]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/vmalloc.c | |
3 | * | |
4 | * Copyright (C) 1993 Linus Torvalds | |
5 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
6 | * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <[email protected]>, May 2000 | |
7 | * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 | |
930fc45a | 8 | * Numa awareness, Christoph Lameter, SGI, June 2005 |
1da177e4 LT |
9 | */ |
10 | ||
db64fe02 | 11 | #include <linux/vmalloc.h> |
1da177e4 LT |
12 | #include <linux/mm.h> |
13 | #include <linux/module.h> | |
14 | #include <linux/highmem.h> | |
d43c36dc | 15 | #include <linux/sched.h> |
1da177e4 LT |
16 | #include <linux/slab.h> |
17 | #include <linux/spinlock.h> | |
18 | #include <linux/interrupt.h> | |
5f6a6a9c | 19 | #include <linux/proc_fs.h> |
a10aa579 | 20 | #include <linux/seq_file.h> |
3ac7fe5a | 21 | #include <linux/debugobjects.h> |
23016969 | 22 | #include <linux/kallsyms.h> |
db64fe02 NP |
23 | #include <linux/list.h> |
24 | #include <linux/rbtree.h> | |
25 | #include <linux/radix-tree.h> | |
26 | #include <linux/rcupdate.h> | |
f0aa6617 | 27 | #include <linux/pfn.h> |
89219d37 | 28 | #include <linux/kmemleak.h> |
60063497 | 29 | #include <linux/atomic.h> |
32fcfd40 | 30 | #include <linux/llist.h> |
1da177e4 LT |
31 | #include <asm/uaccess.h> |
32 | #include <asm/tlbflush.h> | |
2dca6999 | 33 | #include <asm/shmparam.h> |
1da177e4 | 34 | |
32fcfd40 AV |
35 | struct vfree_deferred { |
36 | struct llist_head list; | |
37 | struct work_struct wq; | |
38 | }; | |
39 | static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); | |
40 | ||
41 | static void __vunmap(const void *, int); | |
42 | ||
43 | static void free_work(struct work_struct *w) | |
44 | { | |
45 | struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); | |
46 | struct llist_node *llnode = llist_del_all(&p->list); | |
47 | while (llnode) { | |
48 | void *p = llnode; | |
49 | llnode = llist_next(llnode); | |
50 | __vunmap(p, 1); | |
51 | } | |
52 | } | |
53 | ||
db64fe02 | 54 | /*** Page table manipulation functions ***/ |
b221385b | 55 | |
1da177e4 LT |
56 | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) |
57 | { | |
58 | pte_t *pte; | |
59 | ||
60 | pte = pte_offset_kernel(pmd, addr); | |
61 | do { | |
62 | pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); | |
63 | WARN_ON(!pte_none(ptent) && !pte_present(ptent)); | |
64 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
65 | } | |
66 | ||
db64fe02 | 67 | static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) |
1da177e4 LT |
68 | { |
69 | pmd_t *pmd; | |
70 | unsigned long next; | |
71 | ||
72 | pmd = pmd_offset(pud, addr); | |
73 | do { | |
74 | next = pmd_addr_end(addr, end); | |
75 | if (pmd_none_or_clear_bad(pmd)) | |
76 | continue; | |
77 | vunmap_pte_range(pmd, addr, next); | |
78 | } while (pmd++, addr = next, addr != end); | |
79 | } | |
80 | ||
db64fe02 | 81 | static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) |
1da177e4 LT |
82 | { |
83 | pud_t *pud; | |
84 | unsigned long next; | |
85 | ||
86 | pud = pud_offset(pgd, addr); | |
87 | do { | |
88 | next = pud_addr_end(addr, end); | |
89 | if (pud_none_or_clear_bad(pud)) | |
90 | continue; | |
91 | vunmap_pmd_range(pud, addr, next); | |
92 | } while (pud++, addr = next, addr != end); | |
93 | } | |
94 | ||
db64fe02 | 95 | static void vunmap_page_range(unsigned long addr, unsigned long end) |
1da177e4 LT |
96 | { |
97 | pgd_t *pgd; | |
98 | unsigned long next; | |
1da177e4 LT |
99 | |
100 | BUG_ON(addr >= end); | |
101 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
102 | do { |
103 | next = pgd_addr_end(addr, end); | |
104 | if (pgd_none_or_clear_bad(pgd)) | |
105 | continue; | |
106 | vunmap_pud_range(pgd, addr, next); | |
107 | } while (pgd++, addr = next, addr != end); | |
1da177e4 LT |
108 | } |
109 | ||
110 | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, | |
db64fe02 | 111 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) |
1da177e4 LT |
112 | { |
113 | pte_t *pte; | |
114 | ||
db64fe02 NP |
115 | /* |
116 | * nr is a running index into the array which helps higher level | |
117 | * callers keep track of where we're up to. | |
118 | */ | |
119 | ||
872fec16 | 120 | pte = pte_alloc_kernel(pmd, addr); |
1da177e4 LT |
121 | if (!pte) |
122 | return -ENOMEM; | |
123 | do { | |
db64fe02 NP |
124 | struct page *page = pages[*nr]; |
125 | ||
126 | if (WARN_ON(!pte_none(*pte))) | |
127 | return -EBUSY; | |
128 | if (WARN_ON(!page)) | |
1da177e4 LT |
129 | return -ENOMEM; |
130 | set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); | |
db64fe02 | 131 | (*nr)++; |
1da177e4 LT |
132 | } while (pte++, addr += PAGE_SIZE, addr != end); |
133 | return 0; | |
134 | } | |
135 | ||
db64fe02 NP |
136 | static int vmap_pmd_range(pud_t *pud, unsigned long addr, |
137 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | |
1da177e4 LT |
138 | { |
139 | pmd_t *pmd; | |
140 | unsigned long next; | |
141 | ||
142 | pmd = pmd_alloc(&init_mm, pud, addr); | |
143 | if (!pmd) | |
144 | return -ENOMEM; | |
145 | do { | |
146 | next = pmd_addr_end(addr, end); | |
db64fe02 | 147 | if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) |
1da177e4 LT |
148 | return -ENOMEM; |
149 | } while (pmd++, addr = next, addr != end); | |
150 | return 0; | |
151 | } | |
152 | ||
db64fe02 NP |
153 | static int vmap_pud_range(pgd_t *pgd, unsigned long addr, |
154 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | |
1da177e4 LT |
155 | { |
156 | pud_t *pud; | |
157 | unsigned long next; | |
158 | ||
159 | pud = pud_alloc(&init_mm, pgd, addr); | |
160 | if (!pud) | |
161 | return -ENOMEM; | |
162 | do { | |
163 | next = pud_addr_end(addr, end); | |
db64fe02 | 164 | if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) |
1da177e4 LT |
165 | return -ENOMEM; |
166 | } while (pud++, addr = next, addr != end); | |
167 | return 0; | |
168 | } | |
169 | ||
db64fe02 NP |
170 | /* |
171 | * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and | |
172 | * will have pfns corresponding to the "pages" array. | |
173 | * | |
174 | * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] | |
175 | */ | |
8fc48985 TH |
176 | static int vmap_page_range_noflush(unsigned long start, unsigned long end, |
177 | pgprot_t prot, struct page **pages) | |
1da177e4 LT |
178 | { |
179 | pgd_t *pgd; | |
180 | unsigned long next; | |
2e4e27c7 | 181 | unsigned long addr = start; |
db64fe02 NP |
182 | int err = 0; |
183 | int nr = 0; | |
1da177e4 LT |
184 | |
185 | BUG_ON(addr >= end); | |
186 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
187 | do { |
188 | next = pgd_addr_end(addr, end); | |
db64fe02 | 189 | err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); |
1da177e4 | 190 | if (err) |
bf88c8c8 | 191 | return err; |
1da177e4 | 192 | } while (pgd++, addr = next, addr != end); |
db64fe02 | 193 | |
db64fe02 | 194 | return nr; |
1da177e4 LT |
195 | } |
196 | ||
8fc48985 TH |
197 | static int vmap_page_range(unsigned long start, unsigned long end, |
198 | pgprot_t prot, struct page **pages) | |
199 | { | |
200 | int ret; | |
201 | ||
202 | ret = vmap_page_range_noflush(start, end, prot, pages); | |
203 | flush_cache_vmap(start, end); | |
204 | return ret; | |
205 | } | |
206 | ||
81ac3ad9 | 207 | int is_vmalloc_or_module_addr(const void *x) |
73bdf0a6 LT |
208 | { |
209 | /* | |
ab4f2ee1 | 210 | * ARM, x86-64 and sparc64 put modules in a special place, |
73bdf0a6 LT |
211 | * and fall back on vmalloc() if that fails. Others |
212 | * just put it in the vmalloc space. | |
213 | */ | |
214 | #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) | |
215 | unsigned long addr = (unsigned long)x; | |
216 | if (addr >= MODULES_VADDR && addr < MODULES_END) | |
217 | return 1; | |
218 | #endif | |
219 | return is_vmalloc_addr(x); | |
220 | } | |
221 | ||
48667e7a | 222 | /* |
db64fe02 | 223 | * Walk a vmap address to the struct page it maps. |
48667e7a | 224 | */ |
b3bdda02 | 225 | struct page *vmalloc_to_page(const void *vmalloc_addr) |
48667e7a CL |
226 | { |
227 | unsigned long addr = (unsigned long) vmalloc_addr; | |
228 | struct page *page = NULL; | |
229 | pgd_t *pgd = pgd_offset_k(addr); | |
48667e7a | 230 | |
7aa413de IM |
231 | /* |
232 | * XXX we might need to change this if we add VIRTUAL_BUG_ON for | |
233 | * architectures that do not vmalloc module space | |
234 | */ | |
73bdf0a6 | 235 | VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); |
59ea7463 | 236 | |
48667e7a | 237 | if (!pgd_none(*pgd)) { |
db64fe02 | 238 | pud_t *pud = pud_offset(pgd, addr); |
48667e7a | 239 | if (!pud_none(*pud)) { |
db64fe02 | 240 | pmd_t *pmd = pmd_offset(pud, addr); |
48667e7a | 241 | if (!pmd_none(*pmd)) { |
db64fe02 NP |
242 | pte_t *ptep, pte; |
243 | ||
48667e7a CL |
244 | ptep = pte_offset_map(pmd, addr); |
245 | pte = *ptep; | |
246 | if (pte_present(pte)) | |
247 | page = pte_page(pte); | |
248 | pte_unmap(ptep); | |
249 | } | |
250 | } | |
251 | } | |
252 | return page; | |
253 | } | |
254 | EXPORT_SYMBOL(vmalloc_to_page); | |
255 | ||
256 | /* | |
257 | * Map a vmalloc()-space virtual address to the physical page frame number. | |
258 | */ | |
b3bdda02 | 259 | unsigned long vmalloc_to_pfn(const void *vmalloc_addr) |
48667e7a CL |
260 | { |
261 | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); | |
262 | } | |
263 | EXPORT_SYMBOL(vmalloc_to_pfn); | |
264 | ||
db64fe02 NP |
265 | |
266 | /*** Global kva allocator ***/ | |
267 | ||
268 | #define VM_LAZY_FREE 0x01 | |
269 | #define VM_LAZY_FREEING 0x02 | |
270 | #define VM_VM_AREA 0x04 | |
271 | ||
db64fe02 | 272 | static DEFINE_SPINLOCK(vmap_area_lock); |
f1c4069e JK |
273 | /* Export for kexec only */ |
274 | LIST_HEAD(vmap_area_list); | |
89699605 NP |
275 | static struct rb_root vmap_area_root = RB_ROOT; |
276 | ||
277 | /* The vmap cache globals are protected by vmap_area_lock */ | |
278 | static struct rb_node *free_vmap_cache; | |
279 | static unsigned long cached_hole_size; | |
280 | static unsigned long cached_vstart; | |
281 | static unsigned long cached_align; | |
282 | ||
ca23e405 | 283 | static unsigned long vmap_area_pcpu_hole; |
db64fe02 NP |
284 | |
285 | static struct vmap_area *__find_vmap_area(unsigned long addr) | |
1da177e4 | 286 | { |
db64fe02 NP |
287 | struct rb_node *n = vmap_area_root.rb_node; |
288 | ||
289 | while (n) { | |
290 | struct vmap_area *va; | |
291 | ||
292 | va = rb_entry(n, struct vmap_area, rb_node); | |
293 | if (addr < va->va_start) | |
294 | n = n->rb_left; | |
cef2ac3f | 295 | else if (addr >= va->va_end) |
db64fe02 NP |
296 | n = n->rb_right; |
297 | else | |
298 | return va; | |
299 | } | |
300 | ||
301 | return NULL; | |
302 | } | |
303 | ||
304 | static void __insert_vmap_area(struct vmap_area *va) | |
305 | { | |
306 | struct rb_node **p = &vmap_area_root.rb_node; | |
307 | struct rb_node *parent = NULL; | |
308 | struct rb_node *tmp; | |
309 | ||
310 | while (*p) { | |
170168d0 | 311 | struct vmap_area *tmp_va; |
db64fe02 NP |
312 | |
313 | parent = *p; | |
170168d0 NK |
314 | tmp_va = rb_entry(parent, struct vmap_area, rb_node); |
315 | if (va->va_start < tmp_va->va_end) | |
db64fe02 | 316 | p = &(*p)->rb_left; |
170168d0 | 317 | else if (va->va_end > tmp_va->va_start) |
db64fe02 NP |
318 | p = &(*p)->rb_right; |
319 | else | |
320 | BUG(); | |
321 | } | |
322 | ||
323 | rb_link_node(&va->rb_node, parent, p); | |
324 | rb_insert_color(&va->rb_node, &vmap_area_root); | |
325 | ||
4341fa45 | 326 | /* address-sort this list */ |
db64fe02 NP |
327 | tmp = rb_prev(&va->rb_node); |
328 | if (tmp) { | |
329 | struct vmap_area *prev; | |
330 | prev = rb_entry(tmp, struct vmap_area, rb_node); | |
331 | list_add_rcu(&va->list, &prev->list); | |
332 | } else | |
333 | list_add_rcu(&va->list, &vmap_area_list); | |
334 | } | |
335 | ||
336 | static void purge_vmap_area_lazy(void); | |
337 | ||
338 | /* | |
339 | * Allocate a region of KVA of the specified size and alignment, within the | |
340 | * vstart and vend. | |
341 | */ | |
342 | static struct vmap_area *alloc_vmap_area(unsigned long size, | |
343 | unsigned long align, | |
344 | unsigned long vstart, unsigned long vend, | |
345 | int node, gfp_t gfp_mask) | |
346 | { | |
347 | struct vmap_area *va; | |
348 | struct rb_node *n; | |
1da177e4 | 349 | unsigned long addr; |
db64fe02 | 350 | int purged = 0; |
89699605 | 351 | struct vmap_area *first; |
db64fe02 | 352 | |
7766970c | 353 | BUG_ON(!size); |
db64fe02 | 354 | BUG_ON(size & ~PAGE_MASK); |
89699605 | 355 | BUG_ON(!is_power_of_2(align)); |
db64fe02 | 356 | |
db64fe02 NP |
357 | va = kmalloc_node(sizeof(struct vmap_area), |
358 | gfp_mask & GFP_RECLAIM_MASK, node); | |
359 | if (unlikely(!va)) | |
360 | return ERR_PTR(-ENOMEM); | |
361 | ||
362 | retry: | |
363 | spin_lock(&vmap_area_lock); | |
89699605 NP |
364 | /* |
365 | * Invalidate cache if we have more permissive parameters. | |
366 | * cached_hole_size notes the largest hole noticed _below_ | |
367 | * the vmap_area cached in free_vmap_cache: if size fits | |
368 | * into that hole, we want to scan from vstart to reuse | |
369 | * the hole instead of allocating above free_vmap_cache. | |
370 | * Note that __free_vmap_area may update free_vmap_cache | |
371 | * without updating cached_hole_size or cached_align. | |
372 | */ | |
373 | if (!free_vmap_cache || | |
374 | size < cached_hole_size || | |
375 | vstart < cached_vstart || | |
376 | align < cached_align) { | |
377 | nocache: | |
378 | cached_hole_size = 0; | |
379 | free_vmap_cache = NULL; | |
380 | } | |
381 | /* record if we encounter less permissive parameters */ | |
382 | cached_vstart = vstart; | |
383 | cached_align = align; | |
384 | ||
385 | /* find starting point for our search */ | |
386 | if (free_vmap_cache) { | |
387 | first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); | |
248ac0e1 | 388 | addr = ALIGN(first->va_end, align); |
89699605 NP |
389 | if (addr < vstart) |
390 | goto nocache; | |
bcb615a8 | 391 | if (addr + size < addr) |
89699605 NP |
392 | goto overflow; |
393 | ||
394 | } else { | |
395 | addr = ALIGN(vstart, align); | |
bcb615a8 | 396 | if (addr + size < addr) |
89699605 NP |
397 | goto overflow; |
398 | ||
399 | n = vmap_area_root.rb_node; | |
400 | first = NULL; | |
401 | ||
402 | while (n) { | |
db64fe02 NP |
403 | struct vmap_area *tmp; |
404 | tmp = rb_entry(n, struct vmap_area, rb_node); | |
405 | if (tmp->va_end >= addr) { | |
db64fe02 | 406 | first = tmp; |
89699605 NP |
407 | if (tmp->va_start <= addr) |
408 | break; | |
409 | n = n->rb_left; | |
410 | } else | |
db64fe02 | 411 | n = n->rb_right; |
89699605 | 412 | } |
db64fe02 NP |
413 | |
414 | if (!first) | |
415 | goto found; | |
db64fe02 | 416 | } |
89699605 NP |
417 | |
418 | /* from the starting point, walk areas until a suitable hole is found */ | |
248ac0e1 | 419 | while (addr + size > first->va_start && addr + size <= vend) { |
89699605 NP |
420 | if (addr + cached_hole_size < first->va_start) |
421 | cached_hole_size = first->va_start - addr; | |
248ac0e1 | 422 | addr = ALIGN(first->va_end, align); |
bcb615a8 | 423 | if (addr + size < addr) |
89699605 NP |
424 | goto overflow; |
425 | ||
92ca922f | 426 | if (list_is_last(&first->list, &vmap_area_list)) |
89699605 | 427 | goto found; |
92ca922f H |
428 | |
429 | first = list_entry(first->list.next, | |
430 | struct vmap_area, list); | |
db64fe02 NP |
431 | } |
432 | ||
89699605 NP |
433 | found: |
434 | if (addr + size > vend) | |
435 | goto overflow; | |
db64fe02 NP |
436 | |
437 | va->va_start = addr; | |
438 | va->va_end = addr + size; | |
439 | va->flags = 0; | |
440 | __insert_vmap_area(va); | |
89699605 | 441 | free_vmap_cache = &va->rb_node; |
db64fe02 NP |
442 | spin_unlock(&vmap_area_lock); |
443 | ||
89699605 NP |
444 | BUG_ON(va->va_start & (align-1)); |
445 | BUG_ON(va->va_start < vstart); | |
446 | BUG_ON(va->va_end > vend); | |
447 | ||
db64fe02 | 448 | return va; |
89699605 NP |
449 | |
450 | overflow: | |
451 | spin_unlock(&vmap_area_lock); | |
452 | if (!purged) { | |
453 | purge_vmap_area_lazy(); | |
454 | purged = 1; | |
455 | goto retry; | |
456 | } | |
457 | if (printk_ratelimit()) | |
458 | printk(KERN_WARNING | |
459 | "vmap allocation for size %lu failed: " | |
460 | "use vmalloc=<size> to increase size.\n", size); | |
461 | kfree(va); | |
462 | return ERR_PTR(-EBUSY); | |
db64fe02 NP |
463 | } |
464 | ||
db64fe02 NP |
465 | static void __free_vmap_area(struct vmap_area *va) |
466 | { | |
467 | BUG_ON(RB_EMPTY_NODE(&va->rb_node)); | |
89699605 NP |
468 | |
469 | if (free_vmap_cache) { | |
470 | if (va->va_end < cached_vstart) { | |
471 | free_vmap_cache = NULL; | |
472 | } else { | |
473 | struct vmap_area *cache; | |
474 | cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); | |
475 | if (va->va_start <= cache->va_start) { | |
476 | free_vmap_cache = rb_prev(&va->rb_node); | |
477 | /* | |
478 | * We don't try to update cached_hole_size or | |
479 | * cached_align, but it won't go very wrong. | |
480 | */ | |
481 | } | |
482 | } | |
483 | } | |
db64fe02 NP |
484 | rb_erase(&va->rb_node, &vmap_area_root); |
485 | RB_CLEAR_NODE(&va->rb_node); | |
486 | list_del_rcu(&va->list); | |
487 | ||
ca23e405 TH |
488 | /* |
489 | * Track the highest possible candidate for pcpu area | |
490 | * allocation. Areas outside of vmalloc area can be returned | |
491 | * here too, consider only end addresses which fall inside | |
492 | * vmalloc area proper. | |
493 | */ | |
494 | if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) | |
495 | vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); | |
496 | ||
14769de9 | 497 | kfree_rcu(va, rcu_head); |
db64fe02 NP |
498 | } |
499 | ||
500 | /* | |
501 | * Free a region of KVA allocated by alloc_vmap_area | |
502 | */ | |
503 | static void free_vmap_area(struct vmap_area *va) | |
504 | { | |
505 | spin_lock(&vmap_area_lock); | |
506 | __free_vmap_area(va); | |
507 | spin_unlock(&vmap_area_lock); | |
508 | } | |
509 | ||
510 | /* | |
511 | * Clear the pagetable entries of a given vmap_area | |
512 | */ | |
513 | static void unmap_vmap_area(struct vmap_area *va) | |
514 | { | |
515 | vunmap_page_range(va->va_start, va->va_end); | |
516 | } | |
517 | ||
cd52858c NP |
518 | static void vmap_debug_free_range(unsigned long start, unsigned long end) |
519 | { | |
520 | /* | |
521 | * Unmap page tables and force a TLB flush immediately if | |
522 | * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free | |
523 | * bugs similarly to those in linear kernel virtual address | |
524 | * space after a page has been freed. | |
525 | * | |
526 | * All the lazy freeing logic is still retained, in order to | |
527 | * minimise intrusiveness of this debugging feature. | |
528 | * | |
529 | * This is going to be *slow* (linear kernel virtual address | |
530 | * debugging doesn't do a broadcast TLB flush so it is a lot | |
531 | * faster). | |
532 | */ | |
533 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
534 | vunmap_page_range(start, end); | |
535 | flush_tlb_kernel_range(start, end); | |
536 | #endif | |
537 | } | |
538 | ||
db64fe02 NP |
539 | /* |
540 | * lazy_max_pages is the maximum amount of virtual address space we gather up | |
541 | * before attempting to purge with a TLB flush. | |
542 | * | |
543 | * There is a tradeoff here: a larger number will cover more kernel page tables | |
544 | * and take slightly longer to purge, but it will linearly reduce the number of | |
545 | * global TLB flushes that must be performed. It would seem natural to scale | |
546 | * this number up linearly with the number of CPUs (because vmapping activity | |
547 | * could also scale linearly with the number of CPUs), however it is likely | |
548 | * that in practice, workloads might be constrained in other ways that mean | |
549 | * vmap activity will not scale linearly with CPUs. Also, I want to be | |
550 | * conservative and not introduce a big latency on huge systems, so go with | |
551 | * a less aggressive log scale. It will still be an improvement over the old | |
552 | * code, and it will be simple to change the scale factor if we find that it | |
553 | * becomes a problem on bigger systems. | |
554 | */ | |
555 | static unsigned long lazy_max_pages(void) | |
556 | { | |
557 | unsigned int log; | |
558 | ||
559 | log = fls(num_online_cpus()); | |
560 | ||
561 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); | |
562 | } | |
563 | ||
564 | static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); | |
565 | ||
02b709df NP |
566 | /* for per-CPU blocks */ |
567 | static void purge_fragmented_blocks_allcpus(void); | |
568 | ||
3ee48b6a CW |
569 | /* |
570 | * called before a call to iounmap() if the caller wants vm_area_struct's | |
571 | * immediately freed. | |
572 | */ | |
573 | void set_iounmap_nonlazy(void) | |
574 | { | |
575 | atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); | |
576 | } | |
577 | ||
db64fe02 NP |
578 | /* |
579 | * Purges all lazily-freed vmap areas. | |
580 | * | |
581 | * If sync is 0 then don't purge if there is already a purge in progress. | |
582 | * If force_flush is 1, then flush kernel TLBs between *start and *end even | |
583 | * if we found no lazy vmap areas to unmap (callers can use this to optimise | |
584 | * their own TLB flushing). | |
585 | * Returns with *start = min(*start, lowest purged address) | |
586 | * *end = max(*end, highest purged address) | |
587 | */ | |
588 | static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, | |
589 | int sync, int force_flush) | |
590 | { | |
46666d8a | 591 | static DEFINE_SPINLOCK(purge_lock); |
db64fe02 NP |
592 | LIST_HEAD(valist); |
593 | struct vmap_area *va; | |
cbb76676 | 594 | struct vmap_area *n_va; |
db64fe02 NP |
595 | int nr = 0; |
596 | ||
597 | /* | |
598 | * If sync is 0 but force_flush is 1, we'll go sync anyway but callers | |
599 | * should not expect such behaviour. This just simplifies locking for | |
600 | * the case that isn't actually used at the moment anyway. | |
601 | */ | |
602 | if (!sync && !force_flush) { | |
46666d8a | 603 | if (!spin_trylock(&purge_lock)) |
db64fe02 NP |
604 | return; |
605 | } else | |
46666d8a | 606 | spin_lock(&purge_lock); |
db64fe02 | 607 | |
02b709df NP |
608 | if (sync) |
609 | purge_fragmented_blocks_allcpus(); | |
610 | ||
db64fe02 NP |
611 | rcu_read_lock(); |
612 | list_for_each_entry_rcu(va, &vmap_area_list, list) { | |
613 | if (va->flags & VM_LAZY_FREE) { | |
614 | if (va->va_start < *start) | |
615 | *start = va->va_start; | |
616 | if (va->va_end > *end) | |
617 | *end = va->va_end; | |
618 | nr += (va->va_end - va->va_start) >> PAGE_SHIFT; | |
db64fe02 NP |
619 | list_add_tail(&va->purge_list, &valist); |
620 | va->flags |= VM_LAZY_FREEING; | |
621 | va->flags &= ~VM_LAZY_FREE; | |
622 | } | |
623 | } | |
624 | rcu_read_unlock(); | |
625 | ||
88f50044 | 626 | if (nr) |
db64fe02 | 627 | atomic_sub(nr, &vmap_lazy_nr); |
db64fe02 NP |
628 | |
629 | if (nr || force_flush) | |
630 | flush_tlb_kernel_range(*start, *end); | |
631 | ||
632 | if (nr) { | |
633 | spin_lock(&vmap_area_lock); | |
cbb76676 | 634 | list_for_each_entry_safe(va, n_va, &valist, purge_list) |
db64fe02 NP |
635 | __free_vmap_area(va); |
636 | spin_unlock(&vmap_area_lock); | |
637 | } | |
46666d8a | 638 | spin_unlock(&purge_lock); |
db64fe02 NP |
639 | } |
640 | ||
496850e5 NP |
641 | /* |
642 | * Kick off a purge of the outstanding lazy areas. Don't bother if somebody | |
643 | * is already purging. | |
644 | */ | |
645 | static void try_purge_vmap_area_lazy(void) | |
646 | { | |
647 | unsigned long start = ULONG_MAX, end = 0; | |
648 | ||
649 | __purge_vmap_area_lazy(&start, &end, 0, 0); | |
650 | } | |
651 | ||
db64fe02 NP |
652 | /* |
653 | * Kick off a purge of the outstanding lazy areas. | |
654 | */ | |
655 | static void purge_vmap_area_lazy(void) | |
656 | { | |
657 | unsigned long start = ULONG_MAX, end = 0; | |
658 | ||
496850e5 | 659 | __purge_vmap_area_lazy(&start, &end, 1, 0); |
db64fe02 NP |
660 | } |
661 | ||
662 | /* | |
64141da5 JF |
663 | * Free a vmap area, caller ensuring that the area has been unmapped |
664 | * and flush_cache_vunmap had been called for the correct range | |
665 | * previously. | |
db64fe02 | 666 | */ |
64141da5 | 667 | static void free_vmap_area_noflush(struct vmap_area *va) |
db64fe02 NP |
668 | { |
669 | va->flags |= VM_LAZY_FREE; | |
670 | atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); | |
671 | if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) | |
496850e5 | 672 | try_purge_vmap_area_lazy(); |
db64fe02 NP |
673 | } |
674 | ||
64141da5 JF |
675 | /* |
676 | * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been | |
677 | * called for the correct range previously. | |
678 | */ | |
679 | static void free_unmap_vmap_area_noflush(struct vmap_area *va) | |
680 | { | |
681 | unmap_vmap_area(va); | |
682 | free_vmap_area_noflush(va); | |
683 | } | |
684 | ||
b29acbdc NP |
685 | /* |
686 | * Free and unmap a vmap area | |
687 | */ | |
688 | static void free_unmap_vmap_area(struct vmap_area *va) | |
689 | { | |
690 | flush_cache_vunmap(va->va_start, va->va_end); | |
691 | free_unmap_vmap_area_noflush(va); | |
692 | } | |
693 | ||
db64fe02 NP |
694 | static struct vmap_area *find_vmap_area(unsigned long addr) |
695 | { | |
696 | struct vmap_area *va; | |
697 | ||
698 | spin_lock(&vmap_area_lock); | |
699 | va = __find_vmap_area(addr); | |
700 | spin_unlock(&vmap_area_lock); | |
701 | ||
702 | return va; | |
703 | } | |
704 | ||
705 | static void free_unmap_vmap_area_addr(unsigned long addr) | |
706 | { | |
707 | struct vmap_area *va; | |
708 | ||
709 | va = find_vmap_area(addr); | |
710 | BUG_ON(!va); | |
711 | free_unmap_vmap_area(va); | |
712 | } | |
713 | ||
714 | ||
715 | /*** Per cpu kva allocator ***/ | |
716 | ||
717 | /* | |
718 | * vmap space is limited especially on 32 bit architectures. Ensure there is | |
719 | * room for at least 16 percpu vmap blocks per CPU. | |
720 | */ | |
721 | /* | |
722 | * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able | |
723 | * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess | |
724 | * instead (we just need a rough idea) | |
725 | */ | |
726 | #if BITS_PER_LONG == 32 | |
727 | #define VMALLOC_SPACE (128UL*1024*1024) | |
728 | #else | |
729 | #define VMALLOC_SPACE (128UL*1024*1024*1024) | |
730 | #endif | |
731 | ||
732 | #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) | |
733 | #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ | |
734 | #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ | |
735 | #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) | |
736 | #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ | |
737 | #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ | |
f982f915 CL |
738 | #define VMAP_BBMAP_BITS \ |
739 | VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ | |
740 | VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ | |
741 | VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) | |
db64fe02 NP |
742 | |
743 | #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) | |
744 | ||
9b463334 JF |
745 | static bool vmap_initialized __read_mostly = false; |
746 | ||
db64fe02 NP |
747 | struct vmap_block_queue { |
748 | spinlock_t lock; | |
749 | struct list_head free; | |
db64fe02 NP |
750 | }; |
751 | ||
752 | struct vmap_block { | |
753 | spinlock_t lock; | |
754 | struct vmap_area *va; | |
db64fe02 | 755 | unsigned long free, dirty; |
db64fe02 | 756 | DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); |
de560423 NP |
757 | struct list_head free_list; |
758 | struct rcu_head rcu_head; | |
02b709df | 759 | struct list_head purge; |
db64fe02 NP |
760 | }; |
761 | ||
762 | /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ | |
763 | static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); | |
764 | ||
765 | /* | |
766 | * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block | |
767 | * in the free path. Could get rid of this if we change the API to return a | |
768 | * "cookie" from alloc, to be passed to free. But no big deal yet. | |
769 | */ | |
770 | static DEFINE_SPINLOCK(vmap_block_tree_lock); | |
771 | static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); | |
772 | ||
773 | /* | |
774 | * We should probably have a fallback mechanism to allocate virtual memory | |
775 | * out of partially filled vmap blocks. However vmap block sizing should be | |
776 | * fairly reasonable according to the vmalloc size, so it shouldn't be a | |
777 | * big problem. | |
778 | */ | |
779 | ||
780 | static unsigned long addr_to_vb_idx(unsigned long addr) | |
781 | { | |
782 | addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); | |
783 | addr /= VMAP_BLOCK_SIZE; | |
784 | return addr; | |
785 | } | |
786 | ||
787 | static struct vmap_block *new_vmap_block(gfp_t gfp_mask) | |
788 | { | |
789 | struct vmap_block_queue *vbq; | |
790 | struct vmap_block *vb; | |
791 | struct vmap_area *va; | |
792 | unsigned long vb_idx; | |
793 | int node, err; | |
794 | ||
795 | node = numa_node_id(); | |
796 | ||
797 | vb = kmalloc_node(sizeof(struct vmap_block), | |
798 | gfp_mask & GFP_RECLAIM_MASK, node); | |
799 | if (unlikely(!vb)) | |
800 | return ERR_PTR(-ENOMEM); | |
801 | ||
802 | va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, | |
803 | VMALLOC_START, VMALLOC_END, | |
804 | node, gfp_mask); | |
ddf9c6d4 | 805 | if (IS_ERR(va)) { |
db64fe02 | 806 | kfree(vb); |
e7d86340 | 807 | return ERR_CAST(va); |
db64fe02 NP |
808 | } |
809 | ||
810 | err = radix_tree_preload(gfp_mask); | |
811 | if (unlikely(err)) { | |
812 | kfree(vb); | |
813 | free_vmap_area(va); | |
814 | return ERR_PTR(err); | |
815 | } | |
816 | ||
817 | spin_lock_init(&vb->lock); | |
818 | vb->va = va; | |
819 | vb->free = VMAP_BBMAP_BITS; | |
820 | vb->dirty = 0; | |
db64fe02 NP |
821 | bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); |
822 | INIT_LIST_HEAD(&vb->free_list); | |
db64fe02 NP |
823 | |
824 | vb_idx = addr_to_vb_idx(va->va_start); | |
825 | spin_lock(&vmap_block_tree_lock); | |
826 | err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); | |
827 | spin_unlock(&vmap_block_tree_lock); | |
828 | BUG_ON(err); | |
829 | radix_tree_preload_end(); | |
830 | ||
831 | vbq = &get_cpu_var(vmap_block_queue); | |
db64fe02 | 832 | spin_lock(&vbq->lock); |
de560423 | 833 | list_add_rcu(&vb->free_list, &vbq->free); |
db64fe02 | 834 | spin_unlock(&vbq->lock); |
3f04ba85 | 835 | put_cpu_var(vmap_block_queue); |
db64fe02 NP |
836 | |
837 | return vb; | |
838 | } | |
839 | ||
db64fe02 NP |
840 | static void free_vmap_block(struct vmap_block *vb) |
841 | { | |
842 | struct vmap_block *tmp; | |
843 | unsigned long vb_idx; | |
844 | ||
db64fe02 NP |
845 | vb_idx = addr_to_vb_idx(vb->va->va_start); |
846 | spin_lock(&vmap_block_tree_lock); | |
847 | tmp = radix_tree_delete(&vmap_block_tree, vb_idx); | |
848 | spin_unlock(&vmap_block_tree_lock); | |
849 | BUG_ON(tmp != vb); | |
850 | ||
64141da5 | 851 | free_vmap_area_noflush(vb->va); |
22a3c7d1 | 852 | kfree_rcu(vb, rcu_head); |
db64fe02 NP |
853 | } |
854 | ||
02b709df NP |
855 | static void purge_fragmented_blocks(int cpu) |
856 | { | |
857 | LIST_HEAD(purge); | |
858 | struct vmap_block *vb; | |
859 | struct vmap_block *n_vb; | |
860 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
861 | ||
862 | rcu_read_lock(); | |
863 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
864 | ||
865 | if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) | |
866 | continue; | |
867 | ||
868 | spin_lock(&vb->lock); | |
869 | if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { | |
870 | vb->free = 0; /* prevent further allocs after releasing lock */ | |
871 | vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ | |
02b709df NP |
872 | bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); |
873 | spin_lock(&vbq->lock); | |
874 | list_del_rcu(&vb->free_list); | |
875 | spin_unlock(&vbq->lock); | |
876 | spin_unlock(&vb->lock); | |
877 | list_add_tail(&vb->purge, &purge); | |
878 | } else | |
879 | spin_unlock(&vb->lock); | |
880 | } | |
881 | rcu_read_unlock(); | |
882 | ||
883 | list_for_each_entry_safe(vb, n_vb, &purge, purge) { | |
884 | list_del(&vb->purge); | |
885 | free_vmap_block(vb); | |
886 | } | |
887 | } | |
888 | ||
02b709df NP |
889 | static void purge_fragmented_blocks_allcpus(void) |
890 | { | |
891 | int cpu; | |
892 | ||
893 | for_each_possible_cpu(cpu) | |
894 | purge_fragmented_blocks(cpu); | |
895 | } | |
896 | ||
db64fe02 NP |
897 | static void *vb_alloc(unsigned long size, gfp_t gfp_mask) |
898 | { | |
899 | struct vmap_block_queue *vbq; | |
900 | struct vmap_block *vb; | |
901 | unsigned long addr = 0; | |
902 | unsigned int order; | |
903 | ||
904 | BUG_ON(size & ~PAGE_MASK); | |
905 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | |
aa91c4d8 JK |
906 | if (WARN_ON(size == 0)) { |
907 | /* | |
908 | * Allocating 0 bytes isn't what caller wants since | |
909 | * get_order(0) returns funny result. Just warn and terminate | |
910 | * early. | |
911 | */ | |
912 | return NULL; | |
913 | } | |
db64fe02 NP |
914 | order = get_order(size); |
915 | ||
916 | again: | |
917 | rcu_read_lock(); | |
918 | vbq = &get_cpu_var(vmap_block_queue); | |
919 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
920 | int i; | |
921 | ||
922 | spin_lock(&vb->lock); | |
02b709df NP |
923 | if (vb->free < 1UL << order) |
924 | goto next; | |
925 | ||
3fcd76e8 | 926 | i = VMAP_BBMAP_BITS - vb->free; |
02b709df NP |
927 | addr = vb->va->va_start + (i << PAGE_SHIFT); |
928 | BUG_ON(addr_to_vb_idx(addr) != | |
929 | addr_to_vb_idx(vb->va->va_start)); | |
930 | vb->free -= 1UL << order; | |
931 | if (vb->free == 0) { | |
932 | spin_lock(&vbq->lock); | |
933 | list_del_rcu(&vb->free_list); | |
934 | spin_unlock(&vbq->lock); | |
935 | } | |
936 | spin_unlock(&vb->lock); | |
937 | break; | |
938 | next: | |
db64fe02 NP |
939 | spin_unlock(&vb->lock); |
940 | } | |
02b709df | 941 | |
3f04ba85 | 942 | put_cpu_var(vmap_block_queue); |
db64fe02 NP |
943 | rcu_read_unlock(); |
944 | ||
945 | if (!addr) { | |
946 | vb = new_vmap_block(gfp_mask); | |
947 | if (IS_ERR(vb)) | |
948 | return vb; | |
949 | goto again; | |
950 | } | |
951 | ||
952 | return (void *)addr; | |
953 | } | |
954 | ||
955 | static void vb_free(const void *addr, unsigned long size) | |
956 | { | |
957 | unsigned long offset; | |
958 | unsigned long vb_idx; | |
959 | unsigned int order; | |
960 | struct vmap_block *vb; | |
961 | ||
962 | BUG_ON(size & ~PAGE_MASK); | |
963 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | |
b29acbdc NP |
964 | |
965 | flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); | |
966 | ||
db64fe02 NP |
967 | order = get_order(size); |
968 | ||
969 | offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); | |
970 | ||
971 | vb_idx = addr_to_vb_idx((unsigned long)addr); | |
972 | rcu_read_lock(); | |
973 | vb = radix_tree_lookup(&vmap_block_tree, vb_idx); | |
974 | rcu_read_unlock(); | |
975 | BUG_ON(!vb); | |
976 | ||
64141da5 JF |
977 | vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); |
978 | ||
db64fe02 | 979 | spin_lock(&vb->lock); |
de560423 | 980 | BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); |
d086817d | 981 | |
db64fe02 NP |
982 | vb->dirty += 1UL << order; |
983 | if (vb->dirty == VMAP_BBMAP_BITS) { | |
de560423 | 984 | BUG_ON(vb->free); |
db64fe02 NP |
985 | spin_unlock(&vb->lock); |
986 | free_vmap_block(vb); | |
987 | } else | |
988 | spin_unlock(&vb->lock); | |
989 | } | |
990 | ||
991 | /** | |
992 | * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer | |
993 | * | |
994 | * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily | |
995 | * to amortize TLB flushing overheads. What this means is that any page you | |
996 | * have now, may, in a former life, have been mapped into kernel virtual | |
997 | * address by the vmap layer and so there might be some CPUs with TLB entries | |
998 | * still referencing that page (additional to the regular 1:1 kernel mapping). | |
999 | * | |
1000 | * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can | |
1001 | * be sure that none of the pages we have control over will have any aliases | |
1002 | * from the vmap layer. | |
1003 | */ | |
1004 | void vm_unmap_aliases(void) | |
1005 | { | |
1006 | unsigned long start = ULONG_MAX, end = 0; | |
1007 | int cpu; | |
1008 | int flush = 0; | |
1009 | ||
9b463334 JF |
1010 | if (unlikely(!vmap_initialized)) |
1011 | return; | |
1012 | ||
db64fe02 NP |
1013 | for_each_possible_cpu(cpu) { |
1014 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
1015 | struct vmap_block *vb; | |
1016 | ||
1017 | rcu_read_lock(); | |
1018 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
b136be5e | 1019 | int i, j; |
db64fe02 NP |
1020 | |
1021 | spin_lock(&vb->lock); | |
1022 | i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); | |
b136be5e | 1023 | if (i < VMAP_BBMAP_BITS) { |
db64fe02 | 1024 | unsigned long s, e; |
b136be5e JK |
1025 | |
1026 | j = find_last_bit(vb->dirty_map, | |
1027 | VMAP_BBMAP_BITS); | |
1028 | j = j + 1; /* need exclusive index */ | |
db64fe02 NP |
1029 | |
1030 | s = vb->va->va_start + (i << PAGE_SHIFT); | |
1031 | e = vb->va->va_start + (j << PAGE_SHIFT); | |
db64fe02 NP |
1032 | flush = 1; |
1033 | ||
1034 | if (s < start) | |
1035 | start = s; | |
1036 | if (e > end) | |
1037 | end = e; | |
db64fe02 NP |
1038 | } |
1039 | spin_unlock(&vb->lock); | |
1040 | } | |
1041 | rcu_read_unlock(); | |
1042 | } | |
1043 | ||
1044 | __purge_vmap_area_lazy(&start, &end, 1, flush); | |
1045 | } | |
1046 | EXPORT_SYMBOL_GPL(vm_unmap_aliases); | |
1047 | ||
1048 | /** | |
1049 | * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram | |
1050 | * @mem: the pointer returned by vm_map_ram | |
1051 | * @count: the count passed to that vm_map_ram call (cannot unmap partial) | |
1052 | */ | |
1053 | void vm_unmap_ram(const void *mem, unsigned int count) | |
1054 | { | |
1055 | unsigned long size = count << PAGE_SHIFT; | |
1056 | unsigned long addr = (unsigned long)mem; | |
1057 | ||
1058 | BUG_ON(!addr); | |
1059 | BUG_ON(addr < VMALLOC_START); | |
1060 | BUG_ON(addr > VMALLOC_END); | |
1061 | BUG_ON(addr & (PAGE_SIZE-1)); | |
1062 | ||
1063 | debug_check_no_locks_freed(mem, size); | |
cd52858c | 1064 | vmap_debug_free_range(addr, addr+size); |
db64fe02 NP |
1065 | |
1066 | if (likely(count <= VMAP_MAX_ALLOC)) | |
1067 | vb_free(mem, size); | |
1068 | else | |
1069 | free_unmap_vmap_area_addr(addr); | |
1070 | } | |
1071 | EXPORT_SYMBOL(vm_unmap_ram); | |
1072 | ||
1073 | /** | |
1074 | * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) | |
1075 | * @pages: an array of pointers to the pages to be mapped | |
1076 | * @count: number of pages | |
1077 | * @node: prefer to allocate data structures on this node | |
1078 | * @prot: memory protection to use. PAGE_KERNEL for regular RAM | |
e99c97ad RD |
1079 | * |
1080 | * Returns: a pointer to the address that has been mapped, or %NULL on failure | |
db64fe02 NP |
1081 | */ |
1082 | void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) | |
1083 | { | |
1084 | unsigned long size = count << PAGE_SHIFT; | |
1085 | unsigned long addr; | |
1086 | void *mem; | |
1087 | ||
1088 | if (likely(count <= VMAP_MAX_ALLOC)) { | |
1089 | mem = vb_alloc(size, GFP_KERNEL); | |
1090 | if (IS_ERR(mem)) | |
1091 | return NULL; | |
1092 | addr = (unsigned long)mem; | |
1093 | } else { | |
1094 | struct vmap_area *va; | |
1095 | va = alloc_vmap_area(size, PAGE_SIZE, | |
1096 | VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); | |
1097 | if (IS_ERR(va)) | |
1098 | return NULL; | |
1099 | ||
1100 | addr = va->va_start; | |
1101 | mem = (void *)addr; | |
1102 | } | |
1103 | if (vmap_page_range(addr, addr + size, prot, pages) < 0) { | |
1104 | vm_unmap_ram(mem, count); | |
1105 | return NULL; | |
1106 | } | |
1107 | return mem; | |
1108 | } | |
1109 | EXPORT_SYMBOL(vm_map_ram); | |
1110 | ||
4341fa45 | 1111 | static struct vm_struct *vmlist __initdata; |
be9b7335 NP |
1112 | /** |
1113 | * vm_area_add_early - add vmap area early during boot | |
1114 | * @vm: vm_struct to add | |
1115 | * | |
1116 | * This function is used to add fixed kernel vm area to vmlist before | |
1117 | * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags | |
1118 | * should contain proper values and the other fields should be zero. | |
1119 | * | |
1120 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
1121 | */ | |
1122 | void __init vm_area_add_early(struct vm_struct *vm) | |
1123 | { | |
1124 | struct vm_struct *tmp, **p; | |
1125 | ||
1126 | BUG_ON(vmap_initialized); | |
1127 | for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { | |
1128 | if (tmp->addr >= vm->addr) { | |
1129 | BUG_ON(tmp->addr < vm->addr + vm->size); | |
1130 | break; | |
1131 | } else | |
1132 | BUG_ON(tmp->addr + tmp->size > vm->addr); | |
1133 | } | |
1134 | vm->next = *p; | |
1135 | *p = vm; | |
1136 | } | |
1137 | ||
f0aa6617 TH |
1138 | /** |
1139 | * vm_area_register_early - register vmap area early during boot | |
1140 | * @vm: vm_struct to register | |
c0c0a293 | 1141 | * @align: requested alignment |
f0aa6617 TH |
1142 | * |
1143 | * This function is used to register kernel vm area before | |
1144 | * vmalloc_init() is called. @vm->size and @vm->flags should contain | |
1145 | * proper values on entry and other fields should be zero. On return, | |
1146 | * vm->addr contains the allocated address. | |
1147 | * | |
1148 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
1149 | */ | |
c0c0a293 | 1150 | void __init vm_area_register_early(struct vm_struct *vm, size_t align) |
f0aa6617 TH |
1151 | { |
1152 | static size_t vm_init_off __initdata; | |
c0c0a293 TH |
1153 | unsigned long addr; |
1154 | ||
1155 | addr = ALIGN(VMALLOC_START + vm_init_off, align); | |
1156 | vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; | |
f0aa6617 | 1157 | |
c0c0a293 | 1158 | vm->addr = (void *)addr; |
f0aa6617 | 1159 | |
be9b7335 | 1160 | vm_area_add_early(vm); |
f0aa6617 TH |
1161 | } |
1162 | ||
db64fe02 NP |
1163 | void __init vmalloc_init(void) |
1164 | { | |
822c18f2 IK |
1165 | struct vmap_area *va; |
1166 | struct vm_struct *tmp; | |
db64fe02 NP |
1167 | int i; |
1168 | ||
1169 | for_each_possible_cpu(i) { | |
1170 | struct vmap_block_queue *vbq; | |
32fcfd40 | 1171 | struct vfree_deferred *p; |
db64fe02 NP |
1172 | |
1173 | vbq = &per_cpu(vmap_block_queue, i); | |
1174 | spin_lock_init(&vbq->lock); | |
1175 | INIT_LIST_HEAD(&vbq->free); | |
32fcfd40 AV |
1176 | p = &per_cpu(vfree_deferred, i); |
1177 | init_llist_head(&p->list); | |
1178 | INIT_WORK(&p->wq, free_work); | |
db64fe02 | 1179 | } |
9b463334 | 1180 | |
822c18f2 IK |
1181 | /* Import existing vmlist entries. */ |
1182 | for (tmp = vmlist; tmp; tmp = tmp->next) { | |
43ebdac4 | 1183 | va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); |
dbda591d | 1184 | va->flags = VM_VM_AREA; |
822c18f2 IK |
1185 | va->va_start = (unsigned long)tmp->addr; |
1186 | va->va_end = va->va_start + tmp->size; | |
dbda591d | 1187 | va->vm = tmp; |
822c18f2 IK |
1188 | __insert_vmap_area(va); |
1189 | } | |
ca23e405 TH |
1190 | |
1191 | vmap_area_pcpu_hole = VMALLOC_END; | |
1192 | ||
9b463334 | 1193 | vmap_initialized = true; |
db64fe02 NP |
1194 | } |
1195 | ||
8fc48985 TH |
1196 | /** |
1197 | * map_kernel_range_noflush - map kernel VM area with the specified pages | |
1198 | * @addr: start of the VM area to map | |
1199 | * @size: size of the VM area to map | |
1200 | * @prot: page protection flags to use | |
1201 | * @pages: pages to map | |
1202 | * | |
1203 | * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size | |
1204 | * specify should have been allocated using get_vm_area() and its | |
1205 | * friends. | |
1206 | * | |
1207 | * NOTE: | |
1208 | * This function does NOT do any cache flushing. The caller is | |
1209 | * responsible for calling flush_cache_vmap() on to-be-mapped areas | |
1210 | * before calling this function. | |
1211 | * | |
1212 | * RETURNS: | |
1213 | * The number of pages mapped on success, -errno on failure. | |
1214 | */ | |
1215 | int map_kernel_range_noflush(unsigned long addr, unsigned long size, | |
1216 | pgprot_t prot, struct page **pages) | |
1217 | { | |
1218 | return vmap_page_range_noflush(addr, addr + size, prot, pages); | |
1219 | } | |
1220 | ||
1221 | /** | |
1222 | * unmap_kernel_range_noflush - unmap kernel VM area | |
1223 | * @addr: start of the VM area to unmap | |
1224 | * @size: size of the VM area to unmap | |
1225 | * | |
1226 | * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size | |
1227 | * specify should have been allocated using get_vm_area() and its | |
1228 | * friends. | |
1229 | * | |
1230 | * NOTE: | |
1231 | * This function does NOT do any cache flushing. The caller is | |
1232 | * responsible for calling flush_cache_vunmap() on to-be-mapped areas | |
1233 | * before calling this function and flush_tlb_kernel_range() after. | |
1234 | */ | |
1235 | void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) | |
1236 | { | |
1237 | vunmap_page_range(addr, addr + size); | |
1238 | } | |
81e88fdc | 1239 | EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); |
8fc48985 TH |
1240 | |
1241 | /** | |
1242 | * unmap_kernel_range - unmap kernel VM area and flush cache and TLB | |
1243 | * @addr: start of the VM area to unmap | |
1244 | * @size: size of the VM area to unmap | |
1245 | * | |
1246 | * Similar to unmap_kernel_range_noflush() but flushes vcache before | |
1247 | * the unmapping and tlb after. | |
1248 | */ | |
db64fe02 NP |
1249 | void unmap_kernel_range(unsigned long addr, unsigned long size) |
1250 | { | |
1251 | unsigned long end = addr + size; | |
f6fcba70 TH |
1252 | |
1253 | flush_cache_vunmap(addr, end); | |
db64fe02 NP |
1254 | vunmap_page_range(addr, end); |
1255 | flush_tlb_kernel_range(addr, end); | |
1256 | } | |
1257 | ||
1258 | int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) | |
1259 | { | |
1260 | unsigned long addr = (unsigned long)area->addr; | |
762216ab | 1261 | unsigned long end = addr + get_vm_area_size(area); |
db64fe02 NP |
1262 | int err; |
1263 | ||
1264 | err = vmap_page_range(addr, end, prot, *pages); | |
1265 | if (err > 0) { | |
1266 | *pages += err; | |
1267 | err = 0; | |
1268 | } | |
1269 | ||
1270 | return err; | |
1271 | } | |
1272 | EXPORT_SYMBOL_GPL(map_vm_area); | |
1273 | ||
f5252e00 | 1274 | static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, |
5e6cafc8 | 1275 | unsigned long flags, const void *caller) |
cf88c790 | 1276 | { |
c69480ad | 1277 | spin_lock(&vmap_area_lock); |
cf88c790 TH |
1278 | vm->flags = flags; |
1279 | vm->addr = (void *)va->va_start; | |
1280 | vm->size = va->va_end - va->va_start; | |
1281 | vm->caller = caller; | |
db1aecaf | 1282 | va->vm = vm; |
cf88c790 | 1283 | va->flags |= VM_VM_AREA; |
c69480ad | 1284 | spin_unlock(&vmap_area_lock); |
f5252e00 | 1285 | } |
cf88c790 | 1286 | |
20fc02b4 | 1287 | static void clear_vm_uninitialized_flag(struct vm_struct *vm) |
f5252e00 | 1288 | { |
d4033afd | 1289 | /* |
20fc02b4 | 1290 | * Before removing VM_UNINITIALIZED, |
d4033afd JK |
1291 | * we should make sure that vm has proper values. |
1292 | * Pair with smp_rmb() in show_numa_info(). | |
1293 | */ | |
1294 | smp_wmb(); | |
20fc02b4 | 1295 | vm->flags &= ~VM_UNINITIALIZED; |
cf88c790 TH |
1296 | } |
1297 | ||
db64fe02 | 1298 | static struct vm_struct *__get_vm_area_node(unsigned long size, |
2dca6999 | 1299 | unsigned long align, unsigned long flags, unsigned long start, |
5e6cafc8 | 1300 | unsigned long end, int node, gfp_t gfp_mask, const void *caller) |
db64fe02 | 1301 | { |
0006526d | 1302 | struct vmap_area *va; |
db64fe02 | 1303 | struct vm_struct *area; |
1da177e4 | 1304 | |
52fd24ca | 1305 | BUG_ON(in_interrupt()); |
0f2d4a8e ZY |
1306 | if (flags & VM_IOREMAP) |
1307 | align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER); | |
db64fe02 | 1308 | |
1da177e4 | 1309 | size = PAGE_ALIGN(size); |
31be8309 OH |
1310 | if (unlikely(!size)) |
1311 | return NULL; | |
1da177e4 | 1312 | |
cf88c790 | 1313 | area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); |
1da177e4 LT |
1314 | if (unlikely(!area)) |
1315 | return NULL; | |
1316 | ||
1da177e4 LT |
1317 | /* |
1318 | * We always allocate a guard page. | |
1319 | */ | |
1320 | size += PAGE_SIZE; | |
1321 | ||
db64fe02 NP |
1322 | va = alloc_vmap_area(size, align, start, end, node, gfp_mask); |
1323 | if (IS_ERR(va)) { | |
1324 | kfree(area); | |
1325 | return NULL; | |
1da177e4 | 1326 | } |
1da177e4 | 1327 | |
d82b1d85 | 1328 | setup_vmalloc_vm(area, va, flags, caller); |
f5252e00 | 1329 | |
1da177e4 | 1330 | return area; |
1da177e4 LT |
1331 | } |
1332 | ||
930fc45a CL |
1333 | struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, |
1334 | unsigned long start, unsigned long end) | |
1335 | { | |
00ef2d2f DR |
1336 | return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, |
1337 | GFP_KERNEL, __builtin_return_address(0)); | |
930fc45a | 1338 | } |
5992b6da | 1339 | EXPORT_SYMBOL_GPL(__get_vm_area); |
930fc45a | 1340 | |
c2968612 BH |
1341 | struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, |
1342 | unsigned long start, unsigned long end, | |
5e6cafc8 | 1343 | const void *caller) |
c2968612 | 1344 | { |
00ef2d2f DR |
1345 | return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, |
1346 | GFP_KERNEL, caller); | |
c2968612 BH |
1347 | } |
1348 | ||
1da177e4 | 1349 | /** |
183ff22b | 1350 | * get_vm_area - reserve a contiguous kernel virtual area |
1da177e4 LT |
1351 | * @size: size of the area |
1352 | * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC | |
1353 | * | |
1354 | * Search an area of @size in the kernel virtual mapping area, | |
1355 | * and reserved it for out purposes. Returns the area descriptor | |
1356 | * on success or %NULL on failure. | |
1357 | */ | |
1358 | struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) | |
1359 | { | |
2dca6999 | 1360 | return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, |
00ef2d2f DR |
1361 | NUMA_NO_NODE, GFP_KERNEL, |
1362 | __builtin_return_address(0)); | |
23016969 CL |
1363 | } |
1364 | ||
1365 | struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, | |
5e6cafc8 | 1366 | const void *caller) |
23016969 | 1367 | { |
2dca6999 | 1368 | return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, |
00ef2d2f | 1369 | NUMA_NO_NODE, GFP_KERNEL, caller); |
1da177e4 LT |
1370 | } |
1371 | ||
e9da6e99 MS |
1372 | /** |
1373 | * find_vm_area - find a continuous kernel virtual area | |
1374 | * @addr: base address | |
1375 | * | |
1376 | * Search for the kernel VM area starting at @addr, and return it. | |
1377 | * It is up to the caller to do all required locking to keep the returned | |
1378 | * pointer valid. | |
1379 | */ | |
1380 | struct vm_struct *find_vm_area(const void *addr) | |
83342314 | 1381 | { |
db64fe02 | 1382 | struct vmap_area *va; |
83342314 | 1383 | |
db64fe02 NP |
1384 | va = find_vmap_area((unsigned long)addr); |
1385 | if (va && va->flags & VM_VM_AREA) | |
db1aecaf | 1386 | return va->vm; |
1da177e4 | 1387 | |
1da177e4 | 1388 | return NULL; |
1da177e4 LT |
1389 | } |
1390 | ||
7856dfeb | 1391 | /** |
183ff22b | 1392 | * remove_vm_area - find and remove a continuous kernel virtual area |
7856dfeb AK |
1393 | * @addr: base address |
1394 | * | |
1395 | * Search for the kernel VM area starting at @addr, and remove it. | |
1396 | * This function returns the found VM area, but using it is NOT safe | |
1397 | * on SMP machines, except for its size or flags. | |
1398 | */ | |
b3bdda02 | 1399 | struct vm_struct *remove_vm_area(const void *addr) |
7856dfeb | 1400 | { |
db64fe02 NP |
1401 | struct vmap_area *va; |
1402 | ||
1403 | va = find_vmap_area((unsigned long)addr); | |
1404 | if (va && va->flags & VM_VM_AREA) { | |
db1aecaf | 1405 | struct vm_struct *vm = va->vm; |
f5252e00 | 1406 | |
c69480ad JK |
1407 | spin_lock(&vmap_area_lock); |
1408 | va->vm = NULL; | |
1409 | va->flags &= ~VM_VM_AREA; | |
1410 | spin_unlock(&vmap_area_lock); | |
1411 | ||
dd32c279 KH |
1412 | vmap_debug_free_range(va->va_start, va->va_end); |
1413 | free_unmap_vmap_area(va); | |
1414 | vm->size -= PAGE_SIZE; | |
1415 | ||
db64fe02 NP |
1416 | return vm; |
1417 | } | |
1418 | return NULL; | |
7856dfeb AK |
1419 | } |
1420 | ||
b3bdda02 | 1421 | static void __vunmap(const void *addr, int deallocate_pages) |
1da177e4 LT |
1422 | { |
1423 | struct vm_struct *area; | |
1424 | ||
1425 | if (!addr) | |
1426 | return; | |
1427 | ||
e69e9d4a | 1428 | if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", |
ab15d9b4 | 1429 | addr)) |
1da177e4 | 1430 | return; |
1da177e4 LT |
1431 | |
1432 | area = remove_vm_area(addr); | |
1433 | if (unlikely(!area)) { | |
4c8573e2 | 1434 | WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", |
1da177e4 | 1435 | addr); |
1da177e4 LT |
1436 | return; |
1437 | } | |
1438 | ||
9a11b49a | 1439 | debug_check_no_locks_freed(addr, area->size); |
3ac7fe5a | 1440 | debug_check_no_obj_freed(addr, area->size); |
9a11b49a | 1441 | |
1da177e4 LT |
1442 | if (deallocate_pages) { |
1443 | int i; | |
1444 | ||
1445 | for (i = 0; i < area->nr_pages; i++) { | |
bf53d6f8 CL |
1446 | struct page *page = area->pages[i]; |
1447 | ||
1448 | BUG_ON(!page); | |
1449 | __free_page(page); | |
1da177e4 LT |
1450 | } |
1451 | ||
8757d5fa | 1452 | if (area->flags & VM_VPAGES) |
1da177e4 LT |
1453 | vfree(area->pages); |
1454 | else | |
1455 | kfree(area->pages); | |
1456 | } | |
1457 | ||
1458 | kfree(area); | |
1459 | return; | |
1460 | } | |
32fcfd40 | 1461 | |
1da177e4 LT |
1462 | /** |
1463 | * vfree - release memory allocated by vmalloc() | |
1da177e4 LT |
1464 | * @addr: memory base address |
1465 | * | |
183ff22b | 1466 | * Free the virtually continuous memory area starting at @addr, as |
80e93eff PE |
1467 | * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is |
1468 | * NULL, no operation is performed. | |
1da177e4 | 1469 | * |
32fcfd40 AV |
1470 | * Must not be called in NMI context (strictly speaking, only if we don't |
1471 | * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling | |
1472 | * conventions for vfree() arch-depenedent would be a really bad idea) | |
c9fcee51 AM |
1473 | * |
1474 | * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node) | |
1da177e4 | 1475 | */ |
b3bdda02 | 1476 | void vfree(const void *addr) |
1da177e4 | 1477 | { |
32fcfd40 | 1478 | BUG_ON(in_nmi()); |
89219d37 CM |
1479 | |
1480 | kmemleak_free(addr); | |
1481 | ||
32fcfd40 AV |
1482 | if (!addr) |
1483 | return; | |
1484 | if (unlikely(in_interrupt())) { | |
1485 | struct vfree_deferred *p = &__get_cpu_var(vfree_deferred); | |
59d3132f ON |
1486 | if (llist_add((struct llist_node *)addr, &p->list)) |
1487 | schedule_work(&p->wq); | |
32fcfd40 AV |
1488 | } else |
1489 | __vunmap(addr, 1); | |
1da177e4 | 1490 | } |
1da177e4 LT |
1491 | EXPORT_SYMBOL(vfree); |
1492 | ||
1493 | /** | |
1494 | * vunmap - release virtual mapping obtained by vmap() | |
1da177e4 LT |
1495 | * @addr: memory base address |
1496 | * | |
1497 | * Free the virtually contiguous memory area starting at @addr, | |
1498 | * which was created from the page array passed to vmap(). | |
1499 | * | |
80e93eff | 1500 | * Must not be called in interrupt context. |
1da177e4 | 1501 | */ |
b3bdda02 | 1502 | void vunmap(const void *addr) |
1da177e4 LT |
1503 | { |
1504 | BUG_ON(in_interrupt()); | |
34754b69 | 1505 | might_sleep(); |
32fcfd40 AV |
1506 | if (addr) |
1507 | __vunmap(addr, 0); | |
1da177e4 | 1508 | } |
1da177e4 LT |
1509 | EXPORT_SYMBOL(vunmap); |
1510 | ||
1511 | /** | |
1512 | * vmap - map an array of pages into virtually contiguous space | |
1da177e4 LT |
1513 | * @pages: array of page pointers |
1514 | * @count: number of pages to map | |
1515 | * @flags: vm_area->flags | |
1516 | * @prot: page protection for the mapping | |
1517 | * | |
1518 | * Maps @count pages from @pages into contiguous kernel virtual | |
1519 | * space. | |
1520 | */ | |
1521 | void *vmap(struct page **pages, unsigned int count, | |
1522 | unsigned long flags, pgprot_t prot) | |
1523 | { | |
1524 | struct vm_struct *area; | |
1525 | ||
34754b69 PZ |
1526 | might_sleep(); |
1527 | ||
4481374c | 1528 | if (count > totalram_pages) |
1da177e4 LT |
1529 | return NULL; |
1530 | ||
23016969 CL |
1531 | area = get_vm_area_caller((count << PAGE_SHIFT), flags, |
1532 | __builtin_return_address(0)); | |
1da177e4 LT |
1533 | if (!area) |
1534 | return NULL; | |
23016969 | 1535 | |
1da177e4 LT |
1536 | if (map_vm_area(area, prot, &pages)) { |
1537 | vunmap(area->addr); | |
1538 | return NULL; | |
1539 | } | |
1540 | ||
1541 | return area->addr; | |
1542 | } | |
1da177e4 LT |
1543 | EXPORT_SYMBOL(vmap); |
1544 | ||
2dca6999 DM |
1545 | static void *__vmalloc_node(unsigned long size, unsigned long align, |
1546 | gfp_t gfp_mask, pgprot_t prot, | |
5e6cafc8 | 1547 | int node, const void *caller); |
e31d9eb5 | 1548 | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, |
5e6cafc8 | 1549 | pgprot_t prot, int node, const void *caller) |
1da177e4 | 1550 | { |
22943ab1 | 1551 | const int order = 0; |
1da177e4 LT |
1552 | struct page **pages; |
1553 | unsigned int nr_pages, array_size, i; | |
976d6dfb | 1554 | gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; |
1da177e4 | 1555 | |
762216ab | 1556 | nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; |
1da177e4 LT |
1557 | array_size = (nr_pages * sizeof(struct page *)); |
1558 | ||
1559 | area->nr_pages = nr_pages; | |
1560 | /* Please note that the recursion is strictly bounded. */ | |
8757d5fa | 1561 | if (array_size > PAGE_SIZE) { |
976d6dfb | 1562 | pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, |
23016969 | 1563 | PAGE_KERNEL, node, caller); |
8757d5fa | 1564 | area->flags |= VM_VPAGES; |
286e1ea3 | 1565 | } else { |
976d6dfb | 1566 | pages = kmalloc_node(array_size, nested_gfp, node); |
286e1ea3 | 1567 | } |
1da177e4 | 1568 | area->pages = pages; |
23016969 | 1569 | area->caller = caller; |
1da177e4 LT |
1570 | if (!area->pages) { |
1571 | remove_vm_area(area->addr); | |
1572 | kfree(area); | |
1573 | return NULL; | |
1574 | } | |
1da177e4 LT |
1575 | |
1576 | for (i = 0; i < area->nr_pages; i++) { | |
bf53d6f8 | 1577 | struct page *page; |
22943ab1 | 1578 | gfp_t tmp_mask = gfp_mask | __GFP_NOWARN; |
bf53d6f8 | 1579 | |
930fc45a | 1580 | if (node < 0) |
22943ab1 | 1581 | page = alloc_page(tmp_mask); |
930fc45a | 1582 | else |
22943ab1 | 1583 | page = alloc_pages_node(node, tmp_mask, order); |
bf53d6f8 CL |
1584 | |
1585 | if (unlikely(!page)) { | |
1da177e4 LT |
1586 | /* Successfully allocated i pages, free them in __vunmap() */ |
1587 | area->nr_pages = i; | |
1588 | goto fail; | |
1589 | } | |
bf53d6f8 | 1590 | area->pages[i] = page; |
1da177e4 LT |
1591 | } |
1592 | ||
1593 | if (map_vm_area(area, prot, &pages)) | |
1594 | goto fail; | |
1595 | return area->addr; | |
1596 | ||
1597 | fail: | |
3ee9a4f0 JP |
1598 | warn_alloc_failed(gfp_mask, order, |
1599 | "vmalloc: allocation failure, allocated %ld of %ld bytes\n", | |
22943ab1 | 1600 | (area->nr_pages*PAGE_SIZE), area->size); |
1da177e4 LT |
1601 | vfree(area->addr); |
1602 | return NULL; | |
1603 | } | |
1604 | ||
1605 | /** | |
d0a21265 | 1606 | * __vmalloc_node_range - allocate virtually contiguous memory |
1da177e4 | 1607 | * @size: allocation size |
2dca6999 | 1608 | * @align: desired alignment |
d0a21265 DR |
1609 | * @start: vm area range start |
1610 | * @end: vm area range end | |
1da177e4 LT |
1611 | * @gfp_mask: flags for the page level allocator |
1612 | * @prot: protection mask for the allocated pages | |
00ef2d2f | 1613 | * @node: node to use for allocation or NUMA_NO_NODE |
c85d194b | 1614 | * @caller: caller's return address |
1da177e4 LT |
1615 | * |
1616 | * Allocate enough pages to cover @size from the page level | |
1617 | * allocator with @gfp_mask flags. Map them into contiguous | |
1618 | * kernel virtual space, using a pagetable protection of @prot. | |
1619 | */ | |
d0a21265 DR |
1620 | void *__vmalloc_node_range(unsigned long size, unsigned long align, |
1621 | unsigned long start, unsigned long end, gfp_t gfp_mask, | |
5e6cafc8 | 1622 | pgprot_t prot, int node, const void *caller) |
1da177e4 LT |
1623 | { |
1624 | struct vm_struct *area; | |
89219d37 CM |
1625 | void *addr; |
1626 | unsigned long real_size = size; | |
1da177e4 LT |
1627 | |
1628 | size = PAGE_ALIGN(size); | |
4481374c | 1629 | if (!size || (size >> PAGE_SHIFT) > totalram_pages) |
de7d2b56 | 1630 | goto fail; |
1da177e4 | 1631 | |
20fc02b4 | 1632 | area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED, |
f5252e00 | 1633 | start, end, node, gfp_mask, caller); |
1da177e4 | 1634 | if (!area) |
de7d2b56 | 1635 | goto fail; |
1da177e4 | 1636 | |
89219d37 | 1637 | addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); |
1368edf0 | 1638 | if (!addr) |
46c001a2 | 1639 | goto fail; |
89219d37 | 1640 | |
f5252e00 | 1641 | /* |
20fc02b4 ZY |
1642 | * In this function, newly allocated vm_struct has VM_UNINITIALIZED |
1643 | * flag. It means that vm_struct is not fully initialized. | |
4341fa45 | 1644 | * Now, it is fully initialized, so remove this flag here. |
f5252e00 | 1645 | */ |
20fc02b4 | 1646 | clear_vm_uninitialized_flag(area); |
f5252e00 | 1647 | |
89219d37 CM |
1648 | /* |
1649 | * A ref_count = 3 is needed because the vm_struct and vmap_area | |
1650 | * structures allocated in the __get_vm_area_node() function contain | |
1651 | * references to the virtual address of the vmalloc'ed block. | |
1652 | */ | |
1653 | kmemleak_alloc(addr, real_size, 3, gfp_mask); | |
1654 | ||
1655 | return addr; | |
de7d2b56 JP |
1656 | |
1657 | fail: | |
1658 | warn_alloc_failed(gfp_mask, 0, | |
1659 | "vmalloc: allocation failure: %lu bytes\n", | |
1660 | real_size); | |
1661 | return NULL; | |
1da177e4 LT |
1662 | } |
1663 | ||
d0a21265 DR |
1664 | /** |
1665 | * __vmalloc_node - allocate virtually contiguous memory | |
1666 | * @size: allocation size | |
1667 | * @align: desired alignment | |
1668 | * @gfp_mask: flags for the page level allocator | |
1669 | * @prot: protection mask for the allocated pages | |
00ef2d2f | 1670 | * @node: node to use for allocation or NUMA_NO_NODE |
d0a21265 DR |
1671 | * @caller: caller's return address |
1672 | * | |
1673 | * Allocate enough pages to cover @size from the page level | |
1674 | * allocator with @gfp_mask flags. Map them into contiguous | |
1675 | * kernel virtual space, using a pagetable protection of @prot. | |
1676 | */ | |
1677 | static void *__vmalloc_node(unsigned long size, unsigned long align, | |
1678 | gfp_t gfp_mask, pgprot_t prot, | |
5e6cafc8 | 1679 | int node, const void *caller) |
d0a21265 DR |
1680 | { |
1681 | return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, | |
1682 | gfp_mask, prot, node, caller); | |
1683 | } | |
1684 | ||
930fc45a CL |
1685 | void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) |
1686 | { | |
00ef2d2f | 1687 | return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, |
23016969 | 1688 | __builtin_return_address(0)); |
930fc45a | 1689 | } |
1da177e4 LT |
1690 | EXPORT_SYMBOL(__vmalloc); |
1691 | ||
e1ca7788 DY |
1692 | static inline void *__vmalloc_node_flags(unsigned long size, |
1693 | int node, gfp_t flags) | |
1694 | { | |
1695 | return __vmalloc_node(size, 1, flags, PAGE_KERNEL, | |
1696 | node, __builtin_return_address(0)); | |
1697 | } | |
1698 | ||
1da177e4 LT |
1699 | /** |
1700 | * vmalloc - allocate virtually contiguous memory | |
1da177e4 | 1701 | * @size: allocation size |
1da177e4 LT |
1702 | * Allocate enough pages to cover @size from the page level |
1703 | * allocator and map them into contiguous kernel virtual space. | |
1704 | * | |
c1c8897f | 1705 | * For tight control over page level allocator and protection flags |
1da177e4 LT |
1706 | * use __vmalloc() instead. |
1707 | */ | |
1708 | void *vmalloc(unsigned long size) | |
1709 | { | |
00ef2d2f DR |
1710 | return __vmalloc_node_flags(size, NUMA_NO_NODE, |
1711 | GFP_KERNEL | __GFP_HIGHMEM); | |
1da177e4 | 1712 | } |
1da177e4 LT |
1713 | EXPORT_SYMBOL(vmalloc); |
1714 | ||
e1ca7788 DY |
1715 | /** |
1716 | * vzalloc - allocate virtually contiguous memory with zero fill | |
1717 | * @size: allocation size | |
1718 | * Allocate enough pages to cover @size from the page level | |
1719 | * allocator and map them into contiguous kernel virtual space. | |
1720 | * The memory allocated is set to zero. | |
1721 | * | |
1722 | * For tight control over page level allocator and protection flags | |
1723 | * use __vmalloc() instead. | |
1724 | */ | |
1725 | void *vzalloc(unsigned long size) | |
1726 | { | |
00ef2d2f | 1727 | return __vmalloc_node_flags(size, NUMA_NO_NODE, |
e1ca7788 DY |
1728 | GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); |
1729 | } | |
1730 | EXPORT_SYMBOL(vzalloc); | |
1731 | ||
83342314 | 1732 | /** |
ead04089 REB |
1733 | * vmalloc_user - allocate zeroed virtually contiguous memory for userspace |
1734 | * @size: allocation size | |
83342314 | 1735 | * |
ead04089 REB |
1736 | * The resulting memory area is zeroed so it can be mapped to userspace |
1737 | * without leaking data. | |
83342314 NP |
1738 | */ |
1739 | void *vmalloc_user(unsigned long size) | |
1740 | { | |
1741 | struct vm_struct *area; | |
1742 | void *ret; | |
1743 | ||
2dca6999 DM |
1744 | ret = __vmalloc_node(size, SHMLBA, |
1745 | GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, | |
00ef2d2f DR |
1746 | PAGE_KERNEL, NUMA_NO_NODE, |
1747 | __builtin_return_address(0)); | |
2b4ac44e | 1748 | if (ret) { |
db64fe02 | 1749 | area = find_vm_area(ret); |
2b4ac44e | 1750 | area->flags |= VM_USERMAP; |
2b4ac44e | 1751 | } |
83342314 NP |
1752 | return ret; |
1753 | } | |
1754 | EXPORT_SYMBOL(vmalloc_user); | |
1755 | ||
930fc45a CL |
1756 | /** |
1757 | * vmalloc_node - allocate memory on a specific node | |
930fc45a | 1758 | * @size: allocation size |
d44e0780 | 1759 | * @node: numa node |
930fc45a CL |
1760 | * |
1761 | * Allocate enough pages to cover @size from the page level | |
1762 | * allocator and map them into contiguous kernel virtual space. | |
1763 | * | |
c1c8897f | 1764 | * For tight control over page level allocator and protection flags |
930fc45a CL |
1765 | * use __vmalloc() instead. |
1766 | */ | |
1767 | void *vmalloc_node(unsigned long size, int node) | |
1768 | { | |
2dca6999 | 1769 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, |
23016969 | 1770 | node, __builtin_return_address(0)); |
930fc45a CL |
1771 | } |
1772 | EXPORT_SYMBOL(vmalloc_node); | |
1773 | ||
e1ca7788 DY |
1774 | /** |
1775 | * vzalloc_node - allocate memory on a specific node with zero fill | |
1776 | * @size: allocation size | |
1777 | * @node: numa node | |
1778 | * | |
1779 | * Allocate enough pages to cover @size from the page level | |
1780 | * allocator and map them into contiguous kernel virtual space. | |
1781 | * The memory allocated is set to zero. | |
1782 | * | |
1783 | * For tight control over page level allocator and protection flags | |
1784 | * use __vmalloc_node() instead. | |
1785 | */ | |
1786 | void *vzalloc_node(unsigned long size, int node) | |
1787 | { | |
1788 | return __vmalloc_node_flags(size, node, | |
1789 | GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); | |
1790 | } | |
1791 | EXPORT_SYMBOL(vzalloc_node); | |
1792 | ||
4dc3b16b PP |
1793 | #ifndef PAGE_KERNEL_EXEC |
1794 | # define PAGE_KERNEL_EXEC PAGE_KERNEL | |
1795 | #endif | |
1796 | ||
1da177e4 LT |
1797 | /** |
1798 | * vmalloc_exec - allocate virtually contiguous, executable memory | |
1da177e4 LT |
1799 | * @size: allocation size |
1800 | * | |
1801 | * Kernel-internal function to allocate enough pages to cover @size | |
1802 | * the page level allocator and map them into contiguous and | |
1803 | * executable kernel virtual space. | |
1804 | * | |
c1c8897f | 1805 | * For tight control over page level allocator and protection flags |
1da177e4 LT |
1806 | * use __vmalloc() instead. |
1807 | */ | |
1808 | ||
1da177e4 LT |
1809 | void *vmalloc_exec(unsigned long size) |
1810 | { | |
2dca6999 | 1811 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, |
00ef2d2f | 1812 | NUMA_NO_NODE, __builtin_return_address(0)); |
1da177e4 LT |
1813 | } |
1814 | ||
0d08e0d3 | 1815 | #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) |
7ac674f5 | 1816 | #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL |
0d08e0d3 | 1817 | #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) |
7ac674f5 | 1818 | #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL |
0d08e0d3 AK |
1819 | #else |
1820 | #define GFP_VMALLOC32 GFP_KERNEL | |
1821 | #endif | |
1822 | ||
1da177e4 LT |
1823 | /** |
1824 | * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) | |
1da177e4 LT |
1825 | * @size: allocation size |
1826 | * | |
1827 | * Allocate enough 32bit PA addressable pages to cover @size from the | |
1828 | * page level allocator and map them into contiguous kernel virtual space. | |
1829 | */ | |
1830 | void *vmalloc_32(unsigned long size) | |
1831 | { | |
2dca6999 | 1832 | return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, |
00ef2d2f | 1833 | NUMA_NO_NODE, __builtin_return_address(0)); |
1da177e4 | 1834 | } |
1da177e4 LT |
1835 | EXPORT_SYMBOL(vmalloc_32); |
1836 | ||
83342314 | 1837 | /** |
ead04089 | 1838 | * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory |
83342314 | 1839 | * @size: allocation size |
ead04089 REB |
1840 | * |
1841 | * The resulting memory area is 32bit addressable and zeroed so it can be | |
1842 | * mapped to userspace without leaking data. | |
83342314 NP |
1843 | */ |
1844 | void *vmalloc_32_user(unsigned long size) | |
1845 | { | |
1846 | struct vm_struct *area; | |
1847 | void *ret; | |
1848 | ||
2dca6999 | 1849 | ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, |
00ef2d2f | 1850 | NUMA_NO_NODE, __builtin_return_address(0)); |
2b4ac44e | 1851 | if (ret) { |
db64fe02 | 1852 | area = find_vm_area(ret); |
2b4ac44e | 1853 | area->flags |= VM_USERMAP; |
2b4ac44e | 1854 | } |
83342314 NP |
1855 | return ret; |
1856 | } | |
1857 | EXPORT_SYMBOL(vmalloc_32_user); | |
1858 | ||
d0107eb0 KH |
1859 | /* |
1860 | * small helper routine , copy contents to buf from addr. | |
1861 | * If the page is not present, fill zero. | |
1862 | */ | |
1863 | ||
1864 | static int aligned_vread(char *buf, char *addr, unsigned long count) | |
1865 | { | |
1866 | struct page *p; | |
1867 | int copied = 0; | |
1868 | ||
1869 | while (count) { | |
1870 | unsigned long offset, length; | |
1871 | ||
1872 | offset = (unsigned long)addr & ~PAGE_MASK; | |
1873 | length = PAGE_SIZE - offset; | |
1874 | if (length > count) | |
1875 | length = count; | |
1876 | p = vmalloc_to_page(addr); | |
1877 | /* | |
1878 | * To do safe access to this _mapped_ area, we need | |
1879 | * lock. But adding lock here means that we need to add | |
1880 | * overhead of vmalloc()/vfree() calles for this _debug_ | |
1881 | * interface, rarely used. Instead of that, we'll use | |
1882 | * kmap() and get small overhead in this access function. | |
1883 | */ | |
1884 | if (p) { | |
1885 | /* | |
1886 | * we can expect USER0 is not used (see vread/vwrite's | |
1887 | * function description) | |
1888 | */ | |
9b04c5fe | 1889 | void *map = kmap_atomic(p); |
d0107eb0 | 1890 | memcpy(buf, map + offset, length); |
9b04c5fe | 1891 | kunmap_atomic(map); |
d0107eb0 KH |
1892 | } else |
1893 | memset(buf, 0, length); | |
1894 | ||
1895 | addr += length; | |
1896 | buf += length; | |
1897 | copied += length; | |
1898 | count -= length; | |
1899 | } | |
1900 | return copied; | |
1901 | } | |
1902 | ||
1903 | static int aligned_vwrite(char *buf, char *addr, unsigned long count) | |
1904 | { | |
1905 | struct page *p; | |
1906 | int copied = 0; | |
1907 | ||
1908 | while (count) { | |
1909 | unsigned long offset, length; | |
1910 | ||
1911 | offset = (unsigned long)addr & ~PAGE_MASK; | |
1912 | length = PAGE_SIZE - offset; | |
1913 | if (length > count) | |
1914 | length = count; | |
1915 | p = vmalloc_to_page(addr); | |
1916 | /* | |
1917 | * To do safe access to this _mapped_ area, we need | |
1918 | * lock. But adding lock here means that we need to add | |
1919 | * overhead of vmalloc()/vfree() calles for this _debug_ | |
1920 | * interface, rarely used. Instead of that, we'll use | |
1921 | * kmap() and get small overhead in this access function. | |
1922 | */ | |
1923 | if (p) { | |
1924 | /* | |
1925 | * we can expect USER0 is not used (see vread/vwrite's | |
1926 | * function description) | |
1927 | */ | |
9b04c5fe | 1928 | void *map = kmap_atomic(p); |
d0107eb0 | 1929 | memcpy(map + offset, buf, length); |
9b04c5fe | 1930 | kunmap_atomic(map); |
d0107eb0 KH |
1931 | } |
1932 | addr += length; | |
1933 | buf += length; | |
1934 | copied += length; | |
1935 | count -= length; | |
1936 | } | |
1937 | return copied; | |
1938 | } | |
1939 | ||
1940 | /** | |
1941 | * vread() - read vmalloc area in a safe way. | |
1942 | * @buf: buffer for reading data | |
1943 | * @addr: vm address. | |
1944 | * @count: number of bytes to be read. | |
1945 | * | |
1946 | * Returns # of bytes which addr and buf should be increased. | |
1947 | * (same number to @count). Returns 0 if [addr...addr+count) doesn't | |
1948 | * includes any intersect with alive vmalloc area. | |
1949 | * | |
1950 | * This function checks that addr is a valid vmalloc'ed area, and | |
1951 | * copy data from that area to a given buffer. If the given memory range | |
1952 | * of [addr...addr+count) includes some valid address, data is copied to | |
1953 | * proper area of @buf. If there are memory holes, they'll be zero-filled. | |
1954 | * IOREMAP area is treated as memory hole and no copy is done. | |
1955 | * | |
1956 | * If [addr...addr+count) doesn't includes any intersects with alive | |
a8e5202d | 1957 | * vm_struct area, returns 0. @buf should be kernel's buffer. |
d0107eb0 KH |
1958 | * |
1959 | * Note: In usual ops, vread() is never necessary because the caller | |
1960 | * should know vmalloc() area is valid and can use memcpy(). | |
1961 | * This is for routines which have to access vmalloc area without | |
1962 | * any informaion, as /dev/kmem. | |
1963 | * | |
1964 | */ | |
1965 | ||
1da177e4 LT |
1966 | long vread(char *buf, char *addr, unsigned long count) |
1967 | { | |
e81ce85f JK |
1968 | struct vmap_area *va; |
1969 | struct vm_struct *vm; | |
1da177e4 | 1970 | char *vaddr, *buf_start = buf; |
d0107eb0 | 1971 | unsigned long buflen = count; |
1da177e4 LT |
1972 | unsigned long n; |
1973 | ||
1974 | /* Don't allow overflow */ | |
1975 | if ((unsigned long) addr + count < count) | |
1976 | count = -(unsigned long) addr; | |
1977 | ||
e81ce85f JK |
1978 | spin_lock(&vmap_area_lock); |
1979 | list_for_each_entry(va, &vmap_area_list, list) { | |
1980 | if (!count) | |
1981 | break; | |
1982 | ||
1983 | if (!(va->flags & VM_VM_AREA)) | |
1984 | continue; | |
1985 | ||
1986 | vm = va->vm; | |
1987 | vaddr = (char *) vm->addr; | |
762216ab | 1988 | if (addr >= vaddr + get_vm_area_size(vm)) |
1da177e4 LT |
1989 | continue; |
1990 | while (addr < vaddr) { | |
1991 | if (count == 0) | |
1992 | goto finished; | |
1993 | *buf = '\0'; | |
1994 | buf++; | |
1995 | addr++; | |
1996 | count--; | |
1997 | } | |
762216ab | 1998 | n = vaddr + get_vm_area_size(vm) - addr; |
d0107eb0 KH |
1999 | if (n > count) |
2000 | n = count; | |
e81ce85f | 2001 | if (!(vm->flags & VM_IOREMAP)) |
d0107eb0 KH |
2002 | aligned_vread(buf, addr, n); |
2003 | else /* IOREMAP area is treated as memory hole */ | |
2004 | memset(buf, 0, n); | |
2005 | buf += n; | |
2006 | addr += n; | |
2007 | count -= n; | |
1da177e4 LT |
2008 | } |
2009 | finished: | |
e81ce85f | 2010 | spin_unlock(&vmap_area_lock); |
d0107eb0 KH |
2011 | |
2012 | if (buf == buf_start) | |
2013 | return 0; | |
2014 | /* zero-fill memory holes */ | |
2015 | if (buf != buf_start + buflen) | |
2016 | memset(buf, 0, buflen - (buf - buf_start)); | |
2017 | ||
2018 | return buflen; | |
1da177e4 LT |
2019 | } |
2020 | ||
d0107eb0 KH |
2021 | /** |
2022 | * vwrite() - write vmalloc area in a safe way. | |
2023 | * @buf: buffer for source data | |
2024 | * @addr: vm address. | |
2025 | * @count: number of bytes to be read. | |
2026 | * | |
2027 | * Returns # of bytes which addr and buf should be incresed. | |
2028 | * (same number to @count). | |
2029 | * If [addr...addr+count) doesn't includes any intersect with valid | |
2030 | * vmalloc area, returns 0. | |
2031 | * | |
2032 | * This function checks that addr is a valid vmalloc'ed area, and | |
2033 | * copy data from a buffer to the given addr. If specified range of | |
2034 | * [addr...addr+count) includes some valid address, data is copied from | |
2035 | * proper area of @buf. If there are memory holes, no copy to hole. | |
2036 | * IOREMAP area is treated as memory hole and no copy is done. | |
2037 | * | |
2038 | * If [addr...addr+count) doesn't includes any intersects with alive | |
a8e5202d | 2039 | * vm_struct area, returns 0. @buf should be kernel's buffer. |
d0107eb0 KH |
2040 | * |
2041 | * Note: In usual ops, vwrite() is never necessary because the caller | |
2042 | * should know vmalloc() area is valid and can use memcpy(). | |
2043 | * This is for routines which have to access vmalloc area without | |
2044 | * any informaion, as /dev/kmem. | |
d0107eb0 KH |
2045 | */ |
2046 | ||
1da177e4 LT |
2047 | long vwrite(char *buf, char *addr, unsigned long count) |
2048 | { | |
e81ce85f JK |
2049 | struct vmap_area *va; |
2050 | struct vm_struct *vm; | |
d0107eb0 KH |
2051 | char *vaddr; |
2052 | unsigned long n, buflen; | |
2053 | int copied = 0; | |
1da177e4 LT |
2054 | |
2055 | /* Don't allow overflow */ | |
2056 | if ((unsigned long) addr + count < count) | |
2057 | count = -(unsigned long) addr; | |
d0107eb0 | 2058 | buflen = count; |
1da177e4 | 2059 | |
e81ce85f JK |
2060 | spin_lock(&vmap_area_lock); |
2061 | list_for_each_entry(va, &vmap_area_list, list) { | |
2062 | if (!count) | |
2063 | break; | |
2064 | ||
2065 | if (!(va->flags & VM_VM_AREA)) | |
2066 | continue; | |
2067 | ||
2068 | vm = va->vm; | |
2069 | vaddr = (char *) vm->addr; | |
762216ab | 2070 | if (addr >= vaddr + get_vm_area_size(vm)) |
1da177e4 LT |
2071 | continue; |
2072 | while (addr < vaddr) { | |
2073 | if (count == 0) | |
2074 | goto finished; | |
2075 | buf++; | |
2076 | addr++; | |
2077 | count--; | |
2078 | } | |
762216ab | 2079 | n = vaddr + get_vm_area_size(vm) - addr; |
d0107eb0 KH |
2080 | if (n > count) |
2081 | n = count; | |
e81ce85f | 2082 | if (!(vm->flags & VM_IOREMAP)) { |
d0107eb0 KH |
2083 | aligned_vwrite(buf, addr, n); |
2084 | copied++; | |
2085 | } | |
2086 | buf += n; | |
2087 | addr += n; | |
2088 | count -= n; | |
1da177e4 LT |
2089 | } |
2090 | finished: | |
e81ce85f | 2091 | spin_unlock(&vmap_area_lock); |
d0107eb0 KH |
2092 | if (!copied) |
2093 | return 0; | |
2094 | return buflen; | |
1da177e4 | 2095 | } |
83342314 NP |
2096 | |
2097 | /** | |
e69e9d4a HD |
2098 | * remap_vmalloc_range_partial - map vmalloc pages to userspace |
2099 | * @vma: vma to cover | |
2100 | * @uaddr: target user address to start at | |
2101 | * @kaddr: virtual address of vmalloc kernel memory | |
2102 | * @size: size of map area | |
7682486b RD |
2103 | * |
2104 | * Returns: 0 for success, -Exxx on failure | |
83342314 | 2105 | * |
e69e9d4a HD |
2106 | * This function checks that @kaddr is a valid vmalloc'ed area, |
2107 | * and that it is big enough to cover the range starting at | |
2108 | * @uaddr in @vma. Will return failure if that criteria isn't | |
2109 | * met. | |
83342314 | 2110 | * |
72fd4a35 | 2111 | * Similar to remap_pfn_range() (see mm/memory.c) |
83342314 | 2112 | */ |
e69e9d4a HD |
2113 | int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, |
2114 | void *kaddr, unsigned long size) | |
83342314 NP |
2115 | { |
2116 | struct vm_struct *area; | |
83342314 | 2117 | |
e69e9d4a HD |
2118 | size = PAGE_ALIGN(size); |
2119 | ||
2120 | if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) | |
83342314 NP |
2121 | return -EINVAL; |
2122 | ||
e69e9d4a | 2123 | area = find_vm_area(kaddr); |
83342314 | 2124 | if (!area) |
db64fe02 | 2125 | return -EINVAL; |
83342314 NP |
2126 | |
2127 | if (!(area->flags & VM_USERMAP)) | |
db64fe02 | 2128 | return -EINVAL; |
83342314 | 2129 | |
e69e9d4a | 2130 | if (kaddr + size > area->addr + area->size) |
db64fe02 | 2131 | return -EINVAL; |
83342314 | 2132 | |
83342314 | 2133 | do { |
e69e9d4a | 2134 | struct page *page = vmalloc_to_page(kaddr); |
db64fe02 NP |
2135 | int ret; |
2136 | ||
83342314 NP |
2137 | ret = vm_insert_page(vma, uaddr, page); |
2138 | if (ret) | |
2139 | return ret; | |
2140 | ||
2141 | uaddr += PAGE_SIZE; | |
e69e9d4a HD |
2142 | kaddr += PAGE_SIZE; |
2143 | size -= PAGE_SIZE; | |
2144 | } while (size > 0); | |
83342314 | 2145 | |
314e51b9 | 2146 | vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; |
83342314 | 2147 | |
db64fe02 | 2148 | return 0; |
83342314 | 2149 | } |
e69e9d4a HD |
2150 | EXPORT_SYMBOL(remap_vmalloc_range_partial); |
2151 | ||
2152 | /** | |
2153 | * remap_vmalloc_range - map vmalloc pages to userspace | |
2154 | * @vma: vma to cover (map full range of vma) | |
2155 | * @addr: vmalloc memory | |
2156 | * @pgoff: number of pages into addr before first page to map | |
2157 | * | |
2158 | * Returns: 0 for success, -Exxx on failure | |
2159 | * | |
2160 | * This function checks that addr is a valid vmalloc'ed area, and | |
2161 | * that it is big enough to cover the vma. Will return failure if | |
2162 | * that criteria isn't met. | |
2163 | * | |
2164 | * Similar to remap_pfn_range() (see mm/memory.c) | |
2165 | */ | |
2166 | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, | |
2167 | unsigned long pgoff) | |
2168 | { | |
2169 | return remap_vmalloc_range_partial(vma, vma->vm_start, | |
2170 | addr + (pgoff << PAGE_SHIFT), | |
2171 | vma->vm_end - vma->vm_start); | |
2172 | } | |
83342314 NP |
2173 | EXPORT_SYMBOL(remap_vmalloc_range); |
2174 | ||
1eeb66a1 CH |
2175 | /* |
2176 | * Implement a stub for vmalloc_sync_all() if the architecture chose not to | |
2177 | * have one. | |
2178 | */ | |
2179 | void __attribute__((weak)) vmalloc_sync_all(void) | |
2180 | { | |
2181 | } | |
5f4352fb JF |
2182 | |
2183 | ||
2f569afd | 2184 | static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) |
5f4352fb | 2185 | { |
cd12909c DV |
2186 | pte_t ***p = data; |
2187 | ||
2188 | if (p) { | |
2189 | *(*p) = pte; | |
2190 | (*p)++; | |
2191 | } | |
5f4352fb JF |
2192 | return 0; |
2193 | } | |
2194 | ||
2195 | /** | |
2196 | * alloc_vm_area - allocate a range of kernel address space | |
2197 | * @size: size of the area | |
cd12909c | 2198 | * @ptes: returns the PTEs for the address space |
7682486b RD |
2199 | * |
2200 | * Returns: NULL on failure, vm_struct on success | |
5f4352fb JF |
2201 | * |
2202 | * This function reserves a range of kernel address space, and | |
2203 | * allocates pagetables to map that range. No actual mappings | |
cd12909c DV |
2204 | * are created. |
2205 | * | |
2206 | * If @ptes is non-NULL, pointers to the PTEs (in init_mm) | |
2207 | * allocated for the VM area are returned. | |
5f4352fb | 2208 | */ |
cd12909c | 2209 | struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) |
5f4352fb JF |
2210 | { |
2211 | struct vm_struct *area; | |
2212 | ||
23016969 CL |
2213 | area = get_vm_area_caller(size, VM_IOREMAP, |
2214 | __builtin_return_address(0)); | |
5f4352fb JF |
2215 | if (area == NULL) |
2216 | return NULL; | |
2217 | ||
2218 | /* | |
2219 | * This ensures that page tables are constructed for this region | |
2220 | * of kernel virtual address space and mapped into init_mm. | |
2221 | */ | |
2222 | if (apply_to_page_range(&init_mm, (unsigned long)area->addr, | |
cd12909c | 2223 | size, f, ptes ? &ptes : NULL)) { |
5f4352fb JF |
2224 | free_vm_area(area); |
2225 | return NULL; | |
2226 | } | |
2227 | ||
5f4352fb JF |
2228 | return area; |
2229 | } | |
2230 | EXPORT_SYMBOL_GPL(alloc_vm_area); | |
2231 | ||
2232 | void free_vm_area(struct vm_struct *area) | |
2233 | { | |
2234 | struct vm_struct *ret; | |
2235 | ret = remove_vm_area(area->addr); | |
2236 | BUG_ON(ret != area); | |
2237 | kfree(area); | |
2238 | } | |
2239 | EXPORT_SYMBOL_GPL(free_vm_area); | |
a10aa579 | 2240 | |
4f8b02b4 | 2241 | #ifdef CONFIG_SMP |
ca23e405 TH |
2242 | static struct vmap_area *node_to_va(struct rb_node *n) |
2243 | { | |
2244 | return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; | |
2245 | } | |
2246 | ||
2247 | /** | |
2248 | * pvm_find_next_prev - find the next and prev vmap_area surrounding @end | |
2249 | * @end: target address | |
2250 | * @pnext: out arg for the next vmap_area | |
2251 | * @pprev: out arg for the previous vmap_area | |
2252 | * | |
2253 | * Returns: %true if either or both of next and prev are found, | |
2254 | * %false if no vmap_area exists | |
2255 | * | |
2256 | * Find vmap_areas end addresses of which enclose @end. ie. if not | |
2257 | * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. | |
2258 | */ | |
2259 | static bool pvm_find_next_prev(unsigned long end, | |
2260 | struct vmap_area **pnext, | |
2261 | struct vmap_area **pprev) | |
2262 | { | |
2263 | struct rb_node *n = vmap_area_root.rb_node; | |
2264 | struct vmap_area *va = NULL; | |
2265 | ||
2266 | while (n) { | |
2267 | va = rb_entry(n, struct vmap_area, rb_node); | |
2268 | if (end < va->va_end) | |
2269 | n = n->rb_left; | |
2270 | else if (end > va->va_end) | |
2271 | n = n->rb_right; | |
2272 | else | |
2273 | break; | |
2274 | } | |
2275 | ||
2276 | if (!va) | |
2277 | return false; | |
2278 | ||
2279 | if (va->va_end > end) { | |
2280 | *pnext = va; | |
2281 | *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); | |
2282 | } else { | |
2283 | *pprev = va; | |
2284 | *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); | |
2285 | } | |
2286 | return true; | |
2287 | } | |
2288 | ||
2289 | /** | |
2290 | * pvm_determine_end - find the highest aligned address between two vmap_areas | |
2291 | * @pnext: in/out arg for the next vmap_area | |
2292 | * @pprev: in/out arg for the previous vmap_area | |
2293 | * @align: alignment | |
2294 | * | |
2295 | * Returns: determined end address | |
2296 | * | |
2297 | * Find the highest aligned address between *@pnext and *@pprev below | |
2298 | * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned | |
2299 | * down address is between the end addresses of the two vmap_areas. | |
2300 | * | |
2301 | * Please note that the address returned by this function may fall | |
2302 | * inside *@pnext vmap_area. The caller is responsible for checking | |
2303 | * that. | |
2304 | */ | |
2305 | static unsigned long pvm_determine_end(struct vmap_area **pnext, | |
2306 | struct vmap_area **pprev, | |
2307 | unsigned long align) | |
2308 | { | |
2309 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | |
2310 | unsigned long addr; | |
2311 | ||
2312 | if (*pnext) | |
2313 | addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); | |
2314 | else | |
2315 | addr = vmalloc_end; | |
2316 | ||
2317 | while (*pprev && (*pprev)->va_end > addr) { | |
2318 | *pnext = *pprev; | |
2319 | *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); | |
2320 | } | |
2321 | ||
2322 | return addr; | |
2323 | } | |
2324 | ||
2325 | /** | |
2326 | * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator | |
2327 | * @offsets: array containing offset of each area | |
2328 | * @sizes: array containing size of each area | |
2329 | * @nr_vms: the number of areas to allocate | |
2330 | * @align: alignment, all entries in @offsets and @sizes must be aligned to this | |
ca23e405 TH |
2331 | * |
2332 | * Returns: kmalloc'd vm_struct pointer array pointing to allocated | |
2333 | * vm_structs on success, %NULL on failure | |
2334 | * | |
2335 | * Percpu allocator wants to use congruent vm areas so that it can | |
2336 | * maintain the offsets among percpu areas. This function allocates | |
ec3f64fc DR |
2337 | * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to |
2338 | * be scattered pretty far, distance between two areas easily going up | |
2339 | * to gigabytes. To avoid interacting with regular vmallocs, these | |
2340 | * areas are allocated from top. | |
ca23e405 TH |
2341 | * |
2342 | * Despite its complicated look, this allocator is rather simple. It | |
2343 | * does everything top-down and scans areas from the end looking for | |
2344 | * matching slot. While scanning, if any of the areas overlaps with | |
2345 | * existing vmap_area, the base address is pulled down to fit the | |
2346 | * area. Scanning is repeated till all the areas fit and then all | |
2347 | * necessary data structres are inserted and the result is returned. | |
2348 | */ | |
2349 | struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, | |
2350 | const size_t *sizes, int nr_vms, | |
ec3f64fc | 2351 | size_t align) |
ca23e405 TH |
2352 | { |
2353 | const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); | |
2354 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | |
2355 | struct vmap_area **vas, *prev, *next; | |
2356 | struct vm_struct **vms; | |
2357 | int area, area2, last_area, term_area; | |
2358 | unsigned long base, start, end, last_end; | |
2359 | bool purged = false; | |
2360 | ||
ca23e405 TH |
2361 | /* verify parameters and allocate data structures */ |
2362 | BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); | |
2363 | for (last_area = 0, area = 0; area < nr_vms; area++) { | |
2364 | start = offsets[area]; | |
2365 | end = start + sizes[area]; | |
2366 | ||
2367 | /* is everything aligned properly? */ | |
2368 | BUG_ON(!IS_ALIGNED(offsets[area], align)); | |
2369 | BUG_ON(!IS_ALIGNED(sizes[area], align)); | |
2370 | ||
2371 | /* detect the area with the highest address */ | |
2372 | if (start > offsets[last_area]) | |
2373 | last_area = area; | |
2374 | ||
2375 | for (area2 = 0; area2 < nr_vms; area2++) { | |
2376 | unsigned long start2 = offsets[area2]; | |
2377 | unsigned long end2 = start2 + sizes[area2]; | |
2378 | ||
2379 | if (area2 == area) | |
2380 | continue; | |
2381 | ||
2382 | BUG_ON(start2 >= start && start2 < end); | |
2383 | BUG_ON(end2 <= end && end2 > start); | |
2384 | } | |
2385 | } | |
2386 | last_end = offsets[last_area] + sizes[last_area]; | |
2387 | ||
2388 | if (vmalloc_end - vmalloc_start < last_end) { | |
2389 | WARN_ON(true); | |
2390 | return NULL; | |
2391 | } | |
2392 | ||
4d67d860 TM |
2393 | vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); |
2394 | vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); | |
ca23e405 | 2395 | if (!vas || !vms) |
f1db7afd | 2396 | goto err_free2; |
ca23e405 TH |
2397 | |
2398 | for (area = 0; area < nr_vms; area++) { | |
ec3f64fc DR |
2399 | vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); |
2400 | vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); | |
ca23e405 TH |
2401 | if (!vas[area] || !vms[area]) |
2402 | goto err_free; | |
2403 | } | |
2404 | retry: | |
2405 | spin_lock(&vmap_area_lock); | |
2406 | ||
2407 | /* start scanning - we scan from the top, begin with the last area */ | |
2408 | area = term_area = last_area; | |
2409 | start = offsets[area]; | |
2410 | end = start + sizes[area]; | |
2411 | ||
2412 | if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { | |
2413 | base = vmalloc_end - last_end; | |
2414 | goto found; | |
2415 | } | |
2416 | base = pvm_determine_end(&next, &prev, align) - end; | |
2417 | ||
2418 | while (true) { | |
2419 | BUG_ON(next && next->va_end <= base + end); | |
2420 | BUG_ON(prev && prev->va_end > base + end); | |
2421 | ||
2422 | /* | |
2423 | * base might have underflowed, add last_end before | |
2424 | * comparing. | |
2425 | */ | |
2426 | if (base + last_end < vmalloc_start + last_end) { | |
2427 | spin_unlock(&vmap_area_lock); | |
2428 | if (!purged) { | |
2429 | purge_vmap_area_lazy(); | |
2430 | purged = true; | |
2431 | goto retry; | |
2432 | } | |
2433 | goto err_free; | |
2434 | } | |
2435 | ||
2436 | /* | |
2437 | * If next overlaps, move base downwards so that it's | |
2438 | * right below next and then recheck. | |
2439 | */ | |
2440 | if (next && next->va_start < base + end) { | |
2441 | base = pvm_determine_end(&next, &prev, align) - end; | |
2442 | term_area = area; | |
2443 | continue; | |
2444 | } | |
2445 | ||
2446 | /* | |
2447 | * If prev overlaps, shift down next and prev and move | |
2448 | * base so that it's right below new next and then | |
2449 | * recheck. | |
2450 | */ | |
2451 | if (prev && prev->va_end > base + start) { | |
2452 | next = prev; | |
2453 | prev = node_to_va(rb_prev(&next->rb_node)); | |
2454 | base = pvm_determine_end(&next, &prev, align) - end; | |
2455 | term_area = area; | |
2456 | continue; | |
2457 | } | |
2458 | ||
2459 | /* | |
2460 | * This area fits, move on to the previous one. If | |
2461 | * the previous one is the terminal one, we're done. | |
2462 | */ | |
2463 | area = (area + nr_vms - 1) % nr_vms; | |
2464 | if (area == term_area) | |
2465 | break; | |
2466 | start = offsets[area]; | |
2467 | end = start + sizes[area]; | |
2468 | pvm_find_next_prev(base + end, &next, &prev); | |
2469 | } | |
2470 | found: | |
2471 | /* we've found a fitting base, insert all va's */ | |
2472 | for (area = 0; area < nr_vms; area++) { | |
2473 | struct vmap_area *va = vas[area]; | |
2474 | ||
2475 | va->va_start = base + offsets[area]; | |
2476 | va->va_end = va->va_start + sizes[area]; | |
2477 | __insert_vmap_area(va); | |
2478 | } | |
2479 | ||
2480 | vmap_area_pcpu_hole = base + offsets[last_area]; | |
2481 | ||
2482 | spin_unlock(&vmap_area_lock); | |
2483 | ||
2484 | /* insert all vm's */ | |
2485 | for (area = 0; area < nr_vms; area++) | |
3645cb4a ZY |
2486 | setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, |
2487 | pcpu_get_vm_areas); | |
ca23e405 TH |
2488 | |
2489 | kfree(vas); | |
2490 | return vms; | |
2491 | ||
2492 | err_free: | |
2493 | for (area = 0; area < nr_vms; area++) { | |
f1db7afd KC |
2494 | kfree(vas[area]); |
2495 | kfree(vms[area]); | |
ca23e405 | 2496 | } |
f1db7afd | 2497 | err_free2: |
ca23e405 TH |
2498 | kfree(vas); |
2499 | kfree(vms); | |
2500 | return NULL; | |
2501 | } | |
2502 | ||
2503 | /** | |
2504 | * pcpu_free_vm_areas - free vmalloc areas for percpu allocator | |
2505 | * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() | |
2506 | * @nr_vms: the number of allocated areas | |
2507 | * | |
2508 | * Free vm_structs and the array allocated by pcpu_get_vm_areas(). | |
2509 | */ | |
2510 | void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) | |
2511 | { | |
2512 | int i; | |
2513 | ||
2514 | for (i = 0; i < nr_vms; i++) | |
2515 | free_vm_area(vms[i]); | |
2516 | kfree(vms); | |
2517 | } | |
4f8b02b4 | 2518 | #endif /* CONFIG_SMP */ |
a10aa579 CL |
2519 | |
2520 | #ifdef CONFIG_PROC_FS | |
2521 | static void *s_start(struct seq_file *m, loff_t *pos) | |
d4033afd | 2522 | __acquires(&vmap_area_lock) |
a10aa579 CL |
2523 | { |
2524 | loff_t n = *pos; | |
d4033afd | 2525 | struct vmap_area *va; |
a10aa579 | 2526 | |
d4033afd JK |
2527 | spin_lock(&vmap_area_lock); |
2528 | va = list_entry((&vmap_area_list)->next, typeof(*va), list); | |
2529 | while (n > 0 && &va->list != &vmap_area_list) { | |
a10aa579 | 2530 | n--; |
d4033afd | 2531 | va = list_entry(va->list.next, typeof(*va), list); |
a10aa579 | 2532 | } |
d4033afd JK |
2533 | if (!n && &va->list != &vmap_area_list) |
2534 | return va; | |
a10aa579 CL |
2535 | |
2536 | return NULL; | |
2537 | ||
2538 | } | |
2539 | ||
2540 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
2541 | { | |
d4033afd | 2542 | struct vmap_area *va = p, *next; |
a10aa579 CL |
2543 | |
2544 | ++*pos; | |
d4033afd JK |
2545 | next = list_entry(va->list.next, typeof(*va), list); |
2546 | if (&next->list != &vmap_area_list) | |
2547 | return next; | |
2548 | ||
2549 | return NULL; | |
a10aa579 CL |
2550 | } |
2551 | ||
2552 | static void s_stop(struct seq_file *m, void *p) | |
d4033afd | 2553 | __releases(&vmap_area_lock) |
a10aa579 | 2554 | { |
d4033afd | 2555 | spin_unlock(&vmap_area_lock); |
a10aa579 CL |
2556 | } |
2557 | ||
a47a126a ED |
2558 | static void show_numa_info(struct seq_file *m, struct vm_struct *v) |
2559 | { | |
e5adfffc | 2560 | if (IS_ENABLED(CONFIG_NUMA)) { |
a47a126a ED |
2561 | unsigned int nr, *counters = m->private; |
2562 | ||
2563 | if (!counters) | |
2564 | return; | |
2565 | ||
2566 | memset(counters, 0, nr_node_ids * sizeof(unsigned int)); | |
2567 | ||
2568 | for (nr = 0; nr < v->nr_pages; nr++) | |
2569 | counters[page_to_nid(v->pages[nr])]++; | |
2570 | ||
2571 | for_each_node_state(nr, N_HIGH_MEMORY) | |
2572 | if (counters[nr]) | |
2573 | seq_printf(m, " N%u=%u", nr, counters[nr]); | |
2574 | } | |
2575 | } | |
2576 | ||
a10aa579 CL |
2577 | static int s_show(struct seq_file *m, void *p) |
2578 | { | |
d4033afd JK |
2579 | struct vmap_area *va = p; |
2580 | struct vm_struct *v; | |
2581 | ||
2582 | if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING)) | |
2583 | return 0; | |
2584 | ||
2585 | if (!(va->flags & VM_VM_AREA)) { | |
2586 | seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", | |
2587 | (void *)va->va_start, (void *)va->va_end, | |
2588 | va->va_end - va->va_start); | |
2589 | return 0; | |
2590 | } | |
2591 | ||
2592 | v = va->vm; | |
a10aa579 | 2593 | |
d157a558 ZY |
2594 | /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ |
2595 | smp_rmb(); | |
2596 | if (v->flags & VM_UNINITIALIZED) | |
2597 | return 0; | |
2598 | ||
45ec1690 | 2599 | seq_printf(m, "0x%pK-0x%pK %7ld", |
a10aa579 CL |
2600 | v->addr, v->addr + v->size, v->size); |
2601 | ||
62c70bce JP |
2602 | if (v->caller) |
2603 | seq_printf(m, " %pS", v->caller); | |
23016969 | 2604 | |
a10aa579 CL |
2605 | if (v->nr_pages) |
2606 | seq_printf(m, " pages=%d", v->nr_pages); | |
2607 | ||
2608 | if (v->phys_addr) | |
ffa71f33 | 2609 | seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); |
a10aa579 CL |
2610 | |
2611 | if (v->flags & VM_IOREMAP) | |
2612 | seq_printf(m, " ioremap"); | |
2613 | ||
2614 | if (v->flags & VM_ALLOC) | |
2615 | seq_printf(m, " vmalloc"); | |
2616 | ||
2617 | if (v->flags & VM_MAP) | |
2618 | seq_printf(m, " vmap"); | |
2619 | ||
2620 | if (v->flags & VM_USERMAP) | |
2621 | seq_printf(m, " user"); | |
2622 | ||
2623 | if (v->flags & VM_VPAGES) | |
2624 | seq_printf(m, " vpages"); | |
2625 | ||
a47a126a | 2626 | show_numa_info(m, v); |
a10aa579 CL |
2627 | seq_putc(m, '\n'); |
2628 | return 0; | |
2629 | } | |
2630 | ||
5f6a6a9c | 2631 | static const struct seq_operations vmalloc_op = { |
a10aa579 CL |
2632 | .start = s_start, |
2633 | .next = s_next, | |
2634 | .stop = s_stop, | |
2635 | .show = s_show, | |
2636 | }; | |
5f6a6a9c AD |
2637 | |
2638 | static int vmalloc_open(struct inode *inode, struct file *file) | |
2639 | { | |
2640 | unsigned int *ptr = NULL; | |
2641 | int ret; | |
2642 | ||
e5adfffc | 2643 | if (IS_ENABLED(CONFIG_NUMA)) { |
5f6a6a9c | 2644 | ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); |
51980ac9 KV |
2645 | if (ptr == NULL) |
2646 | return -ENOMEM; | |
2647 | } | |
5f6a6a9c AD |
2648 | ret = seq_open(file, &vmalloc_op); |
2649 | if (!ret) { | |
2650 | struct seq_file *m = file->private_data; | |
2651 | m->private = ptr; | |
2652 | } else | |
2653 | kfree(ptr); | |
2654 | return ret; | |
2655 | } | |
2656 | ||
2657 | static const struct file_operations proc_vmalloc_operations = { | |
2658 | .open = vmalloc_open, | |
2659 | .read = seq_read, | |
2660 | .llseek = seq_lseek, | |
2661 | .release = seq_release_private, | |
2662 | }; | |
2663 | ||
2664 | static int __init proc_vmalloc_init(void) | |
2665 | { | |
2666 | proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); | |
2667 | return 0; | |
2668 | } | |
2669 | module_init(proc_vmalloc_init); | |
db3808c1 JK |
2670 | |
2671 | void get_vmalloc_info(struct vmalloc_info *vmi) | |
2672 | { | |
f98782dd | 2673 | struct vmap_area *va; |
db3808c1 JK |
2674 | unsigned long free_area_size; |
2675 | unsigned long prev_end; | |
2676 | ||
2677 | vmi->used = 0; | |
f98782dd | 2678 | vmi->largest_chunk = 0; |
db3808c1 | 2679 | |
f98782dd | 2680 | prev_end = VMALLOC_START; |
db3808c1 | 2681 | |
f98782dd | 2682 | spin_lock(&vmap_area_lock); |
db3808c1 | 2683 | |
f98782dd JK |
2684 | if (list_empty(&vmap_area_list)) { |
2685 | vmi->largest_chunk = VMALLOC_TOTAL; | |
2686 | goto out; | |
2687 | } | |
db3808c1 | 2688 | |
f98782dd JK |
2689 | list_for_each_entry(va, &vmap_area_list, list) { |
2690 | unsigned long addr = va->va_start; | |
db3808c1 | 2691 | |
f98782dd JK |
2692 | /* |
2693 | * Some archs keep another range for modules in vmalloc space | |
2694 | */ | |
2695 | if (addr < VMALLOC_START) | |
2696 | continue; | |
2697 | if (addr >= VMALLOC_END) | |
2698 | break; | |
db3808c1 | 2699 | |
f98782dd JK |
2700 | if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING)) |
2701 | continue; | |
db3808c1 | 2702 | |
f98782dd | 2703 | vmi->used += (va->va_end - va->va_start); |
db3808c1 | 2704 | |
f98782dd JK |
2705 | free_area_size = addr - prev_end; |
2706 | if (vmi->largest_chunk < free_area_size) | |
2707 | vmi->largest_chunk = free_area_size; | |
db3808c1 | 2708 | |
f98782dd | 2709 | prev_end = va->va_end; |
db3808c1 | 2710 | } |
f98782dd JK |
2711 | |
2712 | if (VMALLOC_END - prev_end > vmi->largest_chunk) | |
2713 | vmi->largest_chunk = VMALLOC_END - prev_end; | |
2714 | ||
2715 | out: | |
2716 | spin_unlock(&vmap_area_lock); | |
db3808c1 | 2717 | } |
a10aa579 CL |
2718 | #endif |
2719 |