]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/vmalloc.c | |
3 | * | |
4 | * Copyright (C) 1993 Linus Torvalds | |
5 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
6 | * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <[email protected]>, May 2000 | |
7 | * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 | |
930fc45a | 8 | * Numa awareness, Christoph Lameter, SGI, June 2005 |
1da177e4 LT |
9 | */ |
10 | ||
db64fe02 | 11 | #include <linux/vmalloc.h> |
1da177e4 LT |
12 | #include <linux/mm.h> |
13 | #include <linux/module.h> | |
14 | #include <linux/highmem.h> | |
15 | #include <linux/slab.h> | |
16 | #include <linux/spinlock.h> | |
17 | #include <linux/interrupt.h> | |
5f6a6a9c | 18 | #include <linux/proc_fs.h> |
a10aa579 | 19 | #include <linux/seq_file.h> |
3ac7fe5a | 20 | #include <linux/debugobjects.h> |
23016969 | 21 | #include <linux/kallsyms.h> |
db64fe02 NP |
22 | #include <linux/list.h> |
23 | #include <linux/rbtree.h> | |
24 | #include <linux/radix-tree.h> | |
25 | #include <linux/rcupdate.h> | |
822c18f2 | 26 | #include <linux/bootmem.h> |
f0aa6617 | 27 | #include <linux/pfn.h> |
1da177e4 | 28 | |
db64fe02 | 29 | #include <asm/atomic.h> |
1da177e4 LT |
30 | #include <asm/uaccess.h> |
31 | #include <asm/tlbflush.h> | |
32 | ||
33 | ||
db64fe02 | 34 | /*** Page table manipulation functions ***/ |
b221385b | 35 | |
1da177e4 LT |
36 | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) |
37 | { | |
38 | pte_t *pte; | |
39 | ||
40 | pte = pte_offset_kernel(pmd, addr); | |
41 | do { | |
42 | pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); | |
43 | WARN_ON(!pte_none(ptent) && !pte_present(ptent)); | |
44 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
45 | } | |
46 | ||
db64fe02 | 47 | static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) |
1da177e4 LT |
48 | { |
49 | pmd_t *pmd; | |
50 | unsigned long next; | |
51 | ||
52 | pmd = pmd_offset(pud, addr); | |
53 | do { | |
54 | next = pmd_addr_end(addr, end); | |
55 | if (pmd_none_or_clear_bad(pmd)) | |
56 | continue; | |
57 | vunmap_pte_range(pmd, addr, next); | |
58 | } while (pmd++, addr = next, addr != end); | |
59 | } | |
60 | ||
db64fe02 | 61 | static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) |
1da177e4 LT |
62 | { |
63 | pud_t *pud; | |
64 | unsigned long next; | |
65 | ||
66 | pud = pud_offset(pgd, addr); | |
67 | do { | |
68 | next = pud_addr_end(addr, end); | |
69 | if (pud_none_or_clear_bad(pud)) | |
70 | continue; | |
71 | vunmap_pmd_range(pud, addr, next); | |
72 | } while (pud++, addr = next, addr != end); | |
73 | } | |
74 | ||
db64fe02 | 75 | static void vunmap_page_range(unsigned long addr, unsigned long end) |
1da177e4 LT |
76 | { |
77 | pgd_t *pgd; | |
78 | unsigned long next; | |
1da177e4 LT |
79 | |
80 | BUG_ON(addr >= end); | |
81 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
82 | do { |
83 | next = pgd_addr_end(addr, end); | |
84 | if (pgd_none_or_clear_bad(pgd)) | |
85 | continue; | |
86 | vunmap_pud_range(pgd, addr, next); | |
87 | } while (pgd++, addr = next, addr != end); | |
1da177e4 LT |
88 | } |
89 | ||
90 | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, | |
db64fe02 | 91 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) |
1da177e4 LT |
92 | { |
93 | pte_t *pte; | |
94 | ||
db64fe02 NP |
95 | /* |
96 | * nr is a running index into the array which helps higher level | |
97 | * callers keep track of where we're up to. | |
98 | */ | |
99 | ||
872fec16 | 100 | pte = pte_alloc_kernel(pmd, addr); |
1da177e4 LT |
101 | if (!pte) |
102 | return -ENOMEM; | |
103 | do { | |
db64fe02 NP |
104 | struct page *page = pages[*nr]; |
105 | ||
106 | if (WARN_ON(!pte_none(*pte))) | |
107 | return -EBUSY; | |
108 | if (WARN_ON(!page)) | |
1da177e4 LT |
109 | return -ENOMEM; |
110 | set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); | |
db64fe02 | 111 | (*nr)++; |
1da177e4 LT |
112 | } while (pte++, addr += PAGE_SIZE, addr != end); |
113 | return 0; | |
114 | } | |
115 | ||
db64fe02 NP |
116 | static int vmap_pmd_range(pud_t *pud, unsigned long addr, |
117 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | |
1da177e4 LT |
118 | { |
119 | pmd_t *pmd; | |
120 | unsigned long next; | |
121 | ||
122 | pmd = pmd_alloc(&init_mm, pud, addr); | |
123 | if (!pmd) | |
124 | return -ENOMEM; | |
125 | do { | |
126 | next = pmd_addr_end(addr, end); | |
db64fe02 | 127 | if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) |
1da177e4 LT |
128 | return -ENOMEM; |
129 | } while (pmd++, addr = next, addr != end); | |
130 | return 0; | |
131 | } | |
132 | ||
db64fe02 NP |
133 | static int vmap_pud_range(pgd_t *pgd, unsigned long addr, |
134 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | |
1da177e4 LT |
135 | { |
136 | pud_t *pud; | |
137 | unsigned long next; | |
138 | ||
139 | pud = pud_alloc(&init_mm, pgd, addr); | |
140 | if (!pud) | |
141 | return -ENOMEM; | |
142 | do { | |
143 | next = pud_addr_end(addr, end); | |
db64fe02 | 144 | if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) |
1da177e4 LT |
145 | return -ENOMEM; |
146 | } while (pud++, addr = next, addr != end); | |
147 | return 0; | |
148 | } | |
149 | ||
db64fe02 NP |
150 | /* |
151 | * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and | |
152 | * will have pfns corresponding to the "pages" array. | |
153 | * | |
154 | * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] | |
155 | */ | |
8fc48985 TH |
156 | static int vmap_page_range_noflush(unsigned long start, unsigned long end, |
157 | pgprot_t prot, struct page **pages) | |
1da177e4 LT |
158 | { |
159 | pgd_t *pgd; | |
160 | unsigned long next; | |
2e4e27c7 | 161 | unsigned long addr = start; |
db64fe02 NP |
162 | int err = 0; |
163 | int nr = 0; | |
1da177e4 LT |
164 | |
165 | BUG_ON(addr >= end); | |
166 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
167 | do { |
168 | next = pgd_addr_end(addr, end); | |
db64fe02 | 169 | err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); |
1da177e4 LT |
170 | if (err) |
171 | break; | |
172 | } while (pgd++, addr = next, addr != end); | |
db64fe02 NP |
173 | |
174 | if (unlikely(err)) | |
175 | return err; | |
176 | return nr; | |
1da177e4 LT |
177 | } |
178 | ||
8fc48985 TH |
179 | static int vmap_page_range(unsigned long start, unsigned long end, |
180 | pgprot_t prot, struct page **pages) | |
181 | { | |
182 | int ret; | |
183 | ||
184 | ret = vmap_page_range_noflush(start, end, prot, pages); | |
185 | flush_cache_vmap(start, end); | |
186 | return ret; | |
187 | } | |
188 | ||
73bdf0a6 LT |
189 | static inline int is_vmalloc_or_module_addr(const void *x) |
190 | { | |
191 | /* | |
ab4f2ee1 | 192 | * ARM, x86-64 and sparc64 put modules in a special place, |
73bdf0a6 LT |
193 | * and fall back on vmalloc() if that fails. Others |
194 | * just put it in the vmalloc space. | |
195 | */ | |
196 | #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) | |
197 | unsigned long addr = (unsigned long)x; | |
198 | if (addr >= MODULES_VADDR && addr < MODULES_END) | |
199 | return 1; | |
200 | #endif | |
201 | return is_vmalloc_addr(x); | |
202 | } | |
203 | ||
48667e7a | 204 | /* |
db64fe02 | 205 | * Walk a vmap address to the struct page it maps. |
48667e7a | 206 | */ |
b3bdda02 | 207 | struct page *vmalloc_to_page(const void *vmalloc_addr) |
48667e7a CL |
208 | { |
209 | unsigned long addr = (unsigned long) vmalloc_addr; | |
210 | struct page *page = NULL; | |
211 | pgd_t *pgd = pgd_offset_k(addr); | |
48667e7a | 212 | |
7aa413de IM |
213 | /* |
214 | * XXX we might need to change this if we add VIRTUAL_BUG_ON for | |
215 | * architectures that do not vmalloc module space | |
216 | */ | |
73bdf0a6 | 217 | VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); |
59ea7463 | 218 | |
48667e7a | 219 | if (!pgd_none(*pgd)) { |
db64fe02 | 220 | pud_t *pud = pud_offset(pgd, addr); |
48667e7a | 221 | if (!pud_none(*pud)) { |
db64fe02 | 222 | pmd_t *pmd = pmd_offset(pud, addr); |
48667e7a | 223 | if (!pmd_none(*pmd)) { |
db64fe02 NP |
224 | pte_t *ptep, pte; |
225 | ||
48667e7a CL |
226 | ptep = pte_offset_map(pmd, addr); |
227 | pte = *ptep; | |
228 | if (pte_present(pte)) | |
229 | page = pte_page(pte); | |
230 | pte_unmap(ptep); | |
231 | } | |
232 | } | |
233 | } | |
234 | return page; | |
235 | } | |
236 | EXPORT_SYMBOL(vmalloc_to_page); | |
237 | ||
238 | /* | |
239 | * Map a vmalloc()-space virtual address to the physical page frame number. | |
240 | */ | |
b3bdda02 | 241 | unsigned long vmalloc_to_pfn(const void *vmalloc_addr) |
48667e7a CL |
242 | { |
243 | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); | |
244 | } | |
245 | EXPORT_SYMBOL(vmalloc_to_pfn); | |
246 | ||
db64fe02 NP |
247 | |
248 | /*** Global kva allocator ***/ | |
249 | ||
250 | #define VM_LAZY_FREE 0x01 | |
251 | #define VM_LAZY_FREEING 0x02 | |
252 | #define VM_VM_AREA 0x04 | |
253 | ||
254 | struct vmap_area { | |
255 | unsigned long va_start; | |
256 | unsigned long va_end; | |
257 | unsigned long flags; | |
258 | struct rb_node rb_node; /* address sorted rbtree */ | |
259 | struct list_head list; /* address sorted list */ | |
260 | struct list_head purge_list; /* "lazy purge" list */ | |
261 | void *private; | |
262 | struct rcu_head rcu_head; | |
263 | }; | |
264 | ||
265 | static DEFINE_SPINLOCK(vmap_area_lock); | |
266 | static struct rb_root vmap_area_root = RB_ROOT; | |
267 | static LIST_HEAD(vmap_area_list); | |
268 | ||
269 | static struct vmap_area *__find_vmap_area(unsigned long addr) | |
1da177e4 | 270 | { |
db64fe02 NP |
271 | struct rb_node *n = vmap_area_root.rb_node; |
272 | ||
273 | while (n) { | |
274 | struct vmap_area *va; | |
275 | ||
276 | va = rb_entry(n, struct vmap_area, rb_node); | |
277 | if (addr < va->va_start) | |
278 | n = n->rb_left; | |
279 | else if (addr > va->va_start) | |
280 | n = n->rb_right; | |
281 | else | |
282 | return va; | |
283 | } | |
284 | ||
285 | return NULL; | |
286 | } | |
287 | ||
288 | static void __insert_vmap_area(struct vmap_area *va) | |
289 | { | |
290 | struct rb_node **p = &vmap_area_root.rb_node; | |
291 | struct rb_node *parent = NULL; | |
292 | struct rb_node *tmp; | |
293 | ||
294 | while (*p) { | |
295 | struct vmap_area *tmp; | |
296 | ||
297 | parent = *p; | |
298 | tmp = rb_entry(parent, struct vmap_area, rb_node); | |
299 | if (va->va_start < tmp->va_end) | |
300 | p = &(*p)->rb_left; | |
301 | else if (va->va_end > tmp->va_start) | |
302 | p = &(*p)->rb_right; | |
303 | else | |
304 | BUG(); | |
305 | } | |
306 | ||
307 | rb_link_node(&va->rb_node, parent, p); | |
308 | rb_insert_color(&va->rb_node, &vmap_area_root); | |
309 | ||
310 | /* address-sort this list so it is usable like the vmlist */ | |
311 | tmp = rb_prev(&va->rb_node); | |
312 | if (tmp) { | |
313 | struct vmap_area *prev; | |
314 | prev = rb_entry(tmp, struct vmap_area, rb_node); | |
315 | list_add_rcu(&va->list, &prev->list); | |
316 | } else | |
317 | list_add_rcu(&va->list, &vmap_area_list); | |
318 | } | |
319 | ||
320 | static void purge_vmap_area_lazy(void); | |
321 | ||
322 | /* | |
323 | * Allocate a region of KVA of the specified size and alignment, within the | |
324 | * vstart and vend. | |
325 | */ | |
326 | static struct vmap_area *alloc_vmap_area(unsigned long size, | |
327 | unsigned long align, | |
328 | unsigned long vstart, unsigned long vend, | |
329 | int node, gfp_t gfp_mask) | |
330 | { | |
331 | struct vmap_area *va; | |
332 | struct rb_node *n; | |
1da177e4 | 333 | unsigned long addr; |
db64fe02 NP |
334 | int purged = 0; |
335 | ||
7766970c | 336 | BUG_ON(!size); |
db64fe02 NP |
337 | BUG_ON(size & ~PAGE_MASK); |
338 | ||
db64fe02 NP |
339 | va = kmalloc_node(sizeof(struct vmap_area), |
340 | gfp_mask & GFP_RECLAIM_MASK, node); | |
341 | if (unlikely(!va)) | |
342 | return ERR_PTR(-ENOMEM); | |
343 | ||
344 | retry: | |
0ae15132 GC |
345 | addr = ALIGN(vstart, align); |
346 | ||
db64fe02 | 347 | spin_lock(&vmap_area_lock); |
7766970c NP |
348 | if (addr + size - 1 < addr) |
349 | goto overflow; | |
350 | ||
db64fe02 NP |
351 | /* XXX: could have a last_hole cache */ |
352 | n = vmap_area_root.rb_node; | |
353 | if (n) { | |
354 | struct vmap_area *first = NULL; | |
355 | ||
356 | do { | |
357 | struct vmap_area *tmp; | |
358 | tmp = rb_entry(n, struct vmap_area, rb_node); | |
359 | if (tmp->va_end >= addr) { | |
360 | if (!first && tmp->va_start < addr + size) | |
361 | first = tmp; | |
362 | n = n->rb_left; | |
363 | } else { | |
364 | first = tmp; | |
365 | n = n->rb_right; | |
366 | } | |
367 | } while (n); | |
368 | ||
369 | if (!first) | |
370 | goto found; | |
371 | ||
372 | if (first->va_end < addr) { | |
373 | n = rb_next(&first->rb_node); | |
374 | if (n) | |
375 | first = rb_entry(n, struct vmap_area, rb_node); | |
376 | else | |
377 | goto found; | |
378 | } | |
379 | ||
f011c2da | 380 | while (addr + size > first->va_start && addr + size <= vend) { |
db64fe02 | 381 | addr = ALIGN(first->va_end + PAGE_SIZE, align); |
7766970c NP |
382 | if (addr + size - 1 < addr) |
383 | goto overflow; | |
db64fe02 NP |
384 | |
385 | n = rb_next(&first->rb_node); | |
386 | if (n) | |
387 | first = rb_entry(n, struct vmap_area, rb_node); | |
388 | else | |
389 | goto found; | |
390 | } | |
391 | } | |
392 | found: | |
393 | if (addr + size > vend) { | |
7766970c | 394 | overflow: |
db64fe02 NP |
395 | spin_unlock(&vmap_area_lock); |
396 | if (!purged) { | |
397 | purge_vmap_area_lazy(); | |
398 | purged = 1; | |
399 | goto retry; | |
400 | } | |
401 | if (printk_ratelimit()) | |
c1279c4e GC |
402 | printk(KERN_WARNING |
403 | "vmap allocation for size %lu failed: " | |
404 | "use vmalloc=<size> to increase size.\n", size); | |
db64fe02 NP |
405 | return ERR_PTR(-EBUSY); |
406 | } | |
407 | ||
408 | BUG_ON(addr & (align-1)); | |
409 | ||
410 | va->va_start = addr; | |
411 | va->va_end = addr + size; | |
412 | va->flags = 0; | |
413 | __insert_vmap_area(va); | |
414 | spin_unlock(&vmap_area_lock); | |
415 | ||
416 | return va; | |
417 | } | |
418 | ||
419 | static void rcu_free_va(struct rcu_head *head) | |
420 | { | |
421 | struct vmap_area *va = container_of(head, struct vmap_area, rcu_head); | |
422 | ||
423 | kfree(va); | |
424 | } | |
425 | ||
426 | static void __free_vmap_area(struct vmap_area *va) | |
427 | { | |
428 | BUG_ON(RB_EMPTY_NODE(&va->rb_node)); | |
429 | rb_erase(&va->rb_node, &vmap_area_root); | |
430 | RB_CLEAR_NODE(&va->rb_node); | |
431 | list_del_rcu(&va->list); | |
432 | ||
433 | call_rcu(&va->rcu_head, rcu_free_va); | |
434 | } | |
435 | ||
436 | /* | |
437 | * Free a region of KVA allocated by alloc_vmap_area | |
438 | */ | |
439 | static void free_vmap_area(struct vmap_area *va) | |
440 | { | |
441 | spin_lock(&vmap_area_lock); | |
442 | __free_vmap_area(va); | |
443 | spin_unlock(&vmap_area_lock); | |
444 | } | |
445 | ||
446 | /* | |
447 | * Clear the pagetable entries of a given vmap_area | |
448 | */ | |
449 | static void unmap_vmap_area(struct vmap_area *va) | |
450 | { | |
451 | vunmap_page_range(va->va_start, va->va_end); | |
452 | } | |
453 | ||
cd52858c NP |
454 | static void vmap_debug_free_range(unsigned long start, unsigned long end) |
455 | { | |
456 | /* | |
457 | * Unmap page tables and force a TLB flush immediately if | |
458 | * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free | |
459 | * bugs similarly to those in linear kernel virtual address | |
460 | * space after a page has been freed. | |
461 | * | |
462 | * All the lazy freeing logic is still retained, in order to | |
463 | * minimise intrusiveness of this debugging feature. | |
464 | * | |
465 | * This is going to be *slow* (linear kernel virtual address | |
466 | * debugging doesn't do a broadcast TLB flush so it is a lot | |
467 | * faster). | |
468 | */ | |
469 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
470 | vunmap_page_range(start, end); | |
471 | flush_tlb_kernel_range(start, end); | |
472 | #endif | |
473 | } | |
474 | ||
db64fe02 NP |
475 | /* |
476 | * lazy_max_pages is the maximum amount of virtual address space we gather up | |
477 | * before attempting to purge with a TLB flush. | |
478 | * | |
479 | * There is a tradeoff here: a larger number will cover more kernel page tables | |
480 | * and take slightly longer to purge, but it will linearly reduce the number of | |
481 | * global TLB flushes that must be performed. It would seem natural to scale | |
482 | * this number up linearly with the number of CPUs (because vmapping activity | |
483 | * could also scale linearly with the number of CPUs), however it is likely | |
484 | * that in practice, workloads might be constrained in other ways that mean | |
485 | * vmap activity will not scale linearly with CPUs. Also, I want to be | |
486 | * conservative and not introduce a big latency on huge systems, so go with | |
487 | * a less aggressive log scale. It will still be an improvement over the old | |
488 | * code, and it will be simple to change the scale factor if we find that it | |
489 | * becomes a problem on bigger systems. | |
490 | */ | |
491 | static unsigned long lazy_max_pages(void) | |
492 | { | |
493 | unsigned int log; | |
494 | ||
495 | log = fls(num_online_cpus()); | |
496 | ||
497 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); | |
498 | } | |
499 | ||
500 | static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); | |
501 | ||
502 | /* | |
503 | * Purges all lazily-freed vmap areas. | |
504 | * | |
505 | * If sync is 0 then don't purge if there is already a purge in progress. | |
506 | * If force_flush is 1, then flush kernel TLBs between *start and *end even | |
507 | * if we found no lazy vmap areas to unmap (callers can use this to optimise | |
508 | * their own TLB flushing). | |
509 | * Returns with *start = min(*start, lowest purged address) | |
510 | * *end = max(*end, highest purged address) | |
511 | */ | |
512 | static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, | |
513 | int sync, int force_flush) | |
514 | { | |
46666d8a | 515 | static DEFINE_SPINLOCK(purge_lock); |
db64fe02 NP |
516 | LIST_HEAD(valist); |
517 | struct vmap_area *va; | |
cbb76676 | 518 | struct vmap_area *n_va; |
db64fe02 NP |
519 | int nr = 0; |
520 | ||
521 | /* | |
522 | * If sync is 0 but force_flush is 1, we'll go sync anyway but callers | |
523 | * should not expect such behaviour. This just simplifies locking for | |
524 | * the case that isn't actually used at the moment anyway. | |
525 | */ | |
526 | if (!sync && !force_flush) { | |
46666d8a | 527 | if (!spin_trylock(&purge_lock)) |
db64fe02 NP |
528 | return; |
529 | } else | |
46666d8a | 530 | spin_lock(&purge_lock); |
db64fe02 NP |
531 | |
532 | rcu_read_lock(); | |
533 | list_for_each_entry_rcu(va, &vmap_area_list, list) { | |
534 | if (va->flags & VM_LAZY_FREE) { | |
535 | if (va->va_start < *start) | |
536 | *start = va->va_start; | |
537 | if (va->va_end > *end) | |
538 | *end = va->va_end; | |
539 | nr += (va->va_end - va->va_start) >> PAGE_SHIFT; | |
540 | unmap_vmap_area(va); | |
541 | list_add_tail(&va->purge_list, &valist); | |
542 | va->flags |= VM_LAZY_FREEING; | |
543 | va->flags &= ~VM_LAZY_FREE; | |
544 | } | |
545 | } | |
546 | rcu_read_unlock(); | |
547 | ||
548 | if (nr) { | |
549 | BUG_ON(nr > atomic_read(&vmap_lazy_nr)); | |
550 | atomic_sub(nr, &vmap_lazy_nr); | |
551 | } | |
552 | ||
553 | if (nr || force_flush) | |
554 | flush_tlb_kernel_range(*start, *end); | |
555 | ||
556 | if (nr) { | |
557 | spin_lock(&vmap_area_lock); | |
cbb76676 | 558 | list_for_each_entry_safe(va, n_va, &valist, purge_list) |
db64fe02 NP |
559 | __free_vmap_area(va); |
560 | spin_unlock(&vmap_area_lock); | |
561 | } | |
46666d8a | 562 | spin_unlock(&purge_lock); |
db64fe02 NP |
563 | } |
564 | ||
496850e5 NP |
565 | /* |
566 | * Kick off a purge of the outstanding lazy areas. Don't bother if somebody | |
567 | * is already purging. | |
568 | */ | |
569 | static void try_purge_vmap_area_lazy(void) | |
570 | { | |
571 | unsigned long start = ULONG_MAX, end = 0; | |
572 | ||
573 | __purge_vmap_area_lazy(&start, &end, 0, 0); | |
574 | } | |
575 | ||
db64fe02 NP |
576 | /* |
577 | * Kick off a purge of the outstanding lazy areas. | |
578 | */ | |
579 | static void purge_vmap_area_lazy(void) | |
580 | { | |
581 | unsigned long start = ULONG_MAX, end = 0; | |
582 | ||
496850e5 | 583 | __purge_vmap_area_lazy(&start, &end, 1, 0); |
db64fe02 NP |
584 | } |
585 | ||
586 | /* | |
b29acbdc NP |
587 | * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been |
588 | * called for the correct range previously. | |
db64fe02 | 589 | */ |
b29acbdc | 590 | static void free_unmap_vmap_area_noflush(struct vmap_area *va) |
db64fe02 NP |
591 | { |
592 | va->flags |= VM_LAZY_FREE; | |
593 | atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); | |
594 | if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) | |
496850e5 | 595 | try_purge_vmap_area_lazy(); |
db64fe02 NP |
596 | } |
597 | ||
b29acbdc NP |
598 | /* |
599 | * Free and unmap a vmap area | |
600 | */ | |
601 | static void free_unmap_vmap_area(struct vmap_area *va) | |
602 | { | |
603 | flush_cache_vunmap(va->va_start, va->va_end); | |
604 | free_unmap_vmap_area_noflush(va); | |
605 | } | |
606 | ||
db64fe02 NP |
607 | static struct vmap_area *find_vmap_area(unsigned long addr) |
608 | { | |
609 | struct vmap_area *va; | |
610 | ||
611 | spin_lock(&vmap_area_lock); | |
612 | va = __find_vmap_area(addr); | |
613 | spin_unlock(&vmap_area_lock); | |
614 | ||
615 | return va; | |
616 | } | |
617 | ||
618 | static void free_unmap_vmap_area_addr(unsigned long addr) | |
619 | { | |
620 | struct vmap_area *va; | |
621 | ||
622 | va = find_vmap_area(addr); | |
623 | BUG_ON(!va); | |
624 | free_unmap_vmap_area(va); | |
625 | } | |
626 | ||
627 | ||
628 | /*** Per cpu kva allocator ***/ | |
629 | ||
630 | /* | |
631 | * vmap space is limited especially on 32 bit architectures. Ensure there is | |
632 | * room for at least 16 percpu vmap blocks per CPU. | |
633 | */ | |
634 | /* | |
635 | * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able | |
636 | * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess | |
637 | * instead (we just need a rough idea) | |
638 | */ | |
639 | #if BITS_PER_LONG == 32 | |
640 | #define VMALLOC_SPACE (128UL*1024*1024) | |
641 | #else | |
642 | #define VMALLOC_SPACE (128UL*1024*1024*1024) | |
643 | #endif | |
644 | ||
645 | #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) | |
646 | #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ | |
647 | #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ | |
648 | #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) | |
649 | #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ | |
650 | #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ | |
651 | #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ | |
652 | VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ | |
653 | VMALLOC_PAGES / NR_CPUS / 16)) | |
654 | ||
655 | #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) | |
656 | ||
9b463334 JF |
657 | static bool vmap_initialized __read_mostly = false; |
658 | ||
db64fe02 NP |
659 | struct vmap_block_queue { |
660 | spinlock_t lock; | |
661 | struct list_head free; | |
662 | struct list_head dirty; | |
663 | unsigned int nr_dirty; | |
664 | }; | |
665 | ||
666 | struct vmap_block { | |
667 | spinlock_t lock; | |
668 | struct vmap_area *va; | |
669 | struct vmap_block_queue *vbq; | |
670 | unsigned long free, dirty; | |
671 | DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS); | |
672 | DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); | |
673 | union { | |
d086817d | 674 | struct list_head free_list; |
db64fe02 NP |
675 | struct rcu_head rcu_head; |
676 | }; | |
677 | }; | |
678 | ||
679 | /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ | |
680 | static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); | |
681 | ||
682 | /* | |
683 | * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block | |
684 | * in the free path. Could get rid of this if we change the API to return a | |
685 | * "cookie" from alloc, to be passed to free. But no big deal yet. | |
686 | */ | |
687 | static DEFINE_SPINLOCK(vmap_block_tree_lock); | |
688 | static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); | |
689 | ||
690 | /* | |
691 | * We should probably have a fallback mechanism to allocate virtual memory | |
692 | * out of partially filled vmap blocks. However vmap block sizing should be | |
693 | * fairly reasonable according to the vmalloc size, so it shouldn't be a | |
694 | * big problem. | |
695 | */ | |
696 | ||
697 | static unsigned long addr_to_vb_idx(unsigned long addr) | |
698 | { | |
699 | addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); | |
700 | addr /= VMAP_BLOCK_SIZE; | |
701 | return addr; | |
702 | } | |
703 | ||
704 | static struct vmap_block *new_vmap_block(gfp_t gfp_mask) | |
705 | { | |
706 | struct vmap_block_queue *vbq; | |
707 | struct vmap_block *vb; | |
708 | struct vmap_area *va; | |
709 | unsigned long vb_idx; | |
710 | int node, err; | |
711 | ||
712 | node = numa_node_id(); | |
713 | ||
714 | vb = kmalloc_node(sizeof(struct vmap_block), | |
715 | gfp_mask & GFP_RECLAIM_MASK, node); | |
716 | if (unlikely(!vb)) | |
717 | return ERR_PTR(-ENOMEM); | |
718 | ||
719 | va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, | |
720 | VMALLOC_START, VMALLOC_END, | |
721 | node, gfp_mask); | |
722 | if (unlikely(IS_ERR(va))) { | |
723 | kfree(vb); | |
724 | return ERR_PTR(PTR_ERR(va)); | |
725 | } | |
726 | ||
727 | err = radix_tree_preload(gfp_mask); | |
728 | if (unlikely(err)) { | |
729 | kfree(vb); | |
730 | free_vmap_area(va); | |
731 | return ERR_PTR(err); | |
732 | } | |
733 | ||
734 | spin_lock_init(&vb->lock); | |
735 | vb->va = va; | |
736 | vb->free = VMAP_BBMAP_BITS; | |
737 | vb->dirty = 0; | |
738 | bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS); | |
739 | bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); | |
740 | INIT_LIST_HEAD(&vb->free_list); | |
db64fe02 NP |
741 | |
742 | vb_idx = addr_to_vb_idx(va->va_start); | |
743 | spin_lock(&vmap_block_tree_lock); | |
744 | err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); | |
745 | spin_unlock(&vmap_block_tree_lock); | |
746 | BUG_ON(err); | |
747 | radix_tree_preload_end(); | |
748 | ||
749 | vbq = &get_cpu_var(vmap_block_queue); | |
750 | vb->vbq = vbq; | |
751 | spin_lock(&vbq->lock); | |
752 | list_add(&vb->free_list, &vbq->free); | |
753 | spin_unlock(&vbq->lock); | |
754 | put_cpu_var(vmap_cpu_blocks); | |
755 | ||
756 | return vb; | |
757 | } | |
758 | ||
759 | static void rcu_free_vb(struct rcu_head *head) | |
760 | { | |
761 | struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head); | |
762 | ||
763 | kfree(vb); | |
764 | } | |
765 | ||
766 | static void free_vmap_block(struct vmap_block *vb) | |
767 | { | |
768 | struct vmap_block *tmp; | |
769 | unsigned long vb_idx; | |
770 | ||
d086817d | 771 | BUG_ON(!list_empty(&vb->free_list)); |
db64fe02 NP |
772 | |
773 | vb_idx = addr_to_vb_idx(vb->va->va_start); | |
774 | spin_lock(&vmap_block_tree_lock); | |
775 | tmp = radix_tree_delete(&vmap_block_tree, vb_idx); | |
776 | spin_unlock(&vmap_block_tree_lock); | |
777 | BUG_ON(tmp != vb); | |
778 | ||
b29acbdc | 779 | free_unmap_vmap_area_noflush(vb->va); |
db64fe02 NP |
780 | call_rcu(&vb->rcu_head, rcu_free_vb); |
781 | } | |
782 | ||
783 | static void *vb_alloc(unsigned long size, gfp_t gfp_mask) | |
784 | { | |
785 | struct vmap_block_queue *vbq; | |
786 | struct vmap_block *vb; | |
787 | unsigned long addr = 0; | |
788 | unsigned int order; | |
789 | ||
790 | BUG_ON(size & ~PAGE_MASK); | |
791 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | |
792 | order = get_order(size); | |
793 | ||
794 | again: | |
795 | rcu_read_lock(); | |
796 | vbq = &get_cpu_var(vmap_block_queue); | |
797 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
798 | int i; | |
799 | ||
800 | spin_lock(&vb->lock); | |
801 | i = bitmap_find_free_region(vb->alloc_map, | |
802 | VMAP_BBMAP_BITS, order); | |
803 | ||
804 | if (i >= 0) { | |
805 | addr = vb->va->va_start + (i << PAGE_SHIFT); | |
806 | BUG_ON(addr_to_vb_idx(addr) != | |
807 | addr_to_vb_idx(vb->va->va_start)); | |
808 | vb->free -= 1UL << order; | |
809 | if (vb->free == 0) { | |
810 | spin_lock(&vbq->lock); | |
811 | list_del_init(&vb->free_list); | |
812 | spin_unlock(&vbq->lock); | |
813 | } | |
814 | spin_unlock(&vb->lock); | |
815 | break; | |
816 | } | |
817 | spin_unlock(&vb->lock); | |
818 | } | |
819 | put_cpu_var(vmap_cpu_blocks); | |
820 | rcu_read_unlock(); | |
821 | ||
822 | if (!addr) { | |
823 | vb = new_vmap_block(gfp_mask); | |
824 | if (IS_ERR(vb)) | |
825 | return vb; | |
826 | goto again; | |
827 | } | |
828 | ||
829 | return (void *)addr; | |
830 | } | |
831 | ||
832 | static void vb_free(const void *addr, unsigned long size) | |
833 | { | |
834 | unsigned long offset; | |
835 | unsigned long vb_idx; | |
836 | unsigned int order; | |
837 | struct vmap_block *vb; | |
838 | ||
839 | BUG_ON(size & ~PAGE_MASK); | |
840 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | |
b29acbdc NP |
841 | |
842 | flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); | |
843 | ||
db64fe02 NP |
844 | order = get_order(size); |
845 | ||
846 | offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); | |
847 | ||
848 | vb_idx = addr_to_vb_idx((unsigned long)addr); | |
849 | rcu_read_lock(); | |
850 | vb = radix_tree_lookup(&vmap_block_tree, vb_idx); | |
851 | rcu_read_unlock(); | |
852 | BUG_ON(!vb); | |
853 | ||
854 | spin_lock(&vb->lock); | |
855 | bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order); | |
d086817d | 856 | |
db64fe02 NP |
857 | vb->dirty += 1UL << order; |
858 | if (vb->dirty == VMAP_BBMAP_BITS) { | |
859 | BUG_ON(vb->free || !list_empty(&vb->free_list)); | |
860 | spin_unlock(&vb->lock); | |
861 | free_vmap_block(vb); | |
862 | } else | |
863 | spin_unlock(&vb->lock); | |
864 | } | |
865 | ||
866 | /** | |
867 | * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer | |
868 | * | |
869 | * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily | |
870 | * to amortize TLB flushing overheads. What this means is that any page you | |
871 | * have now, may, in a former life, have been mapped into kernel virtual | |
872 | * address by the vmap layer and so there might be some CPUs with TLB entries | |
873 | * still referencing that page (additional to the regular 1:1 kernel mapping). | |
874 | * | |
875 | * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can | |
876 | * be sure that none of the pages we have control over will have any aliases | |
877 | * from the vmap layer. | |
878 | */ | |
879 | void vm_unmap_aliases(void) | |
880 | { | |
881 | unsigned long start = ULONG_MAX, end = 0; | |
882 | int cpu; | |
883 | int flush = 0; | |
884 | ||
9b463334 JF |
885 | if (unlikely(!vmap_initialized)) |
886 | return; | |
887 | ||
db64fe02 NP |
888 | for_each_possible_cpu(cpu) { |
889 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
890 | struct vmap_block *vb; | |
891 | ||
892 | rcu_read_lock(); | |
893 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
894 | int i; | |
895 | ||
896 | spin_lock(&vb->lock); | |
897 | i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); | |
898 | while (i < VMAP_BBMAP_BITS) { | |
899 | unsigned long s, e; | |
900 | int j; | |
901 | j = find_next_zero_bit(vb->dirty_map, | |
902 | VMAP_BBMAP_BITS, i); | |
903 | ||
904 | s = vb->va->va_start + (i << PAGE_SHIFT); | |
905 | e = vb->va->va_start + (j << PAGE_SHIFT); | |
906 | vunmap_page_range(s, e); | |
907 | flush = 1; | |
908 | ||
909 | if (s < start) | |
910 | start = s; | |
911 | if (e > end) | |
912 | end = e; | |
913 | ||
914 | i = j; | |
915 | i = find_next_bit(vb->dirty_map, | |
916 | VMAP_BBMAP_BITS, i); | |
917 | } | |
918 | spin_unlock(&vb->lock); | |
919 | } | |
920 | rcu_read_unlock(); | |
921 | } | |
922 | ||
923 | __purge_vmap_area_lazy(&start, &end, 1, flush); | |
924 | } | |
925 | EXPORT_SYMBOL_GPL(vm_unmap_aliases); | |
926 | ||
927 | /** | |
928 | * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram | |
929 | * @mem: the pointer returned by vm_map_ram | |
930 | * @count: the count passed to that vm_map_ram call (cannot unmap partial) | |
931 | */ | |
932 | void vm_unmap_ram(const void *mem, unsigned int count) | |
933 | { | |
934 | unsigned long size = count << PAGE_SHIFT; | |
935 | unsigned long addr = (unsigned long)mem; | |
936 | ||
937 | BUG_ON(!addr); | |
938 | BUG_ON(addr < VMALLOC_START); | |
939 | BUG_ON(addr > VMALLOC_END); | |
940 | BUG_ON(addr & (PAGE_SIZE-1)); | |
941 | ||
942 | debug_check_no_locks_freed(mem, size); | |
cd52858c | 943 | vmap_debug_free_range(addr, addr+size); |
db64fe02 NP |
944 | |
945 | if (likely(count <= VMAP_MAX_ALLOC)) | |
946 | vb_free(mem, size); | |
947 | else | |
948 | free_unmap_vmap_area_addr(addr); | |
949 | } | |
950 | EXPORT_SYMBOL(vm_unmap_ram); | |
951 | ||
952 | /** | |
953 | * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) | |
954 | * @pages: an array of pointers to the pages to be mapped | |
955 | * @count: number of pages | |
956 | * @node: prefer to allocate data structures on this node | |
957 | * @prot: memory protection to use. PAGE_KERNEL for regular RAM | |
e99c97ad RD |
958 | * |
959 | * Returns: a pointer to the address that has been mapped, or %NULL on failure | |
db64fe02 NP |
960 | */ |
961 | void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) | |
962 | { | |
963 | unsigned long size = count << PAGE_SHIFT; | |
964 | unsigned long addr; | |
965 | void *mem; | |
966 | ||
967 | if (likely(count <= VMAP_MAX_ALLOC)) { | |
968 | mem = vb_alloc(size, GFP_KERNEL); | |
969 | if (IS_ERR(mem)) | |
970 | return NULL; | |
971 | addr = (unsigned long)mem; | |
972 | } else { | |
973 | struct vmap_area *va; | |
974 | va = alloc_vmap_area(size, PAGE_SIZE, | |
975 | VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); | |
976 | if (IS_ERR(va)) | |
977 | return NULL; | |
978 | ||
979 | addr = va->va_start; | |
980 | mem = (void *)addr; | |
981 | } | |
982 | if (vmap_page_range(addr, addr + size, prot, pages) < 0) { | |
983 | vm_unmap_ram(mem, count); | |
984 | return NULL; | |
985 | } | |
986 | return mem; | |
987 | } | |
988 | EXPORT_SYMBOL(vm_map_ram); | |
989 | ||
f0aa6617 TH |
990 | /** |
991 | * vm_area_register_early - register vmap area early during boot | |
992 | * @vm: vm_struct to register | |
c0c0a293 | 993 | * @align: requested alignment |
f0aa6617 TH |
994 | * |
995 | * This function is used to register kernel vm area before | |
996 | * vmalloc_init() is called. @vm->size and @vm->flags should contain | |
997 | * proper values on entry and other fields should be zero. On return, | |
998 | * vm->addr contains the allocated address. | |
999 | * | |
1000 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
1001 | */ | |
c0c0a293 | 1002 | void __init vm_area_register_early(struct vm_struct *vm, size_t align) |
f0aa6617 TH |
1003 | { |
1004 | static size_t vm_init_off __initdata; | |
c0c0a293 TH |
1005 | unsigned long addr; |
1006 | ||
1007 | addr = ALIGN(VMALLOC_START + vm_init_off, align); | |
1008 | vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; | |
f0aa6617 | 1009 | |
c0c0a293 | 1010 | vm->addr = (void *)addr; |
f0aa6617 TH |
1011 | |
1012 | vm->next = vmlist; | |
1013 | vmlist = vm; | |
1014 | } | |
1015 | ||
db64fe02 NP |
1016 | void __init vmalloc_init(void) |
1017 | { | |
822c18f2 IK |
1018 | struct vmap_area *va; |
1019 | struct vm_struct *tmp; | |
db64fe02 NP |
1020 | int i; |
1021 | ||
1022 | for_each_possible_cpu(i) { | |
1023 | struct vmap_block_queue *vbq; | |
1024 | ||
1025 | vbq = &per_cpu(vmap_block_queue, i); | |
1026 | spin_lock_init(&vbq->lock); | |
1027 | INIT_LIST_HEAD(&vbq->free); | |
1028 | INIT_LIST_HEAD(&vbq->dirty); | |
1029 | vbq->nr_dirty = 0; | |
1030 | } | |
9b463334 | 1031 | |
822c18f2 IK |
1032 | /* Import existing vmlist entries. */ |
1033 | for (tmp = vmlist; tmp; tmp = tmp->next) { | |
1034 | va = alloc_bootmem(sizeof(struct vmap_area)); | |
1035 | va->flags = tmp->flags | VM_VM_AREA; | |
1036 | va->va_start = (unsigned long)tmp->addr; | |
1037 | va->va_end = va->va_start + tmp->size; | |
1038 | __insert_vmap_area(va); | |
1039 | } | |
9b463334 | 1040 | vmap_initialized = true; |
db64fe02 NP |
1041 | } |
1042 | ||
8fc48985 TH |
1043 | /** |
1044 | * map_kernel_range_noflush - map kernel VM area with the specified pages | |
1045 | * @addr: start of the VM area to map | |
1046 | * @size: size of the VM area to map | |
1047 | * @prot: page protection flags to use | |
1048 | * @pages: pages to map | |
1049 | * | |
1050 | * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size | |
1051 | * specify should have been allocated using get_vm_area() and its | |
1052 | * friends. | |
1053 | * | |
1054 | * NOTE: | |
1055 | * This function does NOT do any cache flushing. The caller is | |
1056 | * responsible for calling flush_cache_vmap() on to-be-mapped areas | |
1057 | * before calling this function. | |
1058 | * | |
1059 | * RETURNS: | |
1060 | * The number of pages mapped on success, -errno on failure. | |
1061 | */ | |
1062 | int map_kernel_range_noflush(unsigned long addr, unsigned long size, | |
1063 | pgprot_t prot, struct page **pages) | |
1064 | { | |
1065 | return vmap_page_range_noflush(addr, addr + size, prot, pages); | |
1066 | } | |
1067 | ||
1068 | /** | |
1069 | * unmap_kernel_range_noflush - unmap kernel VM area | |
1070 | * @addr: start of the VM area to unmap | |
1071 | * @size: size of the VM area to unmap | |
1072 | * | |
1073 | * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size | |
1074 | * specify should have been allocated using get_vm_area() and its | |
1075 | * friends. | |
1076 | * | |
1077 | * NOTE: | |
1078 | * This function does NOT do any cache flushing. The caller is | |
1079 | * responsible for calling flush_cache_vunmap() on to-be-mapped areas | |
1080 | * before calling this function and flush_tlb_kernel_range() after. | |
1081 | */ | |
1082 | void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) | |
1083 | { | |
1084 | vunmap_page_range(addr, addr + size); | |
1085 | } | |
1086 | ||
1087 | /** | |
1088 | * unmap_kernel_range - unmap kernel VM area and flush cache and TLB | |
1089 | * @addr: start of the VM area to unmap | |
1090 | * @size: size of the VM area to unmap | |
1091 | * | |
1092 | * Similar to unmap_kernel_range_noflush() but flushes vcache before | |
1093 | * the unmapping and tlb after. | |
1094 | */ | |
db64fe02 NP |
1095 | void unmap_kernel_range(unsigned long addr, unsigned long size) |
1096 | { | |
1097 | unsigned long end = addr + size; | |
f6fcba70 TH |
1098 | |
1099 | flush_cache_vunmap(addr, end); | |
db64fe02 NP |
1100 | vunmap_page_range(addr, end); |
1101 | flush_tlb_kernel_range(addr, end); | |
1102 | } | |
1103 | ||
1104 | int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) | |
1105 | { | |
1106 | unsigned long addr = (unsigned long)area->addr; | |
1107 | unsigned long end = addr + area->size - PAGE_SIZE; | |
1108 | int err; | |
1109 | ||
1110 | err = vmap_page_range(addr, end, prot, *pages); | |
1111 | if (err > 0) { | |
1112 | *pages += err; | |
1113 | err = 0; | |
1114 | } | |
1115 | ||
1116 | return err; | |
1117 | } | |
1118 | EXPORT_SYMBOL_GPL(map_vm_area); | |
1119 | ||
1120 | /*** Old vmalloc interfaces ***/ | |
1121 | DEFINE_RWLOCK(vmlist_lock); | |
1122 | struct vm_struct *vmlist; | |
1123 | ||
1124 | static struct vm_struct *__get_vm_area_node(unsigned long size, | |
1125 | unsigned long flags, unsigned long start, unsigned long end, | |
1126 | int node, gfp_t gfp_mask, void *caller) | |
1127 | { | |
1128 | static struct vmap_area *va; | |
1129 | struct vm_struct *area; | |
1130 | struct vm_struct *tmp, **p; | |
1131 | unsigned long align = 1; | |
1da177e4 | 1132 | |
52fd24ca | 1133 | BUG_ON(in_interrupt()); |
1da177e4 LT |
1134 | if (flags & VM_IOREMAP) { |
1135 | int bit = fls(size); | |
1136 | ||
1137 | if (bit > IOREMAP_MAX_ORDER) | |
1138 | bit = IOREMAP_MAX_ORDER; | |
1139 | else if (bit < PAGE_SHIFT) | |
1140 | bit = PAGE_SHIFT; | |
1141 | ||
1142 | align = 1ul << bit; | |
1143 | } | |
db64fe02 | 1144 | |
1da177e4 | 1145 | size = PAGE_ALIGN(size); |
31be8309 OH |
1146 | if (unlikely(!size)) |
1147 | return NULL; | |
1da177e4 | 1148 | |
6cb06229 | 1149 | area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); |
1da177e4 LT |
1150 | if (unlikely(!area)) |
1151 | return NULL; | |
1152 | ||
1da177e4 LT |
1153 | /* |
1154 | * We always allocate a guard page. | |
1155 | */ | |
1156 | size += PAGE_SIZE; | |
1157 | ||
db64fe02 NP |
1158 | va = alloc_vmap_area(size, align, start, end, node, gfp_mask); |
1159 | if (IS_ERR(va)) { | |
1160 | kfree(area); | |
1161 | return NULL; | |
1da177e4 | 1162 | } |
1da177e4 LT |
1163 | |
1164 | area->flags = flags; | |
db64fe02 | 1165 | area->addr = (void *)va->va_start; |
1da177e4 LT |
1166 | area->size = size; |
1167 | area->pages = NULL; | |
1168 | area->nr_pages = 0; | |
1169 | area->phys_addr = 0; | |
23016969 | 1170 | area->caller = caller; |
db64fe02 NP |
1171 | va->private = area; |
1172 | va->flags |= VM_VM_AREA; | |
1173 | ||
1174 | write_lock(&vmlist_lock); | |
1175 | for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { | |
1176 | if (tmp->addr >= area->addr) | |
1177 | break; | |
1178 | } | |
1179 | area->next = *p; | |
1180 | *p = area; | |
1da177e4 LT |
1181 | write_unlock(&vmlist_lock); |
1182 | ||
1183 | return area; | |
1da177e4 LT |
1184 | } |
1185 | ||
930fc45a CL |
1186 | struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, |
1187 | unsigned long start, unsigned long end) | |
1188 | { | |
23016969 CL |
1189 | return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL, |
1190 | __builtin_return_address(0)); | |
930fc45a | 1191 | } |
5992b6da | 1192 | EXPORT_SYMBOL_GPL(__get_vm_area); |
930fc45a | 1193 | |
c2968612 BH |
1194 | struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, |
1195 | unsigned long start, unsigned long end, | |
1196 | void *caller) | |
1197 | { | |
1198 | return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL, | |
1199 | caller); | |
1200 | } | |
1201 | ||
1da177e4 | 1202 | /** |
183ff22b | 1203 | * get_vm_area - reserve a contiguous kernel virtual area |
1da177e4 LT |
1204 | * @size: size of the area |
1205 | * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC | |
1206 | * | |
1207 | * Search an area of @size in the kernel virtual mapping area, | |
1208 | * and reserved it for out purposes. Returns the area descriptor | |
1209 | * on success or %NULL on failure. | |
1210 | */ | |
1211 | struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) | |
1212 | { | |
23016969 CL |
1213 | return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, |
1214 | -1, GFP_KERNEL, __builtin_return_address(0)); | |
1215 | } | |
1216 | ||
1217 | struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, | |
1218 | void *caller) | |
1219 | { | |
1220 | return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, | |
1221 | -1, GFP_KERNEL, caller); | |
1da177e4 LT |
1222 | } |
1223 | ||
52fd24ca GP |
1224 | struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, |
1225 | int node, gfp_t gfp_mask) | |
930fc45a | 1226 | { |
52fd24ca | 1227 | return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node, |
23016969 | 1228 | gfp_mask, __builtin_return_address(0)); |
930fc45a CL |
1229 | } |
1230 | ||
db64fe02 | 1231 | static struct vm_struct *find_vm_area(const void *addr) |
83342314 | 1232 | { |
db64fe02 | 1233 | struct vmap_area *va; |
83342314 | 1234 | |
db64fe02 NP |
1235 | va = find_vmap_area((unsigned long)addr); |
1236 | if (va && va->flags & VM_VM_AREA) | |
1237 | return va->private; | |
1da177e4 | 1238 | |
1da177e4 | 1239 | return NULL; |
1da177e4 LT |
1240 | } |
1241 | ||
7856dfeb | 1242 | /** |
183ff22b | 1243 | * remove_vm_area - find and remove a continuous kernel virtual area |
7856dfeb AK |
1244 | * @addr: base address |
1245 | * | |
1246 | * Search for the kernel VM area starting at @addr, and remove it. | |
1247 | * This function returns the found VM area, but using it is NOT safe | |
1248 | * on SMP machines, except for its size or flags. | |
1249 | */ | |
b3bdda02 | 1250 | struct vm_struct *remove_vm_area(const void *addr) |
7856dfeb | 1251 | { |
db64fe02 NP |
1252 | struct vmap_area *va; |
1253 | ||
1254 | va = find_vmap_area((unsigned long)addr); | |
1255 | if (va && va->flags & VM_VM_AREA) { | |
1256 | struct vm_struct *vm = va->private; | |
1257 | struct vm_struct *tmp, **p; | |
cd52858c NP |
1258 | |
1259 | vmap_debug_free_range(va->va_start, va->va_end); | |
db64fe02 NP |
1260 | free_unmap_vmap_area(va); |
1261 | vm->size -= PAGE_SIZE; | |
1262 | ||
1263 | write_lock(&vmlist_lock); | |
1264 | for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next) | |
1265 | ; | |
1266 | *p = tmp->next; | |
1267 | write_unlock(&vmlist_lock); | |
1268 | ||
1269 | return vm; | |
1270 | } | |
1271 | return NULL; | |
7856dfeb AK |
1272 | } |
1273 | ||
b3bdda02 | 1274 | static void __vunmap(const void *addr, int deallocate_pages) |
1da177e4 LT |
1275 | { |
1276 | struct vm_struct *area; | |
1277 | ||
1278 | if (!addr) | |
1279 | return; | |
1280 | ||
1281 | if ((PAGE_SIZE-1) & (unsigned long)addr) { | |
4c8573e2 | 1282 | WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); |
1da177e4 LT |
1283 | return; |
1284 | } | |
1285 | ||
1286 | area = remove_vm_area(addr); | |
1287 | if (unlikely(!area)) { | |
4c8573e2 | 1288 | WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", |
1da177e4 | 1289 | addr); |
1da177e4 LT |
1290 | return; |
1291 | } | |
1292 | ||
9a11b49a | 1293 | debug_check_no_locks_freed(addr, area->size); |
3ac7fe5a | 1294 | debug_check_no_obj_freed(addr, area->size); |
9a11b49a | 1295 | |
1da177e4 LT |
1296 | if (deallocate_pages) { |
1297 | int i; | |
1298 | ||
1299 | for (i = 0; i < area->nr_pages; i++) { | |
bf53d6f8 CL |
1300 | struct page *page = area->pages[i]; |
1301 | ||
1302 | BUG_ON(!page); | |
1303 | __free_page(page); | |
1da177e4 LT |
1304 | } |
1305 | ||
8757d5fa | 1306 | if (area->flags & VM_VPAGES) |
1da177e4 LT |
1307 | vfree(area->pages); |
1308 | else | |
1309 | kfree(area->pages); | |
1310 | } | |
1311 | ||
1312 | kfree(area); | |
1313 | return; | |
1314 | } | |
1315 | ||
1316 | /** | |
1317 | * vfree - release memory allocated by vmalloc() | |
1da177e4 LT |
1318 | * @addr: memory base address |
1319 | * | |
183ff22b | 1320 | * Free the virtually continuous memory area starting at @addr, as |
80e93eff PE |
1321 | * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is |
1322 | * NULL, no operation is performed. | |
1da177e4 | 1323 | * |
80e93eff | 1324 | * Must not be called in interrupt context. |
1da177e4 | 1325 | */ |
b3bdda02 | 1326 | void vfree(const void *addr) |
1da177e4 LT |
1327 | { |
1328 | BUG_ON(in_interrupt()); | |
1329 | __vunmap(addr, 1); | |
1330 | } | |
1da177e4 LT |
1331 | EXPORT_SYMBOL(vfree); |
1332 | ||
1333 | /** | |
1334 | * vunmap - release virtual mapping obtained by vmap() | |
1da177e4 LT |
1335 | * @addr: memory base address |
1336 | * | |
1337 | * Free the virtually contiguous memory area starting at @addr, | |
1338 | * which was created from the page array passed to vmap(). | |
1339 | * | |
80e93eff | 1340 | * Must not be called in interrupt context. |
1da177e4 | 1341 | */ |
b3bdda02 | 1342 | void vunmap(const void *addr) |
1da177e4 LT |
1343 | { |
1344 | BUG_ON(in_interrupt()); | |
34754b69 | 1345 | might_sleep(); |
1da177e4 LT |
1346 | __vunmap(addr, 0); |
1347 | } | |
1da177e4 LT |
1348 | EXPORT_SYMBOL(vunmap); |
1349 | ||
1350 | /** | |
1351 | * vmap - map an array of pages into virtually contiguous space | |
1da177e4 LT |
1352 | * @pages: array of page pointers |
1353 | * @count: number of pages to map | |
1354 | * @flags: vm_area->flags | |
1355 | * @prot: page protection for the mapping | |
1356 | * | |
1357 | * Maps @count pages from @pages into contiguous kernel virtual | |
1358 | * space. | |
1359 | */ | |
1360 | void *vmap(struct page **pages, unsigned int count, | |
1361 | unsigned long flags, pgprot_t prot) | |
1362 | { | |
1363 | struct vm_struct *area; | |
1364 | ||
34754b69 PZ |
1365 | might_sleep(); |
1366 | ||
1da177e4 LT |
1367 | if (count > num_physpages) |
1368 | return NULL; | |
1369 | ||
23016969 CL |
1370 | area = get_vm_area_caller((count << PAGE_SHIFT), flags, |
1371 | __builtin_return_address(0)); | |
1da177e4 LT |
1372 | if (!area) |
1373 | return NULL; | |
23016969 | 1374 | |
1da177e4 LT |
1375 | if (map_vm_area(area, prot, &pages)) { |
1376 | vunmap(area->addr); | |
1377 | return NULL; | |
1378 | } | |
1379 | ||
1380 | return area->addr; | |
1381 | } | |
1da177e4 LT |
1382 | EXPORT_SYMBOL(vmap); |
1383 | ||
db64fe02 NP |
1384 | static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, |
1385 | int node, void *caller); | |
e31d9eb5 | 1386 | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, |
23016969 | 1387 | pgprot_t prot, int node, void *caller) |
1da177e4 LT |
1388 | { |
1389 | struct page **pages; | |
1390 | unsigned int nr_pages, array_size, i; | |
1391 | ||
1392 | nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; | |
1393 | array_size = (nr_pages * sizeof(struct page *)); | |
1394 | ||
1395 | area->nr_pages = nr_pages; | |
1396 | /* Please note that the recursion is strictly bounded. */ | |
8757d5fa | 1397 | if (array_size > PAGE_SIZE) { |
94f6030c | 1398 | pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO, |
23016969 | 1399 | PAGE_KERNEL, node, caller); |
8757d5fa | 1400 | area->flags |= VM_VPAGES; |
286e1ea3 AM |
1401 | } else { |
1402 | pages = kmalloc_node(array_size, | |
6cb06229 | 1403 | (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO, |
286e1ea3 AM |
1404 | node); |
1405 | } | |
1da177e4 | 1406 | area->pages = pages; |
23016969 | 1407 | area->caller = caller; |
1da177e4 LT |
1408 | if (!area->pages) { |
1409 | remove_vm_area(area->addr); | |
1410 | kfree(area); | |
1411 | return NULL; | |
1412 | } | |
1da177e4 LT |
1413 | |
1414 | for (i = 0; i < area->nr_pages; i++) { | |
bf53d6f8 CL |
1415 | struct page *page; |
1416 | ||
930fc45a | 1417 | if (node < 0) |
bf53d6f8 | 1418 | page = alloc_page(gfp_mask); |
930fc45a | 1419 | else |
bf53d6f8 CL |
1420 | page = alloc_pages_node(node, gfp_mask, 0); |
1421 | ||
1422 | if (unlikely(!page)) { | |
1da177e4 LT |
1423 | /* Successfully allocated i pages, free them in __vunmap() */ |
1424 | area->nr_pages = i; | |
1425 | goto fail; | |
1426 | } | |
bf53d6f8 | 1427 | area->pages[i] = page; |
1da177e4 LT |
1428 | } |
1429 | ||
1430 | if (map_vm_area(area, prot, &pages)) | |
1431 | goto fail; | |
1432 | return area->addr; | |
1433 | ||
1434 | fail: | |
1435 | vfree(area->addr); | |
1436 | return NULL; | |
1437 | } | |
1438 | ||
930fc45a CL |
1439 | void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) |
1440 | { | |
23016969 CL |
1441 | return __vmalloc_area_node(area, gfp_mask, prot, -1, |
1442 | __builtin_return_address(0)); | |
930fc45a CL |
1443 | } |
1444 | ||
1da177e4 | 1445 | /** |
930fc45a | 1446 | * __vmalloc_node - allocate virtually contiguous memory |
1da177e4 LT |
1447 | * @size: allocation size |
1448 | * @gfp_mask: flags for the page level allocator | |
1449 | * @prot: protection mask for the allocated pages | |
d44e0780 | 1450 | * @node: node to use for allocation or -1 |
c85d194b | 1451 | * @caller: caller's return address |
1da177e4 LT |
1452 | * |
1453 | * Allocate enough pages to cover @size from the page level | |
1454 | * allocator with @gfp_mask flags. Map them into contiguous | |
1455 | * kernel virtual space, using a pagetable protection of @prot. | |
1456 | */ | |
b221385b | 1457 | static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, |
23016969 | 1458 | int node, void *caller) |
1da177e4 LT |
1459 | { |
1460 | struct vm_struct *area; | |
1461 | ||
1462 | size = PAGE_ALIGN(size); | |
1463 | if (!size || (size >> PAGE_SHIFT) > num_physpages) | |
1464 | return NULL; | |
1465 | ||
23016969 CL |
1466 | area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END, |
1467 | node, gfp_mask, caller); | |
1468 | ||
1da177e4 LT |
1469 | if (!area) |
1470 | return NULL; | |
1471 | ||
23016969 | 1472 | return __vmalloc_area_node(area, gfp_mask, prot, node, caller); |
1da177e4 LT |
1473 | } |
1474 | ||
930fc45a CL |
1475 | void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) |
1476 | { | |
23016969 CL |
1477 | return __vmalloc_node(size, gfp_mask, prot, -1, |
1478 | __builtin_return_address(0)); | |
930fc45a | 1479 | } |
1da177e4 LT |
1480 | EXPORT_SYMBOL(__vmalloc); |
1481 | ||
1482 | /** | |
1483 | * vmalloc - allocate virtually contiguous memory | |
1da177e4 | 1484 | * @size: allocation size |
1da177e4 LT |
1485 | * Allocate enough pages to cover @size from the page level |
1486 | * allocator and map them into contiguous kernel virtual space. | |
1487 | * | |
c1c8897f | 1488 | * For tight control over page level allocator and protection flags |
1da177e4 LT |
1489 | * use __vmalloc() instead. |
1490 | */ | |
1491 | void *vmalloc(unsigned long size) | |
1492 | { | |
23016969 CL |
1493 | return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, |
1494 | -1, __builtin_return_address(0)); | |
1da177e4 | 1495 | } |
1da177e4 LT |
1496 | EXPORT_SYMBOL(vmalloc); |
1497 | ||
83342314 | 1498 | /** |
ead04089 REB |
1499 | * vmalloc_user - allocate zeroed virtually contiguous memory for userspace |
1500 | * @size: allocation size | |
83342314 | 1501 | * |
ead04089 REB |
1502 | * The resulting memory area is zeroed so it can be mapped to userspace |
1503 | * without leaking data. | |
83342314 NP |
1504 | */ |
1505 | void *vmalloc_user(unsigned long size) | |
1506 | { | |
1507 | struct vm_struct *area; | |
1508 | void *ret; | |
1509 | ||
84877848 GC |
1510 | ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, |
1511 | PAGE_KERNEL, -1, __builtin_return_address(0)); | |
2b4ac44e | 1512 | if (ret) { |
db64fe02 | 1513 | area = find_vm_area(ret); |
2b4ac44e | 1514 | area->flags |= VM_USERMAP; |
2b4ac44e | 1515 | } |
83342314 NP |
1516 | return ret; |
1517 | } | |
1518 | EXPORT_SYMBOL(vmalloc_user); | |
1519 | ||
930fc45a CL |
1520 | /** |
1521 | * vmalloc_node - allocate memory on a specific node | |
930fc45a | 1522 | * @size: allocation size |
d44e0780 | 1523 | * @node: numa node |
930fc45a CL |
1524 | * |
1525 | * Allocate enough pages to cover @size from the page level | |
1526 | * allocator and map them into contiguous kernel virtual space. | |
1527 | * | |
c1c8897f | 1528 | * For tight control over page level allocator and protection flags |
930fc45a CL |
1529 | * use __vmalloc() instead. |
1530 | */ | |
1531 | void *vmalloc_node(unsigned long size, int node) | |
1532 | { | |
23016969 CL |
1533 | return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, |
1534 | node, __builtin_return_address(0)); | |
930fc45a CL |
1535 | } |
1536 | EXPORT_SYMBOL(vmalloc_node); | |
1537 | ||
4dc3b16b PP |
1538 | #ifndef PAGE_KERNEL_EXEC |
1539 | # define PAGE_KERNEL_EXEC PAGE_KERNEL | |
1540 | #endif | |
1541 | ||
1da177e4 LT |
1542 | /** |
1543 | * vmalloc_exec - allocate virtually contiguous, executable memory | |
1da177e4 LT |
1544 | * @size: allocation size |
1545 | * | |
1546 | * Kernel-internal function to allocate enough pages to cover @size | |
1547 | * the page level allocator and map them into contiguous and | |
1548 | * executable kernel virtual space. | |
1549 | * | |
c1c8897f | 1550 | * For tight control over page level allocator and protection flags |
1da177e4 LT |
1551 | * use __vmalloc() instead. |
1552 | */ | |
1553 | ||
1da177e4 LT |
1554 | void *vmalloc_exec(unsigned long size) |
1555 | { | |
84877848 GC |
1556 | return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, |
1557 | -1, __builtin_return_address(0)); | |
1da177e4 LT |
1558 | } |
1559 | ||
0d08e0d3 | 1560 | #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) |
7ac674f5 | 1561 | #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL |
0d08e0d3 | 1562 | #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) |
7ac674f5 | 1563 | #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL |
0d08e0d3 AK |
1564 | #else |
1565 | #define GFP_VMALLOC32 GFP_KERNEL | |
1566 | #endif | |
1567 | ||
1da177e4 LT |
1568 | /** |
1569 | * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) | |
1da177e4 LT |
1570 | * @size: allocation size |
1571 | * | |
1572 | * Allocate enough 32bit PA addressable pages to cover @size from the | |
1573 | * page level allocator and map them into contiguous kernel virtual space. | |
1574 | */ | |
1575 | void *vmalloc_32(unsigned long size) | |
1576 | { | |
84877848 GC |
1577 | return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL, |
1578 | -1, __builtin_return_address(0)); | |
1da177e4 | 1579 | } |
1da177e4 LT |
1580 | EXPORT_SYMBOL(vmalloc_32); |
1581 | ||
83342314 | 1582 | /** |
ead04089 | 1583 | * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory |
83342314 | 1584 | * @size: allocation size |
ead04089 REB |
1585 | * |
1586 | * The resulting memory area is 32bit addressable and zeroed so it can be | |
1587 | * mapped to userspace without leaking data. | |
83342314 NP |
1588 | */ |
1589 | void *vmalloc_32_user(unsigned long size) | |
1590 | { | |
1591 | struct vm_struct *area; | |
1592 | void *ret; | |
1593 | ||
84877848 GC |
1594 | ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, |
1595 | -1, __builtin_return_address(0)); | |
2b4ac44e | 1596 | if (ret) { |
db64fe02 | 1597 | area = find_vm_area(ret); |
2b4ac44e | 1598 | area->flags |= VM_USERMAP; |
2b4ac44e | 1599 | } |
83342314 NP |
1600 | return ret; |
1601 | } | |
1602 | EXPORT_SYMBOL(vmalloc_32_user); | |
1603 | ||
1da177e4 LT |
1604 | long vread(char *buf, char *addr, unsigned long count) |
1605 | { | |
1606 | struct vm_struct *tmp; | |
1607 | char *vaddr, *buf_start = buf; | |
1608 | unsigned long n; | |
1609 | ||
1610 | /* Don't allow overflow */ | |
1611 | if ((unsigned long) addr + count < count) | |
1612 | count = -(unsigned long) addr; | |
1613 | ||
1614 | read_lock(&vmlist_lock); | |
1615 | for (tmp = vmlist; tmp; tmp = tmp->next) { | |
1616 | vaddr = (char *) tmp->addr; | |
1617 | if (addr >= vaddr + tmp->size - PAGE_SIZE) | |
1618 | continue; | |
1619 | while (addr < vaddr) { | |
1620 | if (count == 0) | |
1621 | goto finished; | |
1622 | *buf = '\0'; | |
1623 | buf++; | |
1624 | addr++; | |
1625 | count--; | |
1626 | } | |
1627 | n = vaddr + tmp->size - PAGE_SIZE - addr; | |
1628 | do { | |
1629 | if (count == 0) | |
1630 | goto finished; | |
1631 | *buf = *addr; | |
1632 | buf++; | |
1633 | addr++; | |
1634 | count--; | |
1635 | } while (--n > 0); | |
1636 | } | |
1637 | finished: | |
1638 | read_unlock(&vmlist_lock); | |
1639 | return buf - buf_start; | |
1640 | } | |
1641 | ||
1642 | long vwrite(char *buf, char *addr, unsigned long count) | |
1643 | { | |
1644 | struct vm_struct *tmp; | |
1645 | char *vaddr, *buf_start = buf; | |
1646 | unsigned long n; | |
1647 | ||
1648 | /* Don't allow overflow */ | |
1649 | if ((unsigned long) addr + count < count) | |
1650 | count = -(unsigned long) addr; | |
1651 | ||
1652 | read_lock(&vmlist_lock); | |
1653 | for (tmp = vmlist; tmp; tmp = tmp->next) { | |
1654 | vaddr = (char *) tmp->addr; | |
1655 | if (addr >= vaddr + tmp->size - PAGE_SIZE) | |
1656 | continue; | |
1657 | while (addr < vaddr) { | |
1658 | if (count == 0) | |
1659 | goto finished; | |
1660 | buf++; | |
1661 | addr++; | |
1662 | count--; | |
1663 | } | |
1664 | n = vaddr + tmp->size - PAGE_SIZE - addr; | |
1665 | do { | |
1666 | if (count == 0) | |
1667 | goto finished; | |
1668 | *addr = *buf; | |
1669 | buf++; | |
1670 | addr++; | |
1671 | count--; | |
1672 | } while (--n > 0); | |
1673 | } | |
1674 | finished: | |
1675 | read_unlock(&vmlist_lock); | |
1676 | return buf - buf_start; | |
1677 | } | |
83342314 NP |
1678 | |
1679 | /** | |
1680 | * remap_vmalloc_range - map vmalloc pages to userspace | |
83342314 NP |
1681 | * @vma: vma to cover (map full range of vma) |
1682 | * @addr: vmalloc memory | |
1683 | * @pgoff: number of pages into addr before first page to map | |
7682486b RD |
1684 | * |
1685 | * Returns: 0 for success, -Exxx on failure | |
83342314 NP |
1686 | * |
1687 | * This function checks that addr is a valid vmalloc'ed area, and | |
1688 | * that it is big enough to cover the vma. Will return failure if | |
1689 | * that criteria isn't met. | |
1690 | * | |
72fd4a35 | 1691 | * Similar to remap_pfn_range() (see mm/memory.c) |
83342314 NP |
1692 | */ |
1693 | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, | |
1694 | unsigned long pgoff) | |
1695 | { | |
1696 | struct vm_struct *area; | |
1697 | unsigned long uaddr = vma->vm_start; | |
1698 | unsigned long usize = vma->vm_end - vma->vm_start; | |
83342314 NP |
1699 | |
1700 | if ((PAGE_SIZE-1) & (unsigned long)addr) | |
1701 | return -EINVAL; | |
1702 | ||
db64fe02 | 1703 | area = find_vm_area(addr); |
83342314 | 1704 | if (!area) |
db64fe02 | 1705 | return -EINVAL; |
83342314 NP |
1706 | |
1707 | if (!(area->flags & VM_USERMAP)) | |
db64fe02 | 1708 | return -EINVAL; |
83342314 NP |
1709 | |
1710 | if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) | |
db64fe02 | 1711 | return -EINVAL; |
83342314 NP |
1712 | |
1713 | addr += pgoff << PAGE_SHIFT; | |
1714 | do { | |
1715 | struct page *page = vmalloc_to_page(addr); | |
db64fe02 NP |
1716 | int ret; |
1717 | ||
83342314 NP |
1718 | ret = vm_insert_page(vma, uaddr, page); |
1719 | if (ret) | |
1720 | return ret; | |
1721 | ||
1722 | uaddr += PAGE_SIZE; | |
1723 | addr += PAGE_SIZE; | |
1724 | usize -= PAGE_SIZE; | |
1725 | } while (usize > 0); | |
1726 | ||
1727 | /* Prevent "things" like memory migration? VM_flags need a cleanup... */ | |
1728 | vma->vm_flags |= VM_RESERVED; | |
1729 | ||
db64fe02 | 1730 | return 0; |
83342314 NP |
1731 | } |
1732 | EXPORT_SYMBOL(remap_vmalloc_range); | |
1733 | ||
1eeb66a1 CH |
1734 | /* |
1735 | * Implement a stub for vmalloc_sync_all() if the architecture chose not to | |
1736 | * have one. | |
1737 | */ | |
1738 | void __attribute__((weak)) vmalloc_sync_all(void) | |
1739 | { | |
1740 | } | |
5f4352fb JF |
1741 | |
1742 | ||
2f569afd | 1743 | static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) |
5f4352fb JF |
1744 | { |
1745 | /* apply_to_page_range() does all the hard work. */ | |
1746 | return 0; | |
1747 | } | |
1748 | ||
1749 | /** | |
1750 | * alloc_vm_area - allocate a range of kernel address space | |
1751 | * @size: size of the area | |
7682486b RD |
1752 | * |
1753 | * Returns: NULL on failure, vm_struct on success | |
5f4352fb JF |
1754 | * |
1755 | * This function reserves a range of kernel address space, and | |
1756 | * allocates pagetables to map that range. No actual mappings | |
1757 | * are created. If the kernel address space is not shared | |
1758 | * between processes, it syncs the pagetable across all | |
1759 | * processes. | |
1760 | */ | |
1761 | struct vm_struct *alloc_vm_area(size_t size) | |
1762 | { | |
1763 | struct vm_struct *area; | |
1764 | ||
23016969 CL |
1765 | area = get_vm_area_caller(size, VM_IOREMAP, |
1766 | __builtin_return_address(0)); | |
5f4352fb JF |
1767 | if (area == NULL) |
1768 | return NULL; | |
1769 | ||
1770 | /* | |
1771 | * This ensures that page tables are constructed for this region | |
1772 | * of kernel virtual address space and mapped into init_mm. | |
1773 | */ | |
1774 | if (apply_to_page_range(&init_mm, (unsigned long)area->addr, | |
1775 | area->size, f, NULL)) { | |
1776 | free_vm_area(area); | |
1777 | return NULL; | |
1778 | } | |
1779 | ||
1780 | /* Make sure the pagetables are constructed in process kernel | |
1781 | mappings */ | |
1782 | vmalloc_sync_all(); | |
1783 | ||
1784 | return area; | |
1785 | } | |
1786 | EXPORT_SYMBOL_GPL(alloc_vm_area); | |
1787 | ||
1788 | void free_vm_area(struct vm_struct *area) | |
1789 | { | |
1790 | struct vm_struct *ret; | |
1791 | ret = remove_vm_area(area->addr); | |
1792 | BUG_ON(ret != area); | |
1793 | kfree(area); | |
1794 | } | |
1795 | EXPORT_SYMBOL_GPL(free_vm_area); | |
a10aa579 CL |
1796 | |
1797 | ||
1798 | #ifdef CONFIG_PROC_FS | |
1799 | static void *s_start(struct seq_file *m, loff_t *pos) | |
1800 | { | |
1801 | loff_t n = *pos; | |
1802 | struct vm_struct *v; | |
1803 | ||
1804 | read_lock(&vmlist_lock); | |
1805 | v = vmlist; | |
1806 | while (n > 0 && v) { | |
1807 | n--; | |
1808 | v = v->next; | |
1809 | } | |
1810 | if (!n) | |
1811 | return v; | |
1812 | ||
1813 | return NULL; | |
1814 | ||
1815 | } | |
1816 | ||
1817 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
1818 | { | |
1819 | struct vm_struct *v = p; | |
1820 | ||
1821 | ++*pos; | |
1822 | return v->next; | |
1823 | } | |
1824 | ||
1825 | static void s_stop(struct seq_file *m, void *p) | |
1826 | { | |
1827 | read_unlock(&vmlist_lock); | |
1828 | } | |
1829 | ||
a47a126a ED |
1830 | static void show_numa_info(struct seq_file *m, struct vm_struct *v) |
1831 | { | |
1832 | if (NUMA_BUILD) { | |
1833 | unsigned int nr, *counters = m->private; | |
1834 | ||
1835 | if (!counters) | |
1836 | return; | |
1837 | ||
1838 | memset(counters, 0, nr_node_ids * sizeof(unsigned int)); | |
1839 | ||
1840 | for (nr = 0; nr < v->nr_pages; nr++) | |
1841 | counters[page_to_nid(v->pages[nr])]++; | |
1842 | ||
1843 | for_each_node_state(nr, N_HIGH_MEMORY) | |
1844 | if (counters[nr]) | |
1845 | seq_printf(m, " N%u=%u", nr, counters[nr]); | |
1846 | } | |
1847 | } | |
1848 | ||
a10aa579 CL |
1849 | static int s_show(struct seq_file *m, void *p) |
1850 | { | |
1851 | struct vm_struct *v = p; | |
1852 | ||
1853 | seq_printf(m, "0x%p-0x%p %7ld", | |
1854 | v->addr, v->addr + v->size, v->size); | |
1855 | ||
23016969 | 1856 | if (v->caller) { |
9c246247 | 1857 | char buff[KSYM_SYMBOL_LEN]; |
23016969 CL |
1858 | |
1859 | seq_putc(m, ' '); | |
1860 | sprint_symbol(buff, (unsigned long)v->caller); | |
1861 | seq_puts(m, buff); | |
1862 | } | |
1863 | ||
a10aa579 CL |
1864 | if (v->nr_pages) |
1865 | seq_printf(m, " pages=%d", v->nr_pages); | |
1866 | ||
1867 | if (v->phys_addr) | |
1868 | seq_printf(m, " phys=%lx", v->phys_addr); | |
1869 | ||
1870 | if (v->flags & VM_IOREMAP) | |
1871 | seq_printf(m, " ioremap"); | |
1872 | ||
1873 | if (v->flags & VM_ALLOC) | |
1874 | seq_printf(m, " vmalloc"); | |
1875 | ||
1876 | if (v->flags & VM_MAP) | |
1877 | seq_printf(m, " vmap"); | |
1878 | ||
1879 | if (v->flags & VM_USERMAP) | |
1880 | seq_printf(m, " user"); | |
1881 | ||
1882 | if (v->flags & VM_VPAGES) | |
1883 | seq_printf(m, " vpages"); | |
1884 | ||
a47a126a | 1885 | show_numa_info(m, v); |
a10aa579 CL |
1886 | seq_putc(m, '\n'); |
1887 | return 0; | |
1888 | } | |
1889 | ||
5f6a6a9c | 1890 | static const struct seq_operations vmalloc_op = { |
a10aa579 CL |
1891 | .start = s_start, |
1892 | .next = s_next, | |
1893 | .stop = s_stop, | |
1894 | .show = s_show, | |
1895 | }; | |
5f6a6a9c AD |
1896 | |
1897 | static int vmalloc_open(struct inode *inode, struct file *file) | |
1898 | { | |
1899 | unsigned int *ptr = NULL; | |
1900 | int ret; | |
1901 | ||
1902 | if (NUMA_BUILD) | |
1903 | ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL); | |
1904 | ret = seq_open(file, &vmalloc_op); | |
1905 | if (!ret) { | |
1906 | struct seq_file *m = file->private_data; | |
1907 | m->private = ptr; | |
1908 | } else | |
1909 | kfree(ptr); | |
1910 | return ret; | |
1911 | } | |
1912 | ||
1913 | static const struct file_operations proc_vmalloc_operations = { | |
1914 | .open = vmalloc_open, | |
1915 | .read = seq_read, | |
1916 | .llseek = seq_lseek, | |
1917 | .release = seq_release_private, | |
1918 | }; | |
1919 | ||
1920 | static int __init proc_vmalloc_init(void) | |
1921 | { | |
1922 | proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); | |
1923 | return 0; | |
1924 | } | |
1925 | module_init(proc_vmalloc_init); | |
a10aa579 CL |
1926 | #endif |
1927 |