]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
1da177e4 | 2 | /* |
1da177e4 LT |
3 | * Copyright (C) 1993 Linus Torvalds |
4 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
5 | * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <[email protected]>, May 2000 | |
6 | * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 | |
930fc45a | 7 | * Numa awareness, Christoph Lameter, SGI, June 2005 |
d758ffe6 | 8 | * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019 |
1da177e4 LT |
9 | */ |
10 | ||
db64fe02 | 11 | #include <linux/vmalloc.h> |
1da177e4 LT |
12 | #include <linux/mm.h> |
13 | #include <linux/module.h> | |
14 | #include <linux/highmem.h> | |
c3edc401 | 15 | #include <linux/sched/signal.h> |
1da177e4 LT |
16 | #include <linux/slab.h> |
17 | #include <linux/spinlock.h> | |
18 | #include <linux/interrupt.h> | |
5f6a6a9c | 19 | #include <linux/proc_fs.h> |
a10aa579 | 20 | #include <linux/seq_file.h> |
868b104d | 21 | #include <linux/set_memory.h> |
3ac7fe5a | 22 | #include <linux/debugobjects.h> |
23016969 | 23 | #include <linux/kallsyms.h> |
db64fe02 | 24 | #include <linux/list.h> |
4da56b99 | 25 | #include <linux/notifier.h> |
db64fe02 | 26 | #include <linux/rbtree.h> |
0f14599c | 27 | #include <linux/xarray.h> |
5da96bdd | 28 | #include <linux/io.h> |
db64fe02 | 29 | #include <linux/rcupdate.h> |
f0aa6617 | 30 | #include <linux/pfn.h> |
89219d37 | 31 | #include <linux/kmemleak.h> |
60063497 | 32 | #include <linux/atomic.h> |
3b32123d | 33 | #include <linux/compiler.h> |
32fcfd40 | 34 | #include <linux/llist.h> |
0f616be1 | 35 | #include <linux/bitops.h> |
68ad4a33 | 36 | #include <linux/rbtree_augmented.h> |
bdebd6a2 | 37 | #include <linux/overflow.h> |
c0eb315a | 38 | #include <linux/pgtable.h> |
7c0f6ba6 | 39 | #include <linux/uaccess.h> |
f7ee1f13 | 40 | #include <linux/hugetlb.h> |
1da177e4 | 41 | #include <asm/tlbflush.h> |
2dca6999 | 42 | #include <asm/shmparam.h> |
1da177e4 | 43 | |
dd56b046 | 44 | #include "internal.h" |
2a681cfa | 45 | #include "pgalloc-track.h" |
dd56b046 | 46 | |
121e6f32 NP |
47 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC |
48 | static bool __ro_after_init vmap_allow_huge = true; | |
49 | ||
50 | static int __init set_nohugevmalloc(char *str) | |
51 | { | |
52 | vmap_allow_huge = false; | |
53 | return 0; | |
54 | } | |
55 | early_param("nohugevmalloc", set_nohugevmalloc); | |
56 | #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ | |
57 | static const bool vmap_allow_huge = false; | |
58 | #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */ | |
59 | ||
186525bd IM |
60 | bool is_vmalloc_addr(const void *x) |
61 | { | |
62 | unsigned long addr = (unsigned long)x; | |
63 | ||
64 | return addr >= VMALLOC_START && addr < VMALLOC_END; | |
65 | } | |
66 | EXPORT_SYMBOL(is_vmalloc_addr); | |
67 | ||
32fcfd40 AV |
68 | struct vfree_deferred { |
69 | struct llist_head list; | |
70 | struct work_struct wq; | |
71 | }; | |
72 | static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); | |
73 | ||
74 | static void __vunmap(const void *, int); | |
75 | ||
76 | static void free_work(struct work_struct *w) | |
77 | { | |
78 | struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); | |
894e58c1 BP |
79 | struct llist_node *t, *llnode; |
80 | ||
81 | llist_for_each_safe(llnode, t, llist_del_all(&p->list)) | |
82 | __vunmap((void *)llnode, 1); | |
32fcfd40 AV |
83 | } |
84 | ||
db64fe02 | 85 | /*** Page table manipulation functions ***/ |
5e9e3d77 NP |
86 | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, |
87 | phys_addr_t phys_addr, pgprot_t prot, | |
f7ee1f13 | 88 | unsigned int max_page_shift, pgtbl_mod_mask *mask) |
5e9e3d77 NP |
89 | { |
90 | pte_t *pte; | |
91 | u64 pfn; | |
f7ee1f13 | 92 | unsigned long size = PAGE_SIZE; |
5e9e3d77 NP |
93 | |
94 | pfn = phys_addr >> PAGE_SHIFT; | |
95 | pte = pte_alloc_kernel_track(pmd, addr, mask); | |
96 | if (!pte) | |
97 | return -ENOMEM; | |
98 | do { | |
99 | BUG_ON(!pte_none(*pte)); | |
f7ee1f13 CL |
100 | |
101 | #ifdef CONFIG_HUGETLB_PAGE | |
102 | size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift); | |
103 | if (size != PAGE_SIZE) { | |
104 | pte_t entry = pfn_pte(pfn, prot); | |
105 | ||
106 | entry = pte_mkhuge(entry); | |
107 | entry = arch_make_huge_pte(entry, ilog2(size), 0); | |
108 | set_huge_pte_at(&init_mm, addr, pte, entry); | |
109 | pfn += PFN_DOWN(size); | |
110 | continue; | |
111 | } | |
112 | #endif | |
5e9e3d77 NP |
113 | set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot)); |
114 | pfn++; | |
f7ee1f13 | 115 | } while (pte += PFN_DOWN(size), addr += size, addr != end); |
5e9e3d77 NP |
116 | *mask |= PGTBL_PTE_MODIFIED; |
117 | return 0; | |
118 | } | |
119 | ||
120 | static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end, | |
121 | phys_addr_t phys_addr, pgprot_t prot, | |
122 | unsigned int max_page_shift) | |
123 | { | |
124 | if (max_page_shift < PMD_SHIFT) | |
125 | return 0; | |
126 | ||
127 | if (!arch_vmap_pmd_supported(prot)) | |
128 | return 0; | |
129 | ||
130 | if ((end - addr) != PMD_SIZE) | |
131 | return 0; | |
132 | ||
133 | if (!IS_ALIGNED(addr, PMD_SIZE)) | |
134 | return 0; | |
135 | ||
136 | if (!IS_ALIGNED(phys_addr, PMD_SIZE)) | |
137 | return 0; | |
138 | ||
139 | if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr)) | |
140 | return 0; | |
141 | ||
142 | return pmd_set_huge(pmd, phys_addr, prot); | |
143 | } | |
144 | ||
145 | static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, | |
146 | phys_addr_t phys_addr, pgprot_t prot, | |
147 | unsigned int max_page_shift, pgtbl_mod_mask *mask) | |
148 | { | |
149 | pmd_t *pmd; | |
150 | unsigned long next; | |
151 | ||
152 | pmd = pmd_alloc_track(&init_mm, pud, addr, mask); | |
153 | if (!pmd) | |
154 | return -ENOMEM; | |
155 | do { | |
156 | next = pmd_addr_end(addr, end); | |
157 | ||
158 | if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot, | |
159 | max_page_shift)) { | |
160 | *mask |= PGTBL_PMD_MODIFIED; | |
161 | continue; | |
162 | } | |
163 | ||
f7ee1f13 | 164 | if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask)) |
5e9e3d77 NP |
165 | return -ENOMEM; |
166 | } while (pmd++, phys_addr += (next - addr), addr = next, addr != end); | |
167 | return 0; | |
168 | } | |
169 | ||
170 | static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end, | |
171 | phys_addr_t phys_addr, pgprot_t prot, | |
172 | unsigned int max_page_shift) | |
173 | { | |
174 | if (max_page_shift < PUD_SHIFT) | |
175 | return 0; | |
176 | ||
177 | if (!arch_vmap_pud_supported(prot)) | |
178 | return 0; | |
179 | ||
180 | if ((end - addr) != PUD_SIZE) | |
181 | return 0; | |
182 | ||
183 | if (!IS_ALIGNED(addr, PUD_SIZE)) | |
184 | return 0; | |
185 | ||
186 | if (!IS_ALIGNED(phys_addr, PUD_SIZE)) | |
187 | return 0; | |
188 | ||
189 | if (pud_present(*pud) && !pud_free_pmd_page(pud, addr)) | |
190 | return 0; | |
191 | ||
192 | return pud_set_huge(pud, phys_addr, prot); | |
193 | } | |
194 | ||
195 | static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, | |
196 | phys_addr_t phys_addr, pgprot_t prot, | |
197 | unsigned int max_page_shift, pgtbl_mod_mask *mask) | |
198 | { | |
199 | pud_t *pud; | |
200 | unsigned long next; | |
201 | ||
202 | pud = pud_alloc_track(&init_mm, p4d, addr, mask); | |
203 | if (!pud) | |
204 | return -ENOMEM; | |
205 | do { | |
206 | next = pud_addr_end(addr, end); | |
207 | ||
208 | if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot, | |
209 | max_page_shift)) { | |
210 | *mask |= PGTBL_PUD_MODIFIED; | |
211 | continue; | |
212 | } | |
213 | ||
214 | if (vmap_pmd_range(pud, addr, next, phys_addr, prot, | |
215 | max_page_shift, mask)) | |
216 | return -ENOMEM; | |
217 | } while (pud++, phys_addr += (next - addr), addr = next, addr != end); | |
218 | return 0; | |
219 | } | |
220 | ||
221 | static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end, | |
222 | phys_addr_t phys_addr, pgprot_t prot, | |
223 | unsigned int max_page_shift) | |
224 | { | |
225 | if (max_page_shift < P4D_SHIFT) | |
226 | return 0; | |
227 | ||
228 | if (!arch_vmap_p4d_supported(prot)) | |
229 | return 0; | |
230 | ||
231 | if ((end - addr) != P4D_SIZE) | |
232 | return 0; | |
233 | ||
234 | if (!IS_ALIGNED(addr, P4D_SIZE)) | |
235 | return 0; | |
236 | ||
237 | if (!IS_ALIGNED(phys_addr, P4D_SIZE)) | |
238 | return 0; | |
239 | ||
240 | if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr)) | |
241 | return 0; | |
242 | ||
243 | return p4d_set_huge(p4d, phys_addr, prot); | |
244 | } | |
245 | ||
246 | static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, | |
247 | phys_addr_t phys_addr, pgprot_t prot, | |
248 | unsigned int max_page_shift, pgtbl_mod_mask *mask) | |
249 | { | |
250 | p4d_t *p4d; | |
251 | unsigned long next; | |
252 | ||
253 | p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); | |
254 | if (!p4d) | |
255 | return -ENOMEM; | |
256 | do { | |
257 | next = p4d_addr_end(addr, end); | |
258 | ||
259 | if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot, | |
260 | max_page_shift)) { | |
261 | *mask |= PGTBL_P4D_MODIFIED; | |
262 | continue; | |
263 | } | |
264 | ||
265 | if (vmap_pud_range(p4d, addr, next, phys_addr, prot, | |
266 | max_page_shift, mask)) | |
267 | return -ENOMEM; | |
268 | } while (p4d++, phys_addr += (next - addr), addr = next, addr != end); | |
269 | return 0; | |
270 | } | |
271 | ||
5d87510d | 272 | static int vmap_range_noflush(unsigned long addr, unsigned long end, |
5e9e3d77 NP |
273 | phys_addr_t phys_addr, pgprot_t prot, |
274 | unsigned int max_page_shift) | |
275 | { | |
276 | pgd_t *pgd; | |
277 | unsigned long start; | |
278 | unsigned long next; | |
279 | int err; | |
280 | pgtbl_mod_mask mask = 0; | |
281 | ||
282 | might_sleep(); | |
283 | BUG_ON(addr >= end); | |
284 | ||
285 | start = addr; | |
286 | pgd = pgd_offset_k(addr); | |
287 | do { | |
288 | next = pgd_addr_end(addr, end); | |
289 | err = vmap_p4d_range(pgd, addr, next, phys_addr, prot, | |
290 | max_page_shift, &mask); | |
291 | if (err) | |
292 | break; | |
293 | } while (pgd++, phys_addr += (next - addr), addr = next, addr != end); | |
294 | ||
5e9e3d77 NP |
295 | if (mask & ARCH_PAGE_TABLE_SYNC_MASK) |
296 | arch_sync_kernel_mappings(start, end); | |
297 | ||
298 | return err; | |
299 | } | |
b221385b | 300 | |
5d87510d NP |
301 | int vmap_range(unsigned long addr, unsigned long end, |
302 | phys_addr_t phys_addr, pgprot_t prot, | |
303 | unsigned int max_page_shift) | |
304 | { | |
305 | int err; | |
306 | ||
307 | err = vmap_range_noflush(addr, end, phys_addr, prot, max_page_shift); | |
308 | flush_cache_vmap(addr, end); | |
309 | ||
310 | return err; | |
311 | } | |
312 | ||
2ba3e694 JR |
313 | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, |
314 | pgtbl_mod_mask *mask) | |
1da177e4 LT |
315 | { |
316 | pte_t *pte; | |
317 | ||
318 | pte = pte_offset_kernel(pmd, addr); | |
319 | do { | |
320 | pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); | |
321 | WARN_ON(!pte_none(ptent) && !pte_present(ptent)); | |
322 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
2ba3e694 | 323 | *mask |= PGTBL_PTE_MODIFIED; |
1da177e4 LT |
324 | } |
325 | ||
2ba3e694 JR |
326 | static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, |
327 | pgtbl_mod_mask *mask) | |
1da177e4 LT |
328 | { |
329 | pmd_t *pmd; | |
330 | unsigned long next; | |
2ba3e694 | 331 | int cleared; |
1da177e4 LT |
332 | |
333 | pmd = pmd_offset(pud, addr); | |
334 | do { | |
335 | next = pmd_addr_end(addr, end); | |
2ba3e694 JR |
336 | |
337 | cleared = pmd_clear_huge(pmd); | |
338 | if (cleared || pmd_bad(*pmd)) | |
339 | *mask |= PGTBL_PMD_MODIFIED; | |
340 | ||
341 | if (cleared) | |
b9820d8f | 342 | continue; |
1da177e4 LT |
343 | if (pmd_none_or_clear_bad(pmd)) |
344 | continue; | |
2ba3e694 | 345 | vunmap_pte_range(pmd, addr, next, mask); |
e47110e9 AK |
346 | |
347 | cond_resched(); | |
1da177e4 LT |
348 | } while (pmd++, addr = next, addr != end); |
349 | } | |
350 | ||
2ba3e694 JR |
351 | static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, |
352 | pgtbl_mod_mask *mask) | |
1da177e4 LT |
353 | { |
354 | pud_t *pud; | |
355 | unsigned long next; | |
2ba3e694 | 356 | int cleared; |
1da177e4 | 357 | |
c2febafc | 358 | pud = pud_offset(p4d, addr); |
1da177e4 LT |
359 | do { |
360 | next = pud_addr_end(addr, end); | |
2ba3e694 JR |
361 | |
362 | cleared = pud_clear_huge(pud); | |
363 | if (cleared || pud_bad(*pud)) | |
364 | *mask |= PGTBL_PUD_MODIFIED; | |
365 | ||
366 | if (cleared) | |
b9820d8f | 367 | continue; |
1da177e4 LT |
368 | if (pud_none_or_clear_bad(pud)) |
369 | continue; | |
2ba3e694 | 370 | vunmap_pmd_range(pud, addr, next, mask); |
1da177e4 LT |
371 | } while (pud++, addr = next, addr != end); |
372 | } | |
373 | ||
2ba3e694 JR |
374 | static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, |
375 | pgtbl_mod_mask *mask) | |
c2febafc KS |
376 | { |
377 | p4d_t *p4d; | |
378 | unsigned long next; | |
2ba3e694 | 379 | int cleared; |
c2febafc KS |
380 | |
381 | p4d = p4d_offset(pgd, addr); | |
382 | do { | |
383 | next = p4d_addr_end(addr, end); | |
2ba3e694 JR |
384 | |
385 | cleared = p4d_clear_huge(p4d); | |
386 | if (cleared || p4d_bad(*p4d)) | |
387 | *mask |= PGTBL_P4D_MODIFIED; | |
388 | ||
389 | if (cleared) | |
c2febafc KS |
390 | continue; |
391 | if (p4d_none_or_clear_bad(p4d)) | |
392 | continue; | |
2ba3e694 | 393 | vunmap_pud_range(p4d, addr, next, mask); |
c2febafc KS |
394 | } while (p4d++, addr = next, addr != end); |
395 | } | |
396 | ||
4ad0ae8c NP |
397 | /* |
398 | * vunmap_range_noflush is similar to vunmap_range, but does not | |
399 | * flush caches or TLBs. | |
b521c43f | 400 | * |
4ad0ae8c NP |
401 | * The caller is responsible for calling flush_cache_vmap() before calling |
402 | * this function, and flush_tlb_kernel_range after it has returned | |
403 | * successfully (and before the addresses are expected to cause a page fault | |
404 | * or be re-mapped for something else, if TLB flushes are being delayed or | |
405 | * coalesced). | |
b521c43f | 406 | * |
4ad0ae8c | 407 | * This is an internal function only. Do not use outside mm/. |
b521c43f | 408 | */ |
4ad0ae8c | 409 | void vunmap_range_noflush(unsigned long start, unsigned long end) |
1da177e4 | 410 | { |
1da177e4 | 411 | unsigned long next; |
b521c43f | 412 | pgd_t *pgd; |
2ba3e694 JR |
413 | unsigned long addr = start; |
414 | pgtbl_mod_mask mask = 0; | |
1da177e4 LT |
415 | |
416 | BUG_ON(addr >= end); | |
417 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
418 | do { |
419 | next = pgd_addr_end(addr, end); | |
2ba3e694 JR |
420 | if (pgd_bad(*pgd)) |
421 | mask |= PGTBL_PGD_MODIFIED; | |
1da177e4 LT |
422 | if (pgd_none_or_clear_bad(pgd)) |
423 | continue; | |
2ba3e694 | 424 | vunmap_p4d_range(pgd, addr, next, &mask); |
1da177e4 | 425 | } while (pgd++, addr = next, addr != end); |
2ba3e694 JR |
426 | |
427 | if (mask & ARCH_PAGE_TABLE_SYNC_MASK) | |
428 | arch_sync_kernel_mappings(start, end); | |
1da177e4 LT |
429 | } |
430 | ||
4ad0ae8c NP |
431 | /** |
432 | * vunmap_range - unmap kernel virtual addresses | |
433 | * @addr: start of the VM area to unmap | |
434 | * @end: end of the VM area to unmap (non-inclusive) | |
435 | * | |
436 | * Clears any present PTEs in the virtual address range, flushes TLBs and | |
437 | * caches. Any subsequent access to the address before it has been re-mapped | |
438 | * is a kernel bug. | |
439 | */ | |
440 | void vunmap_range(unsigned long addr, unsigned long end) | |
441 | { | |
442 | flush_cache_vunmap(addr, end); | |
443 | vunmap_range_noflush(addr, end); | |
444 | flush_tlb_kernel_range(addr, end); | |
445 | } | |
446 | ||
0a264884 | 447 | static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr, |
2ba3e694 JR |
448 | unsigned long end, pgprot_t prot, struct page **pages, int *nr, |
449 | pgtbl_mod_mask *mask) | |
1da177e4 LT |
450 | { |
451 | pte_t *pte; | |
452 | ||
db64fe02 NP |
453 | /* |
454 | * nr is a running index into the array which helps higher level | |
455 | * callers keep track of where we're up to. | |
456 | */ | |
457 | ||
2ba3e694 | 458 | pte = pte_alloc_kernel_track(pmd, addr, mask); |
1da177e4 LT |
459 | if (!pte) |
460 | return -ENOMEM; | |
461 | do { | |
db64fe02 NP |
462 | struct page *page = pages[*nr]; |
463 | ||
464 | if (WARN_ON(!pte_none(*pte))) | |
465 | return -EBUSY; | |
466 | if (WARN_ON(!page)) | |
1da177e4 LT |
467 | return -ENOMEM; |
468 | set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); | |
db64fe02 | 469 | (*nr)++; |
1da177e4 | 470 | } while (pte++, addr += PAGE_SIZE, addr != end); |
2ba3e694 | 471 | *mask |= PGTBL_PTE_MODIFIED; |
1da177e4 LT |
472 | return 0; |
473 | } | |
474 | ||
0a264884 | 475 | static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr, |
2ba3e694 JR |
476 | unsigned long end, pgprot_t prot, struct page **pages, int *nr, |
477 | pgtbl_mod_mask *mask) | |
1da177e4 LT |
478 | { |
479 | pmd_t *pmd; | |
480 | unsigned long next; | |
481 | ||
2ba3e694 | 482 | pmd = pmd_alloc_track(&init_mm, pud, addr, mask); |
1da177e4 LT |
483 | if (!pmd) |
484 | return -ENOMEM; | |
485 | do { | |
486 | next = pmd_addr_end(addr, end); | |
0a264884 | 487 | if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask)) |
1da177e4 LT |
488 | return -ENOMEM; |
489 | } while (pmd++, addr = next, addr != end); | |
490 | return 0; | |
491 | } | |
492 | ||
0a264884 | 493 | static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr, |
2ba3e694 JR |
494 | unsigned long end, pgprot_t prot, struct page **pages, int *nr, |
495 | pgtbl_mod_mask *mask) | |
1da177e4 LT |
496 | { |
497 | pud_t *pud; | |
498 | unsigned long next; | |
499 | ||
2ba3e694 | 500 | pud = pud_alloc_track(&init_mm, p4d, addr, mask); |
1da177e4 LT |
501 | if (!pud) |
502 | return -ENOMEM; | |
503 | do { | |
504 | next = pud_addr_end(addr, end); | |
0a264884 | 505 | if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask)) |
1da177e4 LT |
506 | return -ENOMEM; |
507 | } while (pud++, addr = next, addr != end); | |
508 | return 0; | |
509 | } | |
510 | ||
0a264884 | 511 | static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr, |
2ba3e694 JR |
512 | unsigned long end, pgprot_t prot, struct page **pages, int *nr, |
513 | pgtbl_mod_mask *mask) | |
c2febafc KS |
514 | { |
515 | p4d_t *p4d; | |
516 | unsigned long next; | |
517 | ||
2ba3e694 | 518 | p4d = p4d_alloc_track(&init_mm, pgd, addr, mask); |
c2febafc KS |
519 | if (!p4d) |
520 | return -ENOMEM; | |
521 | do { | |
522 | next = p4d_addr_end(addr, end); | |
0a264884 | 523 | if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask)) |
c2febafc KS |
524 | return -ENOMEM; |
525 | } while (p4d++, addr = next, addr != end); | |
526 | return 0; | |
527 | } | |
528 | ||
121e6f32 NP |
529 | static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end, |
530 | pgprot_t prot, struct page **pages) | |
1da177e4 | 531 | { |
2ba3e694 | 532 | unsigned long start = addr; |
b521c43f | 533 | pgd_t *pgd; |
121e6f32 | 534 | unsigned long next; |
db64fe02 NP |
535 | int err = 0; |
536 | int nr = 0; | |
2ba3e694 | 537 | pgtbl_mod_mask mask = 0; |
1da177e4 LT |
538 | |
539 | BUG_ON(addr >= end); | |
540 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
541 | do { |
542 | next = pgd_addr_end(addr, end); | |
2ba3e694 JR |
543 | if (pgd_bad(*pgd)) |
544 | mask |= PGTBL_PGD_MODIFIED; | |
0a264884 | 545 | err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask); |
1da177e4 | 546 | if (err) |
bf88c8c8 | 547 | return err; |
1da177e4 | 548 | } while (pgd++, addr = next, addr != end); |
db64fe02 | 549 | |
2ba3e694 JR |
550 | if (mask & ARCH_PAGE_TABLE_SYNC_MASK) |
551 | arch_sync_kernel_mappings(start, end); | |
552 | ||
60bb4465 | 553 | return 0; |
1da177e4 LT |
554 | } |
555 | ||
b67177ec NP |
556 | /* |
557 | * vmap_pages_range_noflush is similar to vmap_pages_range, but does not | |
558 | * flush caches. | |
559 | * | |
560 | * The caller is responsible for calling flush_cache_vmap() after this | |
561 | * function returns successfully and before the addresses are accessed. | |
562 | * | |
563 | * This is an internal function only. Do not use outside mm/. | |
564 | */ | |
565 | int vmap_pages_range_noflush(unsigned long addr, unsigned long end, | |
121e6f32 NP |
566 | pgprot_t prot, struct page **pages, unsigned int page_shift) |
567 | { | |
568 | unsigned int i, nr = (end - addr) >> PAGE_SHIFT; | |
569 | ||
570 | WARN_ON(page_shift < PAGE_SHIFT); | |
571 | ||
572 | if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) || | |
573 | page_shift == PAGE_SHIFT) | |
574 | return vmap_small_pages_range_noflush(addr, end, prot, pages); | |
575 | ||
576 | for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) { | |
577 | int err; | |
578 | ||
579 | err = vmap_range_noflush(addr, addr + (1UL << page_shift), | |
580 | __pa(page_address(pages[i])), prot, | |
581 | page_shift); | |
582 | if (err) | |
583 | return err; | |
584 | ||
585 | addr += 1UL << page_shift; | |
586 | } | |
587 | ||
588 | return 0; | |
589 | } | |
590 | ||
121e6f32 | 591 | /** |
b67177ec | 592 | * vmap_pages_range - map pages to a kernel virtual address |
121e6f32 | 593 | * @addr: start of the VM area to map |
b67177ec | 594 | * @end: end of the VM area to map (non-inclusive) |
121e6f32 | 595 | * @prot: page protection flags to use |
b67177ec NP |
596 | * @pages: pages to map (always PAGE_SIZE pages) |
597 | * @page_shift: maximum shift that the pages may be mapped with, @pages must | |
598 | * be aligned and contiguous up to at least this shift. | |
121e6f32 NP |
599 | * |
600 | * RETURNS: | |
601 | * 0 on success, -errno on failure. | |
602 | */ | |
b67177ec NP |
603 | static int vmap_pages_range(unsigned long addr, unsigned long end, |
604 | pgprot_t prot, struct page **pages, unsigned int page_shift) | |
8fc48985 | 605 | { |
b67177ec | 606 | int err; |
8fc48985 | 607 | |
b67177ec NP |
608 | err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift); |
609 | flush_cache_vmap(addr, end); | |
610 | return err; | |
8fc48985 TH |
611 | } |
612 | ||
81ac3ad9 | 613 | int is_vmalloc_or_module_addr(const void *x) |
73bdf0a6 LT |
614 | { |
615 | /* | |
ab4f2ee1 | 616 | * ARM, x86-64 and sparc64 put modules in a special place, |
73bdf0a6 LT |
617 | * and fall back on vmalloc() if that fails. Others |
618 | * just put it in the vmalloc space. | |
619 | */ | |
620 | #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) | |
621 | unsigned long addr = (unsigned long)x; | |
622 | if (addr >= MODULES_VADDR && addr < MODULES_END) | |
623 | return 1; | |
624 | #endif | |
625 | return is_vmalloc_addr(x); | |
626 | } | |
627 | ||
48667e7a | 628 | /* |
c0eb315a NP |
629 | * Walk a vmap address to the struct page it maps. Huge vmap mappings will |
630 | * return the tail page that corresponds to the base page address, which | |
631 | * matches small vmap mappings. | |
48667e7a | 632 | */ |
add688fb | 633 | struct page *vmalloc_to_page(const void *vmalloc_addr) |
48667e7a CL |
634 | { |
635 | unsigned long addr = (unsigned long) vmalloc_addr; | |
add688fb | 636 | struct page *page = NULL; |
48667e7a | 637 | pgd_t *pgd = pgd_offset_k(addr); |
c2febafc KS |
638 | p4d_t *p4d; |
639 | pud_t *pud; | |
640 | pmd_t *pmd; | |
641 | pte_t *ptep, pte; | |
48667e7a | 642 | |
7aa413de IM |
643 | /* |
644 | * XXX we might need to change this if we add VIRTUAL_BUG_ON for | |
645 | * architectures that do not vmalloc module space | |
646 | */ | |
73bdf0a6 | 647 | VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); |
59ea7463 | 648 | |
c2febafc KS |
649 | if (pgd_none(*pgd)) |
650 | return NULL; | |
c0eb315a NP |
651 | if (WARN_ON_ONCE(pgd_leaf(*pgd))) |
652 | return NULL; /* XXX: no allowance for huge pgd */ | |
653 | if (WARN_ON_ONCE(pgd_bad(*pgd))) | |
654 | return NULL; | |
655 | ||
c2febafc KS |
656 | p4d = p4d_offset(pgd, addr); |
657 | if (p4d_none(*p4d)) | |
658 | return NULL; | |
c0eb315a NP |
659 | if (p4d_leaf(*p4d)) |
660 | return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT); | |
661 | if (WARN_ON_ONCE(p4d_bad(*p4d))) | |
662 | return NULL; | |
029c54b0 | 663 | |
c0eb315a NP |
664 | pud = pud_offset(p4d, addr); |
665 | if (pud_none(*pud)) | |
666 | return NULL; | |
667 | if (pud_leaf(*pud)) | |
668 | return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT); | |
669 | if (WARN_ON_ONCE(pud_bad(*pud))) | |
c2febafc | 670 | return NULL; |
c0eb315a | 671 | |
c2febafc | 672 | pmd = pmd_offset(pud, addr); |
c0eb315a NP |
673 | if (pmd_none(*pmd)) |
674 | return NULL; | |
675 | if (pmd_leaf(*pmd)) | |
676 | return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT); | |
677 | if (WARN_ON_ONCE(pmd_bad(*pmd))) | |
c2febafc KS |
678 | return NULL; |
679 | ||
680 | ptep = pte_offset_map(pmd, addr); | |
681 | pte = *ptep; | |
682 | if (pte_present(pte)) | |
683 | page = pte_page(pte); | |
684 | pte_unmap(ptep); | |
c0eb315a | 685 | |
add688fb | 686 | return page; |
48667e7a | 687 | } |
add688fb | 688 | EXPORT_SYMBOL(vmalloc_to_page); |
48667e7a CL |
689 | |
690 | /* | |
add688fb | 691 | * Map a vmalloc()-space virtual address to the physical page frame number. |
48667e7a | 692 | */ |
add688fb | 693 | unsigned long vmalloc_to_pfn(const void *vmalloc_addr) |
48667e7a | 694 | { |
add688fb | 695 | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); |
48667e7a | 696 | } |
add688fb | 697 | EXPORT_SYMBOL(vmalloc_to_pfn); |
48667e7a | 698 | |
db64fe02 NP |
699 | |
700 | /*** Global kva allocator ***/ | |
701 | ||
bb850f4d | 702 | #define DEBUG_AUGMENT_PROPAGATE_CHECK 0 |
a6cf4e0f | 703 | #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0 |
bb850f4d | 704 | |
db64fe02 | 705 | |
db64fe02 | 706 | static DEFINE_SPINLOCK(vmap_area_lock); |
e36176be | 707 | static DEFINE_SPINLOCK(free_vmap_area_lock); |
f1c4069e JK |
708 | /* Export for kexec only */ |
709 | LIST_HEAD(vmap_area_list); | |
89699605 | 710 | static struct rb_root vmap_area_root = RB_ROOT; |
68ad4a33 | 711 | static bool vmap_initialized __read_mostly; |
89699605 | 712 | |
96e2db45 URS |
713 | static struct rb_root purge_vmap_area_root = RB_ROOT; |
714 | static LIST_HEAD(purge_vmap_area_list); | |
715 | static DEFINE_SPINLOCK(purge_vmap_area_lock); | |
716 | ||
68ad4a33 URS |
717 | /* |
718 | * This kmem_cache is used for vmap_area objects. Instead of | |
719 | * allocating from slab we reuse an object from this cache to | |
720 | * make things faster. Especially in "no edge" splitting of | |
721 | * free block. | |
722 | */ | |
723 | static struct kmem_cache *vmap_area_cachep; | |
724 | ||
725 | /* | |
726 | * This linked list is used in pair with free_vmap_area_root. | |
727 | * It gives O(1) access to prev/next to perform fast coalescing. | |
728 | */ | |
729 | static LIST_HEAD(free_vmap_area_list); | |
730 | ||
731 | /* | |
732 | * This augment red-black tree represents the free vmap space. | |
733 | * All vmap_area objects in this tree are sorted by va->va_start | |
734 | * address. It is used for allocation and merging when a vmap | |
735 | * object is released. | |
736 | * | |
737 | * Each vmap_area node contains a maximum available free block | |
738 | * of its sub-tree, right or left. Therefore it is possible to | |
739 | * find a lowest match of free area. | |
740 | */ | |
741 | static struct rb_root free_vmap_area_root = RB_ROOT; | |
742 | ||
82dd23e8 URS |
743 | /* |
744 | * Preload a CPU with one object for "no edge" split case. The | |
745 | * aim is to get rid of allocations from the atomic context, thus | |
746 | * to use more permissive allocation masks. | |
747 | */ | |
748 | static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node); | |
749 | ||
68ad4a33 URS |
750 | static __always_inline unsigned long |
751 | va_size(struct vmap_area *va) | |
752 | { | |
753 | return (va->va_end - va->va_start); | |
754 | } | |
755 | ||
756 | static __always_inline unsigned long | |
757 | get_subtree_max_size(struct rb_node *node) | |
758 | { | |
759 | struct vmap_area *va; | |
760 | ||
761 | va = rb_entry_safe(node, struct vmap_area, rb_node); | |
762 | return va ? va->subtree_max_size : 0; | |
763 | } | |
89699605 | 764 | |
68ad4a33 URS |
765 | /* |
766 | * Gets called when remove the node and rotate. | |
767 | */ | |
768 | static __always_inline unsigned long | |
769 | compute_subtree_max_size(struct vmap_area *va) | |
770 | { | |
771 | return max3(va_size(va), | |
772 | get_subtree_max_size(va->rb_node.rb_left), | |
773 | get_subtree_max_size(va->rb_node.rb_right)); | |
774 | } | |
775 | ||
315cc066 ML |
776 | RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb, |
777 | struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size) | |
68ad4a33 URS |
778 | |
779 | static void purge_vmap_area_lazy(void); | |
780 | static BLOCKING_NOTIFIER_HEAD(vmap_notify_list); | |
781 | static unsigned long lazy_max_pages(void); | |
db64fe02 | 782 | |
97105f0a RG |
783 | static atomic_long_t nr_vmalloc_pages; |
784 | ||
785 | unsigned long vmalloc_nr_pages(void) | |
786 | { | |
787 | return atomic_long_read(&nr_vmalloc_pages); | |
788 | } | |
789 | ||
db64fe02 | 790 | static struct vmap_area *__find_vmap_area(unsigned long addr) |
1da177e4 | 791 | { |
db64fe02 NP |
792 | struct rb_node *n = vmap_area_root.rb_node; |
793 | ||
794 | while (n) { | |
795 | struct vmap_area *va; | |
796 | ||
797 | va = rb_entry(n, struct vmap_area, rb_node); | |
798 | if (addr < va->va_start) | |
799 | n = n->rb_left; | |
cef2ac3f | 800 | else if (addr >= va->va_end) |
db64fe02 NP |
801 | n = n->rb_right; |
802 | else | |
803 | return va; | |
804 | } | |
805 | ||
806 | return NULL; | |
807 | } | |
808 | ||
68ad4a33 URS |
809 | /* |
810 | * This function returns back addresses of parent node | |
811 | * and its left or right link for further processing. | |
9c801f61 URS |
812 | * |
813 | * Otherwise NULL is returned. In that case all further | |
814 | * steps regarding inserting of conflicting overlap range | |
815 | * have to be declined and actually considered as a bug. | |
68ad4a33 URS |
816 | */ |
817 | static __always_inline struct rb_node ** | |
818 | find_va_links(struct vmap_area *va, | |
819 | struct rb_root *root, struct rb_node *from, | |
820 | struct rb_node **parent) | |
821 | { | |
822 | struct vmap_area *tmp_va; | |
823 | struct rb_node **link; | |
824 | ||
825 | if (root) { | |
826 | link = &root->rb_node; | |
827 | if (unlikely(!*link)) { | |
828 | *parent = NULL; | |
829 | return link; | |
830 | } | |
831 | } else { | |
832 | link = &from; | |
833 | } | |
db64fe02 | 834 | |
68ad4a33 URS |
835 | /* |
836 | * Go to the bottom of the tree. When we hit the last point | |
837 | * we end up with parent rb_node and correct direction, i name | |
838 | * it link, where the new va->rb_node will be attached to. | |
839 | */ | |
840 | do { | |
841 | tmp_va = rb_entry(*link, struct vmap_area, rb_node); | |
db64fe02 | 842 | |
68ad4a33 URS |
843 | /* |
844 | * During the traversal we also do some sanity check. | |
845 | * Trigger the BUG() if there are sides(left/right) | |
846 | * or full overlaps. | |
847 | */ | |
848 | if (va->va_start < tmp_va->va_end && | |
849 | va->va_end <= tmp_va->va_start) | |
850 | link = &(*link)->rb_left; | |
851 | else if (va->va_end > tmp_va->va_start && | |
852 | va->va_start >= tmp_va->va_end) | |
853 | link = &(*link)->rb_right; | |
9c801f61 URS |
854 | else { |
855 | WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n", | |
856 | va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end); | |
857 | ||
858 | return NULL; | |
859 | } | |
68ad4a33 URS |
860 | } while (*link); |
861 | ||
862 | *parent = &tmp_va->rb_node; | |
863 | return link; | |
864 | } | |
865 | ||
866 | static __always_inline struct list_head * | |
867 | get_va_next_sibling(struct rb_node *parent, struct rb_node **link) | |
868 | { | |
869 | struct list_head *list; | |
870 | ||
871 | if (unlikely(!parent)) | |
872 | /* | |
873 | * The red-black tree where we try to find VA neighbors | |
874 | * before merging or inserting is empty, i.e. it means | |
875 | * there is no free vmap space. Normally it does not | |
876 | * happen but we handle this case anyway. | |
877 | */ | |
878 | return NULL; | |
879 | ||
880 | list = &rb_entry(parent, struct vmap_area, rb_node)->list; | |
881 | return (&parent->rb_right == link ? list->next : list); | |
882 | } | |
883 | ||
884 | static __always_inline void | |
885 | link_va(struct vmap_area *va, struct rb_root *root, | |
886 | struct rb_node *parent, struct rb_node **link, struct list_head *head) | |
887 | { | |
888 | /* | |
889 | * VA is still not in the list, but we can | |
890 | * identify its future previous list_head node. | |
891 | */ | |
892 | if (likely(parent)) { | |
893 | head = &rb_entry(parent, struct vmap_area, rb_node)->list; | |
894 | if (&parent->rb_right != link) | |
895 | head = head->prev; | |
db64fe02 NP |
896 | } |
897 | ||
68ad4a33 URS |
898 | /* Insert to the rb-tree */ |
899 | rb_link_node(&va->rb_node, parent, link); | |
900 | if (root == &free_vmap_area_root) { | |
901 | /* | |
902 | * Some explanation here. Just perform simple insertion | |
903 | * to the tree. We do not set va->subtree_max_size to | |
904 | * its current size before calling rb_insert_augmented(). | |
905 | * It is because of we populate the tree from the bottom | |
906 | * to parent levels when the node _is_ in the tree. | |
907 | * | |
908 | * Therefore we set subtree_max_size to zero after insertion, | |
909 | * to let __augment_tree_propagate_from() puts everything to | |
910 | * the correct order later on. | |
911 | */ | |
912 | rb_insert_augmented(&va->rb_node, | |
913 | root, &free_vmap_area_rb_augment_cb); | |
914 | va->subtree_max_size = 0; | |
915 | } else { | |
916 | rb_insert_color(&va->rb_node, root); | |
917 | } | |
db64fe02 | 918 | |
68ad4a33 URS |
919 | /* Address-sort this list */ |
920 | list_add(&va->list, head); | |
db64fe02 NP |
921 | } |
922 | ||
68ad4a33 URS |
923 | static __always_inline void |
924 | unlink_va(struct vmap_area *va, struct rb_root *root) | |
925 | { | |
460e42d1 URS |
926 | if (WARN_ON(RB_EMPTY_NODE(&va->rb_node))) |
927 | return; | |
db64fe02 | 928 | |
460e42d1 URS |
929 | if (root == &free_vmap_area_root) |
930 | rb_erase_augmented(&va->rb_node, | |
931 | root, &free_vmap_area_rb_augment_cb); | |
932 | else | |
933 | rb_erase(&va->rb_node, root); | |
934 | ||
935 | list_del(&va->list); | |
936 | RB_CLEAR_NODE(&va->rb_node); | |
68ad4a33 URS |
937 | } |
938 | ||
bb850f4d URS |
939 | #if DEBUG_AUGMENT_PROPAGATE_CHECK |
940 | static void | |
da27c9ed | 941 | augment_tree_propagate_check(void) |
bb850f4d URS |
942 | { |
943 | struct vmap_area *va; | |
da27c9ed | 944 | unsigned long computed_size; |
bb850f4d | 945 | |
da27c9ed URS |
946 | list_for_each_entry(va, &free_vmap_area_list, list) { |
947 | computed_size = compute_subtree_max_size(va); | |
948 | if (computed_size != va->subtree_max_size) | |
949 | pr_emerg("tree is corrupted: %lu, %lu\n", | |
950 | va_size(va), va->subtree_max_size); | |
bb850f4d | 951 | } |
bb850f4d URS |
952 | } |
953 | #endif | |
954 | ||
68ad4a33 URS |
955 | /* |
956 | * This function populates subtree_max_size from bottom to upper | |
957 | * levels starting from VA point. The propagation must be done | |
958 | * when VA size is modified by changing its va_start/va_end. Or | |
959 | * in case of newly inserting of VA to the tree. | |
960 | * | |
961 | * It means that __augment_tree_propagate_from() must be called: | |
962 | * - After VA has been inserted to the tree(free path); | |
963 | * - After VA has been shrunk(allocation path); | |
964 | * - After VA has been increased(merging path). | |
965 | * | |
966 | * Please note that, it does not mean that upper parent nodes | |
967 | * and their subtree_max_size are recalculated all the time up | |
968 | * to the root node. | |
969 | * | |
970 | * 4--8 | |
971 | * /\ | |
972 | * / \ | |
973 | * / \ | |
974 | * 2--2 8--8 | |
975 | * | |
976 | * For example if we modify the node 4, shrinking it to 2, then | |
977 | * no any modification is required. If we shrink the node 2 to 1 | |
978 | * its subtree_max_size is updated only, and set to 1. If we shrink | |
979 | * the node 8 to 6, then its subtree_max_size is set to 6 and parent | |
980 | * node becomes 4--6. | |
981 | */ | |
982 | static __always_inline void | |
983 | augment_tree_propagate_from(struct vmap_area *va) | |
984 | { | |
15ae144f URS |
985 | /* |
986 | * Populate the tree from bottom towards the root until | |
987 | * the calculated maximum available size of checked node | |
988 | * is equal to its current one. | |
989 | */ | |
990 | free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL); | |
bb850f4d URS |
991 | |
992 | #if DEBUG_AUGMENT_PROPAGATE_CHECK | |
da27c9ed | 993 | augment_tree_propagate_check(); |
bb850f4d | 994 | #endif |
68ad4a33 URS |
995 | } |
996 | ||
997 | static void | |
998 | insert_vmap_area(struct vmap_area *va, | |
999 | struct rb_root *root, struct list_head *head) | |
1000 | { | |
1001 | struct rb_node **link; | |
1002 | struct rb_node *parent; | |
1003 | ||
1004 | link = find_va_links(va, root, NULL, &parent); | |
9c801f61 URS |
1005 | if (link) |
1006 | link_va(va, root, parent, link, head); | |
68ad4a33 URS |
1007 | } |
1008 | ||
1009 | static void | |
1010 | insert_vmap_area_augment(struct vmap_area *va, | |
1011 | struct rb_node *from, struct rb_root *root, | |
1012 | struct list_head *head) | |
1013 | { | |
1014 | struct rb_node **link; | |
1015 | struct rb_node *parent; | |
1016 | ||
1017 | if (from) | |
1018 | link = find_va_links(va, NULL, from, &parent); | |
1019 | else | |
1020 | link = find_va_links(va, root, NULL, &parent); | |
1021 | ||
9c801f61 URS |
1022 | if (link) { |
1023 | link_va(va, root, parent, link, head); | |
1024 | augment_tree_propagate_from(va); | |
1025 | } | |
68ad4a33 URS |
1026 | } |
1027 | ||
1028 | /* | |
1029 | * Merge de-allocated chunk of VA memory with previous | |
1030 | * and next free blocks. If coalesce is not done a new | |
1031 | * free area is inserted. If VA has been merged, it is | |
1032 | * freed. | |
9c801f61 URS |
1033 | * |
1034 | * Please note, it can return NULL in case of overlap | |
1035 | * ranges, followed by WARN() report. Despite it is a | |
1036 | * buggy behaviour, a system can be alive and keep | |
1037 | * ongoing. | |
68ad4a33 | 1038 | */ |
3c5c3cfb | 1039 | static __always_inline struct vmap_area * |
68ad4a33 URS |
1040 | merge_or_add_vmap_area(struct vmap_area *va, |
1041 | struct rb_root *root, struct list_head *head) | |
1042 | { | |
1043 | struct vmap_area *sibling; | |
1044 | struct list_head *next; | |
1045 | struct rb_node **link; | |
1046 | struct rb_node *parent; | |
1047 | bool merged = false; | |
1048 | ||
1049 | /* | |
1050 | * Find a place in the tree where VA potentially will be | |
1051 | * inserted, unless it is merged with its sibling/siblings. | |
1052 | */ | |
1053 | link = find_va_links(va, root, NULL, &parent); | |
9c801f61 URS |
1054 | if (!link) |
1055 | return NULL; | |
68ad4a33 URS |
1056 | |
1057 | /* | |
1058 | * Get next node of VA to check if merging can be done. | |
1059 | */ | |
1060 | next = get_va_next_sibling(parent, link); | |
1061 | if (unlikely(next == NULL)) | |
1062 | goto insert; | |
1063 | ||
1064 | /* | |
1065 | * start end | |
1066 | * | | | |
1067 | * |<------VA------>|<-----Next----->| | |
1068 | * | | | |
1069 | * start end | |
1070 | */ | |
1071 | if (next != head) { | |
1072 | sibling = list_entry(next, struct vmap_area, list); | |
1073 | if (sibling->va_start == va->va_end) { | |
1074 | sibling->va_start = va->va_start; | |
1075 | ||
68ad4a33 URS |
1076 | /* Free vmap_area object. */ |
1077 | kmem_cache_free(vmap_area_cachep, va); | |
1078 | ||
1079 | /* Point to the new merged area. */ | |
1080 | va = sibling; | |
1081 | merged = true; | |
1082 | } | |
1083 | } | |
1084 | ||
1085 | /* | |
1086 | * start end | |
1087 | * | | | |
1088 | * |<-----Prev----->|<------VA------>| | |
1089 | * | | | |
1090 | * start end | |
1091 | */ | |
1092 | if (next->prev != head) { | |
1093 | sibling = list_entry(next->prev, struct vmap_area, list); | |
1094 | if (sibling->va_end == va->va_start) { | |
5dd78640 URS |
1095 | /* |
1096 | * If both neighbors are coalesced, it is important | |
1097 | * to unlink the "next" node first, followed by merging | |
1098 | * with "previous" one. Otherwise the tree might not be | |
1099 | * fully populated if a sibling's augmented value is | |
1100 | * "normalized" because of rotation operations. | |
1101 | */ | |
54f63d9d URS |
1102 | if (merged) |
1103 | unlink_va(va, root); | |
68ad4a33 | 1104 | |
5dd78640 URS |
1105 | sibling->va_end = va->va_end; |
1106 | ||
68ad4a33 URS |
1107 | /* Free vmap_area object. */ |
1108 | kmem_cache_free(vmap_area_cachep, va); | |
3c5c3cfb DA |
1109 | |
1110 | /* Point to the new merged area. */ | |
1111 | va = sibling; | |
1112 | merged = true; | |
68ad4a33 URS |
1113 | } |
1114 | } | |
1115 | ||
1116 | insert: | |
5dd78640 | 1117 | if (!merged) |
68ad4a33 | 1118 | link_va(va, root, parent, link, head); |
3c5c3cfb | 1119 | |
96e2db45 URS |
1120 | return va; |
1121 | } | |
1122 | ||
1123 | static __always_inline struct vmap_area * | |
1124 | merge_or_add_vmap_area_augment(struct vmap_area *va, | |
1125 | struct rb_root *root, struct list_head *head) | |
1126 | { | |
1127 | va = merge_or_add_vmap_area(va, root, head); | |
1128 | if (va) | |
1129 | augment_tree_propagate_from(va); | |
1130 | ||
3c5c3cfb | 1131 | return va; |
68ad4a33 URS |
1132 | } |
1133 | ||
1134 | static __always_inline bool | |
1135 | is_within_this_va(struct vmap_area *va, unsigned long size, | |
1136 | unsigned long align, unsigned long vstart) | |
1137 | { | |
1138 | unsigned long nva_start_addr; | |
1139 | ||
1140 | if (va->va_start > vstart) | |
1141 | nva_start_addr = ALIGN(va->va_start, align); | |
1142 | else | |
1143 | nva_start_addr = ALIGN(vstart, align); | |
1144 | ||
1145 | /* Can be overflowed due to big size or alignment. */ | |
1146 | if (nva_start_addr + size < nva_start_addr || | |
1147 | nva_start_addr < vstart) | |
1148 | return false; | |
1149 | ||
1150 | return (nva_start_addr + size <= va->va_end); | |
1151 | } | |
1152 | ||
1153 | /* | |
1154 | * Find the first free block(lowest start address) in the tree, | |
1155 | * that will accomplish the request corresponding to passing | |
1156 | * parameters. | |
1157 | */ | |
1158 | static __always_inline struct vmap_area * | |
1159 | find_vmap_lowest_match(unsigned long size, | |
1160 | unsigned long align, unsigned long vstart) | |
1161 | { | |
1162 | struct vmap_area *va; | |
1163 | struct rb_node *node; | |
1164 | unsigned long length; | |
1165 | ||
1166 | /* Start from the root. */ | |
1167 | node = free_vmap_area_root.rb_node; | |
1168 | ||
1169 | /* Adjust the search size for alignment overhead. */ | |
1170 | length = size + align - 1; | |
1171 | ||
1172 | while (node) { | |
1173 | va = rb_entry(node, struct vmap_area, rb_node); | |
1174 | ||
1175 | if (get_subtree_max_size(node->rb_left) >= length && | |
1176 | vstart < va->va_start) { | |
1177 | node = node->rb_left; | |
1178 | } else { | |
1179 | if (is_within_this_va(va, size, align, vstart)) | |
1180 | return va; | |
1181 | ||
1182 | /* | |
1183 | * Does not make sense to go deeper towards the right | |
1184 | * sub-tree if it does not have a free block that is | |
1185 | * equal or bigger to the requested search length. | |
1186 | */ | |
1187 | if (get_subtree_max_size(node->rb_right) >= length) { | |
1188 | node = node->rb_right; | |
1189 | continue; | |
1190 | } | |
1191 | ||
1192 | /* | |
3806b041 | 1193 | * OK. We roll back and find the first right sub-tree, |
68ad4a33 URS |
1194 | * that will satisfy the search criteria. It can happen |
1195 | * only once due to "vstart" restriction. | |
1196 | */ | |
1197 | while ((node = rb_parent(node))) { | |
1198 | va = rb_entry(node, struct vmap_area, rb_node); | |
1199 | if (is_within_this_va(va, size, align, vstart)) | |
1200 | return va; | |
1201 | ||
1202 | if (get_subtree_max_size(node->rb_right) >= length && | |
1203 | vstart <= va->va_start) { | |
1204 | node = node->rb_right; | |
1205 | break; | |
1206 | } | |
1207 | } | |
1208 | } | |
1209 | } | |
1210 | ||
1211 | return NULL; | |
1212 | } | |
1213 | ||
a6cf4e0f URS |
1214 | #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK |
1215 | #include <linux/random.h> | |
1216 | ||
1217 | static struct vmap_area * | |
1218 | find_vmap_lowest_linear_match(unsigned long size, | |
1219 | unsigned long align, unsigned long vstart) | |
1220 | { | |
1221 | struct vmap_area *va; | |
1222 | ||
1223 | list_for_each_entry(va, &free_vmap_area_list, list) { | |
1224 | if (!is_within_this_va(va, size, align, vstart)) | |
1225 | continue; | |
1226 | ||
1227 | return va; | |
1228 | } | |
1229 | ||
1230 | return NULL; | |
1231 | } | |
1232 | ||
1233 | static void | |
1234 | find_vmap_lowest_match_check(unsigned long size) | |
1235 | { | |
1236 | struct vmap_area *va_1, *va_2; | |
1237 | unsigned long vstart; | |
1238 | unsigned int rnd; | |
1239 | ||
1240 | get_random_bytes(&rnd, sizeof(rnd)); | |
1241 | vstart = VMALLOC_START + rnd; | |
1242 | ||
1243 | va_1 = find_vmap_lowest_match(size, 1, vstart); | |
1244 | va_2 = find_vmap_lowest_linear_match(size, 1, vstart); | |
1245 | ||
1246 | if (va_1 != va_2) | |
1247 | pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n", | |
1248 | va_1, va_2, vstart); | |
1249 | } | |
1250 | #endif | |
1251 | ||
68ad4a33 URS |
1252 | enum fit_type { |
1253 | NOTHING_FIT = 0, | |
1254 | FL_FIT_TYPE = 1, /* full fit */ | |
1255 | LE_FIT_TYPE = 2, /* left edge fit */ | |
1256 | RE_FIT_TYPE = 3, /* right edge fit */ | |
1257 | NE_FIT_TYPE = 4 /* no edge fit */ | |
1258 | }; | |
1259 | ||
1260 | static __always_inline enum fit_type | |
1261 | classify_va_fit_type(struct vmap_area *va, | |
1262 | unsigned long nva_start_addr, unsigned long size) | |
1263 | { | |
1264 | enum fit_type type; | |
1265 | ||
1266 | /* Check if it is within VA. */ | |
1267 | if (nva_start_addr < va->va_start || | |
1268 | nva_start_addr + size > va->va_end) | |
1269 | return NOTHING_FIT; | |
1270 | ||
1271 | /* Now classify. */ | |
1272 | if (va->va_start == nva_start_addr) { | |
1273 | if (va->va_end == nva_start_addr + size) | |
1274 | type = FL_FIT_TYPE; | |
1275 | else | |
1276 | type = LE_FIT_TYPE; | |
1277 | } else if (va->va_end == nva_start_addr + size) { | |
1278 | type = RE_FIT_TYPE; | |
1279 | } else { | |
1280 | type = NE_FIT_TYPE; | |
1281 | } | |
1282 | ||
1283 | return type; | |
1284 | } | |
1285 | ||
1286 | static __always_inline int | |
1287 | adjust_va_to_fit_type(struct vmap_area *va, | |
1288 | unsigned long nva_start_addr, unsigned long size, | |
1289 | enum fit_type type) | |
1290 | { | |
2c929233 | 1291 | struct vmap_area *lva = NULL; |
68ad4a33 URS |
1292 | |
1293 | if (type == FL_FIT_TYPE) { | |
1294 | /* | |
1295 | * No need to split VA, it fully fits. | |
1296 | * | |
1297 | * | | | |
1298 | * V NVA V | |
1299 | * |---------------| | |
1300 | */ | |
1301 | unlink_va(va, &free_vmap_area_root); | |
1302 | kmem_cache_free(vmap_area_cachep, va); | |
1303 | } else if (type == LE_FIT_TYPE) { | |
1304 | /* | |
1305 | * Split left edge of fit VA. | |
1306 | * | |
1307 | * | | | |
1308 | * V NVA V R | |
1309 | * |-------|-------| | |
1310 | */ | |
1311 | va->va_start += size; | |
1312 | } else if (type == RE_FIT_TYPE) { | |
1313 | /* | |
1314 | * Split right edge of fit VA. | |
1315 | * | |
1316 | * | | | |
1317 | * L V NVA V | |
1318 | * |-------|-------| | |
1319 | */ | |
1320 | va->va_end = nva_start_addr; | |
1321 | } else if (type == NE_FIT_TYPE) { | |
1322 | /* | |
1323 | * Split no edge of fit VA. | |
1324 | * | |
1325 | * | | | |
1326 | * L V NVA V R | |
1327 | * |---|-------|---| | |
1328 | */ | |
82dd23e8 URS |
1329 | lva = __this_cpu_xchg(ne_fit_preload_node, NULL); |
1330 | if (unlikely(!lva)) { | |
1331 | /* | |
1332 | * For percpu allocator we do not do any pre-allocation | |
1333 | * and leave it as it is. The reason is it most likely | |
1334 | * never ends up with NE_FIT_TYPE splitting. In case of | |
1335 | * percpu allocations offsets and sizes are aligned to | |
1336 | * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE | |
1337 | * are its main fitting cases. | |
1338 | * | |
1339 | * There are a few exceptions though, as an example it is | |
1340 | * a first allocation (early boot up) when we have "one" | |
1341 | * big free space that has to be split. | |
060650a2 URS |
1342 | * |
1343 | * Also we can hit this path in case of regular "vmap" | |
1344 | * allocations, if "this" current CPU was not preloaded. | |
1345 | * See the comment in alloc_vmap_area() why. If so, then | |
1346 | * GFP_NOWAIT is used instead to get an extra object for | |
1347 | * split purpose. That is rare and most time does not | |
1348 | * occur. | |
1349 | * | |
1350 | * What happens if an allocation gets failed. Basically, | |
1351 | * an "overflow" path is triggered to purge lazily freed | |
1352 | * areas to free some memory, then, the "retry" path is | |
1353 | * triggered to repeat one more time. See more details | |
1354 | * in alloc_vmap_area() function. | |
82dd23e8 URS |
1355 | */ |
1356 | lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT); | |
1357 | if (!lva) | |
1358 | return -1; | |
1359 | } | |
68ad4a33 URS |
1360 | |
1361 | /* | |
1362 | * Build the remainder. | |
1363 | */ | |
1364 | lva->va_start = va->va_start; | |
1365 | lva->va_end = nva_start_addr; | |
1366 | ||
1367 | /* | |
1368 | * Shrink this VA to remaining size. | |
1369 | */ | |
1370 | va->va_start = nva_start_addr + size; | |
1371 | } else { | |
1372 | return -1; | |
1373 | } | |
1374 | ||
1375 | if (type != FL_FIT_TYPE) { | |
1376 | augment_tree_propagate_from(va); | |
1377 | ||
2c929233 | 1378 | if (lva) /* type == NE_FIT_TYPE */ |
68ad4a33 URS |
1379 | insert_vmap_area_augment(lva, &va->rb_node, |
1380 | &free_vmap_area_root, &free_vmap_area_list); | |
1381 | } | |
1382 | ||
1383 | return 0; | |
1384 | } | |
1385 | ||
1386 | /* | |
1387 | * Returns a start address of the newly allocated area, if success. | |
1388 | * Otherwise a vend is returned that indicates failure. | |
1389 | */ | |
1390 | static __always_inline unsigned long | |
1391 | __alloc_vmap_area(unsigned long size, unsigned long align, | |
cacca6ba | 1392 | unsigned long vstart, unsigned long vend) |
68ad4a33 URS |
1393 | { |
1394 | unsigned long nva_start_addr; | |
1395 | struct vmap_area *va; | |
1396 | enum fit_type type; | |
1397 | int ret; | |
1398 | ||
1399 | va = find_vmap_lowest_match(size, align, vstart); | |
1400 | if (unlikely(!va)) | |
1401 | return vend; | |
1402 | ||
1403 | if (va->va_start > vstart) | |
1404 | nva_start_addr = ALIGN(va->va_start, align); | |
1405 | else | |
1406 | nva_start_addr = ALIGN(vstart, align); | |
1407 | ||
1408 | /* Check the "vend" restriction. */ | |
1409 | if (nva_start_addr + size > vend) | |
1410 | return vend; | |
1411 | ||
1412 | /* Classify what we have found. */ | |
1413 | type = classify_va_fit_type(va, nva_start_addr, size); | |
1414 | if (WARN_ON_ONCE(type == NOTHING_FIT)) | |
1415 | return vend; | |
1416 | ||
1417 | /* Update the free vmap_area. */ | |
1418 | ret = adjust_va_to_fit_type(va, nva_start_addr, size, type); | |
1419 | if (ret) | |
1420 | return vend; | |
1421 | ||
a6cf4e0f URS |
1422 | #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK |
1423 | find_vmap_lowest_match_check(size); | |
1424 | #endif | |
1425 | ||
68ad4a33 URS |
1426 | return nva_start_addr; |
1427 | } | |
4da56b99 | 1428 | |
d98c9e83 AR |
1429 | /* |
1430 | * Free a region of KVA allocated by alloc_vmap_area | |
1431 | */ | |
1432 | static void free_vmap_area(struct vmap_area *va) | |
1433 | { | |
1434 | /* | |
1435 | * Remove from the busy tree/list. | |
1436 | */ | |
1437 | spin_lock(&vmap_area_lock); | |
1438 | unlink_va(va, &vmap_area_root); | |
1439 | spin_unlock(&vmap_area_lock); | |
1440 | ||
1441 | /* | |
1442 | * Insert/Merge it back to the free tree/list. | |
1443 | */ | |
1444 | spin_lock(&free_vmap_area_lock); | |
96e2db45 | 1445 | merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list); |
d98c9e83 AR |
1446 | spin_unlock(&free_vmap_area_lock); |
1447 | } | |
1448 | ||
187f8cc4 URS |
1449 | static inline void |
1450 | preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node) | |
1451 | { | |
1452 | struct vmap_area *va = NULL; | |
1453 | ||
1454 | /* | |
1455 | * Preload this CPU with one extra vmap_area object. It is used | |
1456 | * when fit type of free area is NE_FIT_TYPE. It guarantees that | |
1457 | * a CPU that does an allocation is preloaded. | |
1458 | * | |
1459 | * We do it in non-atomic context, thus it allows us to use more | |
1460 | * permissive allocation masks to be more stable under low memory | |
1461 | * condition and high memory pressure. | |
1462 | */ | |
1463 | if (!this_cpu_read(ne_fit_preload_node)) | |
1464 | va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); | |
1465 | ||
1466 | spin_lock(lock); | |
1467 | ||
1468 | if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va)) | |
1469 | kmem_cache_free(vmap_area_cachep, va); | |
1470 | } | |
1471 | ||
db64fe02 NP |
1472 | /* |
1473 | * Allocate a region of KVA of the specified size and alignment, within the | |
1474 | * vstart and vend. | |
1475 | */ | |
1476 | static struct vmap_area *alloc_vmap_area(unsigned long size, | |
1477 | unsigned long align, | |
1478 | unsigned long vstart, unsigned long vend, | |
1479 | int node, gfp_t gfp_mask) | |
1480 | { | |
187f8cc4 | 1481 | struct vmap_area *va; |
1da177e4 | 1482 | unsigned long addr; |
db64fe02 | 1483 | int purged = 0; |
d98c9e83 | 1484 | int ret; |
db64fe02 | 1485 | |
7766970c | 1486 | BUG_ON(!size); |
891c49ab | 1487 | BUG_ON(offset_in_page(size)); |
89699605 | 1488 | BUG_ON(!is_power_of_2(align)); |
db64fe02 | 1489 | |
68ad4a33 URS |
1490 | if (unlikely(!vmap_initialized)) |
1491 | return ERR_PTR(-EBUSY); | |
1492 | ||
5803ed29 | 1493 | might_sleep(); |
f07116d7 | 1494 | gfp_mask = gfp_mask & GFP_RECLAIM_MASK; |
4da56b99 | 1495 | |
f07116d7 | 1496 | va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node); |
db64fe02 NP |
1497 | if (unlikely(!va)) |
1498 | return ERR_PTR(-ENOMEM); | |
1499 | ||
7f88f88f CM |
1500 | /* |
1501 | * Only scan the relevant parts containing pointers to other objects | |
1502 | * to avoid false negatives. | |
1503 | */ | |
f07116d7 | 1504 | kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask); |
7f88f88f | 1505 | |
db64fe02 | 1506 | retry: |
187f8cc4 URS |
1507 | preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node); |
1508 | addr = __alloc_vmap_area(size, align, vstart, vend); | |
1509 | spin_unlock(&free_vmap_area_lock); | |
89699605 | 1510 | |
afd07389 | 1511 | /* |
68ad4a33 URS |
1512 | * If an allocation fails, the "vend" address is |
1513 | * returned. Therefore trigger the overflow path. | |
afd07389 | 1514 | */ |
68ad4a33 | 1515 | if (unlikely(addr == vend)) |
89699605 | 1516 | goto overflow; |
db64fe02 NP |
1517 | |
1518 | va->va_start = addr; | |
1519 | va->va_end = addr + size; | |
688fcbfc | 1520 | va->vm = NULL; |
68ad4a33 | 1521 | |
e36176be URS |
1522 | spin_lock(&vmap_area_lock); |
1523 | insert_vmap_area(va, &vmap_area_root, &vmap_area_list); | |
db64fe02 NP |
1524 | spin_unlock(&vmap_area_lock); |
1525 | ||
61e16557 | 1526 | BUG_ON(!IS_ALIGNED(va->va_start, align)); |
89699605 NP |
1527 | BUG_ON(va->va_start < vstart); |
1528 | BUG_ON(va->va_end > vend); | |
1529 | ||
d98c9e83 AR |
1530 | ret = kasan_populate_vmalloc(addr, size); |
1531 | if (ret) { | |
1532 | free_vmap_area(va); | |
1533 | return ERR_PTR(ret); | |
1534 | } | |
1535 | ||
db64fe02 | 1536 | return va; |
89699605 NP |
1537 | |
1538 | overflow: | |
89699605 NP |
1539 | if (!purged) { |
1540 | purge_vmap_area_lazy(); | |
1541 | purged = 1; | |
1542 | goto retry; | |
1543 | } | |
4da56b99 CW |
1544 | |
1545 | if (gfpflags_allow_blocking(gfp_mask)) { | |
1546 | unsigned long freed = 0; | |
1547 | blocking_notifier_call_chain(&vmap_notify_list, 0, &freed); | |
1548 | if (freed > 0) { | |
1549 | purged = 0; | |
1550 | goto retry; | |
1551 | } | |
1552 | } | |
1553 | ||
03497d76 | 1554 | if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) |
756a025f JP |
1555 | pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n", |
1556 | size); | |
68ad4a33 URS |
1557 | |
1558 | kmem_cache_free(vmap_area_cachep, va); | |
89699605 | 1559 | return ERR_PTR(-EBUSY); |
db64fe02 NP |
1560 | } |
1561 | ||
4da56b99 CW |
1562 | int register_vmap_purge_notifier(struct notifier_block *nb) |
1563 | { | |
1564 | return blocking_notifier_chain_register(&vmap_notify_list, nb); | |
1565 | } | |
1566 | EXPORT_SYMBOL_GPL(register_vmap_purge_notifier); | |
1567 | ||
1568 | int unregister_vmap_purge_notifier(struct notifier_block *nb) | |
1569 | { | |
1570 | return blocking_notifier_chain_unregister(&vmap_notify_list, nb); | |
1571 | } | |
1572 | EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier); | |
1573 | ||
db64fe02 NP |
1574 | /* |
1575 | * lazy_max_pages is the maximum amount of virtual address space we gather up | |
1576 | * before attempting to purge with a TLB flush. | |
1577 | * | |
1578 | * There is a tradeoff here: a larger number will cover more kernel page tables | |
1579 | * and take slightly longer to purge, but it will linearly reduce the number of | |
1580 | * global TLB flushes that must be performed. It would seem natural to scale | |
1581 | * this number up linearly with the number of CPUs (because vmapping activity | |
1582 | * could also scale linearly with the number of CPUs), however it is likely | |
1583 | * that in practice, workloads might be constrained in other ways that mean | |
1584 | * vmap activity will not scale linearly with CPUs. Also, I want to be | |
1585 | * conservative and not introduce a big latency on huge systems, so go with | |
1586 | * a less aggressive log scale. It will still be an improvement over the old | |
1587 | * code, and it will be simple to change the scale factor if we find that it | |
1588 | * becomes a problem on bigger systems. | |
1589 | */ | |
1590 | static unsigned long lazy_max_pages(void) | |
1591 | { | |
1592 | unsigned int log; | |
1593 | ||
1594 | log = fls(num_online_cpus()); | |
1595 | ||
1596 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); | |
1597 | } | |
1598 | ||
4d36e6f8 | 1599 | static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0); |
db64fe02 | 1600 | |
0574ecd1 | 1601 | /* |
f0953a1b | 1602 | * Serialize vmap purging. There is no actual critical section protected |
0574ecd1 CH |
1603 | * by this look, but we want to avoid concurrent calls for performance |
1604 | * reasons and to make the pcpu_get_vm_areas more deterministic. | |
1605 | */ | |
f9e09977 | 1606 | static DEFINE_MUTEX(vmap_purge_lock); |
0574ecd1 | 1607 | |
02b709df NP |
1608 | /* for per-CPU blocks */ |
1609 | static void purge_fragmented_blocks_allcpus(void); | |
1610 | ||
5da96bdd | 1611 | #ifdef CONFIG_X86_64 |
3ee48b6a CW |
1612 | /* |
1613 | * called before a call to iounmap() if the caller wants vm_area_struct's | |
1614 | * immediately freed. | |
1615 | */ | |
1616 | void set_iounmap_nonlazy(void) | |
1617 | { | |
4d36e6f8 | 1618 | atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1); |
3ee48b6a | 1619 | } |
5da96bdd | 1620 | #endif /* CONFIG_X86_64 */ |
3ee48b6a | 1621 | |
db64fe02 NP |
1622 | /* |
1623 | * Purges all lazily-freed vmap areas. | |
db64fe02 | 1624 | */ |
0574ecd1 | 1625 | static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end) |
db64fe02 | 1626 | { |
4d36e6f8 | 1627 | unsigned long resched_threshold; |
96e2db45 URS |
1628 | struct list_head local_pure_list; |
1629 | struct vmap_area *va, *n_va; | |
db64fe02 | 1630 | |
0574ecd1 | 1631 | lockdep_assert_held(&vmap_purge_lock); |
02b709df | 1632 | |
96e2db45 URS |
1633 | spin_lock(&purge_vmap_area_lock); |
1634 | purge_vmap_area_root = RB_ROOT; | |
1635 | list_replace_init(&purge_vmap_area_list, &local_pure_list); | |
1636 | spin_unlock(&purge_vmap_area_lock); | |
1637 | ||
1638 | if (unlikely(list_empty(&local_pure_list))) | |
68571be9 URS |
1639 | return false; |
1640 | ||
96e2db45 URS |
1641 | start = min(start, |
1642 | list_first_entry(&local_pure_list, | |
1643 | struct vmap_area, list)->va_start); | |
1644 | ||
1645 | end = max(end, | |
1646 | list_last_entry(&local_pure_list, | |
1647 | struct vmap_area, list)->va_end); | |
db64fe02 | 1648 | |
0574ecd1 | 1649 | flush_tlb_kernel_range(start, end); |
4d36e6f8 | 1650 | resched_threshold = lazy_max_pages() << 1; |
db64fe02 | 1651 | |
e36176be | 1652 | spin_lock(&free_vmap_area_lock); |
96e2db45 | 1653 | list_for_each_entry_safe(va, n_va, &local_pure_list, list) { |
4d36e6f8 | 1654 | unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT; |
3c5c3cfb DA |
1655 | unsigned long orig_start = va->va_start; |
1656 | unsigned long orig_end = va->va_end; | |
763b218d | 1657 | |
dd3b8353 URS |
1658 | /* |
1659 | * Finally insert or merge lazily-freed area. It is | |
1660 | * detached and there is no need to "unlink" it from | |
1661 | * anything. | |
1662 | */ | |
96e2db45 URS |
1663 | va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root, |
1664 | &free_vmap_area_list); | |
3c5c3cfb | 1665 | |
9c801f61 URS |
1666 | if (!va) |
1667 | continue; | |
1668 | ||
3c5c3cfb DA |
1669 | if (is_vmalloc_or_module_addr((void *)orig_start)) |
1670 | kasan_release_vmalloc(orig_start, orig_end, | |
1671 | va->va_start, va->va_end); | |
dd3b8353 | 1672 | |
4d36e6f8 | 1673 | atomic_long_sub(nr, &vmap_lazy_nr); |
68571be9 | 1674 | |
4d36e6f8 | 1675 | if (atomic_long_read(&vmap_lazy_nr) < resched_threshold) |
e36176be | 1676 | cond_resched_lock(&free_vmap_area_lock); |
763b218d | 1677 | } |
e36176be | 1678 | spin_unlock(&free_vmap_area_lock); |
0574ecd1 | 1679 | return true; |
db64fe02 NP |
1680 | } |
1681 | ||
496850e5 NP |
1682 | /* |
1683 | * Kick off a purge of the outstanding lazy areas. Don't bother if somebody | |
1684 | * is already purging. | |
1685 | */ | |
1686 | static void try_purge_vmap_area_lazy(void) | |
1687 | { | |
f9e09977 | 1688 | if (mutex_trylock(&vmap_purge_lock)) { |
0574ecd1 | 1689 | __purge_vmap_area_lazy(ULONG_MAX, 0); |
f9e09977 | 1690 | mutex_unlock(&vmap_purge_lock); |
0574ecd1 | 1691 | } |
496850e5 NP |
1692 | } |
1693 | ||
db64fe02 NP |
1694 | /* |
1695 | * Kick off a purge of the outstanding lazy areas. | |
1696 | */ | |
1697 | static void purge_vmap_area_lazy(void) | |
1698 | { | |
f9e09977 | 1699 | mutex_lock(&vmap_purge_lock); |
0574ecd1 CH |
1700 | purge_fragmented_blocks_allcpus(); |
1701 | __purge_vmap_area_lazy(ULONG_MAX, 0); | |
f9e09977 | 1702 | mutex_unlock(&vmap_purge_lock); |
db64fe02 NP |
1703 | } |
1704 | ||
1705 | /* | |
64141da5 JF |
1706 | * Free a vmap area, caller ensuring that the area has been unmapped |
1707 | * and flush_cache_vunmap had been called for the correct range | |
1708 | * previously. | |
db64fe02 | 1709 | */ |
64141da5 | 1710 | static void free_vmap_area_noflush(struct vmap_area *va) |
db64fe02 | 1711 | { |
4d36e6f8 | 1712 | unsigned long nr_lazy; |
80c4bd7a | 1713 | |
dd3b8353 URS |
1714 | spin_lock(&vmap_area_lock); |
1715 | unlink_va(va, &vmap_area_root); | |
1716 | spin_unlock(&vmap_area_lock); | |
1717 | ||
4d36e6f8 URS |
1718 | nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >> |
1719 | PAGE_SHIFT, &vmap_lazy_nr); | |
80c4bd7a | 1720 | |
96e2db45 URS |
1721 | /* |
1722 | * Merge or place it to the purge tree/list. | |
1723 | */ | |
1724 | spin_lock(&purge_vmap_area_lock); | |
1725 | merge_or_add_vmap_area(va, | |
1726 | &purge_vmap_area_root, &purge_vmap_area_list); | |
1727 | spin_unlock(&purge_vmap_area_lock); | |
80c4bd7a | 1728 | |
96e2db45 | 1729 | /* After this point, we may free va at any time */ |
80c4bd7a | 1730 | if (unlikely(nr_lazy > lazy_max_pages())) |
496850e5 | 1731 | try_purge_vmap_area_lazy(); |
db64fe02 NP |
1732 | } |
1733 | ||
b29acbdc NP |
1734 | /* |
1735 | * Free and unmap a vmap area | |
1736 | */ | |
1737 | static void free_unmap_vmap_area(struct vmap_area *va) | |
1738 | { | |
1739 | flush_cache_vunmap(va->va_start, va->va_end); | |
4ad0ae8c | 1740 | vunmap_range_noflush(va->va_start, va->va_end); |
8e57f8ac | 1741 | if (debug_pagealloc_enabled_static()) |
82a2e924 CP |
1742 | flush_tlb_kernel_range(va->va_start, va->va_end); |
1743 | ||
c8eef01e | 1744 | free_vmap_area_noflush(va); |
b29acbdc NP |
1745 | } |
1746 | ||
db64fe02 NP |
1747 | static struct vmap_area *find_vmap_area(unsigned long addr) |
1748 | { | |
1749 | struct vmap_area *va; | |
1750 | ||
1751 | spin_lock(&vmap_area_lock); | |
1752 | va = __find_vmap_area(addr); | |
1753 | spin_unlock(&vmap_area_lock); | |
1754 | ||
1755 | return va; | |
1756 | } | |
1757 | ||
db64fe02 NP |
1758 | /*** Per cpu kva allocator ***/ |
1759 | ||
1760 | /* | |
1761 | * vmap space is limited especially on 32 bit architectures. Ensure there is | |
1762 | * room for at least 16 percpu vmap blocks per CPU. | |
1763 | */ | |
1764 | /* | |
1765 | * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able | |
1766 | * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess | |
1767 | * instead (we just need a rough idea) | |
1768 | */ | |
1769 | #if BITS_PER_LONG == 32 | |
1770 | #define VMALLOC_SPACE (128UL*1024*1024) | |
1771 | #else | |
1772 | #define VMALLOC_SPACE (128UL*1024*1024*1024) | |
1773 | #endif | |
1774 | ||
1775 | #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) | |
1776 | #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ | |
1777 | #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ | |
1778 | #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) | |
1779 | #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ | |
1780 | #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ | |
f982f915 CL |
1781 | #define VMAP_BBMAP_BITS \ |
1782 | VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ | |
1783 | VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ | |
1784 | VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) | |
db64fe02 NP |
1785 | |
1786 | #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) | |
1787 | ||
1788 | struct vmap_block_queue { | |
1789 | spinlock_t lock; | |
1790 | struct list_head free; | |
db64fe02 NP |
1791 | }; |
1792 | ||
1793 | struct vmap_block { | |
1794 | spinlock_t lock; | |
1795 | struct vmap_area *va; | |
db64fe02 | 1796 | unsigned long free, dirty; |
7d61bfe8 | 1797 | unsigned long dirty_min, dirty_max; /*< dirty range */ |
de560423 NP |
1798 | struct list_head free_list; |
1799 | struct rcu_head rcu_head; | |
02b709df | 1800 | struct list_head purge; |
db64fe02 NP |
1801 | }; |
1802 | ||
1803 | /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ | |
1804 | static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); | |
1805 | ||
1806 | /* | |
0f14599c | 1807 | * XArray of vmap blocks, indexed by address, to quickly find a vmap block |
db64fe02 NP |
1808 | * in the free path. Could get rid of this if we change the API to return a |
1809 | * "cookie" from alloc, to be passed to free. But no big deal yet. | |
1810 | */ | |
0f14599c | 1811 | static DEFINE_XARRAY(vmap_blocks); |
db64fe02 NP |
1812 | |
1813 | /* | |
1814 | * We should probably have a fallback mechanism to allocate virtual memory | |
1815 | * out of partially filled vmap blocks. However vmap block sizing should be | |
1816 | * fairly reasonable according to the vmalloc size, so it shouldn't be a | |
1817 | * big problem. | |
1818 | */ | |
1819 | ||
1820 | static unsigned long addr_to_vb_idx(unsigned long addr) | |
1821 | { | |
1822 | addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); | |
1823 | addr /= VMAP_BLOCK_SIZE; | |
1824 | return addr; | |
1825 | } | |
1826 | ||
cf725ce2 RP |
1827 | static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off) |
1828 | { | |
1829 | unsigned long addr; | |
1830 | ||
1831 | addr = va_start + (pages_off << PAGE_SHIFT); | |
1832 | BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start)); | |
1833 | return (void *)addr; | |
1834 | } | |
1835 | ||
1836 | /** | |
1837 | * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this | |
1838 | * block. Of course pages number can't exceed VMAP_BBMAP_BITS | |
1839 | * @order: how many 2^order pages should be occupied in newly allocated block | |
1840 | * @gfp_mask: flags for the page level allocator | |
1841 | * | |
a862f68a | 1842 | * Return: virtual address in a newly allocated block or ERR_PTR(-errno) |
cf725ce2 RP |
1843 | */ |
1844 | static void *new_vmap_block(unsigned int order, gfp_t gfp_mask) | |
db64fe02 NP |
1845 | { |
1846 | struct vmap_block_queue *vbq; | |
1847 | struct vmap_block *vb; | |
1848 | struct vmap_area *va; | |
1849 | unsigned long vb_idx; | |
1850 | int node, err; | |
cf725ce2 | 1851 | void *vaddr; |
db64fe02 NP |
1852 | |
1853 | node = numa_node_id(); | |
1854 | ||
1855 | vb = kmalloc_node(sizeof(struct vmap_block), | |
1856 | gfp_mask & GFP_RECLAIM_MASK, node); | |
1857 | if (unlikely(!vb)) | |
1858 | return ERR_PTR(-ENOMEM); | |
1859 | ||
1860 | va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, | |
1861 | VMALLOC_START, VMALLOC_END, | |
1862 | node, gfp_mask); | |
ddf9c6d4 | 1863 | if (IS_ERR(va)) { |
db64fe02 | 1864 | kfree(vb); |
e7d86340 | 1865 | return ERR_CAST(va); |
db64fe02 NP |
1866 | } |
1867 | ||
cf725ce2 | 1868 | vaddr = vmap_block_vaddr(va->va_start, 0); |
db64fe02 NP |
1869 | spin_lock_init(&vb->lock); |
1870 | vb->va = va; | |
cf725ce2 RP |
1871 | /* At least something should be left free */ |
1872 | BUG_ON(VMAP_BBMAP_BITS <= (1UL << order)); | |
1873 | vb->free = VMAP_BBMAP_BITS - (1UL << order); | |
db64fe02 | 1874 | vb->dirty = 0; |
7d61bfe8 RP |
1875 | vb->dirty_min = VMAP_BBMAP_BITS; |
1876 | vb->dirty_max = 0; | |
db64fe02 | 1877 | INIT_LIST_HEAD(&vb->free_list); |
db64fe02 NP |
1878 | |
1879 | vb_idx = addr_to_vb_idx(va->va_start); | |
0f14599c MWO |
1880 | err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask); |
1881 | if (err) { | |
1882 | kfree(vb); | |
1883 | free_vmap_area(va); | |
1884 | return ERR_PTR(err); | |
1885 | } | |
db64fe02 NP |
1886 | |
1887 | vbq = &get_cpu_var(vmap_block_queue); | |
db64fe02 | 1888 | spin_lock(&vbq->lock); |
68ac546f | 1889 | list_add_tail_rcu(&vb->free_list, &vbq->free); |
db64fe02 | 1890 | spin_unlock(&vbq->lock); |
3f04ba85 | 1891 | put_cpu_var(vmap_block_queue); |
db64fe02 | 1892 | |
cf725ce2 | 1893 | return vaddr; |
db64fe02 NP |
1894 | } |
1895 | ||
db64fe02 NP |
1896 | static void free_vmap_block(struct vmap_block *vb) |
1897 | { | |
1898 | struct vmap_block *tmp; | |
db64fe02 | 1899 | |
0f14599c | 1900 | tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start)); |
db64fe02 NP |
1901 | BUG_ON(tmp != vb); |
1902 | ||
64141da5 | 1903 | free_vmap_area_noflush(vb->va); |
22a3c7d1 | 1904 | kfree_rcu(vb, rcu_head); |
db64fe02 NP |
1905 | } |
1906 | ||
02b709df NP |
1907 | static void purge_fragmented_blocks(int cpu) |
1908 | { | |
1909 | LIST_HEAD(purge); | |
1910 | struct vmap_block *vb; | |
1911 | struct vmap_block *n_vb; | |
1912 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
1913 | ||
1914 | rcu_read_lock(); | |
1915 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
1916 | ||
1917 | if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) | |
1918 | continue; | |
1919 | ||
1920 | spin_lock(&vb->lock); | |
1921 | if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { | |
1922 | vb->free = 0; /* prevent further allocs after releasing lock */ | |
1923 | vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ | |
7d61bfe8 RP |
1924 | vb->dirty_min = 0; |
1925 | vb->dirty_max = VMAP_BBMAP_BITS; | |
02b709df NP |
1926 | spin_lock(&vbq->lock); |
1927 | list_del_rcu(&vb->free_list); | |
1928 | spin_unlock(&vbq->lock); | |
1929 | spin_unlock(&vb->lock); | |
1930 | list_add_tail(&vb->purge, &purge); | |
1931 | } else | |
1932 | spin_unlock(&vb->lock); | |
1933 | } | |
1934 | rcu_read_unlock(); | |
1935 | ||
1936 | list_for_each_entry_safe(vb, n_vb, &purge, purge) { | |
1937 | list_del(&vb->purge); | |
1938 | free_vmap_block(vb); | |
1939 | } | |
1940 | } | |
1941 | ||
02b709df NP |
1942 | static void purge_fragmented_blocks_allcpus(void) |
1943 | { | |
1944 | int cpu; | |
1945 | ||
1946 | for_each_possible_cpu(cpu) | |
1947 | purge_fragmented_blocks(cpu); | |
1948 | } | |
1949 | ||
db64fe02 NP |
1950 | static void *vb_alloc(unsigned long size, gfp_t gfp_mask) |
1951 | { | |
1952 | struct vmap_block_queue *vbq; | |
1953 | struct vmap_block *vb; | |
cf725ce2 | 1954 | void *vaddr = NULL; |
db64fe02 NP |
1955 | unsigned int order; |
1956 | ||
891c49ab | 1957 | BUG_ON(offset_in_page(size)); |
db64fe02 | 1958 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); |
aa91c4d8 JK |
1959 | if (WARN_ON(size == 0)) { |
1960 | /* | |
1961 | * Allocating 0 bytes isn't what caller wants since | |
1962 | * get_order(0) returns funny result. Just warn and terminate | |
1963 | * early. | |
1964 | */ | |
1965 | return NULL; | |
1966 | } | |
db64fe02 NP |
1967 | order = get_order(size); |
1968 | ||
db64fe02 NP |
1969 | rcu_read_lock(); |
1970 | vbq = &get_cpu_var(vmap_block_queue); | |
1971 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
cf725ce2 | 1972 | unsigned long pages_off; |
db64fe02 NP |
1973 | |
1974 | spin_lock(&vb->lock); | |
cf725ce2 RP |
1975 | if (vb->free < (1UL << order)) { |
1976 | spin_unlock(&vb->lock); | |
1977 | continue; | |
1978 | } | |
02b709df | 1979 | |
cf725ce2 RP |
1980 | pages_off = VMAP_BBMAP_BITS - vb->free; |
1981 | vaddr = vmap_block_vaddr(vb->va->va_start, pages_off); | |
02b709df NP |
1982 | vb->free -= 1UL << order; |
1983 | if (vb->free == 0) { | |
1984 | spin_lock(&vbq->lock); | |
1985 | list_del_rcu(&vb->free_list); | |
1986 | spin_unlock(&vbq->lock); | |
1987 | } | |
cf725ce2 | 1988 | |
02b709df NP |
1989 | spin_unlock(&vb->lock); |
1990 | break; | |
db64fe02 | 1991 | } |
02b709df | 1992 | |
3f04ba85 | 1993 | put_cpu_var(vmap_block_queue); |
db64fe02 NP |
1994 | rcu_read_unlock(); |
1995 | ||
cf725ce2 RP |
1996 | /* Allocate new block if nothing was found */ |
1997 | if (!vaddr) | |
1998 | vaddr = new_vmap_block(order, gfp_mask); | |
db64fe02 | 1999 | |
cf725ce2 | 2000 | return vaddr; |
db64fe02 NP |
2001 | } |
2002 | ||
78a0e8c4 | 2003 | static void vb_free(unsigned long addr, unsigned long size) |
db64fe02 NP |
2004 | { |
2005 | unsigned long offset; | |
db64fe02 NP |
2006 | unsigned int order; |
2007 | struct vmap_block *vb; | |
2008 | ||
891c49ab | 2009 | BUG_ON(offset_in_page(size)); |
db64fe02 | 2010 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); |
b29acbdc | 2011 | |
78a0e8c4 | 2012 | flush_cache_vunmap(addr, addr + size); |
b29acbdc | 2013 | |
db64fe02 | 2014 | order = get_order(size); |
78a0e8c4 | 2015 | offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT; |
0f14599c | 2016 | vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr)); |
db64fe02 | 2017 | |
4ad0ae8c | 2018 | vunmap_range_noflush(addr, addr + size); |
64141da5 | 2019 | |
8e57f8ac | 2020 | if (debug_pagealloc_enabled_static()) |
78a0e8c4 | 2021 | flush_tlb_kernel_range(addr, addr + size); |
82a2e924 | 2022 | |
db64fe02 | 2023 | spin_lock(&vb->lock); |
7d61bfe8 RP |
2024 | |
2025 | /* Expand dirty range */ | |
2026 | vb->dirty_min = min(vb->dirty_min, offset); | |
2027 | vb->dirty_max = max(vb->dirty_max, offset + (1UL << order)); | |
d086817d | 2028 | |
db64fe02 NP |
2029 | vb->dirty += 1UL << order; |
2030 | if (vb->dirty == VMAP_BBMAP_BITS) { | |
de560423 | 2031 | BUG_ON(vb->free); |
db64fe02 NP |
2032 | spin_unlock(&vb->lock); |
2033 | free_vmap_block(vb); | |
2034 | } else | |
2035 | spin_unlock(&vb->lock); | |
2036 | } | |
2037 | ||
868b104d | 2038 | static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush) |
db64fe02 | 2039 | { |
db64fe02 | 2040 | int cpu; |
db64fe02 | 2041 | |
9b463334 JF |
2042 | if (unlikely(!vmap_initialized)) |
2043 | return; | |
2044 | ||
5803ed29 CH |
2045 | might_sleep(); |
2046 | ||
db64fe02 NP |
2047 | for_each_possible_cpu(cpu) { |
2048 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
2049 | struct vmap_block *vb; | |
2050 | ||
2051 | rcu_read_lock(); | |
2052 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
db64fe02 | 2053 | spin_lock(&vb->lock); |
ad216c03 | 2054 | if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) { |
7d61bfe8 | 2055 | unsigned long va_start = vb->va->va_start; |
db64fe02 | 2056 | unsigned long s, e; |
b136be5e | 2057 | |
7d61bfe8 RP |
2058 | s = va_start + (vb->dirty_min << PAGE_SHIFT); |
2059 | e = va_start + (vb->dirty_max << PAGE_SHIFT); | |
db64fe02 | 2060 | |
7d61bfe8 RP |
2061 | start = min(s, start); |
2062 | end = max(e, end); | |
db64fe02 | 2063 | |
7d61bfe8 | 2064 | flush = 1; |
db64fe02 NP |
2065 | } |
2066 | spin_unlock(&vb->lock); | |
2067 | } | |
2068 | rcu_read_unlock(); | |
2069 | } | |
2070 | ||
f9e09977 | 2071 | mutex_lock(&vmap_purge_lock); |
0574ecd1 CH |
2072 | purge_fragmented_blocks_allcpus(); |
2073 | if (!__purge_vmap_area_lazy(start, end) && flush) | |
2074 | flush_tlb_kernel_range(start, end); | |
f9e09977 | 2075 | mutex_unlock(&vmap_purge_lock); |
db64fe02 | 2076 | } |
868b104d RE |
2077 | |
2078 | /** | |
2079 | * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer | |
2080 | * | |
2081 | * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily | |
2082 | * to amortize TLB flushing overheads. What this means is that any page you | |
2083 | * have now, may, in a former life, have been mapped into kernel virtual | |
2084 | * address by the vmap layer and so there might be some CPUs with TLB entries | |
2085 | * still referencing that page (additional to the regular 1:1 kernel mapping). | |
2086 | * | |
2087 | * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can | |
2088 | * be sure that none of the pages we have control over will have any aliases | |
2089 | * from the vmap layer. | |
2090 | */ | |
2091 | void vm_unmap_aliases(void) | |
2092 | { | |
2093 | unsigned long start = ULONG_MAX, end = 0; | |
2094 | int flush = 0; | |
2095 | ||
2096 | _vm_unmap_aliases(start, end, flush); | |
2097 | } | |
db64fe02 NP |
2098 | EXPORT_SYMBOL_GPL(vm_unmap_aliases); |
2099 | ||
2100 | /** | |
2101 | * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram | |
2102 | * @mem: the pointer returned by vm_map_ram | |
2103 | * @count: the count passed to that vm_map_ram call (cannot unmap partial) | |
2104 | */ | |
2105 | void vm_unmap_ram(const void *mem, unsigned int count) | |
2106 | { | |
65ee03c4 | 2107 | unsigned long size = (unsigned long)count << PAGE_SHIFT; |
db64fe02 | 2108 | unsigned long addr = (unsigned long)mem; |
9c3acf60 | 2109 | struct vmap_area *va; |
db64fe02 | 2110 | |
5803ed29 | 2111 | might_sleep(); |
db64fe02 NP |
2112 | BUG_ON(!addr); |
2113 | BUG_ON(addr < VMALLOC_START); | |
2114 | BUG_ON(addr > VMALLOC_END); | |
a1c0b1a0 | 2115 | BUG_ON(!PAGE_ALIGNED(addr)); |
db64fe02 | 2116 | |
d98c9e83 AR |
2117 | kasan_poison_vmalloc(mem, size); |
2118 | ||
9c3acf60 | 2119 | if (likely(count <= VMAP_MAX_ALLOC)) { |
05e3ff95 | 2120 | debug_check_no_locks_freed(mem, size); |
78a0e8c4 | 2121 | vb_free(addr, size); |
9c3acf60 CH |
2122 | return; |
2123 | } | |
2124 | ||
2125 | va = find_vmap_area(addr); | |
2126 | BUG_ON(!va); | |
05e3ff95 CP |
2127 | debug_check_no_locks_freed((void *)va->va_start, |
2128 | (va->va_end - va->va_start)); | |
9c3acf60 | 2129 | free_unmap_vmap_area(va); |
db64fe02 NP |
2130 | } |
2131 | EXPORT_SYMBOL(vm_unmap_ram); | |
2132 | ||
2133 | /** | |
2134 | * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) | |
2135 | * @pages: an array of pointers to the pages to be mapped | |
2136 | * @count: number of pages | |
2137 | * @node: prefer to allocate data structures on this node | |
e99c97ad | 2138 | * |
36437638 GK |
2139 | * If you use this function for less than VMAP_MAX_ALLOC pages, it could be |
2140 | * faster than vmap so it's good. But if you mix long-life and short-life | |
2141 | * objects with vm_map_ram(), it could consume lots of address space through | |
2142 | * fragmentation (especially on a 32bit machine). You could see failures in | |
2143 | * the end. Please use this function for short-lived objects. | |
2144 | * | |
e99c97ad | 2145 | * Returns: a pointer to the address that has been mapped, or %NULL on failure |
db64fe02 | 2146 | */ |
d4efd79a | 2147 | void *vm_map_ram(struct page **pages, unsigned int count, int node) |
db64fe02 | 2148 | { |
65ee03c4 | 2149 | unsigned long size = (unsigned long)count << PAGE_SHIFT; |
db64fe02 NP |
2150 | unsigned long addr; |
2151 | void *mem; | |
2152 | ||
2153 | if (likely(count <= VMAP_MAX_ALLOC)) { | |
2154 | mem = vb_alloc(size, GFP_KERNEL); | |
2155 | if (IS_ERR(mem)) | |
2156 | return NULL; | |
2157 | addr = (unsigned long)mem; | |
2158 | } else { | |
2159 | struct vmap_area *va; | |
2160 | va = alloc_vmap_area(size, PAGE_SIZE, | |
2161 | VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); | |
2162 | if (IS_ERR(va)) | |
2163 | return NULL; | |
2164 | ||
2165 | addr = va->va_start; | |
2166 | mem = (void *)addr; | |
2167 | } | |
d98c9e83 AR |
2168 | |
2169 | kasan_unpoison_vmalloc(mem, size); | |
2170 | ||
b67177ec NP |
2171 | if (vmap_pages_range(addr, addr + size, PAGE_KERNEL, |
2172 | pages, PAGE_SHIFT) < 0) { | |
db64fe02 NP |
2173 | vm_unmap_ram(mem, count); |
2174 | return NULL; | |
2175 | } | |
b67177ec | 2176 | |
db64fe02 NP |
2177 | return mem; |
2178 | } | |
2179 | EXPORT_SYMBOL(vm_map_ram); | |
2180 | ||
4341fa45 | 2181 | static struct vm_struct *vmlist __initdata; |
92eac168 | 2182 | |
121e6f32 NP |
2183 | static inline unsigned int vm_area_page_order(struct vm_struct *vm) |
2184 | { | |
2185 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC | |
2186 | return vm->page_order; | |
2187 | #else | |
2188 | return 0; | |
2189 | #endif | |
2190 | } | |
2191 | ||
2192 | static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order) | |
2193 | { | |
2194 | #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC | |
2195 | vm->page_order = order; | |
2196 | #else | |
2197 | BUG_ON(order != 0); | |
2198 | #endif | |
2199 | } | |
2200 | ||
be9b7335 NP |
2201 | /** |
2202 | * vm_area_add_early - add vmap area early during boot | |
2203 | * @vm: vm_struct to add | |
2204 | * | |
2205 | * This function is used to add fixed kernel vm area to vmlist before | |
2206 | * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags | |
2207 | * should contain proper values and the other fields should be zero. | |
2208 | * | |
2209 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
2210 | */ | |
2211 | void __init vm_area_add_early(struct vm_struct *vm) | |
2212 | { | |
2213 | struct vm_struct *tmp, **p; | |
2214 | ||
2215 | BUG_ON(vmap_initialized); | |
2216 | for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { | |
2217 | if (tmp->addr >= vm->addr) { | |
2218 | BUG_ON(tmp->addr < vm->addr + vm->size); | |
2219 | break; | |
2220 | } else | |
2221 | BUG_ON(tmp->addr + tmp->size > vm->addr); | |
2222 | } | |
2223 | vm->next = *p; | |
2224 | *p = vm; | |
2225 | } | |
2226 | ||
f0aa6617 TH |
2227 | /** |
2228 | * vm_area_register_early - register vmap area early during boot | |
2229 | * @vm: vm_struct to register | |
c0c0a293 | 2230 | * @align: requested alignment |
f0aa6617 TH |
2231 | * |
2232 | * This function is used to register kernel vm area before | |
2233 | * vmalloc_init() is called. @vm->size and @vm->flags should contain | |
2234 | * proper values on entry and other fields should be zero. On return, | |
2235 | * vm->addr contains the allocated address. | |
2236 | * | |
2237 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
2238 | */ | |
c0c0a293 | 2239 | void __init vm_area_register_early(struct vm_struct *vm, size_t align) |
f0aa6617 TH |
2240 | { |
2241 | static size_t vm_init_off __initdata; | |
c0c0a293 TH |
2242 | unsigned long addr; |
2243 | ||
2244 | addr = ALIGN(VMALLOC_START + vm_init_off, align); | |
2245 | vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; | |
f0aa6617 | 2246 | |
c0c0a293 | 2247 | vm->addr = (void *)addr; |
f0aa6617 | 2248 | |
be9b7335 | 2249 | vm_area_add_early(vm); |
f0aa6617 TH |
2250 | } |
2251 | ||
68ad4a33 URS |
2252 | static void vmap_init_free_space(void) |
2253 | { | |
2254 | unsigned long vmap_start = 1; | |
2255 | const unsigned long vmap_end = ULONG_MAX; | |
2256 | struct vmap_area *busy, *free; | |
2257 | ||
2258 | /* | |
2259 | * B F B B B F | |
2260 | * -|-----|.....|-----|-----|-----|.....|- | |
2261 | * | The KVA space | | |
2262 | * |<--------------------------------->| | |
2263 | */ | |
2264 | list_for_each_entry(busy, &vmap_area_list, list) { | |
2265 | if (busy->va_start - vmap_start > 0) { | |
2266 | free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); | |
2267 | if (!WARN_ON_ONCE(!free)) { | |
2268 | free->va_start = vmap_start; | |
2269 | free->va_end = busy->va_start; | |
2270 | ||
2271 | insert_vmap_area_augment(free, NULL, | |
2272 | &free_vmap_area_root, | |
2273 | &free_vmap_area_list); | |
2274 | } | |
2275 | } | |
2276 | ||
2277 | vmap_start = busy->va_end; | |
2278 | } | |
2279 | ||
2280 | if (vmap_end - vmap_start > 0) { | |
2281 | free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); | |
2282 | if (!WARN_ON_ONCE(!free)) { | |
2283 | free->va_start = vmap_start; | |
2284 | free->va_end = vmap_end; | |
2285 | ||
2286 | insert_vmap_area_augment(free, NULL, | |
2287 | &free_vmap_area_root, | |
2288 | &free_vmap_area_list); | |
2289 | } | |
2290 | } | |
2291 | } | |
2292 | ||
db64fe02 NP |
2293 | void __init vmalloc_init(void) |
2294 | { | |
822c18f2 IK |
2295 | struct vmap_area *va; |
2296 | struct vm_struct *tmp; | |
db64fe02 NP |
2297 | int i; |
2298 | ||
68ad4a33 URS |
2299 | /* |
2300 | * Create the cache for vmap_area objects. | |
2301 | */ | |
2302 | vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC); | |
2303 | ||
db64fe02 NP |
2304 | for_each_possible_cpu(i) { |
2305 | struct vmap_block_queue *vbq; | |
32fcfd40 | 2306 | struct vfree_deferred *p; |
db64fe02 NP |
2307 | |
2308 | vbq = &per_cpu(vmap_block_queue, i); | |
2309 | spin_lock_init(&vbq->lock); | |
2310 | INIT_LIST_HEAD(&vbq->free); | |
32fcfd40 AV |
2311 | p = &per_cpu(vfree_deferred, i); |
2312 | init_llist_head(&p->list); | |
2313 | INIT_WORK(&p->wq, free_work); | |
db64fe02 | 2314 | } |
9b463334 | 2315 | |
822c18f2 IK |
2316 | /* Import existing vmlist entries. */ |
2317 | for (tmp = vmlist; tmp; tmp = tmp->next) { | |
68ad4a33 URS |
2318 | va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT); |
2319 | if (WARN_ON_ONCE(!va)) | |
2320 | continue; | |
2321 | ||
822c18f2 IK |
2322 | va->va_start = (unsigned long)tmp->addr; |
2323 | va->va_end = va->va_start + tmp->size; | |
dbda591d | 2324 | va->vm = tmp; |
68ad4a33 | 2325 | insert_vmap_area(va, &vmap_area_root, &vmap_area_list); |
822c18f2 | 2326 | } |
ca23e405 | 2327 | |
68ad4a33 URS |
2328 | /* |
2329 | * Now we can initialize a free vmap space. | |
2330 | */ | |
2331 | vmap_init_free_space(); | |
9b463334 | 2332 | vmap_initialized = true; |
db64fe02 NP |
2333 | } |
2334 | ||
e36176be URS |
2335 | static inline void setup_vmalloc_vm_locked(struct vm_struct *vm, |
2336 | struct vmap_area *va, unsigned long flags, const void *caller) | |
cf88c790 | 2337 | { |
cf88c790 TH |
2338 | vm->flags = flags; |
2339 | vm->addr = (void *)va->va_start; | |
2340 | vm->size = va->va_end - va->va_start; | |
2341 | vm->caller = caller; | |
db1aecaf | 2342 | va->vm = vm; |
e36176be URS |
2343 | } |
2344 | ||
2345 | static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, | |
2346 | unsigned long flags, const void *caller) | |
2347 | { | |
2348 | spin_lock(&vmap_area_lock); | |
2349 | setup_vmalloc_vm_locked(vm, va, flags, caller); | |
c69480ad | 2350 | spin_unlock(&vmap_area_lock); |
f5252e00 | 2351 | } |
cf88c790 | 2352 | |
20fc02b4 | 2353 | static void clear_vm_uninitialized_flag(struct vm_struct *vm) |
f5252e00 | 2354 | { |
d4033afd | 2355 | /* |
20fc02b4 | 2356 | * Before removing VM_UNINITIALIZED, |
d4033afd JK |
2357 | * we should make sure that vm has proper values. |
2358 | * Pair with smp_rmb() in show_numa_info(). | |
2359 | */ | |
2360 | smp_wmb(); | |
20fc02b4 | 2361 | vm->flags &= ~VM_UNINITIALIZED; |
cf88c790 TH |
2362 | } |
2363 | ||
db64fe02 | 2364 | static struct vm_struct *__get_vm_area_node(unsigned long size, |
7ca3027b DA |
2365 | unsigned long align, unsigned long shift, unsigned long flags, |
2366 | unsigned long start, unsigned long end, int node, | |
2367 | gfp_t gfp_mask, const void *caller) | |
db64fe02 | 2368 | { |
0006526d | 2369 | struct vmap_area *va; |
db64fe02 | 2370 | struct vm_struct *area; |
d98c9e83 | 2371 | unsigned long requested_size = size; |
1da177e4 | 2372 | |
52fd24ca | 2373 | BUG_ON(in_interrupt()); |
7ca3027b | 2374 | size = ALIGN(size, 1ul << shift); |
31be8309 OH |
2375 | if (unlikely(!size)) |
2376 | return NULL; | |
1da177e4 | 2377 | |
252e5c6e | 2378 | if (flags & VM_IOREMAP) |
2379 | align = 1ul << clamp_t(int, get_count_order_long(size), | |
2380 | PAGE_SHIFT, IOREMAP_MAX_ORDER); | |
2381 | ||
cf88c790 | 2382 | area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); |
1da177e4 LT |
2383 | if (unlikely(!area)) |
2384 | return NULL; | |
2385 | ||
71394fe5 AR |
2386 | if (!(flags & VM_NO_GUARD)) |
2387 | size += PAGE_SIZE; | |
1da177e4 | 2388 | |
db64fe02 NP |
2389 | va = alloc_vmap_area(size, align, start, end, node, gfp_mask); |
2390 | if (IS_ERR(va)) { | |
2391 | kfree(area); | |
2392 | return NULL; | |
1da177e4 | 2393 | } |
1da177e4 | 2394 | |
d98c9e83 | 2395 | kasan_unpoison_vmalloc((void *)va->va_start, requested_size); |
f5252e00 | 2396 | |
d98c9e83 | 2397 | setup_vmalloc_vm(area, va, flags, caller); |
3c5c3cfb | 2398 | |
1da177e4 | 2399 | return area; |
1da177e4 LT |
2400 | } |
2401 | ||
c2968612 BH |
2402 | struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, |
2403 | unsigned long start, unsigned long end, | |
5e6cafc8 | 2404 | const void *caller) |
c2968612 | 2405 | { |
7ca3027b DA |
2406 | return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end, |
2407 | NUMA_NO_NODE, GFP_KERNEL, caller); | |
c2968612 BH |
2408 | } |
2409 | ||
1da177e4 | 2410 | /** |
92eac168 MR |
2411 | * get_vm_area - reserve a contiguous kernel virtual area |
2412 | * @size: size of the area | |
2413 | * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC | |
1da177e4 | 2414 | * |
92eac168 MR |
2415 | * Search an area of @size in the kernel virtual mapping area, |
2416 | * and reserved it for out purposes. Returns the area descriptor | |
2417 | * on success or %NULL on failure. | |
a862f68a MR |
2418 | * |
2419 | * Return: the area descriptor on success or %NULL on failure. | |
1da177e4 LT |
2420 | */ |
2421 | struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) | |
2422 | { | |
7ca3027b DA |
2423 | return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, |
2424 | VMALLOC_START, VMALLOC_END, | |
00ef2d2f DR |
2425 | NUMA_NO_NODE, GFP_KERNEL, |
2426 | __builtin_return_address(0)); | |
23016969 CL |
2427 | } |
2428 | ||
2429 | struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, | |
5e6cafc8 | 2430 | const void *caller) |
23016969 | 2431 | { |
7ca3027b DA |
2432 | return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, |
2433 | VMALLOC_START, VMALLOC_END, | |
00ef2d2f | 2434 | NUMA_NO_NODE, GFP_KERNEL, caller); |
1da177e4 LT |
2435 | } |
2436 | ||
e9da6e99 | 2437 | /** |
92eac168 MR |
2438 | * find_vm_area - find a continuous kernel virtual area |
2439 | * @addr: base address | |
e9da6e99 | 2440 | * |
92eac168 MR |
2441 | * Search for the kernel VM area starting at @addr, and return it. |
2442 | * It is up to the caller to do all required locking to keep the returned | |
2443 | * pointer valid. | |
a862f68a | 2444 | * |
74640617 | 2445 | * Return: the area descriptor on success or %NULL on failure. |
e9da6e99 MS |
2446 | */ |
2447 | struct vm_struct *find_vm_area(const void *addr) | |
83342314 | 2448 | { |
db64fe02 | 2449 | struct vmap_area *va; |
83342314 | 2450 | |
db64fe02 | 2451 | va = find_vmap_area((unsigned long)addr); |
688fcbfc PL |
2452 | if (!va) |
2453 | return NULL; | |
1da177e4 | 2454 | |
688fcbfc | 2455 | return va->vm; |
1da177e4 LT |
2456 | } |
2457 | ||
7856dfeb | 2458 | /** |
92eac168 MR |
2459 | * remove_vm_area - find and remove a continuous kernel virtual area |
2460 | * @addr: base address | |
7856dfeb | 2461 | * |
92eac168 MR |
2462 | * Search for the kernel VM area starting at @addr, and remove it. |
2463 | * This function returns the found VM area, but using it is NOT safe | |
2464 | * on SMP machines, except for its size or flags. | |
a862f68a | 2465 | * |
74640617 | 2466 | * Return: the area descriptor on success or %NULL on failure. |
7856dfeb | 2467 | */ |
b3bdda02 | 2468 | struct vm_struct *remove_vm_area(const void *addr) |
7856dfeb | 2469 | { |
db64fe02 NP |
2470 | struct vmap_area *va; |
2471 | ||
5803ed29 CH |
2472 | might_sleep(); |
2473 | ||
dd3b8353 URS |
2474 | spin_lock(&vmap_area_lock); |
2475 | va = __find_vmap_area((unsigned long)addr); | |
688fcbfc | 2476 | if (va && va->vm) { |
db1aecaf | 2477 | struct vm_struct *vm = va->vm; |
f5252e00 | 2478 | |
c69480ad | 2479 | va->vm = NULL; |
c69480ad JK |
2480 | spin_unlock(&vmap_area_lock); |
2481 | ||
a5af5aa8 | 2482 | kasan_free_shadow(vm); |
dd32c279 | 2483 | free_unmap_vmap_area(va); |
dd32c279 | 2484 | |
db64fe02 NP |
2485 | return vm; |
2486 | } | |
dd3b8353 URS |
2487 | |
2488 | spin_unlock(&vmap_area_lock); | |
db64fe02 | 2489 | return NULL; |
7856dfeb AK |
2490 | } |
2491 | ||
868b104d RE |
2492 | static inline void set_area_direct_map(const struct vm_struct *area, |
2493 | int (*set_direct_map)(struct page *page)) | |
2494 | { | |
2495 | int i; | |
2496 | ||
121e6f32 | 2497 | /* HUGE_VMALLOC passes small pages to set_direct_map */ |
868b104d RE |
2498 | for (i = 0; i < area->nr_pages; i++) |
2499 | if (page_address(area->pages[i])) | |
2500 | set_direct_map(area->pages[i]); | |
2501 | } | |
2502 | ||
2503 | /* Handle removing and resetting vm mappings related to the vm_struct. */ | |
2504 | static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages) | |
2505 | { | |
868b104d | 2506 | unsigned long start = ULONG_MAX, end = 0; |
121e6f32 | 2507 | unsigned int page_order = vm_area_page_order(area); |
868b104d | 2508 | int flush_reset = area->flags & VM_FLUSH_RESET_PERMS; |
31e67340 | 2509 | int flush_dmap = 0; |
868b104d RE |
2510 | int i; |
2511 | ||
868b104d RE |
2512 | remove_vm_area(area->addr); |
2513 | ||
2514 | /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */ | |
2515 | if (!flush_reset) | |
2516 | return; | |
2517 | ||
2518 | /* | |
2519 | * If not deallocating pages, just do the flush of the VM area and | |
2520 | * return. | |
2521 | */ | |
2522 | if (!deallocate_pages) { | |
2523 | vm_unmap_aliases(); | |
2524 | return; | |
2525 | } | |
2526 | ||
2527 | /* | |
2528 | * If execution gets here, flush the vm mapping and reset the direct | |
2529 | * map. Find the start and end range of the direct mappings to make sure | |
2530 | * the vm_unmap_aliases() flush includes the direct map. | |
2531 | */ | |
121e6f32 | 2532 | for (i = 0; i < area->nr_pages; i += 1U << page_order) { |
8e41f872 RE |
2533 | unsigned long addr = (unsigned long)page_address(area->pages[i]); |
2534 | if (addr) { | |
121e6f32 NP |
2535 | unsigned long page_size; |
2536 | ||
2537 | page_size = PAGE_SIZE << page_order; | |
868b104d | 2538 | start = min(addr, start); |
121e6f32 | 2539 | end = max(addr + page_size, end); |
31e67340 | 2540 | flush_dmap = 1; |
868b104d RE |
2541 | } |
2542 | } | |
2543 | ||
2544 | /* | |
2545 | * Set direct map to something invalid so that it won't be cached if | |
2546 | * there are any accesses after the TLB flush, then flush the TLB and | |
2547 | * reset the direct map permissions to the default. | |
2548 | */ | |
2549 | set_area_direct_map(area, set_direct_map_invalid_noflush); | |
31e67340 | 2550 | _vm_unmap_aliases(start, end, flush_dmap); |
868b104d RE |
2551 | set_area_direct_map(area, set_direct_map_default_noflush); |
2552 | } | |
2553 | ||
b3bdda02 | 2554 | static void __vunmap(const void *addr, int deallocate_pages) |
1da177e4 LT |
2555 | { |
2556 | struct vm_struct *area; | |
2557 | ||
2558 | if (!addr) | |
2559 | return; | |
2560 | ||
e69e9d4a | 2561 | if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", |
ab15d9b4 | 2562 | addr)) |
1da177e4 | 2563 | return; |
1da177e4 | 2564 | |
6ade2032 | 2565 | area = find_vm_area(addr); |
1da177e4 | 2566 | if (unlikely(!area)) { |
4c8573e2 | 2567 | WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", |
1da177e4 | 2568 | addr); |
1da177e4 LT |
2569 | return; |
2570 | } | |
2571 | ||
05e3ff95 CP |
2572 | debug_check_no_locks_freed(area->addr, get_vm_area_size(area)); |
2573 | debug_check_no_obj_freed(area->addr, get_vm_area_size(area)); | |
9a11b49a | 2574 | |
c041098c | 2575 | kasan_poison_vmalloc(area->addr, get_vm_area_size(area)); |
3c5c3cfb | 2576 | |
868b104d RE |
2577 | vm_remove_mappings(area, deallocate_pages); |
2578 | ||
1da177e4 | 2579 | if (deallocate_pages) { |
121e6f32 | 2580 | unsigned int page_order = vm_area_page_order(area); |
1da177e4 LT |
2581 | int i; |
2582 | ||
121e6f32 | 2583 | for (i = 0; i < area->nr_pages; i += 1U << page_order) { |
bf53d6f8 CL |
2584 | struct page *page = area->pages[i]; |
2585 | ||
2586 | BUG_ON(!page); | |
121e6f32 | 2587 | __free_pages(page, page_order); |
a850e932 | 2588 | cond_resched(); |
1da177e4 | 2589 | } |
97105f0a | 2590 | atomic_long_sub(area->nr_pages, &nr_vmalloc_pages); |
1da177e4 | 2591 | |
244d63ee | 2592 | kvfree(area->pages); |
1da177e4 LT |
2593 | } |
2594 | ||
2595 | kfree(area); | |
1da177e4 | 2596 | } |
bf22e37a AR |
2597 | |
2598 | static inline void __vfree_deferred(const void *addr) | |
2599 | { | |
2600 | /* | |
2601 | * Use raw_cpu_ptr() because this can be called from preemptible | |
2602 | * context. Preemption is absolutely fine here, because the llist_add() | |
2603 | * implementation is lockless, so it works even if we are adding to | |
73221d88 | 2604 | * another cpu's list. schedule_work() should be fine with this too. |
bf22e37a AR |
2605 | */ |
2606 | struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred); | |
2607 | ||
2608 | if (llist_add((struct llist_node *)addr, &p->list)) | |
2609 | schedule_work(&p->wq); | |
2610 | } | |
2611 | ||
2612 | /** | |
92eac168 MR |
2613 | * vfree_atomic - release memory allocated by vmalloc() |
2614 | * @addr: memory base address | |
bf22e37a | 2615 | * |
92eac168 MR |
2616 | * This one is just like vfree() but can be called in any atomic context |
2617 | * except NMIs. | |
bf22e37a AR |
2618 | */ |
2619 | void vfree_atomic(const void *addr) | |
2620 | { | |
2621 | BUG_ON(in_nmi()); | |
2622 | ||
2623 | kmemleak_free(addr); | |
2624 | ||
2625 | if (!addr) | |
2626 | return; | |
2627 | __vfree_deferred(addr); | |
2628 | } | |
2629 | ||
c67dc624 RP |
2630 | static void __vfree(const void *addr) |
2631 | { | |
2632 | if (unlikely(in_interrupt())) | |
2633 | __vfree_deferred(addr); | |
2634 | else | |
2635 | __vunmap(addr, 1); | |
2636 | } | |
2637 | ||
1da177e4 | 2638 | /** |
fa307474 MWO |
2639 | * vfree - Release memory allocated by vmalloc() |
2640 | * @addr: Memory base address | |
1da177e4 | 2641 | * |
fa307474 MWO |
2642 | * Free the virtually continuous memory area starting at @addr, as obtained |
2643 | * from one of the vmalloc() family of APIs. This will usually also free the | |
2644 | * physical memory underlying the virtual allocation, but that memory is | |
2645 | * reference counted, so it will not be freed until the last user goes away. | |
1da177e4 | 2646 | * |
fa307474 | 2647 | * If @addr is NULL, no operation is performed. |
c9fcee51 | 2648 | * |
fa307474 | 2649 | * Context: |
92eac168 | 2650 | * May sleep if called *not* from interrupt context. |
fa307474 MWO |
2651 | * Must not be called in NMI context (strictly speaking, it could be |
2652 | * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling | |
f0953a1b | 2653 | * conventions for vfree() arch-dependent would be a really bad idea). |
1da177e4 | 2654 | */ |
b3bdda02 | 2655 | void vfree(const void *addr) |
1da177e4 | 2656 | { |
32fcfd40 | 2657 | BUG_ON(in_nmi()); |
89219d37 CM |
2658 | |
2659 | kmemleak_free(addr); | |
2660 | ||
a8dda165 AR |
2661 | might_sleep_if(!in_interrupt()); |
2662 | ||
32fcfd40 AV |
2663 | if (!addr) |
2664 | return; | |
c67dc624 RP |
2665 | |
2666 | __vfree(addr); | |
1da177e4 | 2667 | } |
1da177e4 LT |
2668 | EXPORT_SYMBOL(vfree); |
2669 | ||
2670 | /** | |
92eac168 MR |
2671 | * vunmap - release virtual mapping obtained by vmap() |
2672 | * @addr: memory base address | |
1da177e4 | 2673 | * |
92eac168 MR |
2674 | * Free the virtually contiguous memory area starting at @addr, |
2675 | * which was created from the page array passed to vmap(). | |
1da177e4 | 2676 | * |
92eac168 | 2677 | * Must not be called in interrupt context. |
1da177e4 | 2678 | */ |
b3bdda02 | 2679 | void vunmap(const void *addr) |
1da177e4 LT |
2680 | { |
2681 | BUG_ON(in_interrupt()); | |
34754b69 | 2682 | might_sleep(); |
32fcfd40 AV |
2683 | if (addr) |
2684 | __vunmap(addr, 0); | |
1da177e4 | 2685 | } |
1da177e4 LT |
2686 | EXPORT_SYMBOL(vunmap); |
2687 | ||
2688 | /** | |
92eac168 MR |
2689 | * vmap - map an array of pages into virtually contiguous space |
2690 | * @pages: array of page pointers | |
2691 | * @count: number of pages to map | |
2692 | * @flags: vm_area->flags | |
2693 | * @prot: page protection for the mapping | |
2694 | * | |
b944afc9 CH |
2695 | * Maps @count pages from @pages into contiguous kernel virtual space. |
2696 | * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself | |
2697 | * (which must be kmalloc or vmalloc memory) and one reference per pages in it | |
2698 | * are transferred from the caller to vmap(), and will be freed / dropped when | |
2699 | * vfree() is called on the return value. | |
a862f68a MR |
2700 | * |
2701 | * Return: the address of the area or %NULL on failure | |
1da177e4 LT |
2702 | */ |
2703 | void *vmap(struct page **pages, unsigned int count, | |
92eac168 | 2704 | unsigned long flags, pgprot_t prot) |
1da177e4 LT |
2705 | { |
2706 | struct vm_struct *area; | |
b67177ec | 2707 | unsigned long addr; |
65ee03c4 | 2708 | unsigned long size; /* In bytes */ |
1da177e4 | 2709 | |
34754b69 PZ |
2710 | might_sleep(); |
2711 | ||
ca79b0c2 | 2712 | if (count > totalram_pages()) |
1da177e4 LT |
2713 | return NULL; |
2714 | ||
65ee03c4 GJM |
2715 | size = (unsigned long)count << PAGE_SHIFT; |
2716 | area = get_vm_area_caller(size, flags, __builtin_return_address(0)); | |
1da177e4 LT |
2717 | if (!area) |
2718 | return NULL; | |
23016969 | 2719 | |
b67177ec NP |
2720 | addr = (unsigned long)area->addr; |
2721 | if (vmap_pages_range(addr, addr + size, pgprot_nx(prot), | |
2722 | pages, PAGE_SHIFT) < 0) { | |
1da177e4 LT |
2723 | vunmap(area->addr); |
2724 | return NULL; | |
2725 | } | |
2726 | ||
c22ee528 | 2727 | if (flags & VM_MAP_PUT_PAGES) { |
b944afc9 | 2728 | area->pages = pages; |
c22ee528 ML |
2729 | area->nr_pages = count; |
2730 | } | |
1da177e4 LT |
2731 | return area->addr; |
2732 | } | |
1da177e4 LT |
2733 | EXPORT_SYMBOL(vmap); |
2734 | ||
3e9a9e25 CH |
2735 | #ifdef CONFIG_VMAP_PFN |
2736 | struct vmap_pfn_data { | |
2737 | unsigned long *pfns; | |
2738 | pgprot_t prot; | |
2739 | unsigned int idx; | |
2740 | }; | |
2741 | ||
2742 | static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private) | |
2743 | { | |
2744 | struct vmap_pfn_data *data = private; | |
2745 | ||
2746 | if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx]))) | |
2747 | return -EINVAL; | |
2748 | *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot)); | |
2749 | return 0; | |
2750 | } | |
2751 | ||
2752 | /** | |
2753 | * vmap_pfn - map an array of PFNs into virtually contiguous space | |
2754 | * @pfns: array of PFNs | |
2755 | * @count: number of pages to map | |
2756 | * @prot: page protection for the mapping | |
2757 | * | |
2758 | * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns | |
2759 | * the start address of the mapping. | |
2760 | */ | |
2761 | void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot) | |
2762 | { | |
2763 | struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) }; | |
2764 | struct vm_struct *area; | |
2765 | ||
2766 | area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP, | |
2767 | __builtin_return_address(0)); | |
2768 | if (!area) | |
2769 | return NULL; | |
2770 | if (apply_to_page_range(&init_mm, (unsigned long)area->addr, | |
2771 | count * PAGE_SIZE, vmap_pfn_apply, &data)) { | |
2772 | free_vm_area(area); | |
2773 | return NULL; | |
2774 | } | |
2775 | return area->addr; | |
2776 | } | |
2777 | EXPORT_SYMBOL_GPL(vmap_pfn); | |
2778 | #endif /* CONFIG_VMAP_PFN */ | |
2779 | ||
12b9f873 UR |
2780 | static inline unsigned int |
2781 | vm_area_alloc_pages(gfp_t gfp, int nid, | |
2782 | unsigned int order, unsigned long nr_pages, struct page **pages) | |
2783 | { | |
2784 | unsigned int nr_allocated = 0; | |
2785 | ||
2786 | /* | |
2787 | * For order-0 pages we make use of bulk allocator, if | |
2788 | * the page array is partly or not at all populated due | |
2789 | * to fails, fallback to a single page allocator that is | |
2790 | * more permissive. | |
2791 | */ | |
2792 | if (!order) | |
2793 | nr_allocated = alloc_pages_bulk_array_node( | |
2794 | gfp, nid, nr_pages, pages); | |
2795 | else | |
2796 | /* | |
2797 | * Compound pages required for remap_vmalloc_page if | |
2798 | * high-order pages. | |
2799 | */ | |
2800 | gfp |= __GFP_COMP; | |
2801 | ||
2802 | /* High-order pages or fallback path if "bulk" fails. */ | |
2803 | while (nr_allocated < nr_pages) { | |
2804 | struct page *page; | |
2805 | int i; | |
2806 | ||
2807 | page = alloc_pages_node(nid, gfp, order); | |
2808 | if (unlikely(!page)) | |
2809 | break; | |
2810 | ||
2811 | /* | |
2812 | * Careful, we allocate and map page-order pages, but | |
2813 | * tracking is done per PAGE_SIZE page so as to keep the | |
2814 | * vm_struct APIs independent of the physical/mapped size. | |
2815 | */ | |
2816 | for (i = 0; i < (1U << order); i++) | |
2817 | pages[nr_allocated + i] = page + i; | |
2818 | ||
2819 | if (gfpflags_allow_blocking(gfp)) | |
2820 | cond_resched(); | |
2821 | ||
2822 | nr_allocated += 1U << order; | |
2823 | } | |
2824 | ||
2825 | return nr_allocated; | |
2826 | } | |
2827 | ||
e31d9eb5 | 2828 | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, |
121e6f32 NP |
2829 | pgprot_t prot, unsigned int page_shift, |
2830 | int node) | |
1da177e4 | 2831 | { |
930f036b | 2832 | const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; |
121e6f32 NP |
2833 | unsigned long addr = (unsigned long)area->addr; |
2834 | unsigned long size = get_vm_area_size(area); | |
34fe6537 | 2835 | unsigned long array_size; |
121e6f32 NP |
2836 | unsigned int nr_small_pages = size >> PAGE_SHIFT; |
2837 | unsigned int page_order; | |
1da177e4 | 2838 | |
121e6f32 | 2839 | array_size = (unsigned long)nr_small_pages * sizeof(struct page *); |
f255935b CH |
2840 | gfp_mask |= __GFP_NOWARN; |
2841 | if (!(gfp_mask & (GFP_DMA | GFP_DMA32))) | |
2842 | gfp_mask |= __GFP_HIGHMEM; | |
1da177e4 | 2843 | |
1da177e4 | 2844 | /* Please note that the recursion is strictly bounded. */ |
8757d5fa | 2845 | if (array_size > PAGE_SIZE) { |
5c1f4e69 | 2846 | area->pages = __vmalloc_node(array_size, 1, nested_gfp, node, |
f255935b | 2847 | area->caller); |
286e1ea3 | 2848 | } else { |
5c1f4e69 | 2849 | area->pages = kmalloc_node(array_size, nested_gfp, node); |
286e1ea3 | 2850 | } |
7ea36242 | 2851 | |
5c1f4e69 | 2852 | if (!area->pages) { |
d70bec8c | 2853 | warn_alloc(gfp_mask, NULL, |
f4bdfeaf URS |
2854 | "vmalloc error: size %lu, failed to allocated page array size %lu", |
2855 | nr_small_pages * PAGE_SIZE, array_size); | |
cd61413b | 2856 | free_vm_area(area); |
1da177e4 LT |
2857 | return NULL; |
2858 | } | |
1da177e4 | 2859 | |
121e6f32 | 2860 | set_vm_area_page_order(area, page_shift - PAGE_SHIFT); |
121e6f32 | 2861 | page_order = vm_area_page_order(area); |
bf53d6f8 | 2862 | |
12b9f873 UR |
2863 | area->nr_pages = vm_area_alloc_pages(gfp_mask, node, |
2864 | page_order, nr_small_pages, area->pages); | |
5c1f4e69 | 2865 | |
97105f0a | 2866 | atomic_long_add(area->nr_pages, &nr_vmalloc_pages); |
1da177e4 | 2867 | |
5c1f4e69 URS |
2868 | /* |
2869 | * If not enough pages were obtained to accomplish an | |
2870 | * allocation request, free them via __vfree() if any. | |
2871 | */ | |
2872 | if (area->nr_pages != nr_small_pages) { | |
2873 | warn_alloc(gfp_mask, NULL, | |
f4bdfeaf | 2874 | "vmalloc error: size %lu, page order %u, failed to allocate pages", |
5c1f4e69 URS |
2875 | area->nr_pages * PAGE_SIZE, page_order); |
2876 | goto fail; | |
2877 | } | |
2878 | ||
12b9f873 UR |
2879 | if (vmap_pages_range(addr, addr + size, prot, area->pages, |
2880 | page_shift) < 0) { | |
d70bec8c | 2881 | warn_alloc(gfp_mask, NULL, |
f4bdfeaf URS |
2882 | "vmalloc error: size %lu, failed to map pages", |
2883 | area->nr_pages * PAGE_SIZE); | |
1da177e4 | 2884 | goto fail; |
d70bec8c | 2885 | } |
ed1f324c | 2886 | |
1da177e4 LT |
2887 | return area->addr; |
2888 | ||
2889 | fail: | |
c67dc624 | 2890 | __vfree(area->addr); |
1da177e4 LT |
2891 | return NULL; |
2892 | } | |
2893 | ||
2894 | /** | |
92eac168 MR |
2895 | * __vmalloc_node_range - allocate virtually contiguous memory |
2896 | * @size: allocation size | |
2897 | * @align: desired alignment | |
2898 | * @start: vm area range start | |
2899 | * @end: vm area range end | |
2900 | * @gfp_mask: flags for the page level allocator | |
2901 | * @prot: protection mask for the allocated pages | |
2902 | * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) | |
2903 | * @node: node to use for allocation or NUMA_NO_NODE | |
2904 | * @caller: caller's return address | |
2905 | * | |
2906 | * Allocate enough pages to cover @size from the page level | |
2907 | * allocator with @gfp_mask flags. Map them into contiguous | |
2908 | * kernel virtual space, using a pagetable protection of @prot. | |
a862f68a MR |
2909 | * |
2910 | * Return: the address of the area or %NULL on failure | |
1da177e4 | 2911 | */ |
d0a21265 DR |
2912 | void *__vmalloc_node_range(unsigned long size, unsigned long align, |
2913 | unsigned long start, unsigned long end, gfp_t gfp_mask, | |
cb9e3c29 AR |
2914 | pgprot_t prot, unsigned long vm_flags, int node, |
2915 | const void *caller) | |
1da177e4 LT |
2916 | { |
2917 | struct vm_struct *area; | |
89219d37 CM |
2918 | void *addr; |
2919 | unsigned long real_size = size; | |
121e6f32 NP |
2920 | unsigned long real_align = align; |
2921 | unsigned int shift = PAGE_SHIFT; | |
1da177e4 | 2922 | |
d70bec8c NP |
2923 | if (WARN_ON_ONCE(!size)) |
2924 | return NULL; | |
2925 | ||
2926 | if ((size >> PAGE_SHIFT) > totalram_pages()) { | |
2927 | warn_alloc(gfp_mask, NULL, | |
f4bdfeaf URS |
2928 | "vmalloc error: size %lu, exceeds total pages", |
2929 | real_size); | |
d70bec8c | 2930 | return NULL; |
121e6f32 NP |
2931 | } |
2932 | ||
3382bbee | 2933 | if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) { |
121e6f32 | 2934 | unsigned long size_per_node; |
1da177e4 | 2935 | |
121e6f32 NP |
2936 | /* |
2937 | * Try huge pages. Only try for PAGE_KERNEL allocations, | |
2938 | * others like modules don't yet expect huge pages in | |
2939 | * their allocations due to apply_to_page_range not | |
2940 | * supporting them. | |
2941 | */ | |
2942 | ||
2943 | size_per_node = size; | |
2944 | if (node == NUMA_NO_NODE) | |
2945 | size_per_node /= num_online_nodes(); | |
3382bbee | 2946 | if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE) |
121e6f32 | 2947 | shift = PMD_SHIFT; |
3382bbee CL |
2948 | else |
2949 | shift = arch_vmap_pte_supported_shift(size_per_node); | |
2950 | ||
2951 | align = max(real_align, 1UL << shift); | |
2952 | size = ALIGN(real_size, 1UL << shift); | |
121e6f32 NP |
2953 | } |
2954 | ||
2955 | again: | |
7ca3027b DA |
2956 | area = __get_vm_area_node(real_size, align, shift, VM_ALLOC | |
2957 | VM_UNINITIALIZED | vm_flags, start, end, node, | |
2958 | gfp_mask, caller); | |
d70bec8c NP |
2959 | if (!area) { |
2960 | warn_alloc(gfp_mask, NULL, | |
f4bdfeaf URS |
2961 | "vmalloc error: size %lu, vm_struct allocation failed", |
2962 | real_size); | |
de7d2b56 | 2963 | goto fail; |
d70bec8c | 2964 | } |
1da177e4 | 2965 | |
121e6f32 | 2966 | addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node); |
1368edf0 | 2967 | if (!addr) |
121e6f32 | 2968 | goto fail; |
89219d37 | 2969 | |
f5252e00 | 2970 | /* |
20fc02b4 ZY |
2971 | * In this function, newly allocated vm_struct has VM_UNINITIALIZED |
2972 | * flag. It means that vm_struct is not fully initialized. | |
4341fa45 | 2973 | * Now, it is fully initialized, so remove this flag here. |
f5252e00 | 2974 | */ |
20fc02b4 | 2975 | clear_vm_uninitialized_flag(area); |
f5252e00 | 2976 | |
7ca3027b | 2977 | size = PAGE_ALIGN(size); |
94f4a161 | 2978 | kmemleak_vmalloc(area, size, gfp_mask); |
89219d37 CM |
2979 | |
2980 | return addr; | |
de7d2b56 JP |
2981 | |
2982 | fail: | |
121e6f32 NP |
2983 | if (shift > PAGE_SHIFT) { |
2984 | shift = PAGE_SHIFT; | |
2985 | align = real_align; | |
2986 | size = real_size; | |
2987 | goto again; | |
2988 | } | |
2989 | ||
de7d2b56 | 2990 | return NULL; |
1da177e4 LT |
2991 | } |
2992 | ||
d0a21265 | 2993 | /** |
92eac168 MR |
2994 | * __vmalloc_node - allocate virtually contiguous memory |
2995 | * @size: allocation size | |
2996 | * @align: desired alignment | |
2997 | * @gfp_mask: flags for the page level allocator | |
92eac168 MR |
2998 | * @node: node to use for allocation or NUMA_NO_NODE |
2999 | * @caller: caller's return address | |
a7c3e901 | 3000 | * |
f38fcb9c CH |
3001 | * Allocate enough pages to cover @size from the page level allocator with |
3002 | * @gfp_mask flags. Map them into contiguous kernel virtual space. | |
a7c3e901 | 3003 | * |
92eac168 MR |
3004 | * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL |
3005 | * and __GFP_NOFAIL are not supported | |
a7c3e901 | 3006 | * |
92eac168 MR |
3007 | * Any use of gfp flags outside of GFP_KERNEL should be consulted |
3008 | * with mm people. | |
a862f68a MR |
3009 | * |
3010 | * Return: pointer to the allocated memory or %NULL on error | |
d0a21265 | 3011 | */ |
2b905948 | 3012 | void *__vmalloc_node(unsigned long size, unsigned long align, |
f38fcb9c | 3013 | gfp_t gfp_mask, int node, const void *caller) |
d0a21265 DR |
3014 | { |
3015 | return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, | |
f38fcb9c | 3016 | gfp_mask, PAGE_KERNEL, 0, node, caller); |
d0a21265 | 3017 | } |
c3f896dc CH |
3018 | /* |
3019 | * This is only for performance analysis of vmalloc and stress purpose. | |
3020 | * It is required by vmalloc test module, therefore do not use it other | |
3021 | * than that. | |
3022 | */ | |
3023 | #ifdef CONFIG_TEST_VMALLOC_MODULE | |
3024 | EXPORT_SYMBOL_GPL(__vmalloc_node); | |
3025 | #endif | |
d0a21265 | 3026 | |
88dca4ca | 3027 | void *__vmalloc(unsigned long size, gfp_t gfp_mask) |
930fc45a | 3028 | { |
f38fcb9c | 3029 | return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE, |
23016969 | 3030 | __builtin_return_address(0)); |
930fc45a | 3031 | } |
1da177e4 LT |
3032 | EXPORT_SYMBOL(__vmalloc); |
3033 | ||
3034 | /** | |
92eac168 MR |
3035 | * vmalloc - allocate virtually contiguous memory |
3036 | * @size: allocation size | |
3037 | * | |
3038 | * Allocate enough pages to cover @size from the page level | |
3039 | * allocator and map them into contiguous kernel virtual space. | |
1da177e4 | 3040 | * |
92eac168 MR |
3041 | * For tight control over page level allocator and protection flags |
3042 | * use __vmalloc() instead. | |
a862f68a MR |
3043 | * |
3044 | * Return: pointer to the allocated memory or %NULL on error | |
1da177e4 LT |
3045 | */ |
3046 | void *vmalloc(unsigned long size) | |
3047 | { | |
4d39d728 CH |
3048 | return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE, |
3049 | __builtin_return_address(0)); | |
1da177e4 | 3050 | } |
1da177e4 LT |
3051 | EXPORT_SYMBOL(vmalloc); |
3052 | ||
15a64f5a CI |
3053 | /** |
3054 | * vmalloc_no_huge - allocate virtually contiguous memory using small pages | |
3055 | * @size: allocation size | |
3056 | * | |
3057 | * Allocate enough non-huge pages to cover @size from the page level | |
3058 | * allocator and map them into contiguous kernel virtual space. | |
3059 | * | |
3060 | * Return: pointer to the allocated memory or %NULL on error | |
3061 | */ | |
3062 | void *vmalloc_no_huge(unsigned long size) | |
3063 | { | |
3064 | return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, | |
3065 | GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP, | |
3066 | NUMA_NO_NODE, __builtin_return_address(0)); | |
3067 | } | |
3068 | EXPORT_SYMBOL(vmalloc_no_huge); | |
3069 | ||
e1ca7788 | 3070 | /** |
92eac168 MR |
3071 | * vzalloc - allocate virtually contiguous memory with zero fill |
3072 | * @size: allocation size | |
3073 | * | |
3074 | * Allocate enough pages to cover @size from the page level | |
3075 | * allocator and map them into contiguous kernel virtual space. | |
3076 | * The memory allocated is set to zero. | |
3077 | * | |
3078 | * For tight control over page level allocator and protection flags | |
3079 | * use __vmalloc() instead. | |
a862f68a MR |
3080 | * |
3081 | * Return: pointer to the allocated memory or %NULL on error | |
e1ca7788 DY |
3082 | */ |
3083 | void *vzalloc(unsigned long size) | |
3084 | { | |
4d39d728 CH |
3085 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE, |
3086 | __builtin_return_address(0)); | |
e1ca7788 DY |
3087 | } |
3088 | EXPORT_SYMBOL(vzalloc); | |
3089 | ||
83342314 | 3090 | /** |
ead04089 REB |
3091 | * vmalloc_user - allocate zeroed virtually contiguous memory for userspace |
3092 | * @size: allocation size | |
83342314 | 3093 | * |
ead04089 REB |
3094 | * The resulting memory area is zeroed so it can be mapped to userspace |
3095 | * without leaking data. | |
a862f68a MR |
3096 | * |
3097 | * Return: pointer to the allocated memory or %NULL on error | |
83342314 NP |
3098 | */ |
3099 | void *vmalloc_user(unsigned long size) | |
3100 | { | |
bc84c535 RP |
3101 | return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, |
3102 | GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL, | |
3103 | VM_USERMAP, NUMA_NO_NODE, | |
3104 | __builtin_return_address(0)); | |
83342314 NP |
3105 | } |
3106 | EXPORT_SYMBOL(vmalloc_user); | |
3107 | ||
930fc45a | 3108 | /** |
92eac168 MR |
3109 | * vmalloc_node - allocate memory on a specific node |
3110 | * @size: allocation size | |
3111 | * @node: numa node | |
930fc45a | 3112 | * |
92eac168 MR |
3113 | * Allocate enough pages to cover @size from the page level |
3114 | * allocator and map them into contiguous kernel virtual space. | |
930fc45a | 3115 | * |
92eac168 MR |
3116 | * For tight control over page level allocator and protection flags |
3117 | * use __vmalloc() instead. | |
a862f68a MR |
3118 | * |
3119 | * Return: pointer to the allocated memory or %NULL on error | |
930fc45a CL |
3120 | */ |
3121 | void *vmalloc_node(unsigned long size, int node) | |
3122 | { | |
f38fcb9c CH |
3123 | return __vmalloc_node(size, 1, GFP_KERNEL, node, |
3124 | __builtin_return_address(0)); | |
930fc45a CL |
3125 | } |
3126 | EXPORT_SYMBOL(vmalloc_node); | |
3127 | ||
e1ca7788 DY |
3128 | /** |
3129 | * vzalloc_node - allocate memory on a specific node with zero fill | |
3130 | * @size: allocation size | |
3131 | * @node: numa node | |
3132 | * | |
3133 | * Allocate enough pages to cover @size from the page level | |
3134 | * allocator and map them into contiguous kernel virtual space. | |
3135 | * The memory allocated is set to zero. | |
3136 | * | |
a862f68a | 3137 | * Return: pointer to the allocated memory or %NULL on error |
e1ca7788 DY |
3138 | */ |
3139 | void *vzalloc_node(unsigned long size, int node) | |
3140 | { | |
4d39d728 CH |
3141 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node, |
3142 | __builtin_return_address(0)); | |
e1ca7788 DY |
3143 | } |
3144 | EXPORT_SYMBOL(vzalloc_node); | |
3145 | ||
0d08e0d3 | 3146 | #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) |
698d0831 | 3147 | #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) |
0d08e0d3 | 3148 | #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) |
698d0831 | 3149 | #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL) |
0d08e0d3 | 3150 | #else |
698d0831 MH |
3151 | /* |
3152 | * 64b systems should always have either DMA or DMA32 zones. For others | |
3153 | * GFP_DMA32 should do the right thing and use the normal zone. | |
3154 | */ | |
68d68ff6 | 3155 | #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL) |
0d08e0d3 AK |
3156 | #endif |
3157 | ||
1da177e4 | 3158 | /** |
92eac168 MR |
3159 | * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) |
3160 | * @size: allocation size | |
1da177e4 | 3161 | * |
92eac168 MR |
3162 | * Allocate enough 32bit PA addressable pages to cover @size from the |
3163 | * page level allocator and map them into contiguous kernel virtual space. | |
a862f68a MR |
3164 | * |
3165 | * Return: pointer to the allocated memory or %NULL on error | |
1da177e4 LT |
3166 | */ |
3167 | void *vmalloc_32(unsigned long size) | |
3168 | { | |
f38fcb9c CH |
3169 | return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE, |
3170 | __builtin_return_address(0)); | |
1da177e4 | 3171 | } |
1da177e4 LT |
3172 | EXPORT_SYMBOL(vmalloc_32); |
3173 | ||
83342314 | 3174 | /** |
ead04089 | 3175 | * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory |
92eac168 | 3176 | * @size: allocation size |
ead04089 REB |
3177 | * |
3178 | * The resulting memory area is 32bit addressable and zeroed so it can be | |
3179 | * mapped to userspace without leaking data. | |
a862f68a MR |
3180 | * |
3181 | * Return: pointer to the allocated memory or %NULL on error | |
83342314 NP |
3182 | */ |
3183 | void *vmalloc_32_user(unsigned long size) | |
3184 | { | |
bc84c535 RP |
3185 | return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END, |
3186 | GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, | |
3187 | VM_USERMAP, NUMA_NO_NODE, | |
3188 | __builtin_return_address(0)); | |
83342314 NP |
3189 | } |
3190 | EXPORT_SYMBOL(vmalloc_32_user); | |
3191 | ||
d0107eb0 KH |
3192 | /* |
3193 | * small helper routine , copy contents to buf from addr. | |
3194 | * If the page is not present, fill zero. | |
3195 | */ | |
3196 | ||
3197 | static int aligned_vread(char *buf, char *addr, unsigned long count) | |
3198 | { | |
3199 | struct page *p; | |
3200 | int copied = 0; | |
3201 | ||
3202 | while (count) { | |
3203 | unsigned long offset, length; | |
3204 | ||
891c49ab | 3205 | offset = offset_in_page(addr); |
d0107eb0 KH |
3206 | length = PAGE_SIZE - offset; |
3207 | if (length > count) | |
3208 | length = count; | |
3209 | p = vmalloc_to_page(addr); | |
3210 | /* | |
3211 | * To do safe access to this _mapped_ area, we need | |
3212 | * lock. But adding lock here means that we need to add | |
f0953a1b | 3213 | * overhead of vmalloc()/vfree() calls for this _debug_ |
d0107eb0 KH |
3214 | * interface, rarely used. Instead of that, we'll use |
3215 | * kmap() and get small overhead in this access function. | |
3216 | */ | |
3217 | if (p) { | |
f7c8ce44 | 3218 | /* We can expect USER0 is not used -- see vread() */ |
9b04c5fe | 3219 | void *map = kmap_atomic(p); |
d0107eb0 | 3220 | memcpy(buf, map + offset, length); |
9b04c5fe | 3221 | kunmap_atomic(map); |
d0107eb0 KH |
3222 | } else |
3223 | memset(buf, 0, length); | |
3224 | ||
3225 | addr += length; | |
3226 | buf += length; | |
3227 | copied += length; | |
3228 | count -= length; | |
3229 | } | |
3230 | return copied; | |
3231 | } | |
3232 | ||
d0107eb0 | 3233 | /** |
92eac168 MR |
3234 | * vread() - read vmalloc area in a safe way. |
3235 | * @buf: buffer for reading data | |
3236 | * @addr: vm address. | |
3237 | * @count: number of bytes to be read. | |
3238 | * | |
92eac168 MR |
3239 | * This function checks that addr is a valid vmalloc'ed area, and |
3240 | * copy data from that area to a given buffer. If the given memory range | |
3241 | * of [addr...addr+count) includes some valid address, data is copied to | |
3242 | * proper area of @buf. If there are memory holes, they'll be zero-filled. | |
3243 | * IOREMAP area is treated as memory hole and no copy is done. | |
3244 | * | |
3245 | * If [addr...addr+count) doesn't includes any intersects with alive | |
3246 | * vm_struct area, returns 0. @buf should be kernel's buffer. | |
3247 | * | |
3248 | * Note: In usual ops, vread() is never necessary because the caller | |
3249 | * should know vmalloc() area is valid and can use memcpy(). | |
3250 | * This is for routines which have to access vmalloc area without | |
bbcd53c9 | 3251 | * any information, as /proc/kcore. |
a862f68a MR |
3252 | * |
3253 | * Return: number of bytes for which addr and buf should be increased | |
3254 | * (same number as @count) or %0 if [addr...addr+count) doesn't | |
3255 | * include any intersection with valid vmalloc area | |
d0107eb0 | 3256 | */ |
1da177e4 LT |
3257 | long vread(char *buf, char *addr, unsigned long count) |
3258 | { | |
e81ce85f JK |
3259 | struct vmap_area *va; |
3260 | struct vm_struct *vm; | |
1da177e4 | 3261 | char *vaddr, *buf_start = buf; |
d0107eb0 | 3262 | unsigned long buflen = count; |
1da177e4 LT |
3263 | unsigned long n; |
3264 | ||
3265 | /* Don't allow overflow */ | |
3266 | if ((unsigned long) addr + count < count) | |
3267 | count = -(unsigned long) addr; | |
3268 | ||
e81ce85f | 3269 | spin_lock(&vmap_area_lock); |
f608788c SD |
3270 | va = __find_vmap_area((unsigned long)addr); |
3271 | if (!va) | |
3272 | goto finished; | |
3273 | list_for_each_entry_from(va, &vmap_area_list, list) { | |
e81ce85f JK |
3274 | if (!count) |
3275 | break; | |
3276 | ||
688fcbfc | 3277 | if (!va->vm) |
e81ce85f JK |
3278 | continue; |
3279 | ||
3280 | vm = va->vm; | |
3281 | vaddr = (char *) vm->addr; | |
762216ab | 3282 | if (addr >= vaddr + get_vm_area_size(vm)) |
1da177e4 LT |
3283 | continue; |
3284 | while (addr < vaddr) { | |
3285 | if (count == 0) | |
3286 | goto finished; | |
3287 | *buf = '\0'; | |
3288 | buf++; | |
3289 | addr++; | |
3290 | count--; | |
3291 | } | |
762216ab | 3292 | n = vaddr + get_vm_area_size(vm) - addr; |
d0107eb0 KH |
3293 | if (n > count) |
3294 | n = count; | |
e81ce85f | 3295 | if (!(vm->flags & VM_IOREMAP)) |
d0107eb0 KH |
3296 | aligned_vread(buf, addr, n); |
3297 | else /* IOREMAP area is treated as memory hole */ | |
3298 | memset(buf, 0, n); | |
3299 | buf += n; | |
3300 | addr += n; | |
3301 | count -= n; | |
1da177e4 LT |
3302 | } |
3303 | finished: | |
e81ce85f | 3304 | spin_unlock(&vmap_area_lock); |
d0107eb0 KH |
3305 | |
3306 | if (buf == buf_start) | |
3307 | return 0; | |
3308 | /* zero-fill memory holes */ | |
3309 | if (buf != buf_start + buflen) | |
3310 | memset(buf, 0, buflen - (buf - buf_start)); | |
3311 | ||
3312 | return buflen; | |
1da177e4 LT |
3313 | } |
3314 | ||
83342314 | 3315 | /** |
92eac168 MR |
3316 | * remap_vmalloc_range_partial - map vmalloc pages to userspace |
3317 | * @vma: vma to cover | |
3318 | * @uaddr: target user address to start at | |
3319 | * @kaddr: virtual address of vmalloc kernel memory | |
bdebd6a2 | 3320 | * @pgoff: offset from @kaddr to start at |
92eac168 | 3321 | * @size: size of map area |
7682486b | 3322 | * |
92eac168 | 3323 | * Returns: 0 for success, -Exxx on failure |
83342314 | 3324 | * |
92eac168 MR |
3325 | * This function checks that @kaddr is a valid vmalloc'ed area, |
3326 | * and that it is big enough to cover the range starting at | |
3327 | * @uaddr in @vma. Will return failure if that criteria isn't | |
3328 | * met. | |
83342314 | 3329 | * |
92eac168 | 3330 | * Similar to remap_pfn_range() (see mm/memory.c) |
83342314 | 3331 | */ |
e69e9d4a | 3332 | int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, |
bdebd6a2 JH |
3333 | void *kaddr, unsigned long pgoff, |
3334 | unsigned long size) | |
83342314 NP |
3335 | { |
3336 | struct vm_struct *area; | |
bdebd6a2 JH |
3337 | unsigned long off; |
3338 | unsigned long end_index; | |
3339 | ||
3340 | if (check_shl_overflow(pgoff, PAGE_SHIFT, &off)) | |
3341 | return -EINVAL; | |
83342314 | 3342 | |
e69e9d4a HD |
3343 | size = PAGE_ALIGN(size); |
3344 | ||
3345 | if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) | |
83342314 NP |
3346 | return -EINVAL; |
3347 | ||
e69e9d4a | 3348 | area = find_vm_area(kaddr); |
83342314 | 3349 | if (!area) |
db64fe02 | 3350 | return -EINVAL; |
83342314 | 3351 | |
fe9041c2 | 3352 | if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT))) |
db64fe02 | 3353 | return -EINVAL; |
83342314 | 3354 | |
bdebd6a2 JH |
3355 | if (check_add_overflow(size, off, &end_index) || |
3356 | end_index > get_vm_area_size(area)) | |
db64fe02 | 3357 | return -EINVAL; |
bdebd6a2 | 3358 | kaddr += off; |
83342314 | 3359 | |
83342314 | 3360 | do { |
e69e9d4a | 3361 | struct page *page = vmalloc_to_page(kaddr); |
db64fe02 NP |
3362 | int ret; |
3363 | ||
83342314 NP |
3364 | ret = vm_insert_page(vma, uaddr, page); |
3365 | if (ret) | |
3366 | return ret; | |
3367 | ||
3368 | uaddr += PAGE_SIZE; | |
e69e9d4a HD |
3369 | kaddr += PAGE_SIZE; |
3370 | size -= PAGE_SIZE; | |
3371 | } while (size > 0); | |
83342314 | 3372 | |
314e51b9 | 3373 | vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; |
83342314 | 3374 | |
db64fe02 | 3375 | return 0; |
83342314 | 3376 | } |
e69e9d4a HD |
3377 | |
3378 | /** | |
92eac168 MR |
3379 | * remap_vmalloc_range - map vmalloc pages to userspace |
3380 | * @vma: vma to cover (map full range of vma) | |
3381 | * @addr: vmalloc memory | |
3382 | * @pgoff: number of pages into addr before first page to map | |
e69e9d4a | 3383 | * |
92eac168 | 3384 | * Returns: 0 for success, -Exxx on failure |
e69e9d4a | 3385 | * |
92eac168 MR |
3386 | * This function checks that addr is a valid vmalloc'ed area, and |
3387 | * that it is big enough to cover the vma. Will return failure if | |
3388 | * that criteria isn't met. | |
e69e9d4a | 3389 | * |
92eac168 | 3390 | * Similar to remap_pfn_range() (see mm/memory.c) |
e69e9d4a HD |
3391 | */ |
3392 | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, | |
3393 | unsigned long pgoff) | |
3394 | { | |
3395 | return remap_vmalloc_range_partial(vma, vma->vm_start, | |
bdebd6a2 | 3396 | addr, pgoff, |
e69e9d4a HD |
3397 | vma->vm_end - vma->vm_start); |
3398 | } | |
83342314 NP |
3399 | EXPORT_SYMBOL(remap_vmalloc_range); |
3400 | ||
5f4352fb JF |
3401 | void free_vm_area(struct vm_struct *area) |
3402 | { | |
3403 | struct vm_struct *ret; | |
3404 | ret = remove_vm_area(area->addr); | |
3405 | BUG_ON(ret != area); | |
3406 | kfree(area); | |
3407 | } | |
3408 | EXPORT_SYMBOL_GPL(free_vm_area); | |
a10aa579 | 3409 | |
4f8b02b4 | 3410 | #ifdef CONFIG_SMP |
ca23e405 TH |
3411 | static struct vmap_area *node_to_va(struct rb_node *n) |
3412 | { | |
4583e773 | 3413 | return rb_entry_safe(n, struct vmap_area, rb_node); |
ca23e405 TH |
3414 | } |
3415 | ||
3416 | /** | |
68ad4a33 URS |
3417 | * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to |
3418 | * @addr: target address | |
ca23e405 | 3419 | * |
68ad4a33 URS |
3420 | * Returns: vmap_area if it is found. If there is no such area |
3421 | * the first highest(reverse order) vmap_area is returned | |
3422 | * i.e. va->va_start < addr && va->va_end < addr or NULL | |
3423 | * if there are no any areas before @addr. | |
ca23e405 | 3424 | */ |
68ad4a33 URS |
3425 | static struct vmap_area * |
3426 | pvm_find_va_enclose_addr(unsigned long addr) | |
ca23e405 | 3427 | { |
68ad4a33 URS |
3428 | struct vmap_area *va, *tmp; |
3429 | struct rb_node *n; | |
3430 | ||
3431 | n = free_vmap_area_root.rb_node; | |
3432 | va = NULL; | |
ca23e405 TH |
3433 | |
3434 | while (n) { | |
68ad4a33 URS |
3435 | tmp = rb_entry(n, struct vmap_area, rb_node); |
3436 | if (tmp->va_start <= addr) { | |
3437 | va = tmp; | |
3438 | if (tmp->va_end >= addr) | |
3439 | break; | |
3440 | ||
ca23e405 | 3441 | n = n->rb_right; |
68ad4a33 URS |
3442 | } else { |
3443 | n = n->rb_left; | |
3444 | } | |
ca23e405 TH |
3445 | } |
3446 | ||
68ad4a33 | 3447 | return va; |
ca23e405 TH |
3448 | } |
3449 | ||
3450 | /** | |
68ad4a33 URS |
3451 | * pvm_determine_end_from_reverse - find the highest aligned address |
3452 | * of free block below VMALLOC_END | |
3453 | * @va: | |
3454 | * in - the VA we start the search(reverse order); | |
3455 | * out - the VA with the highest aligned end address. | |
799fa85d | 3456 | * @align: alignment for required highest address |
ca23e405 | 3457 | * |
68ad4a33 | 3458 | * Returns: determined end address within vmap_area |
ca23e405 | 3459 | */ |
68ad4a33 URS |
3460 | static unsigned long |
3461 | pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align) | |
ca23e405 | 3462 | { |
68ad4a33 | 3463 | unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); |
ca23e405 TH |
3464 | unsigned long addr; |
3465 | ||
68ad4a33 URS |
3466 | if (likely(*va)) { |
3467 | list_for_each_entry_from_reverse((*va), | |
3468 | &free_vmap_area_list, list) { | |
3469 | addr = min((*va)->va_end & ~(align - 1), vmalloc_end); | |
3470 | if ((*va)->va_start < addr) | |
3471 | return addr; | |
3472 | } | |
ca23e405 TH |
3473 | } |
3474 | ||
68ad4a33 | 3475 | return 0; |
ca23e405 TH |
3476 | } |
3477 | ||
3478 | /** | |
3479 | * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator | |
3480 | * @offsets: array containing offset of each area | |
3481 | * @sizes: array containing size of each area | |
3482 | * @nr_vms: the number of areas to allocate | |
3483 | * @align: alignment, all entries in @offsets and @sizes must be aligned to this | |
ca23e405 TH |
3484 | * |
3485 | * Returns: kmalloc'd vm_struct pointer array pointing to allocated | |
3486 | * vm_structs on success, %NULL on failure | |
3487 | * | |
3488 | * Percpu allocator wants to use congruent vm areas so that it can | |
3489 | * maintain the offsets among percpu areas. This function allocates | |
ec3f64fc DR |
3490 | * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to |
3491 | * be scattered pretty far, distance between two areas easily going up | |
3492 | * to gigabytes. To avoid interacting with regular vmallocs, these | |
3493 | * areas are allocated from top. | |
ca23e405 | 3494 | * |
68ad4a33 URS |
3495 | * Despite its complicated look, this allocator is rather simple. It |
3496 | * does everything top-down and scans free blocks from the end looking | |
3497 | * for matching base. While scanning, if any of the areas do not fit the | |
3498 | * base address is pulled down to fit the area. Scanning is repeated till | |
3499 | * all the areas fit and then all necessary data structures are inserted | |
3500 | * and the result is returned. | |
ca23e405 TH |
3501 | */ |
3502 | struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, | |
3503 | const size_t *sizes, int nr_vms, | |
ec3f64fc | 3504 | size_t align) |
ca23e405 TH |
3505 | { |
3506 | const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); | |
3507 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | |
68ad4a33 | 3508 | struct vmap_area **vas, *va; |
ca23e405 TH |
3509 | struct vm_struct **vms; |
3510 | int area, area2, last_area, term_area; | |
253a496d | 3511 | unsigned long base, start, size, end, last_end, orig_start, orig_end; |
ca23e405 | 3512 | bool purged = false; |
68ad4a33 | 3513 | enum fit_type type; |
ca23e405 | 3514 | |
ca23e405 | 3515 | /* verify parameters and allocate data structures */ |
891c49ab | 3516 | BUG_ON(offset_in_page(align) || !is_power_of_2(align)); |
ca23e405 TH |
3517 | for (last_area = 0, area = 0; area < nr_vms; area++) { |
3518 | start = offsets[area]; | |
3519 | end = start + sizes[area]; | |
3520 | ||
3521 | /* is everything aligned properly? */ | |
3522 | BUG_ON(!IS_ALIGNED(offsets[area], align)); | |
3523 | BUG_ON(!IS_ALIGNED(sizes[area], align)); | |
3524 | ||
3525 | /* detect the area with the highest address */ | |
3526 | if (start > offsets[last_area]) | |
3527 | last_area = area; | |
3528 | ||
c568da28 | 3529 | for (area2 = area + 1; area2 < nr_vms; area2++) { |
ca23e405 TH |
3530 | unsigned long start2 = offsets[area2]; |
3531 | unsigned long end2 = start2 + sizes[area2]; | |
3532 | ||
c568da28 | 3533 | BUG_ON(start2 < end && start < end2); |
ca23e405 TH |
3534 | } |
3535 | } | |
3536 | last_end = offsets[last_area] + sizes[last_area]; | |
3537 | ||
3538 | if (vmalloc_end - vmalloc_start < last_end) { | |
3539 | WARN_ON(true); | |
3540 | return NULL; | |
3541 | } | |
3542 | ||
4d67d860 TM |
3543 | vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); |
3544 | vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); | |
ca23e405 | 3545 | if (!vas || !vms) |
f1db7afd | 3546 | goto err_free2; |
ca23e405 TH |
3547 | |
3548 | for (area = 0; area < nr_vms; area++) { | |
68ad4a33 | 3549 | vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL); |
ec3f64fc | 3550 | vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); |
ca23e405 TH |
3551 | if (!vas[area] || !vms[area]) |
3552 | goto err_free; | |
3553 | } | |
3554 | retry: | |
e36176be | 3555 | spin_lock(&free_vmap_area_lock); |
ca23e405 TH |
3556 | |
3557 | /* start scanning - we scan from the top, begin with the last area */ | |
3558 | area = term_area = last_area; | |
3559 | start = offsets[area]; | |
3560 | end = start + sizes[area]; | |
3561 | ||
68ad4a33 URS |
3562 | va = pvm_find_va_enclose_addr(vmalloc_end); |
3563 | base = pvm_determine_end_from_reverse(&va, align) - end; | |
ca23e405 TH |
3564 | |
3565 | while (true) { | |
ca23e405 TH |
3566 | /* |
3567 | * base might have underflowed, add last_end before | |
3568 | * comparing. | |
3569 | */ | |
68ad4a33 URS |
3570 | if (base + last_end < vmalloc_start + last_end) |
3571 | goto overflow; | |
ca23e405 TH |
3572 | |
3573 | /* | |
68ad4a33 | 3574 | * Fitting base has not been found. |
ca23e405 | 3575 | */ |
68ad4a33 URS |
3576 | if (va == NULL) |
3577 | goto overflow; | |
ca23e405 | 3578 | |
5336e52c | 3579 | /* |
d8cc323d | 3580 | * If required width exceeds current VA block, move |
5336e52c KS |
3581 | * base downwards and then recheck. |
3582 | */ | |
3583 | if (base + end > va->va_end) { | |
3584 | base = pvm_determine_end_from_reverse(&va, align) - end; | |
3585 | term_area = area; | |
3586 | continue; | |
3587 | } | |
3588 | ||
ca23e405 | 3589 | /* |
68ad4a33 | 3590 | * If this VA does not fit, move base downwards and recheck. |
ca23e405 | 3591 | */ |
5336e52c | 3592 | if (base + start < va->va_start) { |
68ad4a33 URS |
3593 | va = node_to_va(rb_prev(&va->rb_node)); |
3594 | base = pvm_determine_end_from_reverse(&va, align) - end; | |
ca23e405 TH |
3595 | term_area = area; |
3596 | continue; | |
3597 | } | |
3598 | ||
3599 | /* | |
3600 | * This area fits, move on to the previous one. If | |
3601 | * the previous one is the terminal one, we're done. | |
3602 | */ | |
3603 | area = (area + nr_vms - 1) % nr_vms; | |
3604 | if (area == term_area) | |
3605 | break; | |
68ad4a33 | 3606 | |
ca23e405 TH |
3607 | start = offsets[area]; |
3608 | end = start + sizes[area]; | |
68ad4a33 | 3609 | va = pvm_find_va_enclose_addr(base + end); |
ca23e405 | 3610 | } |
68ad4a33 | 3611 | |
ca23e405 TH |
3612 | /* we've found a fitting base, insert all va's */ |
3613 | for (area = 0; area < nr_vms; area++) { | |
68ad4a33 | 3614 | int ret; |
ca23e405 | 3615 | |
68ad4a33 URS |
3616 | start = base + offsets[area]; |
3617 | size = sizes[area]; | |
ca23e405 | 3618 | |
68ad4a33 URS |
3619 | va = pvm_find_va_enclose_addr(start); |
3620 | if (WARN_ON_ONCE(va == NULL)) | |
3621 | /* It is a BUG(), but trigger recovery instead. */ | |
3622 | goto recovery; | |
3623 | ||
3624 | type = classify_va_fit_type(va, start, size); | |
3625 | if (WARN_ON_ONCE(type == NOTHING_FIT)) | |
3626 | /* It is a BUG(), but trigger recovery instead. */ | |
3627 | goto recovery; | |
3628 | ||
3629 | ret = adjust_va_to_fit_type(va, start, size, type); | |
3630 | if (unlikely(ret)) | |
3631 | goto recovery; | |
3632 | ||
3633 | /* Allocated area. */ | |
3634 | va = vas[area]; | |
3635 | va->va_start = start; | |
3636 | va->va_end = start + size; | |
68ad4a33 | 3637 | } |
ca23e405 | 3638 | |
e36176be | 3639 | spin_unlock(&free_vmap_area_lock); |
ca23e405 | 3640 | |
253a496d DA |
3641 | /* populate the kasan shadow space */ |
3642 | for (area = 0; area < nr_vms; area++) { | |
3643 | if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area])) | |
3644 | goto err_free_shadow; | |
3645 | ||
3646 | kasan_unpoison_vmalloc((void *)vas[area]->va_start, | |
3647 | sizes[area]); | |
3648 | } | |
3649 | ||
ca23e405 | 3650 | /* insert all vm's */ |
e36176be URS |
3651 | spin_lock(&vmap_area_lock); |
3652 | for (area = 0; area < nr_vms; area++) { | |
3653 | insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list); | |
3654 | ||
3655 | setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC, | |
3645cb4a | 3656 | pcpu_get_vm_areas); |
e36176be URS |
3657 | } |
3658 | spin_unlock(&vmap_area_lock); | |
ca23e405 TH |
3659 | |
3660 | kfree(vas); | |
3661 | return vms; | |
3662 | ||
68ad4a33 | 3663 | recovery: |
e36176be URS |
3664 | /* |
3665 | * Remove previously allocated areas. There is no | |
3666 | * need in removing these areas from the busy tree, | |
3667 | * because they are inserted only on the final step | |
3668 | * and when pcpu_get_vm_areas() is success. | |
3669 | */ | |
68ad4a33 | 3670 | while (area--) { |
253a496d DA |
3671 | orig_start = vas[area]->va_start; |
3672 | orig_end = vas[area]->va_end; | |
96e2db45 URS |
3673 | va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, |
3674 | &free_vmap_area_list); | |
9c801f61 URS |
3675 | if (va) |
3676 | kasan_release_vmalloc(orig_start, orig_end, | |
3677 | va->va_start, va->va_end); | |
68ad4a33 URS |
3678 | vas[area] = NULL; |
3679 | } | |
3680 | ||
3681 | overflow: | |
e36176be | 3682 | spin_unlock(&free_vmap_area_lock); |
68ad4a33 URS |
3683 | if (!purged) { |
3684 | purge_vmap_area_lazy(); | |
3685 | purged = true; | |
3686 | ||
3687 | /* Before "retry", check if we recover. */ | |
3688 | for (area = 0; area < nr_vms; area++) { | |
3689 | if (vas[area]) | |
3690 | continue; | |
3691 | ||
3692 | vas[area] = kmem_cache_zalloc( | |
3693 | vmap_area_cachep, GFP_KERNEL); | |
3694 | if (!vas[area]) | |
3695 | goto err_free; | |
3696 | } | |
3697 | ||
3698 | goto retry; | |
3699 | } | |
3700 | ||
ca23e405 TH |
3701 | err_free: |
3702 | for (area = 0; area < nr_vms; area++) { | |
68ad4a33 URS |
3703 | if (vas[area]) |
3704 | kmem_cache_free(vmap_area_cachep, vas[area]); | |
3705 | ||
f1db7afd | 3706 | kfree(vms[area]); |
ca23e405 | 3707 | } |
f1db7afd | 3708 | err_free2: |
ca23e405 TH |
3709 | kfree(vas); |
3710 | kfree(vms); | |
3711 | return NULL; | |
253a496d DA |
3712 | |
3713 | err_free_shadow: | |
3714 | spin_lock(&free_vmap_area_lock); | |
3715 | /* | |
3716 | * We release all the vmalloc shadows, even the ones for regions that | |
3717 | * hadn't been successfully added. This relies on kasan_release_vmalloc | |
3718 | * being able to tolerate this case. | |
3719 | */ | |
3720 | for (area = 0; area < nr_vms; area++) { | |
3721 | orig_start = vas[area]->va_start; | |
3722 | orig_end = vas[area]->va_end; | |
96e2db45 URS |
3723 | va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root, |
3724 | &free_vmap_area_list); | |
9c801f61 URS |
3725 | if (va) |
3726 | kasan_release_vmalloc(orig_start, orig_end, | |
3727 | va->va_start, va->va_end); | |
253a496d DA |
3728 | vas[area] = NULL; |
3729 | kfree(vms[area]); | |
3730 | } | |
3731 | spin_unlock(&free_vmap_area_lock); | |
3732 | kfree(vas); | |
3733 | kfree(vms); | |
3734 | return NULL; | |
ca23e405 TH |
3735 | } |
3736 | ||
3737 | /** | |
3738 | * pcpu_free_vm_areas - free vmalloc areas for percpu allocator | |
3739 | * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() | |
3740 | * @nr_vms: the number of allocated areas | |
3741 | * | |
3742 | * Free vm_structs and the array allocated by pcpu_get_vm_areas(). | |
3743 | */ | |
3744 | void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) | |
3745 | { | |
3746 | int i; | |
3747 | ||
3748 | for (i = 0; i < nr_vms; i++) | |
3749 | free_vm_area(vms[i]); | |
3750 | kfree(vms); | |
3751 | } | |
4f8b02b4 | 3752 | #endif /* CONFIG_SMP */ |
a10aa579 | 3753 | |
5bb1bb35 | 3754 | #ifdef CONFIG_PRINTK |
98f18083 PM |
3755 | bool vmalloc_dump_obj(void *object) |
3756 | { | |
3757 | struct vm_struct *vm; | |
3758 | void *objp = (void *)PAGE_ALIGN((unsigned long)object); | |
3759 | ||
3760 | vm = find_vm_area(objp); | |
3761 | if (!vm) | |
3762 | return false; | |
bd34dcd4 PM |
3763 | pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n", |
3764 | vm->nr_pages, (unsigned long)vm->addr, vm->caller); | |
98f18083 PM |
3765 | return true; |
3766 | } | |
5bb1bb35 | 3767 | #endif |
98f18083 | 3768 | |
a10aa579 CL |
3769 | #ifdef CONFIG_PROC_FS |
3770 | static void *s_start(struct seq_file *m, loff_t *pos) | |
e36176be | 3771 | __acquires(&vmap_purge_lock) |
d4033afd | 3772 | __acquires(&vmap_area_lock) |
a10aa579 | 3773 | { |
e36176be | 3774 | mutex_lock(&vmap_purge_lock); |
d4033afd | 3775 | spin_lock(&vmap_area_lock); |
e36176be | 3776 | |
3f500069 | 3777 | return seq_list_start(&vmap_area_list, *pos); |
a10aa579 CL |
3778 | } |
3779 | ||
3780 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
3781 | { | |
3f500069 | 3782 | return seq_list_next(p, &vmap_area_list, pos); |
a10aa579 CL |
3783 | } |
3784 | ||
3785 | static void s_stop(struct seq_file *m, void *p) | |
d4033afd | 3786 | __releases(&vmap_area_lock) |
0a7dd4e9 | 3787 | __releases(&vmap_purge_lock) |
a10aa579 | 3788 | { |
d4033afd | 3789 | spin_unlock(&vmap_area_lock); |
0a7dd4e9 | 3790 | mutex_unlock(&vmap_purge_lock); |
a10aa579 CL |
3791 | } |
3792 | ||
a47a126a ED |
3793 | static void show_numa_info(struct seq_file *m, struct vm_struct *v) |
3794 | { | |
e5adfffc | 3795 | if (IS_ENABLED(CONFIG_NUMA)) { |
a47a126a ED |
3796 | unsigned int nr, *counters = m->private; |
3797 | ||
3798 | if (!counters) | |
3799 | return; | |
3800 | ||
af12346c WL |
3801 | if (v->flags & VM_UNINITIALIZED) |
3802 | return; | |
7e5b528b DV |
3803 | /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ |
3804 | smp_rmb(); | |
af12346c | 3805 | |
a47a126a ED |
3806 | memset(counters, 0, nr_node_ids * sizeof(unsigned int)); |
3807 | ||
3808 | for (nr = 0; nr < v->nr_pages; nr++) | |
3809 | counters[page_to_nid(v->pages[nr])]++; | |
3810 | ||
3811 | for_each_node_state(nr, N_HIGH_MEMORY) | |
3812 | if (counters[nr]) | |
3813 | seq_printf(m, " N%u=%u", nr, counters[nr]); | |
3814 | } | |
3815 | } | |
3816 | ||
dd3b8353 URS |
3817 | static void show_purge_info(struct seq_file *m) |
3818 | { | |
dd3b8353 URS |
3819 | struct vmap_area *va; |
3820 | ||
96e2db45 URS |
3821 | spin_lock(&purge_vmap_area_lock); |
3822 | list_for_each_entry(va, &purge_vmap_area_list, list) { | |
dd3b8353 URS |
3823 | seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n", |
3824 | (void *)va->va_start, (void *)va->va_end, | |
3825 | va->va_end - va->va_start); | |
3826 | } | |
96e2db45 | 3827 | spin_unlock(&purge_vmap_area_lock); |
dd3b8353 URS |
3828 | } |
3829 | ||
a10aa579 CL |
3830 | static int s_show(struct seq_file *m, void *p) |
3831 | { | |
3f500069 | 3832 | struct vmap_area *va; |
d4033afd JK |
3833 | struct vm_struct *v; |
3834 | ||
3f500069 | 3835 | va = list_entry(p, struct vmap_area, list); |
3836 | ||
c2ce8c14 | 3837 | /* |
688fcbfc PL |
3838 | * s_show can encounter race with remove_vm_area, !vm on behalf |
3839 | * of vmap area is being tear down or vm_map_ram allocation. | |
c2ce8c14 | 3840 | */ |
688fcbfc | 3841 | if (!va->vm) { |
dd3b8353 | 3842 | seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n", |
78c72746 | 3843 | (void *)va->va_start, (void *)va->va_end, |
dd3b8353 | 3844 | va->va_end - va->va_start); |
78c72746 | 3845 | |
d4033afd | 3846 | return 0; |
78c72746 | 3847 | } |
d4033afd JK |
3848 | |
3849 | v = va->vm; | |
a10aa579 | 3850 | |
45ec1690 | 3851 | seq_printf(m, "0x%pK-0x%pK %7ld", |
a10aa579 CL |
3852 | v->addr, v->addr + v->size, v->size); |
3853 | ||
62c70bce JP |
3854 | if (v->caller) |
3855 | seq_printf(m, " %pS", v->caller); | |
23016969 | 3856 | |
a10aa579 CL |
3857 | if (v->nr_pages) |
3858 | seq_printf(m, " pages=%d", v->nr_pages); | |
3859 | ||
3860 | if (v->phys_addr) | |
199eaa05 | 3861 | seq_printf(m, " phys=%pa", &v->phys_addr); |
a10aa579 CL |
3862 | |
3863 | if (v->flags & VM_IOREMAP) | |
f4527c90 | 3864 | seq_puts(m, " ioremap"); |
a10aa579 CL |
3865 | |
3866 | if (v->flags & VM_ALLOC) | |
f4527c90 | 3867 | seq_puts(m, " vmalloc"); |
a10aa579 CL |
3868 | |
3869 | if (v->flags & VM_MAP) | |
f4527c90 | 3870 | seq_puts(m, " vmap"); |
a10aa579 CL |
3871 | |
3872 | if (v->flags & VM_USERMAP) | |
f4527c90 | 3873 | seq_puts(m, " user"); |
a10aa579 | 3874 | |
fe9041c2 CH |
3875 | if (v->flags & VM_DMA_COHERENT) |
3876 | seq_puts(m, " dma-coherent"); | |
3877 | ||
244d63ee | 3878 | if (is_vmalloc_addr(v->pages)) |
f4527c90 | 3879 | seq_puts(m, " vpages"); |
a10aa579 | 3880 | |
a47a126a | 3881 | show_numa_info(m, v); |
a10aa579 | 3882 | seq_putc(m, '\n'); |
dd3b8353 URS |
3883 | |
3884 | /* | |
96e2db45 | 3885 | * As a final step, dump "unpurged" areas. |
dd3b8353 URS |
3886 | */ |
3887 | if (list_is_last(&va->list, &vmap_area_list)) | |
3888 | show_purge_info(m); | |
3889 | ||
a10aa579 CL |
3890 | return 0; |
3891 | } | |
3892 | ||
5f6a6a9c | 3893 | static const struct seq_operations vmalloc_op = { |
a10aa579 CL |
3894 | .start = s_start, |
3895 | .next = s_next, | |
3896 | .stop = s_stop, | |
3897 | .show = s_show, | |
3898 | }; | |
5f6a6a9c | 3899 | |
5f6a6a9c AD |
3900 | static int __init proc_vmalloc_init(void) |
3901 | { | |
fddda2b7 | 3902 | if (IS_ENABLED(CONFIG_NUMA)) |
0825a6f9 | 3903 | proc_create_seq_private("vmallocinfo", 0400, NULL, |
44414d82 CH |
3904 | &vmalloc_op, |
3905 | nr_node_ids * sizeof(unsigned int), NULL); | |
fddda2b7 | 3906 | else |
0825a6f9 | 3907 | proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op); |
5f6a6a9c AD |
3908 | return 0; |
3909 | } | |
3910 | module_init(proc_vmalloc_init); | |
db3808c1 | 3911 | |
a10aa579 | 3912 | #endif |