]>
Commit | Line | Data |
---|---|---|
eebf11a0 MCC |
1 | /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module |
2 | * | |
3 | * This driver supports the memory controllers found on the Intel | |
4 | * processor family Sandy Bridge. | |
5 | * | |
6 | * This file may be distributed under the terms of the | |
7 | * GNU General Public License version 2 only. | |
8 | * | |
9 | * Copyright (c) 2011 by: | |
10 | * Mauro Carvalho Chehab <[email protected]> | |
11 | */ | |
12 | ||
13 | #include <linux/module.h> | |
14 | #include <linux/init.h> | |
15 | #include <linux/pci.h> | |
16 | #include <linux/pci_ids.h> | |
17 | #include <linux/slab.h> | |
18 | #include <linux/delay.h> | |
19 | #include <linux/edac.h> | |
20 | #include <linux/mmzone.h> | |
eebf11a0 MCC |
21 | #include <linux/smp.h> |
22 | #include <linux/bitmap.h> | |
5b889e37 | 23 | #include <linux/math64.h> |
eebf11a0 | 24 | #include <asm/processor.h> |
3d78c9af | 25 | #include <asm/mce.h> |
eebf11a0 MCC |
26 | |
27 | #include "edac_core.h" | |
28 | ||
29 | /* Static vars */ | |
30 | static LIST_HEAD(sbridge_edac_list); | |
31 | static DEFINE_MUTEX(sbridge_edac_lock); | |
32 | static int probed; | |
33 | ||
34 | /* | |
35 | * Alter this version for the module when modifications are made | |
36 | */ | |
37 | #define SBRIDGE_REVISION " Ver: 1.0.0 " | |
38 | #define EDAC_MOD_STR "sbridge_edac" | |
39 | ||
40 | /* | |
41 | * Debug macros | |
42 | */ | |
43 | #define sbridge_printk(level, fmt, arg...) \ | |
44 | edac_printk(level, "sbridge", fmt, ##arg) | |
45 | ||
46 | #define sbridge_mc_printk(mci, level, fmt, arg...) \ | |
47 | edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg) | |
48 | ||
49 | /* | |
50 | * Get a bit field at register value <v>, from bit <lo> to bit <hi> | |
51 | */ | |
52 | #define GET_BITFIELD(v, lo, hi) \ | |
53 | (((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo)) | |
54 | ||
55 | /* | |
56 | * sbridge Memory Controller Registers | |
57 | */ | |
58 | ||
59 | /* | |
60 | * FIXME: For now, let's order by device function, as it makes | |
15ed103a | 61 | * easier for driver's development process. This table should be |
eebf11a0 MCC |
62 | * moved to pci_id.h when submitted upstream |
63 | */ | |
64 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */ | |
65 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */ | |
66 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */ | |
67 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */ | |
68 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */ | |
69 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */ | |
70 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */ | |
71 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */ | |
72 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */ | |
73 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */ | |
74 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */ | |
75 | ||
76 | /* | |
77 | * Currently, unused, but will be needed in the future | |
78 | * implementations, as they hold the error counters | |
79 | */ | |
80 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */ | |
81 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */ | |
82 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */ | |
83 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */ | |
84 | ||
85 | /* Devices 12 Function 6, Offsets 0x80 to 0xcc */ | |
86 | static const u32 dram_rule[] = { | |
87 | 0x80, 0x88, 0x90, 0x98, 0xa0, | |
88 | 0xa8, 0xb0, 0xb8, 0xc0, 0xc8, | |
89 | }; | |
90 | #define MAX_SAD ARRAY_SIZE(dram_rule) | |
91 | ||
92 | #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff) | |
93 | #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3) | |
94 | #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1) | |
95 | #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0) | |
96 | ||
97 | static char *get_dram_attr(u32 reg) | |
98 | { | |
99 | switch(DRAM_ATTR(reg)) { | |
100 | case 0: | |
101 | return "DRAM"; | |
102 | case 1: | |
103 | return "MMCFG"; | |
104 | case 2: | |
105 | return "NXM"; | |
106 | default: | |
107 | return "unknown"; | |
108 | } | |
109 | } | |
110 | ||
111 | static const u32 interleave_list[] = { | |
112 | 0x84, 0x8c, 0x94, 0x9c, 0xa4, | |
113 | 0xac, 0xb4, 0xbc, 0xc4, 0xcc, | |
114 | }; | |
115 | #define MAX_INTERLEAVE ARRAY_SIZE(interleave_list) | |
116 | ||
117 | #define SAD_PKG0(reg) GET_BITFIELD(reg, 0, 2) | |
118 | #define SAD_PKG1(reg) GET_BITFIELD(reg, 3, 5) | |
119 | #define SAD_PKG2(reg) GET_BITFIELD(reg, 8, 10) | |
120 | #define SAD_PKG3(reg) GET_BITFIELD(reg, 11, 13) | |
121 | #define SAD_PKG4(reg) GET_BITFIELD(reg, 16, 18) | |
122 | #define SAD_PKG5(reg) GET_BITFIELD(reg, 19, 21) | |
123 | #define SAD_PKG6(reg) GET_BITFIELD(reg, 24, 26) | |
124 | #define SAD_PKG7(reg) GET_BITFIELD(reg, 27, 29) | |
125 | ||
126 | static inline int sad_pkg(u32 reg, int interleave) | |
127 | { | |
128 | switch (interleave) { | |
129 | case 0: | |
130 | return SAD_PKG0(reg); | |
131 | case 1: | |
132 | return SAD_PKG1(reg); | |
133 | case 2: | |
134 | return SAD_PKG2(reg); | |
135 | case 3: | |
136 | return SAD_PKG3(reg); | |
137 | case 4: | |
138 | return SAD_PKG4(reg); | |
139 | case 5: | |
140 | return SAD_PKG5(reg); | |
141 | case 6: | |
142 | return SAD_PKG6(reg); | |
143 | case 7: | |
144 | return SAD_PKG7(reg); | |
145 | default: | |
146 | return -EINVAL; | |
147 | } | |
148 | } | |
149 | ||
150 | /* Devices 12 Function 7 */ | |
151 | ||
152 | #define TOLM 0x80 | |
153 | #define TOHM 0x84 | |
154 | ||
155 | #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff) | |
156 | #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff) | |
157 | ||
158 | /* Device 13 Function 6 */ | |
159 | ||
160 | #define SAD_TARGET 0xf0 | |
161 | ||
162 | #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11) | |
163 | ||
164 | #define SAD_CONTROL 0xf4 | |
165 | ||
166 | #define NODE_ID(reg) GET_BITFIELD(reg, 0, 2) | |
167 | ||
168 | /* Device 14 function 0 */ | |
169 | ||
170 | static const u32 tad_dram_rule[] = { | |
171 | 0x40, 0x44, 0x48, 0x4c, | |
172 | 0x50, 0x54, 0x58, 0x5c, | |
173 | 0x60, 0x64, 0x68, 0x6c, | |
174 | }; | |
175 | #define MAX_TAD ARRAY_SIZE(tad_dram_rule) | |
176 | ||
177 | #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff) | |
178 | #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11) | |
179 | #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9) | |
180 | #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7) | |
181 | #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5) | |
182 | #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3) | |
183 | #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1) | |
184 | ||
185 | /* Device 15, function 0 */ | |
186 | ||
187 | #define MCMTR 0x7c | |
188 | ||
189 | #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2) | |
190 | #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1) | |
191 | #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0) | |
192 | ||
193 | /* Device 15, function 1 */ | |
194 | ||
195 | #define RASENABLES 0xac | |
196 | #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0) | |
197 | ||
198 | /* Device 15, functions 2-5 */ | |
199 | ||
200 | static const int mtr_regs[] = { | |
201 | 0x80, 0x84, 0x88, | |
202 | }; | |
203 | ||
204 | #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19) | |
205 | #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14) | |
206 | #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13) | |
207 | #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4) | |
208 | #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1) | |
209 | ||
210 | static const u32 tad_ch_nilv_offset[] = { | |
211 | 0x90, 0x94, 0x98, 0x9c, | |
212 | 0xa0, 0xa4, 0xa8, 0xac, | |
213 | 0xb0, 0xb4, 0xb8, 0xbc, | |
214 | }; | |
215 | #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29) | |
216 | #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26) | |
217 | ||
218 | static const u32 rir_way_limit[] = { | |
219 | 0x108, 0x10c, 0x110, 0x114, 0x118, | |
220 | }; | |
221 | #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit) | |
222 | ||
223 | #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31) | |
224 | #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29) | |
225 | #define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff) | |
226 | ||
227 | #define MAX_RIR_WAY 8 | |
228 | ||
229 | static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = { | |
230 | { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c }, | |
231 | { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c }, | |
232 | { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c }, | |
233 | { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c }, | |
234 | { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc }, | |
235 | }; | |
236 | ||
237 | #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19) | |
238 | #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14) | |
239 | ||
240 | /* Device 16, functions 2-7 */ | |
241 | ||
242 | /* | |
243 | * FIXME: Implement the error count reads directly | |
244 | */ | |
245 | ||
246 | static const u32 correrrcnt[] = { | |
247 | 0x104, 0x108, 0x10c, 0x110, | |
248 | }; | |
249 | ||
250 | #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31) | |
251 | #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30) | |
252 | #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15) | |
253 | #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14) | |
254 | ||
255 | static const u32 correrrthrsld[] = { | |
256 | 0x11c, 0x120, 0x124, 0x128, | |
257 | }; | |
258 | ||
259 | #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30) | |
260 | #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14) | |
261 | ||
262 | ||
263 | /* Device 17, function 0 */ | |
264 | ||
265 | #define RANK_CFG_A 0x0328 | |
266 | ||
267 | #define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11) | |
268 | ||
269 | /* | |
270 | * sbridge structs | |
271 | */ | |
272 | ||
273 | #define NUM_CHANNELS 4 | |
274 | #define MAX_DIMMS 3 /* Max DIMMS per channel */ | |
275 | ||
276 | struct sbridge_info { | |
277 | u32 mcmtr; | |
278 | }; | |
279 | ||
280 | struct sbridge_channel { | |
281 | u32 ranks; | |
282 | u32 dimms; | |
283 | }; | |
284 | ||
285 | struct pci_id_descr { | |
286 | int dev; | |
287 | int func; | |
288 | int dev_id; | |
289 | int optional; | |
290 | }; | |
291 | ||
292 | struct pci_id_table { | |
293 | const struct pci_id_descr *descr; | |
294 | int n_devs; | |
295 | }; | |
296 | ||
297 | struct sbridge_dev { | |
298 | struct list_head list; | |
299 | u8 bus, mc; | |
300 | u8 node_id, source_id; | |
301 | struct pci_dev **pdev; | |
302 | int n_devs; | |
303 | struct mem_ctl_info *mci; | |
304 | }; | |
305 | ||
306 | struct sbridge_pvt { | |
307 | struct pci_dev *pci_ta, *pci_ddrio, *pci_ras; | |
308 | struct pci_dev *pci_sad0, *pci_sad1, *pci_ha0; | |
309 | struct pci_dev *pci_br; | |
310 | struct pci_dev *pci_tad[NUM_CHANNELS]; | |
311 | ||
312 | struct sbridge_dev *sbridge_dev; | |
313 | ||
314 | struct sbridge_info info; | |
315 | struct sbridge_channel channel[NUM_CHANNELS]; | |
316 | ||
eebf11a0 MCC |
317 | /* Memory type detection */ |
318 | bool is_mirrored, is_lockstep, is_close_pg; | |
319 | ||
eebf11a0 MCC |
320 | /* Fifo double buffers */ |
321 | struct mce mce_entry[MCE_LOG_LEN]; | |
322 | struct mce mce_outentry[MCE_LOG_LEN]; | |
323 | ||
324 | /* Fifo in/out counters */ | |
325 | unsigned mce_in, mce_out; | |
326 | ||
327 | /* Count indicator to show errors not got */ | |
328 | unsigned mce_overrun; | |
329 | ||
330 | /* Memory description */ | |
331 | u64 tolm, tohm; | |
332 | }; | |
333 | ||
334 | #define PCI_DESCR(device, function, device_id) \ | |
335 | .dev = (device), \ | |
336 | .func = (function), \ | |
337 | .dev_id = (device_id) | |
338 | ||
339 | static const struct pci_id_descr pci_dev_descr_sbridge[] = { | |
340 | /* Processor Home Agent */ | |
341 | { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0) }, | |
342 | ||
343 | /* Memory controller */ | |
344 | { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA) }, | |
345 | { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS) }, | |
346 | { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0) }, | |
347 | { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1) }, | |
348 | { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2) }, | |
349 | { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3) }, | |
350 | { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO) }, | |
351 | ||
352 | /* System Address Decoder */ | |
353 | { PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0) }, | |
354 | { PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1) }, | |
355 | ||
356 | /* Broadcast Registers */ | |
357 | { PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR) }, | |
358 | }; | |
359 | ||
360 | #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) } | |
361 | static const struct pci_id_table pci_dev_descr_sbridge_table[] = { | |
362 | PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge), | |
363 | {0,} /* 0 terminated list. */ | |
364 | }; | |
365 | ||
366 | /* | |
367 | * pci_device_id table for which devices we are looking for | |
368 | */ | |
36c46f31 | 369 | static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = { |
eebf11a0 MCC |
370 | {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)}, |
371 | {0,} /* 0 terminated list. */ | |
372 | }; | |
373 | ||
374 | ||
375 | /**************************************************************************** | |
15ed103a | 376 | Ancillary status routines |
eebf11a0 MCC |
377 | ****************************************************************************/ |
378 | ||
379 | static inline int numrank(u32 mtr) | |
380 | { | |
381 | int ranks = (1 << RANK_CNT_BITS(mtr)); | |
382 | ||
383 | if (ranks > 4) { | |
956b9ba1 JP |
384 | edac_dbg(0, "Invalid number of ranks: %d (max = 4) raw value = %x (%04x)\n", |
385 | ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr); | |
eebf11a0 MCC |
386 | return -EINVAL; |
387 | } | |
388 | ||
389 | return ranks; | |
390 | } | |
391 | ||
392 | static inline int numrow(u32 mtr) | |
393 | { | |
394 | int rows = (RANK_WIDTH_BITS(mtr) + 12); | |
395 | ||
396 | if (rows < 13 || rows > 18) { | |
956b9ba1 JP |
397 | edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n", |
398 | rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr); | |
eebf11a0 MCC |
399 | return -EINVAL; |
400 | } | |
401 | ||
402 | return 1 << rows; | |
403 | } | |
404 | ||
405 | static inline int numcol(u32 mtr) | |
406 | { | |
407 | int cols = (COL_WIDTH_BITS(mtr) + 10); | |
408 | ||
409 | if (cols > 12) { | |
956b9ba1 JP |
410 | edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n", |
411 | cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr); | |
eebf11a0 MCC |
412 | return -EINVAL; |
413 | } | |
414 | ||
415 | return 1 << cols; | |
416 | } | |
417 | ||
418 | static struct sbridge_dev *get_sbridge_dev(u8 bus) | |
419 | { | |
420 | struct sbridge_dev *sbridge_dev; | |
421 | ||
422 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { | |
423 | if (sbridge_dev->bus == bus) | |
424 | return sbridge_dev; | |
425 | } | |
426 | ||
427 | return NULL; | |
428 | } | |
429 | ||
430 | static struct sbridge_dev *alloc_sbridge_dev(u8 bus, | |
431 | const struct pci_id_table *table) | |
432 | { | |
433 | struct sbridge_dev *sbridge_dev; | |
434 | ||
435 | sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL); | |
436 | if (!sbridge_dev) | |
437 | return NULL; | |
438 | ||
439 | sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs, | |
440 | GFP_KERNEL); | |
441 | if (!sbridge_dev->pdev) { | |
442 | kfree(sbridge_dev); | |
443 | return NULL; | |
444 | } | |
445 | ||
446 | sbridge_dev->bus = bus; | |
447 | sbridge_dev->n_devs = table->n_devs; | |
448 | list_add_tail(&sbridge_dev->list, &sbridge_edac_list); | |
449 | ||
450 | return sbridge_dev; | |
451 | } | |
452 | ||
453 | static void free_sbridge_dev(struct sbridge_dev *sbridge_dev) | |
454 | { | |
455 | list_del(&sbridge_dev->list); | |
456 | kfree(sbridge_dev->pdev); | |
457 | kfree(sbridge_dev); | |
458 | } | |
459 | ||
460 | /**************************************************************************** | |
461 | Memory check routines | |
462 | ****************************************************************************/ | |
463 | static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot, | |
464 | unsigned func) | |
465 | { | |
466 | struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus); | |
467 | int i; | |
468 | ||
469 | if (!sbridge_dev) | |
470 | return NULL; | |
471 | ||
472 | for (i = 0; i < sbridge_dev->n_devs; i++) { | |
473 | if (!sbridge_dev->pdev[i]) | |
474 | continue; | |
475 | ||
476 | if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot && | |
477 | PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) { | |
956b9ba1 JP |
478 | edac_dbg(1, "Associated %02x.%02x.%d with %p\n", |
479 | bus, slot, func, sbridge_dev->pdev[i]); | |
eebf11a0 MCC |
480 | return sbridge_dev->pdev[i]; |
481 | } | |
482 | } | |
483 | ||
484 | return NULL; | |
485 | } | |
486 | ||
487 | /** | |
c36e3e77 | 488 | * check_if_ecc_is_active() - Checks if ECC is active |
eebf11a0 | 489 | * bus: Device bus |
eebf11a0 | 490 | */ |
c36e3e77 | 491 | static int check_if_ecc_is_active(const u8 bus) |
eebf11a0 MCC |
492 | { |
493 | struct pci_dev *pdev = NULL; | |
eebf11a0 MCC |
494 | u32 mcmtr; |
495 | ||
eebf11a0 MCC |
496 | pdev = get_pdev_slot_func(bus, 15, 0); |
497 | if (!pdev) { | |
498 | sbridge_printk(KERN_ERR, "Couldn't find PCI device " | |
499 | "%2x.%02d.%d!!!\n", | |
500 | bus, 15, 0); | |
501 | return -ENODEV; | |
502 | } | |
503 | ||
504 | pci_read_config_dword(pdev, MCMTR, &mcmtr); | |
505 | if (!IS_ECC_ENABLED(mcmtr)) { | |
506 | sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n"); | |
507 | return -ENODEV; | |
508 | } | |
eebf11a0 MCC |
509 | return 0; |
510 | } | |
511 | ||
084a4fcc | 512 | static int get_dimm_config(struct mem_ctl_info *mci) |
eebf11a0 MCC |
513 | { |
514 | struct sbridge_pvt *pvt = mci->pvt_info; | |
c36e3e77 | 515 | struct dimm_info *dimm; |
deb09dda MCC |
516 | unsigned i, j, banks, ranks, rows, cols, npages; |
517 | u64 size; | |
eebf11a0 MCC |
518 | u32 reg; |
519 | enum edac_type mode; | |
c6e13b52 | 520 | enum mem_type mtype; |
eebf11a0 MCC |
521 | |
522 | pci_read_config_dword(pvt->pci_br, SAD_TARGET, ®); | |
523 | pvt->sbridge_dev->source_id = SOURCE_ID(reg); | |
524 | ||
525 | pci_read_config_dword(pvt->pci_br, SAD_CONTROL, ®); | |
526 | pvt->sbridge_dev->node_id = NODE_ID(reg); | |
956b9ba1 JP |
527 | edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n", |
528 | pvt->sbridge_dev->mc, | |
529 | pvt->sbridge_dev->node_id, | |
530 | pvt->sbridge_dev->source_id); | |
eebf11a0 MCC |
531 | |
532 | pci_read_config_dword(pvt->pci_ras, RASENABLES, ®); | |
533 | if (IS_MIRROR_ENABLED(reg)) { | |
956b9ba1 | 534 | edac_dbg(0, "Memory mirror is enabled\n"); |
eebf11a0 MCC |
535 | pvt->is_mirrored = true; |
536 | } else { | |
956b9ba1 | 537 | edac_dbg(0, "Memory mirror is disabled\n"); |
eebf11a0 MCC |
538 | pvt->is_mirrored = false; |
539 | } | |
540 | ||
541 | pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr); | |
542 | if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) { | |
956b9ba1 | 543 | edac_dbg(0, "Lockstep is enabled\n"); |
eebf11a0 MCC |
544 | mode = EDAC_S8ECD8ED; |
545 | pvt->is_lockstep = true; | |
546 | } else { | |
956b9ba1 | 547 | edac_dbg(0, "Lockstep is disabled\n"); |
eebf11a0 MCC |
548 | mode = EDAC_S4ECD4ED; |
549 | pvt->is_lockstep = false; | |
550 | } | |
551 | if (IS_CLOSE_PG(pvt->info.mcmtr)) { | |
956b9ba1 | 552 | edac_dbg(0, "address map is on closed page mode\n"); |
eebf11a0 MCC |
553 | pvt->is_close_pg = true; |
554 | } else { | |
956b9ba1 | 555 | edac_dbg(0, "address map is on open page mode\n"); |
eebf11a0 MCC |
556 | pvt->is_close_pg = false; |
557 | } | |
558 | ||
2cbb587d | 559 | pci_read_config_dword(pvt->pci_ddrio, RANK_CFG_A, ®); |
eebf11a0 MCC |
560 | if (IS_RDIMM_ENABLED(reg)) { |
561 | /* FIXME: Can also be LRDIMM */ | |
956b9ba1 | 562 | edac_dbg(0, "Memory is registered\n"); |
c6e13b52 | 563 | mtype = MEM_RDDR3; |
eebf11a0 | 564 | } else { |
956b9ba1 | 565 | edac_dbg(0, "Memory is unregistered\n"); |
c6e13b52 | 566 | mtype = MEM_DDR3; |
eebf11a0 MCC |
567 | } |
568 | ||
569 | /* On all supported DDR3 DIMM types, there are 8 banks available */ | |
570 | banks = 8; | |
571 | ||
572 | for (i = 0; i < NUM_CHANNELS; i++) { | |
573 | u32 mtr; | |
574 | ||
575 | for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) { | |
c36e3e77 MCC |
576 | dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, |
577 | i, j, 0); | |
eebf11a0 MCC |
578 | pci_read_config_dword(pvt->pci_tad[i], |
579 | mtr_regs[j], &mtr); | |
956b9ba1 | 580 | edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr); |
eebf11a0 MCC |
581 | if (IS_DIMM_PRESENT(mtr)) { |
582 | pvt->channel[i].dimms++; | |
583 | ||
584 | ranks = numrank(mtr); | |
585 | rows = numrow(mtr); | |
586 | cols = numcol(mtr); | |
587 | ||
588 | /* DDR3 has 8 I/O banks */ | |
deb09dda | 589 | size = ((u64)rows * cols * banks * ranks) >> (20 - 3); |
eebf11a0 MCC |
590 | npages = MiB_TO_PAGES(size); |
591 | ||
deb09dda | 592 | edac_dbg(0, "mc#%d: channel %d, dimm %d, %Ld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n", |
956b9ba1 JP |
593 | pvt->sbridge_dev->mc, i, j, |
594 | size, npages, | |
595 | banks, ranks, rows, cols); | |
eebf11a0 | 596 | |
a895bf8b | 597 | dimm->nr_pages = npages; |
084a4fcc MCC |
598 | dimm->grain = 32; |
599 | dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4; | |
600 | dimm->mtype = mtype; | |
601 | dimm->edac_mode = mode; | |
602 | snprintf(dimm->label, sizeof(dimm->label), | |
eebf11a0 MCC |
603 | "CPU_SrcID#%u_Channel#%u_DIMM#%u", |
604 | pvt->sbridge_dev->source_id, i, j); | |
eebf11a0 MCC |
605 | } |
606 | } | |
607 | } | |
608 | ||
609 | return 0; | |
610 | } | |
611 | ||
612 | static void get_memory_layout(const struct mem_ctl_info *mci) | |
613 | { | |
614 | struct sbridge_pvt *pvt = mci->pvt_info; | |
615 | int i, j, k, n_sads, n_tads, sad_interl; | |
616 | u32 reg; | |
617 | u64 limit, prv = 0; | |
618 | u64 tmp_mb; | |
5b889e37 | 619 | u32 mb, kb; |
eebf11a0 MCC |
620 | u32 rir_way; |
621 | ||
622 | /* | |
623 | * Step 1) Get TOLM/TOHM ranges | |
624 | */ | |
625 | ||
626 | /* Address range is 32:28 */ | |
627 | pci_read_config_dword(pvt->pci_sad1, TOLM, | |
628 | ®); | |
629 | pvt->tolm = GET_TOLM(reg); | |
630 | tmp_mb = (1 + pvt->tolm) >> 20; | |
631 | ||
5b889e37 | 632 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
956b9ba1 | 633 | edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n", mb, kb, (u64)pvt->tolm); |
eebf11a0 MCC |
634 | |
635 | /* Address range is already 45:25 */ | |
636 | pci_read_config_dword(pvt->pci_sad1, TOHM, | |
637 | ®); | |
638 | pvt->tohm = GET_TOHM(reg); | |
639 | tmp_mb = (1 + pvt->tohm) >> 20; | |
640 | ||
5b889e37 | 641 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
956b9ba1 | 642 | edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)", mb, kb, (u64)pvt->tohm); |
eebf11a0 MCC |
643 | |
644 | /* | |
645 | * Step 2) Get SAD range and SAD Interleave list | |
646 | * TAD registers contain the interleave wayness. However, it | |
647 | * seems simpler to just discover it indirectly, with the | |
648 | * algorithm bellow. | |
649 | */ | |
650 | prv = 0; | |
651 | for (n_sads = 0; n_sads < MAX_SAD; n_sads++) { | |
652 | /* SAD_LIMIT Address range is 45:26 */ | |
653 | pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads], | |
654 | ®); | |
655 | limit = SAD_LIMIT(reg); | |
656 | ||
657 | if (!DRAM_RULE_ENABLE(reg)) | |
658 | continue; | |
659 | ||
660 | if (limit <= prv) | |
661 | break; | |
662 | ||
663 | tmp_mb = (limit + 1) >> 20; | |
5b889e37 | 664 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
956b9ba1 JP |
665 | edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n", |
666 | n_sads, | |
667 | get_dram_attr(reg), | |
668 | mb, kb, | |
669 | ((u64)tmp_mb) << 20L, | |
670 | INTERLEAVE_MODE(reg) ? "8:6" : "[8:6]XOR[18:16]", | |
671 | reg); | |
eebf11a0 MCC |
672 | prv = limit; |
673 | ||
674 | pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads], | |
675 | ®); | |
676 | sad_interl = sad_pkg(reg, 0); | |
677 | for (j = 0; j < 8; j++) { | |
678 | if (j > 0 && sad_interl == sad_pkg(reg, j)) | |
679 | break; | |
680 | ||
956b9ba1 JP |
681 | edac_dbg(0, "SAD#%d, interleave #%d: %d\n", |
682 | n_sads, j, sad_pkg(reg, j)); | |
eebf11a0 MCC |
683 | } |
684 | } | |
685 | ||
686 | /* | |
687 | * Step 3) Get TAD range | |
688 | */ | |
689 | prv = 0; | |
690 | for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { | |
691 | pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads], | |
692 | ®); | |
693 | limit = TAD_LIMIT(reg); | |
694 | if (limit <= prv) | |
695 | break; | |
696 | tmp_mb = (limit + 1) >> 20; | |
697 | ||
5b889e37 | 698 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
956b9ba1 JP |
699 | edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n", |
700 | n_tads, mb, kb, | |
701 | ((u64)tmp_mb) << 20L, | |
702 | (u32)TAD_SOCK(reg), | |
703 | (u32)TAD_CH(reg), | |
704 | (u32)TAD_TGT0(reg), | |
705 | (u32)TAD_TGT1(reg), | |
706 | (u32)TAD_TGT2(reg), | |
707 | (u32)TAD_TGT3(reg), | |
708 | reg); | |
7fae0db4 | 709 | prv = limit; |
eebf11a0 MCC |
710 | } |
711 | ||
712 | /* | |
713 | * Step 4) Get TAD offsets, per each channel | |
714 | */ | |
715 | for (i = 0; i < NUM_CHANNELS; i++) { | |
716 | if (!pvt->channel[i].dimms) | |
717 | continue; | |
718 | for (j = 0; j < n_tads; j++) { | |
719 | pci_read_config_dword(pvt->pci_tad[i], | |
720 | tad_ch_nilv_offset[j], | |
721 | ®); | |
722 | tmp_mb = TAD_OFFSET(reg) >> 20; | |
5b889e37 | 723 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
956b9ba1 JP |
724 | edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n", |
725 | i, j, | |
726 | mb, kb, | |
727 | ((u64)tmp_mb) << 20L, | |
728 | reg); | |
eebf11a0 MCC |
729 | } |
730 | } | |
731 | ||
732 | /* | |
733 | * Step 6) Get RIR Wayness/Limit, per each channel | |
734 | */ | |
735 | for (i = 0; i < NUM_CHANNELS; i++) { | |
736 | if (!pvt->channel[i].dimms) | |
737 | continue; | |
738 | for (j = 0; j < MAX_RIR_RANGES; j++) { | |
739 | pci_read_config_dword(pvt->pci_tad[i], | |
740 | rir_way_limit[j], | |
741 | ®); | |
742 | ||
743 | if (!IS_RIR_VALID(reg)) | |
744 | continue; | |
745 | ||
746 | tmp_mb = RIR_LIMIT(reg) >> 20; | |
747 | rir_way = 1 << RIR_WAY(reg); | |
5b889e37 | 748 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
956b9ba1 JP |
749 | edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n", |
750 | i, j, | |
751 | mb, kb, | |
752 | ((u64)tmp_mb) << 20L, | |
753 | rir_way, | |
754 | reg); | |
eebf11a0 MCC |
755 | |
756 | for (k = 0; k < rir_way; k++) { | |
757 | pci_read_config_dword(pvt->pci_tad[i], | |
758 | rir_offset[j][k], | |
759 | ®); | |
760 | tmp_mb = RIR_OFFSET(reg) << 6; | |
761 | ||
5b889e37 | 762 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
956b9ba1 JP |
763 | edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n", |
764 | i, j, k, | |
765 | mb, kb, | |
766 | ((u64)tmp_mb) << 20L, | |
767 | (u32)RIR_RNK_TGT(reg), | |
768 | reg); | |
eebf11a0 MCC |
769 | } |
770 | } | |
771 | } | |
772 | } | |
773 | ||
774 | struct mem_ctl_info *get_mci_for_node_id(u8 node_id) | |
775 | { | |
776 | struct sbridge_dev *sbridge_dev; | |
777 | ||
778 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { | |
779 | if (sbridge_dev->node_id == node_id) | |
780 | return sbridge_dev->mci; | |
781 | } | |
782 | return NULL; | |
783 | } | |
784 | ||
785 | static int get_memory_error_data(struct mem_ctl_info *mci, | |
786 | u64 addr, | |
787 | u8 *socket, | |
788 | long *channel_mask, | |
789 | u8 *rank, | |
e17a2f42 | 790 | char **area_type, char *msg) |
eebf11a0 MCC |
791 | { |
792 | struct mem_ctl_info *new_mci; | |
793 | struct sbridge_pvt *pvt = mci->pvt_info; | |
eebf11a0 MCC |
794 | int n_rir, n_sads, n_tads, sad_way, sck_xch; |
795 | int sad_interl, idx, base_ch; | |
796 | int interleave_mode; | |
797 | unsigned sad_interleave[MAX_INTERLEAVE]; | |
798 | u32 reg; | |
799 | u8 ch_way,sck_way; | |
800 | u32 tad_offset; | |
801 | u32 rir_way; | |
5b889e37 | 802 | u32 mb, kb; |
eebf11a0 MCC |
803 | u64 ch_addr, offset, limit, prv = 0; |
804 | ||
805 | ||
806 | /* | |
807 | * Step 0) Check if the address is at special memory ranges | |
808 | * The check bellow is probably enough to fill all cases where | |
809 | * the error is not inside a memory, except for the legacy | |
810 | * range (e. g. VGA addresses). It is unlikely, however, that the | |
811 | * memory controller would generate an error on that range. | |
812 | */ | |
5b889e37 | 813 | if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) { |
eebf11a0 | 814 | sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr); |
eebf11a0 MCC |
815 | return -EINVAL; |
816 | } | |
817 | if (addr >= (u64)pvt->tohm) { | |
818 | sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr); | |
eebf11a0 MCC |
819 | return -EINVAL; |
820 | } | |
821 | ||
822 | /* | |
823 | * Step 1) Get socket | |
824 | */ | |
825 | for (n_sads = 0; n_sads < MAX_SAD; n_sads++) { | |
826 | pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads], | |
827 | ®); | |
828 | ||
829 | if (!DRAM_RULE_ENABLE(reg)) | |
830 | continue; | |
831 | ||
832 | limit = SAD_LIMIT(reg); | |
833 | if (limit <= prv) { | |
834 | sprintf(msg, "Can't discover the memory socket"); | |
eebf11a0 MCC |
835 | return -EINVAL; |
836 | } | |
837 | if (addr <= limit) | |
838 | break; | |
839 | prv = limit; | |
840 | } | |
841 | if (n_sads == MAX_SAD) { | |
842 | sprintf(msg, "Can't discover the memory socket"); | |
eebf11a0 MCC |
843 | return -EINVAL; |
844 | } | |
e17a2f42 | 845 | *area_type = get_dram_attr(reg); |
eebf11a0 MCC |
846 | interleave_mode = INTERLEAVE_MODE(reg); |
847 | ||
848 | pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads], | |
849 | ®); | |
850 | sad_interl = sad_pkg(reg, 0); | |
851 | for (sad_way = 0; sad_way < 8; sad_way++) { | |
852 | if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way)) | |
853 | break; | |
854 | sad_interleave[sad_way] = sad_pkg(reg, sad_way); | |
956b9ba1 JP |
855 | edac_dbg(0, "SAD interleave #%d: %d\n", |
856 | sad_way, sad_interleave[sad_way]); | |
eebf11a0 | 857 | } |
956b9ba1 JP |
858 | edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n", |
859 | pvt->sbridge_dev->mc, | |
860 | n_sads, | |
861 | addr, | |
862 | limit, | |
863 | sad_way + 7, | |
864 | interleave_mode ? "" : "XOR[18:16]"); | |
eebf11a0 MCC |
865 | if (interleave_mode) |
866 | idx = ((addr >> 6) ^ (addr >> 16)) & 7; | |
867 | else | |
868 | idx = (addr >> 6) & 7; | |
869 | switch (sad_way) { | |
870 | case 1: | |
871 | idx = 0; | |
872 | break; | |
873 | case 2: | |
874 | idx = idx & 1; | |
875 | break; | |
876 | case 4: | |
877 | idx = idx & 3; | |
878 | break; | |
879 | case 8: | |
880 | break; | |
881 | default: | |
882 | sprintf(msg, "Can't discover socket interleave"); | |
eebf11a0 MCC |
883 | return -EINVAL; |
884 | } | |
885 | *socket = sad_interleave[idx]; | |
956b9ba1 JP |
886 | edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n", |
887 | idx, sad_way, *socket); | |
eebf11a0 MCC |
888 | |
889 | /* | |
890 | * Move to the proper node structure, in order to access the | |
891 | * right PCI registers | |
892 | */ | |
893 | new_mci = get_mci_for_node_id(*socket); | |
894 | if (!new_mci) { | |
895 | sprintf(msg, "Struct for socket #%u wasn't initialized", | |
896 | *socket); | |
eebf11a0 MCC |
897 | return -EINVAL; |
898 | } | |
899 | mci = new_mci; | |
900 | pvt = mci->pvt_info; | |
901 | ||
902 | /* | |
903 | * Step 2) Get memory channel | |
904 | */ | |
905 | prv = 0; | |
906 | for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { | |
907 | pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads], | |
908 | ®); | |
909 | limit = TAD_LIMIT(reg); | |
910 | if (limit <= prv) { | |
911 | sprintf(msg, "Can't discover the memory channel"); | |
eebf11a0 MCC |
912 | return -EINVAL; |
913 | } | |
914 | if (addr <= limit) | |
915 | break; | |
916 | prv = limit; | |
917 | } | |
918 | ch_way = TAD_CH(reg) + 1; | |
919 | sck_way = TAD_SOCK(reg) + 1; | |
920 | /* | |
921 | * FIXME: Is it right to always use channel 0 for offsets? | |
922 | */ | |
923 | pci_read_config_dword(pvt->pci_tad[0], | |
924 | tad_ch_nilv_offset[n_tads], | |
925 | &tad_offset); | |
926 | ||
927 | if (ch_way == 3) | |
928 | idx = addr >> 6; | |
929 | else | |
930 | idx = addr >> (6 + sck_way); | |
931 | idx = idx % ch_way; | |
932 | ||
933 | /* | |
934 | * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ??? | |
935 | */ | |
936 | switch (idx) { | |
937 | case 0: | |
938 | base_ch = TAD_TGT0(reg); | |
939 | break; | |
940 | case 1: | |
941 | base_ch = TAD_TGT1(reg); | |
942 | break; | |
943 | case 2: | |
944 | base_ch = TAD_TGT2(reg); | |
945 | break; | |
946 | case 3: | |
947 | base_ch = TAD_TGT3(reg); | |
948 | break; | |
949 | default: | |
950 | sprintf(msg, "Can't discover the TAD target"); | |
eebf11a0 MCC |
951 | return -EINVAL; |
952 | } | |
953 | *channel_mask = 1 << base_ch; | |
954 | ||
955 | if (pvt->is_mirrored) { | |
956 | *channel_mask |= 1 << ((base_ch + 2) % 4); | |
957 | switch(ch_way) { | |
958 | case 2: | |
959 | case 4: | |
960 | sck_xch = 1 << sck_way * (ch_way >> 1); | |
961 | break; | |
962 | default: | |
963 | sprintf(msg, "Invalid mirror set. Can't decode addr"); | |
eebf11a0 MCC |
964 | return -EINVAL; |
965 | } | |
966 | } else | |
967 | sck_xch = (1 << sck_way) * ch_way; | |
968 | ||
969 | if (pvt->is_lockstep) | |
970 | *channel_mask |= 1 << ((base_ch + 1) % 4); | |
971 | ||
972 | offset = TAD_OFFSET(tad_offset); | |
973 | ||
956b9ba1 JP |
974 | edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n", |
975 | n_tads, | |
976 | addr, | |
977 | limit, | |
978 | (u32)TAD_SOCK(reg), | |
979 | ch_way, | |
980 | offset, | |
981 | idx, | |
982 | base_ch, | |
983 | *channel_mask); | |
eebf11a0 MCC |
984 | |
985 | /* Calculate channel address */ | |
986 | /* Remove the TAD offset */ | |
987 | ||
988 | if (offset > addr) { | |
989 | sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!", | |
990 | offset, addr); | |
eebf11a0 MCC |
991 | return -EINVAL; |
992 | } | |
993 | addr -= offset; | |
994 | /* Store the low bits [0:6] of the addr */ | |
995 | ch_addr = addr & 0x7f; | |
996 | /* Remove socket wayness and remove 6 bits */ | |
997 | addr >>= 6; | |
5b889e37 | 998 | addr = div_u64(addr, sck_xch); |
eebf11a0 MCC |
999 | #if 0 |
1000 | /* Divide by channel way */ | |
1001 | addr = addr / ch_way; | |
1002 | #endif | |
1003 | /* Recover the last 6 bits */ | |
1004 | ch_addr |= addr << 6; | |
1005 | ||
1006 | /* | |
1007 | * Step 3) Decode rank | |
1008 | */ | |
1009 | for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) { | |
1010 | pci_read_config_dword(pvt->pci_tad[base_ch], | |
1011 | rir_way_limit[n_rir], | |
1012 | ®); | |
1013 | ||
1014 | if (!IS_RIR_VALID(reg)) | |
1015 | continue; | |
1016 | ||
1017 | limit = RIR_LIMIT(reg); | |
5b889e37 | 1018 | mb = div_u64_rem(limit >> 20, 1000, &kb); |
956b9ba1 JP |
1019 | edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n", |
1020 | n_rir, | |
1021 | mb, kb, | |
1022 | limit, | |
1023 | 1 << RIR_WAY(reg)); | |
eebf11a0 MCC |
1024 | if (ch_addr <= limit) |
1025 | break; | |
1026 | } | |
1027 | if (n_rir == MAX_RIR_RANGES) { | |
1028 | sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx", | |
1029 | ch_addr); | |
eebf11a0 MCC |
1030 | return -EINVAL; |
1031 | } | |
1032 | rir_way = RIR_WAY(reg); | |
1033 | if (pvt->is_close_pg) | |
1034 | idx = (ch_addr >> 6); | |
1035 | else | |
1036 | idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */ | |
1037 | idx %= 1 << rir_way; | |
1038 | ||
1039 | pci_read_config_dword(pvt->pci_tad[base_ch], | |
1040 | rir_offset[n_rir][idx], | |
1041 | ®); | |
1042 | *rank = RIR_RNK_TGT(reg); | |
1043 | ||
956b9ba1 JP |
1044 | edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n", |
1045 | n_rir, | |
1046 | ch_addr, | |
1047 | limit, | |
1048 | rir_way, | |
1049 | idx); | |
eebf11a0 MCC |
1050 | |
1051 | return 0; | |
1052 | } | |
1053 | ||
1054 | /**************************************************************************** | |
1055 | Device initialization routines: put/get, init/exit | |
1056 | ****************************************************************************/ | |
1057 | ||
1058 | /* | |
1059 | * sbridge_put_all_devices 'put' all the devices that we have | |
1060 | * reserved via 'get' | |
1061 | */ | |
1062 | static void sbridge_put_devices(struct sbridge_dev *sbridge_dev) | |
1063 | { | |
1064 | int i; | |
1065 | ||
956b9ba1 | 1066 | edac_dbg(0, "\n"); |
eebf11a0 MCC |
1067 | for (i = 0; i < sbridge_dev->n_devs; i++) { |
1068 | struct pci_dev *pdev = sbridge_dev->pdev[i]; | |
1069 | if (!pdev) | |
1070 | continue; | |
956b9ba1 JP |
1071 | edac_dbg(0, "Removing dev %02x:%02x.%d\n", |
1072 | pdev->bus->number, | |
1073 | PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); | |
eebf11a0 MCC |
1074 | pci_dev_put(pdev); |
1075 | } | |
1076 | } | |
1077 | ||
1078 | static void sbridge_put_all_devices(void) | |
1079 | { | |
1080 | struct sbridge_dev *sbridge_dev, *tmp; | |
1081 | ||
1082 | list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) { | |
1083 | sbridge_put_devices(sbridge_dev); | |
1084 | free_sbridge_dev(sbridge_dev); | |
1085 | } | |
1086 | } | |
1087 | ||
1088 | /* | |
1089 | * sbridge_get_all_devices Find and perform 'get' operation on the MCH's | |
1090 | * device/functions we want to reference for this driver | |
1091 | * | |
1092 | * Need to 'get' device 16 func 1 and func 2 | |
1093 | */ | |
1094 | static int sbridge_get_onedevice(struct pci_dev **prev, | |
1095 | u8 *num_mc, | |
1096 | const struct pci_id_table *table, | |
1097 | const unsigned devno) | |
1098 | { | |
1099 | struct sbridge_dev *sbridge_dev; | |
1100 | const struct pci_id_descr *dev_descr = &table->descr[devno]; | |
1101 | ||
1102 | struct pci_dev *pdev = NULL; | |
1103 | u8 bus = 0; | |
1104 | ||
1105 | sbridge_printk(KERN_INFO, | |
1106 | "Seeking for: dev %02x.%d PCI ID %04x:%04x\n", | |
1107 | dev_descr->dev, dev_descr->func, | |
1108 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | |
1109 | ||
1110 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | |
1111 | dev_descr->dev_id, *prev); | |
1112 | ||
1113 | if (!pdev) { | |
1114 | if (*prev) { | |
1115 | *prev = pdev; | |
1116 | return 0; | |
1117 | } | |
1118 | ||
1119 | if (dev_descr->optional) | |
1120 | return 0; | |
1121 | ||
1122 | if (devno == 0) | |
1123 | return -ENODEV; | |
1124 | ||
1125 | sbridge_printk(KERN_INFO, | |
1126 | "Device not found: dev %02x.%d PCI ID %04x:%04x\n", | |
1127 | dev_descr->dev, dev_descr->func, | |
1128 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | |
1129 | ||
1130 | /* End of list, leave */ | |
1131 | return -ENODEV; | |
1132 | } | |
1133 | bus = pdev->bus->number; | |
1134 | ||
1135 | sbridge_dev = get_sbridge_dev(bus); | |
1136 | if (!sbridge_dev) { | |
1137 | sbridge_dev = alloc_sbridge_dev(bus, table); | |
1138 | if (!sbridge_dev) { | |
1139 | pci_dev_put(pdev); | |
1140 | return -ENOMEM; | |
1141 | } | |
1142 | (*num_mc)++; | |
1143 | } | |
1144 | ||
1145 | if (sbridge_dev->pdev[devno]) { | |
1146 | sbridge_printk(KERN_ERR, | |
1147 | "Duplicated device for " | |
1148 | "dev %02x:%d.%d PCI ID %04x:%04x\n", | |
1149 | bus, dev_descr->dev, dev_descr->func, | |
1150 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | |
1151 | pci_dev_put(pdev); | |
1152 | return -ENODEV; | |
1153 | } | |
1154 | ||
1155 | sbridge_dev->pdev[devno] = pdev; | |
1156 | ||
1157 | /* Sanity check */ | |
1158 | if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev || | |
1159 | PCI_FUNC(pdev->devfn) != dev_descr->func)) { | |
1160 | sbridge_printk(KERN_ERR, | |
1161 | "Device PCI ID %04x:%04x " | |
1162 | "has dev %02x:%d.%d instead of dev %02x:%02x.%d\n", | |
1163 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id, | |
1164 | bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), | |
1165 | bus, dev_descr->dev, dev_descr->func); | |
1166 | return -ENODEV; | |
1167 | } | |
1168 | ||
1169 | /* Be sure that the device is enabled */ | |
1170 | if (unlikely(pci_enable_device(pdev) < 0)) { | |
1171 | sbridge_printk(KERN_ERR, | |
1172 | "Couldn't enable " | |
1173 | "dev %02x:%d.%d PCI ID %04x:%04x\n", | |
1174 | bus, dev_descr->dev, dev_descr->func, | |
1175 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | |
1176 | return -ENODEV; | |
1177 | } | |
1178 | ||
956b9ba1 JP |
1179 | edac_dbg(0, "Detected dev %02x:%d.%d PCI ID %04x:%04x\n", |
1180 | bus, dev_descr->dev, dev_descr->func, | |
1181 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | |
eebf11a0 MCC |
1182 | |
1183 | /* | |
1184 | * As stated on drivers/pci/search.c, the reference count for | |
1185 | * @from is always decremented if it is not %NULL. So, as we need | |
1186 | * to get all devices up to null, we need to do a get for the device | |
1187 | */ | |
1188 | pci_dev_get(pdev); | |
1189 | ||
1190 | *prev = pdev; | |
1191 | ||
1192 | return 0; | |
1193 | } | |
1194 | ||
1195 | static int sbridge_get_all_devices(u8 *num_mc) | |
1196 | { | |
1197 | int i, rc; | |
1198 | struct pci_dev *pdev = NULL; | |
1199 | const struct pci_id_table *table = pci_dev_descr_sbridge_table; | |
1200 | ||
1201 | while (table && table->descr) { | |
1202 | for (i = 0; i < table->n_devs; i++) { | |
1203 | pdev = NULL; | |
1204 | do { | |
1205 | rc = sbridge_get_onedevice(&pdev, num_mc, | |
1206 | table, i); | |
1207 | if (rc < 0) { | |
1208 | if (i == 0) { | |
1209 | i = table->n_devs; | |
1210 | break; | |
1211 | } | |
1212 | sbridge_put_all_devices(); | |
1213 | return -ENODEV; | |
1214 | } | |
1215 | } while (pdev); | |
1216 | } | |
1217 | table++; | |
1218 | } | |
1219 | ||
1220 | return 0; | |
1221 | } | |
1222 | ||
1223 | static int mci_bind_devs(struct mem_ctl_info *mci, | |
1224 | struct sbridge_dev *sbridge_dev) | |
1225 | { | |
1226 | struct sbridge_pvt *pvt = mci->pvt_info; | |
1227 | struct pci_dev *pdev; | |
1228 | int i, func, slot; | |
1229 | ||
1230 | for (i = 0; i < sbridge_dev->n_devs; i++) { | |
1231 | pdev = sbridge_dev->pdev[i]; | |
1232 | if (!pdev) | |
1233 | continue; | |
1234 | slot = PCI_SLOT(pdev->devfn); | |
1235 | func = PCI_FUNC(pdev->devfn); | |
1236 | switch (slot) { | |
1237 | case 12: | |
1238 | switch (func) { | |
1239 | case 6: | |
1240 | pvt->pci_sad0 = pdev; | |
1241 | break; | |
1242 | case 7: | |
1243 | pvt->pci_sad1 = pdev; | |
1244 | break; | |
1245 | default: | |
1246 | goto error; | |
1247 | } | |
1248 | break; | |
1249 | case 13: | |
1250 | switch (func) { | |
1251 | case 6: | |
1252 | pvt->pci_br = pdev; | |
1253 | break; | |
1254 | default: | |
1255 | goto error; | |
1256 | } | |
1257 | break; | |
1258 | case 14: | |
1259 | switch (func) { | |
1260 | case 0: | |
1261 | pvt->pci_ha0 = pdev; | |
1262 | break; | |
1263 | default: | |
1264 | goto error; | |
1265 | } | |
1266 | break; | |
1267 | case 15: | |
1268 | switch (func) { | |
1269 | case 0: | |
1270 | pvt->pci_ta = pdev; | |
1271 | break; | |
1272 | case 1: | |
1273 | pvt->pci_ras = pdev; | |
1274 | break; | |
1275 | case 2: | |
1276 | case 3: | |
1277 | case 4: | |
1278 | case 5: | |
1279 | pvt->pci_tad[func - 2] = pdev; | |
1280 | break; | |
1281 | default: | |
1282 | goto error; | |
1283 | } | |
1284 | break; | |
1285 | case 17: | |
1286 | switch (func) { | |
1287 | case 0: | |
1288 | pvt->pci_ddrio = pdev; | |
1289 | break; | |
1290 | default: | |
1291 | goto error; | |
1292 | } | |
1293 | break; | |
1294 | default: | |
1295 | goto error; | |
1296 | } | |
1297 | ||
956b9ba1 JP |
1298 | edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n", |
1299 | sbridge_dev->bus, | |
1300 | PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), | |
1301 | pdev); | |
eebf11a0 MCC |
1302 | } |
1303 | ||
1304 | /* Check if everything were registered */ | |
1305 | if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 || | |
1306 | !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta || | |
1307 | !pvt->pci_ddrio) | |
1308 | goto enodev; | |
1309 | ||
1310 | for (i = 0; i < NUM_CHANNELS; i++) { | |
1311 | if (!pvt->pci_tad[i]) | |
1312 | goto enodev; | |
1313 | } | |
1314 | return 0; | |
1315 | ||
1316 | enodev: | |
1317 | sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); | |
1318 | return -ENODEV; | |
1319 | ||
1320 | error: | |
1321 | sbridge_printk(KERN_ERR, "Device %d, function %d " | |
1322 | "is out of the expected range\n", | |
1323 | slot, func); | |
1324 | return -EINVAL; | |
1325 | } | |
1326 | ||
1327 | /**************************************************************************** | |
1328 | Error check routines | |
1329 | ****************************************************************************/ | |
1330 | ||
1331 | /* | |
1332 | * While Sandy Bridge has error count registers, SMI BIOS read values from | |
1333 | * and resets the counters. So, they are not reliable for the OS to read | |
1334 | * from them. So, we have no option but to just trust on whatever MCE is | |
1335 | * telling us about the errors. | |
1336 | */ | |
1337 | static void sbridge_mce_output_error(struct mem_ctl_info *mci, | |
1338 | const struct mce *m) | |
1339 | { | |
1340 | struct mem_ctl_info *new_mci; | |
1341 | struct sbridge_pvt *pvt = mci->pvt_info; | |
c36e3e77 | 1342 | enum hw_event_mc_err_type tp_event; |
e17a2f42 | 1343 | char *type, *optype, msg[256]; |
eebf11a0 MCC |
1344 | bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); |
1345 | bool overflow = GET_BITFIELD(m->status, 62, 62); | |
1346 | bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); | |
1347 | bool recoverable = GET_BITFIELD(m->status, 56, 56); | |
1348 | u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); | |
1349 | u32 mscod = GET_BITFIELD(m->status, 16, 31); | |
1350 | u32 errcode = GET_BITFIELD(m->status, 0, 15); | |
1351 | u32 channel = GET_BITFIELD(m->status, 0, 3); | |
1352 | u32 optypenum = GET_BITFIELD(m->status, 4, 6); | |
1353 | long channel_mask, first_channel; | |
1354 | u8 rank, socket; | |
c36e3e77 | 1355 | int rc, dimm; |
e17a2f42 | 1356 | char *area_type = NULL; |
eebf11a0 | 1357 | |
c36e3e77 MCC |
1358 | if (uncorrected_error) { |
1359 | if (ripv) { | |
1360 | type = "FATAL"; | |
1361 | tp_event = HW_EVENT_ERR_FATAL; | |
1362 | } else { | |
1363 | type = "NON_FATAL"; | |
1364 | tp_event = HW_EVENT_ERR_UNCORRECTED; | |
1365 | } | |
1366 | } else { | |
1367 | type = "CORRECTED"; | |
1368 | tp_event = HW_EVENT_ERR_CORRECTED; | |
1369 | } | |
eebf11a0 MCC |
1370 | |
1371 | /* | |
15ed103a | 1372 | * According with Table 15-9 of the Intel Architecture spec vol 3A, |
eebf11a0 MCC |
1373 | * memory errors should fit in this mask: |
1374 | * 000f 0000 1mmm cccc (binary) | |
1375 | * where: | |
1376 | * f = Correction Report Filtering Bit. If 1, subsequent errors | |
1377 | * won't be shown | |
1378 | * mmm = error type | |
1379 | * cccc = channel | |
1380 | * If the mask doesn't match, report an error to the parsing logic | |
1381 | */ | |
1382 | if (! ((errcode & 0xef80) == 0x80)) { | |
1383 | optype = "Can't parse: it is not a mem"; | |
1384 | } else { | |
1385 | switch (optypenum) { | |
1386 | case 0: | |
c36e3e77 | 1387 | optype = "generic undef request error"; |
eebf11a0 MCC |
1388 | break; |
1389 | case 1: | |
c36e3e77 | 1390 | optype = "memory read error"; |
eebf11a0 MCC |
1391 | break; |
1392 | case 2: | |
c36e3e77 | 1393 | optype = "memory write error"; |
eebf11a0 MCC |
1394 | break; |
1395 | case 3: | |
c36e3e77 | 1396 | optype = "addr/cmd error"; |
eebf11a0 MCC |
1397 | break; |
1398 | case 4: | |
c36e3e77 | 1399 | optype = "memory scrubbing error"; |
eebf11a0 MCC |
1400 | break; |
1401 | default: | |
1402 | optype = "reserved"; | |
1403 | break; | |
1404 | } | |
1405 | } | |
1406 | ||
1407 | rc = get_memory_error_data(mci, m->addr, &socket, | |
e17a2f42 | 1408 | &channel_mask, &rank, &area_type, msg); |
eebf11a0 | 1409 | if (rc < 0) |
c36e3e77 | 1410 | goto err_parsing; |
eebf11a0 MCC |
1411 | new_mci = get_mci_for_node_id(socket); |
1412 | if (!new_mci) { | |
c36e3e77 MCC |
1413 | strcpy(msg, "Error: socket got corrupted!"); |
1414 | goto err_parsing; | |
eebf11a0 MCC |
1415 | } |
1416 | mci = new_mci; | |
1417 | pvt = mci->pvt_info; | |
1418 | ||
1419 | first_channel = find_first_bit(&channel_mask, NUM_CHANNELS); | |
1420 | ||
1421 | if (rank < 4) | |
1422 | dimm = 0; | |
1423 | else if (rank < 8) | |
1424 | dimm = 1; | |
1425 | else | |
1426 | dimm = 2; | |
1427 | ||
eebf11a0 MCC |
1428 | |
1429 | /* | |
e17a2f42 MCC |
1430 | * FIXME: On some memory configurations (mirror, lockstep), the |
1431 | * Memory Controller can't point the error to a single DIMM. The | |
1432 | * EDAC core should be handling the channel mask, in order to point | |
1433 | * to the group of dimm's where the error may be happening. | |
eebf11a0 | 1434 | */ |
c36e3e77 | 1435 | snprintf(msg, sizeof(msg), |
c1053839 | 1436 | "%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d", |
e17a2f42 MCC |
1437 | overflow ? " OVERFLOW" : "", |
1438 | (uncorrected_error && recoverable) ? " recoverable" : "", | |
1439 | area_type, | |
1440 | mscod, errcode, | |
1441 | socket, | |
1442 | channel_mask, | |
1443 | rank); | |
eebf11a0 | 1444 | |
956b9ba1 | 1445 | edac_dbg(0, "%s\n", msg); |
eebf11a0 | 1446 | |
c36e3e77 MCC |
1447 | /* FIXME: need support for channel mask */ |
1448 | ||
eebf11a0 | 1449 | /* Call the helper to output message */ |
c1053839 | 1450 | edac_mc_handle_error(tp_event, mci, core_err_cnt, |
c36e3e77 MCC |
1451 | m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, |
1452 | channel, dimm, -1, | |
03f7eae8 | 1453 | optype, msg); |
c36e3e77 MCC |
1454 | return; |
1455 | err_parsing: | |
c1053839 | 1456 | edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, |
c36e3e77 | 1457 | -1, -1, -1, |
03f7eae8 | 1458 | msg, ""); |
eebf11a0 | 1459 | |
eebf11a0 MCC |
1460 | } |
1461 | ||
1462 | /* | |
1463 | * sbridge_check_error Retrieve and process errors reported by the | |
1464 | * hardware. Called by the Core module. | |
1465 | */ | |
1466 | static void sbridge_check_error(struct mem_ctl_info *mci) | |
1467 | { | |
1468 | struct sbridge_pvt *pvt = mci->pvt_info; | |
1469 | int i; | |
1470 | unsigned count = 0; | |
1471 | struct mce *m; | |
1472 | ||
1473 | /* | |
1474 | * MCE first step: Copy all mce errors into a temporary buffer | |
1475 | * We use a double buffering here, to reduce the risk of | |
1476 | * loosing an error. | |
1477 | */ | |
1478 | smp_rmb(); | |
1479 | count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in) | |
1480 | % MCE_LOG_LEN; | |
1481 | if (!count) | |
1482 | return; | |
1483 | ||
1484 | m = pvt->mce_outentry; | |
1485 | if (pvt->mce_in + count > MCE_LOG_LEN) { | |
1486 | unsigned l = MCE_LOG_LEN - pvt->mce_in; | |
1487 | ||
1488 | memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l); | |
1489 | smp_wmb(); | |
1490 | pvt->mce_in = 0; | |
1491 | count -= l; | |
1492 | m += l; | |
1493 | } | |
1494 | memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count); | |
1495 | smp_wmb(); | |
1496 | pvt->mce_in += count; | |
1497 | ||
1498 | smp_rmb(); | |
1499 | if (pvt->mce_overrun) { | |
1500 | sbridge_printk(KERN_ERR, "Lost %d memory errors\n", | |
1501 | pvt->mce_overrun); | |
1502 | smp_wmb(); | |
1503 | pvt->mce_overrun = 0; | |
1504 | } | |
1505 | ||
1506 | /* | |
1507 | * MCE second step: parse errors and display | |
1508 | */ | |
1509 | for (i = 0; i < count; i++) | |
1510 | sbridge_mce_output_error(mci, &pvt->mce_outentry[i]); | |
1511 | } | |
1512 | ||
1513 | /* | |
1514 | * sbridge_mce_check_error Replicates mcelog routine to get errors | |
1515 | * This routine simply queues mcelog errors, and | |
1516 | * return. The error itself should be handled later | |
1517 | * by sbridge_check_error. | |
1518 | * WARNING: As this routine should be called at NMI time, extra care should | |
1519 | * be taken to avoid deadlocks, and to be as fast as possible. | |
1520 | */ | |
3d78c9af MCC |
1521 | static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val, |
1522 | void *data) | |
eebf11a0 | 1523 | { |
3d78c9af MCC |
1524 | struct mce *mce = (struct mce *)data; |
1525 | struct mem_ctl_info *mci; | |
1526 | struct sbridge_pvt *pvt; | |
1527 | ||
1528 | mci = get_mci_for_node_id(mce->socketid); | |
1529 | if (!mci) | |
1530 | return NOTIFY_BAD; | |
1531 | pvt = mci->pvt_info; | |
eebf11a0 MCC |
1532 | |
1533 | /* | |
1534 | * Just let mcelog handle it if the error is | |
1535 | * outside the memory controller. A memory error | |
1536 | * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. | |
1537 | * bit 12 has an special meaning. | |
1538 | */ | |
1539 | if ((mce->status & 0xefff) >> 7 != 1) | |
3d78c9af | 1540 | return NOTIFY_DONE; |
eebf11a0 MCC |
1541 | |
1542 | printk("sbridge: HANDLING MCE MEMORY ERROR\n"); | |
1543 | ||
1544 | printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n", | |
1545 | mce->extcpu, mce->mcgstatus, mce->bank, mce->status); | |
1546 | printk("TSC %llx ", mce->tsc); | |
1547 | printk("ADDR %llx ", mce->addr); | |
1548 | printk("MISC %llx ", mce->misc); | |
1549 | ||
1550 | printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n", | |
1551 | mce->cpuvendor, mce->cpuid, mce->time, | |
1552 | mce->socketid, mce->apicid); | |
1553 | ||
eebf11a0 MCC |
1554 | /* Only handle if it is the right mc controller */ |
1555 | if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc) | |
3d78c9af | 1556 | return NOTIFY_DONE; |
eebf11a0 MCC |
1557 | |
1558 | smp_rmb(); | |
1559 | if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) { | |
1560 | smp_wmb(); | |
1561 | pvt->mce_overrun++; | |
3d78c9af | 1562 | return NOTIFY_DONE; |
eebf11a0 MCC |
1563 | } |
1564 | ||
1565 | /* Copy memory error at the ringbuffer */ | |
1566 | memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce)); | |
1567 | smp_wmb(); | |
1568 | pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN; | |
1569 | ||
1570 | /* Handle fatal errors immediately */ | |
1571 | if (mce->mcgstatus & 1) | |
1572 | sbridge_check_error(mci); | |
1573 | ||
1574 | /* Advice mcelog that the error were handled */ | |
3d78c9af | 1575 | return NOTIFY_STOP; |
eebf11a0 MCC |
1576 | } |
1577 | ||
3d78c9af MCC |
1578 | static struct notifier_block sbridge_mce_dec = { |
1579 | .notifier_call = sbridge_mce_check_error, | |
1580 | }; | |
1581 | ||
eebf11a0 MCC |
1582 | /**************************************************************************** |
1583 | EDAC register/unregister logic | |
1584 | ****************************************************************************/ | |
1585 | ||
1586 | static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev) | |
1587 | { | |
1588 | struct mem_ctl_info *mci = sbridge_dev->mci; | |
1589 | struct sbridge_pvt *pvt; | |
1590 | ||
1591 | if (unlikely(!mci || !mci->pvt_info)) { | |
956b9ba1 | 1592 | edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev); |
eebf11a0 MCC |
1593 | |
1594 | sbridge_printk(KERN_ERR, "Couldn't find mci handler\n"); | |
1595 | return; | |
1596 | } | |
1597 | ||
1598 | pvt = mci->pvt_info; | |
1599 | ||
956b9ba1 JP |
1600 | edac_dbg(0, "MC: mci = %p, dev = %p\n", |
1601 | mci, &sbridge_dev->pdev[0]->dev); | |
eebf11a0 | 1602 | |
eebf11a0 | 1603 | /* Remove MC sysfs nodes */ |
fd687502 | 1604 | edac_mc_del_mc(mci->pdev); |
eebf11a0 | 1605 | |
956b9ba1 | 1606 | edac_dbg(1, "%s: free mci struct\n", mci->ctl_name); |
eebf11a0 MCC |
1607 | kfree(mci->ctl_name); |
1608 | edac_mc_free(mci); | |
1609 | sbridge_dev->mci = NULL; | |
1610 | } | |
1611 | ||
1612 | static int sbridge_register_mci(struct sbridge_dev *sbridge_dev) | |
1613 | { | |
1614 | struct mem_ctl_info *mci; | |
c36e3e77 | 1615 | struct edac_mc_layer layers[2]; |
eebf11a0 | 1616 | struct sbridge_pvt *pvt; |
c36e3e77 | 1617 | int rc; |
eebf11a0 MCC |
1618 | |
1619 | /* Check the number of active and not disabled channels */ | |
c36e3e77 | 1620 | rc = check_if_ecc_is_active(sbridge_dev->bus); |
eebf11a0 MCC |
1621 | if (unlikely(rc < 0)) |
1622 | return rc; | |
1623 | ||
1624 | /* allocate a new MC control structure */ | |
c36e3e77 MCC |
1625 | layers[0].type = EDAC_MC_LAYER_CHANNEL; |
1626 | layers[0].size = NUM_CHANNELS; | |
1627 | layers[0].is_virt_csrow = false; | |
1628 | layers[1].type = EDAC_MC_LAYER_SLOT; | |
1629 | layers[1].size = MAX_DIMMS; | |
1630 | layers[1].is_virt_csrow = true; | |
ca0907b9 | 1631 | mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers, |
c36e3e77 MCC |
1632 | sizeof(*pvt)); |
1633 | ||
eebf11a0 MCC |
1634 | if (unlikely(!mci)) |
1635 | return -ENOMEM; | |
1636 | ||
956b9ba1 JP |
1637 | edac_dbg(0, "MC: mci = %p, dev = %p\n", |
1638 | mci, &sbridge_dev->pdev[0]->dev); | |
eebf11a0 MCC |
1639 | |
1640 | pvt = mci->pvt_info; | |
1641 | memset(pvt, 0, sizeof(*pvt)); | |
1642 | ||
1643 | /* Associate sbridge_dev and mci for future usage */ | |
1644 | pvt->sbridge_dev = sbridge_dev; | |
1645 | sbridge_dev->mci = mci; | |
1646 | ||
1647 | mci->mtype_cap = MEM_FLAG_DDR3; | |
1648 | mci->edac_ctl_cap = EDAC_FLAG_NONE; | |
1649 | mci->edac_cap = EDAC_FLAG_NONE; | |
1650 | mci->mod_name = "sbridge_edac.c"; | |
1651 | mci->mod_ver = SBRIDGE_REVISION; | |
1652 | mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx); | |
1653 | mci->dev_name = pci_name(sbridge_dev->pdev[0]); | |
1654 | mci->ctl_page_to_phys = NULL; | |
1655 | ||
1656 | /* Set the function pointer to an actual operation function */ | |
1657 | mci->edac_check = sbridge_check_error; | |
1658 | ||
1659 | /* Store pci devices at mci for faster access */ | |
1660 | rc = mci_bind_devs(mci, sbridge_dev); | |
1661 | if (unlikely(rc < 0)) | |
1662 | goto fail0; | |
1663 | ||
1664 | /* Get dimm basic config and the memory layout */ | |
1665 | get_dimm_config(mci); | |
1666 | get_memory_layout(mci); | |
1667 | ||
1668 | /* record ptr to the generic device */ | |
fd687502 | 1669 | mci->pdev = &sbridge_dev->pdev[0]->dev; |
eebf11a0 MCC |
1670 | |
1671 | /* add this new MC control structure to EDAC's list of MCs */ | |
1672 | if (unlikely(edac_mc_add_mc(mci))) { | |
956b9ba1 | 1673 | edac_dbg(0, "MC: failed edac_mc_add_mc()\n"); |
eebf11a0 MCC |
1674 | rc = -EINVAL; |
1675 | goto fail0; | |
1676 | } | |
1677 | ||
eebf11a0 | 1678 | return 0; |
eebf11a0 MCC |
1679 | |
1680 | fail0: | |
1681 | kfree(mci->ctl_name); | |
1682 | edac_mc_free(mci); | |
1683 | sbridge_dev->mci = NULL; | |
1684 | return rc; | |
1685 | } | |
1686 | ||
1687 | /* | |
1688 | * sbridge_probe Probe for ONE instance of device to see if it is | |
1689 | * present. | |
1690 | * return: | |
1691 | * 0 for FOUND a device | |
1692 | * < 0 for error code | |
1693 | */ | |
1694 | ||
9b3c6e85 | 1695 | static int sbridge_probe(struct pci_dev *pdev, const struct pci_device_id *id) |
eebf11a0 MCC |
1696 | { |
1697 | int rc; | |
1698 | u8 mc, num_mc = 0; | |
1699 | struct sbridge_dev *sbridge_dev; | |
1700 | ||
1701 | /* get the pci devices we want to reserve for our use */ | |
1702 | mutex_lock(&sbridge_edac_lock); | |
1703 | ||
1704 | /* | |
1705 | * All memory controllers are allocated at the first pass. | |
1706 | */ | |
1707 | if (unlikely(probed >= 1)) { | |
1708 | mutex_unlock(&sbridge_edac_lock); | |
1709 | return -ENODEV; | |
1710 | } | |
1711 | probed++; | |
1712 | ||
1713 | rc = sbridge_get_all_devices(&num_mc); | |
1714 | if (unlikely(rc < 0)) | |
1715 | goto fail0; | |
1716 | mc = 0; | |
1717 | ||
1718 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { | |
956b9ba1 JP |
1719 | edac_dbg(0, "Registering MC#%d (%d of %d)\n", |
1720 | mc, mc + 1, num_mc); | |
eebf11a0 MCC |
1721 | sbridge_dev->mc = mc++; |
1722 | rc = sbridge_register_mci(sbridge_dev); | |
1723 | if (unlikely(rc < 0)) | |
1724 | goto fail1; | |
1725 | } | |
1726 | ||
1727 | sbridge_printk(KERN_INFO, "Driver loaded.\n"); | |
1728 | ||
1729 | mutex_unlock(&sbridge_edac_lock); | |
1730 | return 0; | |
1731 | ||
1732 | fail1: | |
1733 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) | |
1734 | sbridge_unregister_mci(sbridge_dev); | |
1735 | ||
1736 | sbridge_put_all_devices(); | |
1737 | fail0: | |
1738 | mutex_unlock(&sbridge_edac_lock); | |
1739 | return rc; | |
1740 | } | |
1741 | ||
1742 | /* | |
1743 | * sbridge_remove destructor for one instance of device | |
1744 | * | |
1745 | */ | |
9b3c6e85 | 1746 | static void sbridge_remove(struct pci_dev *pdev) |
eebf11a0 MCC |
1747 | { |
1748 | struct sbridge_dev *sbridge_dev; | |
1749 | ||
956b9ba1 | 1750 | edac_dbg(0, "\n"); |
eebf11a0 MCC |
1751 | |
1752 | /* | |
1753 | * we have a trouble here: pdev value for removal will be wrong, since | |
1754 | * it will point to the X58 register used to detect that the machine | |
1755 | * is a Nehalem or upper design. However, due to the way several PCI | |
1756 | * devices are grouped together to provide MC functionality, we need | |
1757 | * to use a different method for releasing the devices | |
1758 | */ | |
1759 | ||
1760 | mutex_lock(&sbridge_edac_lock); | |
1761 | ||
1762 | if (unlikely(!probed)) { | |
1763 | mutex_unlock(&sbridge_edac_lock); | |
1764 | return; | |
1765 | } | |
1766 | ||
1767 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) | |
1768 | sbridge_unregister_mci(sbridge_dev); | |
1769 | ||
1770 | /* Release PCI resources */ | |
1771 | sbridge_put_all_devices(); | |
1772 | ||
1773 | probed--; | |
1774 | ||
1775 | mutex_unlock(&sbridge_edac_lock); | |
1776 | } | |
1777 | ||
1778 | MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl); | |
1779 | ||
1780 | /* | |
1781 | * sbridge_driver pci_driver structure for this module | |
1782 | * | |
1783 | */ | |
1784 | static struct pci_driver sbridge_driver = { | |
1785 | .name = "sbridge_edac", | |
1786 | .probe = sbridge_probe, | |
9b3c6e85 | 1787 | .remove = sbridge_remove, |
eebf11a0 MCC |
1788 | .id_table = sbridge_pci_tbl, |
1789 | }; | |
1790 | ||
1791 | /* | |
1792 | * sbridge_init Module entry function | |
1793 | * Try to initialize this module for its devices | |
1794 | */ | |
1795 | static int __init sbridge_init(void) | |
1796 | { | |
1797 | int pci_rc; | |
1798 | ||
956b9ba1 | 1799 | edac_dbg(2, "\n"); |
eebf11a0 MCC |
1800 | |
1801 | /* Ensure that the OPSTATE is set correctly for POLL or NMI */ | |
1802 | opstate_init(); | |
1803 | ||
1804 | pci_rc = pci_register_driver(&sbridge_driver); | |
1805 | ||
e35fca47 CG |
1806 | if (pci_rc >= 0) { |
1807 | mce_register_decode_chain(&sbridge_mce_dec); | |
eebf11a0 | 1808 | return 0; |
e35fca47 | 1809 | } |
eebf11a0 MCC |
1810 | |
1811 | sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n", | |
1812 | pci_rc); | |
1813 | ||
1814 | return pci_rc; | |
1815 | } | |
1816 | ||
1817 | /* | |
1818 | * sbridge_exit() Module exit function | |
1819 | * Unregister the driver | |
1820 | */ | |
1821 | static void __exit sbridge_exit(void) | |
1822 | { | |
956b9ba1 | 1823 | edac_dbg(2, "\n"); |
eebf11a0 | 1824 | pci_unregister_driver(&sbridge_driver); |
e35fca47 | 1825 | mce_unregister_decode_chain(&sbridge_mce_dec); |
eebf11a0 MCC |
1826 | } |
1827 | ||
1828 | module_init(sbridge_init); | |
1829 | module_exit(sbridge_exit); | |
1830 | ||
1831 | module_param(edac_op_state, int, 0444); | |
1832 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); | |
1833 | ||
1834 | MODULE_LICENSE("GPL"); | |
1835 | MODULE_AUTHOR("Mauro Carvalho Chehab <[email protected]>"); | |
1836 | MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); | |
1837 | MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - " | |
1838 | SBRIDGE_REVISION); |