma, flags, address); |
c33c7948 | 918 | pte = ptep_get(ptep); |
f7355e99 DH |
919 | if (!pte_present(pte)) |
920 | goto no_page; | |
d74943a2 | 921 | if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags)) |
4bbd4c77 | 922 | goto no_page; |
4bbd4c77 KS |
923 | |
924 | page = vm_normal_page(vma, address, pte); | |
5535be30 DH |
925 | |
926 | /* | |
927 | * We only care about anon pages in can_follow_write_pte() and don't | |
928 | * have to worry about pte_devmap() because they are never anon. | |
929 | */ | |
930 | if ((flags & FOLL_WRITE) && | |
931 | !can_follow_write_pte(pte, page, vma, flags)) { | |
932 | page = NULL; | |
933 | goto out; | |
934 | } | |
935 | ||
3faa52c0 | 936 | if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) { |
3565fce3 | 937 | /* |
3faa52c0 JH |
938 | * Only return device mapping pages in the FOLL_GET or FOLL_PIN |
939 | * case since they are only valid while holding the pgmap | |
940 | * reference. | |
3565fce3 | 941 | */ |
df06b37f KB |
942 | *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap); |
943 | if (*pgmap) | |
3565fce3 DW |
944 | page = pte_page(pte); |
945 | else | |
946 | goto no_page; | |
947 | } else if (unlikely(!page)) { | |
1027e443 KS |
948 | if (flags & FOLL_DUMP) { |
949 | /* Avoid special (like zero) pages in core dumps */ | |
950 | page = ERR_PTR(-EFAULT); | |
951 | goto out; | |
952 | } | |
953 | ||
954 | if (is_zero_pfn(pte_pfn(pte))) { | |
955 | page = pte_page(pte); | |
956 | } else { | |
1027e443 KS |
957 | ret = follow_pfn_pte(vma, address, ptep, flags); |
958 | page = ERR_PTR(ret); | |
959 | goto out; | |
960 | } | |
4bbd4c77 KS |
961 | } |
962 | ||
84209e87 | 963 | if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) { |
a7f22660 DH |
964 | page = ERR_PTR(-EMLINK); |
965 | goto out; | |
966 | } | |
b6a2619c DH |
967 | |
968 | VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) && | |
969 | !PageAnonExclusive(page), page); | |
970 | ||
3faa52c0 | 971 | /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */ |
0f089235 LG |
972 | ret = try_grab_page(page, flags); |
973 | if (unlikely(ret)) { | |
974 | page = ERR_PTR(ret); | |
3faa52c0 | 975 | goto out; |
8fde12ca | 976 | } |
4003f107 | 977 | |
f28d4363 CI |
978 | /* |
979 | * We need to make the page accessible if and only if we are going | |
980 | * to access its content (the FOLL_PIN case). Please see | |
981 | * Documentation/core-api/pin_user_pages.rst for details. | |
982 | */ | |
983 | if (flags & FOLL_PIN) { | |
984 | ret = arch_make_page_accessible(page); | |
985 | if (ret) { | |
986 | unpin_user_page(page); | |
987 | page = ERR_PTR(ret); | |
988 | goto out; | |
989 | } | |
990 | } | |
4bbd4c77 KS |
991 | if (flags & FOLL_TOUCH) { |
992 | if ((flags & FOLL_WRITE) && | |
993 | !pte_dirty(pte) && !PageDirty(page)) | |
994 | set_page_dirty(page); | |
995 | /* | |
996 | * pte_mkyoung() would be more correct here, but atomic care | |
997 | * is needed to avoid losing the dirty bit: it is easier to use | |
998 | * mark_page_accessed(). | |
999 | */ | |
1000 | mark_page_accessed(page); | |
1001 | } | |
1027e443 | 1002 | out: |
4bbd4c77 | 1003 | pte_unmap_unlock(ptep, ptl); |
4bbd4c77 | 1004 | return page; |
4bbd4c77 KS |
1005 | no_page: |
1006 | pte_unmap_unlock(ptep, ptl); | |
1007 | if (!pte_none(pte)) | |
69e68b4f | 1008 | return NULL; |
878b0c45 | 1009 | return no_page_table(vma, flags, address); |
69e68b4f KS |
1010 | } |
1011 | ||
080dbb61 AK |
1012 | static struct page *follow_pmd_mask(struct vm_area_struct *vma, |
1013 | unsigned long address, pud_t *pudp, | |
df06b37f KB |
1014 | unsigned int flags, |
1015 | struct follow_page_context *ctx) | |
69e68b4f | 1016 | { |
68827280 | 1017 | pmd_t *pmd, pmdval; |
69e68b4f KS |
1018 | spinlock_t *ptl; |
1019 | struct page *page; | |
1020 | struct mm_struct *mm = vma->vm_mm; | |
1021 | ||
080dbb61 | 1022 | pmd = pmd_offset(pudp, address); |
26e1a0c3 | 1023 | pmdval = pmdp_get_lockless(pmd); |
68827280 | 1024 | if (pmd_none(pmdval)) |
878b0c45 | 1025 | return no_page_table(vma, flags, address); |
f7355e99 | 1026 | if (!pmd_present(pmdval)) |
878b0c45 | 1027 | return no_page_table(vma, flags, address); |
a12083d7 PX |
1028 | if (unlikely(is_hugepd(__hugepd(pmd_val(pmdval))))) |
1029 | return follow_hugepd(vma, __hugepd(pmd_val(pmdval)), | |
1030 | address, PMD_SHIFT, flags, ctx); | |
68827280 | 1031 | if (pmd_devmap(pmdval)) { |
3565fce3 | 1032 | ptl = pmd_lock(mm, pmd); |
df06b37f | 1033 | page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap); |
3565fce3 DW |
1034 | spin_unlock(ptl); |
1035 | if (page) | |
1036 | return page; | |
878b0c45 | 1037 | return no_page_table(vma, flags, address); |
3565fce3 | 1038 | } |
4418c522 | 1039 | if (likely(!pmd_leaf(pmdval))) |
df06b37f | 1040 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 1041 | |
d74943a2 | 1042 | if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags)) |
878b0c45 | 1043 | return no_page_table(vma, flags, address); |
db08f203 | 1044 | |
6742d293 | 1045 | ptl = pmd_lock(mm, pmd); |
4418c522 PX |
1046 | pmdval = *pmd; |
1047 | if (unlikely(!pmd_present(pmdval))) { | |
84c3fc4e | 1048 | spin_unlock(ptl); |
878b0c45 | 1049 | return no_page_table(vma, flags, address); |
84c3fc4e | 1050 | } |
4418c522 | 1051 | if (unlikely(!pmd_leaf(pmdval))) { |
6742d293 | 1052 | spin_unlock(ptl); |
df06b37f | 1053 | return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
6742d293 | 1054 | } |
4418c522 | 1055 | if (pmd_trans_huge(pmdval) && (flags & FOLL_SPLIT_PMD)) { |
2378118b HD |
1056 | spin_unlock(ptl); |
1057 | split_huge_pmd(vma, pmd, address); | |
1058 | /* If pmd was left empty, stuff a page table in there quickly */ | |
1059 | return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) : | |
df06b37f | 1060 | follow_page_pte(vma, address, pmd, flags, &ctx->pgmap); |
69e68b4f | 1061 | } |
4418c522 | 1062 | page = follow_huge_pmd(vma, address, pmd, flags, ctx); |
6742d293 | 1063 | spin_unlock(ptl); |
6742d293 | 1064 | return page; |
4bbd4c77 KS |
1065 | } |
1066 | ||
080dbb61 AK |
1067 | static struct page *follow_pud_mask(struct vm_area_struct *vma, |
1068 | unsigned long address, p4d_t *p4dp, | |
df06b37f KB |
1069 | unsigned int flags, |
1070 | struct follow_page_context *ctx) | |
080dbb61 | 1071 | { |
caf8cab7 | 1072 | pud_t *pudp, pud; |
080dbb61 AK |
1073 | spinlock_t *ptl; |
1074 | struct page *page; | |
1075 | struct mm_struct *mm = vma->vm_mm; | |
1076 | ||
caf8cab7 PX |
1077 | pudp = pud_offset(p4dp, address); |
1078 | pud = READ_ONCE(*pudp); | |
1b167618 | 1079 | if (!pud_present(pud)) |
878b0c45 | 1080 | return no_page_table(vma, flags, address); |
a12083d7 PX |
1081 | if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) |
1082 | return follow_hugepd(vma, __hugepd(pud_val(pud)), | |
1083 | address, PUD_SHIFT, flags, ctx); | |
1b167618 | 1084 | if (pud_leaf(pud)) { |
caf8cab7 | 1085 | ptl = pud_lock(mm, pudp); |
1b167618 | 1086 | page = follow_huge_pud(vma, address, pudp, flags, ctx); |
080dbb61 AK |
1087 | spin_unlock(ptl); |
1088 | if (page) | |
1089 | return page; | |
878b0c45 | 1090 | return no_page_table(vma, flags, address); |
080dbb61 | 1091 | } |
caf8cab7 | 1092 | if (unlikely(pud_bad(pud))) |
878b0c45 | 1093 | return no_page_table(vma, flags, address); |
080dbb61 | 1094 | |
caf8cab7 | 1095 | return follow_pmd_mask(vma, address, pudp, flags, ctx); |
080dbb61 AK |
1096 | } |
1097 | ||
080dbb61 AK |
1098 | static struct page *follow_p4d_mask(struct vm_area_struct *vma, |
1099 | unsigned long address, pgd_t *pgdp, | |
df06b37f KB |
1100 | unsigned int flags, |
1101 | struct follow_page_context *ctx) | |
080dbb61 | 1102 | { |
e6fd5564 | 1103 | p4d_t *p4dp, p4d; |
080dbb61 | 1104 | |
e6fd5564 PX |
1105 | p4dp = p4d_offset(pgdp, address); |
1106 | p4d = READ_ONCE(*p4dp); | |
1965e933 | 1107 | BUILD_BUG_ON(p4d_leaf(p4d)); |
a12083d7 PX |
1108 | |
1109 | if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) | |
1110 | return follow_hugepd(vma, __hugepd(p4d_val(p4d)), | |
1111 | address, P4D_SHIFT, flags, ctx); | |
1112 | ||
1113 | if (!p4d_present(p4d) || p4d_bad(p4d)) | |
878b0c45 | 1114 | return no_page_table(vma, flags, address); |
080dbb61 | 1115 | |
e6fd5564 | 1116 | return follow_pud_mask(vma, address, p4dp, flags, ctx); |
080dbb61 AK |
1117 | } |
1118 | ||
1119 | /** | |
1120 | * follow_page_mask - look up a page descriptor from a user-virtual address | |
1121 | * @vma: vm_area_struct mapping @address | |
1122 | * @address: virtual address to look up | |
1123 | * @flags: flags modifying lookup behaviour | |
78179556 MR |
1124 | * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a |
1125 | * pointer to output page_mask | |
080dbb61 AK |
1126 | * |
1127 | * @flags can have FOLL_ flags set, defined in <linux/mm.h> | |
1128 | * | |
78179556 MR |
1129 | * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches |
1130 | * the device's dev_pagemap metadata to avoid repeating expensive lookups. | |
1131 | * | |
a7f22660 DH |
1132 | * When getting an anonymous page and the caller has to trigger unsharing |
1133 | * of a shared anonymous page first, -EMLINK is returned. The caller should | |
1134 | * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only | |
1135 | * relevant with FOLL_PIN and !FOLL_WRITE. | |
1136 | * | |
78179556 MR |
1137 | * On output, the @ctx->page_mask is set according to the size of the page. |
1138 | * | |
1139 | * Return: the mapped (struct page *), %NULL if no mapping exists, or | |
080dbb61 AK |
1140 | * an error pointer if there is a mapping to something not represented |
1141 | * by a page descriptor (see also vm_normal_page()). | |
1142 | */ | |
a7030aea | 1143 | static struct page *follow_page_mask(struct vm_area_struct *vma, |
080dbb61 | 1144 | unsigned long address, unsigned int flags, |
df06b37f | 1145 | struct follow_page_context *ctx) |
080dbb61 AK |
1146 | { |
1147 | pgd_t *pgd; | |
080dbb61 | 1148 | struct mm_struct *mm = vma->vm_mm; |
9cb28da5 | 1149 | struct page *page; |
080dbb61 | 1150 | |
9cb28da5 | 1151 | vma_pgtable_walk_begin(vma); |
080dbb61 | 1152 | |
9cb28da5 | 1153 | ctx->page_mask = 0; |
080dbb61 AK |
1154 | pgd = pgd_offset(mm, address); |
1155 | ||
a12083d7 PX |
1156 | if (unlikely(is_hugepd(__hugepd(pgd_val(*pgd))))) |
1157 | page = follow_hugepd(vma, __hugepd(pgd_val(*pgd)), | |
1158 | address, PGDIR_SHIFT, flags, ctx); | |
1159 | else if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
1160 | page = no_page_table(vma, flags, address); | |
1161 | else | |
1162 | page = follow_p4d_mask(vma, address, pgd, flags, ctx); | |
080dbb61 | 1163 | |
9cb28da5 PX |
1164 | vma_pgtable_walk_end(vma); |
1165 | ||
a12083d7 | 1166 | return page; |
df06b37f KB |
1167 | } |
1168 | ||
1169 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, | |
1170 | unsigned int foll_flags) | |
1171 | { | |
1172 | struct follow_page_context ctx = { NULL }; | |
1173 | struct page *page; | |
1174 | ||
1507f512 MR |
1175 | if (vma_is_secretmem(vma)) |
1176 | return NULL; | |
1177 | ||
d64e2dbc | 1178 | if (WARN_ON_ONCE(foll_flags & FOLL_PIN)) |
8909691b DH |
1179 | return NULL; |
1180 | ||
d74943a2 DH |
1181 | /* |
1182 | * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect | |
1183 | * to fail on PROT_NONE-mapped pages. | |
1184 | */ | |
df06b37f KB |
1185 | page = follow_page_mask(vma, address, foll_flags, &ctx); |
1186 | if (ctx.pgmap) | |
1187 | put_dev_pagemap(ctx.pgmap); | |
1188 | return page; | |
080dbb61 AK |
1189 | } |
1190 | ||
f2b495ca KS |
1191 | static int get_gate_page(struct mm_struct *mm, unsigned long address, |
1192 | unsigned int gup_flags, struct vm_area_struct **vma, | |
1193 | struct page **page) | |
1194 | { | |
1195 | pgd_t *pgd; | |
c2febafc | 1196 | p4d_t *p4d; |
f2b495ca KS |
1197 | pud_t *pud; |
1198 | pmd_t *pmd; | |
1199 | pte_t *pte; | |
c33c7948 | 1200 | pte_t entry; |
f2b495ca KS |
1201 | int ret = -EFAULT; |
1202 | ||
1203 | /* user gate pages are read-only */ | |
1204 | if (gup_flags & FOLL_WRITE) | |
1205 | return -EFAULT; | |
1206 | if (address > TASK_SIZE) | |
1207 | pgd = pgd_offset_k(address); | |
1208 | else | |
1209 | pgd = pgd_offset_gate(mm, address); | |
b5d1c39f AL |
1210 | if (pgd_none(*pgd)) |
1211 | return -EFAULT; | |
c2febafc | 1212 | p4d = p4d_offset(pgd, address); |
b5d1c39f AL |
1213 | if (p4d_none(*p4d)) |
1214 | return -EFAULT; | |
c2febafc | 1215 | pud = pud_offset(p4d, address); |
b5d1c39f AL |
1216 | if (pud_none(*pud)) |
1217 | return -EFAULT; | |
f2b495ca | 1218 | pmd = pmd_offset(pud, address); |
84c3fc4e | 1219 | if (!pmd_present(*pmd)) |
f2b495ca | 1220 | return -EFAULT; |
f2b495ca | 1221 | pte = pte_offset_map(pmd, address); |
04dee9e8 HD |
1222 | if (!pte) |
1223 | return -EFAULT; | |
c33c7948 RR |
1224 | entry = ptep_get(pte); |
1225 | if (pte_none(entry)) | |
f2b495ca KS |
1226 | goto unmap; |
1227 | *vma = get_gate_vma(mm); | |
1228 | if (!page) | |
1229 | goto out; | |
c33c7948 | 1230 | *page = vm_normal_page(*vma, address, entry); |
f2b495ca | 1231 | if (!*page) { |
c33c7948 | 1232 | if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry))) |
f2b495ca | 1233 | goto unmap; |
c33c7948 | 1234 | *page = pte_page(entry); |
f2b495ca | 1235 | } |
0f089235 LG |
1236 | ret = try_grab_page(*page, gup_flags); |
1237 | if (unlikely(ret)) | |
8fde12ca | 1238 | goto unmap; |
f2b495ca KS |
1239 | out: |
1240 | ret = 0; | |
1241 | unmap: | |
1242 | pte_unmap(pte); | |
1243 | return ret; | |
1244 | } | |
1245 | ||
9a95f3cf | 1246 | /* |
9a863a6a JG |
1247 | * mmap_lock must be held on entry. If @flags has FOLL_UNLOCKABLE but not |
1248 | * FOLL_NOWAIT, the mmap_lock may be released. If it is, *@locked will be set | |
1249 | * to 0 and -EBUSY returned. | |
9a95f3cf | 1250 | */ |
64019a2e | 1251 | static int faultin_page(struct vm_area_struct *vma, |
a7f22660 DH |
1252 | unsigned long address, unsigned int *flags, bool unshare, |
1253 | int *locked) | |
16744483 | 1254 | { |
16744483 | 1255 | unsigned int fault_flags = 0; |
2b740303 | 1256 | vm_fault_t ret; |
16744483 | 1257 | |
55b8fe70 AG |
1258 | if (*flags & FOLL_NOFAULT) |
1259 | return -EFAULT; | |
16744483 KS |
1260 | if (*flags & FOLL_WRITE) |
1261 | fault_flags |= FAULT_FLAG_WRITE; | |
1b2ee126 DH |
1262 | if (*flags & FOLL_REMOTE) |
1263 | fault_flags |= FAULT_FLAG_REMOTE; | |
f04740f5 | 1264 | if (*flags & FOLL_UNLOCKABLE) { |
71335f37 | 1265 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; |
93c5c61d PX |
1266 | /* |
1267 | * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set | |
1268 | * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE. | |
1269 | * That's because some callers may not be prepared to | |
1270 | * handle early exits caused by non-fatal signals. | |
1271 | */ | |
1272 | if (*flags & FOLL_INTERRUPTIBLE) | |
1273 | fault_flags |= FAULT_FLAG_INTERRUPTIBLE; | |
1274 | } | |
16744483 KS |
1275 | if (*flags & FOLL_NOWAIT) |
1276 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT; | |
234b239b | 1277 | if (*flags & FOLL_TRIED) { |
4426e945 PX |
1278 | /* |
1279 | * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED | |
1280 | * can co-exist | |
1281 | */ | |
234b239b ALC |
1282 | fault_flags |= FAULT_FLAG_TRIED; |
1283 | } | |
a7f22660 DH |
1284 | if (unshare) { |
1285 | fault_flags |= FAULT_FLAG_UNSHARE; | |
1286 | /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */ | |
1287 | VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE); | |
1288 | } | |
16744483 | 1289 | |
bce617ed | 1290 | ret = handle_mm_fault(vma, address, fault_flags, NULL); |
d9272525 PX |
1291 | |
1292 | if (ret & VM_FAULT_COMPLETED) { | |
1293 | /* | |
1294 | * With FAULT_FLAG_RETRY_NOWAIT we'll never release the | |
1295 | * mmap lock in the page fault handler. Sanity check this. | |
1296 | */ | |
1297 | WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT); | |
9a863a6a JG |
1298 | *locked = 0; |
1299 | ||
d9272525 PX |
1300 | /* |
1301 | * We should do the same as VM_FAULT_RETRY, but let's not | |
1302 | * return -EBUSY since that's not reflecting the reality of | |
1303 | * what has happened - we've just fully completed a page | |
1304 | * fault, with the mmap lock released. Use -EAGAIN to show | |
1305 | * that we want to take the mmap lock _again_. | |
1306 | */ | |
1307 | return -EAGAIN; | |
1308 | } | |
1309 | ||
16744483 | 1310 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
1311 | int err = vm_fault_to_errno(ret, *flags); |
1312 | ||
1313 | if (err) | |
1314 | return err; | |
16744483 KS |
1315 | BUG(); |
1316 | } | |
1317 | ||
16744483 | 1318 | if (ret & VM_FAULT_RETRY) { |
9a863a6a | 1319 | if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT)) |
4f6da934 | 1320 | *locked = 0; |
16744483 KS |
1321 | return -EBUSY; |
1322 | } | |
1323 | ||
16744483 KS |
1324 | return 0; |
1325 | } | |
1326 | ||
8ac26843 LS |
1327 | /* |
1328 | * Writing to file-backed mappings which require folio dirty tracking using GUP | |
1329 | * is a fundamentally broken operation, as kernel write access to GUP mappings | |
1330 | * do not adhere to the semantics expected by a file system. | |
1331 | * | |
1332 | * Consider the following scenario:- | |
1333 | * | |
1334 | * 1. A folio is written to via GUP which write-faults the memory, notifying | |
1335 | * the file system and dirtying the folio. | |
1336 | * 2. Later, writeback is triggered, resulting in the folio being cleaned and | |
1337 | * the PTE being marked read-only. | |
1338 | * 3. The GUP caller writes to the folio, as it is mapped read/write via the | |
1339 | * direct mapping. | |
1340 | * 4. The GUP caller, now done with the page, unpins it and sets it dirty | |
1341 | * (though it does not have to). | |
1342 | * | |
1343 | * This results in both data being written to a folio without writenotify, and | |
1344 | * the folio being dirtied unexpectedly (if the caller decides to do so). | |
1345 | */ | |
1346 | static bool writable_file_mapping_allowed(struct vm_area_struct *vma, | |
1347 | unsigned long gup_flags) | |
1348 | { | |
1349 | /* | |
1350 | * If we aren't pinning then no problematic write can occur. A long term | |
1351 | * pin is the most egregious case so this is the case we disallow. | |
1352 | */ | |
1353 | if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) != | |
1354 | (FOLL_PIN | FOLL_LONGTERM)) | |
1355 | return true; | |
1356 | ||
1357 | /* | |
1358 | * If the VMA does not require dirty tracking then no problematic write | |
1359 | * can occur either. | |
1360 | */ | |
1361 | return !vma_needs_dirty_tracking(vma); | |
1362 | } | |
1363 | ||
fa5bb209 KS |
1364 | static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags) |
1365 | { | |
1366 | vm_flags_t vm_flags = vma->vm_flags; | |
1b2ee126 DH |
1367 | int write = (gup_flags & FOLL_WRITE); |
1368 | int foreign = (gup_flags & FOLL_REMOTE); | |
8ac26843 | 1369 | bool vma_anon = vma_is_anonymous(vma); |
fa5bb209 KS |
1370 | |
1371 | if (vm_flags & (VM_IO | VM_PFNMAP)) | |
1372 | return -EFAULT; | |
1373 | ||
8ac26843 | 1374 | if ((gup_flags & FOLL_ANON) && !vma_anon) |
7f7ccc2c WT |
1375 | return -EFAULT; |
1376 | ||
52650c8b JG |
1377 | if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma)) |
1378 | return -EOPNOTSUPP; | |
1379 | ||
1507f512 MR |
1380 | if (vma_is_secretmem(vma)) |
1381 | return -EFAULT; | |
1382 | ||
1b2ee126 | 1383 | if (write) { |
8ac26843 LS |
1384 | if (!vma_anon && |
1385 | !writable_file_mapping_allowed(vma, gup_flags)) | |
1386 | return -EFAULT; | |
1387 | ||
6beb9958 | 1388 | if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) { |
fa5bb209 KS |
1389 | if (!(gup_flags & FOLL_FORCE)) |
1390 | return -EFAULT; | |
f347454d DH |
1391 | /* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */ |
1392 | if (is_vm_hugetlb_page(vma)) | |
1393 | return -EFAULT; | |
fa5bb209 KS |
1394 | /* |
1395 | * We used to let the write,force case do COW in a | |
1396 | * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could | |
1397 | * set a breakpoint in a read-only mapping of an | |
1398 | * executable, without corrupting the file (yet only | |
1399 | * when that file had been opened for writing!). | |
1400 | * Anon pages in shared mappings are surprising: now | |
1401 | * just reject it. | |
1402 | */ | |
46435364 | 1403 | if (!is_cow_mapping(vm_flags)) |
fa5bb209 | 1404 | return -EFAULT; |
fa5bb209 KS |
1405 | } |
1406 | } else if (!(vm_flags & VM_READ)) { | |
1407 | if (!(gup_flags & FOLL_FORCE)) | |
1408 | return -EFAULT; | |
1409 | /* | |
1410 | * Is there actually any vma we can reach here which does not | |
1411 | * have VM_MAYREAD set? | |
1412 | */ | |
1413 | if (!(vm_flags & VM_MAYREAD)) | |
1414 | return -EFAULT; | |
1415 | } | |
d61172b4 DH |
1416 | /* |
1417 | * gups are always data accesses, not instruction | |
1418 | * fetches, so execute=false here | |
1419 | */ | |
1420 | if (!arch_vma_access_permitted(vma, write, false, foreign)) | |
33a709b2 | 1421 | return -EFAULT; |
fa5bb209 KS |
1422 | return 0; |
1423 | } | |
1424 | ||
6cd06ab1 LT |
1425 | /* |
1426 | * This is "vma_lookup()", but with a warning if we would have | |
1427 | * historically expanded the stack in the GUP code. | |
1428 | */ | |
1429 | static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm, | |
1430 | unsigned long addr) | |
1431 | { | |
1432 | #ifdef CONFIG_STACK_GROWSUP | |
1433 | return vma_lookup(mm, addr); | |
1434 | #else | |
1435 | static volatile unsigned long next_warn; | |
1436 | struct vm_area_struct *vma; | |
1437 | unsigned long now, next; | |
1438 | ||
1439 | vma = find_vma(mm, addr); | |
1440 | if (!vma || (addr >= vma->vm_start)) | |
1441 | return vma; | |
1442 | ||
1443 | /* Only warn for half-way relevant accesses */ | |
1444 | if (!(vma->vm_flags & VM_GROWSDOWN)) | |
1445 | return NULL; | |
1446 | if (vma->vm_start - addr > 65536) | |
1447 | return NULL; | |
1448 | ||
1449 | /* Let's not warn more than once an hour.. */ | |
1450 | now = jiffies; next = next_warn; | |
1451 | if (next && time_before(now, next)) | |
1452 | return NULL; | |
1453 | next_warn = now + 60*60*HZ; | |
1454 | ||
1455 | /* Let people know things may have changed. */ | |
1456 | pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n", | |
1457 | current->comm, task_pid_nr(current), | |
1458 | vma->vm_start, vma->vm_end, addr); | |
1459 | dump_stack(); | |
1460 | return NULL; | |
1461 | #endif | |
1462 | } | |
1463 | ||
4bbd4c77 KS |
1464 | /** |
1465 | * __get_user_pages() - pin user pages in memory | |
4bbd4c77 KS |
1466 | * @mm: mm_struct of target mm |
1467 | * @start: starting user address | |
1468 | * @nr_pages: number of pages from start to pin | |
1469 | * @gup_flags: flags modifying pin behaviour | |
1470 | * @pages: array that receives pointers to the pages pinned. | |
1471 | * Should be at least nr_pages long. Or NULL, if caller | |
1472 | * only intends to ensure the pages are faulted in. | |
c1e8d7c6 | 1473 | * @locked: whether we're still with the mmap_lock held |
4bbd4c77 | 1474 | * |
d2dfbe47 LX |
1475 | * Returns either number of pages pinned (which may be less than the |
1476 | * number requested), or an error. Details about the return value: | |
1477 | * | |
1478 | * -- If nr_pages is 0, returns 0. | |
1479 | * -- If nr_pages is >0, but no pages were pinned, returns -errno. | |
1480 | * -- If nr_pages is >0, and some pages were pinned, returns the number of | |
1481 | * pages pinned. Again, this may be less than nr_pages. | |
2d3a36a4 | 1482 | * -- 0 return value is possible when the fault would need to be retried. |
d2dfbe47 LX |
1483 | * |
1484 | * The caller is responsible for releasing returned @pages, via put_page(). | |
1485 | * | |
c1e8d7c6 | 1486 | * Must be called with mmap_lock held. It may be released. See below. |
4bbd4c77 KS |
1487 | * |
1488 | * __get_user_pages walks a process's page tables and takes a reference to | |
1489 | * each struct page that each user address corresponds to at a given | |
1490 | * instant. That is, it takes the page that would be accessed if a user | |
1491 | * thread accesses the given user virtual address at that instant. | |
1492 | * | |
1493 | * This does not guarantee that the page exists in the user mappings when | |
1494 | * __get_user_pages returns, and there may even be a completely different | |
1495 | * page there in some cases (eg. if mmapped pagecache has been invalidated | |
c5acf1f6 | 1496 | * and subsequently re-faulted). However it does guarantee that the page |
4bbd4c77 KS |
1497 | * won't be freed completely. And mostly callers simply care that the page |
1498 | * contains data that was valid *at some point in time*. Typically, an IO | |
1499 | * or similar operation cannot guarantee anything stronger anyway because | |
1500 | * locks can't be held over the syscall boundary. | |
1501 | * | |
1502 | * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If | |
1503 | * the page is written to, set_page_dirty (or set_page_dirty_lock, as | |
1504 | * appropriate) must be called after the page is finished with, and | |
1505 | * before put_page is called. | |
1506 | * | |
9a863a6a JG |
1507 | * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may |
1508 | * be released. If this happens *@locked will be set to 0 on return. | |
9a95f3cf | 1509 | * |
9a863a6a JG |
1510 | * A caller using such a combination of @gup_flags must therefore hold the |
1511 | * mmap_lock for reading only, and recognize when it's been released. Otherwise, | |
1512 | * it must be held for either reading or writing and will not be released. | |
4bbd4c77 KS |
1513 | * |
1514 | * In most cases, get_user_pages or get_user_pages_fast should be used | |
1515 | * instead of __get_user_pages. __get_user_pages should be used only if | |
1516 | * you need some special @gup_flags. | |
1517 | */ | |
64019a2e | 1518 | static long __get_user_pages(struct mm_struct *mm, |
4bbd4c77 KS |
1519 | unsigned long start, unsigned long nr_pages, |
1520 | unsigned int gup_flags, struct page **pages, | |
b2cac248 | 1521 | int *locked) |
4bbd4c77 | 1522 | { |
df06b37f | 1523 | long ret = 0, i = 0; |
fa5bb209 | 1524 | struct vm_area_struct *vma = NULL; |
df06b37f | 1525 | struct follow_page_context ctx = { NULL }; |
4bbd4c77 KS |
1526 | |
1527 | if (!nr_pages) | |
1528 | return 0; | |
1529 | ||
428e106a | 1530 | start = untagged_addr_remote(mm, start); |
f9652594 | 1531 | |
eddb1c22 | 1532 | VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN))); |
4bbd4c77 | 1533 | |
4bbd4c77 | 1534 | do { |
fa5bb209 KS |
1535 | struct page *page; |
1536 | unsigned int foll_flags = gup_flags; | |
1537 | unsigned int page_increm; | |
1538 | ||
1539 | /* first iteration or cross vma bound */ | |
1540 | if (!vma || start >= vma->vm_end) { | |
631426ba DH |
1541 | /* |
1542 | * MADV_POPULATE_(READ|WRITE) wants to handle VMA | |
1543 | * lookups+error reporting differently. | |
1544 | */ | |
1545 | if (gup_flags & FOLL_MADV_POPULATE) { | |
1546 | vma = vma_lookup(mm, start); | |
1547 | if (!vma) { | |
1548 | ret = -ENOMEM; | |
1549 | goto out; | |
1550 | } | |
1551 | if (check_vma_flags(vma, gup_flags)) { | |
1552 | ret = -EINVAL; | |
1553 | goto out; | |
1554 | } | |
1555 | goto retry; | |
1556 | } | |
6cd06ab1 | 1557 | vma = gup_vma_lookup(mm, start); |
fa5bb209 | 1558 | if (!vma && in_gate_area(mm, start)) { |
fa5bb209 KS |
1559 | ret = get_gate_page(mm, start & PAGE_MASK, |
1560 | gup_flags, &vma, | |
ffe1e786 | 1561 | pages ? &page : NULL); |
fa5bb209 | 1562 | if (ret) |
08be37b7 | 1563 | goto out; |
df06b37f | 1564 | ctx.page_mask = 0; |
fa5bb209 KS |
1565 | goto next_page; |
1566 | } | |
4bbd4c77 | 1567 | |
52650c8b | 1568 | if (!vma) { |
df06b37f KB |
1569 | ret = -EFAULT; |
1570 | goto out; | |
1571 | } | |
52650c8b JG |
1572 | ret = check_vma_flags(vma, gup_flags); |
1573 | if (ret) | |
1574 | goto out; | |
fa5bb209 KS |
1575 | } |
1576 | retry: | |
1577 | /* | |
1578 | * If we have a pending SIGKILL, don't keep faulting pages and | |
1579 | * potentially allocating memory. | |
1580 | */ | |
fa45f116 | 1581 | if (fatal_signal_pending(current)) { |
d180870d | 1582 | ret = -EINTR; |
df06b37f KB |
1583 | goto out; |
1584 | } | |
fa5bb209 | 1585 | cond_resched(); |
df06b37f KB |
1586 | |
1587 | page = follow_page_mask(vma, start, foll_flags, &ctx); | |
a7f22660 DH |
1588 | if (!page || PTR_ERR(page) == -EMLINK) { |
1589 | ret = faultin_page(vma, start, &foll_flags, | |
1590 | PTR_ERR(page) == -EMLINK, locked); | |
fa5bb209 KS |
1591 | switch (ret) { |
1592 | case 0: | |
1593 | goto retry; | |
df06b37f | 1594 | case -EBUSY: |
d9272525 | 1595 | case -EAGAIN: |
df06b37f | 1596 | ret = 0; |
e4a9bc58 | 1597 | fallthrough; |
fa5bb209 KS |
1598 | case -EFAULT: |
1599 | case -ENOMEM: | |
1600 | case -EHWPOISON: | |
df06b37f | 1601 | goto out; |
4bbd4c77 | 1602 | } |
fa5bb209 | 1603 | BUG(); |
1027e443 KS |
1604 | } else if (PTR_ERR(page) == -EEXIST) { |
1605 | /* | |
1606 | * Proper page table entry exists, but no corresponding | |
65462462 JH |
1607 | * struct page. If the caller expects **pages to be |
1608 | * filled in, bail out now, because that can't be done | |
1609 | * for this page. | |
1027e443 | 1610 | */ |
65462462 JH |
1611 | if (pages) { |
1612 | ret = PTR_ERR(page); | |
1613 | goto out; | |
1614 | } | |
1027e443 | 1615 | } else if (IS_ERR(page)) { |
df06b37f KB |
1616 | ret = PTR_ERR(page); |
1617 | goto out; | |
1027e443 | 1618 | } |
ffe1e786 | 1619 | next_page: |
df06b37f | 1620 | page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask); |
fa5bb209 KS |
1621 | if (page_increm > nr_pages) |
1622 | page_increm = nr_pages; | |
57edfcfd PX |
1623 | |
1624 | if (pages) { | |
1625 | struct page *subpage; | |
1626 | unsigned int j; | |
1627 | ||
1628 | /* | |
1629 | * This must be a large folio (and doesn't need to | |
1630 | * be the whole folio; it can be part of it), do | |
1631 | * the refcount work for all the subpages too. | |
1632 | * | |
1633 | * NOTE: here the page may not be the head page | |
1634 | * e.g. when start addr is not thp-size aligned. | |
1635 | * try_grab_folio() should have taken care of tail | |
1636 | * pages. | |
1637 | */ | |
1638 | if (page_increm > 1) { | |
1639 | struct folio *folio; | |
1640 | ||
1641 | /* | |
1642 | * Since we already hold refcount on the | |
1643 | * large folio, this should never fail. | |
1644 | */ | |
1645 | folio = try_grab_folio(page, page_increm - 1, | |
1646 | foll_flags); | |
1647 | if (WARN_ON_ONCE(!folio)) { | |
1648 | /* | |
1649 | * Release the 1st page ref if the | |
1650 | * folio is problematic, fail hard. | |
1651 | */ | |
1652 | gup_put_folio(page_folio(page), 1, | |
1653 | foll_flags); | |
1654 | ret = -EFAULT; | |
1655 | goto out; | |
1656 | } | |
1657 | } | |
1658 | ||
1659 | for (j = 0; j < page_increm; j++) { | |
1660 | subpage = nth_page(page, j); | |
1661 | pages[i + j] = subpage; | |
1662 | flush_anon_page(vma, subpage, start + j * PAGE_SIZE); | |
1663 | flush_dcache_page(subpage); | |
1664 | } | |
1665 | } | |
1666 | ||
fa5bb209 KS |
1667 | i += page_increm; |
1668 | start += page_increm * PAGE_SIZE; | |
1669 | nr_pages -= page_increm; | |
4bbd4c77 | 1670 | } while (nr_pages); |
df06b37f KB |
1671 | out: |
1672 | if (ctx.pgmap) | |
1673 | put_dev_pagemap(ctx.pgmap); | |
1674 | return i ? i : ret; | |
4bbd4c77 | 1675 | } |
4bbd4c77 | 1676 | |
771ab430 TK |
1677 | static bool vma_permits_fault(struct vm_area_struct *vma, |
1678 | unsigned int fault_flags) | |
d4925e00 | 1679 | { |
1b2ee126 DH |
1680 | bool write = !!(fault_flags & FAULT_FLAG_WRITE); |
1681 | bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE); | |
33a709b2 | 1682 | vm_flags_t vm_flags = write ? VM_WRITE : VM_READ; |
d4925e00 DH |
1683 | |
1684 | if (!(vm_flags & vma->vm_flags)) | |
1685 | return false; | |
1686 | ||
33a709b2 DH |
1687 | /* |
1688 | * The architecture might have a hardware protection | |
1b2ee126 | 1689 | * mechanism other than read/write that can deny access. |
d61172b4 DH |
1690 | * |
1691 | * gup always represents data access, not instruction | |
1692 | * fetches, so execute=false here: | |
33a709b2 | 1693 | */ |
d61172b4 | 1694 | if (!arch_vma_access_permitted(vma, write, false, foreign)) |
33a709b2 DH |
1695 | return false; |
1696 | ||
d4925e00 DH |
1697 | return true; |
1698 | } | |
1699 | ||
adc8cb40 | 1700 | /** |
4bbd4c77 | 1701 | * fixup_user_fault() - manually resolve a user page fault |
4bbd4c77 KS |
1702 | * @mm: mm_struct of target mm |
1703 | * @address: user address | |
1704 | * @fault_flags:flags to pass down to handle_mm_fault() | |
c1e8d7c6 | 1705 | * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller |
548b6a1e MC |
1706 | * does not allow retry. If NULL, the caller must guarantee |
1707 | * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY. | |
4bbd4c77 KS |
1708 | * |
1709 | * This is meant to be called in the specific scenario where for locking reasons | |
1710 | * we try to access user memory in atomic context (within a pagefault_disable() | |
1711 | * section), this returns -EFAULT, and we want to resolve the user fault before | |
1712 | * trying again. | |
1713 | * | |
1714 | * Typically this is meant to be used by the futex code. | |
1715 | * | |
1716 | * The main difference with get_user_pages() is that this function will | |
1717 | * unconditionally call handle_mm_fault() which will in turn perform all the | |
1718 | * necessary SW fixup of the dirty and young bits in the PTE, while | |
4a9e1cda | 1719 | * get_user_pages() only guarantees to update these in the struct page. |
4bbd4c77 KS |
1720 | * |
1721 | * This is important for some architectures where those bits also gate the | |
1722 | * access permission to the page because they are maintained in software. On | |
1723 | * such architectures, gup() will not be enough to make a subsequent access | |
1724 | * succeed. | |
1725 | * | |
c1e8d7c6 ML |
1726 | * This function will not return with an unlocked mmap_lock. So it has not the |
1727 | * same semantics wrt the @mm->mmap_lock as does filemap_fault(). | |
4bbd4c77 | 1728 | */ |
64019a2e | 1729 | int fixup_user_fault(struct mm_struct *mm, |
4a9e1cda DD |
1730 | unsigned long address, unsigned int fault_flags, |
1731 | bool *unlocked) | |
4bbd4c77 KS |
1732 | { |
1733 | struct vm_area_struct *vma; | |
8fed2f3c | 1734 | vm_fault_t ret; |
4a9e1cda | 1735 | |
428e106a | 1736 | address = untagged_addr_remote(mm, address); |
f9652594 | 1737 | |
4a9e1cda | 1738 | if (unlocked) |
71335f37 | 1739 | fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; |
4bbd4c77 | 1740 | |
4a9e1cda | 1741 | retry: |
6cd06ab1 | 1742 | vma = gup_vma_lookup(mm, address); |
8d7071af | 1743 | if (!vma) |
4bbd4c77 KS |
1744 | return -EFAULT; |
1745 | ||
d4925e00 | 1746 | if (!vma_permits_fault(vma, fault_flags)) |
4bbd4c77 KS |
1747 | return -EFAULT; |
1748 | ||
475f4dfc PX |
1749 | if ((fault_flags & FAULT_FLAG_KILLABLE) && |
1750 | fatal_signal_pending(current)) | |
1751 | return -EINTR; | |
1752 | ||
bce617ed | 1753 | ret = handle_mm_fault(vma, address, fault_flags, NULL); |
d9272525 PX |
1754 | |
1755 | if (ret & VM_FAULT_COMPLETED) { | |
1756 | /* | |
1757 | * NOTE: it's a pity that we need to retake the lock here | |
1758 | * to pair with the unlock() in the callers. Ideally we | |
1759 | * could tell the callers so they do not need to unlock. | |
1760 | */ | |
1761 | mmap_read_lock(mm); | |
1762 | *unlocked = true; | |
1763 | return 0; | |
1764 | } | |
1765 | ||
4bbd4c77 | 1766 | if (ret & VM_FAULT_ERROR) { |
9a291a7c JM |
1767 | int err = vm_fault_to_errno(ret, 0); |
1768 | ||
1769 | if (err) | |
1770 | return err; | |
4bbd4c77 KS |
1771 | BUG(); |
1772 | } | |
4a9e1cda DD |
1773 | |
1774 | if (ret & VM_FAULT_RETRY) { | |
d8ed45c5 | 1775 | mmap_read_lock(mm); |
475f4dfc PX |
1776 | *unlocked = true; |
1777 | fault_flags |= FAULT_FLAG_TRIED; | |
1778 | goto retry; | |
4a9e1cda DD |
1779 | } |
1780 | ||
4bbd4c77 KS |
1781 | return 0; |
1782 | } | |
add6a0cd | 1783 | EXPORT_SYMBOL_GPL(fixup_user_fault); |
4bbd4c77 | 1784 | |
93c5c61d PX |
1785 | /* |
1786 | * GUP always responds to fatal signals. When FOLL_INTERRUPTIBLE is | |
1787 | * specified, it'll also respond to generic signals. The caller of GUP | |
1788 | * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption. | |
1789 | */ | |
1790 | static bool gup_signal_pending(unsigned int flags) | |
1791 | { | |
1792 | if (fatal_signal_pending(current)) | |
1793 | return true; | |
1794 | ||
1795 | if (!(flags & FOLL_INTERRUPTIBLE)) | |
1796 | return false; | |
1797 | ||
1798 | return signal_pending(current); | |
1799 | } | |
1800 | ||
2d3a36a4 | 1801 | /* |
b2a72dff JG |
1802 | * Locking: (*locked == 1) means that the mmap_lock has already been acquired by |
1803 | * the caller. This function may drop the mmap_lock. If it does so, then it will | |
1804 | * set (*locked = 0). | |
1805 | * | |
1806 | * (*locked == 0) means that the caller expects this function to acquire and | |
1807 | * drop the mmap_lock. Therefore, the value of *locked will still be zero when | |
1808 | * the function returns, even though it may have changed temporarily during | |
1809 | * function execution. | |
1810 | * | |
1811 | * Please note that this function, unlike __get_user_pages(), will not return 0 | |
1812 | * for nr_pages > 0, unless FOLL_NOWAIT is used. | |
2d3a36a4 | 1813 | */ |
64019a2e | 1814 | static __always_inline long __get_user_pages_locked(struct mm_struct *mm, |
f0818f47 AA |
1815 | unsigned long start, |
1816 | unsigned long nr_pages, | |
f0818f47 | 1817 | struct page **pages, |
e716712f | 1818 | int *locked, |
0fd71a56 | 1819 | unsigned int flags) |
f0818f47 | 1820 | { |
f0818f47 | 1821 | long ret, pages_done; |
b2a72dff | 1822 | bool must_unlock = false; |
f0818f47 | 1823 | |
9c4b2142 LS |
1824 | if (!nr_pages) |
1825 | return 0; | |
1826 | ||
b2a72dff JG |
1827 | /* |
1828 | * The internal caller expects GUP to manage the lock internally and the | |
1829 | * lock must be released when this returns. | |
1830 | */ | |
9a863a6a | 1831 | if (!*locked) { |
b2a72dff JG |
1832 | if (mmap_read_lock_killable(mm)) |
1833 | return -EAGAIN; | |
1834 | must_unlock = true; | |
1835 | *locked = 1; | |
f0818f47 | 1836 | } |
961ba472 JG |
1837 | else |
1838 | mmap_assert_locked(mm); | |
f0818f47 | 1839 | |
a458b76a AA |
1840 | if (flags & FOLL_PIN) |
1841 | mm_set_has_pinned_flag(&mm->flags); | |
008cfe44 | 1842 | |
eddb1c22 JH |
1843 | /* |
1844 | * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior | |
1845 | * is to set FOLL_GET if the caller wants pages[] filled in (but has | |
1846 | * carelessly failed to specify FOLL_GET), so keep doing that, but only | |
1847 | * for FOLL_GET, not for the newer FOLL_PIN. | |
1848 | * | |
1849 | * FOLL_PIN always expects pages to be non-null, but no need to assert | |
1850 | * that here, as any failures will be obvious enough. | |
1851 | */ | |
1852 | if (pages && !(flags & FOLL_PIN)) | |
f0818f47 | 1853 | flags |= FOLL_GET; |
f0818f47 AA |
1854 | |
1855 | pages_done = 0; | |
f0818f47 | 1856 | for (;;) { |
64019a2e | 1857 | ret = __get_user_pages(mm, start, nr_pages, flags, pages, |
b2cac248 | 1858 | locked); |
f04740f5 | 1859 | if (!(flags & FOLL_UNLOCKABLE)) { |
f0818f47 | 1860 | /* VM_FAULT_RETRY couldn't trigger, bypass */ |
f04740f5 JG |
1861 | pages_done = ret; |
1862 | break; | |
1863 | } | |
f0818f47 | 1864 | |
d9272525 | 1865 | /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */ |
f0818f47 AA |
1866 | if (!*locked) { |
1867 | BUG_ON(ret < 0); | |
1868 | BUG_ON(ret >= nr_pages); | |
1869 | } | |
1870 | ||
f0818f47 AA |
1871 | if (ret > 0) { |
1872 | nr_pages -= ret; | |
1873 | pages_done += ret; | |
1874 | if (!nr_pages) | |
1875 | break; | |
1876 | } | |
1877 | if (*locked) { | |
96312e61 AA |
1878 | /* |
1879 | * VM_FAULT_RETRY didn't trigger or it was a | |
1880 | * FOLL_NOWAIT. | |
1881 | */ | |
f0818f47 AA |
1882 | if (!pages_done) |
1883 | pages_done = ret; | |
1884 | break; | |
1885 | } | |
df17277b MR |
1886 | /* |
1887 | * VM_FAULT_RETRY triggered, so seek to the faulting offset. | |
1888 | * For the prefault case (!pages) we only update counts. | |
1889 | */ | |
1890 | if (likely(pages)) | |
1891 | pages += ret; | |
f0818f47 | 1892 | start += ret << PAGE_SHIFT; |
b2a72dff JG |
1893 | |
1894 | /* The lock was temporarily dropped, so we must unlock later */ | |
1895 | must_unlock = true; | |
f0818f47 | 1896 | |
4426e945 | 1897 | retry: |
f0818f47 AA |
1898 | /* |
1899 | * Repeat on the address that fired VM_FAULT_RETRY | |
4426e945 PX |
1900 | * with both FAULT_FLAG_ALLOW_RETRY and |
1901 | * FAULT_FLAG_TRIED. Note that GUP can be interrupted | |
93c5c61d PX |
1902 | * by fatal signals of even common signals, depending on |
1903 | * the caller's request. So we need to check it before we | |
4426e945 | 1904 | * start trying again otherwise it can loop forever. |
f0818f47 | 1905 | */ |
93c5c61d | 1906 | if (gup_signal_pending(flags)) { |
ae46d2aa HD |
1907 | if (!pages_done) |
1908 | pages_done = -EINTR; | |
4426e945 | 1909 | break; |
ae46d2aa | 1910 | } |
4426e945 | 1911 | |
d8ed45c5 | 1912 | ret = mmap_read_lock_killable(mm); |
71335f37 PX |
1913 | if (ret) { |
1914 | BUG_ON(ret > 0); | |
1915 | if (!pages_done) | |
1916 | pages_done = ret; | |
1917 | break; | |
1918 | } | |
4426e945 | 1919 | |
c7b6a566 | 1920 | *locked = 1; |
64019a2e | 1921 | ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED, |
b2cac248 | 1922 | pages, locked); |
4426e945 PX |
1923 | if (!*locked) { |
1924 | /* Continue to retry until we succeeded */ | |
1925 | BUG_ON(ret != 0); | |
1926 | goto retry; | |
1927 | } | |
f0818f47 AA |
1928 | if (ret != 1) { |
1929 | BUG_ON(ret > 1); | |
1930 | if (!pages_done) | |
1931 | pages_done = ret; | |
1932 | break; | |
1933 | } | |
1934 | nr_pages--; | |
1935 | pages_done++; | |
1936 | if (!nr_pages) | |
1937 | break; | |
df17277b MR |
1938 | if (likely(pages)) |
1939 | pages++; | |
f0818f47 AA |
1940 | start += PAGE_SIZE; |
1941 | } | |
b2a72dff | 1942 | if (must_unlock && *locked) { |
f0818f47 | 1943 | /* |
b2a72dff JG |
1944 | * We either temporarily dropped the lock, or the caller |
1945 | * requested that we both acquire and drop the lock. Either way, | |
1946 | * we must now unlock, and notify the caller of that state. | |
f0818f47 | 1947 | */ |
d8ed45c5 | 1948 | mmap_read_unlock(mm); |
f0818f47 AA |
1949 | *locked = 0; |
1950 | } | |
9c4b2142 LS |
1951 | |
1952 | /* | |
1953 | * Failing to pin anything implies something has gone wrong (except when | |
1954 | * FOLL_NOWAIT is specified). | |
1955 | */ | |
1956 | if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT))) | |
1957 | return -EFAULT; | |
1958 | ||
f0818f47 AA |
1959 | return pages_done; |
1960 | } | |
1961 | ||
d3649f68 CH |
1962 | /** |
1963 | * populate_vma_page_range() - populate a range of pages in the vma. | |
1964 | * @vma: target vma | |
1965 | * @start: start address | |
1966 | * @end: end address | |
c1e8d7c6 | 1967 | * @locked: whether the mmap_lock is still held |
d3649f68 CH |
1968 | * |
1969 | * This takes care of mlocking the pages too if VM_LOCKED is set. | |
1970 | * | |
0a36f7f8 TY |
1971 | * Return either number of pages pinned in the vma, or a negative error |
1972 | * code on error. | |
d3649f68 | 1973 | * |
c1e8d7c6 | 1974 | * vma->vm_mm->mmap_lock must be held. |
d3649f68 | 1975 | * |
4f6da934 | 1976 | * If @locked is NULL, it may be held for read or write and will |
d3649f68 CH |
1977 | * be unperturbed. |
1978 | * | |
4f6da934 PX |
1979 | * If @locked is non-NULL, it must held for read only and may be |
1980 | * released. If it's released, *@locked will be set to 0. | |
d3649f68 CH |
1981 | */ |
1982 | long populate_vma_page_range(struct vm_area_struct *vma, | |
4f6da934 | 1983 | unsigned long start, unsigned long end, int *locked) |
d3649f68 CH |
1984 | { |
1985 | struct mm_struct *mm = vma->vm_mm; | |
1986 | unsigned long nr_pages = (end - start) / PAGE_SIZE; | |
9a863a6a | 1987 | int local_locked = 1; |
d3649f68 | 1988 | int gup_flags; |
ece369c7 | 1989 | long ret; |
d3649f68 | 1990 | |
be51eb18 ML |
1991 | VM_BUG_ON(!PAGE_ALIGNED(start)); |
1992 | VM_BUG_ON(!PAGE_ALIGNED(end)); | |
d3649f68 CH |
1993 | VM_BUG_ON_VMA(start < vma->vm_start, vma); |
1994 | VM_BUG_ON_VMA(end > vma->vm_end, vma); | |
42fc5414 | 1995 | mmap_assert_locked(mm); |
d3649f68 | 1996 | |
b67bf49c HD |
1997 | /* |
1998 | * Rightly or wrongly, the VM_LOCKONFAULT case has never used | |
1999 | * faultin_page() to break COW, so it has no work to do here. | |
2000 | */ | |
d3649f68 | 2001 | if (vma->vm_flags & VM_LOCKONFAULT) |
b67bf49c HD |
2002 | return nr_pages; |
2003 | ||
1096bc93 LT |
2004 | /* ... similarly, we've never faulted in PROT_NONE pages */ |
2005 | if (!vma_is_accessible(vma)) | |
2006 | return -EFAULT; | |
2007 | ||
b67bf49c | 2008 | gup_flags = FOLL_TOUCH; |
d3649f68 CH |
2009 | /* |
2010 | * We want to touch writable mappings with a write fault in order | |
2011 | * to break COW, except for shared mappings because these don't COW | |
2012 | * and we would not want to dirty them for nothing. | |
1096bc93 LT |
2013 | * |
2014 | * Otherwise, do a read fault, and use FOLL_FORCE in case it's not | |
2015 | * readable (ie write-only or executable). | |
d3649f68 CH |
2016 | */ |
2017 | if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE) | |
2018 | gup_flags |= FOLL_WRITE; | |
1096bc93 | 2019 | else |
d3649f68 CH |
2020 | gup_flags |= FOLL_FORCE; |
2021 | ||
f04740f5 JG |
2022 | if (locked) |
2023 | gup_flags |= FOLL_UNLOCKABLE; | |
2024 | ||
d3649f68 CH |
2025 | /* |
2026 | * We made sure addr is within a VMA, so the following will | |
2027 | * not result in a stack expansion that recurses back here. | |
2028 | */ | |
ece369c7 | 2029 | ret = __get_user_pages(mm, start, nr_pages, gup_flags, |
b2cac248 | 2030 | NULL, locked ? locked : &local_locked); |
ece369c7 HD |
2031 | lru_add_drain(); |
2032 | return ret; | |
d3649f68 CH |
2033 | } |
2034 | ||
4ca9b385 | 2035 | /* |
631426ba DH |
2036 | * faultin_page_range() - populate (prefault) page tables inside the |
2037 | * given range readable/writable | |
4ca9b385 DH |
2038 | * |
2039 | * This takes care of mlocking the pages, too, if VM_LOCKED is set. | |
2040 | * | |
631426ba | 2041 | * @mm: the mm to populate page tables in |
4ca9b385 DH |
2042 | * @start: start address |
2043 | * @end: end address | |
2044 | * @write: whether to prefault readable or writable | |
2045 | * @locked: whether the mmap_lock is still held | |
2046 | * | |
631426ba DH |
2047 | * Returns either number of processed pages in the MM, or a negative error |
2048 | * code on error (see __get_user_pages()). Note that this function reports | |
2049 | * errors related to VMAs, such as incompatible mappings, as expected by | |
2050 | * MADV_POPULATE_(READ|WRITE). | |
4ca9b385 | 2051 | * |
631426ba DH |
2052 | * The range must be page-aligned. |
2053 | * | |
2054 | * mm->mmap_lock must be held. If it's released, *@locked will be set to 0. | |
4ca9b385 | 2055 | */ |
631426ba DH |
2056 | long faultin_page_range(struct mm_struct *mm, unsigned long start, |
2057 | unsigned long end, bool write, int *locked) | |
4ca9b385 | 2058 | { |
4ca9b385 DH |
2059 | unsigned long nr_pages = (end - start) / PAGE_SIZE; |
2060 | int gup_flags; | |
ece369c7 | 2061 | long ret; |
4ca9b385 DH |
2062 | |
2063 | VM_BUG_ON(!PAGE_ALIGNED(start)); | |
2064 | VM_BUG_ON(!PAGE_ALIGNED(end)); | |
4ca9b385 DH |
2065 | mmap_assert_locked(mm); |
2066 | ||
2067 | /* | |
2068 | * FOLL_TOUCH: Mark page accessed and thereby young; will also mark | |
2069 | * the page dirty with FOLL_WRITE -- which doesn't make a | |
2070 | * difference with !FOLL_FORCE, because the page is writable | |
2071 | * in the page table. | |
2072 | * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit | |
2073 | * a poisoned page. | |
4ca9b385 DH |
2074 | * !FOLL_FORCE: Require proper access permissions. |
2075 | */ | |
631426ba DH |
2076 | gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE | |
2077 | FOLL_MADV_POPULATE; | |
4ca9b385 DH |
2078 | if (write) |
2079 | gup_flags |= FOLL_WRITE; | |
2080 | ||
631426ba DH |
2081 | ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked, |
2082 | gup_flags); | |
ece369c7 HD |
2083 | lru_add_drain(); |
2084 | return ret; | |
4ca9b385 DH |
2085 | } |
2086 | ||
d3649f68 CH |
2087 | /* |
2088 | * __mm_populate - populate and/or mlock pages within a range of address space. | |
2089 | * | |
2090 | * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap | |
2091 | * flags. VMAs must be already marked with the desired vm_flags, and | |
c1e8d7c6 | 2092 | * mmap_lock must not be held. |
d3649f68 CH |
2093 | */ |
2094 | int __mm_populate(unsigned long start, unsigned long len, int ignore_errors) | |
2095 | { | |
2096 | struct mm_struct *mm = current->mm; | |
2097 | unsigned long end, nstart, nend; | |
2098 | struct vm_area_struct *vma = NULL; | |
2099 | int locked = 0; | |
2100 | long ret = 0; | |
2101 | ||
2102 | end = start + len; | |
2103 | ||
2104 | for (nstart = start; nstart < end; nstart = nend) { | |
2105 | /* | |
2106 | * We want to fault in pages for [nstart; end) address range. | |
2107 | * Find first corresponding VMA. | |
2108 | */ | |
2109 | if (!locked) { | |
2110 | locked = 1; | |
d8ed45c5 | 2111 | mmap_read_lock(mm); |
c4d1a92d | 2112 | vma = find_vma_intersection(mm, nstart, end); |
d3649f68 | 2113 | } else if (nstart >= vma->vm_end) |
c4d1a92d LH |
2114 | vma = find_vma_intersection(mm, vma->vm_end, end); |
2115 | ||
2116 | if (!vma) | |
d3649f68 CH |
2117 | break; |
2118 | /* | |
2119 | * Set [nstart; nend) to intersection of desired address | |
2120 | * range with the first VMA. Also, skip undesirable VMA types. | |
2121 | */ | |
2122 | nend = min(end, vma->vm_end); | |
2123 | if (vma->vm_flags & (VM_IO | VM_PFNMAP)) | |
2124 | continue; | |
2125 | if (nstart < vma->vm_start) | |
2126 | nstart = vma->vm_start; | |
2127 | /* | |
2128 | * Now fault in a range of pages. populate_vma_page_range() | |
2129 | * double checks the vma flags, so that it won't mlock pages | |
2130 | * if the vma was already munlocked. | |
2131 | */ | |
2132 | ret = populate_vma_page_range(vma, nstart, nend, &locked); | |
2133 | if (ret < 0) { | |
2134 | if (ignore_errors) { | |
2135 | ret = 0; | |
2136 | continue; /* continue at next VMA */ | |
2137 | } | |
2138 | break; | |
2139 | } | |
2140 | nend = nstart + ret * PAGE_SIZE; | |
2141 | ret = 0; | |
2142 | } | |
2143 | if (locked) | |
d8ed45c5 | 2144 | mmap_read_unlock(mm); |
d3649f68 CH |
2145 | return ret; /* 0 or negative error code */ |
2146 | } | |
050a9adc | 2147 | #else /* CONFIG_MMU */ |
64019a2e | 2148 | static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start, |
050a9adc | 2149 | unsigned long nr_pages, struct page **pages, |
b2cac248 | 2150 | int *locked, unsigned int foll_flags) |
050a9adc CH |
2151 | { |
2152 | struct vm_area_struct *vma; | |
b2a72dff | 2153 | bool must_unlock = false; |
050a9adc | 2154 | unsigned long vm_flags; |
24dc20c7 | 2155 | long i; |
050a9adc | 2156 | |
b2a72dff JG |
2157 | if (!nr_pages) |
2158 | return 0; | |
2159 | ||
2160 | /* | |
2161 | * The internal caller expects GUP to manage the lock internally and the | |
2162 | * lock must be released when this returns. | |
2163 | */ | |
9a863a6a | 2164 | if (!*locked) { |
b2a72dff JG |
2165 | if (mmap_read_lock_killable(mm)) |
2166 | return -EAGAIN; | |
2167 | must_unlock = true; | |
2168 | *locked = 1; | |
2169 | } | |
2170 | ||
050a9adc CH |
2171 | /* calculate required read or write permissions. |
2172 | * If FOLL_FORCE is set, we only require the "MAY" flags. | |
2173 | */ | |
2174 | vm_flags = (foll_flags & FOLL_WRITE) ? | |
2175 | (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | |
2176 | vm_flags &= (foll_flags & FOLL_FORCE) ? | |
2177 | (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | |
2178 | ||
2179 | for (i = 0; i < nr_pages; i++) { | |
2180 | vma = find_vma(mm, start); | |
2181 | if (!vma) | |
b2a72dff | 2182 | break; |
050a9adc CH |
2183 | |
2184 | /* protect what we can, including chardevs */ | |
2185 | if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) || | |
2186 | !(vm_flags & vma->vm_flags)) | |
b2a72dff | 2187 | break; |
050a9adc CH |
2188 | |
2189 | if (pages) { | |
396a400b | 2190 | pages[i] = virt_to_page((void *)start); |
050a9adc CH |
2191 | if (pages[i]) |
2192 | get_page(pages[i]); | |
2193 | } | |
b2cac248 | 2194 | |
050a9adc CH |
2195 | start = (start + PAGE_SIZE) & PAGE_MASK; |
2196 | } | |
2197 | ||
b2a72dff JG |
2198 | if (must_unlock && *locked) { |
2199 | mmap_read_unlock(mm); | |
2200 | *locked = 0; | |
2201 | } | |
050a9adc | 2202 | |
050a9adc CH |
2203 | return i ? : -EFAULT; |
2204 | } | |
2205 | #endif /* !CONFIG_MMU */ | |
d3649f68 | 2206 | |
bb523b40 AG |
2207 | /** |
2208 | * fault_in_writeable - fault in userspace address range for writing | |
2209 | * @uaddr: start of address range | |
2210 | * @size: size of address range | |
2211 | * | |
2212 | * Returns the number of bytes not faulted in (like copy_to_user() and | |
2213 | * copy_from_user()). | |
2214 | */ | |
2215 | size_t fault_in_writeable(char __user *uaddr, size_t size) | |
2216 | { | |
2217 | char __user *start = uaddr, *end; | |
2218 | ||
2219 | if (unlikely(size == 0)) | |
2220 | return 0; | |
677b2a8c CL |
2221 | if (!user_write_access_begin(uaddr, size)) |
2222 | return size; | |
bb523b40 | 2223 | if (!PAGE_ALIGNED(uaddr)) { |
677b2a8c | 2224 | unsafe_put_user(0, uaddr, out); |
bb523b40 AG |
2225 | uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr); |
2226 | } | |
2227 | end = (char __user *)PAGE_ALIGN((unsigned long)start + size); | |
2228 | if (unlikely(end < start)) | |
2229 | end = NULL; | |
2230 | while (uaddr != end) { | |
677b2a8c | 2231 | unsafe_put_user(0, uaddr, out); |
bb523b40 AG |
2232 | uaddr += PAGE_SIZE; |
2233 | } | |
2234 | ||
2235 | out: | |
677b2a8c | 2236 | user_write_access_end(); |
bb523b40 AG |
2237 | if (size > uaddr - start) |
2238 | return size - (uaddr - start); | |
2239 | return 0; | |
2240 | } | |
2241 | EXPORT_SYMBOL(fault_in_writeable); | |
2242 | ||
da32b581 CM |
2243 | /** |
2244 | * fault_in_subpage_writeable - fault in an address range for writing | |
2245 | * @uaddr: start of address range | |
2246 | * @size: size of address range | |
2247 | * | |
2248 | * Fault in a user address range for writing while checking for permissions at | |
2249 | * sub-page granularity (e.g. arm64 MTE). This function should be used when | |
2250 | * the caller cannot guarantee forward progress of a copy_to_user() loop. | |
2251 | * | |
2252 | * Returns the number of bytes not faulted in (like copy_to_user() and | |
2253 | * copy_from_user()). | |
2254 | */ | |
2255 | size_t fault_in_subpage_writeable(char __user *uaddr, size_t size) | |
2256 | { | |
2257 | size_t faulted_in; | |
2258 | ||
2259 | /* | |
2260 | * Attempt faulting in at page granularity first for page table | |
2261 | * permission checking. The arch-specific probe_subpage_writeable() | |
2262 | * functions may not check for this. | |
2263 | */ | |
2264 | faulted_in = size - fault_in_writeable(uaddr, size); | |
2265 | if (faulted_in) | |
2266 | faulted_in -= probe_subpage_writeable(uaddr, faulted_in); | |
2267 | ||
2268 | return size - faulted_in; | |
2269 | } | |
2270 | EXPORT_SYMBOL(fault_in_subpage_writeable); | |
2271 | ||
cdd591fc AG |
2272 | /* |
2273 | * fault_in_safe_writeable - fault in an address range for writing | |
2274 | * @uaddr: start of address range | |
2275 | * @size: length of address range | |
2276 | * | |
fe673d3f LT |
2277 | * Faults in an address range for writing. This is primarily useful when we |
2278 | * already know that some or all of the pages in the address range aren't in | |
2279 | * memory. | |
cdd591fc | 2280 | * |
fe673d3f | 2281 | * Unlike fault_in_writeable(), this function is non-destructive. |
cdd591fc AG |
2282 | * |
2283 | * Note that we don't pin or otherwise hold the pages referenced that we fault | |
2284 | * in. There's no guarantee that they'll stay in memory for any duration of | |
2285 | * time. | |
2286 | * | |
2287 | * Returns the number of bytes not faulted in, like copy_to_user() and | |
2288 | * copy_from_user(). | |
2289 | */ | |
2290 | size_t fault_in_safe_writeable(const char __user *uaddr, size_t size) | |
2291 | { | |
fe673d3f | 2292 | unsigned long start = (unsigned long)uaddr, end; |
cdd591fc | 2293 | struct mm_struct *mm = current->mm; |
fe673d3f | 2294 | bool unlocked = false; |
cdd591fc | 2295 | |
fe673d3f LT |
2296 | if (unlikely(size == 0)) |
2297 | return 0; | |
cdd591fc | 2298 | end = PAGE_ALIGN(start + size); |
fe673d3f | 2299 | if (end < start) |
cdd591fc | 2300 | end = 0; |
cdd591fc | 2301 | |
fe673d3f LT |
2302 | mmap_read_lock(mm); |
2303 | do { | |
2304 | if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked)) | |
cdd591fc | 2305 | break; |
fe673d3f LT |
2306 | start = (start + PAGE_SIZE) & PAGE_MASK; |
2307 | } while (start != end); | |
2308 | mmap_read_unlock(mm); | |
2309 | ||
2310 | if (size > (unsigned long)uaddr - start) | |
2311 | return size - ((unsigned long)uaddr - start); | |
2312 | return 0; | |
cdd591fc AG |
2313 | } |
2314 | EXPORT_SYMBOL(fault_in_safe_writeable); | |
2315 | ||
bb523b40 AG |
2316 | /** |
2317 | * fault_in_readable - fault in userspace address range for reading | |
2318 | * @uaddr: start of user address range | |
2319 | * @size: size of user address range | |
2320 | * | |
2321 | * Returns the number of bytes not faulted in (like copy_to_user() and | |
2322 | * copy_from_user()). | |
2323 | */ | |
2324 | size_t fault_in_readable(const char __user *uaddr, size_t size) | |
2325 | { | |
2326 | const char __user *start = uaddr, *end; | |
2327 | volatile char c; | |
2328 | ||
2329 | if (unlikely(size == 0)) | |
2330 | return 0; | |
677b2a8c CL |
2331 | if (!user_read_access_begin(uaddr, size)) |
2332 | return size; | |
bb523b40 | 2333 | if (!PAGE_ALIGNED(uaddr)) { |
677b2a8c | 2334 | unsafe_get_user(c, uaddr, out); |
bb523b40 AG |
2335 | uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr); |
2336 | } | |
2337 | end = (const char __user *)PAGE_ALIGN((unsigned long)start + size); | |
2338 | if (unlikely(end < start)) | |
2339 | end = NULL; | |
2340 | while (uaddr != end) { | |
677b2a8c | 2341 | unsafe_get_user(c, uaddr, out); |
bb523b40 AG |
2342 | uaddr += PAGE_SIZE; |
2343 | } | |
2344 | ||
2345 | out: | |
677b2a8c | 2346 | user_read_access_end(); |
bb523b40 AG |
2347 | (void)c; |
2348 | if (size > uaddr - start) | |
2349 | return size - (uaddr - start); | |
2350 | return 0; | |
2351 | } | |
2352 | EXPORT_SYMBOL(fault_in_readable); | |
2353 | ||
8f942eea JH |
2354 | /** |
2355 | * get_dump_page() - pin user page in memory while writing it to core dump | |
2356 | * @addr: user address | |
2357 | * | |
2358 | * Returns struct page pointer of user page pinned for dump, | |
2359 | * to be freed afterwards by put_page(). | |
2360 | * | |
2361 | * Returns NULL on any kind of failure - a hole must then be inserted into | |
2362 | * the corefile, to preserve alignment with its headers; and also returns | |
2363 | * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - | |
f0953a1b | 2364 | * allowing a hole to be left in the corefile to save disk space. |
8f942eea | 2365 | * |
7f3bfab5 | 2366 | * Called without mmap_lock (takes and releases the mmap_lock by itself). |
8f942eea JH |
2367 | */ |
2368 | #ifdef CONFIG_ELF_CORE | |
2369 | struct page *get_dump_page(unsigned long addr) | |
2370 | { | |
8f942eea | 2371 | struct page *page; |
b2a72dff | 2372 | int locked = 0; |
7f3bfab5 | 2373 | int ret; |
8f942eea | 2374 | |
b2cac248 | 2375 | ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked, |
7f3bfab5 | 2376 | FOLL_FORCE | FOLL_DUMP | FOLL_GET); |
7f3bfab5 | 2377 | return (ret == 1) ? page : NULL; |
8f942eea JH |
2378 | } |
2379 | #endif /* CONFIG_ELF_CORE */ | |
2380 | ||
d1e153fe | 2381 | #ifdef CONFIG_MIGRATION |
f68749ec | 2382 | /* |
67e139b0 | 2383 | * Returns the number of collected pages. Return value is always >= 0. |
f68749ec | 2384 | */ |
67e139b0 AP |
2385 | static unsigned long collect_longterm_unpinnable_pages( |
2386 | struct list_head *movable_page_list, | |
2387 | unsigned long nr_pages, | |
2388 | struct page **pages) | |
9a4e9f3b | 2389 | { |
67e139b0 | 2390 | unsigned long i, collected = 0; |
1b7f7e58 | 2391 | struct folio *prev_folio = NULL; |
67e139b0 | 2392 | bool drain_allow = true; |
9a4e9f3b | 2393 | |
83c02c23 | 2394 | for (i = 0; i < nr_pages; i++) { |
1b7f7e58 | 2395 | struct folio *folio = page_folio(pages[i]); |
f9f38f78 | 2396 | |
1b7f7e58 | 2397 | if (folio == prev_folio) |
83c02c23 | 2398 | continue; |
1b7f7e58 | 2399 | prev_folio = folio; |
f9f38f78 | 2400 | |
67e139b0 AP |
2401 | if (folio_is_longterm_pinnable(folio)) |
2402 | continue; | |
b05a79d4 | 2403 | |
67e139b0 | 2404 | collected++; |
b05a79d4 | 2405 | |
67e139b0 | 2406 | if (folio_is_device_coherent(folio)) |
f9f38f78 CH |
2407 | continue; |
2408 | ||
1b7f7e58 | 2409 | if (folio_test_hugetlb(folio)) { |
6aa3a920 | 2410 | isolate_hugetlb(folio, movable_page_list); |
f9f38f78 CH |
2411 | continue; |
2412 | } | |
9a4e9f3b | 2413 | |
1b7f7e58 | 2414 | if (!folio_test_lru(folio) && drain_allow) { |
f9f38f78 CH |
2415 | lru_add_drain_all(); |
2416 | drain_allow = false; | |
2417 | } | |
2418 | ||
be2d5756 | 2419 | if (!folio_isolate_lru(folio)) |
f9f38f78 | 2420 | continue; |
67e139b0 AP |
2421 | |
2422 | list_add_tail(&folio->lru, movable_page_list); | |
1b7f7e58 MWO |
2423 | node_stat_mod_folio(folio, |
2424 | NR_ISOLATED_ANON + folio_is_file_lru(folio), | |
2425 | folio_nr_pages(folio)); | |
9a4e9f3b AK |
2426 | } |
2427 | ||
67e139b0 AP |
2428 | return collected; |
2429 | } | |
2430 | ||
2431 | /* | |
2432 | * Unpins all pages and migrates device coherent pages and movable_page_list. | |
2433 | * Returns -EAGAIN if all pages were successfully migrated or -errno for failure | |
2434 | * (or partial success). | |
2435 | */ | |
2436 | static int migrate_longterm_unpinnable_pages( | |
2437 | struct list_head *movable_page_list, | |
2438 | unsigned long nr_pages, | |
2439 | struct page **pages) | |
2440 | { | |
2441 | int ret; | |
2442 | unsigned long i; | |
6e7f34eb | 2443 | |
b05a79d4 | 2444 | for (i = 0; i < nr_pages; i++) { |
67e139b0 AP |
2445 | struct folio *folio = page_folio(pages[i]); |
2446 | ||
2447 | if (folio_is_device_coherent(folio)) { | |
2448 | /* | |
2449 | * Migration will fail if the page is pinned, so convert | |
2450 | * the pin on the source page to a normal reference. | |
2451 | */ | |
2452 | pages[i] = NULL; | |
2453 | folio_get(folio); | |
2454 | gup_put_folio(folio, 1, FOLL_PIN); | |
2455 | ||
2456 | if (migrate_device_coherent_page(&folio->page)) { | |
2457 | ret = -EBUSY; | |
2458 | goto err; | |
2459 | } | |
2460 | ||
b05a79d4 | 2461 | continue; |
67e139b0 | 2462 | } |
b05a79d4 | 2463 | |
67e139b0 AP |
2464 | /* |
2465 | * We can't migrate pages with unexpected references, so drop | |
2466 | * the reference obtained by __get_user_pages_locked(). | |
2467 | * Migrating pages have been added to movable_page_list after | |
2468 | * calling folio_isolate_lru() which takes a reference so the | |
2469 | * page won't be freed if it's migrating. | |
2470 | */ | |
f6d299ec | 2471 | unpin_user_page(pages[i]); |
67e139b0 | 2472 | pages[i] = NULL; |
f68749ec | 2473 | } |
f9f38f78 | 2474 | |
67e139b0 | 2475 | if (!list_empty(movable_page_list)) { |
f9f38f78 CH |
2476 | struct migration_target_control mtc = { |
2477 | .nid = NUMA_NO_NODE, | |
2478 | .gfp_mask = GFP_USER | __GFP_NOWARN, | |
e42dfe4e | 2479 | .reason = MR_LONGTERM_PIN, |
f9f38f78 CH |
2480 | }; |
2481 | ||
67e139b0 AP |
2482 | if (migrate_pages(movable_page_list, alloc_migration_target, |
2483 | NULL, (unsigned long)&mtc, MIGRATE_SYNC, | |
2484 | MR_LONGTERM_PIN, NULL)) { | |
f9f38f78 | 2485 | ret = -ENOMEM; |
67e139b0 AP |
2486 | goto err; |
2487 | } | |
9a4e9f3b AK |
2488 | } |
2489 | ||
67e139b0 AP |
2490 | putback_movable_pages(movable_page_list); |
2491 | ||
2492 | return -EAGAIN; | |
2493 | ||
2494 | err: | |
2495 | for (i = 0; i < nr_pages; i++) | |
2496 | if (pages[i]) | |
2497 | unpin_user_page(pages[i]); | |
2498 | putback_movable_pages(movable_page_list); | |
24a95998 | 2499 | |
67e139b0 AP |
2500 | return ret; |
2501 | } | |
2502 | ||
2503 | /* | |
2504 | * Check whether all pages are *allowed* to be pinned. Rather confusingly, all | |
2505 | * pages in the range are required to be pinned via FOLL_PIN, before calling | |
2506 | * this routine. | |
2507 | * | |
2508 | * If any pages in the range are not allowed to be pinned, then this routine | |
2509 | * will migrate those pages away, unpin all the pages in the range and return | |
2510 | * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then | |
2511 | * call this routine again. | |
2512 | * | |
2513 | * If an error other than -EAGAIN occurs, this indicates a migration failure. | |
2514 | * The caller should give up, and propagate the error back up the call stack. | |
2515 | * | |
2516 | * If everything is OK and all pages in the range are allowed to be pinned, then | |
2517 | * this routine leaves all pages pinned and returns zero for success. | |
2518 | */ | |
2519 | static long check_and_migrate_movable_pages(unsigned long nr_pages, | |
2520 | struct page **pages) | |
2521 | { | |
2522 | unsigned long collected; | |
2523 | LIST_HEAD(movable_page_list); | |
2524 | ||
2525 | collected = collect_longterm_unpinnable_pages(&movable_page_list, | |
2526 | nr_pages, pages); | |
2527 | if (!collected) | |
2528 | return 0; | |
2529 | ||
2530 | return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages, | |
2531 | pages); | |
9a4e9f3b AK |
2532 | } |
2533 | #else | |
f68749ec | 2534 | static long check_and_migrate_movable_pages(unsigned long nr_pages, |
f6d299ec | 2535 | struct page **pages) |
9a4e9f3b | 2536 | { |
24a95998 | 2537 | return 0; |
9a4e9f3b | 2538 | } |
d1e153fe | 2539 | #endif /* CONFIG_MIGRATION */ |
9a4e9f3b | 2540 | |
2bb6d283 | 2541 | /* |
932f4a63 IW |
2542 | * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which |
2543 | * allows us to process the FOLL_LONGTERM flag. | |
2bb6d283 | 2544 | */ |
64019a2e | 2545 | static long __gup_longterm_locked(struct mm_struct *mm, |
932f4a63 IW |
2546 | unsigned long start, |
2547 | unsigned long nr_pages, | |
2548 | struct page **pages, | |
53b2d09b | 2549 | int *locked, |
932f4a63 | 2550 | unsigned int gup_flags) |
2bb6d283 | 2551 | { |
f68749ec | 2552 | unsigned int flags; |
24a95998 | 2553 | long rc, nr_pinned_pages; |
2bb6d283 | 2554 | |
f68749ec | 2555 | if (!(gup_flags & FOLL_LONGTERM)) |
b2cac248 | 2556 | return __get_user_pages_locked(mm, start, nr_pages, pages, |
53b2d09b | 2557 | locked, gup_flags); |
67e139b0 | 2558 | |
f68749ec PT |
2559 | flags = memalloc_pin_save(); |
2560 | do { | |
24a95998 | 2561 | nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages, |
b2cac248 | 2562 | pages, locked, |
24a95998 AP |
2563 | gup_flags); |
2564 | if (nr_pinned_pages <= 0) { | |
2565 | rc = nr_pinned_pages; | |
f68749ec | 2566 | break; |
24a95998 | 2567 | } |
d64e2dbc JG |
2568 | |
2569 | /* FOLL_LONGTERM implies FOLL_PIN */ | |
f6d299ec | 2570 | rc = check_and_migrate_movable_pages(nr_pinned_pages, pages); |
24a95998 | 2571 | } while (rc == -EAGAIN); |
f68749ec | 2572 | memalloc_pin_restore(flags); |
24a95998 | 2573 | return rc ? rc : nr_pinned_pages; |
2bb6d283 | 2574 | } |
932f4a63 | 2575 | |
d64e2dbc JG |
2576 | /* |
2577 | * Check that the given flags are valid for the exported gup/pup interface, and | |
2578 | * update them with the required flags that the caller must have set. | |
2579 | */ | |
b2cac248 LS |
2580 | static bool is_valid_gup_args(struct page **pages, int *locked, |
2581 | unsigned int *gup_flags_p, unsigned int to_set) | |
447f3e45 | 2582 | { |
d64e2dbc JG |
2583 | unsigned int gup_flags = *gup_flags_p; |
2584 | ||
447f3e45 | 2585 | /* |
d64e2dbc JG |
2586 | * These flags not allowed to be specified externally to the gup |
2587 | * interfaces: | |
0f20bba1 | 2588 | * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only |
d64e2dbc | 2589 | * - FOLL_REMOTE is internal only and used on follow_page() |
f04740f5 | 2590 | * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL |
447f3e45 | 2591 | */ |
0f20bba1 | 2592 | if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS)) |
d64e2dbc JG |
2593 | return false; |
2594 | ||
2595 | gup_flags |= to_set; | |
f04740f5 JG |
2596 | if (locked) { |
2597 | /* At the external interface locked must be set */ | |
2598 | if (WARN_ON_ONCE(*locked != 1)) | |
2599 | return false; | |
2600 | ||
2601 | gup_flags |= FOLL_UNLOCKABLE; | |
2602 | } | |
d64e2dbc JG |
2603 | |
2604 | /* FOLL_GET and FOLL_PIN are mutually exclusive. */ | |
2605 | if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) == | |
2606 | (FOLL_PIN | FOLL_GET))) | |
2607 | return false; | |
2608 | ||
2609 | /* LONGTERM can only be specified when pinning */ | |
2610 | if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM))) | |
2611 | return false; | |
2612 | ||
2613 | /* Pages input must be given if using GET/PIN */ | |
2614 | if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages)) | |
447f3e45 | 2615 | return false; |
d64e2dbc | 2616 | |
d64e2dbc JG |
2617 | /* We want to allow the pgmap to be hot-unplugged at all times */ |
2618 | if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) && | |
2619 | (gup_flags & FOLL_PCI_P2PDMA))) | |
2620 | return false; | |
2621 | ||
d64e2dbc | 2622 | *gup_flags_p = gup_flags; |
447f3e45 BS |
2623 | return true; |
2624 | } | |
2625 | ||
22bf29b6 | 2626 | #ifdef CONFIG_MMU |
adc8cb40 | 2627 | /** |
c4237f8b | 2628 | * get_user_pages_remote() - pin user pages in memory |
c4237f8b JH |
2629 | * @mm: mm_struct of target mm |
2630 | * @start: starting user address | |
2631 | * @nr_pages: number of pages from start to pin | |
2632 | * @gup_flags: flags modifying lookup behaviour | |
2633 | * @pages: array that receives pointers to the pages pinned. | |
2634 | * Should be at least nr_pages long. Or NULL, if caller | |
2635 | * only intends to ensure the pages are faulted in. | |
c4237f8b JH |
2636 | * @locked: pointer to lock flag indicating whether lock is held and |
2637 | * subsequently whether VM_FAULT_RETRY functionality can be | |
2638 | * utilised. Lock must initially be held. | |
2639 | * | |
2640 | * Returns either number of pages pinned (which may be less than the | |
2641 | * number requested), or an error. Details about the return value: | |
2642 | * | |
2643 | * -- If nr_pages is 0, returns 0. | |
2644 | * -- If nr_pages is >0, but no pages were pinned, returns -errno. | |
2645 | * -- If nr_pages is >0, and some pages were pinned, returns the number of | |
2646 | * pages pinned. Again, this may be less than nr_pages. | |
2647 | * | |
2648 | * The caller is responsible for releasing returned @pages, via put_page(). | |
2649 | * | |
c1e8d7c6 | 2650 | * Must be called with mmap_lock held for read or write. |
c4237f8b | 2651 | * |
adc8cb40 SJ |
2652 | * get_user_pages_remote walks a process's page tables and takes a reference |
2653 | * to each struct page that each user address corresponds to at a given | |
c4237f8b JH |
2654 | * instant. That is, it takes the page that would be accessed if a user |
2655 | * thread accesses the given user virtual address at that instant. | |
2656 | * | |
2657 | * This does not guarantee that the page exists in the user mappings when | |
adc8cb40 | 2658 | * get_user_pages_remote returns, and there may even be a completely different |
c4237f8b | 2659 | * page there in some cases (eg. if mmapped pagecache has been invalidated |
5da1a868 | 2660 | * and subsequently re-faulted). However it does guarantee that the page |
c4237f8b JH |
2661 | * won't be freed completely. And mostly callers simply care that the page |
2662 | * contains data that was valid *at some point in time*. Typically, an IO | |
2663 | * or similar operation cannot guarantee anything stronger anyway because | |
2664 | * locks can't be held over the syscall boundary. | |
2665 | * | |
2666 | * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page | |
2667 | * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must | |
2668 | * be called after the page is finished with, and before put_page is called. | |
2669 | * | |
adc8cb40 SJ |
2670 | * get_user_pages_remote is typically used for fewer-copy IO operations, |
2671 | * to get a handle on the memory by some means other than accesses | |
2672 | * via the user virtual addresses. The pages may be submitted for | |
2673 | * DMA to devices or accessed via their kernel linear mapping (via the | |
2674 | * kmap APIs). Care should be taken to use the correct cache flushing APIs. | |
c4237f8b JH |
2675 | * |
2676 | * See also get_user_pages_fast, for performance critical applications. | |
2677 | * | |
adc8cb40 | 2678 | * get_user_pages_remote should be phased out in favor of |
c4237f8b | 2679 | * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing |
adc8cb40 | 2680 | * should use get_user_pages_remote because it cannot pass |
c4237f8b JH |
2681 | * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault. |
2682 | */ | |
64019a2e | 2683 | long get_user_pages_remote(struct mm_struct *mm, |
c4237f8b JH |
2684 | unsigned long start, unsigned long nr_pages, |
2685 | unsigned int gup_flags, struct page **pages, | |
ca5e8632 | 2686 | int *locked) |
c4237f8b | 2687 | { |
9a863a6a JG |
2688 | int local_locked = 1; |
2689 | ||
b2cac248 | 2690 | if (!is_valid_gup_args(pages, locked, &gup_flags, |
d64e2dbc | 2691 | FOLL_TOUCH | FOLL_REMOTE)) |
eddb1c22 JH |
2692 | return -EINVAL; |
2693 | ||
b2cac248 | 2694 | return __get_user_pages_locked(mm, start, nr_pages, pages, |
9a863a6a | 2695 | locked ? locked : &local_locked, |
d64e2dbc | 2696 | gup_flags); |
c4237f8b JH |
2697 | } |
2698 | EXPORT_SYMBOL(get_user_pages_remote); | |
2699 | ||
eddb1c22 | 2700 | #else /* CONFIG_MMU */ |
64019a2e | 2701 | long get_user_pages_remote(struct mm_struct *mm, |
eddb1c22 JH |
2702 | unsigned long start, unsigned long nr_pages, |
2703 | unsigned int gup_flags, struct page **pages, | |
ca5e8632 | 2704 | int *locked) |
eddb1c22 JH |
2705 | { |
2706 | return 0; | |
2707 | } | |
2708 | #endif /* !CONFIG_MMU */ | |
2709 | ||
adc8cb40 SJ |
2710 | /** |
2711 | * get_user_pages() - pin user pages in memory | |
2712 | * @start: starting user address | |
2713 | * @nr_pages: number of pages from start to pin | |
2714 | * @gup_flags: flags modifying lookup behaviour | |
2715 | * @pages: array that receives pointers to the pages pinned. | |
2716 | * Should be at least nr_pages long. Or NULL, if caller | |
2717 | * only intends to ensure the pages are faulted in. | |
adc8cb40 | 2718 | * |
64019a2e PX |
2719 | * This is the same as get_user_pages_remote(), just with a less-flexible |
2720 | * calling convention where we assume that the mm being operated on belongs to | |
2721 | * the current task, and doesn't allow passing of a locked parameter. We also | |
2722 | * obviously don't pass FOLL_REMOTE in here. | |
932f4a63 IW |
2723 | */ |
2724 | long get_user_pages(unsigned long start, unsigned long nr_pages, | |
54d02069 | 2725 | unsigned int gup_flags, struct page **pages) |
932f4a63 | 2726 | { |
9a863a6a JG |
2727 | int locked = 1; |
2728 | ||
b2cac248 | 2729 | if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH)) |
eddb1c22 JH |
2730 | return -EINVAL; |
2731 | ||
afa3c33e | 2732 | return __get_user_pages_locked(current->mm, start, nr_pages, pages, |
b2cac248 | 2733 | &locked, gup_flags); |
932f4a63 IW |
2734 | } |
2735 | EXPORT_SYMBOL(get_user_pages); | |
2bb6d283 | 2736 | |
acc3c8d1 | 2737 | /* |
d3649f68 | 2738 | * get_user_pages_unlocked() is suitable to replace the form: |
acc3c8d1 | 2739 | * |
3e4e28c5 | 2740 | * mmap_read_lock(mm); |
64019a2e | 2741 | * get_user_pages(mm, ..., pages, NULL); |
3e4e28c5 | 2742 | * mmap_read_unlock(mm); |
d3649f68 CH |
2743 | * |
2744 | * with: | |
2745 | * | |
64019a2e | 2746 | * get_user_pages_unlocked(mm, ..., pages); |
d3649f68 CH |
2747 | * |
2748 | * It is functionally equivalent to get_user_pages_fast so | |
2749 | * get_user_pages_fast should be used instead if specific gup_flags | |
2750 | * (e.g. FOLL_FORCE) are not required. | |
acc3c8d1 | 2751 | */ |
d3649f68 CH |
2752 | long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, |
2753 | struct page **pages, unsigned int gup_flags) | |
acc3c8d1 | 2754 | { |
b2a72dff | 2755 | int locked = 0; |
acc3c8d1 | 2756 | |
b2cac248 | 2757 | if (!is_valid_gup_args(pages, NULL, &gup_flags, |
f04740f5 | 2758 | FOLL_TOUCH | FOLL_UNLOCKABLE)) |
d64e2dbc JG |
2759 | return -EINVAL; |
2760 | ||
afa3c33e | 2761 | return __get_user_pages_locked(current->mm, start, nr_pages, pages, |
b2cac248 | 2762 | &locked, gup_flags); |
4bbd4c77 | 2763 | } |
d3649f68 | 2764 | EXPORT_SYMBOL(get_user_pages_unlocked); |
2667f50e SC |
2765 | |
2766 | /* | |
23babe19 | 2767 | * GUP-fast |
2667f50e SC |
2768 | * |
2769 | * get_user_pages_fast attempts to pin user pages by walking the page | |
2770 | * tables directly and avoids taking locks. Thus the walker needs to be | |
2771 | * protected from page table pages being freed from under it, and should | |
2772 | * block any THP splits. | |
2773 | * | |
2774 | * One way to achieve this is to have the walker disable interrupts, and | |
2775 | * rely on IPIs from the TLB flushing code blocking before the page table | |
2776 | * pages are freed. This is unsuitable for architectures that do not need | |
2777 | * to broadcast an IPI when invalidating TLBs. | |
2778 | * | |
2779 | * Another way to achieve this is to batch up page table containing pages | |
2780 | * belonging to more than one mm_user, then rcu_sched a callback to free those | |
23babe19 | 2781 | * pages. Disabling interrupts will allow the gup_fast() walker to both block |
2667f50e SC |
2782 | * the rcu_sched callback, and an IPI that we broadcast for splitting THPs |
2783 | * (which is a relatively rare event). The code below adopts this strategy. | |
2784 | * | |
2785 | * Before activating this code, please be aware that the following assumptions | |
2786 | * are currently made: | |
2787 | * | |
ff2e6d72 | 2788 | * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to |
e585513b | 2789 | * free pages containing page tables or TLB flushing requires IPI broadcast. |
2667f50e | 2790 | * |
2667f50e SC |
2791 | * *) ptes can be read atomically by the architecture. |
2792 | * | |
2793 | * *) access_ok is sufficient to validate userspace address ranges. | |
2794 | * | |
2795 | * The last two assumptions can be relaxed by the addition of helper functions. | |
2796 | * | |
2797 | * This code is based heavily on the PowerPC implementation by Nick Piggin. | |
2798 | */ | |
25176ad0 | 2799 | #ifdef CONFIG_HAVE_GUP_FAST |
3faa52c0 | 2800 | |
a6e79df9 | 2801 | /* |
f002882c DH |
2802 | * Used in the GUP-fast path to determine whether GUP is permitted to work on |
2803 | * a specific folio. | |
a6e79df9 LS |
2804 | * |
2805 | * This call assumes the caller has pinned the folio, that the lowest page table | |
2806 | * level still points to this folio, and that interrupts have been disabled. | |
2807 | * | |
f002882c DH |
2808 | * GUP-fast must reject all secretmem folios. |
2809 | * | |
a6e79df9 LS |
2810 | * Writing to pinned file-backed dirty tracked folios is inherently problematic |
2811 | * (see comment describing the writable_file_mapping_allowed() function). We | |
2812 | * therefore try to avoid the most egregious case of a long-term mapping doing | |
2813 | * so. | |
2814 | * | |
2815 | * This function cannot be as thorough as that one as the VMA is not available | |
2816 | * in the fast path, so instead we whitelist known good cases and if in doubt, | |
2817 | * fall back to the slow path. | |
2818 | */ | |
f002882c | 2819 | static bool gup_fast_folio_allowed(struct folio *folio, unsigned int flags) |
a6e79df9 | 2820 | { |
f002882c | 2821 | bool reject_file_backed = false; |
a6e79df9 | 2822 | struct address_space *mapping; |
f002882c | 2823 | bool check_secretmem = false; |
a6e79df9 LS |
2824 | unsigned long mapping_flags; |
2825 | ||
2826 | /* | |
2827 | * If we aren't pinning then no problematic write can occur. A long term | |
2828 | * pin is the most egregious case so this is the one we disallow. | |
2829 | */ | |
f002882c | 2830 | if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) == |
a6e79df9 | 2831 | (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) |
f002882c DH |
2832 | reject_file_backed = true; |
2833 | ||
2834 | /* We hold a folio reference, so we can safely access folio fields. */ | |
a6e79df9 | 2835 | |
f002882c DH |
2836 | /* secretmem folios are always order-0 folios. */ |
2837 | if (IS_ENABLED(CONFIG_SECRETMEM) && !folio_test_large(folio)) | |
2838 | check_secretmem = true; | |
2839 | ||
2840 | if (!reject_file_backed && !check_secretmem) | |
2841 | return true; | |
a6e79df9 LS |
2842 | |
2843 | if (WARN_ON_ONCE(folio_test_slab(folio))) | |
2844 | return false; | |
2845 | ||
f002882c | 2846 | /* hugetlb neither requires dirty-tracking nor can be secretmem. */ |
a6e79df9 LS |
2847 | if (folio_test_hugetlb(folio)) |
2848 | return true; | |
2849 | ||
2850 | /* | |
2851 | * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods | |
2852 | * cannot proceed, which means no actions performed under RCU can | |
2853 | * proceed either. | |
2854 | * | |
2855 | * inodes and thus their mappings are freed under RCU, which means the | |
2856 | * mapping cannot be freed beneath us and thus we can safely dereference | |
2857 | * it. | |
2858 | */ | |
2859 | lockdep_assert_irqs_disabled(); | |
2860 | ||
2861 | /* | |
2862 | * However, there may be operations which _alter_ the mapping, so ensure | |
2863 | * we read it once and only once. | |
2864 | */ | |
2865 | mapping = READ_ONCE(folio->mapping); | |
2866 | ||
2867 | /* | |
2868 | * The mapping may have been truncated, in any case we cannot determine | |
2869 | * if this mapping is safe - fall back to slow path to determine how to | |
2870 | * proceed. | |
2871 | */ | |
2872 | if (!mapping) | |
2873 | return false; | |
2874 | ||
2875 | /* Anonymous folios pose no problem. */ | |
2876 | mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS; | |
2877 | if (mapping_flags) | |
2878 | return mapping_flags & PAGE_MAPPING_ANON; | |
2879 | ||
2880 | /* | |
2881 | * At this point, we know the mapping is non-null and points to an | |
f002882c | 2882 | * address_space object. |
a6e79df9 | 2883 | */ |
f002882c DH |
2884 | if (check_secretmem && secretmem_mapping(mapping)) |
2885 | return false; | |
2886 | /* The only remaining allowed file system is shmem. */ | |
2887 | return !reject_file_backed || shmem_mapping(mapping); | |
a6e79df9 LS |
2888 | } |
2889 | ||
23babe19 DH |
2890 | static void __maybe_unused gup_fast_undo_dev_pagemap(int *nr, int nr_start, |
2891 | unsigned int flags, struct page **pages) | |
b59f65fa KS |
2892 | { |
2893 | while ((*nr) - nr_start) { | |
9cbe4954 | 2894 | struct folio *folio = page_folio(pages[--(*nr)]); |
b59f65fa | 2895 | |
9cbe4954 MWO |
2896 | folio_clear_referenced(folio); |
2897 | gup_put_folio(folio, 1, flags); | |
b59f65fa KS |
2898 | } |
2899 | } | |
2900 | ||
3010a5ea | 2901 | #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL |
70cbc3cc | 2902 | /* |
23babe19 | 2903 | * GUP-fast relies on pte change detection to avoid concurrent pgtable |
70cbc3cc YS |
2904 | * operations. |
2905 | * | |
23babe19 | 2906 | * To pin the page, GUP-fast needs to do below in order: |
70cbc3cc YS |
2907 | * (1) pin the page (by prefetching pte), then (2) check pte not changed. |
2908 | * | |
2909 | * For the rest of pgtable operations where pgtable updates can be racy | |
23babe19 | 2910 | * with GUP-fast, we need to do (1) clear pte, then (2) check whether page |
70cbc3cc YS |
2911 | * is pinned. |
2912 | * | |
2913 | * Above will work for all pte-level operations, including THP split. | |
2914 | * | |
23babe19 | 2915 | * For THP collapse, it's a bit more complicated because GUP-fast may be |
70cbc3cc YS |
2916 | * walking a pgtable page that is being freed (pte is still valid but pmd |
2917 | * can be cleared already). To avoid race in such condition, we need to | |
2918 | * also check pmd here to make sure pmd doesn't change (corresponds to | |
2919 | * pmdp_collapse_flush() in the THP collapse code path). | |
2920 | */ | |
23babe19 DH |
2921 | static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, |
2922 | unsigned long end, unsigned int flags, struct page **pages, | |
2923 | int *nr) | |
2667f50e | 2924 | { |
b59f65fa KS |
2925 | struct dev_pagemap *pgmap = NULL; |
2926 | int nr_start = *nr, ret = 0; | |
2667f50e | 2927 | pte_t *ptep, *ptem; |
2667f50e SC |
2928 | |
2929 | ptem = ptep = pte_offset_map(&pmd, addr); | |
04dee9e8 HD |
2930 | if (!ptep) |
2931 | return 0; | |
2667f50e | 2932 | do { |
2a4a06da | 2933 | pte_t pte = ptep_get_lockless(ptep); |
b0496fe4 MWO |
2934 | struct page *page; |
2935 | struct folio *folio; | |
2667f50e | 2936 | |
d74943a2 DH |
2937 | /* |
2938 | * Always fallback to ordinary GUP on PROT_NONE-mapped pages: | |
2939 | * pte_access_permitted() better should reject these pages | |
2940 | * either way: otherwise, GUP-fast might succeed in | |
2941 | * cases where ordinary GUP would fail due to VMA access | |
2942 | * permissions. | |
2943 | */ | |
2944 | if (pte_protnone(pte)) | |
e7884f8e KS |
2945 | goto pte_unmap; |
2946 | ||
b798bec4 | 2947 | if (!pte_access_permitted(pte, flags & FOLL_WRITE)) |
e7884f8e KS |
2948 | goto pte_unmap; |
2949 | ||
b59f65fa | 2950 | if (pte_devmap(pte)) { |
7af75561 IW |
2951 | if (unlikely(flags & FOLL_LONGTERM)) |
2952 | goto pte_unmap; | |
2953 | ||
b59f65fa KS |
2954 | pgmap = get_dev_pagemap(pte_pfn(pte), pgmap); |
2955 | if (unlikely(!pgmap)) { | |
23babe19 | 2956 | gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); |
b59f65fa KS |
2957 | goto pte_unmap; |
2958 | } | |
2959 | } else if (pte_special(pte)) | |
2667f50e SC |
2960 | goto pte_unmap; |
2961 | ||
2962 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
2963 | page = pte_page(pte); | |
2964 | ||
b0496fe4 MWO |
2965 | folio = try_grab_folio(page, 1, flags); |
2966 | if (!folio) | |
2667f50e SC |
2967 | goto pte_unmap; |
2968 | ||
70cbc3cc | 2969 | if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) || |
c33c7948 | 2970 | unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) { |
b0496fe4 | 2971 | gup_put_folio(folio, 1, flags); |
2667f50e SC |
2972 | goto pte_unmap; |
2973 | } | |
2974 | ||
f002882c | 2975 | if (!gup_fast_folio_allowed(folio, flags)) { |
b0496fe4 | 2976 | gup_put_folio(folio, 1, flags); |
2667f50e SC |
2977 | goto pte_unmap; |
2978 | } | |
2979 | ||
84209e87 | 2980 | if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) { |
a7f22660 DH |
2981 | gup_put_folio(folio, 1, flags); |
2982 | goto pte_unmap; | |
2983 | } | |
2984 | ||
f28d4363 CI |
2985 | /* |
2986 | * We need to make the page accessible if and only if we are | |
2987 | * going to access its content (the FOLL_PIN case). Please | |
2988 | * see Documentation/core-api/pin_user_pages.rst for | |
2989 | * details. | |
2990 | */ | |
2991 | if (flags & FOLL_PIN) { | |
2992 | ret = arch_make_page_accessible(page); | |
2993 | if (ret) { | |
b0496fe4 | 2994 | gup_put_folio(folio, 1, flags); |
f28d4363 CI |
2995 | goto pte_unmap; |
2996 | } | |
2997 | } | |
b0496fe4 | 2998 | folio_set_referenced(folio); |
2667f50e SC |
2999 | pages[*nr] = page; |
3000 | (*nr)++; | |
2667f50e SC |
3001 | } while (ptep++, addr += PAGE_SIZE, addr != end); |
3002 | ||
3003 | ret = 1; | |
3004 | ||
3005 | pte_unmap: | |
832d7aa0 CH |
3006 | if (pgmap) |
3007 | put_dev_pagemap(pgmap); | |
2667f50e SC |
3008 | pte_unmap(ptem); |
3009 | return ret; | |
3010 | } | |
3011 | #else | |
3012 | ||
3013 | /* | |
3014 | * If we can't determine whether or not a pte is special, then fail immediately | |
3015 | * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not | |
3016 | * to be special. | |
3017 | * | |
3018 | * For a futex to be placed on a THP tail page, get_futex_key requires a | |
dadbb612 | 3019 | * get_user_pages_fast_only implementation that can pin pages. Thus it's still |
23babe19 | 3020 | * useful to have gup_fast_pmd_leaf even if we can't operate on ptes. |
2667f50e | 3021 | */ |
23babe19 DH |
3022 | static int gup_fast_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr, |
3023 | unsigned long end, unsigned int flags, struct page **pages, | |
3024 | int *nr) | |
2667f50e SC |
3025 | { |
3026 | return 0; | |
3027 | } | |
3010a5ea | 3028 | #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */ |
2667f50e | 3029 | |
17596731 | 3030 | #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE) |
23babe19 DH |
3031 | static int gup_fast_devmap_leaf(unsigned long pfn, unsigned long addr, |
3032 | unsigned long end, unsigned int flags, struct page **pages, int *nr) | |
b59f65fa KS |
3033 | { |
3034 | int nr_start = *nr; | |
3035 | struct dev_pagemap *pgmap = NULL; | |
3036 | ||
3037 | do { | |
9cbe4954 | 3038 | struct folio *folio; |
b59f65fa KS |
3039 | struct page *page = pfn_to_page(pfn); |
3040 | ||
3041 | pgmap = get_dev_pagemap(pfn, pgmap); | |
3042 | if (unlikely(!pgmap)) { | |
23babe19 | 3043 | gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); |
6401c4eb | 3044 | break; |
b59f65fa | 3045 | } |
4003f107 LG |
3046 | |
3047 | if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) { | |
23babe19 | 3048 | gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); |
4003f107 LG |
3049 | break; |
3050 | } | |
3051 | ||
9cbe4954 MWO |
3052 | folio = try_grab_folio(page, 1, flags); |
3053 | if (!folio) { | |
23babe19 | 3054 | gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); |
6401c4eb | 3055 | break; |
3faa52c0 | 3056 | } |
9cbe4954 MWO |
3057 | folio_set_referenced(folio); |
3058 | pages[*nr] = page; | |
b59f65fa KS |
3059 | (*nr)++; |
3060 | pfn++; | |
3061 | } while (addr += PAGE_SIZE, addr != end); | |
832d7aa0 | 3062 | |
6401c4eb | 3063 | put_dev_pagemap(pgmap); |
20b7fee7 | 3064 | return addr == end; |
b59f65fa KS |
3065 | } |
3066 | ||
23babe19 DH |
3067 | static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
3068 | unsigned long end, unsigned int flags, struct page **pages, | |
3069 | int *nr) | |
b59f65fa KS |
3070 | { |
3071 | unsigned long fault_pfn; | |
a9b6de77 DW |
3072 | int nr_start = *nr; |
3073 | ||
3074 | fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | |
23babe19 | 3075 | if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) |
a9b6de77 | 3076 | return 0; |
b59f65fa | 3077 | |
a9b6de77 | 3078 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { |
23babe19 | 3079 | gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); |
a9b6de77 DW |
3080 | return 0; |
3081 | } | |
3082 | return 1; | |
b59f65fa KS |
3083 | } |
3084 | ||
23babe19 DH |
3085 | static int gup_fast_devmap_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, |
3086 | unsigned long end, unsigned int flags, struct page **pages, | |
3087 | int *nr) | |
b59f65fa KS |
3088 | { |
3089 | unsigned long fault_pfn; | |
a9b6de77 DW |
3090 | int nr_start = *nr; |
3091 | ||
3092 | fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | |
23babe19 | 3093 | if (!gup_fast_devmap_leaf(fault_pfn, addr, end, flags, pages, nr)) |
a9b6de77 | 3094 | return 0; |
b59f65fa | 3095 | |
a9b6de77 | 3096 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { |
23babe19 | 3097 | gup_fast_undo_dev_pagemap(nr, nr_start, flags, pages); |
a9b6de77 DW |
3098 | return 0; |
3099 | } | |
3100 | return 1; | |
b59f65fa KS |
3101 | } |
3102 | #else | |
23babe19 DH |
3103 | static int gup_fast_devmap_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
3104 | unsigned long end, unsigned int flags, struct page **pages, | |
3105 | int *nr) | |
b59f65fa KS |
3106 | { |
3107 | BUILD_BUG(); | |
3108 | return 0; | |
3109 | } | |
3110 | ||
23babe19 DH |
3111 | static int gup_fast_devmap_pud_leaf(pud_t pud, pud_t *pudp, unsigned long addr, |
3112 | unsigned long end, unsigned int flags, struct page **pages, | |
3113 | int *nr) | |
b59f65fa KS |
3114 | { |
3115 | BUILD_BUG(); | |
3116 | return 0; | |
3117 | } | |
3118 | #endif | |
3119 | ||
23babe19 DH |
3120 | static int gup_fast_pmd_leaf(pmd_t orig, pmd_t *pmdp, unsigned long addr, |
3121 | unsigned long end, unsigned int flags, struct page **pages, | |
3122 | int *nr) | |
2667f50e | 3123 | { |
667ed1f7 MWO |
3124 | struct page *page; |
3125 | struct folio *folio; | |
2667f50e SC |
3126 | int refs; |
3127 | ||
b798bec4 | 3128 | if (!pmd_access_permitted(orig, flags & FOLL_WRITE)) |
2667f50e SC |
3129 | return 0; |
3130 | ||
7af75561 IW |
3131 | if (pmd_devmap(orig)) { |
3132 | if (unlikely(flags & FOLL_LONGTERM)) | |
3133 | return 0; | |
23babe19 DH |
3134 | return gup_fast_devmap_pmd_leaf(orig, pmdp, addr, end, flags, |
3135 | pages, nr); | |
7af75561 | 3136 | } |
b59f65fa | 3137 | |
f3c94c62 PX |
3138 | page = pmd_page(orig); |
3139 | refs = record_subpages(page, PMD_SIZE, addr, end, pages + *nr); | |
2667f50e | 3140 | |
667ed1f7 MWO |
3141 | folio = try_grab_folio(page, refs, flags); |
3142 | if (!folio) | |
2667f50e | 3143 | return 0; |
2667f50e SC |
3144 | |
3145 | if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) { | |
667ed1f7 | 3146 | gup_put_folio(folio, refs, flags); |
2667f50e SC |
3147 | return 0; |
3148 | } | |
3149 | ||
f002882c | 3150 | if (!gup_fast_folio_allowed(folio, flags)) { |
a6e79df9 LS |
3151 | gup_put_folio(folio, refs, flags); |
3152 | return 0; | |
3153 | } | |
84209e87 | 3154 | if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { |
a7f22660 DH |
3155 | gup_put_folio(folio, refs, flags); |
3156 | return 0; | |
3157 | } | |
3158 | ||
a43e9820 | 3159 | *nr += refs; |
667ed1f7 | 3160 | folio_set_referenced(folio); |
2667f50e SC |
3161 | return 1; |
3162 | } | |
3163 | ||
23babe19 DH |
3164 | static int gup_fast_pud_leaf(pud_t orig, pud_t *pudp, unsigned long addr, |
3165 | unsigned long end, unsigned int flags, struct page **pages, | |
3166 | int *nr) | |
2667f50e | 3167 | { |
83afb52e MWO |
3168 | struct page *page; |
3169 | struct folio *folio; | |
2667f50e SC |
3170 | int refs; |
3171 | ||
b798bec4 | 3172 | if (!pud_access_permitted(orig, flags & FOLL_WRITE)) |
2667f50e SC |
3173 | return 0; |
3174 | ||
7af75561 IW |
3175 | if (pud_devmap(orig)) { |
3176 | if (unlikely(flags & FOLL_LONGTERM)) | |
3177 | return 0; | |
23babe19 DH |
3178 | return gup_fast_devmap_pud_leaf(orig, pudp, addr, end, flags, |
3179 | pages, nr); | |
7af75561 | 3180 | } |
b59f65fa | 3181 | |
f3c94c62 PX |
3182 | page = pud_page(orig); |
3183 | refs = record_subpages(page, PUD_SIZE, addr, end, pages + *nr); | |
2667f50e | 3184 | |
83afb52e MWO |
3185 | folio = try_grab_folio(page, refs, flags); |
3186 | if (!folio) | |
2667f50e | 3187 | return 0; |
2667f50e SC |
3188 | |
3189 | if (unlikely(pud_val(orig) != pud_val(*pudp))) { | |
83afb52e | 3190 | gup_put_folio(folio, refs, flags); |
2667f50e SC |
3191 | return 0; |
3192 | } | |
3193 | ||
f002882c | 3194 | if (!gup_fast_folio_allowed(folio, flags)) { |
a6e79df9 LS |
3195 | gup_put_folio(folio, refs, flags); |
3196 | return 0; | |
3197 | } | |
3198 | ||
84209e87 | 3199 | if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { |
a7f22660 DH |
3200 | gup_put_folio(folio, refs, flags); |
3201 | return 0; | |
3202 | } | |
3203 | ||
a43e9820 | 3204 | *nr += refs; |
83afb52e | 3205 | folio_set_referenced(folio); |
2667f50e SC |
3206 | return 1; |
3207 | } | |
3208 | ||
23babe19 DH |
3209 | static int gup_fast_pgd_leaf(pgd_t orig, pgd_t *pgdp, unsigned long addr, |
3210 | unsigned long end, unsigned int flags, struct page **pages, | |
3211 | int *nr) | |
f30c59e9 AK |
3212 | { |
3213 | int refs; | |
2d7919a2 MWO |
3214 | struct page *page; |
3215 | struct folio *folio; | |
f30c59e9 | 3216 | |
b798bec4 | 3217 | if (!pgd_access_permitted(orig, flags & FOLL_WRITE)) |
f30c59e9 AK |
3218 | return 0; |
3219 | ||
b59f65fa | 3220 | BUILD_BUG_ON(pgd_devmap(orig)); |
a43e9820 | 3221 | |
f3c94c62 PX |
3222 | page = pgd_page(orig); |
3223 | refs = record_subpages(page, PGDIR_SIZE, addr, end, pages + *nr); | |
f30c59e9 | 3224 | |
2d7919a2 MWO |
3225 | folio = try_grab_folio(page, refs, flags); |
3226 | if (!folio) | |
f30c59e9 | 3227 | return 0; |
f30c59e9 AK |
3228 | |
3229 | if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) { | |
2d7919a2 | 3230 | gup_put_folio(folio, refs, flags); |
f30c59e9 AK |
3231 | return 0; |
3232 | } | |
3233 | ||
31115034 LS |
3234 | if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) { |
3235 | gup_put_folio(folio, refs, flags); | |
3236 | return 0; | |
3237 | } | |
3238 | ||
f002882c | 3239 | if (!gup_fast_folio_allowed(folio, flags)) { |
a6e79df9 LS |
3240 | gup_put_folio(folio, refs, flags); |
3241 | return 0; | |
3242 | } | |
3243 | ||
a43e9820 | 3244 | *nr += refs; |
2d7919a2 | 3245 | folio_set_referenced(folio); |
f30c59e9 AK |
3246 | return 1; |
3247 | } | |
3248 | ||
23babe19 DH |
3249 | static int gup_fast_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, |
3250 | unsigned long end, unsigned int flags, struct page **pages, | |
3251 | int *nr) | |
2667f50e SC |
3252 | { |
3253 | unsigned long next; | |
3254 | pmd_t *pmdp; | |
3255 | ||
d3f7b1bb | 3256 | pmdp = pmd_offset_lockless(pudp, pud, addr); |
2667f50e | 3257 | do { |
1180e732 | 3258 | pmd_t pmd = pmdp_get_lockless(pmdp); |
2667f50e SC |
3259 | |
3260 | next = pmd_addr_end(addr, end); | |
84c3fc4e | 3261 | if (!pmd_present(pmd)) |
2667f50e SC |
3262 | return 0; |
3263 | ||
7db86dc3 | 3264 | if (unlikely(pmd_leaf(pmd))) { |
23babe19 | 3265 | /* See gup_fast_pte_range() */ |
d74943a2 | 3266 | if (pmd_protnone(pmd)) |
2667f50e SC |
3267 | return 0; |
3268 | ||
23babe19 | 3269 | if (!gup_fast_pmd_leaf(pmd, pmdp, addr, next, flags, |
2667f50e SC |
3270 | pages, nr)) |
3271 | return 0; | |
3272 | ||
f30c59e9 AK |
3273 | } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) { |
3274 | /* | |
3275 | * architecture have different format for hugetlbfs | |
3276 | * pmd format and THP pmd format | |
3277 | */ | |
01d89b93 PX |
3278 | if (gup_hugepd(NULL, __hugepd(pmd_val(pmd)), addr, |
3279 | PMD_SHIFT, next, flags, pages, nr) != 1) | |
f30c59e9 | 3280 | return 0; |
23babe19 DH |
3281 | } else if (!gup_fast_pte_range(pmd, pmdp, addr, next, flags, |
3282 | pages, nr)) | |
2923117b | 3283 | return 0; |
2667f50e SC |
3284 | } while (pmdp++, addr = next, addr != end); |
3285 | ||
3286 | return 1; | |
3287 | } | |
3288 | ||
23babe19 DH |
3289 | static int gup_fast_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, |
3290 | unsigned long end, unsigned int flags, struct page **pages, | |
3291 | int *nr) | |
2667f50e SC |
3292 | { |
3293 | unsigned long next; | |
3294 | pud_t *pudp; | |
3295 | ||
d3f7b1bb | 3296 | pudp = pud_offset_lockless(p4dp, p4d, addr); |
2667f50e | 3297 | do { |
e37c6982 | 3298 | pud_t pud = READ_ONCE(*pudp); |
2667f50e SC |
3299 | |
3300 | next = pud_addr_end(addr, end); | |
15494520 | 3301 | if (unlikely(!pud_present(pud))) |
2667f50e | 3302 | return 0; |
7db86dc3 | 3303 | if (unlikely(pud_leaf(pud))) { |
23babe19 DH |
3304 | if (!gup_fast_pud_leaf(pud, pudp, addr, next, flags, |
3305 | pages, nr)) | |
f30c59e9 AK |
3306 | return 0; |
3307 | } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) { | |
01d89b93 PX |
3308 | if (gup_hugepd(NULL, __hugepd(pud_val(pud)), addr, |
3309 | PUD_SHIFT, next, flags, pages, nr) != 1) | |
2667f50e | 3310 | return 0; |
23babe19 DH |
3311 | } else if (!gup_fast_pmd_range(pudp, pud, addr, next, flags, |
3312 | pages, nr)) | |
2667f50e SC |
3313 | return 0; |
3314 | } while (pudp++, addr = next, addr != end); | |
3315 | ||
3316 | return 1; | |
3317 | } | |
3318 | ||
23babe19 DH |
3319 | static int gup_fast_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, |
3320 | unsigned long end, unsigned int flags, struct page **pages, | |
3321 | int *nr) | |
c2febafc KS |
3322 | { |
3323 | unsigned long next; | |
3324 | p4d_t *p4dp; | |
3325 | ||
d3f7b1bb | 3326 | p4dp = p4d_offset_lockless(pgdp, pgd, addr); |
c2febafc KS |
3327 | do { |
3328 | p4d_t p4d = READ_ONCE(*p4dp); | |
3329 | ||
3330 | next = p4d_addr_end(addr, end); | |
089f9214 | 3331 | if (!p4d_present(p4d)) |
c2febafc | 3332 | return 0; |
1965e933 | 3333 | BUILD_BUG_ON(p4d_leaf(p4d)); |
c2febafc | 3334 | if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) { |
01d89b93 PX |
3335 | if (gup_hugepd(NULL, __hugepd(p4d_val(p4d)), addr, |
3336 | P4D_SHIFT, next, flags, pages, nr) != 1) | |
c2febafc | 3337 | return 0; |
23babe19 DH |
3338 | } else if (!gup_fast_pud_range(p4dp, p4d, addr, next, flags, |
3339 | pages, nr)) | |
c2febafc KS |
3340 | return 0; |
3341 | } while (p4dp++, addr = next, addr != end); | |
3342 | ||
3343 | return 1; | |
3344 | } | |
3345 | ||
23babe19 | 3346 | static void gup_fast_pgd_range(unsigned long addr, unsigned long end, |
b798bec4 | 3347 | unsigned int flags, struct page **pages, int *nr) |
5b65c467 KS |
3348 | { |
3349 | unsigned long next; | |
3350 | pgd_t *pgdp; | |
3351 | ||
3352 | pgdp = pgd_offset(current->mm, addr); | |
3353 | do { | |
3354 | pgd_t pgd = READ_ONCE(*pgdp); | |
3355 | ||
3356 | next = pgd_addr_end(addr, end); | |
3357 | if (pgd_none(pgd)) | |
3358 | return; | |
7db86dc3 | 3359 | if (unlikely(pgd_leaf(pgd))) { |
23babe19 DH |
3360 | if (!gup_fast_pgd_leaf(pgd, pgdp, addr, next, flags, |
3361 | pages, nr)) | |
5b65c467 KS |
3362 | return; |
3363 | } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) { | |
01d89b93 PX |
3364 | if (gup_hugepd(NULL, __hugepd(pgd_val(pgd)), addr, |
3365 | PGDIR_SHIFT, next, flags, pages, nr) != 1) | |
5b65c467 | 3366 | return; |
23babe19 DH |
3367 | } else if (!gup_fast_p4d_range(pgdp, pgd, addr, next, flags, |
3368 | pages, nr)) | |
5b65c467 KS |
3369 | return; |
3370 | } while (pgdp++, addr = next, addr != end); | |
3371 | } | |
050a9adc | 3372 | #else |
23babe19 | 3373 | static inline void gup_fast_pgd_range(unsigned long addr, unsigned long end, |
050a9adc CH |
3374 | unsigned int flags, struct page **pages, int *nr) |
3375 | { | |
3376 | } | |
25176ad0 | 3377 | #endif /* CONFIG_HAVE_GUP_FAST */ |
5b65c467 KS |
3378 | |
3379 | #ifndef gup_fast_permitted | |
3380 | /* | |
dadbb612 | 3381 | * Check if it's allowed to use get_user_pages_fast_only() for the range, or |
5b65c467 KS |
3382 | * we need to fall back to the slow version: |
3383 | */ | |
26f4c328 | 3384 | static bool gup_fast_permitted(unsigned long start, unsigned long end) |
5b65c467 | 3385 | { |
26f4c328 | 3386 | return true; |
5b65c467 KS |
3387 | } |
3388 | #endif | |
3389 | ||
23babe19 DH |
3390 | static unsigned long gup_fast(unsigned long start, unsigned long end, |
3391 | unsigned int gup_flags, struct page **pages) | |
c28b1fc7 JG |
3392 | { |
3393 | unsigned long flags; | |
3394 | int nr_pinned = 0; | |
57efa1fe | 3395 | unsigned seq; |
c28b1fc7 | 3396 | |
25176ad0 | 3397 | if (!IS_ENABLED(CONFIG_HAVE_GUP_FAST) || |
c28b1fc7 JG |
3398 | !gup_fast_permitted(start, end)) |
3399 | return 0; | |
3400 | ||
57efa1fe JG |
3401 | if (gup_flags & FOLL_PIN) { |
3402 | seq = raw_read_seqcount(¤t->mm->write_protect_seq); | |
3403 | if (seq & 1) | |
3404 | return 0; | |
3405 | } | |
3406 | ||
c28b1fc7 JG |
3407 | /* |
3408 | * Disable interrupts. The nested form is used, in order to allow full, | |
3409 | * general purpose use of this routine. | |
3410 | * | |
3411 | * With interrupts disabled, we block page table pages from being freed | |
3412 | * from under us. See struct mmu_table_batch comments in | |
3413 | * include/asm-generic/tlb.h for more details. | |
3414 | * | |
3415 | * We do not adopt an rcu_read_lock() here as we also want to block IPIs | |
3416 | * that come from THPs splitting. | |
3417 | */ | |
3418 | local_irq_save(flags); | |
23babe19 | 3419 | gup_fast_pgd_range(start, end, gup_flags, pages, &nr_pinned); |
c28b1fc7 | 3420 | local_irq_restore(flags); |
57efa1fe JG |
3421 | |
3422 | /* | |
3423 | * When pinning pages for DMA there could be a concurrent write protect | |
23babe19 | 3424 | * from fork() via copy_page_range(), in this case always fail GUP-fast. |
57efa1fe JG |
3425 | */ |
3426 | if (gup_flags & FOLL_PIN) { | |
3427 | if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) { | |
23babe19 | 3428 | gup_fast_unpin_user_pages(pages, nr_pinned); |
57efa1fe | 3429 | return 0; |
b6a2619c DH |
3430 | } else { |
3431 | sanity_check_pinned_pages(pages, nr_pinned); | |
57efa1fe JG |
3432 | } |
3433 | } | |
c28b1fc7 JG |
3434 | return nr_pinned; |
3435 | } | |
3436 | ||
23babe19 DH |
3437 | static int gup_fast_fallback(unsigned long start, unsigned long nr_pages, |
3438 | unsigned int gup_flags, struct page **pages) | |
2667f50e | 3439 | { |
c28b1fc7 JG |
3440 | unsigned long len, end; |
3441 | unsigned long nr_pinned; | |
b2a72dff | 3442 | int locked = 0; |
c28b1fc7 | 3443 | int ret; |
2667f50e | 3444 | |
f4000fdf | 3445 | if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM | |
376a34ef | 3446 | FOLL_FORCE | FOLL_PIN | FOLL_GET | |
4003f107 | 3447 | FOLL_FAST_ONLY | FOLL_NOFAULT | |
d74943a2 | 3448 | FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT))) |
817be129 CH |
3449 | return -EINVAL; |
3450 | ||
a458b76a AA |
3451 | if (gup_flags & FOLL_PIN) |
3452 | mm_set_has_pinned_flag(¤t->mm->flags); | |
008cfe44 | 3453 | |
f81cd178 | 3454 | if (!(gup_flags & FOLL_FAST_ONLY)) |
da1c55f1 | 3455 | might_lock_read(¤t->mm->mmap_lock); |
f81cd178 | 3456 | |
f455c854 | 3457 | start = untagged_addr(start) & PAGE_MASK; |
c28b1fc7 JG |
3458 | len = nr_pages << PAGE_SHIFT; |
3459 | if (check_add_overflow(start, len, &end)) | |
9883c7f8 | 3460 | return -EOVERFLOW; |
6014bc27 LT |
3461 | if (end > TASK_SIZE_MAX) |
3462 | return -EFAULT; | |
96d4f267 | 3463 | if (unlikely(!access_ok((void __user *)start, len))) |
c61611f7 | 3464 | return -EFAULT; |
73e10a61 | 3465 | |
23babe19 | 3466 | nr_pinned = gup_fast(start, end, gup_flags, pages); |
c28b1fc7 JG |
3467 | if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY) |
3468 | return nr_pinned; | |
2667f50e | 3469 | |
c28b1fc7 JG |
3470 | /* Slow path: try to get the remaining pages with get_user_pages */ |
3471 | start += nr_pinned << PAGE_SHIFT; | |
3472 | pages += nr_pinned; | |
b2a72dff | 3473 | ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned, |
b2cac248 | 3474 | pages, &locked, |
f04740f5 | 3475 | gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE); |
c28b1fc7 JG |
3476 | if (ret < 0) { |
3477 | /* | |
3478 | * The caller has to unpin the pages we already pinned so | |
3479 | * returning -errno is not an option | |
3480 | */ | |
3481 | if (nr_pinned) | |
3482 | return nr_pinned; | |
3483 | return ret; | |
2667f50e | 3484 | } |
c28b1fc7 | 3485 | return ret + nr_pinned; |
2667f50e | 3486 | } |
c28b1fc7 | 3487 | |
dadbb612 SJ |
3488 | /** |
3489 | * get_user_pages_fast_only() - pin user pages in memory | |
3490 | * @start: starting user address | |
3491 | * @nr_pages: number of pages from start to pin | |
3492 | * @gup_flags: flags modifying pin behaviour | |
3493 | * @pages: array that receives pointers to the pages pinned. | |
3494 | * Should be at least nr_pages long. | |
3495 | * | |
9e1f0580 JH |
3496 | * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to |
3497 | * the regular GUP. | |
9e1f0580 JH |
3498 | * |
3499 | * If the architecture does not support this function, simply return with no | |
3500 | * pages pinned. | |
3501 | * | |
3502 | * Careful, careful! COW breaking can go either way, so a non-write | |
3503 | * access can get ambiguous page results. If you call this function without | |
3504 | * 'write' set, you'd better be sure that you're ok with that ambiguity. | |
3505 | */ | |
dadbb612 SJ |
3506 | int get_user_pages_fast_only(unsigned long start, int nr_pages, |
3507 | unsigned int gup_flags, struct page **pages) | |
9e1f0580 | 3508 | { |
9e1f0580 JH |
3509 | /* |
3510 | * Internally (within mm/gup.c), gup fast variants must set FOLL_GET, | |
3511 | * because gup fast is always a "pin with a +1 page refcount" request. | |
376a34ef JH |
3512 | * |
3513 | * FOLL_FAST_ONLY is required in order to match the API description of | |
3514 | * this routine: no fall back to regular ("slow") GUP. | |
9e1f0580 | 3515 | */ |
b2cac248 | 3516 | if (!is_valid_gup_args(pages, NULL, &gup_flags, |
d64e2dbc JG |
3517 | FOLL_GET | FOLL_FAST_ONLY)) |
3518 | return -EINVAL; | |
9e1f0580 | 3519 | |
23babe19 | 3520 | return gup_fast_fallback(start, nr_pages, gup_flags, pages); |
9e1f0580 | 3521 | } |
dadbb612 | 3522 | EXPORT_SYMBOL_GPL(get_user_pages_fast_only); |
9e1f0580 | 3523 | |
eddb1c22 JH |
3524 | /** |
3525 | * get_user_pages_fast() - pin user pages in memory | |
3faa52c0 JH |
3526 | * @start: starting user address |
3527 | * @nr_pages: number of pages from start to pin | |
3528 | * @gup_flags: flags modifying pin behaviour | |
3529 | * @pages: array that receives pointers to the pages pinned. | |
3530 | * Should be at least nr_pages long. | |
eddb1c22 | 3531 | * |
c1e8d7c6 | 3532 | * Attempt to pin user pages in memory without taking mm->mmap_lock. |
eddb1c22 JH |
3533 | * If not successful, it will fall back to taking the lock and |
3534 | * calling get_user_pages(). | |
3535 | * | |
3536 | * Returns number of pages pinned. This may be fewer than the number requested. | |
3537 | * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns | |
3538 | * -errno. | |
3539 | */ | |
3540 | int get_user_pages_fast(unsigned long start, int nr_pages, | |
3541 | unsigned int gup_flags, struct page **pages) | |
3542 | { | |
94202f12 JH |
3543 | /* |
3544 | * The caller may or may not have explicitly set FOLL_GET; either way is | |
3545 | * OK. However, internally (within mm/gup.c), gup fast variants must set | |
3546 | * FOLL_GET, because gup fast is always a "pin with a +1 page refcount" | |
3547 | * request. | |
3548 | */ | |
b2cac248 | 3549 | if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET)) |
d64e2dbc | 3550 | return -EINVAL; |
23babe19 | 3551 | return gup_fast_fallback(start, nr_pages, gup_flags, pages); |
eddb1c22 | 3552 | } |
050a9adc | 3553 | EXPORT_SYMBOL_GPL(get_user_pages_fast); |
eddb1c22 JH |
3554 | |
3555 | /** | |
3556 | * pin_user_pages_fast() - pin user pages in memory without taking locks | |
3557 | * | |
3faa52c0 JH |
3558 | * @start: starting user address |
3559 | * @nr_pages: number of pages from start to pin | |
3560 | * @gup_flags: flags modifying pin behaviour | |
3561 | * @pages: array that receives pointers to the pages pinned. | |
3562 | * Should be at least nr_pages long. | |
3563 | * | |
3564 | * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See | |
3565 | * get_user_pages_fast() for documentation on the function arguments, because | |
3566 | * the arguments here are identical. | |
3567 | * | |
3568 | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please | |
72ef5e52 | 3569 | * see Documentation/core-api/pin_user_pages.rst for further details. |
c8070b78 DH |
3570 | * |
3571 | * Note that if a zero_page is amongst the returned pages, it will not have | |
3572 | * pins in it and unpin_user_page() will not remove pins from it. | |
eddb1c22 JH |
3573 | */ |
3574 | int pin_user_pages_fast(unsigned long start, int nr_pages, | |
3575 | unsigned int gup_flags, struct page **pages) | |
3576 | { | |
b2cac248 | 3577 | if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) |
3faa52c0 | 3578 | return -EINVAL; |
23babe19 | 3579 | return gup_fast_fallback(start, nr_pages, gup_flags, pages); |
eddb1c22 JH |
3580 | } |
3581 | EXPORT_SYMBOL_GPL(pin_user_pages_fast); | |
3582 | ||
3583 | /** | |
64019a2e | 3584 | * pin_user_pages_remote() - pin pages of a remote process |
eddb1c22 | 3585 | * |
3faa52c0 JH |
3586 | * @mm: mm_struct of target mm |
3587 | * @start: starting user address | |
3588 | * @nr_pages: number of pages from start to pin | |
3589 | * @gup_flags: flags modifying lookup behaviour | |
3590 | * @pages: array that receives pointers to the pages pinned. | |
0768c8de | 3591 | * Should be at least nr_pages long. |
3faa52c0 JH |
3592 | * @locked: pointer to lock flag indicating whether lock is held and |
3593 | * subsequently whether VM_FAULT_RETRY functionality can be | |
3594 | * utilised. Lock must initially be held. | |
3595 | * | |
3596 | * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See | |
3597 | * get_user_pages_remote() for documentation on the function arguments, because | |
3598 | * the arguments here are identical. | |
3599 | * | |
3600 | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please | |
72ef5e52 | 3601 | * see Documentation/core-api/pin_user_pages.rst for details. |
c8070b78 DH |
3602 | * |
3603 | * Note that if a zero_page is amongst the returned pages, it will not have | |
3604 | * pins in it and unpin_user_page*() will not remove pins from it. | |
eddb1c22 | 3605 | */ |
64019a2e | 3606 | long pin_user_pages_remote(struct mm_struct *mm, |
eddb1c22 JH |
3607 | unsigned long start, unsigned long nr_pages, |
3608 | unsigned int gup_flags, struct page **pages, | |
0b295316 | 3609 | int *locked) |
eddb1c22 | 3610 | { |
9a863a6a JG |
3611 | int local_locked = 1; |
3612 | ||
b2cac248 | 3613 | if (!is_valid_gup_args(pages, locked, &gup_flags, |
d64e2dbc JG |
3614 | FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE)) |
3615 | return 0; | |
b2cac248 | 3616 | return __gup_longterm_locked(mm, start, nr_pages, pages, |
9a863a6a | 3617 | locked ? locked : &local_locked, |
d64e2dbc | 3618 | gup_flags); |
eddb1c22 JH |
3619 | } |
3620 | EXPORT_SYMBOL(pin_user_pages_remote); | |
3621 | ||
3622 | /** | |
3623 | * pin_user_pages() - pin user pages in memory for use by other devices | |
3624 | * | |
3faa52c0 JH |
3625 | * @start: starting user address |
3626 | * @nr_pages: number of pages from start to pin | |
3627 | * @gup_flags: flags modifying lookup behaviour | |
3628 | * @pages: array that receives pointers to the pages pinned. | |
0768c8de | 3629 | * Should be at least nr_pages long. |
3faa52c0 JH |
3630 | * |
3631 | * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and | |
3632 | * FOLL_PIN is set. | |
3633 | * | |
3634 | * FOLL_PIN means that the pages must be released via unpin_user_page(). Please | |
72ef5e52 | 3635 | * see Documentation/core-api/pin_user_pages.rst for details. |
c8070b78 DH |
3636 | * |
3637 | * Note that if a zero_page is amongst the returned pages, it will not have | |
3638 | * pins in it and unpin_user_page*() will not remove pins from it. | |
eddb1c22 JH |
3639 | */ |
3640 | long pin_user_pages(unsigned long start, unsigned long nr_pages, | |
4c630f30 | 3641 | unsigned int gup_flags, struct page **pages) |
eddb1c22 | 3642 | { |
9a863a6a JG |
3643 | int locked = 1; |
3644 | ||
b2cac248 | 3645 | if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN)) |
d64e2dbc | 3646 | return 0; |
64019a2e | 3647 | return __gup_longterm_locked(current->mm, start, nr_pages, |
b2cac248 | 3648 | pages, &locked, gup_flags); |
eddb1c22 JH |
3649 | } |
3650 | EXPORT_SYMBOL(pin_user_pages); | |
91429023 JH |
3651 | |
3652 | /* | |
3653 | * pin_user_pages_unlocked() is the FOLL_PIN variant of | |
3654 | * get_user_pages_unlocked(). Behavior is the same, except that this one sets | |
3655 | * FOLL_PIN and rejects FOLL_GET. | |
c8070b78 DH |
3656 | * |
3657 | * Note that if a zero_page is amongst the returned pages, it will not have | |
3658 | * pins in it and unpin_user_page*() will not remove pins from it. | |
91429023 JH |
3659 | */ |
3660 | long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, | |
3661 | struct page **pages, unsigned int gup_flags) | |
3662 | { | |
b2a72dff | 3663 | int locked = 0; |
91429023 | 3664 | |
b2cac248 | 3665 | if (!is_valid_gup_args(pages, NULL, &gup_flags, |
f04740f5 | 3666 | FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE)) |
d64e2dbc | 3667 | return 0; |
0768c8de | 3668 | |
b2cac248 | 3669 | return __gup_longterm_locked(current->mm, start, nr_pages, pages, |
b2a72dff | 3670 | &locked, gup_flags); |
91429023 JH |
3671 | } |
3672 | EXPORT_SYMBOL(pin_user_pages_unlocked); |