]> Git Repo - linux.git/blame - mm/memory.c
net: fec: set GPR bit on suspend by DT configuration.
[linux.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh ([email protected])
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * ([email protected])
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
0abdd7a8 68#include <linux/dma-debug.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
1da177e4 74
b3d1411b
JFG
75#include <trace/events/kmem.h>
76
6952b61d 77#include <asm/io.h>
33a709b2 78#include <asm/mmu_context.h>
1da177e4 79#include <asm/pgalloc.h>
7c0f6ba6 80#include <linux/uaccess.h>
1da177e4
LT
81#include <asm/tlb.h>
82#include <asm/tlbflush.h>
83#include <asm/pgtable.h>
84
42b77728
JB
85#include "internal.h"
86
af27d940 87#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 88#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
89#endif
90
d41dee36 91#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
92/* use the per-pgdat data instead for discontigmem - mbligh */
93unsigned long max_mapnr;
1da177e4 94EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
95
96struct page *mem_map;
1da177e4
LT
97EXPORT_SYMBOL(mem_map);
98#endif
99
1da177e4
LT
100/*
101 * A number of key systems in x86 including ioremap() rely on the assumption
102 * that high_memory defines the upper bound on direct map memory, then end
103 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
104 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105 * and ZONE_HIGHMEM.
106 */
166f61b9 107void *high_memory;
1da177e4 108EXPORT_SYMBOL(high_memory);
1da177e4 109
32a93233
IM
110/*
111 * Randomize the address space (stacks, mmaps, brk, etc.).
112 *
113 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114 * as ancient (libc5 based) binaries can segfault. )
115 */
116int randomize_va_space __read_mostly =
117#ifdef CONFIG_COMPAT_BRK
118 1;
119#else
120 2;
121#endif
a62eaf15 122
83d116c5
JH
123#ifndef arch_faults_on_old_pte
124static inline bool arch_faults_on_old_pte(void)
125{
126 /*
127 * Those arches which don't have hw access flag feature need to
128 * implement their own helper. By default, "true" means pagefault
129 * will be hit on old pte.
130 */
131 return true;
132}
133#endif
134
a62eaf15
AK
135static int __init disable_randmaps(char *s)
136{
137 randomize_va_space = 0;
9b41046c 138 return 1;
a62eaf15
AK
139}
140__setup("norandmaps", disable_randmaps);
141
62eede62 142unsigned long zero_pfn __read_mostly;
0b70068e
AB
143EXPORT_SYMBOL(zero_pfn);
144
166f61b9
TH
145unsigned long highest_memmap_pfn __read_mostly;
146
a13ea5b7
HD
147/*
148 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149 */
150static int __init init_zero_pfn(void)
151{
152 zero_pfn = page_to_pfn(ZERO_PAGE(0));
153 return 0;
154}
155core_initcall(init_zero_pfn);
a62eaf15 156
e4dcad20 157void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 158{
e4dcad20 159 trace_rss_stat(mm, member, count);
b3d1411b 160}
d559db08 161
34e55232
KH
162#if defined(SPLIT_RSS_COUNTING)
163
ea48cf78 164void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
165{
166 int i;
167
168 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
169 if (current->rss_stat.count[i]) {
170 add_mm_counter(mm, i, current->rss_stat.count[i]);
171 current->rss_stat.count[i] = 0;
34e55232
KH
172 }
173 }
05af2e10 174 current->rss_stat.events = 0;
34e55232
KH
175}
176
177static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
178{
179 struct task_struct *task = current;
180
181 if (likely(task->mm == mm))
182 task->rss_stat.count[member] += val;
183 else
184 add_mm_counter(mm, member, val);
185}
186#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
188
189/* sync counter once per 64 page faults */
190#define TASK_RSS_EVENTS_THRESH (64)
191static void check_sync_rss_stat(struct task_struct *task)
192{
193 if (unlikely(task != current))
194 return;
195 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 196 sync_mm_rss(task->mm);
34e55232 197}
9547d01b 198#else /* SPLIT_RSS_COUNTING */
34e55232
KH
199
200#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
202
203static void check_sync_rss_stat(struct task_struct *task)
204{
205}
206
9547d01b
PZ
207#endif /* SPLIT_RSS_COUNTING */
208
1da177e4
LT
209/*
210 * Note: this doesn't free the actual pages themselves. That
211 * has been handled earlier when unmapping all the memory regions.
212 */
9e1b32ca
BH
213static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
214 unsigned long addr)
1da177e4 215{
2f569afd 216 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 217 pmd_clear(pmd);
9e1b32ca 218 pte_free_tlb(tlb, token, addr);
c4812909 219 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
220}
221
e0da382c
HD
222static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
223 unsigned long addr, unsigned long end,
224 unsigned long floor, unsigned long ceiling)
1da177e4
LT
225{
226 pmd_t *pmd;
227 unsigned long next;
e0da382c 228 unsigned long start;
1da177e4 229
e0da382c 230 start = addr;
1da177e4 231 pmd = pmd_offset(pud, addr);
1da177e4
LT
232 do {
233 next = pmd_addr_end(addr, end);
234 if (pmd_none_or_clear_bad(pmd))
235 continue;
9e1b32ca 236 free_pte_range(tlb, pmd, addr);
1da177e4
LT
237 } while (pmd++, addr = next, addr != end);
238
e0da382c
HD
239 start &= PUD_MASK;
240 if (start < floor)
241 return;
242 if (ceiling) {
243 ceiling &= PUD_MASK;
244 if (!ceiling)
245 return;
1da177e4 246 }
e0da382c
HD
247 if (end - 1 > ceiling - 1)
248 return;
249
250 pmd = pmd_offset(pud, start);
251 pud_clear(pud);
9e1b32ca 252 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 253 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
254}
255
c2febafc 256static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
257 unsigned long addr, unsigned long end,
258 unsigned long floor, unsigned long ceiling)
1da177e4
LT
259{
260 pud_t *pud;
261 unsigned long next;
e0da382c 262 unsigned long start;
1da177e4 263
e0da382c 264 start = addr;
c2febafc 265 pud = pud_offset(p4d, addr);
1da177e4
LT
266 do {
267 next = pud_addr_end(addr, end);
268 if (pud_none_or_clear_bad(pud))
269 continue;
e0da382c 270 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
271 } while (pud++, addr = next, addr != end);
272
c2febafc
KS
273 start &= P4D_MASK;
274 if (start < floor)
275 return;
276 if (ceiling) {
277 ceiling &= P4D_MASK;
278 if (!ceiling)
279 return;
280 }
281 if (end - 1 > ceiling - 1)
282 return;
283
284 pud = pud_offset(p4d, start);
285 p4d_clear(p4d);
286 pud_free_tlb(tlb, pud, start);
b4e98d9a 287 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
288}
289
290static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
291 unsigned long addr, unsigned long end,
292 unsigned long floor, unsigned long ceiling)
293{
294 p4d_t *p4d;
295 unsigned long next;
296 unsigned long start;
297
298 start = addr;
299 p4d = p4d_offset(pgd, addr);
300 do {
301 next = p4d_addr_end(addr, end);
302 if (p4d_none_or_clear_bad(p4d))
303 continue;
304 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
305 } while (p4d++, addr = next, addr != end);
306
e0da382c
HD
307 start &= PGDIR_MASK;
308 if (start < floor)
309 return;
310 if (ceiling) {
311 ceiling &= PGDIR_MASK;
312 if (!ceiling)
313 return;
1da177e4 314 }
e0da382c
HD
315 if (end - 1 > ceiling - 1)
316 return;
317
c2febafc 318 p4d = p4d_offset(pgd, start);
e0da382c 319 pgd_clear(pgd);
c2febafc 320 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
321}
322
323/*
e0da382c 324 * This function frees user-level page tables of a process.
1da177e4 325 */
42b77728 326void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
327 unsigned long addr, unsigned long end,
328 unsigned long floor, unsigned long ceiling)
1da177e4
LT
329{
330 pgd_t *pgd;
331 unsigned long next;
e0da382c
HD
332
333 /*
334 * The next few lines have given us lots of grief...
335 *
336 * Why are we testing PMD* at this top level? Because often
337 * there will be no work to do at all, and we'd prefer not to
338 * go all the way down to the bottom just to discover that.
339 *
340 * Why all these "- 1"s? Because 0 represents both the bottom
341 * of the address space and the top of it (using -1 for the
342 * top wouldn't help much: the masks would do the wrong thing).
343 * The rule is that addr 0 and floor 0 refer to the bottom of
344 * the address space, but end 0 and ceiling 0 refer to the top
345 * Comparisons need to use "end - 1" and "ceiling - 1" (though
346 * that end 0 case should be mythical).
347 *
348 * Wherever addr is brought up or ceiling brought down, we must
349 * be careful to reject "the opposite 0" before it confuses the
350 * subsequent tests. But what about where end is brought down
351 * by PMD_SIZE below? no, end can't go down to 0 there.
352 *
353 * Whereas we round start (addr) and ceiling down, by different
354 * masks at different levels, in order to test whether a table
355 * now has no other vmas using it, so can be freed, we don't
356 * bother to round floor or end up - the tests don't need that.
357 */
1da177e4 358
e0da382c
HD
359 addr &= PMD_MASK;
360 if (addr < floor) {
361 addr += PMD_SIZE;
362 if (!addr)
363 return;
364 }
365 if (ceiling) {
366 ceiling &= PMD_MASK;
367 if (!ceiling)
368 return;
369 }
370 if (end - 1 > ceiling - 1)
371 end -= PMD_SIZE;
372 if (addr > end - 1)
373 return;
07e32661
AK
374 /*
375 * We add page table cache pages with PAGE_SIZE,
376 * (see pte_free_tlb()), flush the tlb if we need
377 */
ed6a7935 378 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 379 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
380 do {
381 next = pgd_addr_end(addr, end);
382 if (pgd_none_or_clear_bad(pgd))
383 continue;
c2febafc 384 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 385 } while (pgd++, addr = next, addr != end);
e0da382c
HD
386}
387
42b77728 388void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 389 unsigned long floor, unsigned long ceiling)
e0da382c
HD
390{
391 while (vma) {
392 struct vm_area_struct *next = vma->vm_next;
393 unsigned long addr = vma->vm_start;
394
8f4f8c16 395 /*
25d9e2d1
NP
396 * Hide vma from rmap and truncate_pagecache before freeing
397 * pgtables
8f4f8c16 398 */
5beb4930 399 unlink_anon_vmas(vma);
8f4f8c16
HD
400 unlink_file_vma(vma);
401
9da61aef 402 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 403 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 404 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
405 } else {
406 /*
407 * Optimization: gather nearby vmas into one call down
408 */
409 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 410 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
411 vma = next;
412 next = vma->vm_next;
5beb4930 413 unlink_anon_vmas(vma);
8f4f8c16 414 unlink_file_vma(vma);
3bf5ee95
HD
415 }
416 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 417 floor, next ? next->vm_start : ceiling);
3bf5ee95 418 }
e0da382c
HD
419 vma = next;
420 }
1da177e4
LT
421}
422
4cf58924 423int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 424{
c4088ebd 425 spinlock_t *ptl;
4cf58924 426 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
427 if (!new)
428 return -ENOMEM;
429
362a61ad
NP
430 /*
431 * Ensure all pte setup (eg. pte page lock and page clearing) are
432 * visible before the pte is made visible to other CPUs by being
433 * put into page tables.
434 *
435 * The other side of the story is the pointer chasing in the page
436 * table walking code (when walking the page table without locking;
437 * ie. most of the time). Fortunately, these data accesses consist
438 * of a chain of data-dependent loads, meaning most CPUs (alpha
439 * being the notable exception) will already guarantee loads are
440 * seen in-order. See the alpha page table accessors for the
441 * smp_read_barrier_depends() barriers in page table walking code.
442 */
443 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444
c4088ebd 445 ptl = pmd_lock(mm, pmd);
8ac1f832 446 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 447 mm_inc_nr_ptes(mm);
1da177e4 448 pmd_populate(mm, pmd, new);
2f569afd 449 new = NULL;
4b471e88 450 }
c4088ebd 451 spin_unlock(ptl);
2f569afd
MS
452 if (new)
453 pte_free(mm, new);
1bb3630e 454 return 0;
1da177e4
LT
455}
456
4cf58924 457int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 458{
4cf58924 459 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
460 if (!new)
461 return -ENOMEM;
462
362a61ad
NP
463 smp_wmb(); /* See comment in __pte_alloc */
464
1bb3630e 465 spin_lock(&init_mm.page_table_lock);
8ac1f832 466 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 467 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 468 new = NULL;
4b471e88 469 }
1bb3630e 470 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
471 if (new)
472 pte_free_kernel(&init_mm, new);
1bb3630e 473 return 0;
1da177e4
LT
474}
475
d559db08
KH
476static inline void init_rss_vec(int *rss)
477{
478 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479}
480
481static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 482{
d559db08
KH
483 int i;
484
34e55232 485 if (current->mm == mm)
05af2e10 486 sync_mm_rss(mm);
d559db08
KH
487 for (i = 0; i < NR_MM_COUNTERS; i++)
488 if (rss[i])
489 add_mm_counter(mm, i, rss[i]);
ae859762
HD
490}
491
b5810039 492/*
6aab341e
LT
493 * This function is called to print an error when a bad pte
494 * is found. For example, we might have a PFN-mapped pte in
495 * a region that doesn't allow it.
b5810039
NP
496 *
497 * The calling function must still handle the error.
498 */
3dc14741
HD
499static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
500 pte_t pte, struct page *page)
b5810039 501{
3dc14741 502 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
503 p4d_t *p4d = p4d_offset(pgd, addr);
504 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
505 pmd_t *pmd = pmd_offset(pud, addr);
506 struct address_space *mapping;
507 pgoff_t index;
d936cf9b
HD
508 static unsigned long resume;
509 static unsigned long nr_shown;
510 static unsigned long nr_unshown;
511
512 /*
513 * Allow a burst of 60 reports, then keep quiet for that minute;
514 * or allow a steady drip of one report per second.
515 */
516 if (nr_shown == 60) {
517 if (time_before(jiffies, resume)) {
518 nr_unshown++;
519 return;
520 }
521 if (nr_unshown) {
1170532b
JP
522 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
523 nr_unshown);
d936cf9b
HD
524 nr_unshown = 0;
525 }
526 nr_shown = 0;
527 }
528 if (nr_shown++ == 0)
529 resume = jiffies + 60 * HZ;
3dc14741
HD
530
531 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
532 index = linear_page_index(vma, addr);
533
1170532b
JP
534 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
535 current->comm,
536 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 537 if (page)
f0b791a3 538 dump_page(page, "bad pte");
6aa9b8b2 539 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 540 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 541 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
542 vma->vm_file,
543 vma->vm_ops ? vma->vm_ops->fault : NULL,
544 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
545 mapping ? mapping->a_ops->readpage : NULL);
b5810039 546 dump_stack();
373d4d09 547 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
548}
549
ee498ed7 550/*
7e675137 551 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 552 *
7e675137
NP
553 * "Special" mappings do not wish to be associated with a "struct page" (either
554 * it doesn't exist, or it exists but they don't want to touch it). In this
555 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 556 *
7e675137
NP
557 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558 * pte bit, in which case this function is trivial. Secondly, an architecture
559 * may not have a spare pte bit, which requires a more complicated scheme,
560 * described below.
561 *
562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563 * special mapping (even if there are underlying and valid "struct pages").
564 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 565 *
b379d790
JH
566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569 * mapping will always honor the rule
6aab341e
LT
570 *
571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572 *
7e675137
NP
573 * And for normal mappings this is false.
574 *
575 * This restricts such mappings to be a linear translation from virtual address
576 * to pfn. To get around this restriction, we allow arbitrary mappings so long
577 * as the vma is not a COW mapping; in that case, we know that all ptes are
578 * special (because none can have been COWed).
b379d790 579 *
b379d790 580 *
7e675137 581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
582 *
583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584 * page" backing, however the difference is that _all_ pages with a struct
585 * page (that is, those where pfn_valid is true) are refcounted and considered
586 * normal pages by the VM. The disadvantage is that pages are refcounted
587 * (which can be slower and simply not an option for some PFNMAP users). The
588 * advantage is that we don't have to follow the strict linearity rule of
589 * PFNMAP mappings in order to support COWable mappings.
590 *
ee498ed7 591 */
25b2995a
CH
592struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593 pte_t pte)
ee498ed7 594{
22b31eec 595 unsigned long pfn = pte_pfn(pte);
7e675137 596
00b3a331 597 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 598 if (likely(!pte_special(pte)))
22b31eec 599 goto check_pfn;
667a0a06
DV
600 if (vma->vm_ops && vma->vm_ops->find_special_page)
601 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
602 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603 return NULL;
df6ad698
JG
604 if (is_zero_pfn(pfn))
605 return NULL;
e1fb4a08
DJ
606 if (pte_devmap(pte))
607 return NULL;
608
df6ad698 609 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
610 return NULL;
611 }
612
00b3a331 613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 614
b379d790
JH
615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 if (vma->vm_flags & VM_MIXEDMAP) {
617 if (!pfn_valid(pfn))
618 return NULL;
619 goto out;
620 } else {
7e675137
NP
621 unsigned long off;
622 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
623 if (pfn == vma->vm_pgoff + off)
624 return NULL;
625 if (!is_cow_mapping(vma->vm_flags))
626 return NULL;
627 }
6aab341e
LT
628 }
629
b38af472
HD
630 if (is_zero_pfn(pfn))
631 return NULL;
00b3a331 632
22b31eec
HD
633check_pfn:
634 if (unlikely(pfn > highest_memmap_pfn)) {
635 print_bad_pte(vma, addr, pte, NULL);
636 return NULL;
637 }
6aab341e
LT
638
639 /*
7e675137 640 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 641 * eg. VDSO mappings can cause them to exist.
6aab341e 642 */
b379d790 643out:
6aab341e 644 return pfn_to_page(pfn);
ee498ed7
HD
645}
646
28093f9f
GS
647#ifdef CONFIG_TRANSPARENT_HUGEPAGE
648struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
649 pmd_t pmd)
650{
651 unsigned long pfn = pmd_pfn(pmd);
652
653 /*
654 * There is no pmd_special() but there may be special pmds, e.g.
655 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 656 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
657 */
658 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
659 if (vma->vm_flags & VM_MIXEDMAP) {
660 if (!pfn_valid(pfn))
661 return NULL;
662 goto out;
663 } else {
664 unsigned long off;
665 off = (addr - vma->vm_start) >> PAGE_SHIFT;
666 if (pfn == vma->vm_pgoff + off)
667 return NULL;
668 if (!is_cow_mapping(vma->vm_flags))
669 return NULL;
670 }
671 }
672
e1fb4a08
DJ
673 if (pmd_devmap(pmd))
674 return NULL;
3cde287b 675 if (is_huge_zero_pmd(pmd))
28093f9f
GS
676 return NULL;
677 if (unlikely(pfn > highest_memmap_pfn))
678 return NULL;
679
680 /*
681 * NOTE! We still have PageReserved() pages in the page tables.
682 * eg. VDSO mappings can cause them to exist.
683 */
684out:
685 return pfn_to_page(pfn);
686}
687#endif
688
1da177e4
LT
689/*
690 * copy one vm_area from one task to the other. Assumes the page tables
691 * already present in the new task to be cleared in the whole range
692 * covered by this vma.
1da177e4
LT
693 */
694
570a335b 695static inline unsigned long
1da177e4 696copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 697 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 698 unsigned long addr, int *rss)
1da177e4 699{
b5810039 700 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
701 pte_t pte = *src_pte;
702 struct page *page;
1da177e4
LT
703
704 /* pte contains position in swap or file, so copy. */
705 if (unlikely(!pte_present(pte))) {
0661a336
KS
706 swp_entry_t entry = pte_to_swp_entry(pte);
707
708 if (likely(!non_swap_entry(entry))) {
709 if (swap_duplicate(entry) < 0)
710 return entry.val;
711
712 /* make sure dst_mm is on swapoff's mmlist. */
713 if (unlikely(list_empty(&dst_mm->mmlist))) {
714 spin_lock(&mmlist_lock);
715 if (list_empty(&dst_mm->mmlist))
716 list_add(&dst_mm->mmlist,
717 &src_mm->mmlist);
718 spin_unlock(&mmlist_lock);
719 }
720 rss[MM_SWAPENTS]++;
721 } else if (is_migration_entry(entry)) {
722 page = migration_entry_to_page(entry);
723
eca56ff9 724 rss[mm_counter(page)]++;
0661a336
KS
725
726 if (is_write_migration_entry(entry) &&
727 is_cow_mapping(vm_flags)) {
728 /*
729 * COW mappings require pages in both
730 * parent and child to be set to read.
731 */
732 make_migration_entry_read(&entry);
733 pte = swp_entry_to_pte(entry);
734 if (pte_swp_soft_dirty(*src_pte))
735 pte = pte_swp_mksoft_dirty(pte);
f45ec5ff
PX
736 if (pte_swp_uffd_wp(*src_pte))
737 pte = pte_swp_mkuffd_wp(pte);
0661a336 738 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 739 }
5042db43
JG
740 } else if (is_device_private_entry(entry)) {
741 page = device_private_entry_to_page(entry);
742
743 /*
744 * Update rss count even for unaddressable pages, as
745 * they should treated just like normal pages in this
746 * respect.
747 *
748 * We will likely want to have some new rss counters
749 * for unaddressable pages, at some point. But for now
750 * keep things as they are.
751 */
752 get_page(page);
753 rss[mm_counter(page)]++;
754 page_dup_rmap(page, false);
755
756 /*
757 * We do not preserve soft-dirty information, because so
758 * far, checkpoint/restore is the only feature that
759 * requires that. And checkpoint/restore does not work
760 * when a device driver is involved (you cannot easily
761 * save and restore device driver state).
762 */
763 if (is_write_device_private_entry(entry) &&
764 is_cow_mapping(vm_flags)) {
765 make_device_private_entry_read(&entry);
766 pte = swp_entry_to_pte(entry);
f45ec5ff
PX
767 if (pte_swp_uffd_wp(*src_pte))
768 pte = pte_swp_mkuffd_wp(pte);
5042db43
JG
769 set_pte_at(src_mm, addr, src_pte, pte);
770 }
1da177e4 771 }
ae859762 772 goto out_set_pte;
1da177e4
LT
773 }
774
1da177e4
LT
775 /*
776 * If it's a COW mapping, write protect it both
777 * in the parent and the child
778 */
1b2de5d0 779 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 780 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 781 pte = pte_wrprotect(pte);
1da177e4
LT
782 }
783
784 /*
785 * If it's a shared mapping, mark it clean in
786 * the child
787 */
788 if (vm_flags & VM_SHARED)
789 pte = pte_mkclean(pte);
790 pte = pte_mkold(pte);
6aab341e 791
b569a176
PX
792 /*
793 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
794 * does not have the VM_UFFD_WP, which means that the uffd
795 * fork event is not enabled.
796 */
797 if (!(vm_flags & VM_UFFD_WP))
798 pte = pte_clear_uffd_wp(pte);
799
6aab341e
LT
800 page = vm_normal_page(vma, addr, pte);
801 if (page) {
802 get_page(page);
53f9263b 803 page_dup_rmap(page, false);
eca56ff9 804 rss[mm_counter(page)]++;
df6ad698
JG
805 } else if (pte_devmap(pte)) {
806 page = pte_page(pte);
6aab341e 807 }
ae859762
HD
808
809out_set_pte:
810 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 811 return 0;
1da177e4
LT
812}
813
21bda264 814static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
815 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
816 unsigned long addr, unsigned long end)
1da177e4 817{
c36987e2 818 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 819 pte_t *src_pte, *dst_pte;
c74df32c 820 spinlock_t *src_ptl, *dst_ptl;
e040f218 821 int progress = 0;
d559db08 822 int rss[NR_MM_COUNTERS];
570a335b 823 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
824
825again:
d559db08
KH
826 init_rss_vec(rss);
827
c74df32c 828 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
829 if (!dst_pte)
830 return -ENOMEM;
ece0e2b6 831 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 832 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 833 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
834 orig_src_pte = src_pte;
835 orig_dst_pte = dst_pte;
6606c3e0 836 arch_enter_lazy_mmu_mode();
1da177e4 837
1da177e4
LT
838 do {
839 /*
840 * We are holding two locks at this point - either of them
841 * could generate latencies in another task on another CPU.
842 */
e040f218
HD
843 if (progress >= 32) {
844 progress = 0;
845 if (need_resched() ||
95c354fe 846 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
847 break;
848 }
1da177e4
LT
849 if (pte_none(*src_pte)) {
850 progress++;
851 continue;
852 }
570a335b
HD
853 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
854 vma, addr, rss);
855 if (entry.val)
856 break;
1da177e4
LT
857 progress += 8;
858 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 859
6606c3e0 860 arch_leave_lazy_mmu_mode();
c74df32c 861 spin_unlock(src_ptl);
ece0e2b6 862 pte_unmap(orig_src_pte);
d559db08 863 add_mm_rss_vec(dst_mm, rss);
c36987e2 864 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 865 cond_resched();
570a335b
HD
866
867 if (entry.val) {
868 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
869 return -ENOMEM;
870 progress = 0;
871 }
1da177e4
LT
872 if (addr != end)
873 goto again;
874 return 0;
875}
876
877static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
878 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
879 unsigned long addr, unsigned long end)
880{
881 pmd_t *src_pmd, *dst_pmd;
882 unsigned long next;
883
884 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
885 if (!dst_pmd)
886 return -ENOMEM;
887 src_pmd = pmd_offset(src_pud, addr);
888 do {
889 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
890 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
891 || pmd_devmap(*src_pmd)) {
71e3aac0 892 int err;
a00cc7d9 893 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
894 err = copy_huge_pmd(dst_mm, src_mm,
895 dst_pmd, src_pmd, addr, vma);
896 if (err == -ENOMEM)
897 return -ENOMEM;
898 if (!err)
899 continue;
900 /* fall through */
901 }
1da177e4
LT
902 if (pmd_none_or_clear_bad(src_pmd))
903 continue;
904 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
905 vma, addr, next))
906 return -ENOMEM;
907 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
908 return 0;
909}
910
911static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 912 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
913 unsigned long addr, unsigned long end)
914{
915 pud_t *src_pud, *dst_pud;
916 unsigned long next;
917
c2febafc 918 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
919 if (!dst_pud)
920 return -ENOMEM;
c2febafc 921 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
922 do {
923 next = pud_addr_end(addr, end);
a00cc7d9
MW
924 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
925 int err;
926
927 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
928 err = copy_huge_pud(dst_mm, src_mm,
929 dst_pud, src_pud, addr, vma);
930 if (err == -ENOMEM)
931 return -ENOMEM;
932 if (!err)
933 continue;
934 /* fall through */
935 }
1da177e4
LT
936 if (pud_none_or_clear_bad(src_pud))
937 continue;
938 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
939 vma, addr, next))
940 return -ENOMEM;
941 } while (dst_pud++, src_pud++, addr = next, addr != end);
942 return 0;
943}
944
c2febafc
KS
945static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
947 unsigned long addr, unsigned long end)
948{
949 p4d_t *src_p4d, *dst_p4d;
950 unsigned long next;
951
952 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
953 if (!dst_p4d)
954 return -ENOMEM;
955 src_p4d = p4d_offset(src_pgd, addr);
956 do {
957 next = p4d_addr_end(addr, end);
958 if (p4d_none_or_clear_bad(src_p4d))
959 continue;
960 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
961 vma, addr, next))
962 return -ENOMEM;
963 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
964 return 0;
965}
966
1da177e4
LT
967int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
968 struct vm_area_struct *vma)
969{
970 pgd_t *src_pgd, *dst_pgd;
971 unsigned long next;
972 unsigned long addr = vma->vm_start;
973 unsigned long end = vma->vm_end;
ac46d4f3 974 struct mmu_notifier_range range;
2ec74c3e 975 bool is_cow;
cddb8a5c 976 int ret;
1da177e4 977
d992895b
NP
978 /*
979 * Don't copy ptes where a page fault will fill them correctly.
980 * Fork becomes much lighter when there are big shared or private
981 * readonly mappings. The tradeoff is that copy_page_range is more
982 * efficient than faulting.
983 */
0661a336
KS
984 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
985 !vma->anon_vma)
986 return 0;
d992895b 987
1da177e4
LT
988 if (is_vm_hugetlb_page(vma))
989 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
990
b3b9c293 991 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 992 /*
993 * We do not free on error cases below as remove_vma
994 * gets called on error from higher level routine
995 */
5180da41 996 ret = track_pfn_copy(vma);
2ab64037 997 if (ret)
998 return ret;
999 }
1000
cddb8a5c
AA
1001 /*
1002 * We need to invalidate the secondary MMU mappings only when
1003 * there could be a permission downgrade on the ptes of the
1004 * parent mm. And a permission downgrade will only happen if
1005 * is_cow_mapping() returns true.
1006 */
2ec74c3e 1007 is_cow = is_cow_mapping(vma->vm_flags);
ac46d4f3
JG
1008
1009 if (is_cow) {
7269f999
JG
1010 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1011 0, vma, src_mm, addr, end);
ac46d4f3
JG
1012 mmu_notifier_invalidate_range_start(&range);
1013 }
cddb8a5c
AA
1014
1015 ret = 0;
1da177e4
LT
1016 dst_pgd = pgd_offset(dst_mm, addr);
1017 src_pgd = pgd_offset(src_mm, addr);
1018 do {
1019 next = pgd_addr_end(addr, end);
1020 if (pgd_none_or_clear_bad(src_pgd))
1021 continue;
c2febafc 1022 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1023 vma, addr, next))) {
1024 ret = -ENOMEM;
1025 break;
1026 }
1da177e4 1027 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1028
2ec74c3e 1029 if (is_cow)
ac46d4f3 1030 mmu_notifier_invalidate_range_end(&range);
cddb8a5c 1031 return ret;
1da177e4
LT
1032}
1033
51c6f666 1034static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1035 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1036 unsigned long addr, unsigned long end,
97a89413 1037 struct zap_details *details)
1da177e4 1038{
b5810039 1039 struct mm_struct *mm = tlb->mm;
d16dfc55 1040 int force_flush = 0;
d559db08 1041 int rss[NR_MM_COUNTERS];
97a89413 1042 spinlock_t *ptl;
5f1a1907 1043 pte_t *start_pte;
97a89413 1044 pte_t *pte;
8a5f14a2 1045 swp_entry_t entry;
d559db08 1046
ed6a7935 1047 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1048again:
e303297e 1049 init_rss_vec(rss);
5f1a1907
SR
1050 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1051 pte = start_pte;
3ea27719 1052 flush_tlb_batched_pending(mm);
6606c3e0 1053 arch_enter_lazy_mmu_mode();
1da177e4
LT
1054 do {
1055 pte_t ptent = *pte;
166f61b9 1056 if (pte_none(ptent))
1da177e4 1057 continue;
6f5e6b9e 1058
7b167b68
MK
1059 if (need_resched())
1060 break;
1061
1da177e4 1062 if (pte_present(ptent)) {
ee498ed7 1063 struct page *page;
51c6f666 1064
25b2995a 1065 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1066 if (unlikely(details) && page) {
1067 /*
1068 * unmap_shared_mapping_pages() wants to
1069 * invalidate cache without truncating:
1070 * unmap shared but keep private pages.
1071 */
1072 if (details->check_mapping &&
800d8c63 1073 details->check_mapping != page_rmapping(page))
1da177e4 1074 continue;
1da177e4 1075 }
b5810039 1076 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1077 tlb->fullmm);
1da177e4
LT
1078 tlb_remove_tlb_entry(tlb, pte, addr);
1079 if (unlikely(!page))
1080 continue;
eca56ff9
JM
1081
1082 if (!PageAnon(page)) {
1cf35d47
LT
1083 if (pte_dirty(ptent)) {
1084 force_flush = 1;
6237bcd9 1085 set_page_dirty(page);
1cf35d47 1086 }
4917e5d0 1087 if (pte_young(ptent) &&
64363aad 1088 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1089 mark_page_accessed(page);
6237bcd9 1090 }
eca56ff9 1091 rss[mm_counter(page)]--;
d281ee61 1092 page_remove_rmap(page, false);
3dc14741
HD
1093 if (unlikely(page_mapcount(page) < 0))
1094 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1095 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1096 force_flush = 1;
ce9ec37b 1097 addr += PAGE_SIZE;
d16dfc55 1098 break;
1cf35d47 1099 }
1da177e4
LT
1100 continue;
1101 }
5042db43
JG
1102
1103 entry = pte_to_swp_entry(ptent);
1104 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1105 struct page *page = device_private_entry_to_page(entry);
1106
1107 if (unlikely(details && details->check_mapping)) {
1108 /*
1109 * unmap_shared_mapping_pages() wants to
1110 * invalidate cache without truncating:
1111 * unmap shared but keep private pages.
1112 */
1113 if (details->check_mapping !=
1114 page_rmapping(page))
1115 continue;
1116 }
1117
1118 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1119 rss[mm_counter(page)]--;
1120 page_remove_rmap(page, false);
1121 put_page(page);
1122 continue;
1123 }
1124
3e8715fd
KS
1125 /* If details->check_mapping, we leave swap entries. */
1126 if (unlikely(details))
1da177e4 1127 continue;
b084d435 1128
8a5f14a2
KS
1129 if (!non_swap_entry(entry))
1130 rss[MM_SWAPENTS]--;
1131 else if (is_migration_entry(entry)) {
1132 struct page *page;
9f9f1acd 1133
8a5f14a2 1134 page = migration_entry_to_page(entry);
eca56ff9 1135 rss[mm_counter(page)]--;
b084d435 1136 }
8a5f14a2
KS
1137 if (unlikely(!free_swap_and_cache(entry)))
1138 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1139 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1140 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1141
d559db08 1142 add_mm_rss_vec(mm, rss);
6606c3e0 1143 arch_leave_lazy_mmu_mode();
51c6f666 1144
1cf35d47 1145 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1146 if (force_flush)
1cf35d47 1147 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1148 pte_unmap_unlock(start_pte, ptl);
1149
1150 /*
1151 * If we forced a TLB flush (either due to running out of
1152 * batch buffers or because we needed to flush dirty TLB
1153 * entries before releasing the ptl), free the batched
1154 * memory too. Restart if we didn't do everything.
1155 */
1156 if (force_flush) {
1157 force_flush = 0;
fa0aafb8 1158 tlb_flush_mmu(tlb);
7b167b68
MK
1159 }
1160
1161 if (addr != end) {
1162 cond_resched();
1163 goto again;
d16dfc55
PZ
1164 }
1165
51c6f666 1166 return addr;
1da177e4
LT
1167}
1168
51c6f666 1169static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1170 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1171 unsigned long addr, unsigned long end,
97a89413 1172 struct zap_details *details)
1da177e4
LT
1173{
1174 pmd_t *pmd;
1175 unsigned long next;
1176
1177 pmd = pmd_offset(pud, addr);
1178 do {
1179 next = pmd_addr_end(addr, end);
84c3fc4e 1180 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1181 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1182 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1183 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1184 goto next;
71e3aac0
AA
1185 /* fall through */
1186 }
1a5a9906
AA
1187 /*
1188 * Here there can be other concurrent MADV_DONTNEED or
1189 * trans huge page faults running, and if the pmd is
1190 * none or trans huge it can change under us. This is
1191 * because MADV_DONTNEED holds the mmap_sem in read
1192 * mode.
1193 */
1194 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1195 goto next;
97a89413 1196 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1197next:
97a89413
PZ
1198 cond_resched();
1199 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1200
1201 return addr;
1da177e4
LT
1202}
1203
51c6f666 1204static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1205 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1206 unsigned long addr, unsigned long end,
97a89413 1207 struct zap_details *details)
1da177e4
LT
1208{
1209 pud_t *pud;
1210 unsigned long next;
1211
c2febafc 1212 pud = pud_offset(p4d, addr);
1da177e4
LT
1213 do {
1214 next = pud_addr_end(addr, end);
a00cc7d9
MW
1215 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1216 if (next - addr != HPAGE_PUD_SIZE) {
1217 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1218 split_huge_pud(vma, pud, addr);
1219 } else if (zap_huge_pud(tlb, vma, pud, addr))
1220 goto next;
1221 /* fall through */
1222 }
97a89413 1223 if (pud_none_or_clear_bad(pud))
1da177e4 1224 continue;
97a89413 1225 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1226next:
1227 cond_resched();
97a89413 1228 } while (pud++, addr = next, addr != end);
51c6f666
RH
1229
1230 return addr;
1da177e4
LT
1231}
1232
c2febafc
KS
1233static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1234 struct vm_area_struct *vma, pgd_t *pgd,
1235 unsigned long addr, unsigned long end,
1236 struct zap_details *details)
1237{
1238 p4d_t *p4d;
1239 unsigned long next;
1240
1241 p4d = p4d_offset(pgd, addr);
1242 do {
1243 next = p4d_addr_end(addr, end);
1244 if (p4d_none_or_clear_bad(p4d))
1245 continue;
1246 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1247 } while (p4d++, addr = next, addr != end);
1248
1249 return addr;
1250}
1251
aac45363 1252void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1253 struct vm_area_struct *vma,
1254 unsigned long addr, unsigned long end,
1255 struct zap_details *details)
1da177e4
LT
1256{
1257 pgd_t *pgd;
1258 unsigned long next;
1259
1da177e4
LT
1260 BUG_ON(addr >= end);
1261 tlb_start_vma(tlb, vma);
1262 pgd = pgd_offset(vma->vm_mm, addr);
1263 do {
1264 next = pgd_addr_end(addr, end);
97a89413 1265 if (pgd_none_or_clear_bad(pgd))
1da177e4 1266 continue;
c2febafc 1267 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1268 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1269 tlb_end_vma(tlb, vma);
1270}
51c6f666 1271
f5cc4eef
AV
1272
1273static void unmap_single_vma(struct mmu_gather *tlb,
1274 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1275 unsigned long end_addr,
f5cc4eef
AV
1276 struct zap_details *details)
1277{
1278 unsigned long start = max(vma->vm_start, start_addr);
1279 unsigned long end;
1280
1281 if (start >= vma->vm_end)
1282 return;
1283 end = min(vma->vm_end, end_addr);
1284 if (end <= vma->vm_start)
1285 return;
1286
cbc91f71
SD
1287 if (vma->vm_file)
1288 uprobe_munmap(vma, start, end);
1289
b3b9c293 1290 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1291 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1292
1293 if (start != end) {
1294 if (unlikely(is_vm_hugetlb_page(vma))) {
1295 /*
1296 * It is undesirable to test vma->vm_file as it
1297 * should be non-null for valid hugetlb area.
1298 * However, vm_file will be NULL in the error
7aa6b4ad 1299 * cleanup path of mmap_region. When
f5cc4eef 1300 * hugetlbfs ->mmap method fails,
7aa6b4ad 1301 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1302 * before calling this function to clean up.
1303 * Since no pte has actually been setup, it is
1304 * safe to do nothing in this case.
1305 */
24669e58 1306 if (vma->vm_file) {
83cde9e8 1307 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1308 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1309 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1310 }
f5cc4eef
AV
1311 } else
1312 unmap_page_range(tlb, vma, start, end, details);
1313 }
1da177e4
LT
1314}
1315
1da177e4
LT
1316/**
1317 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1318 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1319 * @vma: the starting vma
1320 * @start_addr: virtual address at which to start unmapping
1321 * @end_addr: virtual address at which to end unmapping
1da177e4 1322 *
508034a3 1323 * Unmap all pages in the vma list.
1da177e4 1324 *
1da177e4
LT
1325 * Only addresses between `start' and `end' will be unmapped.
1326 *
1327 * The VMA list must be sorted in ascending virtual address order.
1328 *
1329 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1330 * range after unmap_vmas() returns. So the only responsibility here is to
1331 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1332 * drops the lock and schedules.
1333 */
6e8bb019 1334void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1335 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1336 unsigned long end_addr)
1da177e4 1337{
ac46d4f3 1338 struct mmu_notifier_range range;
1da177e4 1339
6f4f13e8
JG
1340 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1341 start_addr, end_addr);
ac46d4f3 1342 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1343 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1344 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1345 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1346}
1347
1348/**
1349 * zap_page_range - remove user pages in a given range
1350 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1351 * @start: starting address of pages to zap
1da177e4 1352 * @size: number of bytes to zap
f5cc4eef
AV
1353 *
1354 * Caller must protect the VMA list
1da177e4 1355 */
7e027b14 1356void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1357 unsigned long size)
1da177e4 1358{
ac46d4f3 1359 struct mmu_notifier_range range;
d16dfc55 1360 struct mmu_gather tlb;
1da177e4 1361
1da177e4 1362 lru_add_drain();
7269f999 1363 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1364 start, start + size);
ac46d4f3
JG
1365 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1366 update_hiwater_rss(vma->vm_mm);
1367 mmu_notifier_invalidate_range_start(&range);
1368 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1369 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1370 mmu_notifier_invalidate_range_end(&range);
1371 tlb_finish_mmu(&tlb, start, range.end);
1da177e4
LT
1372}
1373
f5cc4eef
AV
1374/**
1375 * zap_page_range_single - remove user pages in a given range
1376 * @vma: vm_area_struct holding the applicable pages
1377 * @address: starting address of pages to zap
1378 * @size: number of bytes to zap
8a5f14a2 1379 * @details: details of shared cache invalidation
f5cc4eef
AV
1380 *
1381 * The range must fit into one VMA.
1da177e4 1382 */
f5cc4eef 1383static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1384 unsigned long size, struct zap_details *details)
1385{
ac46d4f3 1386 struct mmu_notifier_range range;
d16dfc55 1387 struct mmu_gather tlb;
1da177e4 1388
1da177e4 1389 lru_add_drain();
7269f999 1390 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1391 address, address + size);
ac46d4f3
JG
1392 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1393 update_hiwater_rss(vma->vm_mm);
1394 mmu_notifier_invalidate_range_start(&range);
1395 unmap_single_vma(&tlb, vma, address, range.end, details);
1396 mmu_notifier_invalidate_range_end(&range);
1397 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1398}
1399
c627f9cc
JS
1400/**
1401 * zap_vma_ptes - remove ptes mapping the vma
1402 * @vma: vm_area_struct holding ptes to be zapped
1403 * @address: starting address of pages to zap
1404 * @size: number of bytes to zap
1405 *
1406 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1407 *
1408 * The entire address range must be fully contained within the vma.
1409 *
c627f9cc 1410 */
27d036e3 1411void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1412 unsigned long size)
1413{
1414 if (address < vma->vm_start || address + size > vma->vm_end ||
1415 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1416 return;
1417
f5cc4eef 1418 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1419}
1420EXPORT_SYMBOL_GPL(zap_vma_ptes);
1421
25ca1d6c 1422pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1423 spinlock_t **ptl)
c9cfcddf 1424{
c2febafc
KS
1425 pgd_t *pgd;
1426 p4d_t *p4d;
1427 pud_t *pud;
1428 pmd_t *pmd;
1429
1430 pgd = pgd_offset(mm, addr);
1431 p4d = p4d_alloc(mm, pgd, addr);
1432 if (!p4d)
1433 return NULL;
1434 pud = pud_alloc(mm, p4d, addr);
1435 if (!pud)
1436 return NULL;
1437 pmd = pmd_alloc(mm, pud, addr);
1438 if (!pmd)
1439 return NULL;
1440
1441 VM_BUG_ON(pmd_trans_huge(*pmd));
1442 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1443}
1444
238f58d8
LT
1445/*
1446 * This is the old fallback for page remapping.
1447 *
1448 * For historical reasons, it only allows reserved pages. Only
1449 * old drivers should use this, and they needed to mark their
1450 * pages reserved for the old functions anyway.
1451 */
423bad60
NP
1452static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1453 struct page *page, pgprot_t prot)
238f58d8 1454{
423bad60 1455 struct mm_struct *mm = vma->vm_mm;
238f58d8 1456 int retval;
c9cfcddf 1457 pte_t *pte;
8a9f3ccd
BS
1458 spinlock_t *ptl;
1459
238f58d8 1460 retval = -EINVAL;
0ee930e6 1461 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
5b4e655e 1462 goto out;
238f58d8
LT
1463 retval = -ENOMEM;
1464 flush_dcache_page(page);
c9cfcddf 1465 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1466 if (!pte)
5b4e655e 1467 goto out;
238f58d8
LT
1468 retval = -EBUSY;
1469 if (!pte_none(*pte))
1470 goto out_unlock;
1471
1472 /* Ok, finally just insert the thing.. */
1473 get_page(page);
eca56ff9 1474 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1475 page_add_file_rmap(page, false);
238f58d8
LT
1476 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1477
1478 retval = 0;
1479out_unlock:
1480 pte_unmap_unlock(pte, ptl);
1481out:
1482 return retval;
1483}
1484
bfa5bf6d
REB
1485/**
1486 * vm_insert_page - insert single page into user vma
1487 * @vma: user vma to map to
1488 * @addr: target user address of this page
1489 * @page: source kernel page
1490 *
a145dd41
LT
1491 * This allows drivers to insert individual pages they've allocated
1492 * into a user vma.
1493 *
1494 * The page has to be a nice clean _individual_ kernel allocation.
1495 * If you allocate a compound page, you need to have marked it as
1496 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1497 * (see split_page()).
a145dd41
LT
1498 *
1499 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1500 * took an arbitrary page protection parameter. This doesn't allow
1501 * that. Your vma protection will have to be set up correctly, which
1502 * means that if you want a shared writable mapping, you'd better
1503 * ask for a shared writable mapping!
1504 *
1505 * The page does not need to be reserved.
4b6e1e37
KK
1506 *
1507 * Usually this function is called from f_op->mmap() handler
1508 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1509 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1510 * function from other places, for example from page-fault handler.
a862f68a
MR
1511 *
1512 * Return: %0 on success, negative error code otherwise.
a145dd41 1513 */
423bad60
NP
1514int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1515 struct page *page)
a145dd41
LT
1516{
1517 if (addr < vma->vm_start || addr >= vma->vm_end)
1518 return -EFAULT;
1519 if (!page_count(page))
1520 return -EINVAL;
4b6e1e37
KK
1521 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1522 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1523 BUG_ON(vma->vm_flags & VM_PFNMAP);
1524 vma->vm_flags |= VM_MIXEDMAP;
1525 }
423bad60 1526 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1527}
e3c3374f 1528EXPORT_SYMBOL(vm_insert_page);
a145dd41 1529
a667d745
SJ
1530/*
1531 * __vm_map_pages - maps range of kernel pages into user vma
1532 * @vma: user vma to map to
1533 * @pages: pointer to array of source kernel pages
1534 * @num: number of pages in page array
1535 * @offset: user's requested vm_pgoff
1536 *
1537 * This allows drivers to map range of kernel pages into a user vma.
1538 *
1539 * Return: 0 on success and error code otherwise.
1540 */
1541static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1542 unsigned long num, unsigned long offset)
1543{
1544 unsigned long count = vma_pages(vma);
1545 unsigned long uaddr = vma->vm_start;
1546 int ret, i;
1547
1548 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1549 if (offset >= num)
a667d745
SJ
1550 return -ENXIO;
1551
1552 /* Fail if the user requested size exceeds available object size */
1553 if (count > num - offset)
1554 return -ENXIO;
1555
1556 for (i = 0; i < count; i++) {
1557 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1558 if (ret < 0)
1559 return ret;
1560 uaddr += PAGE_SIZE;
1561 }
1562
1563 return 0;
1564}
1565
1566/**
1567 * vm_map_pages - maps range of kernel pages starts with non zero offset
1568 * @vma: user vma to map to
1569 * @pages: pointer to array of source kernel pages
1570 * @num: number of pages in page array
1571 *
1572 * Maps an object consisting of @num pages, catering for the user's
1573 * requested vm_pgoff
1574 *
1575 * If we fail to insert any page into the vma, the function will return
1576 * immediately leaving any previously inserted pages present. Callers
1577 * from the mmap handler may immediately return the error as their caller
1578 * will destroy the vma, removing any successfully inserted pages. Other
1579 * callers should make their own arrangements for calling unmap_region().
1580 *
1581 * Context: Process context. Called by mmap handlers.
1582 * Return: 0 on success and error code otherwise.
1583 */
1584int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1585 unsigned long num)
1586{
1587 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1588}
1589EXPORT_SYMBOL(vm_map_pages);
1590
1591/**
1592 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1593 * @vma: user vma to map to
1594 * @pages: pointer to array of source kernel pages
1595 * @num: number of pages in page array
1596 *
1597 * Similar to vm_map_pages(), except that it explicitly sets the offset
1598 * to 0. This function is intended for the drivers that did not consider
1599 * vm_pgoff.
1600 *
1601 * Context: Process context. Called by mmap handlers.
1602 * Return: 0 on success and error code otherwise.
1603 */
1604int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1605 unsigned long num)
1606{
1607 return __vm_map_pages(vma, pages, num, 0);
1608}
1609EXPORT_SYMBOL(vm_map_pages_zero);
1610
9b5a8e00 1611static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1612 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1613{
1614 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1615 pte_t *pte, entry;
1616 spinlock_t *ptl;
1617
423bad60
NP
1618 pte = get_locked_pte(mm, addr, &ptl);
1619 if (!pte)
9b5a8e00 1620 return VM_FAULT_OOM;
b2770da6
RZ
1621 if (!pte_none(*pte)) {
1622 if (mkwrite) {
1623 /*
1624 * For read faults on private mappings the PFN passed
1625 * in may not match the PFN we have mapped if the
1626 * mapped PFN is a writeable COW page. In the mkwrite
1627 * case we are creating a writable PTE for a shared
f2c57d91
JK
1628 * mapping and we expect the PFNs to match. If they
1629 * don't match, we are likely racing with block
1630 * allocation and mapping invalidation so just skip the
1631 * update.
b2770da6 1632 */
f2c57d91
JK
1633 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1634 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1635 goto out_unlock;
f2c57d91 1636 }
cae85cb8
JK
1637 entry = pte_mkyoung(*pte);
1638 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1639 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1640 update_mmu_cache(vma, addr, pte);
1641 }
1642 goto out_unlock;
b2770da6 1643 }
423bad60
NP
1644
1645 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1646 if (pfn_t_devmap(pfn))
1647 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1648 else
1649 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1650
b2770da6
RZ
1651 if (mkwrite) {
1652 entry = pte_mkyoung(entry);
1653 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1654 }
1655
423bad60 1656 set_pte_at(mm, addr, pte, entry);
4b3073e1 1657 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1658
423bad60
NP
1659out_unlock:
1660 pte_unmap_unlock(pte, ptl);
9b5a8e00 1661 return VM_FAULT_NOPAGE;
423bad60
NP
1662}
1663
f5e6d1d5
MW
1664/**
1665 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1666 * @vma: user vma to map to
1667 * @addr: target user address of this page
1668 * @pfn: source kernel pfn
1669 * @pgprot: pgprot flags for the inserted page
1670 *
1671 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1672 * to override pgprot on a per-page basis.
1673 *
1674 * This only makes sense for IO mappings, and it makes no sense for
1675 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1676 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1677 * impractical.
1678 *
574c5b3d
TH
1679 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1680 * a value of @pgprot different from that of @vma->vm_page_prot.
1681 *
ae2b01f3 1682 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1683 * Return: vm_fault_t value.
1684 */
1685vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1686 unsigned long pfn, pgprot_t pgprot)
1687{
6d958546
MW
1688 /*
1689 * Technically, architectures with pte_special can avoid all these
1690 * restrictions (same for remap_pfn_range). However we would like
1691 * consistency in testing and feature parity among all, so we should
1692 * try to keep these invariants in place for everybody.
1693 */
1694 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1695 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1696 (VM_PFNMAP|VM_MIXEDMAP));
1697 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1698 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1699
1700 if (addr < vma->vm_start || addr >= vma->vm_end)
1701 return VM_FAULT_SIGBUS;
1702
1703 if (!pfn_modify_allowed(pfn, pgprot))
1704 return VM_FAULT_SIGBUS;
1705
1706 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1707
9b5a8e00 1708 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 1709 false);
f5e6d1d5
MW
1710}
1711EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 1712
ae2b01f3
MW
1713/**
1714 * vmf_insert_pfn - insert single pfn into user vma
1715 * @vma: user vma to map to
1716 * @addr: target user address of this page
1717 * @pfn: source kernel pfn
1718 *
1719 * Similar to vm_insert_page, this allows drivers to insert individual pages
1720 * they've allocated into a user vma. Same comments apply.
1721 *
1722 * This function should only be called from a vm_ops->fault handler, and
1723 * in that case the handler should return the result of this function.
1724 *
1725 * vma cannot be a COW mapping.
1726 *
1727 * As this is called only for pages that do not currently exist, we
1728 * do not need to flush old virtual caches or the TLB.
1729 *
1730 * Context: Process context. May allocate using %GFP_KERNEL.
1731 * Return: vm_fault_t value.
1732 */
1733vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1734 unsigned long pfn)
1735{
1736 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1737}
1738EXPORT_SYMBOL(vmf_insert_pfn);
1739
785a3fab
DW
1740static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1741{
1742 /* these checks mirror the abort conditions in vm_normal_page */
1743 if (vma->vm_flags & VM_MIXEDMAP)
1744 return true;
1745 if (pfn_t_devmap(pfn))
1746 return true;
1747 if (pfn_t_special(pfn))
1748 return true;
1749 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1750 return true;
1751 return false;
1752}
1753
79f3aa5b 1754static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
1755 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1756 bool mkwrite)
423bad60 1757{
79f3aa5b 1758 int err;
87744ab3 1759
785a3fab 1760 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1761
423bad60 1762 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 1763 return VM_FAULT_SIGBUS;
308a047c
BP
1764
1765 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1766
42e4089c 1767 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 1768 return VM_FAULT_SIGBUS;
42e4089c 1769
423bad60
NP
1770 /*
1771 * If we don't have pte special, then we have to use the pfn_valid()
1772 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1773 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1774 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1775 * without pte special, it would there be refcounted as a normal page.
423bad60 1776 */
00b3a331
LD
1777 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1778 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1779 struct page *page;
1780
03fc2da6
DW
1781 /*
1782 * At this point we are committed to insert_page()
1783 * regardless of whether the caller specified flags that
1784 * result in pfn_t_has_page() == false.
1785 */
1786 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
1787 err = insert_page(vma, addr, page, pgprot);
1788 } else {
9b5a8e00 1789 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 1790 }
b2770da6 1791
5d747637
MW
1792 if (err == -ENOMEM)
1793 return VM_FAULT_OOM;
1794 if (err < 0 && err != -EBUSY)
1795 return VM_FAULT_SIGBUS;
1796
1797 return VM_FAULT_NOPAGE;
e0dc0d8f 1798}
79f3aa5b 1799
574c5b3d
TH
1800/**
1801 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1802 * @vma: user vma to map to
1803 * @addr: target user address of this page
1804 * @pfn: source kernel pfn
1805 * @pgprot: pgprot flags for the inserted page
1806 *
1807 * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1808 * to override pgprot on a per-page basis.
1809 *
1810 * Typically this function should be used by drivers to set caching- and
1811 * encryption bits different than those of @vma->vm_page_prot, because
1812 * the caching- or encryption mode may not be known at mmap() time.
1813 * This is ok as long as @vma->vm_page_prot is not used by the core vm
1814 * to set caching and encryption bits for those vmas (except for COW pages).
1815 * This is ensured by core vm only modifying these page table entries using
1816 * functions that don't touch caching- or encryption bits, using pte_modify()
1817 * if needed. (See for example mprotect()).
1818 * Also when new page-table entries are created, this is only done using the
1819 * fault() callback, and never using the value of vma->vm_page_prot,
1820 * except for page-table entries that point to anonymous pages as the result
1821 * of COW.
1822 *
1823 * Context: Process context. May allocate using %GFP_KERNEL.
1824 * Return: vm_fault_t value.
1825 */
1826vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1827 pfn_t pfn, pgprot_t pgprot)
1828{
1829 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1830}
5379e4dd 1831EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 1832
79f3aa5b
MW
1833vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1834 pfn_t pfn)
1835{
574c5b3d 1836 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 1837}
5d747637 1838EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 1839
ab77dab4
SJ
1840/*
1841 * If the insertion of PTE failed because someone else already added a
1842 * different entry in the mean time, we treat that as success as we assume
1843 * the same entry was actually inserted.
1844 */
ab77dab4
SJ
1845vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1846 unsigned long addr, pfn_t pfn)
b2770da6 1847{
574c5b3d 1848 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 1849}
ab77dab4 1850EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1851
1da177e4
LT
1852/*
1853 * maps a range of physical memory into the requested pages. the old
1854 * mappings are removed. any references to nonexistent pages results
1855 * in null mappings (currently treated as "copy-on-access")
1856 */
1857static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1858 unsigned long addr, unsigned long end,
1859 unsigned long pfn, pgprot_t prot)
1860{
1861 pte_t *pte;
c74df32c 1862 spinlock_t *ptl;
42e4089c 1863 int err = 0;
1da177e4 1864
c74df32c 1865 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1866 if (!pte)
1867 return -ENOMEM;
6606c3e0 1868 arch_enter_lazy_mmu_mode();
1da177e4
LT
1869 do {
1870 BUG_ON(!pte_none(*pte));
42e4089c
AK
1871 if (!pfn_modify_allowed(pfn, prot)) {
1872 err = -EACCES;
1873 break;
1874 }
7e675137 1875 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1876 pfn++;
1877 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1878 arch_leave_lazy_mmu_mode();
c74df32c 1879 pte_unmap_unlock(pte - 1, ptl);
42e4089c 1880 return err;
1da177e4
LT
1881}
1882
1883static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1884 unsigned long addr, unsigned long end,
1885 unsigned long pfn, pgprot_t prot)
1886{
1887 pmd_t *pmd;
1888 unsigned long next;
42e4089c 1889 int err;
1da177e4
LT
1890
1891 pfn -= addr >> PAGE_SHIFT;
1892 pmd = pmd_alloc(mm, pud, addr);
1893 if (!pmd)
1894 return -ENOMEM;
f66055ab 1895 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1896 do {
1897 next = pmd_addr_end(addr, end);
42e4089c
AK
1898 err = remap_pte_range(mm, pmd, addr, next,
1899 pfn + (addr >> PAGE_SHIFT), prot);
1900 if (err)
1901 return err;
1da177e4
LT
1902 } while (pmd++, addr = next, addr != end);
1903 return 0;
1904}
1905
c2febafc 1906static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
1907 unsigned long addr, unsigned long end,
1908 unsigned long pfn, pgprot_t prot)
1909{
1910 pud_t *pud;
1911 unsigned long next;
42e4089c 1912 int err;
1da177e4
LT
1913
1914 pfn -= addr >> PAGE_SHIFT;
c2febafc 1915 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
1916 if (!pud)
1917 return -ENOMEM;
1918 do {
1919 next = pud_addr_end(addr, end);
42e4089c
AK
1920 err = remap_pmd_range(mm, pud, addr, next,
1921 pfn + (addr >> PAGE_SHIFT), prot);
1922 if (err)
1923 return err;
1da177e4
LT
1924 } while (pud++, addr = next, addr != end);
1925 return 0;
1926}
1927
c2febafc
KS
1928static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1929 unsigned long addr, unsigned long end,
1930 unsigned long pfn, pgprot_t prot)
1931{
1932 p4d_t *p4d;
1933 unsigned long next;
42e4089c 1934 int err;
c2febafc
KS
1935
1936 pfn -= addr >> PAGE_SHIFT;
1937 p4d = p4d_alloc(mm, pgd, addr);
1938 if (!p4d)
1939 return -ENOMEM;
1940 do {
1941 next = p4d_addr_end(addr, end);
42e4089c
AK
1942 err = remap_pud_range(mm, p4d, addr, next,
1943 pfn + (addr >> PAGE_SHIFT), prot);
1944 if (err)
1945 return err;
c2febafc
KS
1946 } while (p4d++, addr = next, addr != end);
1947 return 0;
1948}
1949
bfa5bf6d
REB
1950/**
1951 * remap_pfn_range - remap kernel memory to userspace
1952 * @vma: user vma to map to
1953 * @addr: target user address to start at
86a76331 1954 * @pfn: page frame number of kernel physical memory address
552657b7 1955 * @size: size of mapping area
bfa5bf6d
REB
1956 * @prot: page protection flags for this mapping
1957 *
a862f68a
MR
1958 * Note: this is only safe if the mm semaphore is held when called.
1959 *
1960 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 1961 */
1da177e4
LT
1962int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1963 unsigned long pfn, unsigned long size, pgprot_t prot)
1964{
1965 pgd_t *pgd;
1966 unsigned long next;
2d15cab8 1967 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1968 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1969 unsigned long remap_pfn = pfn;
1da177e4
LT
1970 int err;
1971
1972 /*
1973 * Physically remapped pages are special. Tell the
1974 * rest of the world about it:
1975 * VM_IO tells people not to look at these pages
1976 * (accesses can have side effects).
6aab341e
LT
1977 * VM_PFNMAP tells the core MM that the base pages are just
1978 * raw PFN mappings, and do not have a "struct page" associated
1979 * with them.
314e51b9
KK
1980 * VM_DONTEXPAND
1981 * Disable vma merging and expanding with mremap().
1982 * VM_DONTDUMP
1983 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1984 *
1985 * There's a horrible special case to handle copy-on-write
1986 * behaviour that some programs depend on. We mark the "original"
1987 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1988 * See vm_normal_page() for details.
1da177e4 1989 */
b3b9c293
KK
1990 if (is_cow_mapping(vma->vm_flags)) {
1991 if (addr != vma->vm_start || end != vma->vm_end)
1992 return -EINVAL;
fb155c16 1993 vma->vm_pgoff = pfn;
b3b9c293
KK
1994 }
1995
d5957d2f 1996 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1997 if (err)
3c8bb73a 1998 return -EINVAL;
fb155c16 1999
314e51b9 2000 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2001
2002 BUG_ON(addr >= end);
2003 pfn -= addr >> PAGE_SHIFT;
2004 pgd = pgd_offset(mm, addr);
2005 flush_cache_range(vma, addr, end);
1da177e4
LT
2006 do {
2007 next = pgd_addr_end(addr, end);
c2febafc 2008 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2009 pfn + (addr >> PAGE_SHIFT), prot);
2010 if (err)
2011 break;
2012 } while (pgd++, addr = next, addr != end);
2ab64037 2013
2014 if (err)
d5957d2f 2015 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 2016
1da177e4
LT
2017 return err;
2018}
2019EXPORT_SYMBOL(remap_pfn_range);
2020
b4cbb197
LT
2021/**
2022 * vm_iomap_memory - remap memory to userspace
2023 * @vma: user vma to map to
abd69b9e 2024 * @start: start of the physical memory to be mapped
b4cbb197
LT
2025 * @len: size of area
2026 *
2027 * This is a simplified io_remap_pfn_range() for common driver use. The
2028 * driver just needs to give us the physical memory range to be mapped,
2029 * we'll figure out the rest from the vma information.
2030 *
2031 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2032 * whatever write-combining details or similar.
a862f68a
MR
2033 *
2034 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2035 */
2036int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2037{
2038 unsigned long vm_len, pfn, pages;
2039
2040 /* Check that the physical memory area passed in looks valid */
2041 if (start + len < start)
2042 return -EINVAL;
2043 /*
2044 * You *really* shouldn't map things that aren't page-aligned,
2045 * but we've historically allowed it because IO memory might
2046 * just have smaller alignment.
2047 */
2048 len += start & ~PAGE_MASK;
2049 pfn = start >> PAGE_SHIFT;
2050 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2051 if (pfn + pages < pfn)
2052 return -EINVAL;
2053
2054 /* We start the mapping 'vm_pgoff' pages into the area */
2055 if (vma->vm_pgoff > pages)
2056 return -EINVAL;
2057 pfn += vma->vm_pgoff;
2058 pages -= vma->vm_pgoff;
2059
2060 /* Can we fit all of the mapping? */
2061 vm_len = vma->vm_end - vma->vm_start;
2062 if (vm_len >> PAGE_SHIFT > pages)
2063 return -EINVAL;
2064
2065 /* Ok, let it rip */
2066 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2067}
2068EXPORT_SYMBOL(vm_iomap_memory);
2069
aee16b3c
JF
2070static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2071 unsigned long addr, unsigned long end,
be1db475 2072 pte_fn_t fn, void *data, bool create)
aee16b3c
JF
2073{
2074 pte_t *pte;
be1db475 2075 int err = 0;
94909914 2076 spinlock_t *uninitialized_var(ptl);
aee16b3c 2077
be1db475
DA
2078 if (create) {
2079 pte = (mm == &init_mm) ?
2080 pte_alloc_kernel(pmd, addr) :
2081 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2082 if (!pte)
2083 return -ENOMEM;
2084 } else {
2085 pte = (mm == &init_mm) ?
2086 pte_offset_kernel(pmd, addr) :
2087 pte_offset_map_lock(mm, pmd, addr, &ptl);
2088 }
aee16b3c
JF
2089
2090 BUG_ON(pmd_huge(*pmd));
2091
38e0edb1
JF
2092 arch_enter_lazy_mmu_mode();
2093
aee16b3c 2094 do {
be1db475
DA
2095 if (create || !pte_none(*pte)) {
2096 err = fn(pte++, addr, data);
2097 if (err)
2098 break;
2099 }
c36987e2 2100 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2101
38e0edb1
JF
2102 arch_leave_lazy_mmu_mode();
2103
aee16b3c
JF
2104 if (mm != &init_mm)
2105 pte_unmap_unlock(pte-1, ptl);
2106 return err;
2107}
2108
2109static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2110 unsigned long addr, unsigned long end,
be1db475 2111 pte_fn_t fn, void *data, bool create)
aee16b3c
JF
2112{
2113 pmd_t *pmd;
2114 unsigned long next;
be1db475 2115 int err = 0;
aee16b3c 2116
ceb86879
AK
2117 BUG_ON(pud_huge(*pud));
2118
be1db475
DA
2119 if (create) {
2120 pmd = pmd_alloc(mm, pud, addr);
2121 if (!pmd)
2122 return -ENOMEM;
2123 } else {
2124 pmd = pmd_offset(pud, addr);
2125 }
aee16b3c
JF
2126 do {
2127 next = pmd_addr_end(addr, end);
be1db475
DA
2128 if (create || !pmd_none_or_clear_bad(pmd)) {
2129 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2130 create);
2131 if (err)
2132 break;
2133 }
aee16b3c
JF
2134 } while (pmd++, addr = next, addr != end);
2135 return err;
2136}
2137
c2febafc 2138static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2139 unsigned long addr, unsigned long end,
be1db475 2140 pte_fn_t fn, void *data, bool create)
aee16b3c
JF
2141{
2142 pud_t *pud;
2143 unsigned long next;
be1db475 2144 int err = 0;
aee16b3c 2145
be1db475
DA
2146 if (create) {
2147 pud = pud_alloc(mm, p4d, addr);
2148 if (!pud)
2149 return -ENOMEM;
2150 } else {
2151 pud = pud_offset(p4d, addr);
2152 }
aee16b3c
JF
2153 do {
2154 next = pud_addr_end(addr, end);
be1db475
DA
2155 if (create || !pud_none_or_clear_bad(pud)) {
2156 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2157 create);
2158 if (err)
2159 break;
2160 }
aee16b3c
JF
2161 } while (pud++, addr = next, addr != end);
2162 return err;
2163}
2164
c2febafc
KS
2165static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2166 unsigned long addr, unsigned long end,
be1db475 2167 pte_fn_t fn, void *data, bool create)
c2febafc
KS
2168{
2169 p4d_t *p4d;
2170 unsigned long next;
be1db475 2171 int err = 0;
c2febafc 2172
be1db475
DA
2173 if (create) {
2174 p4d = p4d_alloc(mm, pgd, addr);
2175 if (!p4d)
2176 return -ENOMEM;
2177 } else {
2178 p4d = p4d_offset(pgd, addr);
2179 }
c2febafc
KS
2180 do {
2181 next = p4d_addr_end(addr, end);
be1db475
DA
2182 if (create || !p4d_none_or_clear_bad(p4d)) {
2183 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2184 create);
2185 if (err)
2186 break;
2187 }
c2febafc
KS
2188 } while (p4d++, addr = next, addr != end);
2189 return err;
2190}
2191
be1db475
DA
2192static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2193 unsigned long size, pte_fn_t fn,
2194 void *data, bool create)
aee16b3c
JF
2195{
2196 pgd_t *pgd;
2197 unsigned long next;
57250a5b 2198 unsigned long end = addr + size;
be1db475 2199 int err = 0;
aee16b3c 2200
9cb65bc3
MP
2201 if (WARN_ON(addr >= end))
2202 return -EINVAL;
2203
aee16b3c
JF
2204 pgd = pgd_offset(mm, addr);
2205 do {
2206 next = pgd_addr_end(addr, end);
be1db475
DA
2207 if (!create && pgd_none_or_clear_bad(pgd))
2208 continue;
2209 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
aee16b3c
JF
2210 if (err)
2211 break;
2212 } while (pgd++, addr = next, addr != end);
57250a5b 2213
aee16b3c
JF
2214 return err;
2215}
be1db475
DA
2216
2217/*
2218 * Scan a region of virtual memory, filling in page tables as necessary
2219 * and calling a provided function on each leaf page table.
2220 */
2221int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2222 unsigned long size, pte_fn_t fn, void *data)
2223{
2224 return __apply_to_page_range(mm, addr, size, fn, data, true);
2225}
aee16b3c
JF
2226EXPORT_SYMBOL_GPL(apply_to_page_range);
2227
be1db475
DA
2228/*
2229 * Scan a region of virtual memory, calling a provided function on
2230 * each leaf page table where it exists.
2231 *
2232 * Unlike apply_to_page_range, this does _not_ fill in page tables
2233 * where they are absent.
2234 */
2235int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2236 unsigned long size, pte_fn_t fn, void *data)
2237{
2238 return __apply_to_page_range(mm, addr, size, fn, data, false);
2239}
2240EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2241
8f4e2101 2242/*
9b4bdd2f
KS
2243 * handle_pte_fault chooses page fault handler according to an entry which was
2244 * read non-atomically. Before making any commitment, on those architectures
2245 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2246 * parts, do_swap_page must check under lock before unmapping the pte and
2247 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2248 * and do_anonymous_page can safely check later on).
8f4e2101 2249 */
4c21e2f2 2250static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2251 pte_t *page_table, pte_t orig_pte)
2252{
2253 int same = 1;
923717cb 2254#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2255 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2256 spinlock_t *ptl = pte_lockptr(mm, pmd);
2257 spin_lock(ptl);
8f4e2101 2258 same = pte_same(*page_table, orig_pte);
4c21e2f2 2259 spin_unlock(ptl);
8f4e2101
HD
2260 }
2261#endif
2262 pte_unmap(page_table);
2263 return same;
2264}
2265
83d116c5
JH
2266static inline bool cow_user_page(struct page *dst, struct page *src,
2267 struct vm_fault *vmf)
6aab341e 2268{
83d116c5
JH
2269 bool ret;
2270 void *kaddr;
2271 void __user *uaddr;
c3e5ea6e 2272 bool locked = false;
83d116c5
JH
2273 struct vm_area_struct *vma = vmf->vma;
2274 struct mm_struct *mm = vma->vm_mm;
2275 unsigned long addr = vmf->address;
2276
0abdd7a8
DW
2277 debug_dma_assert_idle(src);
2278
83d116c5
JH
2279 if (likely(src)) {
2280 copy_user_highpage(dst, src, addr, vma);
2281 return true;
2282 }
2283
6aab341e
LT
2284 /*
2285 * If the source page was a PFN mapping, we don't have
2286 * a "struct page" for it. We do a best-effort copy by
2287 * just copying from the original user address. If that
2288 * fails, we just zero-fill it. Live with it.
2289 */
83d116c5
JH
2290 kaddr = kmap_atomic(dst);
2291 uaddr = (void __user *)(addr & PAGE_MASK);
2292
2293 /*
2294 * On architectures with software "accessed" bits, we would
2295 * take a double page fault, so mark it accessed here.
2296 */
c3e5ea6e 2297 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2298 pte_t entry;
5d2a2dbb 2299
83d116c5 2300 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2301 locked = true;
83d116c5
JH
2302 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2303 /*
2304 * Other thread has already handled the fault
2305 * and we don't need to do anything. If it's
2306 * not the case, the fault will be triggered
2307 * again on the same address.
2308 */
2309 ret = false;
2310 goto pte_unlock;
2311 }
2312
2313 entry = pte_mkyoung(vmf->orig_pte);
2314 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2315 update_mmu_cache(vma, addr, vmf->pte);
2316 }
2317
2318 /*
2319 * This really shouldn't fail, because the page is there
2320 * in the page tables. But it might just be unreadable,
2321 * in which case we just give up and fill the result with
2322 * zeroes.
2323 */
2324 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2325 if (locked)
2326 goto warn;
2327
2328 /* Re-validate under PTL if the page is still mapped */
2329 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2330 locked = true;
2331 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2332 /* The PTE changed under us. Retry page fault. */
2333 ret = false;
2334 goto pte_unlock;
2335 }
2336
5d2a2dbb 2337 /*
c3e5ea6e
KS
2338 * The same page can be mapped back since last copy attampt.
2339 * Try to copy again under PTL.
5d2a2dbb 2340 */
c3e5ea6e
KS
2341 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2342 /*
2343 * Give a warn in case there can be some obscure
2344 * use-case
2345 */
2346warn:
2347 WARN_ON_ONCE(1);
2348 clear_page(kaddr);
2349 }
83d116c5
JH
2350 }
2351
2352 ret = true;
2353
2354pte_unlock:
c3e5ea6e 2355 if (locked)
83d116c5
JH
2356 pte_unmap_unlock(vmf->pte, vmf->ptl);
2357 kunmap_atomic(kaddr);
2358 flush_dcache_page(dst);
2359
2360 return ret;
6aab341e
LT
2361}
2362
c20cd45e
MH
2363static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2364{
2365 struct file *vm_file = vma->vm_file;
2366
2367 if (vm_file)
2368 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2369
2370 /*
2371 * Special mappings (e.g. VDSO) do not have any file so fake
2372 * a default GFP_KERNEL for them.
2373 */
2374 return GFP_KERNEL;
2375}
2376
fb09a464
KS
2377/*
2378 * Notify the address space that the page is about to become writable so that
2379 * it can prohibit this or wait for the page to get into an appropriate state.
2380 *
2381 * We do this without the lock held, so that it can sleep if it needs to.
2382 */
2b740303 2383static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2384{
2b740303 2385 vm_fault_t ret;
38b8cb7f
JK
2386 struct page *page = vmf->page;
2387 unsigned int old_flags = vmf->flags;
fb09a464 2388
38b8cb7f 2389 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2390
dc617f29
DW
2391 if (vmf->vma->vm_file &&
2392 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2393 return VM_FAULT_SIGBUS;
2394
11bac800 2395 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2396 /* Restore original flags so that caller is not surprised */
2397 vmf->flags = old_flags;
fb09a464
KS
2398 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2399 return ret;
2400 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2401 lock_page(page);
2402 if (!page->mapping) {
2403 unlock_page(page);
2404 return 0; /* retry */
2405 }
2406 ret |= VM_FAULT_LOCKED;
2407 } else
2408 VM_BUG_ON_PAGE(!PageLocked(page), page);
2409 return ret;
2410}
2411
97ba0c2b
JK
2412/*
2413 * Handle dirtying of a page in shared file mapping on a write fault.
2414 *
2415 * The function expects the page to be locked and unlocks it.
2416 */
89b15332 2417static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2418{
89b15332 2419 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2420 struct address_space *mapping;
89b15332 2421 struct page *page = vmf->page;
97ba0c2b
JK
2422 bool dirtied;
2423 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2424
2425 dirtied = set_page_dirty(page);
2426 VM_BUG_ON_PAGE(PageAnon(page), page);
2427 /*
2428 * Take a local copy of the address_space - page.mapping may be zeroed
2429 * by truncate after unlock_page(). The address_space itself remains
2430 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2431 * release semantics to prevent the compiler from undoing this copying.
2432 */
2433 mapping = page_rmapping(page);
2434 unlock_page(page);
2435
89b15332
JW
2436 if (!page_mkwrite)
2437 file_update_time(vma->vm_file);
2438
2439 /*
2440 * Throttle page dirtying rate down to writeback speed.
2441 *
2442 * mapping may be NULL here because some device drivers do not
2443 * set page.mapping but still dirty their pages
2444 *
2445 * Drop the mmap_sem before waiting on IO, if we can. The file
2446 * is pinning the mapping, as per above.
2447 */
97ba0c2b 2448 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2449 struct file *fpin;
2450
2451 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2452 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2453 if (fpin) {
2454 fput(fpin);
2455 return VM_FAULT_RETRY;
2456 }
97ba0c2b
JK
2457 }
2458
89b15332 2459 return 0;
97ba0c2b
JK
2460}
2461
4e047f89
SR
2462/*
2463 * Handle write page faults for pages that can be reused in the current vma
2464 *
2465 * This can happen either due to the mapping being with the VM_SHARED flag,
2466 * or due to us being the last reference standing to the page. In either
2467 * case, all we need to do here is to mark the page as writable and update
2468 * any related book-keeping.
2469 */
997dd98d 2470static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2471 __releases(vmf->ptl)
4e047f89 2472{
82b0f8c3 2473 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2474 struct page *page = vmf->page;
4e047f89
SR
2475 pte_t entry;
2476 /*
2477 * Clear the pages cpupid information as the existing
2478 * information potentially belongs to a now completely
2479 * unrelated process.
2480 */
2481 if (page)
2482 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2483
2994302b
JK
2484 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2485 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2486 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2487 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2488 update_mmu_cache(vma, vmf->address, vmf->pte);
2489 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2490}
2491
2f38ab2c
SR
2492/*
2493 * Handle the case of a page which we actually need to copy to a new page.
2494 *
2495 * Called with mmap_sem locked and the old page referenced, but
2496 * without the ptl held.
2497 *
2498 * High level logic flow:
2499 *
2500 * - Allocate a page, copy the content of the old page to the new one.
2501 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2502 * - Take the PTL. If the pte changed, bail out and release the allocated page
2503 * - If the pte is still the way we remember it, update the page table and all
2504 * relevant references. This includes dropping the reference the page-table
2505 * held to the old page, as well as updating the rmap.
2506 * - In any case, unlock the PTL and drop the reference we took to the old page.
2507 */
2b740303 2508static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2509{
82b0f8c3 2510 struct vm_area_struct *vma = vmf->vma;
bae473a4 2511 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2512 struct page *old_page = vmf->page;
2f38ab2c 2513 struct page *new_page = NULL;
2f38ab2c
SR
2514 pte_t entry;
2515 int page_copied = 0;
2f38ab2c 2516 struct mem_cgroup *memcg;
ac46d4f3 2517 struct mmu_notifier_range range;
2f38ab2c
SR
2518
2519 if (unlikely(anon_vma_prepare(vma)))
2520 goto oom;
2521
2994302b 2522 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2523 new_page = alloc_zeroed_user_highpage_movable(vma,
2524 vmf->address);
2f38ab2c
SR
2525 if (!new_page)
2526 goto oom;
2527 } else {
bae473a4 2528 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2529 vmf->address);
2f38ab2c
SR
2530 if (!new_page)
2531 goto oom;
83d116c5
JH
2532
2533 if (!cow_user_page(new_page, old_page, vmf)) {
2534 /*
2535 * COW failed, if the fault was solved by other,
2536 * it's fine. If not, userspace would re-fault on
2537 * the same address and we will handle the fault
2538 * from the second attempt.
2539 */
2540 put_page(new_page);
2541 if (old_page)
2542 put_page(old_page);
2543 return 0;
2544 }
2f38ab2c 2545 }
2f38ab2c 2546
2cf85583 2547 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2548 goto oom_free_new;
2549
eb3c24f3
MG
2550 __SetPageUptodate(new_page);
2551
7269f999 2552 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2553 vmf->address & PAGE_MASK,
ac46d4f3
JG
2554 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2555 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2556
2557 /*
2558 * Re-check the pte - we dropped the lock
2559 */
82b0f8c3 2560 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2561 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2562 if (old_page) {
2563 if (!PageAnon(old_page)) {
eca56ff9
JM
2564 dec_mm_counter_fast(mm,
2565 mm_counter_file(old_page));
2f38ab2c
SR
2566 inc_mm_counter_fast(mm, MM_ANONPAGES);
2567 }
2568 } else {
2569 inc_mm_counter_fast(mm, MM_ANONPAGES);
2570 }
2994302b 2571 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2572 entry = mk_pte(new_page, vma->vm_page_prot);
2573 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2574 /*
2575 * Clear the pte entry and flush it first, before updating the
2576 * pte with the new entry. This will avoid a race condition
2577 * seen in the presence of one thread doing SMC and another
2578 * thread doing COW.
2579 */
82b0f8c3
JK
2580 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2581 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2582 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2583 lru_cache_add_active_or_unevictable(new_page, vma);
2584 /*
2585 * We call the notify macro here because, when using secondary
2586 * mmu page tables (such as kvm shadow page tables), we want the
2587 * new page to be mapped directly into the secondary page table.
2588 */
82b0f8c3
JK
2589 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2590 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2591 if (old_page) {
2592 /*
2593 * Only after switching the pte to the new page may
2594 * we remove the mapcount here. Otherwise another
2595 * process may come and find the rmap count decremented
2596 * before the pte is switched to the new page, and
2597 * "reuse" the old page writing into it while our pte
2598 * here still points into it and can be read by other
2599 * threads.
2600 *
2601 * The critical issue is to order this
2602 * page_remove_rmap with the ptp_clear_flush above.
2603 * Those stores are ordered by (if nothing else,)
2604 * the barrier present in the atomic_add_negative
2605 * in page_remove_rmap.
2606 *
2607 * Then the TLB flush in ptep_clear_flush ensures that
2608 * no process can access the old page before the
2609 * decremented mapcount is visible. And the old page
2610 * cannot be reused until after the decremented
2611 * mapcount is visible. So transitively, TLBs to
2612 * old page will be flushed before it can be reused.
2613 */
d281ee61 2614 page_remove_rmap(old_page, false);
2f38ab2c
SR
2615 }
2616
2617 /* Free the old page.. */
2618 new_page = old_page;
2619 page_copied = 1;
2620 } else {
f627c2f5 2621 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2622 }
2623
2624 if (new_page)
09cbfeaf 2625 put_page(new_page);
2f38ab2c 2626
82b0f8c3 2627 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2628 /*
2629 * No need to double call mmu_notifier->invalidate_range() callback as
2630 * the above ptep_clear_flush_notify() did already call it.
2631 */
ac46d4f3 2632 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2633 if (old_page) {
2634 /*
2635 * Don't let another task, with possibly unlocked vma,
2636 * keep the mlocked page.
2637 */
2638 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2639 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2640 if (PageMlocked(old_page))
2641 munlock_vma_page(old_page);
2f38ab2c
SR
2642 unlock_page(old_page);
2643 }
09cbfeaf 2644 put_page(old_page);
2f38ab2c
SR
2645 }
2646 return page_copied ? VM_FAULT_WRITE : 0;
2647oom_free_new:
09cbfeaf 2648 put_page(new_page);
2f38ab2c
SR
2649oom:
2650 if (old_page)
09cbfeaf 2651 put_page(old_page);
2f38ab2c
SR
2652 return VM_FAULT_OOM;
2653}
2654
66a6197c
JK
2655/**
2656 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2657 * writeable once the page is prepared
2658 *
2659 * @vmf: structure describing the fault
2660 *
2661 * This function handles all that is needed to finish a write page fault in a
2662 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2663 * It handles locking of PTE and modifying it.
66a6197c
JK
2664 *
2665 * The function expects the page to be locked or other protection against
2666 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
2667 *
2668 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2669 * we acquired PTE lock.
66a6197c 2670 */
2b740303 2671vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2672{
2673 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2674 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2675 &vmf->ptl);
2676 /*
2677 * We might have raced with another page fault while we released the
2678 * pte_offset_map_lock.
2679 */
2680 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2681 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2682 return VM_FAULT_NOPAGE;
66a6197c
JK
2683 }
2684 wp_page_reuse(vmf);
a19e2553 2685 return 0;
66a6197c
JK
2686}
2687
dd906184
BH
2688/*
2689 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2690 * mapping
2691 */
2b740303 2692static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2693{
82b0f8c3 2694 struct vm_area_struct *vma = vmf->vma;
bae473a4 2695
dd906184 2696 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 2697 vm_fault_t ret;
dd906184 2698
82b0f8c3 2699 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2700 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2701 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2702 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2703 return ret;
66a6197c 2704 return finish_mkwrite_fault(vmf);
dd906184 2705 }
997dd98d
JK
2706 wp_page_reuse(vmf);
2707 return VM_FAULT_WRITE;
dd906184
BH
2708}
2709
2b740303 2710static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2711 __releases(vmf->ptl)
93e478d4 2712{
82b0f8c3 2713 struct vm_area_struct *vma = vmf->vma;
89b15332 2714 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 2715
a41b70d6 2716 get_page(vmf->page);
93e478d4 2717
93e478d4 2718 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 2719 vm_fault_t tmp;
93e478d4 2720
82b0f8c3 2721 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2722 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2723 if (unlikely(!tmp || (tmp &
2724 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2725 put_page(vmf->page);
93e478d4
SR
2726 return tmp;
2727 }
66a6197c 2728 tmp = finish_mkwrite_fault(vmf);
a19e2553 2729 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2730 unlock_page(vmf->page);
a41b70d6 2731 put_page(vmf->page);
66a6197c 2732 return tmp;
93e478d4 2733 }
66a6197c
JK
2734 } else {
2735 wp_page_reuse(vmf);
997dd98d 2736 lock_page(vmf->page);
93e478d4 2737 }
89b15332 2738 ret |= fault_dirty_shared_page(vmf);
997dd98d 2739 put_page(vmf->page);
93e478d4 2740
89b15332 2741 return ret;
93e478d4
SR
2742}
2743
1da177e4
LT
2744/*
2745 * This routine handles present pages, when users try to write
2746 * to a shared page. It is done by copying the page to a new address
2747 * and decrementing the shared-page counter for the old page.
2748 *
1da177e4
LT
2749 * Note that this routine assumes that the protection checks have been
2750 * done by the caller (the low-level page fault routine in most cases).
2751 * Thus we can safely just mark it writable once we've done any necessary
2752 * COW.
2753 *
2754 * We also mark the page dirty at this point even though the page will
2755 * change only once the write actually happens. This avoids a few races,
2756 * and potentially makes it more efficient.
2757 *
8f4e2101
HD
2758 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2759 * but allow concurrent faults), with pte both mapped and locked.
2760 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2761 */
2b740303 2762static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 2763 __releases(vmf->ptl)
1da177e4 2764{
82b0f8c3 2765 struct vm_area_struct *vma = vmf->vma;
1da177e4 2766
292924b2 2767 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
2768 pte_unmap_unlock(vmf->pte, vmf->ptl);
2769 return handle_userfault(vmf, VM_UFFD_WP);
2770 }
2771
a41b70d6
JK
2772 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2773 if (!vmf->page) {
251b97f5 2774 /*
64e45507
PF
2775 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2776 * VM_PFNMAP VMA.
251b97f5
PZ
2777 *
2778 * We should not cow pages in a shared writeable mapping.
dd906184 2779 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2780 */
2781 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2782 (VM_WRITE|VM_SHARED))
2994302b 2783 return wp_pfn_shared(vmf);
2f38ab2c 2784
82b0f8c3 2785 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2786 return wp_page_copy(vmf);
251b97f5 2787 }
1da177e4 2788
d08b3851 2789 /*
ee6a6457
PZ
2790 * Take out anonymous pages first, anonymous shared vmas are
2791 * not dirty accountable.
d08b3851 2792 */
52d1e606 2793 if (PageAnon(vmf->page)) {
ba3c4ce6 2794 int total_map_swapcount;
52d1e606
KT
2795 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2796 page_count(vmf->page) != 1))
2797 goto copy;
a41b70d6
JK
2798 if (!trylock_page(vmf->page)) {
2799 get_page(vmf->page);
82b0f8c3 2800 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2801 lock_page(vmf->page);
82b0f8c3
JK
2802 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2803 vmf->address, &vmf->ptl);
2994302b 2804 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2805 unlock_page(vmf->page);
82b0f8c3 2806 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2807 put_page(vmf->page);
28766805 2808 return 0;
ab967d86 2809 }
a41b70d6 2810 put_page(vmf->page);
ee6a6457 2811 }
52d1e606
KT
2812 if (PageKsm(vmf->page)) {
2813 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2814 vmf->address);
2815 unlock_page(vmf->page);
2816 if (!reused)
2817 goto copy;
2818 wp_page_reuse(vmf);
2819 return VM_FAULT_WRITE;
2820 }
ba3c4ce6
YH
2821 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2822 if (total_map_swapcount == 1) {
6d0a07ed
AA
2823 /*
2824 * The page is all ours. Move it to
2825 * our anon_vma so the rmap code will
2826 * not search our parent or siblings.
2827 * Protected against the rmap code by
2828 * the page lock.
2829 */
a41b70d6 2830 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2831 }
a41b70d6 2832 unlock_page(vmf->page);
997dd98d
JK
2833 wp_page_reuse(vmf);
2834 return VM_FAULT_WRITE;
b009c024 2835 }
a41b70d6 2836 unlock_page(vmf->page);
ee6a6457 2837 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2838 (VM_WRITE|VM_SHARED))) {
a41b70d6 2839 return wp_page_shared(vmf);
1da177e4 2840 }
52d1e606 2841copy:
1da177e4
LT
2842 /*
2843 * Ok, we need to copy. Oh, well..
2844 */
a41b70d6 2845 get_page(vmf->page);
28766805 2846
82b0f8c3 2847 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2848 return wp_page_copy(vmf);
1da177e4
LT
2849}
2850
97a89413 2851static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2852 unsigned long start_addr, unsigned long end_addr,
2853 struct zap_details *details)
2854{
f5cc4eef 2855 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2856}
2857
f808c13f 2858static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2859 struct zap_details *details)
2860{
2861 struct vm_area_struct *vma;
1da177e4
LT
2862 pgoff_t vba, vea, zba, zea;
2863
6b2dbba8 2864 vma_interval_tree_foreach(vma, root,
1da177e4 2865 details->first_index, details->last_index) {
1da177e4
LT
2866
2867 vba = vma->vm_pgoff;
d6e93217 2868 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2869 zba = details->first_index;
2870 if (zba < vba)
2871 zba = vba;
2872 zea = details->last_index;
2873 if (zea > vea)
2874 zea = vea;
2875
97a89413 2876 unmap_mapping_range_vma(vma,
1da177e4
LT
2877 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2878 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2879 details);
1da177e4
LT
2880 }
2881}
2882
977fbdcd
MW
2883/**
2884 * unmap_mapping_pages() - Unmap pages from processes.
2885 * @mapping: The address space containing pages to be unmapped.
2886 * @start: Index of first page to be unmapped.
2887 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2888 * @even_cows: Whether to unmap even private COWed pages.
2889 *
2890 * Unmap the pages in this address space from any userspace process which
2891 * has them mmaped. Generally, you want to remove COWed pages as well when
2892 * a file is being truncated, but not when invalidating pages from the page
2893 * cache.
2894 */
2895void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2896 pgoff_t nr, bool even_cows)
2897{
2898 struct zap_details details = { };
2899
2900 details.check_mapping = even_cows ? NULL : mapping;
2901 details.first_index = start;
2902 details.last_index = start + nr - 1;
2903 if (details.last_index < details.first_index)
2904 details.last_index = ULONG_MAX;
2905
2906 i_mmap_lock_write(mapping);
2907 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2908 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2909 i_mmap_unlock_write(mapping);
2910}
2911
1da177e4 2912/**
8a5f14a2 2913 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 2914 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
2915 * file.
2916 *
3d41088f 2917 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2918 * @holebegin: byte in first page to unmap, relative to the start of
2919 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2920 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2921 * must keep the partial page. In contrast, we must get rid of
2922 * partial pages.
2923 * @holelen: size of prospective hole in bytes. This will be rounded
2924 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2925 * end of the file.
2926 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2927 * but 0 when invalidating pagecache, don't throw away private data.
2928 */
2929void unmap_mapping_range(struct address_space *mapping,
2930 loff_t const holebegin, loff_t const holelen, int even_cows)
2931{
1da177e4
LT
2932 pgoff_t hba = holebegin >> PAGE_SHIFT;
2933 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2934
2935 /* Check for overflow. */
2936 if (sizeof(holelen) > sizeof(hlen)) {
2937 long long holeend =
2938 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2939 if (holeend & ~(long long)ULONG_MAX)
2940 hlen = ULONG_MAX - hba + 1;
2941 }
2942
977fbdcd 2943 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
2944}
2945EXPORT_SYMBOL(unmap_mapping_range);
2946
1da177e4 2947/*
8f4e2101
HD
2948 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2949 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2950 * We return with pte unmapped and unlocked.
2951 *
2952 * We return with the mmap_sem locked or unlocked in the same cases
2953 * as does filemap_fault().
1da177e4 2954 */
2b740303 2955vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 2956{
82b0f8c3 2957 struct vm_area_struct *vma = vmf->vma;
eaf649eb 2958 struct page *page = NULL, *swapcache;
00501b53 2959 struct mem_cgroup *memcg;
65500d23 2960 swp_entry_t entry;
1da177e4 2961 pte_t pte;
d065bd81 2962 int locked;
ad8c2ee8 2963 int exclusive = 0;
2b740303 2964 vm_fault_t ret = 0;
1da177e4 2965
eaf649eb 2966 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2967 goto out;
65500d23 2968
2994302b 2969 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2970 if (unlikely(non_swap_entry(entry))) {
2971 if (is_migration_entry(entry)) {
82b0f8c3
JK
2972 migration_entry_wait(vma->vm_mm, vmf->pmd,
2973 vmf->address);
5042db43 2974 } else if (is_device_private_entry(entry)) {
897e6365
CH
2975 vmf->page = device_private_entry_to_page(entry);
2976 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
2977 } else if (is_hwpoison_entry(entry)) {
2978 ret = VM_FAULT_HWPOISON;
2979 } else {
2994302b 2980 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2981 ret = VM_FAULT_SIGBUS;
d1737fdb 2982 }
0697212a
CL
2983 goto out;
2984 }
0bcac06f
MK
2985
2986
0ff92245 2987 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
2988 page = lookup_swap_cache(entry, vma, vmf->address);
2989 swapcache = page;
f8020772 2990
1da177e4 2991 if (!page) {
0bcac06f
MK
2992 struct swap_info_struct *si = swp_swap_info(entry);
2993
aa8d22a1 2994 if (si->flags & SWP_SYNCHRONOUS_IO &&
eb085574 2995 __swap_count(entry) == 1) {
0bcac06f 2996 /* skip swapcache */
e9e9b7ec
MK
2997 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2998 vmf->address);
0bcac06f
MK
2999 if (page) {
3000 __SetPageLocked(page);
3001 __SetPageSwapBacked(page);
3002 set_page_private(page, entry.val);
3003 lru_cache_add_anon(page);
3004 swap_readpage(page, true);
3005 }
aa8d22a1 3006 } else {
e9e9b7ec
MK
3007 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3008 vmf);
aa8d22a1 3009 swapcache = page;
0bcac06f
MK
3010 }
3011
1da177e4
LT
3012 if (!page) {
3013 /*
8f4e2101
HD
3014 * Back out if somebody else faulted in this pte
3015 * while we released the pte lock.
1da177e4 3016 */
82b0f8c3
JK
3017 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3018 vmf->address, &vmf->ptl);
2994302b 3019 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3020 ret = VM_FAULT_OOM;
0ff92245 3021 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 3022 goto unlock;
1da177e4
LT
3023 }
3024
3025 /* Had to read the page from swap area: Major fault */
3026 ret = VM_FAULT_MAJOR;
f8891e5e 3027 count_vm_event(PGMAJFAULT);
2262185c 3028 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3029 } else if (PageHWPoison(page)) {
71f72525
WF
3030 /*
3031 * hwpoisoned dirty swapcache pages are kept for killing
3032 * owner processes (which may be unknown at hwpoison time)
3033 */
d1737fdb
AK
3034 ret = VM_FAULT_HWPOISON;
3035 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 3036 goto out_release;
1da177e4
LT
3037 }
3038
82b0f8c3 3039 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3040
073e587e 3041 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
3042 if (!locked) {
3043 ret |= VM_FAULT_RETRY;
3044 goto out_release;
3045 }
073e587e 3046
4969c119 3047 /*
31c4a3d3
HD
3048 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3049 * release the swapcache from under us. The page pin, and pte_same
3050 * test below, are not enough to exclude that. Even if it is still
3051 * swapcache, we need to check that the page's swap has not changed.
4969c119 3052 */
0bcac06f
MK
3053 if (unlikely((!PageSwapCache(page) ||
3054 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3055 goto out_page;
3056
82b0f8c3 3057 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3058 if (unlikely(!page)) {
3059 ret = VM_FAULT_OOM;
3060 page = swapcache;
cbf86cfe 3061 goto out_page;
5ad64688
HD
3062 }
3063
2cf85583
TH
3064 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3065 &memcg, false)) {
8a9f3ccd 3066 ret = VM_FAULT_OOM;
bc43f75c 3067 goto out_page;
8a9f3ccd
BS
3068 }
3069
1da177e4 3070 /*
8f4e2101 3071 * Back out if somebody else already faulted in this pte.
1da177e4 3072 */
82b0f8c3
JK
3073 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3074 &vmf->ptl);
2994302b 3075 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3076 goto out_nomap;
b8107480
KK
3077
3078 if (unlikely(!PageUptodate(page))) {
3079 ret = VM_FAULT_SIGBUS;
3080 goto out_nomap;
1da177e4
LT
3081 }
3082
8c7c6e34
KH
3083 /*
3084 * The page isn't present yet, go ahead with the fault.
3085 *
3086 * Be careful about the sequence of operations here.
3087 * To get its accounting right, reuse_swap_page() must be called
3088 * while the page is counted on swap but not yet in mapcount i.e.
3089 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3090 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3091 */
1da177e4 3092
bae473a4
KS
3093 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3094 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3095 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3096 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3097 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3098 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3099 ret |= VM_FAULT_WRITE;
d281ee61 3100 exclusive = RMAP_EXCLUSIVE;
1da177e4 3101 }
1da177e4 3102 flush_icache_page(vma, page);
2994302b 3103 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3104 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3105 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3106 pte = pte_mkuffd_wp(pte);
3107 pte = pte_wrprotect(pte);
3108 }
82b0f8c3 3109 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3110 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3111 vmf->orig_pte = pte;
0bcac06f
MK
3112
3113 /* ksm created a completely new copy */
3114 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3115 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3116 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3117 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
3118 } else {
3119 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3120 mem_cgroup_commit_charge(page, memcg, true, false);
3121 activate_page(page);
00501b53 3122 }
1da177e4 3123
c475a8ab 3124 swap_free(entry);
5ccc5aba
VD
3125 if (mem_cgroup_swap_full(page) ||
3126 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3127 try_to_free_swap(page);
c475a8ab 3128 unlock_page(page);
0bcac06f 3129 if (page != swapcache && swapcache) {
4969c119
AA
3130 /*
3131 * Hold the lock to avoid the swap entry to be reused
3132 * until we take the PT lock for the pte_same() check
3133 * (to avoid false positives from pte_same). For
3134 * further safety release the lock after the swap_free
3135 * so that the swap count won't change under a
3136 * parallel locked swapcache.
3137 */
3138 unlock_page(swapcache);
09cbfeaf 3139 put_page(swapcache);
4969c119 3140 }
c475a8ab 3141
82b0f8c3 3142 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3143 ret |= do_wp_page(vmf);
61469f1d
HD
3144 if (ret & VM_FAULT_ERROR)
3145 ret &= VM_FAULT_ERROR;
1da177e4
LT
3146 goto out;
3147 }
3148
3149 /* No need to invalidate - it was non-present before */
82b0f8c3 3150 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3151unlock:
82b0f8c3 3152 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3153out:
3154 return ret;
b8107480 3155out_nomap:
f627c2f5 3156 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 3157 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3158out_page:
b8107480 3159 unlock_page(page);
4779cb31 3160out_release:
09cbfeaf 3161 put_page(page);
0bcac06f 3162 if (page != swapcache && swapcache) {
4969c119 3163 unlock_page(swapcache);
09cbfeaf 3164 put_page(swapcache);
4969c119 3165 }
65500d23 3166 return ret;
1da177e4
LT
3167}
3168
3169/*
8f4e2101
HD
3170 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3171 * but allow concurrent faults), and pte mapped but not yet locked.
3172 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3173 */
2b740303 3174static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3175{
82b0f8c3 3176 struct vm_area_struct *vma = vmf->vma;
00501b53 3177 struct mem_cgroup *memcg;
8f4e2101 3178 struct page *page;
2b740303 3179 vm_fault_t ret = 0;
1da177e4 3180 pte_t entry;
1da177e4 3181
6b7339f4
KS
3182 /* File mapping without ->vm_ops ? */
3183 if (vma->vm_flags & VM_SHARED)
3184 return VM_FAULT_SIGBUS;
3185
7267ec00
KS
3186 /*
3187 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3188 * pte_offset_map() on pmds where a huge pmd might be created
3189 * from a different thread.
3190 *
3191 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3192 * parallel threads are excluded by other means.
3193 *
3194 * Here we only have down_read(mmap_sem).
3195 */
4cf58924 3196 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3197 return VM_FAULT_OOM;
3198
3199 /* See the comment in pte_alloc_one_map() */
82b0f8c3 3200 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3201 return 0;
3202
11ac5524 3203 /* Use the zero-page for reads */
82b0f8c3 3204 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3205 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3206 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3207 vma->vm_page_prot));
82b0f8c3
JK
3208 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3209 vmf->address, &vmf->ptl);
3210 if (!pte_none(*vmf->pte))
a13ea5b7 3211 goto unlock;
6b31d595
MH
3212 ret = check_stable_address_space(vma->vm_mm);
3213 if (ret)
3214 goto unlock;
6b251fc9
AA
3215 /* Deliver the page fault to userland, check inside PT lock */
3216 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3217 pte_unmap_unlock(vmf->pte, vmf->ptl);
3218 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3219 }
a13ea5b7
HD
3220 goto setpte;
3221 }
3222
557ed1fa 3223 /* Allocate our own private page. */
557ed1fa
NP
3224 if (unlikely(anon_vma_prepare(vma)))
3225 goto oom;
82b0f8c3 3226 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3227 if (!page)
3228 goto oom;
eb3c24f3 3229
2cf85583
TH
3230 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3231 false))
eb3c24f3
MG
3232 goto oom_free_page;
3233
52f37629
MK
3234 /*
3235 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3236 * preceding stores to the page contents become visible before
52f37629
MK
3237 * the set_pte_at() write.
3238 */
0ed361de 3239 __SetPageUptodate(page);
8f4e2101 3240
557ed1fa 3241 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3242 if (vma->vm_flags & VM_WRITE)
3243 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3244
82b0f8c3
JK
3245 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3246 &vmf->ptl);
3247 if (!pte_none(*vmf->pte))
557ed1fa 3248 goto release;
9ba69294 3249
6b31d595
MH
3250 ret = check_stable_address_space(vma->vm_mm);
3251 if (ret)
3252 goto release;
3253
6b251fc9
AA
3254 /* Deliver the page fault to userland, check inside PT lock */
3255 if (userfaultfd_missing(vma)) {
82b0f8c3 3256 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 3257 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3258 put_page(page);
82b0f8c3 3259 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3260 }
3261
bae473a4 3262 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3263 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3264 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3265 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 3266setpte:
82b0f8c3 3267 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3268
3269 /* No need to invalidate - it was non-present before */
82b0f8c3 3270 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3271unlock:
82b0f8c3 3272 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3273 return ret;
8f4e2101 3274release:
f627c2f5 3275 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3276 put_page(page);
8f4e2101 3277 goto unlock;
8a9f3ccd 3278oom_free_page:
09cbfeaf 3279 put_page(page);
65500d23 3280oom:
1da177e4
LT
3281 return VM_FAULT_OOM;
3282}
3283
9a95f3cf
PC
3284/*
3285 * The mmap_sem must have been held on entry, and may have been
3286 * released depending on flags and vma->vm_ops->fault() return value.
3287 * See filemap_fault() and __lock_page_retry().
3288 */
2b740303 3289static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3290{
82b0f8c3 3291 struct vm_area_struct *vma = vmf->vma;
2b740303 3292 vm_fault_t ret;
7eae74af 3293
63f3655f
MH
3294 /*
3295 * Preallocate pte before we take page_lock because this might lead to
3296 * deadlocks for memcg reclaim which waits for pages under writeback:
3297 * lock_page(A)
3298 * SetPageWriteback(A)
3299 * unlock_page(A)
3300 * lock_page(B)
3301 * lock_page(B)
3302 * pte_alloc_pne
3303 * shrink_page_list
3304 * wait_on_page_writeback(A)
3305 * SetPageWriteback(B)
3306 * unlock_page(B)
3307 * # flush A, B to clear the writeback
3308 */
3309 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3310 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3311 if (!vmf->prealloc_pte)
3312 return VM_FAULT_OOM;
3313 smp_wmb(); /* See comment in __pte_alloc() */
3314 }
3315
11bac800 3316 ret = vma->vm_ops->fault(vmf);
3917048d 3317 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3318 VM_FAULT_DONE_COW)))
bc2466e4 3319 return ret;
7eae74af 3320
667240e0 3321 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3322 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3323 unlock_page(vmf->page);
3324 put_page(vmf->page);
936ca80d 3325 vmf->page = NULL;
7eae74af
KS
3326 return VM_FAULT_HWPOISON;
3327 }
3328
3329 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3330 lock_page(vmf->page);
7eae74af 3331 else
667240e0 3332 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3333
7eae74af
KS
3334 return ret;
3335}
3336
d0f0931d
RZ
3337/*
3338 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3339 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3340 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3341 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3342 */
3343static int pmd_devmap_trans_unstable(pmd_t *pmd)
3344{
3345 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3346}
3347
2b740303 3348static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3349{
82b0f8c3 3350 struct vm_area_struct *vma = vmf->vma;
7267ec00 3351
82b0f8c3 3352 if (!pmd_none(*vmf->pmd))
7267ec00 3353 goto map_pte;
82b0f8c3
JK
3354 if (vmf->prealloc_pte) {
3355 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3356 if (unlikely(!pmd_none(*vmf->pmd))) {
3357 spin_unlock(vmf->ptl);
7267ec00
KS
3358 goto map_pte;
3359 }
3360
c4812909 3361 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3362 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3363 spin_unlock(vmf->ptl);
7f2b6ce8 3364 vmf->prealloc_pte = NULL;
4cf58924 3365 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3366 return VM_FAULT_OOM;
3367 }
3368map_pte:
3369 /*
3370 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3371 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3372 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3373 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3374 * running immediately after a huge pmd fault in a different thread of
3375 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3376 * All we have to ensure is that it is a regular pmd that we can walk
3377 * with pte_offset_map() and we can do that through an atomic read in
3378 * C, which is what pmd_trans_unstable() provides.
7267ec00 3379 */
d0f0931d 3380 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3381 return VM_FAULT_NOPAGE;
3382
d0f0931d
RZ
3383 /*
3384 * At this point we know that our vmf->pmd points to a page of ptes
3385 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3386 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3387 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3388 * be valid and we will re-check to make sure the vmf->pte isn't
3389 * pte_none() under vmf->ptl protection when we return to
3390 * alloc_set_pte().
3391 */
82b0f8c3
JK
3392 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3393 &vmf->ptl);
7267ec00
KS
3394 return 0;
3395}
3396
396bcc52 3397#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3398static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3399{
82b0f8c3 3400 struct vm_area_struct *vma = vmf->vma;
953c66c2 3401
82b0f8c3 3402 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3403 /*
3404 * We are going to consume the prealloc table,
3405 * count that as nr_ptes.
3406 */
c4812909 3407 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3408 vmf->prealloc_pte = NULL;
953c66c2
AK
3409}
3410
2b740303 3411static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3412{
82b0f8c3
JK
3413 struct vm_area_struct *vma = vmf->vma;
3414 bool write = vmf->flags & FAULT_FLAG_WRITE;
3415 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3416 pmd_t entry;
2b740303
SJ
3417 int i;
3418 vm_fault_t ret;
10102459
KS
3419
3420 if (!transhuge_vma_suitable(vma, haddr))
3421 return VM_FAULT_FALLBACK;
3422
3423 ret = VM_FAULT_FALLBACK;
3424 page = compound_head(page);
3425
953c66c2
AK
3426 /*
3427 * Archs like ppc64 need additonal space to store information
3428 * related to pte entry. Use the preallocated table for that.
3429 */
82b0f8c3 3430 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3431 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3432 if (!vmf->prealloc_pte)
953c66c2
AK
3433 return VM_FAULT_OOM;
3434 smp_wmb(); /* See comment in __pte_alloc() */
3435 }
3436
82b0f8c3
JK
3437 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3438 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3439 goto out;
3440
3441 for (i = 0; i < HPAGE_PMD_NR; i++)
3442 flush_icache_page(vma, page + i);
3443
3444 entry = mk_huge_pmd(page, vma->vm_page_prot);
3445 if (write)
f55e1014 3446 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3447
fadae295 3448 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3449 page_add_file_rmap(page, true);
953c66c2
AK
3450 /*
3451 * deposit and withdraw with pmd lock held
3452 */
3453 if (arch_needs_pgtable_deposit())
82b0f8c3 3454 deposit_prealloc_pte(vmf);
10102459 3455
82b0f8c3 3456 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3457
82b0f8c3 3458 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3459
3460 /* fault is handled */
3461 ret = 0;
95ecedcd 3462 count_vm_event(THP_FILE_MAPPED);
10102459 3463out:
82b0f8c3 3464 spin_unlock(vmf->ptl);
10102459
KS
3465 return ret;
3466}
3467#else
2b740303 3468static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3469{
3470 BUILD_BUG();
3471 return 0;
3472}
3473#endif
3474
8c6e50b0 3475/**
7267ec00
KS
3476 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3477 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3478 *
82b0f8c3 3479 * @vmf: fault environment
7267ec00 3480 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3481 * @page: page to map
8c6e50b0 3482 *
82b0f8c3
JK
3483 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3484 * return.
8c6e50b0
KS
3485 *
3486 * Target users are page handler itself and implementations of
3487 * vm_ops->map_pages.
a862f68a
MR
3488 *
3489 * Return: %0 on success, %VM_FAULT_ code in case of error.
8c6e50b0 3490 */
2b740303 3491vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3492 struct page *page)
3bb97794 3493{
82b0f8c3
JK
3494 struct vm_area_struct *vma = vmf->vma;
3495 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3496 pte_t entry;
2b740303 3497 vm_fault_t ret;
10102459 3498
396bcc52 3499 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
10102459
KS
3500 /* THP on COW? */
3501 VM_BUG_ON_PAGE(memcg, page);
3502
82b0f8c3 3503 ret = do_set_pmd(vmf, page);
10102459 3504 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3505 return ret;
10102459 3506 }
3bb97794 3507
82b0f8c3
JK
3508 if (!vmf->pte) {
3509 ret = pte_alloc_one_map(vmf);
7267ec00 3510 if (ret)
b0b9b3df 3511 return ret;
7267ec00
KS
3512 }
3513
3514 /* Re-check under ptl */
b0b9b3df
HD
3515 if (unlikely(!pte_none(*vmf->pte)))
3516 return VM_FAULT_NOPAGE;
7267ec00 3517
3bb97794
KS
3518 flush_icache_page(vma, page);
3519 entry = mk_pte(page, vma->vm_page_prot);
3520 if (write)
3521 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3522 /* copy-on-write page */
3523 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3524 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3525 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3526 mem_cgroup_commit_charge(page, memcg, false, false);
3527 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3528 } else {
eca56ff9 3529 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3530 page_add_file_rmap(page, false);
3bb97794 3531 }
82b0f8c3 3532 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3533
3534 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3535 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3536
b0b9b3df 3537 return 0;
3bb97794
KS
3538}
3539
9118c0cb
JK
3540
3541/**
3542 * finish_fault - finish page fault once we have prepared the page to fault
3543 *
3544 * @vmf: structure describing the fault
3545 *
3546 * This function handles all that is needed to finish a page fault once the
3547 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3548 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3549 * addition.
9118c0cb
JK
3550 *
3551 * The function expects the page to be locked and on success it consumes a
3552 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3553 *
3554 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3555 */
2b740303 3556vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3557{
3558 struct page *page;
2b740303 3559 vm_fault_t ret = 0;
9118c0cb
JK
3560
3561 /* Did we COW the page? */
3562 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3563 !(vmf->vma->vm_flags & VM_SHARED))
3564 page = vmf->cow_page;
3565 else
3566 page = vmf->page;
6b31d595
MH
3567
3568 /*
3569 * check even for read faults because we might have lost our CoWed
3570 * page
3571 */
3572 if (!(vmf->vma->vm_flags & VM_SHARED))
3573 ret = check_stable_address_space(vmf->vma->vm_mm);
3574 if (!ret)
3575 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3576 if (vmf->pte)
3577 pte_unmap_unlock(vmf->pte, vmf->ptl);
3578 return ret;
3579}
3580
3a91053a
KS
3581static unsigned long fault_around_bytes __read_mostly =
3582 rounddown_pow_of_two(65536);
a9b0f861 3583
a9b0f861
KS
3584#ifdef CONFIG_DEBUG_FS
3585static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3586{
a9b0f861 3587 *val = fault_around_bytes;
1592eef0
KS
3588 return 0;
3589}
3590
b4903d6e 3591/*
da391d64
WK
3592 * fault_around_bytes must be rounded down to the nearest page order as it's
3593 * what do_fault_around() expects to see.
b4903d6e 3594 */
a9b0f861 3595static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3596{
a9b0f861 3597 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3598 return -EINVAL;
b4903d6e
AR
3599 if (val > PAGE_SIZE)
3600 fault_around_bytes = rounddown_pow_of_two(val);
3601 else
3602 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3603 return 0;
3604}
0a1345f8 3605DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3606 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3607
3608static int __init fault_around_debugfs(void)
3609{
d9f7979c
GKH
3610 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3611 &fault_around_bytes_fops);
1592eef0
KS
3612 return 0;
3613}
3614late_initcall(fault_around_debugfs);
1592eef0 3615#endif
8c6e50b0 3616
1fdb412b
KS
3617/*
3618 * do_fault_around() tries to map few pages around the fault address. The hope
3619 * is that the pages will be needed soon and this will lower the number of
3620 * faults to handle.
3621 *
3622 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3623 * not ready to be mapped: not up-to-date, locked, etc.
3624 *
3625 * This function is called with the page table lock taken. In the split ptlock
3626 * case the page table lock only protects only those entries which belong to
3627 * the page table corresponding to the fault address.
3628 *
3629 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3630 * only once.
3631 *
da391d64
WK
3632 * fault_around_bytes defines how many bytes we'll try to map.
3633 * do_fault_around() expects it to be set to a power of two less than or equal
3634 * to PTRS_PER_PTE.
1fdb412b 3635 *
da391d64
WK
3636 * The virtual address of the area that we map is naturally aligned to
3637 * fault_around_bytes rounded down to the machine page size
3638 * (and therefore to page order). This way it's easier to guarantee
3639 * that we don't cross page table boundaries.
1fdb412b 3640 */
2b740303 3641static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3642{
82b0f8c3 3643 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3644 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3645 pgoff_t end_pgoff;
2b740303
SJ
3646 int off;
3647 vm_fault_t ret = 0;
8c6e50b0 3648
4db0c3c2 3649 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3650 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3651
82b0f8c3
JK
3652 vmf->address = max(address & mask, vmf->vma->vm_start);
3653 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3654 start_pgoff -= off;
8c6e50b0
KS
3655
3656 /*
da391d64
WK
3657 * end_pgoff is either the end of the page table, the end of
3658 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3659 */
bae473a4 3660 end_pgoff = start_pgoff -
82b0f8c3 3661 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3662 PTRS_PER_PTE - 1;
82b0f8c3 3663 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3664 start_pgoff + nr_pages - 1);
8c6e50b0 3665
82b0f8c3 3666 if (pmd_none(*vmf->pmd)) {
4cf58924 3667 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3668 if (!vmf->prealloc_pte)
c5f88bd2 3669 goto out;
7267ec00 3670 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3671 }
3672
82b0f8c3 3673 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3674
7267ec00 3675 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3676 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3677 ret = VM_FAULT_NOPAGE;
3678 goto out;
3679 }
3680
3681 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3682 if (!vmf->pte)
7267ec00
KS
3683 goto out;
3684
3685 /* check if the page fault is solved */
82b0f8c3
JK
3686 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3687 if (!pte_none(*vmf->pte))
7267ec00 3688 ret = VM_FAULT_NOPAGE;
82b0f8c3 3689 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3690out:
82b0f8c3
JK
3691 vmf->address = address;
3692 vmf->pte = NULL;
7267ec00 3693 return ret;
8c6e50b0
KS
3694}
3695
2b740303 3696static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3697{
82b0f8c3 3698 struct vm_area_struct *vma = vmf->vma;
2b740303 3699 vm_fault_t ret = 0;
8c6e50b0
KS
3700
3701 /*
3702 * Let's call ->map_pages() first and use ->fault() as fallback
3703 * if page by the offset is not ready to be mapped (cold cache or
3704 * something).
3705 */
9b4bdd2f 3706 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3707 ret = do_fault_around(vmf);
7267ec00
KS
3708 if (ret)
3709 return ret;
8c6e50b0 3710 }
e655fb29 3711
936ca80d 3712 ret = __do_fault(vmf);
e655fb29
KS
3713 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3714 return ret;
3715
9118c0cb 3716 ret |= finish_fault(vmf);
936ca80d 3717 unlock_page(vmf->page);
7267ec00 3718 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3719 put_page(vmf->page);
e655fb29
KS
3720 return ret;
3721}
3722
2b740303 3723static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3724{
82b0f8c3 3725 struct vm_area_struct *vma = vmf->vma;
2b740303 3726 vm_fault_t ret;
ec47c3b9
KS
3727
3728 if (unlikely(anon_vma_prepare(vma)))
3729 return VM_FAULT_OOM;
3730
936ca80d
JK
3731 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3732 if (!vmf->cow_page)
ec47c3b9
KS
3733 return VM_FAULT_OOM;
3734
2cf85583 3735 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3736 &vmf->memcg, false)) {
936ca80d 3737 put_page(vmf->cow_page);
ec47c3b9
KS
3738 return VM_FAULT_OOM;
3739 }
3740
936ca80d 3741 ret = __do_fault(vmf);
ec47c3b9
KS
3742 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3743 goto uncharge_out;
3917048d
JK
3744 if (ret & VM_FAULT_DONE_COW)
3745 return ret;
ec47c3b9 3746
b1aa812b 3747 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3748 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3749
9118c0cb 3750 ret |= finish_fault(vmf);
b1aa812b
JK
3751 unlock_page(vmf->page);
3752 put_page(vmf->page);
7267ec00
KS
3753 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3754 goto uncharge_out;
ec47c3b9
KS
3755 return ret;
3756uncharge_out:
3917048d 3757 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3758 put_page(vmf->cow_page);
ec47c3b9
KS
3759 return ret;
3760}
3761
2b740303 3762static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3763{
82b0f8c3 3764 struct vm_area_struct *vma = vmf->vma;
2b740303 3765 vm_fault_t ret, tmp;
1d65f86d 3766
936ca80d 3767 ret = __do_fault(vmf);
7eae74af 3768 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3769 return ret;
1da177e4
LT
3770
3771 /*
f0c6d4d2
KS
3772 * Check if the backing address space wants to know that the page is
3773 * about to become writable
1da177e4 3774 */
fb09a464 3775 if (vma->vm_ops->page_mkwrite) {
936ca80d 3776 unlock_page(vmf->page);
38b8cb7f 3777 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3778 if (unlikely(!tmp ||
3779 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3780 put_page(vmf->page);
fb09a464 3781 return tmp;
4294621f 3782 }
fb09a464
KS
3783 }
3784
9118c0cb 3785 ret |= finish_fault(vmf);
7267ec00
KS
3786 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3787 VM_FAULT_RETRY))) {
936ca80d
JK
3788 unlock_page(vmf->page);
3789 put_page(vmf->page);
f0c6d4d2 3790 return ret;
1da177e4 3791 }
b827e496 3792
89b15332 3793 ret |= fault_dirty_shared_page(vmf);
1d65f86d 3794 return ret;
54cb8821 3795}
d00806b1 3796
9a95f3cf
PC
3797/*
3798 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3799 * but allow concurrent faults).
3800 * The mmap_sem may have been released depending on flags and our
3801 * return value. See filemap_fault() and __lock_page_or_retry().
fc8efd2d
JS
3802 * If mmap_sem is released, vma may become invalid (for example
3803 * by other thread calling munmap()).
9a95f3cf 3804 */
2b740303 3805static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 3806{
82b0f8c3 3807 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 3808 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 3809 vm_fault_t ret;
54cb8821 3810
ff09d7ec
AK
3811 /*
3812 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3813 */
3814 if (!vma->vm_ops->fault) {
3815 /*
3816 * If we find a migration pmd entry or a none pmd entry, which
3817 * should never happen, return SIGBUS
3818 */
3819 if (unlikely(!pmd_present(*vmf->pmd)))
3820 ret = VM_FAULT_SIGBUS;
3821 else {
3822 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3823 vmf->pmd,
3824 vmf->address,
3825 &vmf->ptl);
3826 /*
3827 * Make sure this is not a temporary clearing of pte
3828 * by holding ptl and checking again. A R/M/W update
3829 * of pte involves: take ptl, clearing the pte so that
3830 * we don't have concurrent modification by hardware
3831 * followed by an update.
3832 */
3833 if (unlikely(pte_none(*vmf->pte)))
3834 ret = VM_FAULT_SIGBUS;
3835 else
3836 ret = VM_FAULT_NOPAGE;
3837
3838 pte_unmap_unlock(vmf->pte, vmf->ptl);
3839 }
3840 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
3841 ret = do_read_fault(vmf);
3842 else if (!(vma->vm_flags & VM_SHARED))
3843 ret = do_cow_fault(vmf);
3844 else
3845 ret = do_shared_fault(vmf);
3846
3847 /* preallocated pagetable is unused: free it */
3848 if (vmf->prealloc_pte) {
fc8efd2d 3849 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 3850 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3851 }
3852 return ret;
54cb8821
NP
3853}
3854
b19a9939 3855static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3856 unsigned long addr, int page_nid,
3857 int *flags)
9532fec1
MG
3858{
3859 get_page(page);
3860
3861 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3862 if (page_nid == numa_node_id()) {
9532fec1 3863 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3864 *flags |= TNF_FAULT_LOCAL;
3865 }
9532fec1
MG
3866
3867 return mpol_misplaced(page, vma, addr);
3868}
3869
2b740303 3870static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 3871{
82b0f8c3 3872 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3873 struct page *page = NULL;
98fa15f3 3874 int page_nid = NUMA_NO_NODE;
90572890 3875 int last_cpupid;
cbee9f88 3876 int target_nid;
b8593bfd 3877 bool migrated = false;
04a86453 3878 pte_t pte, old_pte;
288bc549 3879 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3880 int flags = 0;
d10e63f2
MG
3881
3882 /*
166f61b9
TH
3883 * The "pte" at this point cannot be used safely without
3884 * validation through pte_unmap_same(). It's of NUMA type but
3885 * the pfn may be screwed if the read is non atomic.
166f61b9 3886 */
82b0f8c3
JK
3887 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3888 spin_lock(vmf->ptl);
cee216a6 3889 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3890 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3891 goto out;
3892 }
3893
cee216a6
AK
3894 /*
3895 * Make it present again, Depending on how arch implementes non
3896 * accessible ptes, some can allow access by kernel mode.
3897 */
04a86453
AK
3898 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3899 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 3900 pte = pte_mkyoung(pte);
b191f9b1
MG
3901 if (was_writable)
3902 pte = pte_mkwrite(pte);
04a86453 3903 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 3904 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3905
82b0f8c3 3906 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3907 if (!page) {
82b0f8c3 3908 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3909 return 0;
3910 }
3911
e81c4802
KS
3912 /* TODO: handle PTE-mapped THP */
3913 if (PageCompound(page)) {
82b0f8c3 3914 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3915 return 0;
3916 }
3917
6688cc05 3918 /*
bea66fbd
MG
3919 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3920 * much anyway since they can be in shared cache state. This misses
3921 * the case where a mapping is writable but the process never writes
3922 * to it but pte_write gets cleared during protection updates and
3923 * pte_dirty has unpredictable behaviour between PTE scan updates,
3924 * background writeback, dirty balancing and application behaviour.
6688cc05 3925 */
d59dc7bc 3926 if (!pte_write(pte))
6688cc05
PZ
3927 flags |= TNF_NO_GROUP;
3928
dabe1d99
RR
3929 /*
3930 * Flag if the page is shared between multiple address spaces. This
3931 * is later used when determining whether to group tasks together
3932 */
3933 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3934 flags |= TNF_SHARED;
3935
90572890 3936 last_cpupid = page_cpupid_last(page);
8191acbd 3937 page_nid = page_to_nid(page);
82b0f8c3 3938 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3939 &flags);
82b0f8c3 3940 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 3941 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
3942 put_page(page);
3943 goto out;
3944 }
3945
3946 /* Migrate to the requested node */
1bc115d8 3947 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3948 if (migrated) {
8191acbd 3949 page_nid = target_nid;
6688cc05 3950 flags |= TNF_MIGRATED;
074c2381
MG
3951 } else
3952 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3953
3954out:
98fa15f3 3955 if (page_nid != NUMA_NO_NODE)
6688cc05 3956 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3957 return 0;
3958}
3959
2b740303 3960static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 3961{
f4200391 3962 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3963 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3964 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3965 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3966 return VM_FAULT_FALLBACK;
3967}
3968
183f24aa 3969/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 3970static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3971{
529b930b 3972 if (vma_is_anonymous(vmf->vma)) {
292924b2 3973 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
529b930b 3974 return handle_userfault(vmf, VM_UFFD_WP);
82b0f8c3 3975 return do_huge_pmd_wp_page(vmf, orig_pmd);
529b930b 3976 }
327e9fd4
THV
3977 if (vmf->vma->vm_ops->huge_fault) {
3978 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3979
3980 if (!(ret & VM_FAULT_FALLBACK))
3981 return ret;
3982 }
af9e4d5f 3983
327e9fd4 3984 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 3985 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3986
b96375f7
MW
3987 return VM_FAULT_FALLBACK;
3988}
3989
2b740303 3990static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 3991{
327e9fd4
THV
3992#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
3993 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
3994 /* No support for anonymous transparent PUD pages yet */
3995 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
3996 goto split;
3997 if (vmf->vma->vm_ops->huge_fault) {
3998 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3999
4000 if (!(ret & VM_FAULT_FALLBACK))
4001 return ret;
4002 }
4003split:
4004 /* COW or write-notify not handled on PUD level: split pud.*/
4005 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4006#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4007 return VM_FAULT_FALLBACK;
4008}
4009
2b740303 4010static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4011{
4012#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4013 /* No support for anonymous transparent PUD pages yet */
4014 if (vma_is_anonymous(vmf->vma))
4015 return VM_FAULT_FALLBACK;
4016 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4017 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4018#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4019 return VM_FAULT_FALLBACK;
4020}
4021
1da177e4
LT
4022/*
4023 * These routines also need to handle stuff like marking pages dirty
4024 * and/or accessed for architectures that don't do it in hardware (most
4025 * RISC architectures). The early dirtying is also good on the i386.
4026 *
4027 * There is also a hook called "update_mmu_cache()" that architectures
4028 * with external mmu caches can use to update those (ie the Sparc or
4029 * PowerPC hashed page tables that act as extended TLBs).
4030 *
7267ec00
KS
4031 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4032 * concurrent faults).
9a95f3cf 4033 *
7267ec00
KS
4034 * The mmap_sem may have been released depending on flags and our return value.
4035 * See filemap_fault() and __lock_page_or_retry().
1da177e4 4036 */
2b740303 4037static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4038{
4039 pte_t entry;
4040
82b0f8c3 4041 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4042 /*
4043 * Leave __pte_alloc() until later: because vm_ops->fault may
4044 * want to allocate huge page, and if we expose page table
4045 * for an instant, it will be difficult to retract from
4046 * concurrent faults and from rmap lookups.
4047 */
82b0f8c3 4048 vmf->pte = NULL;
7267ec00
KS
4049 } else {
4050 /* See comment in pte_alloc_one_map() */
d0f0931d 4051 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4052 return 0;
4053 /*
4054 * A regular pmd is established and it can't morph into a huge
4055 * pmd from under us anymore at this point because we hold the
4056 * mmap_sem read mode and khugepaged takes it in write mode.
4057 * So now it's safe to run pte_offset_map().
4058 */
82b0f8c3 4059 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4060 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4061
4062 /*
4063 * some architectures can have larger ptes than wordsize,
4064 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4065 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4066 * accesses. The code below just needs a consistent view
4067 * for the ifs and we later double check anyway with the
7267ec00
KS
4068 * ptl lock held. So here a barrier will do.
4069 */
4070 barrier();
2994302b 4071 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4072 pte_unmap(vmf->pte);
4073 vmf->pte = NULL;
65500d23 4074 }
1da177e4
LT
4075 }
4076
82b0f8c3
JK
4077 if (!vmf->pte) {
4078 if (vma_is_anonymous(vmf->vma))
4079 return do_anonymous_page(vmf);
7267ec00 4080 else
82b0f8c3 4081 return do_fault(vmf);
7267ec00
KS
4082 }
4083
2994302b
JK
4084 if (!pte_present(vmf->orig_pte))
4085 return do_swap_page(vmf);
7267ec00 4086
2994302b
JK
4087 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4088 return do_numa_page(vmf);
d10e63f2 4089
82b0f8c3
JK
4090 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4091 spin_lock(vmf->ptl);
2994302b 4092 entry = vmf->orig_pte;
82b0f8c3 4093 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 4094 goto unlock;
82b0f8c3 4095 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4096 if (!pte_write(entry))
2994302b 4097 return do_wp_page(vmf);
1da177e4
LT
4098 entry = pte_mkdirty(entry);
4099 }
4100 entry = pte_mkyoung(entry);
82b0f8c3
JK
4101 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4102 vmf->flags & FAULT_FLAG_WRITE)) {
4103 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
4104 } else {
4105 /*
4106 * This is needed only for protection faults but the arch code
4107 * is not yet telling us if this is a protection fault or not.
4108 * This still avoids useless tlb flushes for .text page faults
4109 * with threads.
4110 */
82b0f8c3
JK
4111 if (vmf->flags & FAULT_FLAG_WRITE)
4112 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4113 }
8f4e2101 4114unlock:
82b0f8c3 4115 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4116 return 0;
1da177e4
LT
4117}
4118
4119/*
4120 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
4121 *
4122 * The mmap_sem may have been released depending on flags and our
4123 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4124 */
2b740303
SJ
4125static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4126 unsigned long address, unsigned int flags)
1da177e4 4127{
82b0f8c3 4128 struct vm_fault vmf = {
bae473a4 4129 .vma = vma,
1a29d85e 4130 .address = address & PAGE_MASK,
bae473a4 4131 .flags = flags,
0721ec8b 4132 .pgoff = linear_page_index(vma, address),
667240e0 4133 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4134 };
fde26bed 4135 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4136 struct mm_struct *mm = vma->vm_mm;
1da177e4 4137 pgd_t *pgd;
c2febafc 4138 p4d_t *p4d;
2b740303 4139 vm_fault_t ret;
1da177e4 4140
1da177e4 4141 pgd = pgd_offset(mm, address);
c2febafc
KS
4142 p4d = p4d_alloc(mm, pgd, address);
4143 if (!p4d)
4144 return VM_FAULT_OOM;
a00cc7d9 4145
c2febafc 4146 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4147 if (!vmf.pud)
c74df32c 4148 return VM_FAULT_OOM;
625110b5 4149retry_pud:
7635d9cb 4150 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4151 ret = create_huge_pud(&vmf);
4152 if (!(ret & VM_FAULT_FALLBACK))
4153 return ret;
4154 } else {
4155 pud_t orig_pud = *vmf.pud;
4156
4157 barrier();
4158 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4159
a00cc7d9
MW
4160 /* NUMA case for anonymous PUDs would go here */
4161
f6f37321 4162 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4163 ret = wp_huge_pud(&vmf, orig_pud);
4164 if (!(ret & VM_FAULT_FALLBACK))
4165 return ret;
4166 } else {
4167 huge_pud_set_accessed(&vmf, orig_pud);
4168 return 0;
4169 }
4170 }
4171 }
4172
4173 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4174 if (!vmf.pmd)
c74df32c 4175 return VM_FAULT_OOM;
625110b5
TH
4176
4177 /* Huge pud page fault raced with pmd_alloc? */
4178 if (pud_trans_unstable(vmf.pud))
4179 goto retry_pud;
4180
7635d9cb 4181 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4182 ret = create_huge_pmd(&vmf);
c0292554
KS
4183 if (!(ret & VM_FAULT_FALLBACK))
4184 return ret;
71e3aac0 4185 } else {
82b0f8c3 4186 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4187
71e3aac0 4188 barrier();
84c3fc4e
ZY
4189 if (unlikely(is_swap_pmd(orig_pmd))) {
4190 VM_BUG_ON(thp_migration_supported() &&
4191 !is_pmd_migration_entry(orig_pmd));
4192 if (is_pmd_migration_entry(orig_pmd))
4193 pmd_migration_entry_wait(mm, vmf.pmd);
4194 return 0;
4195 }
5c7fb56e 4196 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4197 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4198 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4199
f6f37321 4200 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4201 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4202 if (!(ret & VM_FAULT_FALLBACK))
4203 return ret;
a1dd450b 4204 } else {
82b0f8c3 4205 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4206 return 0;
1f1d06c3 4207 }
71e3aac0
AA
4208 }
4209 }
4210
82b0f8c3 4211 return handle_pte_fault(&vmf);
1da177e4
LT
4212}
4213
9a95f3cf
PC
4214/*
4215 * By the time we get here, we already hold the mm semaphore
4216 *
4217 * The mmap_sem may have been released depending on flags and our
4218 * return value. See filemap_fault() and __lock_page_or_retry().
4219 */
2b740303 4220vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
dcddffd4 4221 unsigned int flags)
519e5247 4222{
2b740303 4223 vm_fault_t ret;
519e5247
JW
4224
4225 __set_current_state(TASK_RUNNING);
4226
4227 count_vm_event(PGFAULT);
2262185c 4228 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4229
4230 /* do counter updates before entering really critical section. */
4231 check_sync_rss_stat(current);
4232
de0c799b
LD
4233 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4234 flags & FAULT_FLAG_INSTRUCTION,
4235 flags & FAULT_FLAG_REMOTE))
4236 return VM_FAULT_SIGSEGV;
4237
519e5247
JW
4238 /*
4239 * Enable the memcg OOM handling for faults triggered in user
4240 * space. Kernel faults are handled more gracefully.
4241 */
4242 if (flags & FAULT_FLAG_USER)
29ef680a 4243 mem_cgroup_enter_user_fault();
519e5247 4244
bae473a4
KS
4245 if (unlikely(is_vm_hugetlb_page(vma)))
4246 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4247 else
4248 ret = __handle_mm_fault(vma, address, flags);
519e5247 4249
49426420 4250 if (flags & FAULT_FLAG_USER) {
29ef680a 4251 mem_cgroup_exit_user_fault();
166f61b9
TH
4252 /*
4253 * The task may have entered a memcg OOM situation but
4254 * if the allocation error was handled gracefully (no
4255 * VM_FAULT_OOM), there is no need to kill anything.
4256 * Just clean up the OOM state peacefully.
4257 */
4258 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4259 mem_cgroup_oom_synchronize(false);
49426420 4260 }
3812c8c8 4261
519e5247
JW
4262 return ret;
4263}
e1d6d01a 4264EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4265
90eceff1
KS
4266#ifndef __PAGETABLE_P4D_FOLDED
4267/*
4268 * Allocate p4d page table.
4269 * We've already handled the fast-path in-line.
4270 */
4271int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4272{
4273 p4d_t *new = p4d_alloc_one(mm, address);
4274 if (!new)
4275 return -ENOMEM;
4276
4277 smp_wmb(); /* See comment in __pte_alloc */
4278
4279 spin_lock(&mm->page_table_lock);
4280 if (pgd_present(*pgd)) /* Another has populated it */
4281 p4d_free(mm, new);
4282 else
4283 pgd_populate(mm, pgd, new);
4284 spin_unlock(&mm->page_table_lock);
4285 return 0;
4286}
4287#endif /* __PAGETABLE_P4D_FOLDED */
4288
1da177e4
LT
4289#ifndef __PAGETABLE_PUD_FOLDED
4290/*
4291 * Allocate page upper directory.
872fec16 4292 * We've already handled the fast-path in-line.
1da177e4 4293 */
c2febafc 4294int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4295{
c74df32c
HD
4296 pud_t *new = pud_alloc_one(mm, address);
4297 if (!new)
1bb3630e 4298 return -ENOMEM;
1da177e4 4299
362a61ad
NP
4300 smp_wmb(); /* See comment in __pte_alloc */
4301
872fec16 4302 spin_lock(&mm->page_table_lock);
c2febafc 4303#ifndef __ARCH_HAS_5LEVEL_HACK
b4e98d9a
KS
4304 if (!p4d_present(*p4d)) {
4305 mm_inc_nr_puds(mm);
c2febafc 4306 p4d_populate(mm, p4d, new);
b4e98d9a 4307 } else /* Another has populated it */
5e541973 4308 pud_free(mm, new);
b4e98d9a
KS
4309#else
4310 if (!pgd_present(*p4d)) {
4311 mm_inc_nr_puds(mm);
c2febafc 4312 pgd_populate(mm, p4d, new);
b4e98d9a
KS
4313 } else /* Another has populated it */
4314 pud_free(mm, new);
c2febafc 4315#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 4316 spin_unlock(&mm->page_table_lock);
1bb3630e 4317 return 0;
1da177e4
LT
4318}
4319#endif /* __PAGETABLE_PUD_FOLDED */
4320
4321#ifndef __PAGETABLE_PMD_FOLDED
4322/*
4323 * Allocate page middle directory.
872fec16 4324 * We've already handled the fast-path in-line.
1da177e4 4325 */
1bb3630e 4326int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4327{
a00cc7d9 4328 spinlock_t *ptl;
c74df32c
HD
4329 pmd_t *new = pmd_alloc_one(mm, address);
4330 if (!new)
1bb3630e 4331 return -ENOMEM;
1da177e4 4332
362a61ad
NP
4333 smp_wmb(); /* See comment in __pte_alloc */
4334
a00cc7d9 4335 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4336 if (!pud_present(*pud)) {
4337 mm_inc_nr_pmds(mm);
1bb3630e 4338 pud_populate(mm, pud, new);
dc6c9a35 4339 } else /* Another has populated it */
5e541973 4340 pmd_free(mm, new);
a00cc7d9 4341 spin_unlock(ptl);
1bb3630e 4342 return 0;
e0f39591 4343}
1da177e4
LT
4344#endif /* __PAGETABLE_PMD_FOLDED */
4345
09796395 4346static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3 4347 struct mmu_notifier_range *range,
a4d1a885 4348 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4349{
4350 pgd_t *pgd;
c2febafc 4351 p4d_t *p4d;
f8ad0f49
JW
4352 pud_t *pud;
4353 pmd_t *pmd;
4354 pte_t *ptep;
4355
4356 pgd = pgd_offset(mm, address);
4357 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4358 goto out;
4359
c2febafc
KS
4360 p4d = p4d_offset(pgd, address);
4361 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4362 goto out;
4363
4364 pud = pud_offset(p4d, address);
f8ad0f49
JW
4365 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4366 goto out;
4367
4368 pmd = pmd_offset(pud, address);
f66055ab 4369 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4370
09796395
RZ
4371 if (pmd_huge(*pmd)) {
4372 if (!pmdpp)
4373 goto out;
4374
ac46d4f3 4375 if (range) {
7269f999 4376 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4377 NULL, mm, address & PMD_MASK,
4378 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4379 mmu_notifier_invalidate_range_start(range);
a4d1a885 4380 }
09796395
RZ
4381 *ptlp = pmd_lock(mm, pmd);
4382 if (pmd_huge(*pmd)) {
4383 *pmdpp = pmd;
4384 return 0;
4385 }
4386 spin_unlock(*ptlp);
ac46d4f3
JG
4387 if (range)
4388 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4389 }
4390
4391 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4392 goto out;
4393
ac46d4f3 4394 if (range) {
7269f999 4395 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4396 address & PAGE_MASK,
4397 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4398 mmu_notifier_invalidate_range_start(range);
a4d1a885 4399 }
f8ad0f49 4400 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4401 if (!pte_present(*ptep))
4402 goto unlock;
4403 *ptepp = ptep;
4404 return 0;
4405unlock:
4406 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4407 if (range)
4408 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4409out:
4410 return -EINVAL;
4411}
4412
f729c8c9
RZ
4413static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4414 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4415{
4416 int res;
4417
4418 /* (void) is needed to make gcc happy */
4419 (void) __cond_lock(*ptlp,
ac46d4f3 4420 !(res = __follow_pte_pmd(mm, address, NULL,
a4d1a885 4421 ptepp, NULL, ptlp)));
09796395
RZ
4422 return res;
4423}
4424
4425int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
4426 struct mmu_notifier_range *range,
4427 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
09796395
RZ
4428{
4429 int res;
4430
4431 /* (void) is needed to make gcc happy */
4432 (void) __cond_lock(*ptlp,
ac46d4f3 4433 !(res = __follow_pte_pmd(mm, address, range,
a4d1a885 4434 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4435 return res;
4436}
09796395 4437EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4438
3b6748e2
JW
4439/**
4440 * follow_pfn - look up PFN at a user virtual address
4441 * @vma: memory mapping
4442 * @address: user virtual address
4443 * @pfn: location to store found PFN
4444 *
4445 * Only IO mappings and raw PFN mappings are allowed.
4446 *
a862f68a 4447 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4448 */
4449int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4450 unsigned long *pfn)
4451{
4452 int ret = -EINVAL;
4453 spinlock_t *ptl;
4454 pte_t *ptep;
4455
4456 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4457 return ret;
4458
4459 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4460 if (ret)
4461 return ret;
4462 *pfn = pte_pfn(*ptep);
4463 pte_unmap_unlock(ptep, ptl);
4464 return 0;
4465}
4466EXPORT_SYMBOL(follow_pfn);
4467
28b2ee20 4468#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4469int follow_phys(struct vm_area_struct *vma,
4470 unsigned long address, unsigned int flags,
4471 unsigned long *prot, resource_size_t *phys)
28b2ee20 4472{
03668a4d 4473 int ret = -EINVAL;
28b2ee20
RR
4474 pte_t *ptep, pte;
4475 spinlock_t *ptl;
28b2ee20 4476
d87fe660 4477 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4478 goto out;
28b2ee20 4479
03668a4d 4480 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4481 goto out;
28b2ee20 4482 pte = *ptep;
03668a4d 4483
f6f37321 4484 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4485 goto unlock;
28b2ee20
RR
4486
4487 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4488 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4489
03668a4d 4490 ret = 0;
28b2ee20
RR
4491unlock:
4492 pte_unmap_unlock(ptep, ptl);
4493out:
d87fe660 4494 return ret;
28b2ee20
RR
4495}
4496
4497int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4498 void *buf, int len, int write)
4499{
4500 resource_size_t phys_addr;
4501 unsigned long prot = 0;
2bc7273b 4502 void __iomem *maddr;
28b2ee20
RR
4503 int offset = addr & (PAGE_SIZE-1);
4504
d87fe660 4505 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4506 return -EINVAL;
4507
9cb12d7b 4508 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4509 if (!maddr)
4510 return -ENOMEM;
4511
28b2ee20
RR
4512 if (write)
4513 memcpy_toio(maddr + offset, buf, len);
4514 else
4515 memcpy_fromio(buf, maddr + offset, len);
4516 iounmap(maddr);
4517
4518 return len;
4519}
5a73633e 4520EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4521#endif
4522
0ec76a11 4523/*
206cb636
SW
4524 * Access another process' address space as given in mm. If non-NULL, use the
4525 * given task for page fault accounting.
0ec76a11 4526 */
84d77d3f 4527int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4528 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4529{
0ec76a11 4530 struct vm_area_struct *vma;
0ec76a11 4531 void *old_buf = buf;
442486ec 4532 int write = gup_flags & FOLL_WRITE;
0ec76a11 4533
1e426fe2
KK
4534 if (down_read_killable(&mm->mmap_sem))
4535 return 0;
4536
183ff22b 4537 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4538 while (len) {
4539 int bytes, ret, offset;
4540 void *maddr;
28b2ee20 4541 struct page *page = NULL;
0ec76a11 4542
1e987790 4543 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4544 gup_flags, &page, &vma, NULL);
28b2ee20 4545 if (ret <= 0) {
dbffcd03
RR
4546#ifndef CONFIG_HAVE_IOREMAP_PROT
4547 break;
4548#else
28b2ee20
RR
4549 /*
4550 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4551 * we can access using slightly different code.
4552 */
28b2ee20 4553 vma = find_vma(mm, addr);
fe936dfc 4554 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4555 break;
4556 if (vma->vm_ops && vma->vm_ops->access)
4557 ret = vma->vm_ops->access(vma, addr, buf,
4558 len, write);
4559 if (ret <= 0)
28b2ee20
RR
4560 break;
4561 bytes = ret;
dbffcd03 4562#endif
0ec76a11 4563 } else {
28b2ee20
RR
4564 bytes = len;
4565 offset = addr & (PAGE_SIZE-1);
4566 if (bytes > PAGE_SIZE-offset)
4567 bytes = PAGE_SIZE-offset;
4568
4569 maddr = kmap(page);
4570 if (write) {
4571 copy_to_user_page(vma, page, addr,
4572 maddr + offset, buf, bytes);
4573 set_page_dirty_lock(page);
4574 } else {
4575 copy_from_user_page(vma, page, addr,
4576 buf, maddr + offset, bytes);
4577 }
4578 kunmap(page);
09cbfeaf 4579 put_page(page);
0ec76a11 4580 }
0ec76a11
DH
4581 len -= bytes;
4582 buf += bytes;
4583 addr += bytes;
4584 }
4585 up_read(&mm->mmap_sem);
0ec76a11
DH
4586
4587 return buf - old_buf;
4588}
03252919 4589
5ddd36b9 4590/**
ae91dbfc 4591 * access_remote_vm - access another process' address space
5ddd36b9
SW
4592 * @mm: the mm_struct of the target address space
4593 * @addr: start address to access
4594 * @buf: source or destination buffer
4595 * @len: number of bytes to transfer
6347e8d5 4596 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4597 *
4598 * The caller must hold a reference on @mm.
a862f68a
MR
4599 *
4600 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4601 */
4602int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4603 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4604{
6347e8d5 4605 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4606}
4607
206cb636
SW
4608/*
4609 * Access another process' address space.
4610 * Source/target buffer must be kernel space,
4611 * Do not walk the page table directly, use get_user_pages
4612 */
4613int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4614 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4615{
4616 struct mm_struct *mm;
4617 int ret;
4618
4619 mm = get_task_mm(tsk);
4620 if (!mm)
4621 return 0;
4622
f307ab6d 4623 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4624
206cb636
SW
4625 mmput(mm);
4626
4627 return ret;
4628}
fcd35857 4629EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4630
03252919
AK
4631/*
4632 * Print the name of a VMA.
4633 */
4634void print_vma_addr(char *prefix, unsigned long ip)
4635{
4636 struct mm_struct *mm = current->mm;
4637 struct vm_area_struct *vma;
4638
e8bff74a 4639 /*
0a7f682d 4640 * we might be running from an atomic context so we cannot sleep
e8bff74a 4641 */
0a7f682d 4642 if (!down_read_trylock(&mm->mmap_sem))
e8bff74a
IM
4643 return;
4644
03252919
AK
4645 vma = find_vma(mm, ip);
4646 if (vma && vma->vm_file) {
4647 struct file *f = vma->vm_file;
0a7f682d 4648 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4649 if (buf) {
2fbc57c5 4650 char *p;
03252919 4651
9bf39ab2 4652 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4653 if (IS_ERR(p))
4654 p = "?";
2fbc57c5 4655 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4656 vma->vm_start,
4657 vma->vm_end - vma->vm_start);
4658 free_page((unsigned long)buf);
4659 }
4660 }
51a07e50 4661 up_read(&mm->mmap_sem);
03252919 4662}
3ee1afa3 4663
662bbcb2 4664#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4665void __might_fault(const char *file, int line)
3ee1afa3 4666{
95156f00
PZ
4667 /*
4668 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4669 * holding the mmap_sem, this is safe because kernel memory doesn't
4670 * get paged out, therefore we'll never actually fault, and the
4671 * below annotations will generate false positives.
4672 */
db68ce10 4673 if (uaccess_kernel())
95156f00 4674 return;
9ec23531 4675 if (pagefault_disabled())
662bbcb2 4676 return;
9ec23531
DH
4677 __might_sleep(file, line, 0);
4678#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4679 if (current->mm)
3ee1afa3 4680 might_lock_read(&current->mm->mmap_sem);
9ec23531 4681#endif
3ee1afa3 4682}
9ec23531 4683EXPORT_SYMBOL(__might_fault);
3ee1afa3 4684#endif
47ad8475
AA
4685
4686#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
YH
4687/*
4688 * Process all subpages of the specified huge page with the specified
4689 * operation. The target subpage will be processed last to keep its
4690 * cache lines hot.
4691 */
4692static inline void process_huge_page(
4693 unsigned long addr_hint, unsigned int pages_per_huge_page,
4694 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4695 void *arg)
47ad8475 4696{
c79b57e4
YH
4697 int i, n, base, l;
4698 unsigned long addr = addr_hint &
4699 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4700
c6ddfb6c 4701 /* Process target subpage last to keep its cache lines hot */
47ad8475 4702 might_sleep();
c79b57e4
YH
4703 n = (addr_hint - addr) / PAGE_SIZE;
4704 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4705 /* If target subpage in first half of huge page */
c79b57e4
YH
4706 base = 0;
4707 l = n;
c6ddfb6c 4708 /* Process subpages at the end of huge page */
c79b57e4
YH
4709 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4710 cond_resched();
c6ddfb6c 4711 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
YH
4712 }
4713 } else {
c6ddfb6c 4714 /* If target subpage in second half of huge page */
c79b57e4
YH
4715 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4716 l = pages_per_huge_page - n;
c6ddfb6c 4717 /* Process subpages at the begin of huge page */
c79b57e4
YH
4718 for (i = 0; i < base; i++) {
4719 cond_resched();
c6ddfb6c 4720 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
YH
4721 }
4722 }
4723 /*
c6ddfb6c
YH
4724 * Process remaining subpages in left-right-left-right pattern
4725 * towards the target subpage
c79b57e4
YH
4726 */
4727 for (i = 0; i < l; i++) {
4728 int left_idx = base + i;
4729 int right_idx = base + 2 * l - 1 - i;
4730
4731 cond_resched();
c6ddfb6c 4732 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4733 cond_resched();
c6ddfb6c 4734 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4735 }
4736}
4737
c6ddfb6c
YH
4738static void clear_gigantic_page(struct page *page,
4739 unsigned long addr,
4740 unsigned int pages_per_huge_page)
4741{
4742 int i;
4743 struct page *p = page;
4744
4745 might_sleep();
4746 for (i = 0; i < pages_per_huge_page;
4747 i++, p = mem_map_next(p, page, i)) {
4748 cond_resched();
4749 clear_user_highpage(p, addr + i * PAGE_SIZE);
4750 }
4751}
4752
4753static void clear_subpage(unsigned long addr, int idx, void *arg)
4754{
4755 struct page *page = arg;
4756
4757 clear_user_highpage(page + idx, addr);
4758}
4759
4760void clear_huge_page(struct page *page,
4761 unsigned long addr_hint, unsigned int pages_per_huge_page)
4762{
4763 unsigned long addr = addr_hint &
4764 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4765
4766 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4767 clear_gigantic_page(page, addr, pages_per_huge_page);
4768 return;
4769 }
4770
4771 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4772}
4773
47ad8475
AA
4774static void copy_user_gigantic_page(struct page *dst, struct page *src,
4775 unsigned long addr,
4776 struct vm_area_struct *vma,
4777 unsigned int pages_per_huge_page)
4778{
4779 int i;
4780 struct page *dst_base = dst;
4781 struct page *src_base = src;
4782
4783 for (i = 0; i < pages_per_huge_page; ) {
4784 cond_resched();
4785 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4786
4787 i++;
4788 dst = mem_map_next(dst, dst_base, i);
4789 src = mem_map_next(src, src_base, i);
4790 }
4791}
4792
c9f4cd71
YH
4793struct copy_subpage_arg {
4794 struct page *dst;
4795 struct page *src;
4796 struct vm_area_struct *vma;
4797};
4798
4799static void copy_subpage(unsigned long addr, int idx, void *arg)
4800{
4801 struct copy_subpage_arg *copy_arg = arg;
4802
4803 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4804 addr, copy_arg->vma);
4805}
4806
47ad8475 4807void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 4808 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
4809 unsigned int pages_per_huge_page)
4810{
c9f4cd71
YH
4811 unsigned long addr = addr_hint &
4812 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4813 struct copy_subpage_arg arg = {
4814 .dst = dst,
4815 .src = src,
4816 .vma = vma,
4817 };
47ad8475
AA
4818
4819 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4820 copy_user_gigantic_page(dst, src, addr, vma,
4821 pages_per_huge_page);
4822 return;
4823 }
4824
c9f4cd71 4825 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 4826}
fa4d75c1
MK
4827
4828long copy_huge_page_from_user(struct page *dst_page,
4829 const void __user *usr_src,
810a56b9
MK
4830 unsigned int pages_per_huge_page,
4831 bool allow_pagefault)
fa4d75c1
MK
4832{
4833 void *src = (void *)usr_src;
4834 void *page_kaddr;
4835 unsigned long i, rc = 0;
4836 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4837
4838 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4839 if (allow_pagefault)
4840 page_kaddr = kmap(dst_page + i);
4841 else
4842 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4843 rc = copy_from_user(page_kaddr,
4844 (const void __user *)(src + i * PAGE_SIZE),
4845 PAGE_SIZE);
810a56b9
MK
4846 if (allow_pagefault)
4847 kunmap(dst_page + i);
4848 else
4849 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4850
4851 ret_val -= (PAGE_SIZE - rc);
4852 if (rc)
4853 break;
4854
4855 cond_resched();
4856 }
4857 return ret_val;
4858}
47ad8475 4859#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4860
40b64acd 4861#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4862
4863static struct kmem_cache *page_ptl_cachep;
4864
4865void __init ptlock_cache_init(void)
4866{
4867 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4868 SLAB_PANIC, NULL);
4869}
4870
539edb58 4871bool ptlock_alloc(struct page *page)
49076ec2
KS
4872{
4873 spinlock_t *ptl;
4874
b35f1819 4875 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4876 if (!ptl)
4877 return false;
539edb58 4878 page->ptl = ptl;
49076ec2
KS
4879 return true;
4880}
4881
539edb58 4882void ptlock_free(struct page *page)
49076ec2 4883{
b35f1819 4884 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4885}
4886#endif
This page took 2.339752 seconds and 4 git commands to generate.