]>
Commit | Line | Data |
---|---|---|
eebf11a0 MCC |
1 | /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module |
2 | * | |
3 | * This driver supports the memory controllers found on the Intel | |
4 | * processor family Sandy Bridge. | |
5 | * | |
6 | * This file may be distributed under the terms of the | |
7 | * GNU General Public License version 2 only. | |
8 | * | |
9 | * Copyright (c) 2011 by: | |
10 | * Mauro Carvalho Chehab <[email protected]> | |
11 | */ | |
12 | ||
13 | #include <linux/module.h> | |
14 | #include <linux/init.h> | |
15 | #include <linux/pci.h> | |
16 | #include <linux/pci_ids.h> | |
17 | #include <linux/slab.h> | |
18 | #include <linux/delay.h> | |
19 | #include <linux/edac.h> | |
20 | #include <linux/mmzone.h> | |
eebf11a0 MCC |
21 | #include <linux/smp.h> |
22 | #include <linux/bitmap.h> | |
5b889e37 | 23 | #include <linux/math64.h> |
eebf11a0 | 24 | #include <asm/processor.h> |
3d78c9af | 25 | #include <asm/mce.h> |
eebf11a0 MCC |
26 | |
27 | #include "edac_core.h" | |
28 | ||
29 | /* Static vars */ | |
30 | static LIST_HEAD(sbridge_edac_list); | |
31 | static DEFINE_MUTEX(sbridge_edac_lock); | |
32 | static int probed; | |
33 | ||
34 | /* | |
35 | * Alter this version for the module when modifications are made | |
36 | */ | |
37 | #define SBRIDGE_REVISION " Ver: 1.0.0 " | |
38 | #define EDAC_MOD_STR "sbridge_edac" | |
39 | ||
40 | /* | |
41 | * Debug macros | |
42 | */ | |
43 | #define sbridge_printk(level, fmt, arg...) \ | |
44 | edac_printk(level, "sbridge", fmt, ##arg) | |
45 | ||
46 | #define sbridge_mc_printk(mci, level, fmt, arg...) \ | |
47 | edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg) | |
48 | ||
49 | /* | |
50 | * Get a bit field at register value <v>, from bit <lo> to bit <hi> | |
51 | */ | |
52 | #define GET_BITFIELD(v, lo, hi) \ | |
53 | (((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo)) | |
54 | ||
55 | /* | |
56 | * sbridge Memory Controller Registers | |
57 | */ | |
58 | ||
59 | /* | |
60 | * FIXME: For now, let's order by device function, as it makes | |
61 | * easier for driver's development proccess. This table should be | |
62 | * moved to pci_id.h when submitted upstream | |
63 | */ | |
64 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */ | |
65 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */ | |
66 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */ | |
67 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */ | |
68 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */ | |
69 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */ | |
70 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */ | |
71 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */ | |
72 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */ | |
73 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */ | |
74 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */ | |
75 | ||
76 | /* | |
77 | * Currently, unused, but will be needed in the future | |
78 | * implementations, as they hold the error counters | |
79 | */ | |
80 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */ | |
81 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */ | |
82 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */ | |
83 | #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */ | |
84 | ||
85 | /* Devices 12 Function 6, Offsets 0x80 to 0xcc */ | |
86 | static const u32 dram_rule[] = { | |
87 | 0x80, 0x88, 0x90, 0x98, 0xa0, | |
88 | 0xa8, 0xb0, 0xb8, 0xc0, 0xc8, | |
89 | }; | |
90 | #define MAX_SAD ARRAY_SIZE(dram_rule) | |
91 | ||
92 | #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff) | |
93 | #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3) | |
94 | #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1) | |
95 | #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0) | |
96 | ||
97 | static char *get_dram_attr(u32 reg) | |
98 | { | |
99 | switch(DRAM_ATTR(reg)) { | |
100 | case 0: | |
101 | return "DRAM"; | |
102 | case 1: | |
103 | return "MMCFG"; | |
104 | case 2: | |
105 | return "NXM"; | |
106 | default: | |
107 | return "unknown"; | |
108 | } | |
109 | } | |
110 | ||
111 | static const u32 interleave_list[] = { | |
112 | 0x84, 0x8c, 0x94, 0x9c, 0xa4, | |
113 | 0xac, 0xb4, 0xbc, 0xc4, 0xcc, | |
114 | }; | |
115 | #define MAX_INTERLEAVE ARRAY_SIZE(interleave_list) | |
116 | ||
117 | #define SAD_PKG0(reg) GET_BITFIELD(reg, 0, 2) | |
118 | #define SAD_PKG1(reg) GET_BITFIELD(reg, 3, 5) | |
119 | #define SAD_PKG2(reg) GET_BITFIELD(reg, 8, 10) | |
120 | #define SAD_PKG3(reg) GET_BITFIELD(reg, 11, 13) | |
121 | #define SAD_PKG4(reg) GET_BITFIELD(reg, 16, 18) | |
122 | #define SAD_PKG5(reg) GET_BITFIELD(reg, 19, 21) | |
123 | #define SAD_PKG6(reg) GET_BITFIELD(reg, 24, 26) | |
124 | #define SAD_PKG7(reg) GET_BITFIELD(reg, 27, 29) | |
125 | ||
126 | static inline int sad_pkg(u32 reg, int interleave) | |
127 | { | |
128 | switch (interleave) { | |
129 | case 0: | |
130 | return SAD_PKG0(reg); | |
131 | case 1: | |
132 | return SAD_PKG1(reg); | |
133 | case 2: | |
134 | return SAD_PKG2(reg); | |
135 | case 3: | |
136 | return SAD_PKG3(reg); | |
137 | case 4: | |
138 | return SAD_PKG4(reg); | |
139 | case 5: | |
140 | return SAD_PKG5(reg); | |
141 | case 6: | |
142 | return SAD_PKG6(reg); | |
143 | case 7: | |
144 | return SAD_PKG7(reg); | |
145 | default: | |
146 | return -EINVAL; | |
147 | } | |
148 | } | |
149 | ||
150 | /* Devices 12 Function 7 */ | |
151 | ||
152 | #define TOLM 0x80 | |
153 | #define TOHM 0x84 | |
154 | ||
155 | #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff) | |
156 | #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff) | |
157 | ||
158 | /* Device 13 Function 6 */ | |
159 | ||
160 | #define SAD_TARGET 0xf0 | |
161 | ||
162 | #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11) | |
163 | ||
164 | #define SAD_CONTROL 0xf4 | |
165 | ||
166 | #define NODE_ID(reg) GET_BITFIELD(reg, 0, 2) | |
167 | ||
168 | /* Device 14 function 0 */ | |
169 | ||
170 | static const u32 tad_dram_rule[] = { | |
171 | 0x40, 0x44, 0x48, 0x4c, | |
172 | 0x50, 0x54, 0x58, 0x5c, | |
173 | 0x60, 0x64, 0x68, 0x6c, | |
174 | }; | |
175 | #define MAX_TAD ARRAY_SIZE(tad_dram_rule) | |
176 | ||
177 | #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff) | |
178 | #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11) | |
179 | #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9) | |
180 | #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7) | |
181 | #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5) | |
182 | #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3) | |
183 | #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1) | |
184 | ||
185 | /* Device 15, function 0 */ | |
186 | ||
187 | #define MCMTR 0x7c | |
188 | ||
189 | #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2) | |
190 | #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1) | |
191 | #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0) | |
192 | ||
193 | /* Device 15, function 1 */ | |
194 | ||
195 | #define RASENABLES 0xac | |
196 | #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0) | |
197 | ||
198 | /* Device 15, functions 2-5 */ | |
199 | ||
200 | static const int mtr_regs[] = { | |
201 | 0x80, 0x84, 0x88, | |
202 | }; | |
203 | ||
204 | #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19) | |
205 | #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14) | |
206 | #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13) | |
207 | #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4) | |
208 | #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1) | |
209 | ||
210 | static const u32 tad_ch_nilv_offset[] = { | |
211 | 0x90, 0x94, 0x98, 0x9c, | |
212 | 0xa0, 0xa4, 0xa8, 0xac, | |
213 | 0xb0, 0xb4, 0xb8, 0xbc, | |
214 | }; | |
215 | #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29) | |
216 | #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26) | |
217 | ||
218 | static const u32 rir_way_limit[] = { | |
219 | 0x108, 0x10c, 0x110, 0x114, 0x118, | |
220 | }; | |
221 | #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit) | |
222 | ||
223 | #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31) | |
224 | #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29) | |
225 | #define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff) | |
226 | ||
227 | #define MAX_RIR_WAY 8 | |
228 | ||
229 | static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = { | |
230 | { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c }, | |
231 | { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c }, | |
232 | { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c }, | |
233 | { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c }, | |
234 | { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc }, | |
235 | }; | |
236 | ||
237 | #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19) | |
238 | #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14) | |
239 | ||
240 | /* Device 16, functions 2-7 */ | |
241 | ||
242 | /* | |
243 | * FIXME: Implement the error count reads directly | |
244 | */ | |
245 | ||
246 | static const u32 correrrcnt[] = { | |
247 | 0x104, 0x108, 0x10c, 0x110, | |
248 | }; | |
249 | ||
250 | #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31) | |
251 | #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30) | |
252 | #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15) | |
253 | #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14) | |
254 | ||
255 | static const u32 correrrthrsld[] = { | |
256 | 0x11c, 0x120, 0x124, 0x128, | |
257 | }; | |
258 | ||
259 | #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30) | |
260 | #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14) | |
261 | ||
262 | ||
263 | /* Device 17, function 0 */ | |
264 | ||
265 | #define RANK_CFG_A 0x0328 | |
266 | ||
267 | #define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11) | |
268 | ||
269 | /* | |
270 | * sbridge structs | |
271 | */ | |
272 | ||
273 | #define NUM_CHANNELS 4 | |
274 | #define MAX_DIMMS 3 /* Max DIMMS per channel */ | |
275 | ||
276 | struct sbridge_info { | |
277 | u32 mcmtr; | |
278 | }; | |
279 | ||
280 | struct sbridge_channel { | |
281 | u32 ranks; | |
282 | u32 dimms; | |
283 | }; | |
284 | ||
285 | struct pci_id_descr { | |
286 | int dev; | |
287 | int func; | |
288 | int dev_id; | |
289 | int optional; | |
290 | }; | |
291 | ||
292 | struct pci_id_table { | |
293 | const struct pci_id_descr *descr; | |
294 | int n_devs; | |
295 | }; | |
296 | ||
297 | struct sbridge_dev { | |
298 | struct list_head list; | |
299 | u8 bus, mc; | |
300 | u8 node_id, source_id; | |
301 | struct pci_dev **pdev; | |
302 | int n_devs; | |
303 | struct mem_ctl_info *mci; | |
304 | }; | |
305 | ||
306 | struct sbridge_pvt { | |
307 | struct pci_dev *pci_ta, *pci_ddrio, *pci_ras; | |
308 | struct pci_dev *pci_sad0, *pci_sad1, *pci_ha0; | |
309 | struct pci_dev *pci_br; | |
310 | struct pci_dev *pci_tad[NUM_CHANNELS]; | |
311 | ||
312 | struct sbridge_dev *sbridge_dev; | |
313 | ||
314 | struct sbridge_info info; | |
315 | struct sbridge_channel channel[NUM_CHANNELS]; | |
316 | ||
317 | int csrow_map[NUM_CHANNELS][MAX_DIMMS]; | |
318 | ||
319 | /* Memory type detection */ | |
320 | bool is_mirrored, is_lockstep, is_close_pg; | |
321 | ||
eebf11a0 MCC |
322 | /* Fifo double buffers */ |
323 | struct mce mce_entry[MCE_LOG_LEN]; | |
324 | struct mce mce_outentry[MCE_LOG_LEN]; | |
325 | ||
326 | /* Fifo in/out counters */ | |
327 | unsigned mce_in, mce_out; | |
328 | ||
329 | /* Count indicator to show errors not got */ | |
330 | unsigned mce_overrun; | |
331 | ||
332 | /* Memory description */ | |
333 | u64 tolm, tohm; | |
334 | }; | |
335 | ||
336 | #define PCI_DESCR(device, function, device_id) \ | |
337 | .dev = (device), \ | |
338 | .func = (function), \ | |
339 | .dev_id = (device_id) | |
340 | ||
341 | static const struct pci_id_descr pci_dev_descr_sbridge[] = { | |
342 | /* Processor Home Agent */ | |
343 | { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0) }, | |
344 | ||
345 | /* Memory controller */ | |
346 | { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA) }, | |
347 | { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS) }, | |
348 | { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0) }, | |
349 | { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1) }, | |
350 | { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2) }, | |
351 | { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3) }, | |
352 | { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO) }, | |
353 | ||
354 | /* System Address Decoder */ | |
355 | { PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0) }, | |
356 | { PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1) }, | |
357 | ||
358 | /* Broadcast Registers */ | |
359 | { PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR) }, | |
360 | }; | |
361 | ||
362 | #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) } | |
363 | static const struct pci_id_table pci_dev_descr_sbridge_table[] = { | |
364 | PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge), | |
365 | {0,} /* 0 terminated list. */ | |
366 | }; | |
367 | ||
368 | /* | |
369 | * pci_device_id table for which devices we are looking for | |
370 | */ | |
36c46f31 | 371 | static DEFINE_PCI_DEVICE_TABLE(sbridge_pci_tbl) = { |
eebf11a0 MCC |
372 | {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA)}, |
373 | {0,} /* 0 terminated list. */ | |
374 | }; | |
375 | ||
376 | ||
377 | /**************************************************************************** | |
378 | Anciliary status routines | |
379 | ****************************************************************************/ | |
380 | ||
381 | static inline int numrank(u32 mtr) | |
382 | { | |
383 | int ranks = (1 << RANK_CNT_BITS(mtr)); | |
384 | ||
385 | if (ranks > 4) { | |
386 | debugf0("Invalid number of ranks: %d (max = 4) raw value = %x (%04x)", | |
387 | ranks, (unsigned int)RANK_CNT_BITS(mtr), mtr); | |
388 | return -EINVAL; | |
389 | } | |
390 | ||
391 | return ranks; | |
392 | } | |
393 | ||
394 | static inline int numrow(u32 mtr) | |
395 | { | |
396 | int rows = (RANK_WIDTH_BITS(mtr) + 12); | |
397 | ||
398 | if (rows < 13 || rows > 18) { | |
399 | debugf0("Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)", | |
400 | rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr); | |
401 | return -EINVAL; | |
402 | } | |
403 | ||
404 | return 1 << rows; | |
405 | } | |
406 | ||
407 | static inline int numcol(u32 mtr) | |
408 | { | |
409 | int cols = (COL_WIDTH_BITS(mtr) + 10); | |
410 | ||
411 | if (cols > 12) { | |
412 | debugf0("Invalid number of cols: %d (max = 4) raw value = %x (%04x)", | |
413 | cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr); | |
414 | return -EINVAL; | |
415 | } | |
416 | ||
417 | return 1 << cols; | |
418 | } | |
419 | ||
420 | static struct sbridge_dev *get_sbridge_dev(u8 bus) | |
421 | { | |
422 | struct sbridge_dev *sbridge_dev; | |
423 | ||
424 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { | |
425 | if (sbridge_dev->bus == bus) | |
426 | return sbridge_dev; | |
427 | } | |
428 | ||
429 | return NULL; | |
430 | } | |
431 | ||
432 | static struct sbridge_dev *alloc_sbridge_dev(u8 bus, | |
433 | const struct pci_id_table *table) | |
434 | { | |
435 | struct sbridge_dev *sbridge_dev; | |
436 | ||
437 | sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL); | |
438 | if (!sbridge_dev) | |
439 | return NULL; | |
440 | ||
441 | sbridge_dev->pdev = kzalloc(sizeof(*sbridge_dev->pdev) * table->n_devs, | |
442 | GFP_KERNEL); | |
443 | if (!sbridge_dev->pdev) { | |
444 | kfree(sbridge_dev); | |
445 | return NULL; | |
446 | } | |
447 | ||
448 | sbridge_dev->bus = bus; | |
449 | sbridge_dev->n_devs = table->n_devs; | |
450 | list_add_tail(&sbridge_dev->list, &sbridge_edac_list); | |
451 | ||
452 | return sbridge_dev; | |
453 | } | |
454 | ||
455 | static void free_sbridge_dev(struct sbridge_dev *sbridge_dev) | |
456 | { | |
457 | list_del(&sbridge_dev->list); | |
458 | kfree(sbridge_dev->pdev); | |
459 | kfree(sbridge_dev); | |
460 | } | |
461 | ||
462 | /**************************************************************************** | |
463 | Memory check routines | |
464 | ****************************************************************************/ | |
465 | static struct pci_dev *get_pdev_slot_func(u8 bus, unsigned slot, | |
466 | unsigned func) | |
467 | { | |
468 | struct sbridge_dev *sbridge_dev = get_sbridge_dev(bus); | |
469 | int i; | |
470 | ||
471 | if (!sbridge_dev) | |
472 | return NULL; | |
473 | ||
474 | for (i = 0; i < sbridge_dev->n_devs; i++) { | |
475 | if (!sbridge_dev->pdev[i]) | |
476 | continue; | |
477 | ||
478 | if (PCI_SLOT(sbridge_dev->pdev[i]->devfn) == slot && | |
479 | PCI_FUNC(sbridge_dev->pdev[i]->devfn) == func) { | |
480 | debugf1("Associated %02x.%02x.%d with %p\n", | |
481 | bus, slot, func, sbridge_dev->pdev[i]); | |
482 | return sbridge_dev->pdev[i]; | |
483 | } | |
484 | } | |
485 | ||
486 | return NULL; | |
487 | } | |
488 | ||
489 | /** | |
490 | * sbridge_get_active_channels() - gets the number of channels and csrows | |
491 | * bus: Device bus | |
492 | * @channels: Number of channels that will be returned | |
493 | * @csrows: Number of csrows found | |
494 | * | |
495 | * Since EDAC core needs to know in advance the number of available channels | |
496 | * and csrows, in order to allocate memory for csrows/channels, it is needed | |
497 | * to run two similar steps. At the first step, implemented on this function, | |
498 | * it checks the number of csrows/channels present at one socket, identified | |
499 | * by the associated PCI bus. | |
500 | * this is used in order to properly allocate the size of mci components. | |
501 | * Note: one csrow is one dimm. | |
502 | */ | |
503 | static int sbridge_get_active_channels(const u8 bus, unsigned *channels, | |
504 | unsigned *csrows) | |
505 | { | |
506 | struct pci_dev *pdev = NULL; | |
507 | int i, j; | |
508 | u32 mcmtr; | |
509 | ||
510 | *channels = 0; | |
511 | *csrows = 0; | |
512 | ||
513 | pdev = get_pdev_slot_func(bus, 15, 0); | |
514 | if (!pdev) { | |
515 | sbridge_printk(KERN_ERR, "Couldn't find PCI device " | |
516 | "%2x.%02d.%d!!!\n", | |
517 | bus, 15, 0); | |
518 | return -ENODEV; | |
519 | } | |
520 | ||
521 | pci_read_config_dword(pdev, MCMTR, &mcmtr); | |
522 | if (!IS_ECC_ENABLED(mcmtr)) { | |
523 | sbridge_printk(KERN_ERR, "ECC is disabled. Aborting\n"); | |
524 | return -ENODEV; | |
525 | } | |
526 | ||
527 | for (i = 0; i < NUM_CHANNELS; i++) { | |
528 | u32 mtr; | |
529 | ||
530 | /* Device 15 functions 2 - 5 */ | |
531 | pdev = get_pdev_slot_func(bus, 15, 2 + i); | |
532 | if (!pdev) { | |
533 | sbridge_printk(KERN_ERR, "Couldn't find PCI device " | |
534 | "%2x.%02d.%d!!!\n", | |
535 | bus, 15, 2 + i); | |
536 | return -ENODEV; | |
537 | } | |
538 | (*channels)++; | |
539 | ||
540 | for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) { | |
541 | pci_read_config_dword(pdev, mtr_regs[j], &mtr); | |
542 | debugf1("Bus#%02x channel #%d MTR%d = %x\n", bus, i, j, mtr); | |
543 | if (IS_DIMM_PRESENT(mtr)) | |
544 | (*csrows)++; | |
545 | } | |
546 | } | |
547 | ||
548 | debugf0("Number of active channels: %d, number of active dimms: %d\n", | |
549 | *channels, *csrows); | |
550 | ||
551 | return 0; | |
552 | } | |
553 | ||
084a4fcc | 554 | static int get_dimm_config(struct mem_ctl_info *mci) |
eebf11a0 MCC |
555 | { |
556 | struct sbridge_pvt *pvt = mci->pvt_info; | |
557 | struct csrow_info *csr; | |
558 | int i, j, banks, ranks, rows, cols, size, npages; | |
559 | int csrow = 0; | |
560 | unsigned long last_page = 0; | |
561 | u32 reg; | |
562 | enum edac_type mode; | |
c6e13b52 | 563 | enum mem_type mtype; |
084a4fcc | 564 | struct dimm_info *dimm; |
eebf11a0 MCC |
565 | |
566 | pci_read_config_dword(pvt->pci_br, SAD_TARGET, ®); | |
567 | pvt->sbridge_dev->source_id = SOURCE_ID(reg); | |
568 | ||
569 | pci_read_config_dword(pvt->pci_br, SAD_CONTROL, ®); | |
570 | pvt->sbridge_dev->node_id = NODE_ID(reg); | |
571 | debugf0("mc#%d: Node ID: %d, source ID: %d\n", | |
572 | pvt->sbridge_dev->mc, | |
573 | pvt->sbridge_dev->node_id, | |
574 | pvt->sbridge_dev->source_id); | |
575 | ||
576 | pci_read_config_dword(pvt->pci_ras, RASENABLES, ®); | |
577 | if (IS_MIRROR_ENABLED(reg)) { | |
578 | debugf0("Memory mirror is enabled\n"); | |
579 | pvt->is_mirrored = true; | |
580 | } else { | |
581 | debugf0("Memory mirror is disabled\n"); | |
582 | pvt->is_mirrored = false; | |
583 | } | |
584 | ||
585 | pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr); | |
586 | if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) { | |
587 | debugf0("Lockstep is enabled\n"); | |
588 | mode = EDAC_S8ECD8ED; | |
589 | pvt->is_lockstep = true; | |
590 | } else { | |
591 | debugf0("Lockstep is disabled\n"); | |
592 | mode = EDAC_S4ECD4ED; | |
593 | pvt->is_lockstep = false; | |
594 | } | |
595 | if (IS_CLOSE_PG(pvt->info.mcmtr)) { | |
596 | debugf0("address map is on closed page mode\n"); | |
597 | pvt->is_close_pg = true; | |
598 | } else { | |
599 | debugf0("address map is on open page mode\n"); | |
600 | pvt->is_close_pg = false; | |
601 | } | |
602 | ||
603 | pci_read_config_dword(pvt->pci_ta, RANK_CFG_A, ®); | |
604 | if (IS_RDIMM_ENABLED(reg)) { | |
605 | /* FIXME: Can also be LRDIMM */ | |
606 | debugf0("Memory is registered\n"); | |
c6e13b52 | 607 | mtype = MEM_RDDR3; |
eebf11a0 MCC |
608 | } else { |
609 | debugf0("Memory is unregistered\n"); | |
c6e13b52 | 610 | mtype = MEM_DDR3; |
eebf11a0 MCC |
611 | } |
612 | ||
613 | /* On all supported DDR3 DIMM types, there are 8 banks available */ | |
614 | banks = 8; | |
615 | ||
084a4fcc | 616 | dimm = mci->dimms; |
eebf11a0 MCC |
617 | for (i = 0; i < NUM_CHANNELS; i++) { |
618 | u32 mtr; | |
619 | ||
620 | for (j = 0; j < ARRAY_SIZE(mtr_regs); j++) { | |
621 | pci_read_config_dword(pvt->pci_tad[i], | |
622 | mtr_regs[j], &mtr); | |
623 | debugf4("Channel #%d MTR%d = %x\n", i, j, mtr); | |
624 | if (IS_DIMM_PRESENT(mtr)) { | |
625 | pvt->channel[i].dimms++; | |
626 | ||
627 | ranks = numrank(mtr); | |
628 | rows = numrow(mtr); | |
629 | cols = numcol(mtr); | |
630 | ||
631 | /* DDR3 has 8 I/O banks */ | |
632 | size = (rows * cols * banks * ranks) >> (20 - 3); | |
633 | npages = MiB_TO_PAGES(size); | |
634 | ||
635 | debugf0("mc#%d: channel %d, dimm %d, %d Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n", | |
636 | pvt->sbridge_dev->mc, i, j, | |
637 | size, npages, | |
638 | banks, ranks, rows, cols); | |
eebf11a0 | 639 | |
084a4fcc MCC |
640 | /* |
641 | * Fake stuff. This controller doesn't see | |
642 | * csrows. | |
643 | */ | |
644 | csr = &mci->csrows[csrow]; | |
eebf11a0 | 645 | csr->nr_pages = npages; |
eebf11a0 | 646 | csr->csrow_idx = csrow; |
eebf11a0 MCC |
647 | csr->nr_channels = 1; |
648 | csr->channels[0].chan_idx = i; | |
eebf11a0 | 649 | pvt->csrow_map[i][j] = csrow; |
eebf11a0 MCC |
650 | last_page += npages; |
651 | csrow++; | |
084a4fcc MCC |
652 | |
653 | csr->channels[0].dimm = dimm; | |
654 | dimm->grain = 32; | |
655 | dimm->dtype = (banks == 8) ? DEV_X8 : DEV_X4; | |
656 | dimm->mtype = mtype; | |
657 | dimm->edac_mode = mode; | |
658 | snprintf(dimm->label, sizeof(dimm->label), | |
659 | "CPU_SrcID#%u_Channel#%u_DIMM#%u", | |
660 | pvt->sbridge_dev->source_id, i, j); | |
eebf11a0 MCC |
661 | } |
662 | } | |
663 | } | |
664 | ||
665 | return 0; | |
666 | } | |
667 | ||
668 | static void get_memory_layout(const struct mem_ctl_info *mci) | |
669 | { | |
670 | struct sbridge_pvt *pvt = mci->pvt_info; | |
671 | int i, j, k, n_sads, n_tads, sad_interl; | |
672 | u32 reg; | |
673 | u64 limit, prv = 0; | |
674 | u64 tmp_mb; | |
5b889e37 | 675 | u32 mb, kb; |
eebf11a0 MCC |
676 | u32 rir_way; |
677 | ||
678 | /* | |
679 | * Step 1) Get TOLM/TOHM ranges | |
680 | */ | |
681 | ||
682 | /* Address range is 32:28 */ | |
683 | pci_read_config_dword(pvt->pci_sad1, TOLM, | |
684 | ®); | |
685 | pvt->tolm = GET_TOLM(reg); | |
686 | tmp_mb = (1 + pvt->tolm) >> 20; | |
687 | ||
5b889e37 MCC |
688 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
689 | debugf0("TOLM: %u.%03u GB (0x%016Lx)\n", | |
690 | mb, kb, (u64)pvt->tolm); | |
eebf11a0 MCC |
691 | |
692 | /* Address range is already 45:25 */ | |
693 | pci_read_config_dword(pvt->pci_sad1, TOHM, | |
694 | ®); | |
695 | pvt->tohm = GET_TOHM(reg); | |
696 | tmp_mb = (1 + pvt->tohm) >> 20; | |
697 | ||
5b889e37 MCC |
698 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
699 | debugf0("TOHM: %u.%03u GB (0x%016Lx)", | |
700 | mb, kb, (u64)pvt->tohm); | |
eebf11a0 MCC |
701 | |
702 | /* | |
703 | * Step 2) Get SAD range and SAD Interleave list | |
704 | * TAD registers contain the interleave wayness. However, it | |
705 | * seems simpler to just discover it indirectly, with the | |
706 | * algorithm bellow. | |
707 | */ | |
708 | prv = 0; | |
709 | for (n_sads = 0; n_sads < MAX_SAD; n_sads++) { | |
710 | /* SAD_LIMIT Address range is 45:26 */ | |
711 | pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads], | |
712 | ®); | |
713 | limit = SAD_LIMIT(reg); | |
714 | ||
715 | if (!DRAM_RULE_ENABLE(reg)) | |
716 | continue; | |
717 | ||
718 | if (limit <= prv) | |
719 | break; | |
720 | ||
721 | tmp_mb = (limit + 1) >> 20; | |
5b889e37 MCC |
722 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
723 | debugf0("SAD#%d %s up to %u.%03u GB (0x%016Lx) %s reg=0x%08x\n", | |
eebf11a0 MCC |
724 | n_sads, |
725 | get_dram_attr(reg), | |
5b889e37 | 726 | mb, kb, |
eebf11a0 MCC |
727 | ((u64)tmp_mb) << 20L, |
728 | INTERLEAVE_MODE(reg) ? "Interleave: 8:6" : "Interleave: [8:6]XOR[18:16]", | |
729 | reg); | |
730 | prv = limit; | |
731 | ||
732 | pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads], | |
733 | ®); | |
734 | sad_interl = sad_pkg(reg, 0); | |
735 | for (j = 0; j < 8; j++) { | |
736 | if (j > 0 && sad_interl == sad_pkg(reg, j)) | |
737 | break; | |
738 | ||
739 | debugf0("SAD#%d, interleave #%d: %d\n", | |
740 | n_sads, j, sad_pkg(reg, j)); | |
741 | } | |
742 | } | |
743 | ||
744 | /* | |
745 | * Step 3) Get TAD range | |
746 | */ | |
747 | prv = 0; | |
748 | for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { | |
749 | pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads], | |
750 | ®); | |
751 | limit = TAD_LIMIT(reg); | |
752 | if (limit <= prv) | |
753 | break; | |
754 | tmp_mb = (limit + 1) >> 20; | |
755 | ||
5b889e37 MCC |
756 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
757 | debugf0("TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n", | |
758 | n_tads, mb, kb, | |
eebf11a0 MCC |
759 | ((u64)tmp_mb) << 20L, |
760 | (u32)TAD_SOCK(reg), | |
761 | (u32)TAD_CH(reg), | |
762 | (u32)TAD_TGT0(reg), | |
763 | (u32)TAD_TGT1(reg), | |
764 | (u32)TAD_TGT2(reg), | |
765 | (u32)TAD_TGT3(reg), | |
766 | reg); | |
7fae0db4 | 767 | prv = limit; |
eebf11a0 MCC |
768 | } |
769 | ||
770 | /* | |
771 | * Step 4) Get TAD offsets, per each channel | |
772 | */ | |
773 | for (i = 0; i < NUM_CHANNELS; i++) { | |
774 | if (!pvt->channel[i].dimms) | |
775 | continue; | |
776 | for (j = 0; j < n_tads; j++) { | |
777 | pci_read_config_dword(pvt->pci_tad[i], | |
778 | tad_ch_nilv_offset[j], | |
779 | ®); | |
780 | tmp_mb = TAD_OFFSET(reg) >> 20; | |
5b889e37 MCC |
781 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
782 | debugf0("TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n", | |
eebf11a0 | 783 | i, j, |
5b889e37 | 784 | mb, kb, |
eebf11a0 MCC |
785 | ((u64)tmp_mb) << 20L, |
786 | reg); | |
787 | } | |
788 | } | |
789 | ||
790 | /* | |
791 | * Step 6) Get RIR Wayness/Limit, per each channel | |
792 | */ | |
793 | for (i = 0; i < NUM_CHANNELS; i++) { | |
794 | if (!pvt->channel[i].dimms) | |
795 | continue; | |
796 | for (j = 0; j < MAX_RIR_RANGES; j++) { | |
797 | pci_read_config_dword(pvt->pci_tad[i], | |
798 | rir_way_limit[j], | |
799 | ®); | |
800 | ||
801 | if (!IS_RIR_VALID(reg)) | |
802 | continue; | |
803 | ||
804 | tmp_mb = RIR_LIMIT(reg) >> 20; | |
805 | rir_way = 1 << RIR_WAY(reg); | |
5b889e37 MCC |
806 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
807 | debugf0("CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n", | |
eebf11a0 | 808 | i, j, |
5b889e37 | 809 | mb, kb, |
eebf11a0 MCC |
810 | ((u64)tmp_mb) << 20L, |
811 | rir_way, | |
812 | reg); | |
813 | ||
814 | for (k = 0; k < rir_way; k++) { | |
815 | pci_read_config_dword(pvt->pci_tad[i], | |
816 | rir_offset[j][k], | |
817 | ®); | |
818 | tmp_mb = RIR_OFFSET(reg) << 6; | |
819 | ||
5b889e37 MCC |
820 | mb = div_u64_rem(tmp_mb, 1000, &kb); |
821 | debugf0("CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n", | |
eebf11a0 | 822 | i, j, k, |
5b889e37 | 823 | mb, kb, |
eebf11a0 MCC |
824 | ((u64)tmp_mb) << 20L, |
825 | (u32)RIR_RNK_TGT(reg), | |
826 | reg); | |
827 | } | |
828 | } | |
829 | } | |
830 | } | |
831 | ||
832 | struct mem_ctl_info *get_mci_for_node_id(u8 node_id) | |
833 | { | |
834 | struct sbridge_dev *sbridge_dev; | |
835 | ||
836 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { | |
837 | if (sbridge_dev->node_id == node_id) | |
838 | return sbridge_dev->mci; | |
839 | } | |
840 | return NULL; | |
841 | } | |
842 | ||
843 | static int get_memory_error_data(struct mem_ctl_info *mci, | |
844 | u64 addr, | |
845 | u8 *socket, | |
846 | long *channel_mask, | |
847 | u8 *rank, | |
848 | char *area_type) | |
849 | { | |
850 | struct mem_ctl_info *new_mci; | |
851 | struct sbridge_pvt *pvt = mci->pvt_info; | |
852 | char msg[256]; | |
853 | int n_rir, n_sads, n_tads, sad_way, sck_xch; | |
854 | int sad_interl, idx, base_ch; | |
855 | int interleave_mode; | |
856 | unsigned sad_interleave[MAX_INTERLEAVE]; | |
857 | u32 reg; | |
858 | u8 ch_way,sck_way; | |
859 | u32 tad_offset; | |
860 | u32 rir_way; | |
5b889e37 | 861 | u32 mb, kb; |
eebf11a0 MCC |
862 | u64 ch_addr, offset, limit, prv = 0; |
863 | ||
864 | ||
865 | /* | |
866 | * Step 0) Check if the address is at special memory ranges | |
867 | * The check bellow is probably enough to fill all cases where | |
868 | * the error is not inside a memory, except for the legacy | |
869 | * range (e. g. VGA addresses). It is unlikely, however, that the | |
870 | * memory controller would generate an error on that range. | |
871 | */ | |
5b889e37 | 872 | if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) { |
eebf11a0 MCC |
873 | sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr); |
874 | edac_mc_handle_ce_no_info(mci, msg); | |
875 | return -EINVAL; | |
876 | } | |
877 | if (addr >= (u64)pvt->tohm) { | |
878 | sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr); | |
879 | edac_mc_handle_ce_no_info(mci, msg); | |
880 | return -EINVAL; | |
881 | } | |
882 | ||
883 | /* | |
884 | * Step 1) Get socket | |
885 | */ | |
886 | for (n_sads = 0; n_sads < MAX_SAD; n_sads++) { | |
887 | pci_read_config_dword(pvt->pci_sad0, dram_rule[n_sads], | |
888 | ®); | |
889 | ||
890 | if (!DRAM_RULE_ENABLE(reg)) | |
891 | continue; | |
892 | ||
893 | limit = SAD_LIMIT(reg); | |
894 | if (limit <= prv) { | |
895 | sprintf(msg, "Can't discover the memory socket"); | |
896 | edac_mc_handle_ce_no_info(mci, msg); | |
897 | return -EINVAL; | |
898 | } | |
899 | if (addr <= limit) | |
900 | break; | |
901 | prv = limit; | |
902 | } | |
903 | if (n_sads == MAX_SAD) { | |
904 | sprintf(msg, "Can't discover the memory socket"); | |
905 | edac_mc_handle_ce_no_info(mci, msg); | |
906 | return -EINVAL; | |
907 | } | |
908 | area_type = get_dram_attr(reg); | |
909 | interleave_mode = INTERLEAVE_MODE(reg); | |
910 | ||
911 | pci_read_config_dword(pvt->pci_sad0, interleave_list[n_sads], | |
912 | ®); | |
913 | sad_interl = sad_pkg(reg, 0); | |
914 | for (sad_way = 0; sad_way < 8; sad_way++) { | |
915 | if (sad_way > 0 && sad_interl == sad_pkg(reg, sad_way)) | |
916 | break; | |
917 | sad_interleave[sad_way] = sad_pkg(reg, sad_way); | |
918 | debugf0("SAD interleave #%d: %d\n", | |
919 | sad_way, sad_interleave[sad_way]); | |
920 | } | |
921 | debugf0("mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n", | |
922 | pvt->sbridge_dev->mc, | |
923 | n_sads, | |
924 | addr, | |
925 | limit, | |
926 | sad_way + 7, | |
ad9c40b7 | 927 | interleave_mode ? "" : "XOR[18:16]"); |
eebf11a0 MCC |
928 | if (interleave_mode) |
929 | idx = ((addr >> 6) ^ (addr >> 16)) & 7; | |
930 | else | |
931 | idx = (addr >> 6) & 7; | |
932 | switch (sad_way) { | |
933 | case 1: | |
934 | idx = 0; | |
935 | break; | |
936 | case 2: | |
937 | idx = idx & 1; | |
938 | break; | |
939 | case 4: | |
940 | idx = idx & 3; | |
941 | break; | |
942 | case 8: | |
943 | break; | |
944 | default: | |
945 | sprintf(msg, "Can't discover socket interleave"); | |
946 | edac_mc_handle_ce_no_info(mci, msg); | |
947 | return -EINVAL; | |
948 | } | |
949 | *socket = sad_interleave[idx]; | |
950 | debugf0("SAD interleave index: %d (wayness %d) = CPU socket %d\n", | |
951 | idx, sad_way, *socket); | |
952 | ||
953 | /* | |
954 | * Move to the proper node structure, in order to access the | |
955 | * right PCI registers | |
956 | */ | |
957 | new_mci = get_mci_for_node_id(*socket); | |
958 | if (!new_mci) { | |
959 | sprintf(msg, "Struct for socket #%u wasn't initialized", | |
960 | *socket); | |
961 | edac_mc_handle_ce_no_info(mci, msg); | |
962 | return -EINVAL; | |
963 | } | |
964 | mci = new_mci; | |
965 | pvt = mci->pvt_info; | |
966 | ||
967 | /* | |
968 | * Step 2) Get memory channel | |
969 | */ | |
970 | prv = 0; | |
971 | for (n_tads = 0; n_tads < MAX_TAD; n_tads++) { | |
972 | pci_read_config_dword(pvt->pci_ha0, tad_dram_rule[n_tads], | |
973 | ®); | |
974 | limit = TAD_LIMIT(reg); | |
975 | if (limit <= prv) { | |
976 | sprintf(msg, "Can't discover the memory channel"); | |
977 | edac_mc_handle_ce_no_info(mci, msg); | |
978 | return -EINVAL; | |
979 | } | |
980 | if (addr <= limit) | |
981 | break; | |
982 | prv = limit; | |
983 | } | |
984 | ch_way = TAD_CH(reg) + 1; | |
985 | sck_way = TAD_SOCK(reg) + 1; | |
986 | /* | |
987 | * FIXME: Is it right to always use channel 0 for offsets? | |
988 | */ | |
989 | pci_read_config_dword(pvt->pci_tad[0], | |
990 | tad_ch_nilv_offset[n_tads], | |
991 | &tad_offset); | |
992 | ||
993 | if (ch_way == 3) | |
994 | idx = addr >> 6; | |
995 | else | |
996 | idx = addr >> (6 + sck_way); | |
997 | idx = idx % ch_way; | |
998 | ||
999 | /* | |
1000 | * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ??? | |
1001 | */ | |
1002 | switch (idx) { | |
1003 | case 0: | |
1004 | base_ch = TAD_TGT0(reg); | |
1005 | break; | |
1006 | case 1: | |
1007 | base_ch = TAD_TGT1(reg); | |
1008 | break; | |
1009 | case 2: | |
1010 | base_ch = TAD_TGT2(reg); | |
1011 | break; | |
1012 | case 3: | |
1013 | base_ch = TAD_TGT3(reg); | |
1014 | break; | |
1015 | default: | |
1016 | sprintf(msg, "Can't discover the TAD target"); | |
1017 | edac_mc_handle_ce_no_info(mci, msg); | |
1018 | return -EINVAL; | |
1019 | } | |
1020 | *channel_mask = 1 << base_ch; | |
1021 | ||
1022 | if (pvt->is_mirrored) { | |
1023 | *channel_mask |= 1 << ((base_ch + 2) % 4); | |
1024 | switch(ch_way) { | |
1025 | case 2: | |
1026 | case 4: | |
1027 | sck_xch = 1 << sck_way * (ch_way >> 1); | |
1028 | break; | |
1029 | default: | |
1030 | sprintf(msg, "Invalid mirror set. Can't decode addr"); | |
1031 | edac_mc_handle_ce_no_info(mci, msg); | |
1032 | return -EINVAL; | |
1033 | } | |
1034 | } else | |
1035 | sck_xch = (1 << sck_way) * ch_way; | |
1036 | ||
1037 | if (pvt->is_lockstep) | |
1038 | *channel_mask |= 1 << ((base_ch + 1) % 4); | |
1039 | ||
1040 | offset = TAD_OFFSET(tad_offset); | |
1041 | ||
1042 | debugf0("TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n", | |
1043 | n_tads, | |
1044 | addr, | |
1045 | limit, | |
1046 | (u32)TAD_SOCK(reg), | |
1047 | ch_way, | |
1048 | offset, | |
1049 | idx, | |
1050 | base_ch, | |
1051 | *channel_mask); | |
1052 | ||
1053 | /* Calculate channel address */ | |
1054 | /* Remove the TAD offset */ | |
1055 | ||
1056 | if (offset > addr) { | |
1057 | sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!", | |
1058 | offset, addr); | |
1059 | edac_mc_handle_ce_no_info(mci, msg); | |
1060 | return -EINVAL; | |
1061 | } | |
1062 | addr -= offset; | |
1063 | /* Store the low bits [0:6] of the addr */ | |
1064 | ch_addr = addr & 0x7f; | |
1065 | /* Remove socket wayness and remove 6 bits */ | |
1066 | addr >>= 6; | |
5b889e37 | 1067 | addr = div_u64(addr, sck_xch); |
eebf11a0 MCC |
1068 | #if 0 |
1069 | /* Divide by channel way */ | |
1070 | addr = addr / ch_way; | |
1071 | #endif | |
1072 | /* Recover the last 6 bits */ | |
1073 | ch_addr |= addr << 6; | |
1074 | ||
1075 | /* | |
1076 | * Step 3) Decode rank | |
1077 | */ | |
1078 | for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) { | |
1079 | pci_read_config_dword(pvt->pci_tad[base_ch], | |
1080 | rir_way_limit[n_rir], | |
1081 | ®); | |
1082 | ||
1083 | if (!IS_RIR_VALID(reg)) | |
1084 | continue; | |
1085 | ||
1086 | limit = RIR_LIMIT(reg); | |
5b889e37 MCC |
1087 | mb = div_u64_rem(limit >> 20, 1000, &kb); |
1088 | debugf0("RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n", | |
eebf11a0 | 1089 | n_rir, |
5b889e37 | 1090 | mb, kb, |
eebf11a0 MCC |
1091 | limit, |
1092 | 1 << RIR_WAY(reg)); | |
1093 | if (ch_addr <= limit) | |
1094 | break; | |
1095 | } | |
1096 | if (n_rir == MAX_RIR_RANGES) { | |
1097 | sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx", | |
1098 | ch_addr); | |
1099 | edac_mc_handle_ce_no_info(mci, msg); | |
1100 | return -EINVAL; | |
1101 | } | |
1102 | rir_way = RIR_WAY(reg); | |
1103 | if (pvt->is_close_pg) | |
1104 | idx = (ch_addr >> 6); | |
1105 | else | |
1106 | idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */ | |
1107 | idx %= 1 << rir_way; | |
1108 | ||
1109 | pci_read_config_dword(pvt->pci_tad[base_ch], | |
1110 | rir_offset[n_rir][idx], | |
1111 | ®); | |
1112 | *rank = RIR_RNK_TGT(reg); | |
1113 | ||
1114 | debugf0("RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n", | |
1115 | n_rir, | |
1116 | ch_addr, | |
1117 | limit, | |
1118 | rir_way, | |
1119 | idx); | |
1120 | ||
1121 | return 0; | |
1122 | } | |
1123 | ||
1124 | /**************************************************************************** | |
1125 | Device initialization routines: put/get, init/exit | |
1126 | ****************************************************************************/ | |
1127 | ||
1128 | /* | |
1129 | * sbridge_put_all_devices 'put' all the devices that we have | |
1130 | * reserved via 'get' | |
1131 | */ | |
1132 | static void sbridge_put_devices(struct sbridge_dev *sbridge_dev) | |
1133 | { | |
1134 | int i; | |
1135 | ||
1136 | debugf0(__FILE__ ": %s()\n", __func__); | |
1137 | for (i = 0; i < sbridge_dev->n_devs; i++) { | |
1138 | struct pci_dev *pdev = sbridge_dev->pdev[i]; | |
1139 | if (!pdev) | |
1140 | continue; | |
1141 | debugf0("Removing dev %02x:%02x.%d\n", | |
1142 | pdev->bus->number, | |
1143 | PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); | |
1144 | pci_dev_put(pdev); | |
1145 | } | |
1146 | } | |
1147 | ||
1148 | static void sbridge_put_all_devices(void) | |
1149 | { | |
1150 | struct sbridge_dev *sbridge_dev, *tmp; | |
1151 | ||
1152 | list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) { | |
1153 | sbridge_put_devices(sbridge_dev); | |
1154 | free_sbridge_dev(sbridge_dev); | |
1155 | } | |
1156 | } | |
1157 | ||
1158 | /* | |
1159 | * sbridge_get_all_devices Find and perform 'get' operation on the MCH's | |
1160 | * device/functions we want to reference for this driver | |
1161 | * | |
1162 | * Need to 'get' device 16 func 1 and func 2 | |
1163 | */ | |
1164 | static int sbridge_get_onedevice(struct pci_dev **prev, | |
1165 | u8 *num_mc, | |
1166 | const struct pci_id_table *table, | |
1167 | const unsigned devno) | |
1168 | { | |
1169 | struct sbridge_dev *sbridge_dev; | |
1170 | const struct pci_id_descr *dev_descr = &table->descr[devno]; | |
1171 | ||
1172 | struct pci_dev *pdev = NULL; | |
1173 | u8 bus = 0; | |
1174 | ||
1175 | sbridge_printk(KERN_INFO, | |
1176 | "Seeking for: dev %02x.%d PCI ID %04x:%04x\n", | |
1177 | dev_descr->dev, dev_descr->func, | |
1178 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | |
1179 | ||
1180 | pdev = pci_get_device(PCI_VENDOR_ID_INTEL, | |
1181 | dev_descr->dev_id, *prev); | |
1182 | ||
1183 | if (!pdev) { | |
1184 | if (*prev) { | |
1185 | *prev = pdev; | |
1186 | return 0; | |
1187 | } | |
1188 | ||
1189 | if (dev_descr->optional) | |
1190 | return 0; | |
1191 | ||
1192 | if (devno == 0) | |
1193 | return -ENODEV; | |
1194 | ||
1195 | sbridge_printk(KERN_INFO, | |
1196 | "Device not found: dev %02x.%d PCI ID %04x:%04x\n", | |
1197 | dev_descr->dev, dev_descr->func, | |
1198 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | |
1199 | ||
1200 | /* End of list, leave */ | |
1201 | return -ENODEV; | |
1202 | } | |
1203 | bus = pdev->bus->number; | |
1204 | ||
1205 | sbridge_dev = get_sbridge_dev(bus); | |
1206 | if (!sbridge_dev) { | |
1207 | sbridge_dev = alloc_sbridge_dev(bus, table); | |
1208 | if (!sbridge_dev) { | |
1209 | pci_dev_put(pdev); | |
1210 | return -ENOMEM; | |
1211 | } | |
1212 | (*num_mc)++; | |
1213 | } | |
1214 | ||
1215 | if (sbridge_dev->pdev[devno]) { | |
1216 | sbridge_printk(KERN_ERR, | |
1217 | "Duplicated device for " | |
1218 | "dev %02x:%d.%d PCI ID %04x:%04x\n", | |
1219 | bus, dev_descr->dev, dev_descr->func, | |
1220 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | |
1221 | pci_dev_put(pdev); | |
1222 | return -ENODEV; | |
1223 | } | |
1224 | ||
1225 | sbridge_dev->pdev[devno] = pdev; | |
1226 | ||
1227 | /* Sanity check */ | |
1228 | if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev || | |
1229 | PCI_FUNC(pdev->devfn) != dev_descr->func)) { | |
1230 | sbridge_printk(KERN_ERR, | |
1231 | "Device PCI ID %04x:%04x " | |
1232 | "has dev %02x:%d.%d instead of dev %02x:%02x.%d\n", | |
1233 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id, | |
1234 | bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), | |
1235 | bus, dev_descr->dev, dev_descr->func); | |
1236 | return -ENODEV; | |
1237 | } | |
1238 | ||
1239 | /* Be sure that the device is enabled */ | |
1240 | if (unlikely(pci_enable_device(pdev) < 0)) { | |
1241 | sbridge_printk(KERN_ERR, | |
1242 | "Couldn't enable " | |
1243 | "dev %02x:%d.%d PCI ID %04x:%04x\n", | |
1244 | bus, dev_descr->dev, dev_descr->func, | |
1245 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | |
1246 | return -ENODEV; | |
1247 | } | |
1248 | ||
1249 | debugf0("Detected dev %02x:%d.%d PCI ID %04x:%04x\n", | |
1250 | bus, dev_descr->dev, | |
1251 | dev_descr->func, | |
1252 | PCI_VENDOR_ID_INTEL, dev_descr->dev_id); | |
1253 | ||
1254 | /* | |
1255 | * As stated on drivers/pci/search.c, the reference count for | |
1256 | * @from is always decremented if it is not %NULL. So, as we need | |
1257 | * to get all devices up to null, we need to do a get for the device | |
1258 | */ | |
1259 | pci_dev_get(pdev); | |
1260 | ||
1261 | *prev = pdev; | |
1262 | ||
1263 | return 0; | |
1264 | } | |
1265 | ||
1266 | static int sbridge_get_all_devices(u8 *num_mc) | |
1267 | { | |
1268 | int i, rc; | |
1269 | struct pci_dev *pdev = NULL; | |
1270 | const struct pci_id_table *table = pci_dev_descr_sbridge_table; | |
1271 | ||
1272 | while (table && table->descr) { | |
1273 | for (i = 0; i < table->n_devs; i++) { | |
1274 | pdev = NULL; | |
1275 | do { | |
1276 | rc = sbridge_get_onedevice(&pdev, num_mc, | |
1277 | table, i); | |
1278 | if (rc < 0) { | |
1279 | if (i == 0) { | |
1280 | i = table->n_devs; | |
1281 | break; | |
1282 | } | |
1283 | sbridge_put_all_devices(); | |
1284 | return -ENODEV; | |
1285 | } | |
1286 | } while (pdev); | |
1287 | } | |
1288 | table++; | |
1289 | } | |
1290 | ||
1291 | return 0; | |
1292 | } | |
1293 | ||
1294 | static int mci_bind_devs(struct mem_ctl_info *mci, | |
1295 | struct sbridge_dev *sbridge_dev) | |
1296 | { | |
1297 | struct sbridge_pvt *pvt = mci->pvt_info; | |
1298 | struct pci_dev *pdev; | |
1299 | int i, func, slot; | |
1300 | ||
1301 | for (i = 0; i < sbridge_dev->n_devs; i++) { | |
1302 | pdev = sbridge_dev->pdev[i]; | |
1303 | if (!pdev) | |
1304 | continue; | |
1305 | slot = PCI_SLOT(pdev->devfn); | |
1306 | func = PCI_FUNC(pdev->devfn); | |
1307 | switch (slot) { | |
1308 | case 12: | |
1309 | switch (func) { | |
1310 | case 6: | |
1311 | pvt->pci_sad0 = pdev; | |
1312 | break; | |
1313 | case 7: | |
1314 | pvt->pci_sad1 = pdev; | |
1315 | break; | |
1316 | default: | |
1317 | goto error; | |
1318 | } | |
1319 | break; | |
1320 | case 13: | |
1321 | switch (func) { | |
1322 | case 6: | |
1323 | pvt->pci_br = pdev; | |
1324 | break; | |
1325 | default: | |
1326 | goto error; | |
1327 | } | |
1328 | break; | |
1329 | case 14: | |
1330 | switch (func) { | |
1331 | case 0: | |
1332 | pvt->pci_ha0 = pdev; | |
1333 | break; | |
1334 | default: | |
1335 | goto error; | |
1336 | } | |
1337 | break; | |
1338 | case 15: | |
1339 | switch (func) { | |
1340 | case 0: | |
1341 | pvt->pci_ta = pdev; | |
1342 | break; | |
1343 | case 1: | |
1344 | pvt->pci_ras = pdev; | |
1345 | break; | |
1346 | case 2: | |
1347 | case 3: | |
1348 | case 4: | |
1349 | case 5: | |
1350 | pvt->pci_tad[func - 2] = pdev; | |
1351 | break; | |
1352 | default: | |
1353 | goto error; | |
1354 | } | |
1355 | break; | |
1356 | case 17: | |
1357 | switch (func) { | |
1358 | case 0: | |
1359 | pvt->pci_ddrio = pdev; | |
1360 | break; | |
1361 | default: | |
1362 | goto error; | |
1363 | } | |
1364 | break; | |
1365 | default: | |
1366 | goto error; | |
1367 | } | |
1368 | ||
1369 | debugf0("Associated PCI %02x.%02d.%d with dev = %p\n", | |
1370 | sbridge_dev->bus, | |
1371 | PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), | |
1372 | pdev); | |
1373 | } | |
1374 | ||
1375 | /* Check if everything were registered */ | |
1376 | if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 || | |
1377 | !pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta || | |
1378 | !pvt->pci_ddrio) | |
1379 | goto enodev; | |
1380 | ||
1381 | for (i = 0; i < NUM_CHANNELS; i++) { | |
1382 | if (!pvt->pci_tad[i]) | |
1383 | goto enodev; | |
1384 | } | |
1385 | return 0; | |
1386 | ||
1387 | enodev: | |
1388 | sbridge_printk(KERN_ERR, "Some needed devices are missing\n"); | |
1389 | return -ENODEV; | |
1390 | ||
1391 | error: | |
1392 | sbridge_printk(KERN_ERR, "Device %d, function %d " | |
1393 | "is out of the expected range\n", | |
1394 | slot, func); | |
1395 | return -EINVAL; | |
1396 | } | |
1397 | ||
1398 | /**************************************************************************** | |
1399 | Error check routines | |
1400 | ****************************************************************************/ | |
1401 | ||
1402 | /* | |
1403 | * While Sandy Bridge has error count registers, SMI BIOS read values from | |
1404 | * and resets the counters. So, they are not reliable for the OS to read | |
1405 | * from them. So, we have no option but to just trust on whatever MCE is | |
1406 | * telling us about the errors. | |
1407 | */ | |
1408 | static void sbridge_mce_output_error(struct mem_ctl_info *mci, | |
1409 | const struct mce *m) | |
1410 | { | |
1411 | struct mem_ctl_info *new_mci; | |
1412 | struct sbridge_pvt *pvt = mci->pvt_info; | |
1413 | char *type, *optype, *msg, *recoverable_msg; | |
1414 | bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0); | |
1415 | bool overflow = GET_BITFIELD(m->status, 62, 62); | |
1416 | bool uncorrected_error = GET_BITFIELD(m->status, 61, 61); | |
1417 | bool recoverable = GET_BITFIELD(m->status, 56, 56); | |
1418 | u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52); | |
1419 | u32 mscod = GET_BITFIELD(m->status, 16, 31); | |
1420 | u32 errcode = GET_BITFIELD(m->status, 0, 15); | |
1421 | u32 channel = GET_BITFIELD(m->status, 0, 3); | |
1422 | u32 optypenum = GET_BITFIELD(m->status, 4, 6); | |
1423 | long channel_mask, first_channel; | |
1424 | u8 rank, socket; | |
1425 | int csrow, rc, dimm; | |
1426 | char *area_type = "Unknown"; | |
1427 | ||
1428 | if (ripv) | |
1429 | type = "NON_FATAL"; | |
1430 | else | |
1431 | type = "FATAL"; | |
1432 | ||
1433 | /* | |
1434 | * According with Table 15-9 of the Intel Archictecture spec vol 3A, | |
1435 | * memory errors should fit in this mask: | |
1436 | * 000f 0000 1mmm cccc (binary) | |
1437 | * where: | |
1438 | * f = Correction Report Filtering Bit. If 1, subsequent errors | |
1439 | * won't be shown | |
1440 | * mmm = error type | |
1441 | * cccc = channel | |
1442 | * If the mask doesn't match, report an error to the parsing logic | |
1443 | */ | |
1444 | if (! ((errcode & 0xef80) == 0x80)) { | |
1445 | optype = "Can't parse: it is not a mem"; | |
1446 | } else { | |
1447 | switch (optypenum) { | |
1448 | case 0: | |
1449 | optype = "generic undef request"; | |
1450 | break; | |
1451 | case 1: | |
1452 | optype = "memory read"; | |
1453 | break; | |
1454 | case 2: | |
1455 | optype = "memory write"; | |
1456 | break; | |
1457 | case 3: | |
1458 | optype = "addr/cmd"; | |
1459 | break; | |
1460 | case 4: | |
1461 | optype = "memory scrubbing"; | |
1462 | break; | |
1463 | default: | |
1464 | optype = "reserved"; | |
1465 | break; | |
1466 | } | |
1467 | } | |
1468 | ||
1469 | rc = get_memory_error_data(mci, m->addr, &socket, | |
1470 | &channel_mask, &rank, area_type); | |
1471 | if (rc < 0) | |
1472 | return; | |
1473 | new_mci = get_mci_for_node_id(socket); | |
1474 | if (!new_mci) { | |
1475 | edac_mc_handle_ce_no_info(mci, "Error: socket got corrupted!"); | |
1476 | return; | |
1477 | } | |
1478 | mci = new_mci; | |
1479 | pvt = mci->pvt_info; | |
1480 | ||
1481 | first_channel = find_first_bit(&channel_mask, NUM_CHANNELS); | |
1482 | ||
1483 | if (rank < 4) | |
1484 | dimm = 0; | |
1485 | else if (rank < 8) | |
1486 | dimm = 1; | |
1487 | else | |
1488 | dimm = 2; | |
1489 | ||
1490 | csrow = pvt->csrow_map[first_channel][dimm]; | |
1491 | ||
1492 | if (uncorrected_error && recoverable) | |
1493 | recoverable_msg = " recoverable"; | |
1494 | else | |
1495 | recoverable_msg = ""; | |
1496 | ||
1497 | /* | |
1498 | * FIXME: What should we do with "channel" information on mcelog? | |
1499 | * Probably, we can just discard it, as the channel information | |
1500 | * comes from the get_memory_error_data() address decoding | |
1501 | */ | |
1502 | msg = kasprintf(GFP_ATOMIC, | |
1503 | "%d %s error(s): %s on %s area %s%s: cpu=%d Err=%04x:%04x (ch=%d), " | |
1504 | "addr = 0x%08llx => socket=%d, Channel=%ld(mask=%ld), rank=%d\n", | |
1505 | core_err_cnt, | |
1506 | area_type, | |
1507 | optype, | |
1508 | type, | |
1509 | recoverable_msg, | |
1510 | overflow ? "OVERFLOW" : "", | |
1511 | m->cpu, | |
1512 | mscod, errcode, | |
1513 | channel, /* 1111b means not specified */ | |
1514 | (long long) m->addr, | |
1515 | socket, | |
1516 | first_channel, /* This is the real channel on SB */ | |
1517 | channel_mask, | |
1518 | rank); | |
1519 | ||
1520 | debugf0("%s", msg); | |
1521 | ||
1522 | /* Call the helper to output message */ | |
1523 | if (uncorrected_error) | |
1524 | edac_mc_handle_fbd_ue(mci, csrow, 0, 0, msg); | |
1525 | else | |
1526 | edac_mc_handle_fbd_ce(mci, csrow, 0, msg); | |
1527 | ||
1528 | kfree(msg); | |
1529 | } | |
1530 | ||
1531 | /* | |
1532 | * sbridge_check_error Retrieve and process errors reported by the | |
1533 | * hardware. Called by the Core module. | |
1534 | */ | |
1535 | static void sbridge_check_error(struct mem_ctl_info *mci) | |
1536 | { | |
1537 | struct sbridge_pvt *pvt = mci->pvt_info; | |
1538 | int i; | |
1539 | unsigned count = 0; | |
1540 | struct mce *m; | |
1541 | ||
1542 | /* | |
1543 | * MCE first step: Copy all mce errors into a temporary buffer | |
1544 | * We use a double buffering here, to reduce the risk of | |
1545 | * loosing an error. | |
1546 | */ | |
1547 | smp_rmb(); | |
1548 | count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in) | |
1549 | % MCE_LOG_LEN; | |
1550 | if (!count) | |
1551 | return; | |
1552 | ||
1553 | m = pvt->mce_outentry; | |
1554 | if (pvt->mce_in + count > MCE_LOG_LEN) { | |
1555 | unsigned l = MCE_LOG_LEN - pvt->mce_in; | |
1556 | ||
1557 | memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l); | |
1558 | smp_wmb(); | |
1559 | pvt->mce_in = 0; | |
1560 | count -= l; | |
1561 | m += l; | |
1562 | } | |
1563 | memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count); | |
1564 | smp_wmb(); | |
1565 | pvt->mce_in += count; | |
1566 | ||
1567 | smp_rmb(); | |
1568 | if (pvt->mce_overrun) { | |
1569 | sbridge_printk(KERN_ERR, "Lost %d memory errors\n", | |
1570 | pvt->mce_overrun); | |
1571 | smp_wmb(); | |
1572 | pvt->mce_overrun = 0; | |
1573 | } | |
1574 | ||
1575 | /* | |
1576 | * MCE second step: parse errors and display | |
1577 | */ | |
1578 | for (i = 0; i < count; i++) | |
1579 | sbridge_mce_output_error(mci, &pvt->mce_outentry[i]); | |
1580 | } | |
1581 | ||
1582 | /* | |
1583 | * sbridge_mce_check_error Replicates mcelog routine to get errors | |
1584 | * This routine simply queues mcelog errors, and | |
1585 | * return. The error itself should be handled later | |
1586 | * by sbridge_check_error. | |
1587 | * WARNING: As this routine should be called at NMI time, extra care should | |
1588 | * be taken to avoid deadlocks, and to be as fast as possible. | |
1589 | */ | |
3d78c9af MCC |
1590 | static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val, |
1591 | void *data) | |
eebf11a0 | 1592 | { |
3d78c9af MCC |
1593 | struct mce *mce = (struct mce *)data; |
1594 | struct mem_ctl_info *mci; | |
1595 | struct sbridge_pvt *pvt; | |
1596 | ||
1597 | mci = get_mci_for_node_id(mce->socketid); | |
1598 | if (!mci) | |
1599 | return NOTIFY_BAD; | |
1600 | pvt = mci->pvt_info; | |
eebf11a0 MCC |
1601 | |
1602 | /* | |
1603 | * Just let mcelog handle it if the error is | |
1604 | * outside the memory controller. A memory error | |
1605 | * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0. | |
1606 | * bit 12 has an special meaning. | |
1607 | */ | |
1608 | if ((mce->status & 0xefff) >> 7 != 1) | |
3d78c9af | 1609 | return NOTIFY_DONE; |
eebf11a0 MCC |
1610 | |
1611 | printk("sbridge: HANDLING MCE MEMORY ERROR\n"); | |
1612 | ||
1613 | printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n", | |
1614 | mce->extcpu, mce->mcgstatus, mce->bank, mce->status); | |
1615 | printk("TSC %llx ", mce->tsc); | |
1616 | printk("ADDR %llx ", mce->addr); | |
1617 | printk("MISC %llx ", mce->misc); | |
1618 | ||
1619 | printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n", | |
1620 | mce->cpuvendor, mce->cpuid, mce->time, | |
1621 | mce->socketid, mce->apicid); | |
1622 | ||
eebf11a0 MCC |
1623 | /* Only handle if it is the right mc controller */ |
1624 | if (cpu_data(mce->cpu).phys_proc_id != pvt->sbridge_dev->mc) | |
3d78c9af | 1625 | return NOTIFY_DONE; |
eebf11a0 MCC |
1626 | |
1627 | smp_rmb(); | |
1628 | if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) { | |
1629 | smp_wmb(); | |
1630 | pvt->mce_overrun++; | |
3d78c9af | 1631 | return NOTIFY_DONE; |
eebf11a0 MCC |
1632 | } |
1633 | ||
1634 | /* Copy memory error at the ringbuffer */ | |
1635 | memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce)); | |
1636 | smp_wmb(); | |
1637 | pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN; | |
1638 | ||
1639 | /* Handle fatal errors immediately */ | |
1640 | if (mce->mcgstatus & 1) | |
1641 | sbridge_check_error(mci); | |
1642 | ||
1643 | /* Advice mcelog that the error were handled */ | |
3d78c9af | 1644 | return NOTIFY_STOP; |
eebf11a0 MCC |
1645 | } |
1646 | ||
3d78c9af MCC |
1647 | static struct notifier_block sbridge_mce_dec = { |
1648 | .notifier_call = sbridge_mce_check_error, | |
1649 | }; | |
1650 | ||
eebf11a0 MCC |
1651 | /**************************************************************************** |
1652 | EDAC register/unregister logic | |
1653 | ****************************************************************************/ | |
1654 | ||
1655 | static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev) | |
1656 | { | |
1657 | struct mem_ctl_info *mci = sbridge_dev->mci; | |
1658 | struct sbridge_pvt *pvt; | |
1659 | ||
1660 | if (unlikely(!mci || !mci->pvt_info)) { | |
1661 | debugf0("MC: " __FILE__ ": %s(): dev = %p\n", | |
1662 | __func__, &sbridge_dev->pdev[0]->dev); | |
1663 | ||
1664 | sbridge_printk(KERN_ERR, "Couldn't find mci handler\n"); | |
1665 | return; | |
1666 | } | |
1667 | ||
1668 | pvt = mci->pvt_info; | |
1669 | ||
1670 | debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n", | |
1671 | __func__, mci, &sbridge_dev->pdev[0]->dev); | |
1672 | ||
3653ada5 | 1673 | mce_unregister_decode_chain(&sbridge_mce_dec); |
eebf11a0 MCC |
1674 | |
1675 | /* Remove MC sysfs nodes */ | |
1676 | edac_mc_del_mc(mci->dev); | |
1677 | ||
1678 | debugf1("%s: free mci struct\n", mci->ctl_name); | |
1679 | kfree(mci->ctl_name); | |
1680 | edac_mc_free(mci); | |
1681 | sbridge_dev->mci = NULL; | |
1682 | } | |
1683 | ||
1684 | static int sbridge_register_mci(struct sbridge_dev *sbridge_dev) | |
1685 | { | |
1686 | struct mem_ctl_info *mci; | |
1687 | struct sbridge_pvt *pvt; | |
1688 | int rc, channels, csrows; | |
1689 | ||
1690 | /* Check the number of active and not disabled channels */ | |
1691 | rc = sbridge_get_active_channels(sbridge_dev->bus, &channels, &csrows); | |
1692 | if (unlikely(rc < 0)) | |
1693 | return rc; | |
1694 | ||
1695 | /* allocate a new MC control structure */ | |
1696 | mci = edac_mc_alloc(sizeof(*pvt), csrows, channels, sbridge_dev->mc); | |
1697 | if (unlikely(!mci)) | |
1698 | return -ENOMEM; | |
1699 | ||
1700 | debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n", | |
1701 | __func__, mci, &sbridge_dev->pdev[0]->dev); | |
1702 | ||
1703 | pvt = mci->pvt_info; | |
1704 | memset(pvt, 0, sizeof(*pvt)); | |
1705 | ||
1706 | /* Associate sbridge_dev and mci for future usage */ | |
1707 | pvt->sbridge_dev = sbridge_dev; | |
1708 | sbridge_dev->mci = mci; | |
1709 | ||
1710 | mci->mtype_cap = MEM_FLAG_DDR3; | |
1711 | mci->edac_ctl_cap = EDAC_FLAG_NONE; | |
1712 | mci->edac_cap = EDAC_FLAG_NONE; | |
1713 | mci->mod_name = "sbridge_edac.c"; | |
1714 | mci->mod_ver = SBRIDGE_REVISION; | |
1715 | mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge Socket#%d", mci->mc_idx); | |
1716 | mci->dev_name = pci_name(sbridge_dev->pdev[0]); | |
1717 | mci->ctl_page_to_phys = NULL; | |
1718 | ||
1719 | /* Set the function pointer to an actual operation function */ | |
1720 | mci->edac_check = sbridge_check_error; | |
1721 | ||
1722 | /* Store pci devices at mci for faster access */ | |
1723 | rc = mci_bind_devs(mci, sbridge_dev); | |
1724 | if (unlikely(rc < 0)) | |
1725 | goto fail0; | |
1726 | ||
1727 | /* Get dimm basic config and the memory layout */ | |
1728 | get_dimm_config(mci); | |
1729 | get_memory_layout(mci); | |
1730 | ||
1731 | /* record ptr to the generic device */ | |
1732 | mci->dev = &sbridge_dev->pdev[0]->dev; | |
1733 | ||
1734 | /* add this new MC control structure to EDAC's list of MCs */ | |
1735 | if (unlikely(edac_mc_add_mc(mci))) { | |
1736 | debugf0("MC: " __FILE__ | |
1737 | ": %s(): failed edac_mc_add_mc()\n", __func__); | |
1738 | rc = -EINVAL; | |
1739 | goto fail0; | |
1740 | } | |
1741 | ||
3653ada5 | 1742 | mce_register_decode_chain(&sbridge_mce_dec); |
eebf11a0 | 1743 | return 0; |
eebf11a0 MCC |
1744 | |
1745 | fail0: | |
1746 | kfree(mci->ctl_name); | |
1747 | edac_mc_free(mci); | |
1748 | sbridge_dev->mci = NULL; | |
1749 | return rc; | |
1750 | } | |
1751 | ||
1752 | /* | |
1753 | * sbridge_probe Probe for ONE instance of device to see if it is | |
1754 | * present. | |
1755 | * return: | |
1756 | * 0 for FOUND a device | |
1757 | * < 0 for error code | |
1758 | */ | |
1759 | ||
1760 | static int __devinit sbridge_probe(struct pci_dev *pdev, | |
1761 | const struct pci_device_id *id) | |
1762 | { | |
1763 | int rc; | |
1764 | u8 mc, num_mc = 0; | |
1765 | struct sbridge_dev *sbridge_dev; | |
1766 | ||
1767 | /* get the pci devices we want to reserve for our use */ | |
1768 | mutex_lock(&sbridge_edac_lock); | |
1769 | ||
1770 | /* | |
1771 | * All memory controllers are allocated at the first pass. | |
1772 | */ | |
1773 | if (unlikely(probed >= 1)) { | |
1774 | mutex_unlock(&sbridge_edac_lock); | |
1775 | return -ENODEV; | |
1776 | } | |
1777 | probed++; | |
1778 | ||
1779 | rc = sbridge_get_all_devices(&num_mc); | |
1780 | if (unlikely(rc < 0)) | |
1781 | goto fail0; | |
1782 | mc = 0; | |
1783 | ||
1784 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) { | |
1785 | debugf0("Registering MC#%d (%d of %d)\n", mc, mc + 1, num_mc); | |
1786 | sbridge_dev->mc = mc++; | |
1787 | rc = sbridge_register_mci(sbridge_dev); | |
1788 | if (unlikely(rc < 0)) | |
1789 | goto fail1; | |
1790 | } | |
1791 | ||
1792 | sbridge_printk(KERN_INFO, "Driver loaded.\n"); | |
1793 | ||
1794 | mutex_unlock(&sbridge_edac_lock); | |
1795 | return 0; | |
1796 | ||
1797 | fail1: | |
1798 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) | |
1799 | sbridge_unregister_mci(sbridge_dev); | |
1800 | ||
1801 | sbridge_put_all_devices(); | |
1802 | fail0: | |
1803 | mutex_unlock(&sbridge_edac_lock); | |
1804 | return rc; | |
1805 | } | |
1806 | ||
1807 | /* | |
1808 | * sbridge_remove destructor for one instance of device | |
1809 | * | |
1810 | */ | |
1811 | static void __devexit sbridge_remove(struct pci_dev *pdev) | |
1812 | { | |
1813 | struct sbridge_dev *sbridge_dev; | |
1814 | ||
1815 | debugf0(__FILE__ ": %s()\n", __func__); | |
1816 | ||
1817 | /* | |
1818 | * we have a trouble here: pdev value for removal will be wrong, since | |
1819 | * it will point to the X58 register used to detect that the machine | |
1820 | * is a Nehalem or upper design. However, due to the way several PCI | |
1821 | * devices are grouped together to provide MC functionality, we need | |
1822 | * to use a different method for releasing the devices | |
1823 | */ | |
1824 | ||
1825 | mutex_lock(&sbridge_edac_lock); | |
1826 | ||
1827 | if (unlikely(!probed)) { | |
1828 | mutex_unlock(&sbridge_edac_lock); | |
1829 | return; | |
1830 | } | |
1831 | ||
1832 | list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) | |
1833 | sbridge_unregister_mci(sbridge_dev); | |
1834 | ||
1835 | /* Release PCI resources */ | |
1836 | sbridge_put_all_devices(); | |
1837 | ||
1838 | probed--; | |
1839 | ||
1840 | mutex_unlock(&sbridge_edac_lock); | |
1841 | } | |
1842 | ||
1843 | MODULE_DEVICE_TABLE(pci, sbridge_pci_tbl); | |
1844 | ||
1845 | /* | |
1846 | * sbridge_driver pci_driver structure for this module | |
1847 | * | |
1848 | */ | |
1849 | static struct pci_driver sbridge_driver = { | |
1850 | .name = "sbridge_edac", | |
1851 | .probe = sbridge_probe, | |
1852 | .remove = __devexit_p(sbridge_remove), | |
1853 | .id_table = sbridge_pci_tbl, | |
1854 | }; | |
1855 | ||
1856 | /* | |
1857 | * sbridge_init Module entry function | |
1858 | * Try to initialize this module for its devices | |
1859 | */ | |
1860 | static int __init sbridge_init(void) | |
1861 | { | |
1862 | int pci_rc; | |
1863 | ||
1864 | debugf2("MC: " __FILE__ ": %s()\n", __func__); | |
1865 | ||
1866 | /* Ensure that the OPSTATE is set correctly for POLL or NMI */ | |
1867 | opstate_init(); | |
1868 | ||
1869 | pci_rc = pci_register_driver(&sbridge_driver); | |
1870 | ||
1871 | if (pci_rc >= 0) | |
1872 | return 0; | |
1873 | ||
1874 | sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n", | |
1875 | pci_rc); | |
1876 | ||
1877 | return pci_rc; | |
1878 | } | |
1879 | ||
1880 | /* | |
1881 | * sbridge_exit() Module exit function | |
1882 | * Unregister the driver | |
1883 | */ | |
1884 | static void __exit sbridge_exit(void) | |
1885 | { | |
1886 | debugf2("MC: " __FILE__ ": %s()\n", __func__); | |
1887 | pci_unregister_driver(&sbridge_driver); | |
1888 | } | |
1889 | ||
1890 | module_init(sbridge_init); | |
1891 | module_exit(sbridge_exit); | |
1892 | ||
1893 | module_param(edac_op_state, int, 0444); | |
1894 | MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI"); | |
1895 | ||
1896 | MODULE_LICENSE("GPL"); | |
1897 | MODULE_AUTHOR("Mauro Carvalho Chehab <[email protected]>"); | |
1898 | MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)"); | |
1899 | MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - " | |
1900 | SBRIDGE_REVISION); |