]>
Commit | Line | Data |
---|---|---|
eebf11a0 MCC |
1 | /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module |
2 | * | |
3 | * This driver supports the memory controllers found on the Intel | |
4 | * processor family Sandy Bridge. | |
5 | * | |
6 | * This file may be distributed under the terms of the | |
7 | * GNU General Public License version 2 only. | |
8 | * | |
9 | * Copyright (c) 2011 by: | |
10 | * Mauro Carvalho Chehab <[email protected]> | |
11 | */ | |
12 | ||
13 | #include <linux/module.h> | |
14 | #include <linux/init.h> | |
15 | #include <linux/pci.h> | |
16 | #include <linux/pci_ids.h> | |
17 | #include <linux/slab.h> | |
18 | #include <linux/delay.h> | |
19 | #include <linux/edac.h> | |
20 | #include <linux/mmzone.h> | |
eebf11a0 MCC |
21 | #include <linux/smp.h> |
22 | #include <linux/bitmap.h> | |
5b889e37 | 23 | #include <linux/math64.h> |
eebf11a0 | 24 | #include <asm/processor.h> |
3d78c9af | 25 | #include <asm/mce.h> |
eebf11a0 MCC |
26 | |
27 | #include "edac_core.h" | |
28 | ||
29 | /* Static vars */ | |
30 | static LIST_HEAD(sbridge_edac_list); | |
31 | static DEFINE_MUTEX(sbridge_edac_lock); | |
32 | static int probed; | |
33 | ||
34 | /* | |
35 | * Alter this version for the module when modifications are made | |
36 | */ | |
37 | #define SBRIDGE_REVISION " Ver: 1.0.0 " | |
38 | #define EDAC_MOD_STR "sbridge_edac" | |
39 | ||
40 | /* | |
41 | * Debug macros | |
42 | */ | |
43 | #define sbridge_printk(level, fmt, arg...) \ | |
44 | edac_printk(level, "sbridge", fmt, ##arg) | |
45 | ||
46 | #define sbridge_mc_printk(mci, level, fmt, arg...) \ | |
47 | edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg) | |
48 | ||
49 | /* | |
50 | * Get a bit field at register value <v>, from bit <lo> to bit <hi> | |
51 | */ | |
52 | #define GET_BITFIELD(v, lo, hi) \ | |
53 | (((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo)) | |
54 | ||
55 | /* | |
56 | * sbridge Memory Controller Registers | |
57 | */ | |
58 | ||
59 | /* | |
60 | * FIXME: For now, let's order by device function, as it makes | |
15ed103a | 61 | * easier for driver's development process. This table should be |
eebf11a0 MCC |
62 | * moved to pci_id.h when submitted upstream |
63 | */ | |
64 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */ | |
65 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */ | |
66 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */ | |
67 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */ | |
68 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */ | |
69 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */ | |
70 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */ | |
71 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */ | |
72 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */ | |
73 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */ | |
74 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */ | |
75 | ||
76 | /* | |
77 | * Currently, unused, but will be needed in the future | |
78 | * implementations, as they hold the error counters | |
79 | */ | |
80 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */ | |
81 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */ | |
82 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */ | |
83 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */ | |
84 | ||
85 | /* Devices 12 Function 6, Offsets 0x80 to 0xcc */ | |
86 | static const u32 dram_rule[] = { | |
87 | 0x80, 0x88, 0x90, 0x98, 0xa0, | |
88 | 0xa8, 0xb0, 0xb8, 0xc0, 0xc8, | |
89 | }; | |
90 | #define MAX_SAD ARRAY_SIZE(dram_rule) | |
91 | ||
92 | #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff) | |
93 | #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3) | |
94 | #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1) | |
95 | #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0) | |
96 | ||
97 | static char *get_dram_attr(u32 reg) | |
98 | { | |
99 | switch(DRAM_ATTR(reg)) { | |
100 | case 0: | |
101 | return "DRAM"; | |
102 | case 1: | |
103 | return "MMCFG"; | |
104 | case 2: | |
105 | return "NXM"; | |
106 | default: | |
107 | return "unknown"; | |
108 | } | |
109 | } | |
110 | ||
111 | static const u32 interleave_list[] = { | |
112 | 0x84, 0x8c, 0x94, 0x9c, 0xa4, | |
113 | 0xac, 0xb4, 0xbc, 0xc4, 0xcc, | |
114 | }; | |
115 | #define MAX_INTERLEAVE ARRAY_SIZE(interleave_list) | |
116 | ||
117 | #define SAD_PKG0(reg) GET_BITFIELD(reg, 0, 2) | |
118 | #define SAD_PKG1(reg) GET_BITFIELD(reg, 3, 5) | |
119 | #define SAD_PKG2(reg) GET_BITFIELD(reg, 8, 10) | |
120 | #define SAD_PKG3(reg) GET_BITFIELD(reg, 11, 13) | |
121 | #define SAD_PKG4(reg) GET_BITFIELD(reg, 16, 18) | |
122 | #define SAD_PKG5(reg) GET_BITFIELD(reg, 19, 21) | |
123 | #define SAD_PKG6(reg) GET_BITFIELD(reg, 24, 26) | |
124 | #define SAD_PKG7(reg) GET_BITFIELD(reg, 27, 29) | |
125 | ||
126 | static inline int sad_pkg(u32 reg, int interleave) | |
127 | { | |
128 | switch (interleave) { | |
129 | case 0: | |
130 | return SAD_PKG0(reg); | |
131 | case 1: | |
132 | return SAD_PKG1(reg); | |
133 | case 2: | |
134 | return SAD_PKG2(reg); | |
135 | case 3: | |
136 | return SAD_PKG3(reg); | |
137 | case 4: | |
138 | return SAD_PKG4(reg); | |
139 | case 5: | |
140 | return SAD_PKG5(reg); | |
141 | case 6: | |
142 | return SAD_PKG6(reg); | |
143 | case 7: | |
144 | return SAD_PKG7(reg); | |
145 | default: | |
146 | return -EINVAL; | |
147 | } | |
148 | } | |
149 | ||
150 | /* Devices 12 Function 7 */ | |
151 | ||
152 | #define TOLM 0x80 | |
153 | #define TOHM 0x84 | |
154 | ||
155 | #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff) | |
156 | #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff) | |
157 | ||
158 | /* Device 13 Function 6 */ | |
159 | ||
160 | #define SAD_TARGET 0xf0 | |
161 | ||
162 | #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11) | |
163 | ||
164 | #define SAD_CONTROL 0xf4 | |
165 | ||
166 | #define NODE_ID(reg) GET_BITFIELD(reg, 0, 2) | |
167 | ||
168 | /* Device 14 function 0 */ | |
169 | ||
170 | static const u32 tad_dram_rule[] = { | |
171 | 0x40, 0x44, 0x48, 0x4c, | |
172 | 0x50, 0x54, 0x58, 0x5c, | |
173 | 0x60, 0x64, 0x68, 0x6c, | |
174 | }; | |
175 | #define MAX_TAD ARRAY_SIZE(tad_dram_rule) | |
176 | ||
177 | #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff) | |
178 | #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11) | |
179 | #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9) | |
180 | #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7) | |
181 | #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5) | |
182 | #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3) | |
183 | #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1) | |
184 | ||
185 | /* Device 15, function 0 */ | |
186 | ||
187 | #define MCMTR 0x7c | |
188 | ||
189 | #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2) | |
190 | #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1) | |
191 | #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0) | |
192 | ||
193 | /* Device 15, function 1 */ | |
194 | ||
195 | #define RASENABLES 0xac | |
196 | #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0) | |
197 | ||
198 | /* Device 15, functions 2-5 */ | |
199 | ||
200 | static const int mtr_regs[] = { | |
201 | 0x80, 0x84, 0x88, | |
202 | }; | |
203 | ||
204 | #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19) | |
205 | #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14) | |
206 | #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13) | |
207 | #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4) | |
208 | #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1) | |
209 | ||
210 | static const u32 tad_ch_nilv_offset[] = { | |
211 | 0x90, 0x94, 0x98, 0x9c, | |
212 | 0xa0, 0xa4, 0xa8, 0xac, | |
213 | 0xb0, 0xb4, 0xb8, 0xbc, | |
214 | }; | |
215 | #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29) | |
216 | #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26) | |
217 | ||
218 | static const u32 rir_way_limit[] = { | |
219 | 0x108, 0x10c, 0x110, 0x114, 0x118, | |
220 | }; | |
221 | #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit) | |
222 | ||
223 | #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31) | |
224 | #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29) | |
225 | #define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff) | |
226 | ||
227 | #define MAX_RIR_WAY 8 | |
228 | ||
229 | static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = { | |
230 | { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c }, | |
231 | { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c }, | |
232 | { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c }, | |
233 | { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c }, | |
234 | { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc }, | |
235 | }; | |
236 | ||
237 | #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19) | |
238 | #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14) | |
239 | ||
240 | /* Device 16, functions 2-7 */ | |
241 | ||
242 | /* | |
243 | * FIXME: Implement the error count reads directly | |
244 | */ | |
245 | ||
246 | static const u32 correrrcnt[] = { | |
247 | 0x104, 0x108, 0x10c, 0x110, | |
248 | }; | |
249 | ||
250 | #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31) | |
251 | #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30) | |
252 | #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15) | |
253 | #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14) | |
254 | ||
255 | static const u32 correrrthrsld[] = { | |
256 | 0x11c, 0x120, 0x124, 0x128, | |
257 | }; | |
258 | ||
259 | #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30) | |
260 | #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14) | |
261 | ||
262 | ||
263 | /* Device 17, function 0 */ | |
264 | ||
265 | #define RANK_CFG_A 0x0328 | |
266 | ||
267 | #define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11) | |
268 | ||
269 | /* | |
270 | * sbridge structs | |
271 | */ | |
272 | ||
273 | #define NUM_CHANNELS 4 | |
274 | #define MAX_DIMMS 3 /* Max DIMMS per channel */ | |
275 | ||
276 | struct sbridge_info { | |
277 | u32 mcmtr; | |
278 | }; | |
279 | ||
280 | struct sbridge_channel { | |
281 | u32 ranks; | |
282 | u32 dimms; | |
283 | }; | |
284 | ||
285 | struct pci_id_descr { | |
286 | int dev; | |
287 | int func; | |
288 | int dev_id; | |
289 | int optional; | |
290 | }; | |
291 | ||
292 | struct pci_id_table { | |
293 | const struct pci_id_descr *descr; | |
294 | int n_devs; | |
295 | }; | |
296 | ||
297 | struct sbridge_dev { | |
298 | struct list_head list; | |
299 | u8 bus, mc; | |
300 | u8 node_id, source_id; | |
301 | struct pci_dev **pdev; | |
302 | int n_devs; | |
303 | struct mem_ctl_info *mci; | |
304 | }; | |
305 | ||
306 | struct sbridge_pvt { | |
307 | struct pci_dev *pci_ta, *pci_ddrio, *pci_ras; | |
308 | struct pci_dev *pci_sad0, *pci_sad1, *pci_ha0; | |
309 | struct pci_dev *pci_br; | |
310 | struct pci_dev *pci_tad[NUM_CHANNELS]; | |
311 | ||
312 | struct sbridge_dev *sbridge_dev; | |
313 | ||
314 | struct sbridge_info info; | |
315 | struct sbridge_channel channel[NUM_CHANNELS]; | |
316 | ||
eebf11a0 MCC |
317 | /* Memory type detection */ |
318 | bool is_mirrored, is_lockstep, is_close_pg; | |
319 | ||
eebf11a0 MCC |
320 | /* Fifo double buffers */ |
321 | struct mce mce_entry[MCE_LOG_LEN]; | |
322 | struct mce mce_outentry[MCE_LOG_LEN]; | |
323 | ||
324 | /* Fifo in/out counters */ | |
325 | unsigned mce_in, mce_out; | |
326 | ||
327 | /* Count indicator to show errors not got */ | |
328 | unsigned mce_overrun; | |
329 | ||
330 | /* Memory description */ | |
331 | u64 tolm, tohm; | |
332 | }; | |
333 | ||
334 | #define PCI_DESCR(device, function, device_id) \ | |
335 | .dev = (device), \ | |
336 | .func = (function), \ | |
337 | .dev_id = (device_id) | |
338 | ||
339 | static const struct pci_id_descr pci_dev_descr_sbridge[] = { | |
340 | /* Processor Home Agent */ | |
341 | { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0) }, | |
342 | ||
343 | /* Memory controller */ | |
344 | { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA) }, | |
345 | { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS) }, | |
346 | { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0) }, | |
347 | { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1) }, | |
348 | { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2) }, | |
349 | { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3) }, | |
350 | { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO) }, | |
351 | ||
352 | /* System Address Decoder */ | |
353 | { PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0) }, | |
354 | { PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1) }, | |
355 | ||
356 | /* Broadcast Registers */ | |
357 | { PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR) }, | |
358 | }; | |
359 | ||
360 | #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) } | |
361 | static const struct pci_id_table pci_dev_descr_sbridge_table[] = { | |
362 | PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge), | |
363 | {0,} /* 0 terminated list. */ | |
364 | }; | |
365 | ||
366 | /* | |
367 | * pci_device_id table for which devices we are looking for | |
368 | */ | |
36c46f31 | 369 | static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = { |
eebf11a0 MCC |
370 | {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)}, |
371 | {0,} /* 0 terminated list. */ | |
372 | }; | |
373 | ||
374 | ||
375 | /**************************************************************************** | |
15ed103a | 376 | Ancillary status routines |
eebf11a0 MCC |
377 | ****************************************************************************/ |
378 | ||
379 | static inline int numrank(u32 mtr) | |
380 | { | |
381 | int ranks = (1 << RANK_CNT_BITS(mtr)); | |
382 | ||
383 | if (ranks > 4) { | |
384 | debugf0("Invalid number of ranks: %d (max = 4) raw value = %x (%04x)", | |
385 | ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr); | |
386 | return -EINVAL; | |
387 | } | |
388 | ||
389 | return ranks; | |
390 | } | |
391 | ||
392 | static inline int numrow(u32 mtr) | |
393 | { | |
394 | int rows = (RANK_WIDTH_BITS(mtr) + 12); | |
395 | ||
396 | if (rows < 13 || rows > 18) { | |
397 | debugf0("Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)", | |
398 | rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr); | |
399 | return -EINVAL; | |
400 | } | |
401 | ||
402 | return 1 << rows; | |
403 | } | |
404 | ||
405 | static inline int numcol(u32 mtr) | |
406 | { | |
407 | int cols = (COL_WIDTH_BITS(mtr) + 10); | |
408 | ||
409 | if (cols > 12) { | |
410 | debugf0("Invalid number of cols: %d (max = 4) raw value = %x (%04x)", | |
411 | cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr); | |
412 | return -EINVAL; | |
413 | } | |
414 | ||
415 | return 1 << cols; | |
416 | } | |
417 | ||
418 | static struct sbridge_dev *get_sbridge_dev(u8 bus) | |
419 | { | |
420 | struct sbridge_dev *sbridge_dev; | |
421 | ||
422 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { | |
423 | if (sbridge_dev->bus == bus) | |
424 | return sbridge_dev; | |
425 | } | |
426 | ||
427 | return NULL; | |
428 | } | |
429 | ||
430 | static struct sbridge_dev *alloc_sbridge_dev(u8 bus, | |
431 | const struct pci_id_table *table) | |
432 | { | |
433 | struct sbridge_dev *sbridge_dev; | |
434 | ||
435 | sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL); | |
436 | if (!sbridge_dev) | |
437 | return NULL; | |
438 | ||
439 | sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs, | |
440 | GFP_KERNEL); | |
441 | if (!sbridge_dev->pdev) { | |
442 | kfree(sbridge_dev); | |
443 | return NULL; | |
444 | } | |
445 | ||
446 | sbridge_dev->bus = bus; | |
447 | sbridge_dev->n_devs = table->n_devs; | |
448 | list_add_tail(&sbridge_dev->list, &sbridge_edac_list); | |
449 | ||
450 | return sbridge_dev; | |
451 | } | |
452 | ||
453 | static void free_sbridge_dev(struct sbridge_dev *sbridge_dev) | |
454 | { | |
455 | list_del(&sbridge_dev->list); | |
456 | kfree(sbridge_dev->pdev); | |
457 | kfree(sbridge_dev); | |
458 | } | |
459 | ||
460 | /**************************************************************************** | |
461 | Memory check routines | |
462 | ****************************************************************************/ | |
463 | static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot, | |
464 | unsigned func) | |
465 | { | |
466 | struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus); | |
467 | int i; | |
468 | ||
469 | if (!sbridge_dev) | |
470 | return NULL; | |
471 | ||
472 | for (i = 0; i < sbridge_dev->n_devs; i++) { | |
473 | if (!sbridge_dev->pdev[i]) | |
474 | continue; | |
475 | ||
476 | if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot && | |
477 | PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) { | |
478 | debugf1("Associated %02x.%02x.%d with %p\n", | |
479 | bus, slot, func, sbridge_dev->pdev[i]); | |
480 | return sbridge_dev->pdev[i]; | |
481 | } | |
482 | } | |
483 | ||
484 | return NULL; | |
485 | } | |
486 | ||
487 | /** | |
c36e3e77 | 488 | * check_if_ecc_is_active() - Checks if ECC is active |
eebf11a0 | 489 | * bus: Device bus |
eebf11a0 | 490 | */ |
c36e3e77 | 491 | static int check_if_ecc_is_active(const u8 bus) |
eebf11a0 MCC |
492 | { |
493 | struct pci_dev *pdev = NULL; | |
eebf11a0 MCC |
494 | u32 mcmtr; |
495 | ||
eebf11a0 MCC |
496 | pdev = get_pdev_slot_func(bus, 15, 0); |
497 | if (!pdev) { | |
498 | sbridge_printk(KERN_ERR, "Couldn't find PCI device " | |
499 | "%2x.%02d.%d!!!\n", | |
500 | bus, 15, 0); | |
501 | return -ENODEV; | |
502 | } | |
503 | ||
504 | pci_read_config_dword(pdev, MCMTR, &mcmtr); | |
505 | if (!IS_ECC_ENABLED(mcmtr)) { | |
506 | sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n"); | |
507 | return -ENODEV; | |
508 | } | |
eebf11a0 MCC |
509 | return 0; |
510 | } | |
511 | ||
084a4fcc | 512 | static int get_dimm_config(struct mem_ctl_info *mci) |
eebf11a0 MCC |
513 | { |
514 | struct sbridge_pvt *pvt = mci->pvt_info; | |
c36e3e77 | 515 | struct dimm_info *dimm; |
eebf11a0 | 516 | int i, j, banks, ranks, rows, cols, size, npages; |
eebf11a0 MCC |
517 | u32 reg; |
518 | enum edac_type mode; | |
c6e13b52 | 519 | enum mem_type mtype; |
eebf11a0 MCC |
520 | |
521 | pci_read_config_dword(pvt->pci_br, SAD_TARGET, ®); | |
522 | pvt->sbridge_dev->source_id = SOURCE_ID(reg); | |
523 | ||
524 | pci_read_config_dword(pvt->pci_br, SAD_CONTROL, ®); | |
525 | pvt->sbridge_dev->node_id = NODE_ID(reg); | |
526 | debugf0("mc#%d: Node ID: %d, source ID: %d\n", | |
527 | pvt->sbridge_dev->mc, | |
528 | pvt->sbridge_dev->node_id, | |
529 | pvt->sbridge_dev->source_id); | |
530 | ||
531 | pci_read_config_dword(pvt->pci_ras, RASENABLES, ®); | |
532 | if (IS_MIRROR_ENABLED(reg)) { | |
533 | debugf0("Memory mirror is enabled\n"); | |
534 | pvt->is_mirrored = true; | |
535 | } else { | |
536 | debugf0("Memory mirror is disabled\n"); | |
537 | pvt->is_mirrored = false; | |
538 | } | |
539 | ||
540 | pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr); | |
541 | if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) { | |
542 | debugf0("Lockstep is enabled\n"); | |
543 | mode = EDAC_S8ECD8ED; | |
544 | pvt->is_lockstep = true; | |
545 | } else { | |
546 | debugf0("Lockstep is disabled\n"); | |
547 | mode = EDAC_S4ECD4ED; | |
548 | pvt->is_lockstep = false; | |
549 | } | |
550 | if (IS_CLOSE_PG(pvt->info.mcmtr)) { | |
551 | debugf0("address map is on closed page mode\n"); | |
552 | pvt->is_close_pg = true; | |
553 | } else { | |
554 | debugf0("address map is on open page mode\n"); | |
555 | pvt->is_close_pg = false; | |
556 | } | |
557 | ||
558 | pci_read_config_dword(pvt->pci_ta, RANK_CFG_A, ®); | |
559 | if (IS_RDIMM_ENABLED(reg)) { | |
560 | /* FIXME: Can also be LRDIMM */ | |
561 | debugf0("Memory is registered\n"); | |
c6e13b52 | 562 | mtype = MEM_RDDR3; |
eebf11a0 MCC |
563 | } else { |
564 | debugf0("Memory is unregistered\n"); | |
c6e13b52 | 565 | mtype = MEM_DDR3; |
eebf11a0 MCC |
566 | } |
567 | ||
568 | /* On all supported DDR3 DIMM types, there are 8 banks available */ | |
569 | banks = 8; | |
570 | ||
571 | for (i = 0; i < NUM_CHANNELS; i++) { | |
572 | u32 mtr; | |
573 | ||
574 | for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) { | |
c36e3e77 MCC |
575 | dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers, |
576 | i, j, 0); | |
eebf11a0 MCC |
577 | pci_read_config_dword(pvt->pci_tad[i], |
578 | mtr_regs[j], &mtr); | |
579 | debugf4("Channel #%d MTR%d = %x\n", i, j, mtr); | |
580 | if (IS_DIMM_PRESENT(mtr)) { | |
581 | pvt->channel[i].dimms++; | |
582 | ||
583 | ranks = numrank(mtr); | |
584 | rows = numrow(mtr); | |
585 | cols = numcol(mtr); | |
586 | ||
587 | /* DDR3 has 8 I/O banks */ | |
588 | size = (rows * cols * banks * ranks) >> (20 - 3); | |
589 | npages = MiB_TO_PAGES(size); | |
590 | ||
591 | debugf0("mc#%d: channel %d, dimm %d, %d Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n", | |
592 | pvt->sbridge_dev->mc, i, j, | |
593 | size, npages, | |
594 | banks, ranks, rows, cols); | |
eebf11a0 | 595 | |
a895bf8b | 596 | dimm->nr_pages = npages; |
084a4fcc MCC |
597 | dimm->grain = 32; |
598 | dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4; | |
599 | dimm->mtype = mtype; | |
600 | dimm->edac_mode = mode; | |
601 | snprintf(dimm->label, sizeof(dimm->label), | |
eebf11a0 MCC |
602 | "CPU_SrcID#%u_Channel#%u_DIMM#%u", |
603 | pvt->sbridge_dev->source_id, i, j); | |
eebf11a0 MCC |
604 | } |
605 | } | |
606 | } | |
607 | ||
608 | return 0; | |
609 | } | |
610 | ||
611 | static void get_memory_layout(const struct mem_ctl_info *mci) | |
612 | { | |
613 | struct sbridge_pvt *pvt = mci->pvt_info; | |
614 | int i, j, k, n_sads, n_tads, sad_interl; | |
615 | u32 reg; | |
616 | u64 limit, prv = 0; | |
617 | u64 tmp_mb; | |
5b889e37 | 618 | u32 mb, kb; |
eebf11a0 MCC |
619 | u32 rir_way; |
620 | ||
621 | /* | |
622 | * Step 1) Get TOLM/TOHM ranges | |
623 | */ | |
624 | ||
625 | /* Address range is 32:28 */ | |
626 | pci_read_config_dword(pvt->pci_sad1, TOLM, | |
627 | ®); | |
628 | pvt->tolm = GET_TOLM(reg); | |
629 | tmp_mb = (1 + pvt->tolm) >> 20; | |
630 | ||
5b889e37 MCC |
631 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
632 | debugf0("TOLM: %u.%03u GB (0x%016Lx)\n", | |
633 | mb, kb, (u64)pvt->tolm); | |
eebf11a0 MCC |
634 | |
635 | /* Address range is already 45:25 */ | |
636 | pci_read_config_dword(pvt->pci_sad1, TOHM, | |
637 | ®); | |
638 | pvt->tohm = GET_TOHM(reg); | |
639 | tmp_mb = (1 + pvt->tohm) >> 20; | |
640 | ||
5b889e37 MCC |
641 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
642 | debugf0("TOHM: %u.%03u GB (0x%016Lx)", | |
643 | mb, kb, (u64)pvt->tohm); | |
eebf11a0 MCC |
644 | |
645 | /* | |
646 | * Step 2) Get SAD range and SAD Interleave list | |
647 | * TAD registers contain the interleave wayness. However, it | |
648 | * seems simpler to just discover it indirectly, with the | |
649 | * algorithm bellow. | |
650 | */ | |
651 | prv = 0; | |
652 | for (n_sads = 0; n_sads < MAX_SAD; n_sads++) { | |
653 | /* SAD_LIMIT Address range is 45:26 */ | |
654 | pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads], | |
655 | ®); | |
656 | limit = SAD_LIMIT(reg); | |
657 | ||
658 | if (!DRAM_RULE_ENABLE(reg)) | |
659 | continue; | |
660 | ||
661 | if (limit <= prv) | |
662 | break; | |
663 | ||
664 | tmp_mb = (limit + 1) >> 20; | |
5b889e37 MCC |
665 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
666 | debugf0("SAD#%d %s up to %u.%03u GB (0x%016Lx) %s reg=0x%08x\n", | |
eebf11a0 MCC |
667 | n_sads, |
668 | get_dram_attr(reg), | |
5b889e37 | 669 | mb, kb, |
eebf11a0 MCC |
670 | ((u64)tmp_mb) << 20L, |
671 | INTERLEAVE_MODE(reg) ? "Interleave: 8:6" : "Interleave: [8:6]XOR[18:16]", | |
672 | reg); | |
673 | prv = limit; | |
674 | ||
675 | pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads], | |
676 | ®); | |
677 | sad_interl = sad_pkg(reg, 0); | |
678 | for (j = 0; j < 8; j++) { | |
679 | if (j > 0 && sad_interl == sad_pkg(reg, j)) | |
680 | break; | |
681 | ||
682 | debugf0("SAD#%d, interleave #%d: %d\n", | |
683 | n_sads, j, sad_pkg(reg, j)); | |
684 | } | |
685 | } | |
686 | ||
687 | /* | |
688 | * Step 3) Get TAD range | |
689 | */ | |
690 | prv = 0; | |
691 | for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { | |
692 | pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads], | |
693 | ®); | |
694 | limit = TAD_LIMIT(reg); | |
695 | if (limit <= prv) | |
696 | break; | |
697 | tmp_mb = (limit + 1) >> 20; | |
698 | ||
5b889e37 MCC |
699 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
700 | debugf0("TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n", | |
701 | n_tads, mb, kb, | |
eebf11a0 MCC |
702 | ((u64)tmp_mb) << 20L, |
703 | (u32)TAD_SOCK(reg), | |
704 | (u32)TAD_CH(reg), | |
705 | (u32)TAD_TGT0(reg), | |
706 | (u32)TAD_TGT1(reg), | |
707 | (u32)TAD_TGT2(reg), | |
708 | (u32)TAD_TGT3(reg), | |
709 | reg); | |
7fae0db4 | 710 | prv = limit; |
eebf11a0 MCC |
711 | } |
712 | ||
713 | /* | |
714 | * Step 4) Get TAD offsets, per each channel | |
715 | */ | |
716 | for (i = 0; i < NUM_CHANNELS; i++) { | |
717 | if (!pvt->channel[i].dimms) | |
718 | continue; | |
719 | for (j = 0; j < n_tads; j++) { | |
720 | pci_read_config_dword(pvt->pci_tad[i], | |
721 | tad_ch_nilv_offset[j], | |
722 | ®); | |
723 | tmp_mb = TAD_OFFSET(reg) >> 20; | |
5b889e37 MCC |
724 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
725 | debugf0("TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n", | |
eebf11a0 | 726 | i, j, |
5b889e37 | 727 | mb, kb, |
eebf11a0 MCC |
728 | ((u64)tmp_mb) << 20L, |
729 | reg); | |
730 | } | |
731 | } | |
732 | ||
733 | /* | |
734 | * Step 6) Get RIR Wayness/Limit, per each channel | |
735 | */ | |
736 | for (i = 0; i < NUM_CHANNELS; i++) { | |
737 | if (!pvt->channel[i].dimms) | |
738 | continue; | |
739 | for (j = 0; j < MAX_RIR_RANGES; j++) { | |
740 | pci_read_config_dword(pvt->pci_tad[i], | |
741 | rir_way_limit[j], | |
742 | ®); | |
743 | ||
744 | if (!IS_RIR_VALID(reg)) | |
745 | continue; | |
746 | ||
747 | tmp_mb = RIR_LIMIT(reg) >> 20; | |
748 | rir_way = 1 << RIR_WAY(reg); | |
5b889e37 MCC |
749 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
750 | debugf0("CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n", | |
eebf11a0 | 751 | i, j, |
5b889e37 | 752 | mb, kb, |
eebf11a0 MCC |
753 | ((u64)tmp_mb) << 20L, |
754 | rir_way, | |
755 | reg); | |
756 | ||
757 | for (k = 0; k < rir_way; k++) { | |
758 | pci_read_config_dword(pvt->pci_tad[i], | |
759 | rir_offset[j][k], | |
760 | ®); | |
761 | tmp_mb = RIR_OFFSET(reg) << 6; | |
762 | ||
5b889e37 MCC |
763 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
764 | debugf0("CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n", | |
eebf11a0 | 765 | i, j, k, |
5b889e37 | 766 | mb, kb, |
eebf11a0 MCC |
767 | ((u64)tmp_mb) << 20L, |
768 | (u32)RIR_RNK_TGT(reg), | |
769 | reg); | |
770 | } | |
771 | } | |
772 | } | |
773 | } | |
774 | ||
775 | struct mem_ctl_info *get_mci_for_node_id(u8 node_id) | |
776 | { | |
777 | struct sbridge_dev *sbridge_dev; | |
778 | ||
779 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { | |
780 | if (sbridge_dev->node_id == node_id) | |
781 | return sbridge_dev->mci; | |
782 | } | |
783 | return NULL; | |
784 | } | |
785 | ||
786 | static int get_memory_error_data(struct mem_ctl_info *mci, | |
787 | u64 addr, | |
788 | u8 *socket, | |
789 | long *channel_mask, | |
790 | u8 *rank, | |
e17a2f42 | 791 | char **area_type, char *msg) |
eebf11a0 MCC |
792 | { |
793 | struct mem_ctl_info *new_mci; | |
794 | struct sbridge_pvt *pvt = mci->pvt_info; | |
eebf11a0 MCC |
795 | int n_rir, n_sads, n_tads, sad_way, sck_xch; |
796 | int sad_interl, idx, base_ch; | |
797 | int interleave_mode; | |
798 | unsigned sad_interleave[MAX_INTERLEAVE]; | |
799 | u32 reg; | |
800 | u8 ch_way,sck_way; | |
801 | u32 tad_offset; | |
802 | u32 rir_way; | |
5b889e37 | 803 | u32 mb, kb; |
eebf11a0 MCC |
804 | u64 ch_addr, offset, limit, prv = 0; |
805 | ||
806 | ||
807 | /* | |
808 | * Step 0) Check if the address is at special memory ranges | |
809 | * The check bellow is probably enough to fill all cases where | |
810 | * the error is not inside a memory, except for the legacy | |
811 | * range (e. g. VGA addresses). It is unlikely, however, that the | |
812 | * memory controller would generate an error on that range. | |
813 | */ | |
5b889e37 | 814 | if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) { |
eebf11a0 | 815 | sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr); |
eebf11a0 MCC |
816 | return -EINVAL; |
817 | } | |
818 | if (addr >= (u64)pvt->tohm) { | |
819 | sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr); | |
eebf11a0 MCC |
820 | return -EINVAL; |
821 | } | |
822 | ||
823 | /* | |
824 | * Step 1) Get socket | |
825 | */ | |
826 | for (n_sads = 0; n_sads < MAX_SAD; n_sads++) { | |
827 | pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads], | |
828 | ®); | |
829 | ||
830 | if (!DRAM_RULE_ENABLE(reg)) | |
831 | continue; | |
832 | ||
833 | limit = SAD_LIMIT(reg); | |
834 | if (limit <= prv) { | |
835 | sprintf(msg, "Can't discover the memory socket"); | |
eebf11a0 MCC |
836 | return -EINVAL; |
837 | } | |
838 | if (addr <= limit) | |
839 | break; | |
840 | prv = limit; | |
841 | } | |
842 | if (n_sads == MAX_SAD) { | |
843 | sprintf(msg, "Can't discover the memory socket"); | |
eebf11a0 MCC |
844 | return -EINVAL; |
845 | } | |
e17a2f42 | 846 | *area_type = get_dram_attr(reg); |
eebf11a0 MCC |
847 | interleave_mode = INTERLEAVE_MODE(reg); |
848 | ||
849 | pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads], | |
850 | ®); | |
851 | sad_interl = sad_pkg(reg, 0); | |
852 | for (sad_way = 0; sad_way < 8; sad_way++) { | |
853 | if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way)) | |
854 | break; | |
855 | sad_interleave[sad_way] = sad_pkg(reg, sad_way); | |
856 | debugf0("SAD interleave #%d: %d\n", | |
857 | sad_way, sad_interleave[sad_way]); | |
858 | } | |
859 | debugf0("mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n", | |
860 | pvt->sbridge_dev->mc, | |
861 | n_sads, | |
862 | addr, | |
863 | limit, | |
864 | sad_way + 7, | |
ad9c40b7 | 865 | interleave_mode ? "" : "XOR[18:16]"); |
eebf11a0 MCC |
866 | if (interleave_mode) |
867 | idx = ((addr >> 6) ^ (addr >> 16)) & 7; | |
868 | else | |
869 | idx = (addr >> 6) & 7; | |
870 | switch (sad_way) { | |
871 | case 1: | |
872 | idx = 0; | |
873 | break; | |
874 | case 2: | |
875 | idx = idx & 1; | |
876 | break; | |
877 | case 4: | |
878 | idx = idx & 3; | |
879 | break; | |
880 | case 8: | |
881 | break; | |
882 | default: | |
883 | sprintf(msg, "Can't discover socket interleave"); | |
eebf11a0 MCC |
884 | return -EINVAL; |
885 | } | |
886 | *socket = sad_interleave[idx]; | |
887 | debugf0("SAD interleave index: %d (wayness %d) = CPU socket %d\n", | |
888 | idx, sad_way, *socket); | |
889 | ||
890 | /* | |
891 | * Move to the proper node structure, in order to access the | |
892 | * right PCI registers | |
893 | */ | |
894 | new_mci = get_mci_for_node_id(*socket); | |
895 | if (!new_mci) { | |
896 | sprintf(msg, "Struct for socket #%u wasn't initialized", | |
897 | *socket); | |
eebf11a0 MCC |
898 | return -EINVAL; |
899 | } | |
900 | mci = new_mci; | |
901 | pvt = mci->pvt_info; | |
902 | ||
903 | /* | |
904 | * Step 2) Get memory channel | |
905 | */ | |
906 | prv = 0; | |
907 | for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { | |
908 | pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads], | |
909 | ®); | |
910 | limit = TAD_LIMIT(reg); | |
911 | if (limit <= prv) { | |
912 | sprintf(msg, "Can't discover the memory channel"); | |
eebf11a0 MCC |
913 | return -EINVAL; |
914 | } | |
915 | if (addr <= limit) | |
916 | break; | |
917 | prv = limit; | |
918 | } | |
919 | ch_way = TAD_CH(reg) + 1; | |
920 | sck_way = TAD_SOCK(reg) + 1; | |
921 | /* | |
922 | * FIXME: Is it right to always use channel 0 for offsets? | |
923 | */ | |
924 | pci_read_config_dword(pvt->pci_tad[0], | |
925 | tad_ch_nilv_offset[n_tads], | |
926 | &tad_offset); | |
927 | ||
928 | if (ch_way == 3) | |
929 | idx = addr >> 6; | |
930 | else | |
931 | idx = addr >> (6 + sck_way); | |
932 | idx = idx % ch_way; | |
933 | ||
934 | /* | |
935 | * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ??? | |
936 | */ | |
937 | switch (idx) { | |
938 | case 0: | |
939 | base_ch = TAD_TGT0(reg); | |
940 | break; | |
941 | case 1: | |
942 | base_ch = TAD_TGT1(reg); | |
943 | break; | |
944 | case 2: | |
945 | base_ch = TAD_TGT2(reg); | |
946 | break; | |
947 | case 3: | |
948 | base_ch = TAD_TGT3(reg); | |
949 | break; | |
950 | default: | |
951 | sprintf(msg, "Can't discover the TAD target"); | |
eebf11a0 MCC |
952 | return -EINVAL; |
953 | } | |
954 | *channel_mask = 1 << base_ch; | |
955 | ||
956 | if (pvt->is_mirrored) { | |
957 | *channel_mask |= 1 << ((base_ch + 2) % 4); | |
958 | switch(ch_way) { | |
959 | case 2: | |
960 | case 4: | |
961 | sck_xch = 1 << sck_way * (ch_way >> 1); | |
962 | break; | |
963 | default: | |
964 | sprintf(msg, "Invalid mirror set. Can't decode addr"); | |
eebf11a0 MCC |
965 | return -EINVAL; |
966 | } | |
967 | } else | |
968 | sck_xch = (1 << sck_way) * ch_way; | |
969 | ||
970 | if (pvt->is_lockstep) | |
971 | *channel_mask |= 1 << ((base_ch + 1) % 4); | |
972 | ||
973 | offset = TAD_OFFSET(tad_offset); | |
974 | ||
975 | debugf0("TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n", | |
976 | n_tads, | |
977 | addr, | |
978 | limit, | |
979 | (u32)TAD_SOCK(reg), | |
980 | ch_way, | |
981 | offset, | |
982 | idx, | |
983 | base_ch, | |
984 | *channel_mask); | |
985 | ||
986 | /* Calculate channel address */ | |
987 | /* Remove the TAD offset */ | |
988 | ||
989 | if (offset > addr) { | |
990 | sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!", | |
991 | offset, addr); | |
eebf11a0 MCC |
992 | return -EINVAL; |
993 | } | |
994 | addr -= offset; | |
995 | /* Store the low bits [0:6] of the addr */ | |
996 | ch_addr = addr & 0x7f; | |
997 | /* Remove socket wayness and remove 6 bits */ | |
998 | addr >>= 6; | |
5b889e37 | 999 | addr = div_u64(addr, sck_xch); |
eebf11a0 MCC |
1000 | #if 0 |
1001 | /* Divide by channel way */ | |
1002 | addr = addr / ch_way; | |
1003 | #endif | |
1004 | /* Recover the last 6 bits */ | |
1005 | ch_addr |= addr << 6; | |
1006 | ||
1007 | /* | |
1008 | * Step 3) Decode rank | |
1009 | */ | |
1010 | for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) { | |
1011 | pci_read_config_dword(pvt->pci_tad[base_ch], | |
1012 | rir_way_limit[n_rir], | |
1013 | ®); | |
1014 | ||
1015 | if (!IS_RIR_VALID(reg)) | |
1016 | continue; | |
1017 | ||
1018 | limit = RIR_LIMIT(reg); | |
5b889e37 MCC |
1019 | mb = div_u64_rem(limit >> 20, 1000, &kb); |
1020 | debugf0("RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n", | |
eebf11a0 | 1021 | n_rir, |
5b889e37 | 1022 | mb, kb, |
eebf11a0 MCC |
1023 | limit, |
1024 | 1 << RIR_WAY(reg)); | |
1025 | if (ch_addr <= limit) | |
1026 | break; | |
1027 | } | |
1028 | if (n_rir == MAX_RIR_RANGES) { | |
1029 | sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx", | |
1030 | ch_addr); | |
eebf11a0 MCC |
1031 | return -EINVAL; |
1032 | } | |
1033 | rir_way = RIR_WAY(reg); | |
1034 | if (pvt->is_close_pg) | |
1035 | idx = (ch_addr >> 6); | |
1036 | else | |
1037 | idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */ | |
1038 | idx %= 1 << rir_way; | |
1039 | ||
1040 | pci_read_config_dword(pvt->pci_tad[base_ch], | |
1041 | rir_offset[n_rir][idx], | |
1042 | ®); | |
1043 | *rank = RIR_RNK_TGT(reg); | |
1044 | ||
1045 | debugf0("RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n", | |
1046 | n_rir, | |
1047 | ch_addr, | |
1048 | limit, | |
1049 | rir_way, | |
1050 | idx); | |
1051 | ||
1052 | return 0; | |
1053 | } | |
1054 | ||
1055 | /**************************************************************************** | |
1056 | Device initialization routines: put/get, init/exit | |
1057 | ****************************************************************************/ | |
1058 | ||
1059 | /* | |
1060 | * sbridge_put_all_devices 'put' all the devices that we have | |
1061 | * reserved via 'get' | |
1062 | */ | |
1063 | static void sbridge_put_devices(struct sbridge_dev *sbridge_dev) | |
1064 | { | |
1065 | int i; | |
1066 | ||
1067 | debugf0(__FILE__ ": %s()\n", __func__); | |
1068 | for (i = 0; i < sbridge_dev->n_devs; i++) { | |
1069 | struct pci_dev *pdev = sbridge_dev->pdev[i]; | |
1070 | if (!pdev) | |
1071 | continue; | |
1072 | debugf0("Removing dev %02x:%02x.%d\n", | |
1073 | pdev->bus->number, | |
1074 | PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); | |
1075 | pci_dev_put(pdev); | |
1076 | } | |
1077 | } | |
1078 | ||
1079 | static void sbridge_put_all_devices(void) | |
1080 | { | |
1081 | struct sbridge_dev *sbridge_dev, *tmp; | |
1082 | ||
1083 | list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) { | |
1084 | sbridge_put_devices(sbridge_dev); | |
1085 | free_sbridge_dev(sbridge_dev); | |
1086 | } | |
1087 | } | |
1088 | ||
1089 | /* | |
1090 | * sbridge_get_all_devices Find and perform 'get' operation on the MCH's | |
1091 | * device/functions we want to reference for this driver | |
1092 | * | |
1093 | * Need to 'get' device 16 func 1 and func 2 | |
1094 | */ | |
1095 | static int sbridge_get_onedevice(struct pci_dev **prev, | |
1096 | u8 *num_mc, | |
1097 | const struct pci_id_table *table, | |
1098 | const unsigned devno) | |
1099 | { | |
1100 | struct sbridge_dev *sbridge_dev; | |
1101 | const struct pci_id_descr *dev_descr = &table->descr[devno]; | |
1102 | ||
1103 | struct pci_dev *pdev = NULL; | |
1104 | u8 bus = 0; | |
1105 | ||
1106 | sbridge_printk(KERN_INFO, | |
1107 | "Seeking for: dev %02x.%d PCI ID %04x:%04x\n", | |
1108 | dev_descr->dev, dev_descr->func, | |
1109 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | |
1110 | ||
1111 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | |
1112 | dev_descr->dev_id, *prev); | |
1113 | ||
1114 | if (!pdev) { | |
1115 | if (*prev) { | |
1116 | *prev = pdev; | |
1117 | return 0; | |
1118 | } | |
1119 | ||
1120 | if (dev_descr->optional) | |
1121 | return 0; | |
1122 | ||
1123 | if (devno == 0) | |
1124 | return -ENODEV; | |
1125 | ||
1126 | sbridge_printk(KERN_INFO, | |
1127 | "Device not found: dev %02x.%d PCI ID %04x:%04x\n", | |
1128 | dev_descr->dev, dev_descr->func, | |
1129 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | |
1130 | ||
1131 | /* End of list, leave */ | |
1132 | return -ENODEV; | |
1133 | } | |
1134 | bus = pdev->bus->number; | |
1135 | ||
1136 | sbridge_dev = get_sbridge_dev(bus); | |
1137 | if (!sbridge_dev) { | |
1138 | sbridge_dev = alloc_sbridge_dev(bus, table); | |
1139 | if (!sbridge_dev) { | |
1140 | pci_dev_put(pdev); | |
1141 | return -ENOMEM; | |
1142 | } | |
1143 | (*num_mc)++; | |
1144 | } | |
1145 | ||
1146 | if (sbridge_dev->pdev[devno]) { | |
1147 | sbridge_printk(KERN_ERR, | |
1148 | "Duplicated device for " | |
1149 | "dev %02x:%d.%d PCI ID %04x:%04x\n", | |
1150 | bus, dev_descr->dev, dev_descr->func, | |
1151 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | |
1152 | pci_dev_put(pdev); | |
1153 | return -ENODEV; | |
1154 | } | |
1155 | ||
1156 | sbridge_dev->pdev[devno] = pdev; | |
1157 | ||
1158 | /* Sanity check */ | |
1159 | if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev || | |
1160 | PCI_FUNC(pdev->devfn) != dev_descr->func)) { | |
1161 | sbridge_printk(KERN_ERR, | |
1162 | "Device PCI ID %04x:%04x " | |
1163 | "has dev %02x:%d.%d instead of dev %02x:%02x.%d\n", | |
1164 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id, | |
1165 | bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), | |
1166 | bus, dev_descr->dev, dev_descr->func); | |
1167 | return -ENODEV; | |
1168 | } | |
1169 | ||
1170 | /* Be sure that the device is enabled */ | |
1171 | if (unlikely(pci_enable_device(pdev) < 0)) { | |
1172 | sbridge_printk(KERN_ERR, | |
1173 | "Couldn't enable " | |
1174 | "dev %02x:%d.%d PCI ID %04x:%04x\n", | |
1175 | bus, dev_descr->dev, dev_descr->func, | |
1176 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | |
1177 | return -ENODEV; | |
1178 | } | |
1179 | ||
1180 | debugf0("Detected dev %02x:%d.%d PCI ID %04x:%04x\n", | |
1181 | bus, dev_descr->dev, | |
1182 | dev_descr->func, | |
1183 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | |
1184 | ||
1185 | /* | |
1186 | * As stated on drivers/pci/search.c, the reference count for | |
1187 | * @from is always decremented if it is not %NULL. So, as we need | |
1188 | * to get all devices up to null, we need to do a get for the device | |
1189 | */ | |
1190 | pci_dev_get(pdev); | |
1191 | ||
1192 | *prev = pdev; | |
1193 | ||
1194 | return 0; | |
1195 | } | |
1196 | ||
1197 | static int sbridge_get_all_devices(u8 *num_mc) | |
1198 | { | |
1199 | int i, rc; | |
1200 | struct pci_dev *pdev = NULL; | |
1201 | const struct pci_id_table *table = pci_dev_descr_sbridge_table; | |
1202 | ||
1203 | while (table && table->descr) { | |
1204 | for (i = 0; i < table->n_devs; i++) { | |
1205 | pdev = NULL; | |
1206 | do { | |
1207 | rc = sbridge_get_onedevice(&pdev, num_mc, | |
1208 | table, i); | |
1209 | if (rc < 0) { | |
1210 | if (i == 0) { | |
1211 | i = table->n_devs; | |
1212 | break; | |
1213 | } | |
1214 | sbridge_put_all_devices(); | |
1215 | return -ENODEV; | |
1216 | } | |
1217 | } while (pdev); | |
1218 | } | |
1219 | table++; | |
1220 | } | |
1221 | ||
1222 | return 0; | |
1223 | } | |
1224 | ||
1225 | static int mci_bind_devs(struct mem_ctl_info *mci, | |
1226 | struct sbridge_dev *sbridge_dev) | |
1227 | { | |
1228 | struct sbridge_pvt *pvt = mci->pvt_info; | |
1229 | struct pci_dev *pdev; | |
1230 | int i, func, slot; | |
1231 | ||
1232 | for (i = 0; i < sbridge_dev->n_devs; i++) { | |
1233 | pdev = sbridge_dev->pdev[i]; | |
1234 | if (!pdev) | |
1235 | continue; | |
1236 | slot = PCI_SLOT(pdev->devfn); | |
1237 | func = PCI_FUNC(pdev->devfn); | |
1238 | switch (slot) { | |
1239 | case 12: | |
1240 | switch (func) { | |
1241 | case 6: | |
1242 | pvt->pci_sad0 = pdev; | |
1243 | break; | |
1244 | case 7: | |
1245 | pvt->pci_sad1 = pdev; | |
1246 | break; | |
1247 | default: | |
1248 | goto error; | |
1249 | } | |
1250 | break; | |
1251 | case 13: | |
1252 | switch (func) { | |
1253 | case 6: | |
1254 | pvt->pci_br = pdev; | |
1255 | break; | |
1256 | default: | |
1257 | goto error; | |
1258 | } | |
1259 | break; | |
1260 | case 14: | |
1261 | switch (func) { | |
1262 | case 0: | |
1263 | pvt->pci_ha0 = pdev; | |
1264 | break; | |
1265 | default: | |
1266 | goto error; | |
1267 | } | |
1268 | break; | |
1269 | case 15: | |
1270 | switch (func) { | |
1271 | case 0: | |
1272 | pvt->pci_ta = pdev; | |
1273 | break; | |
1274 | case 1: | |
1275 | pvt->pci_ras = pdev; | |
1276 | break; | |
1277 | case 2: | |
1278 | case 3: | |
1279 | case 4: | |
1280 | case 5: | |
1281 | pvt->pci_tad[func - 2] = pdev; | |
1282 | break; | |
1283 | default: | |
1284 | goto error; | |
1285 | } | |
1286 | break; | |
1287 | case 17: | |
1288 | switch (func) { | |
1289 | case 0: | |
1290 | pvt->pci_ddrio = pdev; | |
1291 | break; | |
1292 | default: | |
1293 | goto error; | |
1294 | } | |
1295 | break; | |
1296 | default: | |
1297 | goto error; | |
1298 | } | |
1299 | ||
1300 | debugf0("Associated PCI %02x.%02d.%d with dev = %p\n", | |
1301 | sbridge_dev->bus, | |
1302 | PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), | |
1303 | pdev); | |
1304 | } | |
1305 | ||
1306 | /* Check if everything were registered */ | |
1307 | if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 || | |
1308 | !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta || | |
1309 | !pvt->pci_ddrio) | |
1310 | goto enodev; | |
1311 | ||
1312 | for (i = 0; i < NUM_CHANNELS; i++) { | |
1313 | if (!pvt->pci_tad[i]) | |
1314 | goto enodev; | |
1315 | } | |
1316 | return 0; | |
1317 | ||
1318 | enodev: | |
1319 | sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); | |
1320 | return -ENODEV; | |
1321 | ||
1322 | error: | |
1323 | sbridge_printk(KERN_ERR, "Device %d, function %d " | |
1324 | "is out of the expected range\n", | |
1325 | slot, func); | |
1326 | return -EINVAL; | |
1327 | } | |
1328 | ||
1329 | /**************************************************************************** | |
1330 | Error check routines | |
1331 | ****************************************************************************/ | |
1332 | ||
1333 | /* | |
1334 | * While Sandy Bridge has error count registers, SMI BIOS read values from | |
1335 | * and resets the counters. So, they are not reliable for the OS to read | |
1336 | * from them. So, we have no option but to just trust on whatever MCE is | |
1337 | * telling us about the errors. | |
1338 | */ | |
1339 | static void sbridge_mce_output_error(struct mem_ctl_info *mci, | |
1340 | const struct mce *m) | |
1341 | { | |
1342 | struct mem_ctl_info *new_mci; | |
1343 | struct sbridge_pvt *pvt = mci->pvt_info; | |
c36e3e77 | 1344 | enum hw_event_mc_err_type tp_event; |
e17a2f42 | 1345 | char *type, *optype, msg[256]; |
eebf11a0 MCC |
1346 | bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); |
1347 | bool overflow = GET_BITFIELD(m->status, 62, 62); | |
1348 | bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); | |
1349 | bool recoverable = GET_BITFIELD(m->status, 56, 56); | |
1350 | u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); | |
1351 | u32 mscod = GET_BITFIELD(m->status, 16, 31); | |
1352 | u32 errcode = GET_BITFIELD(m->status, 0, 15); | |
1353 | u32 channel = GET_BITFIELD(m->status, 0, 3); | |
1354 | u32 optypenum = GET_BITFIELD(m->status, 4, 6); | |
1355 | long channel_mask, first_channel; | |
1356 | u8 rank, socket; | |
c36e3e77 | 1357 | int rc, dimm; |
e17a2f42 | 1358 | char *area_type = NULL; |
eebf11a0 | 1359 | |
c36e3e77 MCC |
1360 | if (uncorrected_error) { |
1361 | if (ripv) { | |
1362 | type = "FATAL"; | |
1363 | tp_event = HW_EVENT_ERR_FATAL; | |
1364 | } else { | |
1365 | type = "NON_FATAL"; | |
1366 | tp_event = HW_EVENT_ERR_UNCORRECTED; | |
1367 | } | |
1368 | } else { | |
1369 | type = "CORRECTED"; | |
1370 | tp_event = HW_EVENT_ERR_CORRECTED; | |
1371 | } | |
eebf11a0 MCC |
1372 | |
1373 | /* | |
15ed103a | 1374 | * According with Table 15-9 of the Intel Architecture spec vol 3A, |
eebf11a0 MCC |
1375 | * memory errors should fit in this mask: |
1376 | * 000f 0000 1mmm cccc (binary) | |
1377 | * where: | |
1378 | * f = Correction Report Filtering Bit. If 1, subsequent errors | |
1379 | * won't be shown | |
1380 | * mmm = error type | |
1381 | * cccc = channel | |
1382 | * If the mask doesn't match, report an error to the parsing logic | |
1383 | */ | |
1384 | if (! ((errcode & 0xef80) == 0x80)) { | |
1385 | optype = "Can't parse: it is not a mem"; | |
1386 | } else { | |
1387 | switch (optypenum) { | |
1388 | case 0: | |
c36e3e77 | 1389 | optype = "generic undef request error"; |
eebf11a0 MCC |
1390 | break; |
1391 | case 1: | |
c36e3e77 | 1392 | optype = "memory read error"; |
eebf11a0 MCC |
1393 | break; |
1394 | case 2: | |
c36e3e77 | 1395 | optype = "memory write error"; |
eebf11a0 MCC |
1396 | break; |
1397 | case 3: | |
c36e3e77 | 1398 | optype = "addr/cmd error"; |
eebf11a0 MCC |
1399 | break; |
1400 | case 4: | |
c36e3e77 | 1401 | optype = "memory scrubbing error"; |
eebf11a0 MCC |
1402 | break; |
1403 | default: | |
1404 | optype = "reserved"; | |
1405 | break; | |
1406 | } | |
1407 | } | |
1408 | ||
1409 | rc = get_memory_error_data(mci, m->addr, &socket, | |
e17a2f42 | 1410 | &channel_mask, &rank, &area_type, msg); |
eebf11a0 | 1411 | if (rc < 0) |
c36e3e77 | 1412 | goto err_parsing; |
eebf11a0 MCC |
1413 | new_mci = get_mci_for_node_id(socket); |
1414 | if (!new_mci) { | |
c36e3e77 MCC |
1415 | strcpy(msg, "Error: socket got corrupted!"); |
1416 | goto err_parsing; | |
eebf11a0 MCC |
1417 | } |
1418 | mci = new_mci; | |
1419 | pvt = mci->pvt_info; | |
1420 | ||
1421 | first_channel = find_first_bit(&channel_mask, NUM_CHANNELS); | |
1422 | ||
1423 | if (rank < 4) | |
1424 | dimm = 0; | |
1425 | else if (rank < 8) | |
1426 | dimm = 1; | |
1427 | else | |
1428 | dimm = 2; | |
1429 | ||
eebf11a0 MCC |
1430 | |
1431 | /* | |
e17a2f42 MCC |
1432 | * FIXME: On some memory configurations (mirror, lockstep), the |
1433 | * Memory Controller can't point the error to a single DIMM. The | |
1434 | * EDAC core should be handling the channel mask, in order to point | |
1435 | * to the group of dimm's where the error may be happening. | |
eebf11a0 | 1436 | */ |
c36e3e77 | 1437 | snprintf(msg, sizeof(msg), |
e17a2f42 MCC |
1438 | "count:%d%s%s area:%s err_code:%04x:%04x socket:%d channel_mask:%ld rank:%d", |
1439 | core_err_cnt, | |
1440 | overflow ? " OVERFLOW" : "", | |
1441 | (uncorrected_error && recoverable) ? " recoverable" : "", | |
1442 | area_type, | |
1443 | mscod, errcode, | |
1444 | socket, | |
1445 | channel_mask, | |
1446 | rank); | |
eebf11a0 MCC |
1447 | |
1448 | debugf0("%s", msg); | |
1449 | ||
c36e3e77 MCC |
1450 | /* FIXME: need support for channel mask */ |
1451 | ||
eebf11a0 | 1452 | /* Call the helper to output message */ |
c36e3e77 MCC |
1453 | edac_mc_handle_error(tp_event, mci, |
1454 | m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0, | |
1455 | channel, dimm, -1, | |
1456 | optype, msg, m); | |
1457 | return; | |
1458 | err_parsing: | |
1459 | edac_mc_handle_error(tp_event, mci, 0, 0, 0, | |
1460 | -1, -1, -1, | |
1461 | msg, "", m); | |
eebf11a0 | 1462 | |
eebf11a0 MCC |
1463 | } |
1464 | ||
1465 | /* | |
1466 | * sbridge_check_error Retrieve and process errors reported by the | |
1467 | * hardware. Called by the Core module. | |
1468 | */ | |
1469 | static void sbridge_check_error(struct mem_ctl_info *mci) | |
1470 | { | |
1471 | struct sbridge_pvt *pvt = mci->pvt_info; | |
1472 | int i; | |
1473 | unsigned count = 0; | |
1474 | struct mce *m; | |
1475 | ||
1476 | /* | |
1477 | * MCE first step: Copy all mce errors into a temporary buffer | |
1478 | * We use a double buffering here, to reduce the risk of | |
1479 | * loosing an error. | |
1480 | */ | |
1481 | smp_rmb(); | |
1482 | count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in) | |
1483 | % MCE_LOG_LEN; | |
1484 | if (!count) | |
1485 | return; | |
1486 | ||
1487 | m = pvt->mce_outentry; | |
1488 | if (pvt->mce_in + count > MCE_LOG_LEN) { | |
1489 | unsigned l = MCE_LOG_LEN - pvt->mce_in; | |
1490 | ||
1491 | memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l); | |
1492 | smp_wmb(); | |
1493 | pvt->mce_in = 0; | |
1494 | count -= l; | |
1495 | m += l; | |
1496 | } | |
1497 | memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count); | |
1498 | smp_wmb(); | |
1499 | pvt->mce_in += count; | |
1500 | ||
1501 | smp_rmb(); | |
1502 | if (pvt->mce_overrun) { | |
1503 | sbridge_printk(KERN_ERR, "Lost %d memory errors\n", | |
1504 | pvt->mce_overrun); | |
1505 | smp_wmb(); | |
1506 | pvt->mce_overrun = 0; | |
1507 | } | |
1508 | ||
1509 | /* | |
1510 | * MCE second step: parse errors and display | |
1511 | */ | |
1512 | for (i = 0; i < count; i++) | |
1513 | sbridge_mce_output_error(mci, &pvt->mce_outentry[i]); | |
1514 | } | |
1515 | ||
1516 | /* | |
1517 | * sbridge_mce_check_error Replicates mcelog routine to get errors | |
1518 | * This routine simply queues mcelog errors, and | |
1519 | * return. The error itself should be handled later | |
1520 | * by sbridge_check_error. | |
1521 | * WARNING: As this routine should be called at NMI time, extra care should | |
1522 | * be taken to avoid deadlocks, and to be as fast as possible. | |
1523 | */ | |
3d78c9af MCC |
1524 | static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val, |
1525 | void *data) | |
eebf11a0 | 1526 | { |
3d78c9af MCC |
1527 | struct mce *mce = (struct mce *)data; |
1528 | struct mem_ctl_info *mci; | |
1529 | struct sbridge_pvt *pvt; | |
1530 | ||
1531 | mci = get_mci_for_node_id(mce->socketid); | |
1532 | if (!mci) | |
1533 | return NOTIFY_BAD; | |
1534 | pvt = mci->pvt_info; | |
eebf11a0 MCC |
1535 | |
1536 | /* | |
1537 | * Just let mcelog handle it if the error is | |
1538 | * outside the memory controller. A memory error | |
1539 | * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. | |
1540 | * bit 12 has an special meaning. | |
1541 | */ | |
1542 | if ((mce->status & 0xefff) >> 7 != 1) | |
3d78c9af | 1543 | return NOTIFY_DONE; |
eebf11a0 MCC |
1544 | |
1545 | printk("sbridge: HANDLING MCE MEMORY ERROR\n"); | |
1546 | ||
1547 | printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n", | |
1548 | mce->extcpu, mce->mcgstatus, mce->bank, mce->status); | |
1549 | printk("TSC %llx ", mce->tsc); | |
1550 | printk("ADDR %llx ", mce->addr); | |
1551 | printk("MISC %llx ", mce->misc); | |
1552 | ||
1553 | printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n", | |
1554 | mce->cpuvendor, mce->cpuid, mce->time, | |
1555 | mce->socketid, mce->apicid); | |
1556 | ||
eebf11a0 MCC |
1557 | /* Only handle if it is the right mc controller */ |
1558 | if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc) | |
3d78c9af | 1559 | return NOTIFY_DONE; |
eebf11a0 MCC |
1560 | |
1561 | smp_rmb(); | |
1562 | if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) { | |
1563 | smp_wmb(); | |
1564 | pvt->mce_overrun++; | |
3d78c9af | 1565 | return NOTIFY_DONE; |
eebf11a0 MCC |
1566 | } |
1567 | ||
1568 | /* Copy memory error at the ringbuffer */ | |
1569 | memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce)); | |
1570 | smp_wmb(); | |
1571 | pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN; | |
1572 | ||
1573 | /* Handle fatal errors immediately */ | |
1574 | if (mce->mcgstatus & 1) | |
1575 | sbridge_check_error(mci); | |
1576 | ||
1577 | /* Advice mcelog that the error were handled */ | |
3d78c9af | 1578 | return NOTIFY_STOP; |
eebf11a0 MCC |
1579 | } |
1580 | ||
3d78c9af MCC |
1581 | static struct notifier_block sbridge_mce_dec = { |
1582 | .notifier_call = sbridge_mce_check_error, | |
1583 | }; | |
1584 | ||
eebf11a0 MCC |
1585 | /**************************************************************************** |
1586 | EDAC register/unregister logic | |
1587 | ****************************************************************************/ | |
1588 | ||
1589 | static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev) | |
1590 | { | |
1591 | struct mem_ctl_info *mci = sbridge_dev->mci; | |
1592 | struct sbridge_pvt *pvt; | |
1593 | ||
1594 | if (unlikely(!mci || !mci->pvt_info)) { | |
1595 | debugf0("MC: " __FILE__ ": %s(): dev = %p\n", | |
1596 | __func__, &sbridge_dev->pdev[0]->dev); | |
1597 | ||
1598 | sbridge_printk(KERN_ERR, "Couldn't find mci handler\n"); | |
1599 | return; | |
1600 | } | |
1601 | ||
1602 | pvt = mci->pvt_info; | |
1603 | ||
1604 | debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n", | |
1605 | __func__, mci, &sbridge_dev->pdev[0]->dev); | |
1606 | ||
eebf11a0 MCC |
1607 | /* Remove MC sysfs nodes */ |
1608 | edac_mc_del_mc(mci->dev); | |
1609 | ||
1610 | debugf1("%s: free mci struct\n", mci->ctl_name); | |
1611 | kfree(mci->ctl_name); | |
1612 | edac_mc_free(mci); | |
1613 | sbridge_dev->mci = NULL; | |
1614 | } | |
1615 | ||
1616 | static int sbridge_register_mci(struct sbridge_dev *sbridge_dev) | |
1617 | { | |
1618 | struct mem_ctl_info *mci; | |
c36e3e77 | 1619 | struct edac_mc_layer layers[2]; |
eebf11a0 | 1620 | struct sbridge_pvt *pvt; |
c36e3e77 | 1621 | int rc; |
eebf11a0 MCC |
1622 | |
1623 | /* Check the number of active and not disabled channels */ | |
c36e3e77 | 1624 | rc = check_if_ecc_is_active(sbridge_dev->bus); |
eebf11a0 MCC |
1625 | if (unlikely(rc < 0)) |
1626 | return rc; | |
1627 | ||
1628 | /* allocate a new MC control structure */ | |
c36e3e77 MCC |
1629 | layers[0].type = EDAC_MC_LAYER_CHANNEL; |
1630 | layers[0].size = NUM_CHANNELS; | |
1631 | layers[0].is_virt_csrow = false; | |
1632 | layers[1].type = EDAC_MC_LAYER_SLOT; | |
1633 | layers[1].size = MAX_DIMMS; | |
1634 | layers[1].is_virt_csrow = true; | |
ca0907b9 | 1635 | mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers, |
c36e3e77 MCC |
1636 | sizeof(*pvt)); |
1637 | ||
eebf11a0 MCC |
1638 | if (unlikely(!mci)) |
1639 | return -ENOMEM; | |
1640 | ||
1641 | debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n", | |
1642 | __func__, mci, &sbridge_dev->pdev[0]->dev); | |
1643 | ||
1644 | pvt = mci->pvt_info; | |
1645 | memset(pvt, 0, sizeof(*pvt)); | |
1646 | ||
1647 | /* Associate sbridge_dev and mci for future usage */ | |
1648 | pvt->sbridge_dev = sbridge_dev; | |
1649 | sbridge_dev->mci = mci; | |
1650 | ||
1651 | mci->mtype_cap = MEM_FLAG_DDR3; | |
1652 | mci->edac_ctl_cap = EDAC_FLAG_NONE; | |
1653 | mci->edac_cap = EDAC_FLAG_NONE; | |
1654 | mci->mod_name = "sbridge_edac.c"; | |
1655 | mci->mod_ver = SBRIDGE_REVISION; | |
1656 | mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx); | |
1657 | mci->dev_name = pci_name(sbridge_dev->pdev[0]); | |
1658 | mci->ctl_page_to_phys = NULL; | |
1659 | ||
1660 | /* Set the function pointer to an actual operation function */ | |
1661 | mci->edac_check = sbridge_check_error; | |
1662 | ||
1663 | /* Store pci devices at mci for faster access */ | |
1664 | rc = mci_bind_devs(mci, sbridge_dev); | |
1665 | if (unlikely(rc < 0)) | |
1666 | goto fail0; | |
1667 | ||
1668 | /* Get dimm basic config and the memory layout */ | |
1669 | get_dimm_config(mci); | |
1670 | get_memory_layout(mci); | |
1671 | ||
1672 | /* record ptr to the generic device */ | |
1673 | mci->dev = &sbridge_dev->pdev[0]->dev; | |
1674 | ||
1675 | /* add this new MC control structure to EDAC's list of MCs */ | |
1676 | if (unlikely(edac_mc_add_mc(mci))) { | |
1677 | debugf0("MC: " __FILE__ | |
1678 | ": %s(): failed edac_mc_add_mc()\n", __func__); | |
1679 | rc = -EINVAL; | |
1680 | goto fail0; | |
1681 | } | |
1682 | ||
eebf11a0 | 1683 | return 0; |
eebf11a0 MCC |
1684 | |
1685 | fail0: | |
1686 | kfree(mci->ctl_name); | |
1687 | edac_mc_free(mci); | |
1688 | sbridge_dev->mci = NULL; | |
1689 | return rc; | |
1690 | } | |
1691 | ||
1692 | /* | |
1693 | * sbridge_probe Probe for ONE instance of device to see if it is | |
1694 | * present. | |
1695 | * return: | |
1696 | * 0 for FOUND a device | |
1697 | * < 0 for error code | |
1698 | */ | |
1699 | ||
1700 | static int __devinit sbridge_probe(struct pci_dev *pdev, | |
1701 | const struct pci_device_id *id) | |
1702 | { | |
1703 | int rc; | |
1704 | u8 mc, num_mc = 0; | |
1705 | struct sbridge_dev *sbridge_dev; | |
1706 | ||
1707 | /* get the pci devices we want to reserve for our use */ | |
1708 | mutex_lock(&sbridge_edac_lock); | |
1709 | ||
1710 | /* | |
1711 | * All memory controllers are allocated at the first pass. | |
1712 | */ | |
1713 | if (unlikely(probed >= 1)) { | |
1714 | mutex_unlock(&sbridge_edac_lock); | |
1715 | return -ENODEV; | |
1716 | } | |
1717 | probed++; | |
1718 | ||
1719 | rc = sbridge_get_all_devices(&num_mc); | |
1720 | if (unlikely(rc < 0)) | |
1721 | goto fail0; | |
1722 | mc = 0; | |
1723 | ||
1724 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { | |
1725 | debugf0("Registering MC#%d (%d of %d)\n", mc, mc + 1, num_mc); | |
1726 | sbridge_dev->mc = mc++; | |
1727 | rc = sbridge_register_mci(sbridge_dev); | |
1728 | if (unlikely(rc < 0)) | |
1729 | goto fail1; | |
1730 | } | |
1731 | ||
1732 | sbridge_printk(KERN_INFO, "Driver loaded.\n"); | |
1733 | ||
1734 | mutex_unlock(&sbridge_edac_lock); | |
1735 | return 0; | |
1736 | ||
1737 | fail1: | |
1738 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) | |
1739 | sbridge_unregister_mci(sbridge_dev); | |
1740 | ||
1741 | sbridge_put_all_devices(); | |
1742 | fail0: | |
1743 | mutex_unlock(&sbridge_edac_lock); | |
1744 | return rc; | |
1745 | } | |
1746 | ||
1747 | /* | |
1748 | * sbridge_remove destructor for one instance of device | |
1749 | * | |
1750 | */ | |
1751 | static void __devexit sbridge_remove(struct pci_dev *pdev) | |
1752 | { | |
1753 | struct sbridge_dev *sbridge_dev; | |
1754 | ||
1755 | debugf0(__FILE__ ": %s()\n", __func__); | |
1756 | ||
1757 | /* | |
1758 | * we have a trouble here: pdev value for removal will be wrong, since | |
1759 | * it will point to the X58 register used to detect that the machine | |
1760 | * is a Nehalem or upper design. However, due to the way several PCI | |
1761 | * devices are grouped together to provide MC functionality, we need | |
1762 | * to use a different method for releasing the devices | |
1763 | */ | |
1764 | ||
1765 | mutex_lock(&sbridge_edac_lock); | |
1766 | ||
1767 | if (unlikely(!probed)) { | |
1768 | mutex_unlock(&sbridge_edac_lock); | |
1769 | return; | |
1770 | } | |
1771 | ||
1772 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) | |
1773 | sbridge_unregister_mci(sbridge_dev); | |
1774 | ||
1775 | /* Release PCI resources */ | |
1776 | sbridge_put_all_devices(); | |
1777 | ||
1778 | probed--; | |
1779 | ||
1780 | mutex_unlock(&sbridge_edac_lock); | |
1781 | } | |
1782 | ||
1783 | MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl); | |
1784 | ||
1785 | /* | |
1786 | * sbridge_driver pci_driver structure for this module | |
1787 | * | |
1788 | */ | |
1789 | static struct pci_driver sbridge_driver = { | |
1790 | .name = "sbridge_edac", | |
1791 | .probe = sbridge_probe, | |
1792 | .remove = __devexit_p(sbridge_remove), | |
1793 | .id_table = sbridge_pci_tbl, | |
1794 | }; | |
1795 | ||
1796 | /* | |
1797 | * sbridge_init Module entry function | |
1798 | * Try to initialize this module for its devices | |
1799 | */ | |
1800 | static int __init sbridge_init(void) | |
1801 | { | |
1802 | int pci_rc; | |
1803 | ||
1804 | debugf2("MC: " __FILE__ ": %s()\n", __func__); | |
1805 | ||
1806 | /* Ensure that the OPSTATE is set correctly for POLL or NMI */ | |
1807 | opstate_init(); | |
1808 | ||
1809 | pci_rc = pci_register_driver(&sbridge_driver); | |
1810 | ||
e35fca47 CG |
1811 | if (pci_rc >= 0) { |
1812 | mce_register_decode_chain(&sbridge_mce_dec); | |
eebf11a0 | 1813 | return 0; |
e35fca47 | 1814 | } |
eebf11a0 MCC |
1815 | |
1816 | sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n", | |
1817 | pci_rc); | |
1818 | ||
1819 | return pci_rc; | |
1820 | } | |
1821 | ||
1822 | /* | |
1823 | * sbridge_exit() Module exit function | |
1824 | * Unregister the driver | |
1825 | */ | |
1826 | static void __exit sbridge_exit(void) | |
1827 | { | |
1828 | debugf2("MC: " __FILE__ ": %s()\n", __func__); | |
1829 | pci_unregister_driver(&sbridge_driver); | |
e35fca47 | 1830 | mce_unregister_decode_chain(&sbridge_mce_dec); |
eebf11a0 MCC |
1831 | } |
1832 | ||
1833 | module_init(sbridge_init); | |
1834 | module_exit(sbridge_exit); | |
1835 | ||
1836 | module_param(edac_op_state, int, 0444); | |
1837 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); | |
1838 | ||
1839 | MODULE_LICENSE("GPL"); | |
1840 | MODULE_AUTHOR("Mauro Carvalho Chehab <[email protected]>"); | |
1841 | MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); | |
1842 | MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - " | |
1843 | SBRIDGE_REVISION); |