]>
Commit | Line | Data |
---|---|---|
f41d911f PM |
1 | /* |
2 | * Read-Copy Update mechanism for mutual exclusion (tree-based version) | |
3 | * Internal non-public definitions that provide either classic | |
4 | * or preemptable semantics. | |
5 | * | |
6 | * This program is free software; you can redistribute it and/or modify | |
7 | * it under the terms of the GNU General Public License as published by | |
8 | * the Free Software Foundation; either version 2 of the License, or | |
9 | * (at your option) any later version. | |
10 | * | |
11 | * This program is distributed in the hope that it will be useful, | |
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | * GNU General Public License for more details. | |
15 | * | |
16 | * You should have received a copy of the GNU General Public License | |
17 | * along with this program; if not, write to the Free Software | |
18 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | |
19 | * | |
20 | * Copyright Red Hat, 2009 | |
21 | * Copyright IBM Corporation, 2009 | |
22 | * | |
23 | * Author: Ingo Molnar <[email protected]> | |
24 | * Paul E. McKenney <[email protected]> | |
25 | */ | |
26 | ||
27 | ||
28 | #ifdef CONFIG_TREE_PREEMPT_RCU | |
29 | ||
30 | struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state); | |
31 | DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data); | |
32 | ||
33 | /* | |
34 | * Tell them what RCU they are running. | |
35 | */ | |
36 | static inline void rcu_bootup_announce(void) | |
37 | { | |
38 | printk(KERN_INFO | |
39 | "Experimental preemptable hierarchical RCU implementation.\n"); | |
40 | } | |
41 | ||
42 | /* | |
43 | * Return the number of RCU-preempt batches processed thus far | |
44 | * for debug and statistics. | |
45 | */ | |
46 | long rcu_batches_completed_preempt(void) | |
47 | { | |
48 | return rcu_preempt_state.completed; | |
49 | } | |
50 | EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt); | |
51 | ||
52 | /* | |
53 | * Return the number of RCU batches processed thus far for debug & stats. | |
54 | */ | |
55 | long rcu_batches_completed(void) | |
56 | { | |
57 | return rcu_batches_completed_preempt(); | |
58 | } | |
59 | EXPORT_SYMBOL_GPL(rcu_batches_completed); | |
60 | ||
61 | /* | |
62 | * Record a preemptable-RCU quiescent state for the specified CPU. Note | |
63 | * that this just means that the task currently running on the CPU is | |
64 | * not in a quiescent state. There might be any number of tasks blocked | |
65 | * while in an RCU read-side critical section. | |
66 | */ | |
67 | static void rcu_preempt_qs_record(int cpu) | |
68 | { | |
69 | struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu); | |
70 | rdp->passed_quiesc = 1; | |
71 | rdp->passed_quiesc_completed = rdp->completed; | |
72 | } | |
73 | ||
74 | /* | |
75 | * We have entered the scheduler or are between softirqs in ksoftirqd. | |
76 | * If we are in an RCU read-side critical section, we need to reflect | |
77 | * that in the state of the rcu_node structure corresponding to this CPU. | |
78 | * Caller must disable hardirqs. | |
79 | */ | |
80 | static void rcu_preempt_qs(int cpu) | |
81 | { | |
82 | struct task_struct *t = current; | |
83 | int phase; | |
84 | struct rcu_data *rdp; | |
85 | struct rcu_node *rnp; | |
86 | ||
87 | if (t->rcu_read_lock_nesting && | |
88 | (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) { | |
89 | ||
90 | /* Possibly blocking in an RCU read-side critical section. */ | |
91 | rdp = rcu_preempt_state.rda[cpu]; | |
92 | rnp = rdp->mynode; | |
93 | spin_lock(&rnp->lock); | |
94 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED; | |
95 | t->rcu_blocked_cpu = cpu; | |
96 | ||
97 | /* | |
98 | * If this CPU has already checked in, then this task | |
99 | * will hold up the next grace period rather than the | |
100 | * current grace period. Queue the task accordingly. | |
101 | * If the task is queued for the current grace period | |
102 | * (i.e., this CPU has not yet passed through a quiescent | |
103 | * state for the current grace period), then as long | |
104 | * as that task remains queued, the current grace period | |
105 | * cannot end. | |
106 | */ | |
107 | phase = !(rnp->qsmask & rdp->grpmask) ^ (rnp->gpnum & 0x1); | |
108 | list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]); | |
109 | smp_mb(); /* Ensure later ctxt swtch seen after above. */ | |
110 | spin_unlock(&rnp->lock); | |
111 | } | |
112 | ||
113 | /* | |
114 | * Either we were not in an RCU read-side critical section to | |
115 | * begin with, or we have now recorded that critical section | |
116 | * globally. Either way, we can now note a quiescent state | |
117 | * for this CPU. Again, if we were in an RCU read-side critical | |
118 | * section, and if that critical section was blocking the current | |
119 | * grace period, then the fact that the task has been enqueued | |
120 | * means that we continue to block the current grace period. | |
121 | */ | |
122 | rcu_preempt_qs_record(cpu); | |
123 | t->rcu_read_unlock_special &= ~(RCU_READ_UNLOCK_NEED_QS | | |
124 | RCU_READ_UNLOCK_GOT_QS); | |
125 | } | |
126 | ||
127 | /* | |
128 | * Tree-preemptable RCU implementation for rcu_read_lock(). | |
129 | * Just increment ->rcu_read_lock_nesting, shared state will be updated | |
130 | * if we block. | |
131 | */ | |
132 | void __rcu_read_lock(void) | |
133 | { | |
134 | ACCESS_ONCE(current->rcu_read_lock_nesting)++; | |
135 | barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */ | |
136 | } | |
137 | EXPORT_SYMBOL_GPL(__rcu_read_lock); | |
138 | ||
139 | static void rcu_read_unlock_special(struct task_struct *t) | |
140 | { | |
141 | int empty; | |
142 | unsigned long flags; | |
143 | unsigned long mask; | |
144 | struct rcu_node *rnp; | |
145 | int special; | |
146 | ||
147 | /* NMI handlers cannot block and cannot safely manipulate state. */ | |
148 | if (in_nmi()) | |
149 | return; | |
150 | ||
151 | local_irq_save(flags); | |
152 | ||
153 | /* | |
154 | * If RCU core is waiting for this CPU to exit critical section, | |
155 | * let it know that we have done so. | |
156 | */ | |
157 | special = t->rcu_read_unlock_special; | |
158 | if (special & RCU_READ_UNLOCK_NEED_QS) { | |
159 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS; | |
160 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_GOT_QS; | |
161 | } | |
162 | ||
163 | /* Hardware IRQ handlers cannot block. */ | |
164 | if (in_irq()) { | |
165 | local_irq_restore(flags); | |
166 | return; | |
167 | } | |
168 | ||
169 | /* Clean up if blocked during RCU read-side critical section. */ | |
170 | if (special & RCU_READ_UNLOCK_BLOCKED) { | |
171 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED; | |
172 | ||
173 | /* Remove this task from the list it blocked on. */ | |
174 | rnp = rcu_preempt_state.rda[t->rcu_blocked_cpu]->mynode; | |
175 | spin_lock(&rnp->lock); | |
176 | empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]); | |
177 | list_del_init(&t->rcu_node_entry); | |
178 | t->rcu_blocked_cpu = -1; | |
179 | ||
180 | /* | |
181 | * If this was the last task on the current list, and if | |
182 | * we aren't waiting on any CPUs, report the quiescent state. | |
183 | * Note that both cpu_quiet_msk_finish() and cpu_quiet_msk() | |
184 | * drop rnp->lock and restore irq. | |
185 | */ | |
186 | if (!empty && rnp->qsmask == 0 && | |
187 | list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) { | |
188 | t->rcu_read_unlock_special &= | |
189 | ~(RCU_READ_UNLOCK_NEED_QS | | |
190 | RCU_READ_UNLOCK_GOT_QS); | |
191 | if (rnp->parent == NULL) { | |
192 | /* Only one rcu_node in the tree. */ | |
193 | cpu_quiet_msk_finish(&rcu_preempt_state, flags); | |
194 | return; | |
195 | } | |
196 | /* Report up the rest of the hierarchy. */ | |
197 | mask = rnp->grpmask; | |
198 | spin_unlock_irqrestore(&rnp->lock, flags); | |
199 | rnp = rnp->parent; | |
200 | spin_lock_irqsave(&rnp->lock, flags); | |
201 | cpu_quiet_msk(mask, &rcu_preempt_state, rnp, flags); | |
202 | return; | |
203 | } | |
204 | spin_unlock(&rnp->lock); | |
205 | } | |
206 | local_irq_restore(flags); | |
207 | } | |
208 | ||
209 | /* | |
210 | * Tree-preemptable RCU implementation for rcu_read_unlock(). | |
211 | * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost | |
212 | * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then | |
213 | * invoke rcu_read_unlock_special() to clean up after a context switch | |
214 | * in an RCU read-side critical section and other special cases. | |
215 | */ | |
216 | void __rcu_read_unlock(void) | |
217 | { | |
218 | struct task_struct *t = current; | |
219 | ||
220 | barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */ | |
221 | if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 && | |
222 | unlikely(ACCESS_ONCE(t->rcu_read_unlock_special))) | |
223 | rcu_read_unlock_special(t); | |
224 | } | |
225 | EXPORT_SYMBOL_GPL(__rcu_read_unlock); | |
226 | ||
227 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | |
228 | ||
229 | /* | |
230 | * Scan the current list of tasks blocked within RCU read-side critical | |
231 | * sections, printing out the tid of each. | |
232 | */ | |
233 | static void rcu_print_task_stall(struct rcu_node *rnp) | |
234 | { | |
235 | unsigned long flags; | |
236 | struct list_head *lp; | |
237 | int phase = rnp->gpnum & 0x1; | |
238 | struct task_struct *t; | |
239 | ||
240 | if (!list_empty(&rnp->blocked_tasks[phase])) { | |
241 | spin_lock_irqsave(&rnp->lock, flags); | |
242 | phase = rnp->gpnum & 0x1; /* re-read under lock. */ | |
243 | lp = &rnp->blocked_tasks[phase]; | |
244 | list_for_each_entry(t, lp, rcu_node_entry) | |
245 | printk(" P%d", t->pid); | |
246 | spin_unlock_irqrestore(&rnp->lock, flags); | |
247 | } | |
248 | } | |
249 | ||
250 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | |
251 | ||
252 | /* | |
253 | * Check for preempted RCU readers for the specified rcu_node structure. | |
254 | * If the caller needs a reliable answer, it must hold the rcu_node's | |
255 | * >lock. | |
256 | */ | |
257 | static int rcu_preempted_readers(struct rcu_node *rnp) | |
258 | { | |
259 | return !list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]); | |
260 | } | |
261 | ||
262 | /* | |
263 | * Check for a quiescent state from the current CPU. When a task blocks, | |
264 | * the task is recorded in the corresponding CPU's rcu_node structure, | |
265 | * which is checked elsewhere. | |
266 | * | |
267 | * Caller must disable hard irqs. | |
268 | */ | |
269 | static void rcu_preempt_check_callbacks(int cpu) | |
270 | { | |
271 | struct task_struct *t = current; | |
272 | ||
273 | if (t->rcu_read_lock_nesting == 0) { | |
274 | t->rcu_read_unlock_special &= | |
275 | ~(RCU_READ_UNLOCK_NEED_QS | RCU_READ_UNLOCK_GOT_QS); | |
276 | rcu_preempt_qs_record(cpu); | |
277 | return; | |
278 | } | |
279 | if (per_cpu(rcu_preempt_data, cpu).qs_pending) { | |
280 | if (t->rcu_read_unlock_special & RCU_READ_UNLOCK_GOT_QS) { | |
281 | rcu_preempt_qs_record(cpu); | |
282 | t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_GOT_QS; | |
283 | } else if (!(t->rcu_read_unlock_special & | |
284 | RCU_READ_UNLOCK_NEED_QS)) { | |
285 | t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS; | |
286 | } | |
287 | } | |
288 | } | |
289 | ||
290 | /* | |
291 | * Process callbacks for preemptable RCU. | |
292 | */ | |
293 | static void rcu_preempt_process_callbacks(void) | |
294 | { | |
295 | __rcu_process_callbacks(&rcu_preempt_state, | |
296 | &__get_cpu_var(rcu_preempt_data)); | |
297 | } | |
298 | ||
299 | /* | |
300 | * Queue a preemptable-RCU callback for invocation after a grace period. | |
301 | */ | |
302 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | |
303 | { | |
304 | __call_rcu(head, func, &rcu_preempt_state); | |
305 | } | |
306 | EXPORT_SYMBOL_GPL(call_rcu); | |
307 | ||
308 | /* | |
309 | * Check to see if there is any immediate preemptable-RCU-related work | |
310 | * to be done. | |
311 | */ | |
312 | static int rcu_preempt_pending(int cpu) | |
313 | { | |
314 | return __rcu_pending(&rcu_preempt_state, | |
315 | &per_cpu(rcu_preempt_data, cpu)); | |
316 | } | |
317 | ||
318 | /* | |
319 | * Does preemptable RCU need the CPU to stay out of dynticks mode? | |
320 | */ | |
321 | static int rcu_preempt_needs_cpu(int cpu) | |
322 | { | |
323 | return !!per_cpu(rcu_preempt_data, cpu).nxtlist; | |
324 | } | |
325 | ||
326 | /* | |
327 | * Initialize preemptable RCU's per-CPU data. | |
328 | */ | |
329 | static void __cpuinit rcu_preempt_init_percpu_data(int cpu) | |
330 | { | |
331 | rcu_init_percpu_data(cpu, &rcu_preempt_state, 1); | |
332 | } | |
333 | ||
334 | /* | |
335 | * Check for a task exiting while in a preemptable-RCU read-side | |
336 | * critical section, clean up if so. No need to issue warnings, | |
337 | * as debug_check_no_locks_held() already does this if lockdep | |
338 | * is enabled. | |
339 | */ | |
340 | void exit_rcu(void) | |
341 | { | |
342 | struct task_struct *t = current; | |
343 | ||
344 | if (t->rcu_read_lock_nesting == 0) | |
345 | return; | |
346 | t->rcu_read_lock_nesting = 1; | |
347 | rcu_read_unlock(); | |
348 | } | |
349 | ||
350 | #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */ | |
351 | ||
352 | /* | |
353 | * Tell them what RCU they are running. | |
354 | */ | |
355 | static inline void rcu_bootup_announce(void) | |
356 | { | |
357 | printk(KERN_INFO "Hierarchical RCU implementation.\n"); | |
358 | } | |
359 | ||
360 | /* | |
361 | * Return the number of RCU batches processed thus far for debug & stats. | |
362 | */ | |
363 | long rcu_batches_completed(void) | |
364 | { | |
365 | return rcu_batches_completed_sched(); | |
366 | } | |
367 | EXPORT_SYMBOL_GPL(rcu_batches_completed); | |
368 | ||
369 | /* | |
370 | * Because preemptable RCU does not exist, we never have to check for | |
371 | * CPUs being in quiescent states. | |
372 | */ | |
373 | static void rcu_preempt_qs(int cpu) | |
374 | { | |
375 | } | |
376 | ||
377 | #ifdef CONFIG_RCU_CPU_STALL_DETECTOR | |
378 | ||
379 | /* | |
380 | * Because preemptable RCU does not exist, we never have to check for | |
381 | * tasks blocked within RCU read-side critical sections. | |
382 | */ | |
383 | static void rcu_print_task_stall(struct rcu_node *rnp) | |
384 | { | |
385 | } | |
386 | ||
387 | #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */ | |
388 | ||
389 | /* | |
390 | * Because preemptable RCU does not exist, there are never any preempted | |
391 | * RCU readers. | |
392 | */ | |
393 | static int rcu_preempted_readers(struct rcu_node *rnp) | |
394 | { | |
395 | return 0; | |
396 | } | |
397 | ||
398 | /* | |
399 | * Because preemptable RCU does not exist, it never has any callbacks | |
400 | * to check. | |
401 | */ | |
402 | void rcu_preempt_check_callbacks(int cpu) | |
403 | { | |
404 | } | |
405 | ||
406 | /* | |
407 | * Because preemptable RCU does not exist, it never has any callbacks | |
408 | * to process. | |
409 | */ | |
410 | void rcu_preempt_process_callbacks(void) | |
411 | { | |
412 | } | |
413 | ||
414 | /* | |
415 | * In classic RCU, call_rcu() is just call_rcu_sched(). | |
416 | */ | |
417 | void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu)) | |
418 | { | |
419 | call_rcu_sched(head, func); | |
420 | } | |
421 | EXPORT_SYMBOL_GPL(call_rcu); | |
422 | ||
423 | /* | |
424 | * Because preemptable RCU does not exist, it never has any work to do. | |
425 | */ | |
426 | static int rcu_preempt_pending(int cpu) | |
427 | { | |
428 | return 0; | |
429 | } | |
430 | ||
431 | /* | |
432 | * Because preemptable RCU does not exist, it never needs any CPU. | |
433 | */ | |
434 | static int rcu_preempt_needs_cpu(int cpu) | |
435 | { | |
436 | return 0; | |
437 | } | |
438 | ||
439 | /* | |
440 | * Because preemptable RCU does not exist, there is no per-CPU | |
441 | * data to initialize. | |
442 | */ | |
443 | static void __cpuinit rcu_preempt_init_percpu_data(int cpu) | |
444 | { | |
445 | } | |
446 | ||
447 | #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */ |