]> Git Repo - linux.git/blame - mm/vmscan.c
mm, oom: remove 3% bonus for CAP_SYS_ADMIN processes
[linux.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar ([email protected]).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
b1de0d13
MH
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
1da177e4 17#include <linux/mm.h>
5b3cc15a 18#include <linux/sched/mm.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
70ddf637 26#include <linux/vmpressure.h>
e129b5c2 27#include <linux/vmstat.h>
1da177e4
LT
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
1da177e4
LT
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
3e7d3449 39#include <linux/compaction.h>
1da177e4
LT
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
248a0301 42#include <linux/delay.h>
3218ae14 43#include <linux/kthread.h>
7dfb7103 44#include <linux/freezer.h>
66e1707b 45#include <linux/memcontrol.h>
873b4771 46#include <linux/delayacct.h>
af936a16 47#include <linux/sysctl.h>
929bea7c 48#include <linux/oom.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
1da177e4
LT
52
53#include <asm/tlbflush.h>
54#include <asm/div64.h>
55
56#include <linux/swapops.h>
117aad1e 57#include <linux/balloon_compaction.h>
1da177e4 58
0f8053a5
NP
59#include "internal.h"
60
33906bc5
MG
61#define CREATE_TRACE_POINTS
62#include <trace/events/vmscan.h>
63
1da177e4 64struct scan_control {
22fba335
KM
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
1da177e4 68 /* This context's GFP mask */
6daa0e28 69 gfp_t gfp_mask;
1da177e4 70
ee814fe2 71 /* Allocation order */
5ad333eb 72 int order;
66e1707b 73
ee814fe2
JW
74 /*
75 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 * are scanned.
77 */
78 nodemask_t *nodemask;
9e3b2f8c 79
f16015fb
JW
80 /*
81 * The memory cgroup that hit its limit and as a result is the
82 * primary target of this reclaim invocation.
83 */
84 struct mem_cgroup *target_mem_cgroup;
66e1707b 85
ee814fe2
JW
86 /* Scan (total_size >> priority) pages at once */
87 int priority;
88
b2e18757
MG
89 /* The highest zone to isolate pages for reclaim from */
90 enum zone_type reclaim_idx;
91
1276ad68 92 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
93 unsigned int may_writepage:1;
94
95 /* Can mapped pages be reclaimed? */
96 unsigned int may_unmap:1;
97
98 /* Can pages be swapped as part of reclaim? */
99 unsigned int may_swap:1;
100
d6622f63
YX
101 /*
102 * Cgroups are not reclaimed below their configured memory.low,
103 * unless we threaten to OOM. If any cgroups are skipped due to
104 * memory.low and nothing was reclaimed, go back for memory.low.
105 */
106 unsigned int memcg_low_reclaim:1;
107 unsigned int memcg_low_skipped:1;
241994ed 108
ee814fe2
JW
109 unsigned int hibernation_mode:1;
110
111 /* One of the zones is ready for compaction */
112 unsigned int compaction_ready:1;
113
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
116
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
1da177e4
LT
119};
120
1da177e4
LT
121#ifdef ARCH_HAS_PREFETCH
122#define prefetch_prev_lru_page(_page, _base, _field) \
123 do { \
124 if ((_page)->lru.prev != _base) { \
125 struct page *prev; \
126 \
127 prev = lru_to_page(&(_page->lru)); \
128 prefetch(&prev->_field); \
129 } \
130 } while (0)
131#else
132#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
133#endif
134
135#ifdef ARCH_HAS_PREFETCHW
136#define prefetchw_prev_lru_page(_page, _base, _field) \
137 do { \
138 if ((_page)->lru.prev != _base) { \
139 struct page *prev; \
140 \
141 prev = lru_to_page(&(_page->lru)); \
142 prefetchw(&prev->_field); \
143 } \
144 } while (0)
145#else
146#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
147#endif
148
149/*
150 * From 0 .. 100. Higher means more swappy.
151 */
152int vm_swappiness = 60;
d0480be4
WSH
153/*
154 * The total number of pages which are beyond the high watermark within all
155 * zones.
156 */
157unsigned long vm_total_pages;
1da177e4
LT
158
159static LIST_HEAD(shrinker_list);
160static DECLARE_RWSEM(shrinker_rwsem);
161
c255a458 162#ifdef CONFIG_MEMCG
89b5fae5
JW
163static bool global_reclaim(struct scan_control *sc)
164{
f16015fb 165 return !sc->target_mem_cgroup;
89b5fae5 166}
97c9341f
TH
167
168/**
169 * sane_reclaim - is the usual dirty throttling mechanism operational?
170 * @sc: scan_control in question
171 *
172 * The normal page dirty throttling mechanism in balance_dirty_pages() is
173 * completely broken with the legacy memcg and direct stalling in
174 * shrink_page_list() is used for throttling instead, which lacks all the
175 * niceties such as fairness, adaptive pausing, bandwidth proportional
176 * allocation and configurability.
177 *
178 * This function tests whether the vmscan currently in progress can assume
179 * that the normal dirty throttling mechanism is operational.
180 */
181static bool sane_reclaim(struct scan_control *sc)
182{
183 struct mem_cgroup *memcg = sc->target_mem_cgroup;
184
185 if (!memcg)
186 return true;
187#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 188 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
189 return true;
190#endif
191 return false;
192}
91a45470 193#else
89b5fae5
JW
194static bool global_reclaim(struct scan_control *sc)
195{
196 return true;
197}
97c9341f
TH
198
199static bool sane_reclaim(struct scan_control *sc)
200{
201 return true;
202}
91a45470
KH
203#endif
204
5a1c84b4
MG
205/*
206 * This misses isolated pages which are not accounted for to save counters.
207 * As the data only determines if reclaim or compaction continues, it is
208 * not expected that isolated pages will be a dominating factor.
209 */
210unsigned long zone_reclaimable_pages(struct zone *zone)
211{
212 unsigned long nr;
213
214 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
215 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
216 if (get_nr_swap_pages() > 0)
217 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
218 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
219
220 return nr;
221}
222
fd538803
MH
223/**
224 * lruvec_lru_size - Returns the number of pages on the given LRU list.
225 * @lruvec: lru vector
226 * @lru: lru to use
227 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
228 */
229unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 230{
fd538803
MH
231 unsigned long lru_size;
232 int zid;
233
c3c787e8 234 if (!mem_cgroup_disabled())
fd538803
MH
235 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
236 else
237 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
a3d8e054 238
fd538803
MH
239 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
240 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
241 unsigned long size;
c9f299d9 242
fd538803
MH
243 if (!managed_zone(zone))
244 continue;
245
246 if (!mem_cgroup_disabled())
247 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
248 else
249 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
250 NR_ZONE_LRU_BASE + lru);
251 lru_size -= min(size, lru_size);
252 }
253
254 return lru_size;
b4536f0c 255
b4536f0c
MH
256}
257
1da177e4 258/*
1d3d4437 259 * Add a shrinker callback to be called from the vm.
1da177e4 260 */
1d3d4437 261int register_shrinker(struct shrinker *shrinker)
1da177e4 262{
1d3d4437
GC
263 size_t size = sizeof(*shrinker->nr_deferred);
264
1d3d4437
GC
265 if (shrinker->flags & SHRINKER_NUMA_AWARE)
266 size *= nr_node_ids;
267
268 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
269 if (!shrinker->nr_deferred)
270 return -ENOMEM;
271
8e1f936b
RR
272 down_write(&shrinker_rwsem);
273 list_add_tail(&shrinker->list, &shrinker_list);
274 up_write(&shrinker_rwsem);
1d3d4437 275 return 0;
1da177e4 276}
8e1f936b 277EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
278
279/*
280 * Remove one
281 */
8e1f936b 282void unregister_shrinker(struct shrinker *shrinker)
1da177e4 283{
bb422a73
TH
284 if (!shrinker->nr_deferred)
285 return;
1da177e4
LT
286 down_write(&shrinker_rwsem);
287 list_del(&shrinker->list);
288 up_write(&shrinker_rwsem);
ae393321 289 kfree(shrinker->nr_deferred);
bb422a73 290 shrinker->nr_deferred = NULL;
1da177e4 291}
8e1f936b 292EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
293
294#define SHRINK_BATCH 128
1d3d4437 295
cb731d6c 296static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
9092c71b 297 struct shrinker *shrinker, int priority)
1d3d4437
GC
298{
299 unsigned long freed = 0;
300 unsigned long long delta;
301 long total_scan;
d5bc5fd3 302 long freeable;
1d3d4437
GC
303 long nr;
304 long new_nr;
305 int nid = shrinkctl->nid;
306 long batch_size = shrinker->batch ? shrinker->batch
307 : SHRINK_BATCH;
5f33a080 308 long scanned = 0, next_deferred;
1d3d4437 309
d5bc5fd3
VD
310 freeable = shrinker->count_objects(shrinker, shrinkctl);
311 if (freeable == 0)
1d3d4437
GC
312 return 0;
313
314 /*
315 * copy the current shrinker scan count into a local variable
316 * and zero it so that other concurrent shrinker invocations
317 * don't also do this scanning work.
318 */
319 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
320
321 total_scan = nr;
9092c71b
JB
322 delta = freeable >> priority;
323 delta *= 4;
324 do_div(delta, shrinker->seeks);
1d3d4437
GC
325 total_scan += delta;
326 if (total_scan < 0) {
8612c663 327 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 328 shrinker->scan_objects, total_scan);
d5bc5fd3 329 total_scan = freeable;
5f33a080
SL
330 next_deferred = nr;
331 } else
332 next_deferred = total_scan;
1d3d4437
GC
333
334 /*
335 * We need to avoid excessive windup on filesystem shrinkers
336 * due to large numbers of GFP_NOFS allocations causing the
337 * shrinkers to return -1 all the time. This results in a large
338 * nr being built up so when a shrink that can do some work
339 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 340 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
341 * memory.
342 *
343 * Hence only allow the shrinker to scan the entire cache when
344 * a large delta change is calculated directly.
345 */
d5bc5fd3
VD
346 if (delta < freeable / 4)
347 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
348
349 /*
350 * Avoid risking looping forever due to too large nr value:
351 * never try to free more than twice the estimate number of
352 * freeable entries.
353 */
d5bc5fd3
VD
354 if (total_scan > freeable * 2)
355 total_scan = freeable * 2;
1d3d4437
GC
356
357 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
9092c71b 358 freeable, delta, total_scan, priority);
1d3d4437 359
0b1fb40a
VD
360 /*
361 * Normally, we should not scan less than batch_size objects in one
362 * pass to avoid too frequent shrinker calls, but if the slab has less
363 * than batch_size objects in total and we are really tight on memory,
364 * we will try to reclaim all available objects, otherwise we can end
365 * up failing allocations although there are plenty of reclaimable
366 * objects spread over several slabs with usage less than the
367 * batch_size.
368 *
369 * We detect the "tight on memory" situations by looking at the total
370 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 371 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
372 * scanning at high prio and therefore should try to reclaim as much as
373 * possible.
374 */
375 while (total_scan >= batch_size ||
d5bc5fd3 376 total_scan >= freeable) {
a0b02131 377 unsigned long ret;
0b1fb40a 378 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 379
0b1fb40a 380 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 381 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
382 ret = shrinker->scan_objects(shrinker, shrinkctl);
383 if (ret == SHRINK_STOP)
384 break;
385 freed += ret;
1d3d4437 386
d460acb5
CW
387 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
388 total_scan -= shrinkctl->nr_scanned;
389 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
390
391 cond_resched();
392 }
393
5f33a080
SL
394 if (next_deferred >= scanned)
395 next_deferred -= scanned;
396 else
397 next_deferred = 0;
1d3d4437
GC
398 /*
399 * move the unused scan count back into the shrinker in a
400 * manner that handles concurrent updates. If we exhausted the
401 * scan, there is no need to do an update.
402 */
5f33a080
SL
403 if (next_deferred > 0)
404 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
405 &shrinker->nr_deferred[nid]);
406 else
407 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
408
df9024a8 409 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 410 return freed;
1495f230
YH
411}
412
6b4f7799 413/**
cb731d6c 414 * shrink_slab - shrink slab caches
6b4f7799
JW
415 * @gfp_mask: allocation context
416 * @nid: node whose slab caches to target
cb731d6c 417 * @memcg: memory cgroup whose slab caches to target
9092c71b 418 * @priority: the reclaim priority
1da177e4 419 *
6b4f7799 420 * Call the shrink functions to age shrinkable caches.
1da177e4 421 *
6b4f7799
JW
422 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
423 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 424 *
cb731d6c
VD
425 * @memcg specifies the memory cgroup to target. If it is not NULL,
426 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
0fc9f58a
VD
427 * objects from the memory cgroup specified. Otherwise, only unaware
428 * shrinkers are called.
cb731d6c 429 *
9092c71b
JB
430 * @priority is sc->priority, we take the number of objects and >> by priority
431 * in order to get the scan target.
b15e0905 432 *
6b4f7799 433 * Returns the number of reclaimed slab objects.
1da177e4 434 */
cb731d6c
VD
435static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
436 struct mem_cgroup *memcg,
9092c71b 437 int priority)
1da177e4
LT
438{
439 struct shrinker *shrinker;
24f7c6b9 440 unsigned long freed = 0;
1da177e4 441
0fc9f58a 442 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
cb731d6c
VD
443 return 0;
444
e830c63a 445 if (!down_read_trylock(&shrinker_rwsem))
f06590bd 446 goto out;
1da177e4
LT
447
448 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
449 struct shrink_control sc = {
450 .gfp_mask = gfp_mask,
451 .nid = nid,
cb731d6c 452 .memcg = memcg,
6b4f7799 453 };
ec97097b 454
0fc9f58a
VD
455 /*
456 * If kernel memory accounting is disabled, we ignore
457 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
458 * passing NULL for memcg.
459 */
460 if (memcg_kmem_enabled() &&
461 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
cb731d6c
VD
462 continue;
463
6b4f7799
JW
464 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
465 sc.nid = 0;
1da177e4 466
9092c71b 467 freed += do_shrink_slab(&sc, shrinker, priority);
e496612c
MK
468 /*
469 * Bail out if someone want to register a new shrinker to
470 * prevent the regsitration from being stalled for long periods
471 * by parallel ongoing shrinking.
472 */
473 if (rwsem_is_contended(&shrinker_rwsem)) {
474 freed = freed ? : 1;
475 break;
476 }
1da177e4 477 }
6b4f7799 478
1da177e4 479 up_read(&shrinker_rwsem);
f06590bd
MK
480out:
481 cond_resched();
24f7c6b9 482 return freed;
1da177e4
LT
483}
484
cb731d6c
VD
485void drop_slab_node(int nid)
486{
487 unsigned long freed;
488
489 do {
490 struct mem_cgroup *memcg = NULL;
491
492 freed = 0;
493 do {
9092c71b 494 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
cb731d6c
VD
495 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
496 } while (freed > 10);
497}
498
499void drop_slab(void)
500{
501 int nid;
502
503 for_each_online_node(nid)
504 drop_slab_node(nid);
505}
506
1da177e4
LT
507static inline int is_page_cache_freeable(struct page *page)
508{
ceddc3a5
JW
509 /*
510 * A freeable page cache page is referenced only by the caller
511 * that isolated the page, the page cache radix tree and
512 * optional buffer heads at page->private.
513 */
bd4c82c2
YH
514 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
515 HPAGE_PMD_NR : 1;
516 return page_count(page) - page_has_private(page) == 1 + radix_pins;
1da177e4
LT
517}
518
703c2708 519static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 520{
930d9152 521 if (current->flags & PF_SWAPWRITE)
1da177e4 522 return 1;
703c2708 523 if (!inode_write_congested(inode))
1da177e4 524 return 1;
703c2708 525 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
526 return 1;
527 return 0;
528}
529
530/*
531 * We detected a synchronous write error writing a page out. Probably
532 * -ENOSPC. We need to propagate that into the address_space for a subsequent
533 * fsync(), msync() or close().
534 *
535 * The tricky part is that after writepage we cannot touch the mapping: nothing
536 * prevents it from being freed up. But we have a ref on the page and once
537 * that page is locked, the mapping is pinned.
538 *
539 * We're allowed to run sleeping lock_page() here because we know the caller has
540 * __GFP_FS.
541 */
542static void handle_write_error(struct address_space *mapping,
543 struct page *page, int error)
544{
7eaceacc 545 lock_page(page);
3e9f45bd
GC
546 if (page_mapping(page) == mapping)
547 mapping_set_error(mapping, error);
1da177e4
LT
548 unlock_page(page);
549}
550
04e62a29
CL
551/* possible outcome of pageout() */
552typedef enum {
553 /* failed to write page out, page is locked */
554 PAGE_KEEP,
555 /* move page to the active list, page is locked */
556 PAGE_ACTIVATE,
557 /* page has been sent to the disk successfully, page is unlocked */
558 PAGE_SUCCESS,
559 /* page is clean and locked */
560 PAGE_CLEAN,
561} pageout_t;
562
1da177e4 563/*
1742f19f
AM
564 * pageout is called by shrink_page_list() for each dirty page.
565 * Calls ->writepage().
1da177e4 566 */
c661b078 567static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 568 struct scan_control *sc)
1da177e4
LT
569{
570 /*
571 * If the page is dirty, only perform writeback if that write
572 * will be non-blocking. To prevent this allocation from being
573 * stalled by pagecache activity. But note that there may be
574 * stalls if we need to run get_block(). We could test
575 * PagePrivate for that.
576 *
8174202b 577 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
578 * this page's queue, we can perform writeback even if that
579 * will block.
580 *
581 * If the page is swapcache, write it back even if that would
582 * block, for some throttling. This happens by accident, because
583 * swap_backing_dev_info is bust: it doesn't reflect the
584 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
585 */
586 if (!is_page_cache_freeable(page))
587 return PAGE_KEEP;
588 if (!mapping) {
589 /*
590 * Some data journaling orphaned pages can have
591 * page->mapping == NULL while being dirty with clean buffers.
592 */
266cf658 593 if (page_has_private(page)) {
1da177e4
LT
594 if (try_to_free_buffers(page)) {
595 ClearPageDirty(page);
b1de0d13 596 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
597 return PAGE_CLEAN;
598 }
599 }
600 return PAGE_KEEP;
601 }
602 if (mapping->a_ops->writepage == NULL)
603 return PAGE_ACTIVATE;
703c2708 604 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
605 return PAGE_KEEP;
606
607 if (clear_page_dirty_for_io(page)) {
608 int res;
609 struct writeback_control wbc = {
610 .sync_mode = WB_SYNC_NONE,
611 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
612 .range_start = 0,
613 .range_end = LLONG_MAX,
1da177e4
LT
614 .for_reclaim = 1,
615 };
616
617 SetPageReclaim(page);
618 res = mapping->a_ops->writepage(page, &wbc);
619 if (res < 0)
620 handle_write_error(mapping, page, res);
994fc28c 621 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
622 ClearPageReclaim(page);
623 return PAGE_ACTIVATE;
624 }
c661b078 625
1da177e4
LT
626 if (!PageWriteback(page)) {
627 /* synchronous write or broken a_ops? */
628 ClearPageReclaim(page);
629 }
3aa23851 630 trace_mm_vmscan_writepage(page);
c4a25635 631 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
632 return PAGE_SUCCESS;
633 }
634
635 return PAGE_CLEAN;
636}
637
a649fd92 638/*
e286781d
NP
639 * Same as remove_mapping, but if the page is removed from the mapping, it
640 * gets returned with a refcount of 0.
a649fd92 641 */
a528910e
JW
642static int __remove_mapping(struct address_space *mapping, struct page *page,
643 bool reclaimed)
49d2e9cc 644{
c4843a75 645 unsigned long flags;
bd4c82c2 646 int refcount;
c4843a75 647
28e4d965
NP
648 BUG_ON(!PageLocked(page));
649 BUG_ON(mapping != page_mapping(page));
49d2e9cc 650
c4843a75 651 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 652 /*
0fd0e6b0
NP
653 * The non racy check for a busy page.
654 *
655 * Must be careful with the order of the tests. When someone has
656 * a ref to the page, it may be possible that they dirty it then
657 * drop the reference. So if PageDirty is tested before page_count
658 * here, then the following race may occur:
659 *
660 * get_user_pages(&page);
661 * [user mapping goes away]
662 * write_to(page);
663 * !PageDirty(page) [good]
664 * SetPageDirty(page);
665 * put_page(page);
666 * !page_count(page) [good, discard it]
667 *
668 * [oops, our write_to data is lost]
669 *
670 * Reversing the order of the tests ensures such a situation cannot
671 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 672 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
673 *
674 * Note that if SetPageDirty is always performed via set_page_dirty,
675 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 676 */
bd4c82c2
YH
677 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
678 refcount = 1 + HPAGE_PMD_NR;
679 else
680 refcount = 2;
681 if (!page_ref_freeze(page, refcount))
49d2e9cc 682 goto cannot_free;
e286781d
NP
683 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
684 if (unlikely(PageDirty(page))) {
bd4c82c2 685 page_ref_unfreeze(page, refcount);
49d2e9cc 686 goto cannot_free;
e286781d 687 }
49d2e9cc
CL
688
689 if (PageSwapCache(page)) {
690 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 691 mem_cgroup_swapout(page, swap);
49d2e9cc 692 __delete_from_swap_cache(page);
c4843a75 693 spin_unlock_irqrestore(&mapping->tree_lock, flags);
75f6d6d2 694 put_swap_page(page, swap);
e286781d 695 } else {
6072d13c 696 void (*freepage)(struct page *);
a528910e 697 void *shadow = NULL;
6072d13c
LT
698
699 freepage = mapping->a_ops->freepage;
a528910e
JW
700 /*
701 * Remember a shadow entry for reclaimed file cache in
702 * order to detect refaults, thus thrashing, later on.
703 *
704 * But don't store shadows in an address space that is
705 * already exiting. This is not just an optizimation,
706 * inode reclaim needs to empty out the radix tree or
707 * the nodes are lost. Don't plant shadows behind its
708 * back.
f9fe48be
RZ
709 *
710 * We also don't store shadows for DAX mappings because the
711 * only page cache pages found in these are zero pages
712 * covering holes, and because we don't want to mix DAX
713 * exceptional entries and shadow exceptional entries in the
714 * same page_tree.
a528910e
JW
715 */
716 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 717 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 718 shadow = workingset_eviction(mapping, page);
62cccb8c 719 __delete_from_page_cache(page, shadow);
c4843a75 720 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
721
722 if (freepage != NULL)
723 freepage(page);
49d2e9cc
CL
724 }
725
49d2e9cc
CL
726 return 1;
727
728cannot_free:
c4843a75 729 spin_unlock_irqrestore(&mapping->tree_lock, flags);
49d2e9cc
CL
730 return 0;
731}
732
e286781d
NP
733/*
734 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
735 * someone else has a ref on the page, abort and return 0. If it was
736 * successfully detached, return 1. Assumes the caller has a single ref on
737 * this page.
738 */
739int remove_mapping(struct address_space *mapping, struct page *page)
740{
a528910e 741 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
742 /*
743 * Unfreezing the refcount with 1 rather than 2 effectively
744 * drops the pagecache ref for us without requiring another
745 * atomic operation.
746 */
fe896d18 747 page_ref_unfreeze(page, 1);
e286781d
NP
748 return 1;
749 }
750 return 0;
751}
752
894bc310
LS
753/**
754 * putback_lru_page - put previously isolated page onto appropriate LRU list
755 * @page: page to be put back to appropriate lru list
756 *
757 * Add previously isolated @page to appropriate LRU list.
758 * Page may still be unevictable for other reasons.
759 *
760 * lru_lock must not be held, interrupts must be enabled.
761 */
894bc310
LS
762void putback_lru_page(struct page *page)
763{
9c4e6b1a 764 lru_cache_add(page);
894bc310
LS
765 put_page(page); /* drop ref from isolate */
766}
767
dfc8d636
JW
768enum page_references {
769 PAGEREF_RECLAIM,
770 PAGEREF_RECLAIM_CLEAN,
64574746 771 PAGEREF_KEEP,
dfc8d636
JW
772 PAGEREF_ACTIVATE,
773};
774
775static enum page_references page_check_references(struct page *page,
776 struct scan_control *sc)
777{
64574746 778 int referenced_ptes, referenced_page;
dfc8d636 779 unsigned long vm_flags;
dfc8d636 780
c3ac9a8a
JW
781 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
782 &vm_flags);
64574746 783 referenced_page = TestClearPageReferenced(page);
dfc8d636 784
dfc8d636
JW
785 /*
786 * Mlock lost the isolation race with us. Let try_to_unmap()
787 * move the page to the unevictable list.
788 */
789 if (vm_flags & VM_LOCKED)
790 return PAGEREF_RECLAIM;
791
64574746 792 if (referenced_ptes) {
e4898273 793 if (PageSwapBacked(page))
64574746
JW
794 return PAGEREF_ACTIVATE;
795 /*
796 * All mapped pages start out with page table
797 * references from the instantiating fault, so we need
798 * to look twice if a mapped file page is used more
799 * than once.
800 *
801 * Mark it and spare it for another trip around the
802 * inactive list. Another page table reference will
803 * lead to its activation.
804 *
805 * Note: the mark is set for activated pages as well
806 * so that recently deactivated but used pages are
807 * quickly recovered.
808 */
809 SetPageReferenced(page);
810
34dbc67a 811 if (referenced_page || referenced_ptes > 1)
64574746
JW
812 return PAGEREF_ACTIVATE;
813
c909e993
KK
814 /*
815 * Activate file-backed executable pages after first usage.
816 */
817 if (vm_flags & VM_EXEC)
818 return PAGEREF_ACTIVATE;
819
64574746
JW
820 return PAGEREF_KEEP;
821 }
dfc8d636
JW
822
823 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 824 if (referenced_page && !PageSwapBacked(page))
64574746
JW
825 return PAGEREF_RECLAIM_CLEAN;
826
827 return PAGEREF_RECLAIM;
dfc8d636
JW
828}
829
e2be15f6
MG
830/* Check if a page is dirty or under writeback */
831static void page_check_dirty_writeback(struct page *page,
832 bool *dirty, bool *writeback)
833{
b4597226
MG
834 struct address_space *mapping;
835
e2be15f6
MG
836 /*
837 * Anonymous pages are not handled by flushers and must be written
838 * from reclaim context. Do not stall reclaim based on them
839 */
802a3a92
SL
840 if (!page_is_file_cache(page) ||
841 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
842 *dirty = false;
843 *writeback = false;
844 return;
845 }
846
847 /* By default assume that the page flags are accurate */
848 *dirty = PageDirty(page);
849 *writeback = PageWriteback(page);
b4597226
MG
850
851 /* Verify dirty/writeback state if the filesystem supports it */
852 if (!page_has_private(page))
853 return;
854
855 mapping = page_mapping(page);
856 if (mapping && mapping->a_ops->is_dirty_writeback)
857 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
858}
859
3c710c1a
MH
860struct reclaim_stat {
861 unsigned nr_dirty;
862 unsigned nr_unqueued_dirty;
863 unsigned nr_congested;
864 unsigned nr_writeback;
865 unsigned nr_immediate;
5bccd166
MH
866 unsigned nr_activate;
867 unsigned nr_ref_keep;
868 unsigned nr_unmap_fail;
3c710c1a
MH
869};
870
1da177e4 871/*
1742f19f 872 * shrink_page_list() returns the number of reclaimed pages
1da177e4 873 */
1742f19f 874static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 875 struct pglist_data *pgdat,
f84f6e2b 876 struct scan_control *sc,
02c6de8d 877 enum ttu_flags ttu_flags,
3c710c1a 878 struct reclaim_stat *stat,
02c6de8d 879 bool force_reclaim)
1da177e4
LT
880{
881 LIST_HEAD(ret_pages);
abe4c3b5 882 LIST_HEAD(free_pages);
1da177e4 883 int pgactivate = 0;
3c710c1a
MH
884 unsigned nr_unqueued_dirty = 0;
885 unsigned nr_dirty = 0;
886 unsigned nr_congested = 0;
887 unsigned nr_reclaimed = 0;
888 unsigned nr_writeback = 0;
889 unsigned nr_immediate = 0;
5bccd166
MH
890 unsigned nr_ref_keep = 0;
891 unsigned nr_unmap_fail = 0;
1da177e4
LT
892
893 cond_resched();
894
1da177e4
LT
895 while (!list_empty(page_list)) {
896 struct address_space *mapping;
897 struct page *page;
898 int may_enter_fs;
02c6de8d 899 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 900 bool dirty, writeback;
1da177e4
LT
901
902 cond_resched();
903
904 page = lru_to_page(page_list);
905 list_del(&page->lru);
906
529ae9aa 907 if (!trylock_page(page))
1da177e4
LT
908 goto keep;
909
309381fe 910 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
911
912 sc->nr_scanned++;
80e43426 913
39b5f29a 914 if (unlikely(!page_evictable(page)))
ad6b6704 915 goto activate_locked;
894bc310 916
a6dc60f8 917 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
918 goto keep_locked;
919
1da177e4 920 /* Double the slab pressure for mapped and swapcache pages */
802a3a92
SL
921 if ((page_mapped(page) || PageSwapCache(page)) &&
922 !(PageAnon(page) && !PageSwapBacked(page)))
1da177e4
LT
923 sc->nr_scanned++;
924
c661b078
AW
925 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
926 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
927
e2be15f6
MG
928 /*
929 * The number of dirty pages determines if a zone is marked
930 * reclaim_congested which affects wait_iff_congested. kswapd
931 * will stall and start writing pages if the tail of the LRU
932 * is all dirty unqueued pages.
933 */
934 page_check_dirty_writeback(page, &dirty, &writeback);
935 if (dirty || writeback)
936 nr_dirty++;
937
938 if (dirty && !writeback)
939 nr_unqueued_dirty++;
940
d04e8acd
MG
941 /*
942 * Treat this page as congested if the underlying BDI is or if
943 * pages are cycling through the LRU so quickly that the
944 * pages marked for immediate reclaim are making it to the
945 * end of the LRU a second time.
946 */
e2be15f6 947 mapping = page_mapping(page);
1da58ee2 948 if (((dirty || writeback) && mapping &&
703c2708 949 inode_write_congested(mapping->host)) ||
d04e8acd 950 (writeback && PageReclaim(page)))
e2be15f6
MG
951 nr_congested++;
952
283aba9f
MG
953 /*
954 * If a page at the tail of the LRU is under writeback, there
955 * are three cases to consider.
956 *
957 * 1) If reclaim is encountering an excessive number of pages
958 * under writeback and this page is both under writeback and
959 * PageReclaim then it indicates that pages are being queued
960 * for IO but are being recycled through the LRU before the
961 * IO can complete. Waiting on the page itself risks an
962 * indefinite stall if it is impossible to writeback the
963 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
964 * note that the LRU is being scanned too quickly and the
965 * caller can stall after page list has been processed.
283aba9f 966 *
97c9341f 967 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
968 * not marked for immediate reclaim, or the caller does not
969 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
970 * not to fs). In this case mark the page for immediate
97c9341f 971 * reclaim and continue scanning.
283aba9f 972 *
ecf5fc6e
MH
973 * Require may_enter_fs because we would wait on fs, which
974 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
975 * enter reclaim, and deadlock if it waits on a page for
976 * which it is needed to do the write (loop masks off
977 * __GFP_IO|__GFP_FS for this reason); but more thought
978 * would probably show more reasons.
979 *
7fadc820 980 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
981 * PageReclaim. memcg does not have any dirty pages
982 * throttling so we could easily OOM just because too many
983 * pages are in writeback and there is nothing else to
984 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
985 *
986 * In cases 1) and 2) we activate the pages to get them out of
987 * the way while we continue scanning for clean pages on the
988 * inactive list and refilling from the active list. The
989 * observation here is that waiting for disk writes is more
990 * expensive than potentially causing reloads down the line.
991 * Since they're marked for immediate reclaim, they won't put
992 * memory pressure on the cache working set any longer than it
993 * takes to write them to disk.
283aba9f 994 */
c661b078 995 if (PageWriteback(page)) {
283aba9f
MG
996 /* Case 1 above */
997 if (current_is_kswapd() &&
998 PageReclaim(page) &&
599d0c95 999 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
b1a6f21e 1000 nr_immediate++;
c55e8d03 1001 goto activate_locked;
283aba9f
MG
1002
1003 /* Case 2 above */
97c9341f 1004 } else if (sane_reclaim(sc) ||
ecf5fc6e 1005 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1006 /*
1007 * This is slightly racy - end_page_writeback()
1008 * might have just cleared PageReclaim, then
1009 * setting PageReclaim here end up interpreted
1010 * as PageReadahead - but that does not matter
1011 * enough to care. What we do want is for this
1012 * page to have PageReclaim set next time memcg
1013 * reclaim reaches the tests above, so it will
1014 * then wait_on_page_writeback() to avoid OOM;
1015 * and it's also appropriate in global reclaim.
1016 */
1017 SetPageReclaim(page);
e62e384e 1018 nr_writeback++;
c55e8d03 1019 goto activate_locked;
283aba9f
MG
1020
1021 /* Case 3 above */
1022 } else {
7fadc820 1023 unlock_page(page);
283aba9f 1024 wait_on_page_writeback(page);
7fadc820
HD
1025 /* then go back and try same page again */
1026 list_add_tail(&page->lru, page_list);
1027 continue;
e62e384e 1028 }
c661b078 1029 }
1da177e4 1030
02c6de8d
MK
1031 if (!force_reclaim)
1032 references = page_check_references(page, sc);
1033
dfc8d636
JW
1034 switch (references) {
1035 case PAGEREF_ACTIVATE:
1da177e4 1036 goto activate_locked;
64574746 1037 case PAGEREF_KEEP:
5bccd166 1038 nr_ref_keep++;
64574746 1039 goto keep_locked;
dfc8d636
JW
1040 case PAGEREF_RECLAIM:
1041 case PAGEREF_RECLAIM_CLEAN:
1042 ; /* try to reclaim the page below */
1043 }
1da177e4 1044
1da177e4
LT
1045 /*
1046 * Anonymous process memory has backing store?
1047 * Try to allocate it some swap space here.
802a3a92 1048 * Lazyfree page could be freed directly
1da177e4 1049 */
bd4c82c2
YH
1050 if (PageAnon(page) && PageSwapBacked(page)) {
1051 if (!PageSwapCache(page)) {
1052 if (!(sc->gfp_mask & __GFP_IO))
1053 goto keep_locked;
1054 if (PageTransHuge(page)) {
1055 /* cannot split THP, skip it */
1056 if (!can_split_huge_page(page, NULL))
1057 goto activate_locked;
1058 /*
1059 * Split pages without a PMD map right
1060 * away. Chances are some or all of the
1061 * tail pages can be freed without IO.
1062 */
1063 if (!compound_mapcount(page) &&
1064 split_huge_page_to_list(page,
1065 page_list))
1066 goto activate_locked;
1067 }
1068 if (!add_to_swap(page)) {
1069 if (!PageTransHuge(page))
1070 goto activate_locked;
1071 /* Fallback to swap normal pages */
1072 if (split_huge_page_to_list(page,
1073 page_list))
1074 goto activate_locked;
fe490cc0
YH
1075#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1076 count_vm_event(THP_SWPOUT_FALLBACK);
1077#endif
bd4c82c2
YH
1078 if (!add_to_swap(page))
1079 goto activate_locked;
1080 }
0f074658 1081
bd4c82c2 1082 may_enter_fs = 1;
1da177e4 1083
bd4c82c2
YH
1084 /* Adding to swap updated mapping */
1085 mapping = page_mapping(page);
1086 }
7751b2da
KS
1087 } else if (unlikely(PageTransHuge(page))) {
1088 /* Split file THP */
1089 if (split_huge_page_to_list(page, page_list))
1090 goto keep_locked;
e2be15f6 1091 }
1da177e4
LT
1092
1093 /*
1094 * The page is mapped into the page tables of one or more
1095 * processes. Try to unmap it here.
1096 */
802a3a92 1097 if (page_mapped(page)) {
bd4c82c2
YH
1098 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1099
1100 if (unlikely(PageTransHuge(page)))
1101 flags |= TTU_SPLIT_HUGE_PMD;
1102 if (!try_to_unmap(page, flags)) {
5bccd166 1103 nr_unmap_fail++;
1da177e4 1104 goto activate_locked;
1da177e4
LT
1105 }
1106 }
1107
1108 if (PageDirty(page)) {
ee72886d 1109 /*
4eda4823
JW
1110 * Only kswapd can writeback filesystem pages
1111 * to avoid risk of stack overflow. But avoid
1112 * injecting inefficient single-page IO into
1113 * flusher writeback as much as possible: only
1114 * write pages when we've encountered many
1115 * dirty pages, and when we've already scanned
1116 * the rest of the LRU for clean pages and see
1117 * the same dirty pages again (PageReclaim).
ee72886d 1118 */
f84f6e2b 1119 if (page_is_file_cache(page) &&
4eda4823
JW
1120 (!current_is_kswapd() || !PageReclaim(page) ||
1121 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1122 /*
1123 * Immediately reclaim when written back.
1124 * Similar in principal to deactivate_page()
1125 * except we already have the page isolated
1126 * and know it's dirty
1127 */
c4a25635 1128 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1129 SetPageReclaim(page);
1130
c55e8d03 1131 goto activate_locked;
ee72886d
MG
1132 }
1133
dfc8d636 1134 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1135 goto keep_locked;
4dd4b920 1136 if (!may_enter_fs)
1da177e4 1137 goto keep_locked;
52a8363e 1138 if (!sc->may_writepage)
1da177e4
LT
1139 goto keep_locked;
1140
d950c947
MG
1141 /*
1142 * Page is dirty. Flush the TLB if a writable entry
1143 * potentially exists to avoid CPU writes after IO
1144 * starts and then write it out here.
1145 */
1146 try_to_unmap_flush_dirty();
7d3579e8 1147 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1148 case PAGE_KEEP:
1149 goto keep_locked;
1150 case PAGE_ACTIVATE:
1151 goto activate_locked;
1152 case PAGE_SUCCESS:
7d3579e8 1153 if (PageWriteback(page))
41ac1999 1154 goto keep;
7d3579e8 1155 if (PageDirty(page))
1da177e4 1156 goto keep;
7d3579e8 1157
1da177e4
LT
1158 /*
1159 * A synchronous write - probably a ramdisk. Go
1160 * ahead and try to reclaim the page.
1161 */
529ae9aa 1162 if (!trylock_page(page))
1da177e4
LT
1163 goto keep;
1164 if (PageDirty(page) || PageWriteback(page))
1165 goto keep_locked;
1166 mapping = page_mapping(page);
1167 case PAGE_CLEAN:
1168 ; /* try to free the page below */
1169 }
1170 }
1171
1172 /*
1173 * If the page has buffers, try to free the buffer mappings
1174 * associated with this page. If we succeed we try to free
1175 * the page as well.
1176 *
1177 * We do this even if the page is PageDirty().
1178 * try_to_release_page() does not perform I/O, but it is
1179 * possible for a page to have PageDirty set, but it is actually
1180 * clean (all its buffers are clean). This happens if the
1181 * buffers were written out directly, with submit_bh(). ext3
894bc310 1182 * will do this, as well as the blockdev mapping.
1da177e4
LT
1183 * try_to_release_page() will discover that cleanness and will
1184 * drop the buffers and mark the page clean - it can be freed.
1185 *
1186 * Rarely, pages can have buffers and no ->mapping. These are
1187 * the pages which were not successfully invalidated in
1188 * truncate_complete_page(). We try to drop those buffers here
1189 * and if that worked, and the page is no longer mapped into
1190 * process address space (page_count == 1) it can be freed.
1191 * Otherwise, leave the page on the LRU so it is swappable.
1192 */
266cf658 1193 if (page_has_private(page)) {
1da177e4
LT
1194 if (!try_to_release_page(page, sc->gfp_mask))
1195 goto activate_locked;
e286781d
NP
1196 if (!mapping && page_count(page) == 1) {
1197 unlock_page(page);
1198 if (put_page_testzero(page))
1199 goto free_it;
1200 else {
1201 /*
1202 * rare race with speculative reference.
1203 * the speculative reference will free
1204 * this page shortly, so we may
1205 * increment nr_reclaimed here (and
1206 * leave it off the LRU).
1207 */
1208 nr_reclaimed++;
1209 continue;
1210 }
1211 }
1da177e4
LT
1212 }
1213
802a3a92
SL
1214 if (PageAnon(page) && !PageSwapBacked(page)) {
1215 /* follow __remove_mapping for reference */
1216 if (!page_ref_freeze(page, 1))
1217 goto keep_locked;
1218 if (PageDirty(page)) {
1219 page_ref_unfreeze(page, 1);
1220 goto keep_locked;
1221 }
1da177e4 1222
802a3a92 1223 count_vm_event(PGLAZYFREED);
2262185c 1224 count_memcg_page_event(page, PGLAZYFREED);
802a3a92
SL
1225 } else if (!mapping || !__remove_mapping(mapping, page, true))
1226 goto keep_locked;
a978d6f5
NP
1227 /*
1228 * At this point, we have no other references and there is
1229 * no way to pick any more up (removed from LRU, removed
1230 * from pagecache). Can use non-atomic bitops now (and
1231 * we obviously don't have to worry about waking up a process
1232 * waiting on the page lock, because there are no references.
1233 */
48c935ad 1234 __ClearPageLocked(page);
e286781d 1235free_it:
05ff5137 1236 nr_reclaimed++;
abe4c3b5
MG
1237
1238 /*
1239 * Is there need to periodically free_page_list? It would
1240 * appear not as the counts should be low
1241 */
bd4c82c2
YH
1242 if (unlikely(PageTransHuge(page))) {
1243 mem_cgroup_uncharge(page);
1244 (*get_compound_page_dtor(page))(page);
1245 } else
1246 list_add(&page->lru, &free_pages);
1da177e4
LT
1247 continue;
1248
1249activate_locked:
68a22394 1250 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1251 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1252 PageMlocked(page)))
a2c43eed 1253 try_to_free_swap(page);
309381fe 1254 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704
MK
1255 if (!PageMlocked(page)) {
1256 SetPageActive(page);
1257 pgactivate++;
2262185c 1258 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1259 }
1da177e4
LT
1260keep_locked:
1261 unlock_page(page);
1262keep:
1263 list_add(&page->lru, &ret_pages);
309381fe 1264 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1265 }
abe4c3b5 1266
747db954 1267 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1268 try_to_unmap_flush();
2d4894b5 1269 free_unref_page_list(&free_pages);
abe4c3b5 1270
1da177e4 1271 list_splice(&ret_pages, page_list);
f8891e5e 1272 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1273
3c710c1a
MH
1274 if (stat) {
1275 stat->nr_dirty = nr_dirty;
1276 stat->nr_congested = nr_congested;
1277 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1278 stat->nr_writeback = nr_writeback;
1279 stat->nr_immediate = nr_immediate;
5bccd166
MH
1280 stat->nr_activate = pgactivate;
1281 stat->nr_ref_keep = nr_ref_keep;
1282 stat->nr_unmap_fail = nr_unmap_fail;
3c710c1a 1283 }
05ff5137 1284 return nr_reclaimed;
1da177e4
LT
1285}
1286
02c6de8d
MK
1287unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1288 struct list_head *page_list)
1289{
1290 struct scan_control sc = {
1291 .gfp_mask = GFP_KERNEL,
1292 .priority = DEF_PRIORITY,
1293 .may_unmap = 1,
1294 };
3c710c1a 1295 unsigned long ret;
02c6de8d
MK
1296 struct page *page, *next;
1297 LIST_HEAD(clean_pages);
1298
1299 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1300 if (page_is_file_cache(page) && !PageDirty(page) &&
b1123ea6 1301 !__PageMovable(page)) {
02c6de8d
MK
1302 ClearPageActive(page);
1303 list_move(&page->lru, &clean_pages);
1304 }
1305 }
1306
599d0c95 1307 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
a128ca71 1308 TTU_IGNORE_ACCESS, NULL, true);
02c6de8d 1309 list_splice(&clean_pages, page_list);
599d0c95 1310 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1311 return ret;
1312}
1313
5ad333eb
AW
1314/*
1315 * Attempt to remove the specified page from its LRU. Only take this page
1316 * if it is of the appropriate PageActive status. Pages which are being
1317 * freed elsewhere are also ignored.
1318 *
1319 * page: page to consider
1320 * mode: one of the LRU isolation modes defined above
1321 *
1322 * returns 0 on success, -ve errno on failure.
1323 */
f3fd4a61 1324int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1325{
1326 int ret = -EINVAL;
1327
1328 /* Only take pages on the LRU. */
1329 if (!PageLRU(page))
1330 return ret;
1331
e46a2879
MK
1332 /* Compaction should not handle unevictable pages but CMA can do so */
1333 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1334 return ret;
1335
5ad333eb 1336 ret = -EBUSY;
08e552c6 1337
c8244935
MG
1338 /*
1339 * To minimise LRU disruption, the caller can indicate that it only
1340 * wants to isolate pages it will be able to operate on without
1341 * blocking - clean pages for the most part.
1342 *
c8244935
MG
1343 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1344 * that it is possible to migrate without blocking
1345 */
1276ad68 1346 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1347 /* All the caller can do on PageWriteback is block */
1348 if (PageWriteback(page))
1349 return ret;
1350
1351 if (PageDirty(page)) {
1352 struct address_space *mapping;
69d763fc 1353 bool migrate_dirty;
c8244935 1354
c8244935
MG
1355 /*
1356 * Only pages without mappings or that have a
1357 * ->migratepage callback are possible to migrate
69d763fc
MG
1358 * without blocking. However, we can be racing with
1359 * truncation so it's necessary to lock the page
1360 * to stabilise the mapping as truncation holds
1361 * the page lock until after the page is removed
1362 * from the page cache.
c8244935 1363 */
69d763fc
MG
1364 if (!trylock_page(page))
1365 return ret;
1366
c8244935 1367 mapping = page_mapping(page);
69d763fc
MG
1368 migrate_dirty = mapping && mapping->a_ops->migratepage;
1369 unlock_page(page);
1370 if (!migrate_dirty)
c8244935
MG
1371 return ret;
1372 }
1373 }
39deaf85 1374
f80c0673
MK
1375 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1376 return ret;
1377
5ad333eb
AW
1378 if (likely(get_page_unless_zero(page))) {
1379 /*
1380 * Be careful not to clear PageLRU until after we're
1381 * sure the page is not being freed elsewhere -- the
1382 * page release code relies on it.
1383 */
1384 ClearPageLRU(page);
1385 ret = 0;
1386 }
1387
1388 return ret;
1389}
1390
7ee36a14
MG
1391
1392/*
1393 * Update LRU sizes after isolating pages. The LRU size updates must
1394 * be complete before mem_cgroup_update_lru_size due to a santity check.
1395 */
1396static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1397 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1398{
7ee36a14
MG
1399 int zid;
1400
7ee36a14
MG
1401 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1402 if (!nr_zone_taken[zid])
1403 continue;
1404
1405 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1406#ifdef CONFIG_MEMCG
b4536f0c 1407 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1408#endif
b4536f0c
MH
1409 }
1410
7ee36a14
MG
1411}
1412
1da177e4 1413/*
a52633d8 1414 * zone_lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1415 * shrink the lists perform better by taking out a batch of pages
1416 * and working on them outside the LRU lock.
1417 *
1418 * For pagecache intensive workloads, this function is the hottest
1419 * spot in the kernel (apart from copy_*_user functions).
1420 *
1421 * Appropriate locks must be held before calling this function.
1422 *
791b48b6 1423 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1424 * @lruvec: The LRU vector to pull pages from.
1da177e4 1425 * @dst: The temp list to put pages on to.
f626012d 1426 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1427 * @sc: The scan_control struct for this reclaim session
5ad333eb 1428 * @mode: One of the LRU isolation modes
3cb99451 1429 * @lru: LRU list id for isolating
1da177e4
LT
1430 *
1431 * returns how many pages were moved onto *@dst.
1432 */
69e05944 1433static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1434 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1435 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1436 isolate_mode_t mode, enum lru_list lru)
1da177e4 1437{
75b00af7 1438 struct list_head *src = &lruvec->lists[lru];
69e05944 1439 unsigned long nr_taken = 0;
599d0c95 1440 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1441 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1442 unsigned long skipped = 0;
791b48b6 1443 unsigned long scan, total_scan, nr_pages;
b2e18757 1444 LIST_HEAD(pages_skipped);
1da177e4 1445
791b48b6
MK
1446 scan = 0;
1447 for (total_scan = 0;
1448 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1449 total_scan++) {
5ad333eb 1450 struct page *page;
5ad333eb 1451
1da177e4
LT
1452 page = lru_to_page(src);
1453 prefetchw_prev_lru_page(page, src, flags);
1454
309381fe 1455 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1456
b2e18757
MG
1457 if (page_zonenum(page) > sc->reclaim_idx) {
1458 list_move(&page->lru, &pages_skipped);
7cc30fcf 1459 nr_skipped[page_zonenum(page)]++;
b2e18757
MG
1460 continue;
1461 }
1462
791b48b6
MK
1463 /*
1464 * Do not count skipped pages because that makes the function
1465 * return with no isolated pages if the LRU mostly contains
1466 * ineligible pages. This causes the VM to not reclaim any
1467 * pages, triggering a premature OOM.
1468 */
1469 scan++;
f3fd4a61 1470 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1471 case 0:
599d0c95
MG
1472 nr_pages = hpage_nr_pages(page);
1473 nr_taken += nr_pages;
1474 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1475 list_move(&page->lru, dst);
5ad333eb
AW
1476 break;
1477
1478 case -EBUSY:
1479 /* else it is being freed elsewhere */
1480 list_move(&page->lru, src);
1481 continue;
46453a6e 1482
5ad333eb
AW
1483 default:
1484 BUG();
1485 }
1da177e4
LT
1486 }
1487
b2e18757
MG
1488 /*
1489 * Splice any skipped pages to the start of the LRU list. Note that
1490 * this disrupts the LRU order when reclaiming for lower zones but
1491 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1492 * scanning would soon rescan the same pages to skip and put the
1493 * system at risk of premature OOM.
1494 */
7cc30fcf
MG
1495 if (!list_empty(&pages_skipped)) {
1496 int zid;
1497
3db65812 1498 list_splice(&pages_skipped, src);
7cc30fcf
MG
1499 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1500 if (!nr_skipped[zid])
1501 continue;
1502
1503 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1504 skipped += nr_skipped[zid];
7cc30fcf
MG
1505 }
1506 }
791b48b6 1507 *nr_scanned = total_scan;
1265e3a6 1508 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1509 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1510 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1511 return nr_taken;
1512}
1513
62695a84
NP
1514/**
1515 * isolate_lru_page - tries to isolate a page from its LRU list
1516 * @page: page to isolate from its LRU list
1517 *
1518 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1519 * vmstat statistic corresponding to whatever LRU list the page was on.
1520 *
1521 * Returns 0 if the page was removed from an LRU list.
1522 * Returns -EBUSY if the page was not on an LRU list.
1523 *
1524 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1525 * the active list, it will have PageActive set. If it was found on
1526 * the unevictable list, it will have the PageUnevictable bit set. That flag
1527 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1528 *
1529 * The vmstat statistic corresponding to the list on which the page was
1530 * found will be decremented.
1531 *
1532 * Restrictions:
a5d09bed 1533 *
62695a84
NP
1534 * (1) Must be called with an elevated refcount on the page. This is a
1535 * fundamentnal difference from isolate_lru_pages (which is called
1536 * without a stable reference).
1537 * (2) the lru_lock must not be held.
1538 * (3) interrupts must be enabled.
1539 */
1540int isolate_lru_page(struct page *page)
1541{
1542 int ret = -EBUSY;
1543
309381fe 1544 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1545 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1546
62695a84
NP
1547 if (PageLRU(page)) {
1548 struct zone *zone = page_zone(page);
fa9add64 1549 struct lruvec *lruvec;
62695a84 1550
a52633d8 1551 spin_lock_irq(zone_lru_lock(zone));
599d0c95 1552 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0c917313 1553 if (PageLRU(page)) {
894bc310 1554 int lru = page_lru(page);
0c917313 1555 get_page(page);
62695a84 1556 ClearPageLRU(page);
fa9add64
HD
1557 del_page_from_lru_list(page, lruvec, lru);
1558 ret = 0;
62695a84 1559 }
a52633d8 1560 spin_unlock_irq(zone_lru_lock(zone));
62695a84
NP
1561 }
1562 return ret;
1563}
1564
35cd7815 1565/*
d37dd5dc
FW
1566 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1567 * then get resheduled. When there are massive number of tasks doing page
1568 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1569 * the LRU list will go small and be scanned faster than necessary, leading to
1570 * unnecessary swapping, thrashing and OOM.
35cd7815 1571 */
599d0c95 1572static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1573 struct scan_control *sc)
1574{
1575 unsigned long inactive, isolated;
1576
1577 if (current_is_kswapd())
1578 return 0;
1579
97c9341f 1580 if (!sane_reclaim(sc))
35cd7815
RR
1581 return 0;
1582
1583 if (file) {
599d0c95
MG
1584 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1585 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1586 } else {
599d0c95
MG
1587 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1588 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1589 }
1590
3cf23841
FW
1591 /*
1592 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1593 * won't get blocked by normal direct-reclaimers, forming a circular
1594 * deadlock.
1595 */
d0164adc 1596 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1597 inactive >>= 3;
1598
35cd7815
RR
1599 return isolated > inactive;
1600}
1601
66635629 1602static noinline_for_stack void
75b00af7 1603putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1604{
27ac81d8 1605 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
599d0c95 1606 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3f79768f 1607 LIST_HEAD(pages_to_free);
66635629 1608
66635629
MG
1609 /*
1610 * Put back any unfreeable pages.
1611 */
66635629 1612 while (!list_empty(page_list)) {
3f79768f 1613 struct page *page = lru_to_page(page_list);
66635629 1614 int lru;
3f79768f 1615
309381fe 1616 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1617 list_del(&page->lru);
39b5f29a 1618 if (unlikely(!page_evictable(page))) {
599d0c95 1619 spin_unlock_irq(&pgdat->lru_lock);
66635629 1620 putback_lru_page(page);
599d0c95 1621 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1622 continue;
1623 }
fa9add64 1624
599d0c95 1625 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1626
7a608572 1627 SetPageLRU(page);
66635629 1628 lru = page_lru(page);
fa9add64
HD
1629 add_page_to_lru_list(page, lruvec, lru);
1630
66635629
MG
1631 if (is_active_lru(lru)) {
1632 int file = is_file_lru(lru);
9992af10
RR
1633 int numpages = hpage_nr_pages(page);
1634 reclaim_stat->recent_rotated[file] += numpages;
66635629 1635 }
2bcf8879
HD
1636 if (put_page_testzero(page)) {
1637 __ClearPageLRU(page);
1638 __ClearPageActive(page);
fa9add64 1639 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1640
1641 if (unlikely(PageCompound(page))) {
599d0c95 1642 spin_unlock_irq(&pgdat->lru_lock);
747db954 1643 mem_cgroup_uncharge(page);
2bcf8879 1644 (*get_compound_page_dtor(page))(page);
599d0c95 1645 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1646 } else
1647 list_add(&page->lru, &pages_to_free);
66635629
MG
1648 }
1649 }
66635629 1650
3f79768f
HD
1651 /*
1652 * To save our caller's stack, now use input list for pages to free.
1653 */
1654 list_splice(&pages_to_free, page_list);
66635629
MG
1655}
1656
399ba0b9
N
1657/*
1658 * If a kernel thread (such as nfsd for loop-back mounts) services
1659 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1660 * In that case we should only throttle if the backing device it is
1661 * writing to is congested. In other cases it is safe to throttle.
1662 */
1663static int current_may_throttle(void)
1664{
1665 return !(current->flags & PF_LESS_THROTTLE) ||
1666 current->backing_dev_info == NULL ||
1667 bdi_write_congested(current->backing_dev_info);
1668}
1669
1da177e4 1670/*
b2e18757 1671 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1672 * of reclaimed pages
1da177e4 1673 */
66635629 1674static noinline_for_stack unsigned long
1a93be0e 1675shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1676 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1677{
1678 LIST_HEAD(page_list);
e247dbce 1679 unsigned long nr_scanned;
05ff5137 1680 unsigned long nr_reclaimed = 0;
e247dbce 1681 unsigned long nr_taken;
3c710c1a 1682 struct reclaim_stat stat = {};
f3fd4a61 1683 isolate_mode_t isolate_mode = 0;
3cb99451 1684 int file = is_file_lru(lru);
599d0c95 1685 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1686 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
db73ee0d 1687 bool stalled = false;
78dc583d 1688
599d0c95 1689 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1690 if (stalled)
1691 return 0;
1692
1693 /* wait a bit for the reclaimer. */
1694 msleep(100);
1695 stalled = true;
35cd7815
RR
1696
1697 /* We are about to die and free our memory. Return now. */
1698 if (fatal_signal_pending(current))
1699 return SWAP_CLUSTER_MAX;
1700 }
1701
1da177e4 1702 lru_add_drain();
f80c0673
MK
1703
1704 if (!sc->may_unmap)
61317289 1705 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1706
599d0c95 1707 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1708
5dc35979
KK
1709 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1710 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1711
599d0c95 1712 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1713 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1714
2262185c
RG
1715 if (current_is_kswapd()) {
1716 if (global_reclaim(sc))
599d0c95 1717 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
2262185c
RG
1718 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1719 nr_scanned);
1720 } else {
1721 if (global_reclaim(sc))
599d0c95 1722 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
2262185c
RG
1723 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1724 nr_scanned);
e247dbce 1725 }
599d0c95 1726 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1727
d563c050 1728 if (nr_taken == 0)
66635629 1729 return 0;
5ad333eb 1730
a128ca71 1731 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1732 &stat, false);
c661b078 1733
599d0c95 1734 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1735
2262185c
RG
1736 if (current_is_kswapd()) {
1737 if (global_reclaim(sc))
599d0c95 1738 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
2262185c
RG
1739 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1740 nr_reclaimed);
1741 } else {
1742 if (global_reclaim(sc))
599d0c95 1743 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
2262185c
RG
1744 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1745 nr_reclaimed);
904249aa 1746 }
a74609fa 1747
27ac81d8 1748 putback_inactive_pages(lruvec, &page_list);
3f79768f 1749
599d0c95 1750 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1751
599d0c95 1752 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1753
747db954 1754 mem_cgroup_uncharge_list(&page_list);
2d4894b5 1755 free_unref_page_list(&page_list);
e11da5b4 1756
92df3a72
MG
1757 /*
1758 * If reclaim is isolating dirty pages under writeback, it implies
1759 * that the long-lived page allocation rate is exceeding the page
1760 * laundering rate. Either the global limits are not being effective
1761 * at throttling processes due to the page distribution throughout
1762 * zones or there is heavy usage of a slow backing device. The
1763 * only option is to throttle from reclaim context which is not ideal
1764 * as there is no guarantee the dirtying process is throttled in the
1765 * same way balance_dirty_pages() manages.
1766 *
8e950282
MG
1767 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1768 * of pages under pages flagged for immediate reclaim and stall if any
1769 * are encountered in the nr_immediate check below.
92df3a72 1770 */
3c710c1a 1771 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
599d0c95 1772 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
92df3a72 1773
1c610d5f
AR
1774 /*
1775 * If dirty pages are scanned that are not queued for IO, it
1776 * implies that flushers are not doing their job. This can
1777 * happen when memory pressure pushes dirty pages to the end of
1778 * the LRU before the dirty limits are breached and the dirty
1779 * data has expired. It can also happen when the proportion of
1780 * dirty pages grows not through writes but through memory
1781 * pressure reclaiming all the clean cache. And in some cases,
1782 * the flushers simply cannot keep up with the allocation
1783 * rate. Nudge the flusher threads in case they are asleep.
1784 */
1785 if (stat.nr_unqueued_dirty == nr_taken)
1786 wakeup_flusher_threads(WB_REASON_VMSCAN);
1787
d43006d5 1788 /*
97c9341f
TH
1789 * Legacy memcg will stall in page writeback so avoid forcibly
1790 * stalling here.
d43006d5 1791 */
97c9341f 1792 if (sane_reclaim(sc)) {
8e950282
MG
1793 /*
1794 * Tag a zone as congested if all the dirty pages scanned were
1795 * backed by a congested BDI and wait_iff_congested will stall.
1796 */
3c710c1a 1797 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
599d0c95 1798 set_bit(PGDAT_CONGESTED, &pgdat->flags);
8e950282 1799
1c610d5f
AR
1800 /* Allow kswapd to start writing pages during reclaim. */
1801 if (stat.nr_unqueued_dirty == nr_taken)
599d0c95 1802 set_bit(PGDAT_DIRTY, &pgdat->flags);
b1a6f21e
MG
1803
1804 /*
b738d764
LT
1805 * If kswapd scans pages marked marked for immediate
1806 * reclaim and under writeback (nr_immediate), it implies
1807 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1808 * they are written so also forcibly stall.
1809 */
3c710c1a 1810 if (stat.nr_immediate && current_may_throttle())
b1a6f21e 1811 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1812 }
d43006d5 1813
8e950282
MG
1814 /*
1815 * Stall direct reclaim for IO completions if underlying BDIs or zone
1816 * is congested. Allow kswapd to continue until it starts encountering
1817 * unqueued dirty pages or cycling through the LRU too quickly.
1818 */
399ba0b9
N
1819 if (!sc->hibernation_mode && !current_is_kswapd() &&
1820 current_may_throttle())
599d0c95 1821 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
8e950282 1822
599d0c95
MG
1823 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1824 nr_scanned, nr_reclaimed,
5bccd166
MH
1825 stat.nr_dirty, stat.nr_writeback,
1826 stat.nr_congested, stat.nr_immediate,
1827 stat.nr_activate, stat.nr_ref_keep,
1828 stat.nr_unmap_fail,
ba5e9579 1829 sc->priority, file);
05ff5137 1830 return nr_reclaimed;
1da177e4
LT
1831}
1832
1833/*
1834 * This moves pages from the active list to the inactive list.
1835 *
1836 * We move them the other way if the page is referenced by one or more
1837 * processes, from rmap.
1838 *
1839 * If the pages are mostly unmapped, the processing is fast and it is
a52633d8 1840 * appropriate to hold zone_lru_lock across the whole operation. But if
1da177e4 1841 * the pages are mapped, the processing is slow (page_referenced()) so we
a52633d8 1842 * should drop zone_lru_lock around each page. It's impossible to balance
1da177e4
LT
1843 * this, so instead we remove the pages from the LRU while processing them.
1844 * It is safe to rely on PG_active against the non-LRU pages in here because
1845 * nobody will play with that bit on a non-LRU page.
1846 *
0139aa7b 1847 * The downside is that we have to touch page->_refcount against each page.
1da177e4 1848 * But we had to alter page->flags anyway.
9d998b4f
MH
1849 *
1850 * Returns the number of pages moved to the given lru.
1da177e4 1851 */
1cfb419b 1852
9d998b4f 1853static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1854 struct list_head *list,
2bcf8879 1855 struct list_head *pages_to_free,
3eb4140f
WF
1856 enum lru_list lru)
1857{
599d0c95 1858 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3eb4140f 1859 struct page *page;
fa9add64 1860 int nr_pages;
9d998b4f 1861 int nr_moved = 0;
3eb4140f 1862
3eb4140f
WF
1863 while (!list_empty(list)) {
1864 page = lru_to_page(list);
599d0c95 1865 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3eb4140f 1866
309381fe 1867 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1868 SetPageLRU(page);
1869
fa9add64 1870 nr_pages = hpage_nr_pages(page);
599d0c95 1871 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
925b7673 1872 list_move(&page->lru, &lruvec->lists[lru]);
3eb4140f 1873
2bcf8879
HD
1874 if (put_page_testzero(page)) {
1875 __ClearPageLRU(page);
1876 __ClearPageActive(page);
fa9add64 1877 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1878
1879 if (unlikely(PageCompound(page))) {
599d0c95 1880 spin_unlock_irq(&pgdat->lru_lock);
747db954 1881 mem_cgroup_uncharge(page);
2bcf8879 1882 (*get_compound_page_dtor(page))(page);
599d0c95 1883 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1884 } else
1885 list_add(&page->lru, pages_to_free);
9d998b4f
MH
1886 } else {
1887 nr_moved += nr_pages;
3eb4140f
WF
1888 }
1889 }
9d5e6a9f 1890
2262185c 1891 if (!is_active_lru(lru)) {
f0958906 1892 __count_vm_events(PGDEACTIVATE, nr_moved);
2262185c
RG
1893 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1894 nr_moved);
1895 }
9d998b4f
MH
1896
1897 return nr_moved;
3eb4140f 1898}
1cfb419b 1899
f626012d 1900static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1901 struct lruvec *lruvec,
f16015fb 1902 struct scan_control *sc,
9e3b2f8c 1903 enum lru_list lru)
1da177e4 1904{
44c241f1 1905 unsigned long nr_taken;
f626012d 1906 unsigned long nr_scanned;
6fe6b7e3 1907 unsigned long vm_flags;
1da177e4 1908 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1909 LIST_HEAD(l_active);
b69408e8 1910 LIST_HEAD(l_inactive);
1da177e4 1911 struct page *page;
1a93be0e 1912 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
1913 unsigned nr_deactivate, nr_activate;
1914 unsigned nr_rotated = 0;
f3fd4a61 1915 isolate_mode_t isolate_mode = 0;
3cb99451 1916 int file = is_file_lru(lru);
599d0c95 1917 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
1918
1919 lru_add_drain();
f80c0673
MK
1920
1921 if (!sc->may_unmap)
61317289 1922 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1923
599d0c95 1924 spin_lock_irq(&pgdat->lru_lock);
925b7673 1925
5dc35979
KK
1926 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1927 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1928
599d0c95 1929 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 1930 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1931
599d0c95 1932 __count_vm_events(PGREFILL, nr_scanned);
2262185c 1933 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 1934
599d0c95 1935 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 1936
1da177e4
LT
1937 while (!list_empty(&l_hold)) {
1938 cond_resched();
1939 page = lru_to_page(&l_hold);
1940 list_del(&page->lru);
7e9cd484 1941
39b5f29a 1942 if (unlikely(!page_evictable(page))) {
894bc310
LS
1943 putback_lru_page(page);
1944 continue;
1945 }
1946
cc715d99
MG
1947 if (unlikely(buffer_heads_over_limit)) {
1948 if (page_has_private(page) && trylock_page(page)) {
1949 if (page_has_private(page))
1950 try_to_release_page(page, 0);
1951 unlock_page(page);
1952 }
1953 }
1954
c3ac9a8a
JW
1955 if (page_referenced(page, 0, sc->target_mem_cgroup,
1956 &vm_flags)) {
9992af10 1957 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1958 /*
1959 * Identify referenced, file-backed active pages and
1960 * give them one more trip around the active list. So
1961 * that executable code get better chances to stay in
1962 * memory under moderate memory pressure. Anon pages
1963 * are not likely to be evicted by use-once streaming
1964 * IO, plus JVM can create lots of anon VM_EXEC pages,
1965 * so we ignore them here.
1966 */
41e20983 1967 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1968 list_add(&page->lru, &l_active);
1969 continue;
1970 }
1971 }
7e9cd484 1972
5205e56e 1973 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1974 list_add(&page->lru, &l_inactive);
1975 }
1976
b555749a 1977 /*
8cab4754 1978 * Move pages back to the lru list.
b555749a 1979 */
599d0c95 1980 spin_lock_irq(&pgdat->lru_lock);
556adecb 1981 /*
8cab4754
WF
1982 * Count referenced pages from currently used mappings as rotated,
1983 * even though only some of them are actually re-activated. This
1984 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1985 * get_scan_count.
7e9cd484 1986 */
b7c46d15 1987 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1988
9d998b4f
MH
1989 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1990 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
599d0c95
MG
1991 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1992 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 1993
747db954 1994 mem_cgroup_uncharge_list(&l_hold);
2d4894b5 1995 free_unref_page_list(&l_hold);
9d998b4f
MH
1996 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
1997 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
1998}
1999
59dc76b0
RR
2000/*
2001 * The inactive anon list should be small enough that the VM never has
2002 * to do too much work.
14797e23 2003 *
59dc76b0
RR
2004 * The inactive file list should be small enough to leave most memory
2005 * to the established workingset on the scan-resistant active list,
2006 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2007 *
59dc76b0
RR
2008 * Both inactive lists should also be large enough that each inactive
2009 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2010 *
2a2e4885
JW
2011 * If that fails and refaulting is observed, the inactive list grows.
2012 *
59dc76b0 2013 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2014 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2015 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2016 *
59dc76b0
RR
2017 * total target max
2018 * memory ratio inactive
2019 * -------------------------------------
2020 * 10MB 1 5MB
2021 * 100MB 1 50MB
2022 * 1GB 3 250MB
2023 * 10GB 10 0.9GB
2024 * 100GB 31 3GB
2025 * 1TB 101 10GB
2026 * 10TB 320 32GB
56e49d21 2027 */
f8d1a311 2028static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2a2e4885
JW
2029 struct mem_cgroup *memcg,
2030 struct scan_control *sc, bool actual_reclaim)
56e49d21 2031{
fd538803 2032 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2a2e4885
JW
2033 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2034 enum lru_list inactive_lru = file * LRU_FILE;
2035 unsigned long inactive, active;
2036 unsigned long inactive_ratio;
2037 unsigned long refaults;
59dc76b0 2038 unsigned long gb;
e3790144 2039
59dc76b0
RR
2040 /*
2041 * If we don't have swap space, anonymous page deactivation
2042 * is pointless.
2043 */
2044 if (!file && !total_swap_pages)
2045 return false;
56e49d21 2046
fd538803
MH
2047 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2048 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2049
2a2e4885 2050 if (memcg)
ccda7f43 2051 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
b39415b2 2052 else
2a2e4885
JW
2053 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2054
2055 /*
2056 * When refaults are being observed, it means a new workingset
2057 * is being established. Disable active list protection to get
2058 * rid of the stale workingset quickly.
2059 */
2060 if (file && actual_reclaim && lruvec->refaults != refaults) {
2061 inactive_ratio = 0;
2062 } else {
2063 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2064 if (gb)
2065 inactive_ratio = int_sqrt(10 * gb);
2066 else
2067 inactive_ratio = 1;
2068 }
59dc76b0 2069
2a2e4885
JW
2070 if (actual_reclaim)
2071 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2072 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2073 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2074 inactive_ratio, file);
fd538803 2075
59dc76b0 2076 return inactive * inactive_ratio < active;
b39415b2
RR
2077}
2078
4f98a2fe 2079static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2a2e4885
JW
2080 struct lruvec *lruvec, struct mem_cgroup *memcg,
2081 struct scan_control *sc)
b69408e8 2082{
b39415b2 2083 if (is_active_lru(lru)) {
2a2e4885
JW
2084 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2085 memcg, sc, true))
1a93be0e 2086 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2087 return 0;
2088 }
2089
1a93be0e 2090 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2091}
2092
9a265114
JW
2093enum scan_balance {
2094 SCAN_EQUAL,
2095 SCAN_FRACT,
2096 SCAN_ANON,
2097 SCAN_FILE,
2098};
2099
4f98a2fe
RR
2100/*
2101 * Determine how aggressively the anon and file LRU lists should be
2102 * scanned. The relative value of each set of LRU lists is determined
2103 * by looking at the fraction of the pages scanned we did rotate back
2104 * onto the active list instead of evict.
2105 *
be7bd59d
WL
2106 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2107 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2108 */
33377678 2109static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2110 struct scan_control *sc, unsigned long *nr,
2111 unsigned long *lru_pages)
4f98a2fe 2112{
33377678 2113 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2114 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2115 u64 fraction[2];
2116 u64 denominator = 0; /* gcc */
599d0c95 2117 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2118 unsigned long anon_prio, file_prio;
9a265114 2119 enum scan_balance scan_balance;
0bf1457f 2120 unsigned long anon, file;
4f98a2fe 2121 unsigned long ap, fp;
4111304d 2122 enum lru_list lru;
76a33fc3
SL
2123
2124 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2125 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2126 scan_balance = SCAN_FILE;
76a33fc3
SL
2127 goto out;
2128 }
4f98a2fe 2129
10316b31
JW
2130 /*
2131 * Global reclaim will swap to prevent OOM even with no
2132 * swappiness, but memcg users want to use this knob to
2133 * disable swapping for individual groups completely when
2134 * using the memory controller's swap limit feature would be
2135 * too expensive.
2136 */
02695175 2137 if (!global_reclaim(sc) && !swappiness) {
9a265114 2138 scan_balance = SCAN_FILE;
10316b31
JW
2139 goto out;
2140 }
2141
2142 /*
2143 * Do not apply any pressure balancing cleverness when the
2144 * system is close to OOM, scan both anon and file equally
2145 * (unless the swappiness setting disagrees with swapping).
2146 */
02695175 2147 if (!sc->priority && swappiness) {
9a265114 2148 scan_balance = SCAN_EQUAL;
10316b31
JW
2149 goto out;
2150 }
2151
62376251
JW
2152 /*
2153 * Prevent the reclaimer from falling into the cache trap: as
2154 * cache pages start out inactive, every cache fault will tip
2155 * the scan balance towards the file LRU. And as the file LRU
2156 * shrinks, so does the window for rotation from references.
2157 * This means we have a runaway feedback loop where a tiny
2158 * thrashing file LRU becomes infinitely more attractive than
2159 * anon pages. Try to detect this based on file LRU size.
2160 */
2161 if (global_reclaim(sc)) {
599d0c95
MG
2162 unsigned long pgdatfile;
2163 unsigned long pgdatfree;
2164 int z;
2165 unsigned long total_high_wmark = 0;
2ab051e1 2166
599d0c95
MG
2167 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2168 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2169 node_page_state(pgdat, NR_INACTIVE_FILE);
2170
2171 for (z = 0; z < MAX_NR_ZONES; z++) {
2172 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2173 if (!managed_zone(zone))
599d0c95
MG
2174 continue;
2175
2176 total_high_wmark += high_wmark_pages(zone);
2177 }
62376251 2178
599d0c95 2179 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
06226226
DR
2180 /*
2181 * Force SCAN_ANON if there are enough inactive
2182 * anonymous pages on the LRU in eligible zones.
2183 * Otherwise, the small LRU gets thrashed.
2184 */
2185 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2186 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2187 >> sc->priority) {
2188 scan_balance = SCAN_ANON;
2189 goto out;
2190 }
62376251
JW
2191 }
2192 }
2193
7c5bd705 2194 /*
316bda0e
VD
2195 * If there is enough inactive page cache, i.e. if the size of the
2196 * inactive list is greater than that of the active list *and* the
2197 * inactive list actually has some pages to scan on this priority, we
2198 * do not reclaim anything from the anonymous working set right now.
2199 * Without the second condition we could end up never scanning an
2200 * lruvec even if it has plenty of old anonymous pages unless the
2201 * system is under heavy pressure.
7c5bd705 2202 */
2a2e4885 2203 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
71ab6cfe 2204 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2205 scan_balance = SCAN_FILE;
7c5bd705
JW
2206 goto out;
2207 }
2208
9a265114
JW
2209 scan_balance = SCAN_FRACT;
2210
58c37f6e
KM
2211 /*
2212 * With swappiness at 100, anonymous and file have the same priority.
2213 * This scanning priority is essentially the inverse of IO cost.
2214 */
02695175 2215 anon_prio = swappiness;
75b00af7 2216 file_prio = 200 - anon_prio;
58c37f6e 2217
4f98a2fe
RR
2218 /*
2219 * OK, so we have swap space and a fair amount of page cache
2220 * pages. We use the recently rotated / recently scanned
2221 * ratios to determine how valuable each cache is.
2222 *
2223 * Because workloads change over time (and to avoid overflow)
2224 * we keep these statistics as a floating average, which ends
2225 * up weighing recent references more than old ones.
2226 *
2227 * anon in [0], file in [1]
2228 */
2ab051e1 2229
fd538803
MH
2230 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2231 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2232 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2233 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2234
599d0c95 2235 spin_lock_irq(&pgdat->lru_lock);
6e901571 2236 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2237 reclaim_stat->recent_scanned[0] /= 2;
2238 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2239 }
2240
6e901571 2241 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2242 reclaim_stat->recent_scanned[1] /= 2;
2243 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2244 }
2245
4f98a2fe 2246 /*
00d8089c
RR
2247 * The amount of pressure on anon vs file pages is inversely
2248 * proportional to the fraction of recently scanned pages on
2249 * each list that were recently referenced and in active use.
4f98a2fe 2250 */
fe35004f 2251 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2252 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2253
fe35004f 2254 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2255 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2256 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2257
76a33fc3
SL
2258 fraction[0] = ap;
2259 fraction[1] = fp;
2260 denominator = ap + fp + 1;
2261out:
688035f7
JW
2262 *lru_pages = 0;
2263 for_each_evictable_lru(lru) {
2264 int file = is_file_lru(lru);
2265 unsigned long size;
2266 unsigned long scan;
6b4f7799 2267
688035f7
JW
2268 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2269 scan = size >> sc->priority;
2270 /*
2271 * If the cgroup's already been deleted, make sure to
2272 * scrape out the remaining cache.
2273 */
2274 if (!scan && !mem_cgroup_online(memcg))
2275 scan = min(size, SWAP_CLUSTER_MAX);
6b4f7799 2276
688035f7
JW
2277 switch (scan_balance) {
2278 case SCAN_EQUAL:
2279 /* Scan lists relative to size */
2280 break;
2281 case SCAN_FRACT:
9a265114 2282 /*
688035f7
JW
2283 * Scan types proportional to swappiness and
2284 * their relative recent reclaim efficiency.
9a265114 2285 */
688035f7
JW
2286 scan = div64_u64(scan * fraction[file],
2287 denominator);
2288 break;
2289 case SCAN_FILE:
2290 case SCAN_ANON:
2291 /* Scan one type exclusively */
2292 if ((scan_balance == SCAN_FILE) != file) {
2293 size = 0;
2294 scan = 0;
2295 }
2296 break;
2297 default:
2298 /* Look ma, no brain */
2299 BUG();
9a265114 2300 }
688035f7
JW
2301
2302 *lru_pages += size;
2303 nr[lru] = scan;
76a33fc3 2304 }
6e08a369 2305}
4f98a2fe 2306
9b4f98cd 2307/*
a9dd0a83 2308 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2309 */
a9dd0a83 2310static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2311 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2312{
ef8f2327 2313 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2314 unsigned long nr[NR_LRU_LISTS];
e82e0561 2315 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2316 unsigned long nr_to_scan;
2317 enum lru_list lru;
2318 unsigned long nr_reclaimed = 0;
2319 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2320 struct blk_plug plug;
1a501907 2321 bool scan_adjusted;
9b4f98cd 2322
33377678 2323 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2324
e82e0561
MG
2325 /* Record the original scan target for proportional adjustments later */
2326 memcpy(targets, nr, sizeof(nr));
2327
1a501907
MG
2328 /*
2329 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2330 * event that can occur when there is little memory pressure e.g.
2331 * multiple streaming readers/writers. Hence, we do not abort scanning
2332 * when the requested number of pages are reclaimed when scanning at
2333 * DEF_PRIORITY on the assumption that the fact we are direct
2334 * reclaiming implies that kswapd is not keeping up and it is best to
2335 * do a batch of work at once. For memcg reclaim one check is made to
2336 * abort proportional reclaim if either the file or anon lru has already
2337 * dropped to zero at the first pass.
2338 */
2339 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2340 sc->priority == DEF_PRIORITY);
2341
9b4f98cd
JW
2342 blk_start_plug(&plug);
2343 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2344 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2345 unsigned long nr_anon, nr_file, percentage;
2346 unsigned long nr_scanned;
2347
9b4f98cd
JW
2348 for_each_evictable_lru(lru) {
2349 if (nr[lru]) {
2350 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2351 nr[lru] -= nr_to_scan;
2352
2353 nr_reclaimed += shrink_list(lru, nr_to_scan,
2a2e4885 2354 lruvec, memcg, sc);
9b4f98cd
JW
2355 }
2356 }
e82e0561 2357
bd041733
MH
2358 cond_resched();
2359
e82e0561
MG
2360 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2361 continue;
2362
e82e0561
MG
2363 /*
2364 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2365 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2366 * proportionally what was requested by get_scan_count(). We
2367 * stop reclaiming one LRU and reduce the amount scanning
2368 * proportional to the original scan target.
2369 */
2370 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2371 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2372
1a501907
MG
2373 /*
2374 * It's just vindictive to attack the larger once the smaller
2375 * has gone to zero. And given the way we stop scanning the
2376 * smaller below, this makes sure that we only make one nudge
2377 * towards proportionality once we've got nr_to_reclaim.
2378 */
2379 if (!nr_file || !nr_anon)
2380 break;
2381
e82e0561
MG
2382 if (nr_file > nr_anon) {
2383 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2384 targets[LRU_ACTIVE_ANON] + 1;
2385 lru = LRU_BASE;
2386 percentage = nr_anon * 100 / scan_target;
2387 } else {
2388 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2389 targets[LRU_ACTIVE_FILE] + 1;
2390 lru = LRU_FILE;
2391 percentage = nr_file * 100 / scan_target;
2392 }
2393
2394 /* Stop scanning the smaller of the LRU */
2395 nr[lru] = 0;
2396 nr[lru + LRU_ACTIVE] = 0;
2397
2398 /*
2399 * Recalculate the other LRU scan count based on its original
2400 * scan target and the percentage scanning already complete
2401 */
2402 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2403 nr_scanned = targets[lru] - nr[lru];
2404 nr[lru] = targets[lru] * (100 - percentage) / 100;
2405 nr[lru] -= min(nr[lru], nr_scanned);
2406
2407 lru += LRU_ACTIVE;
2408 nr_scanned = targets[lru] - nr[lru];
2409 nr[lru] = targets[lru] * (100 - percentage) / 100;
2410 nr[lru] -= min(nr[lru], nr_scanned);
2411
2412 scan_adjusted = true;
9b4f98cd
JW
2413 }
2414 blk_finish_plug(&plug);
2415 sc->nr_reclaimed += nr_reclaimed;
2416
2417 /*
2418 * Even if we did not try to evict anon pages at all, we want to
2419 * rebalance the anon lru active/inactive ratio.
2420 */
2a2e4885 2421 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
9b4f98cd
JW
2422 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2423 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2424}
2425
23b9da55 2426/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2427static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2428{
d84da3f9 2429 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2430 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2431 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2432 return true;
2433
2434 return false;
2435}
2436
3e7d3449 2437/*
23b9da55
MG
2438 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2439 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2440 * true if more pages should be reclaimed such that when the page allocator
2441 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2442 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2443 */
a9dd0a83 2444static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2445 unsigned long nr_reclaimed,
2446 unsigned long nr_scanned,
2447 struct scan_control *sc)
2448{
2449 unsigned long pages_for_compaction;
2450 unsigned long inactive_lru_pages;
a9dd0a83 2451 int z;
3e7d3449
MG
2452
2453 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2454 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2455 return false;
2456
2876592f 2457 /* Consider stopping depending on scan and reclaim activity */
dcda9b04 2458 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2876592f 2459 /*
dcda9b04 2460 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2876592f
MG
2461 * full LRU list has been scanned and we are still failing
2462 * to reclaim pages. This full LRU scan is potentially
dcda9b04 2463 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2876592f
MG
2464 */
2465 if (!nr_reclaimed && !nr_scanned)
2466 return false;
2467 } else {
2468 /*
dcda9b04 2469 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2876592f
MG
2470 * fail without consequence, stop if we failed to reclaim
2471 * any pages from the last SWAP_CLUSTER_MAX number of
2472 * pages that were scanned. This will return to the
2473 * caller faster at the risk reclaim/compaction and
2474 * the resulting allocation attempt fails
2475 */
2476 if (!nr_reclaimed)
2477 return false;
2478 }
3e7d3449
MG
2479
2480 /*
2481 * If we have not reclaimed enough pages for compaction and the
2482 * inactive lists are large enough, continue reclaiming
2483 */
9861a62c 2484 pages_for_compaction = compact_gap(sc->order);
a9dd0a83 2485 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2486 if (get_nr_swap_pages() > 0)
a9dd0a83 2487 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2488 if (sc->nr_reclaimed < pages_for_compaction &&
2489 inactive_lru_pages > pages_for_compaction)
2490 return true;
2491
2492 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2493 for (z = 0; z <= sc->reclaim_idx; z++) {
2494 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2495 if (!managed_zone(zone))
a9dd0a83
MG
2496 continue;
2497
2498 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2499 case COMPACT_SUCCESS:
a9dd0a83
MG
2500 case COMPACT_CONTINUE:
2501 return false;
2502 default:
2503 /* check next zone */
2504 ;
2505 }
3e7d3449 2506 }
a9dd0a83 2507 return true;
3e7d3449
MG
2508}
2509
970a39a3 2510static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2511{
cb731d6c 2512 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2513 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2514 bool reclaimable = false;
1da177e4 2515
9b4f98cd
JW
2516 do {
2517 struct mem_cgroup *root = sc->target_mem_cgroup;
2518 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2519 .pgdat = pgdat,
9b4f98cd
JW
2520 .priority = sc->priority,
2521 };
a9dd0a83 2522 unsigned long node_lru_pages = 0;
694fbc0f 2523 struct mem_cgroup *memcg;
3e7d3449 2524
9b4f98cd
JW
2525 nr_reclaimed = sc->nr_reclaimed;
2526 nr_scanned = sc->nr_scanned;
1da177e4 2527
694fbc0f
AM
2528 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2529 do {
6b4f7799 2530 unsigned long lru_pages;
8e8ae645 2531 unsigned long reclaimed;
cb731d6c 2532 unsigned long scanned;
5660048c 2533
241994ed 2534 if (mem_cgroup_low(root, memcg)) {
d6622f63
YX
2535 if (!sc->memcg_low_reclaim) {
2536 sc->memcg_low_skipped = 1;
241994ed 2537 continue;
d6622f63 2538 }
31176c78 2539 mem_cgroup_event(memcg, MEMCG_LOW);
241994ed
JW
2540 }
2541
8e8ae645 2542 reclaimed = sc->nr_reclaimed;
cb731d6c 2543 scanned = sc->nr_scanned;
a9dd0a83
MG
2544 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2545 node_lru_pages += lru_pages;
f16015fb 2546
b5afba29 2547 if (memcg)
a9dd0a83 2548 shrink_slab(sc->gfp_mask, pgdat->node_id,
9092c71b 2549 memcg, sc->priority);
cb731d6c 2550
8e8ae645
JW
2551 /* Record the group's reclaim efficiency */
2552 vmpressure(sc->gfp_mask, memcg, false,
2553 sc->nr_scanned - scanned,
2554 sc->nr_reclaimed - reclaimed);
2555
9b4f98cd 2556 /*
a394cb8e
MH
2557 * Direct reclaim and kswapd have to scan all memory
2558 * cgroups to fulfill the overall scan target for the
a9dd0a83 2559 * node.
a394cb8e
MH
2560 *
2561 * Limit reclaim, on the other hand, only cares about
2562 * nr_to_reclaim pages to be reclaimed and it will
2563 * retry with decreasing priority if one round over the
2564 * whole hierarchy is not sufficient.
9b4f98cd 2565 */
a394cb8e
MH
2566 if (!global_reclaim(sc) &&
2567 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2568 mem_cgroup_iter_break(root, memcg);
2569 break;
2570 }
241994ed 2571 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2572
b2e18757 2573 if (global_reclaim(sc))
a9dd0a83 2574 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
9092c71b 2575 sc->priority);
cb731d6c
VD
2576
2577 if (reclaim_state) {
2578 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2579 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2580 }
2581
8e8ae645
JW
2582 /* Record the subtree's reclaim efficiency */
2583 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2584 sc->nr_scanned - nr_scanned,
2585 sc->nr_reclaimed - nr_reclaimed);
2586
2344d7e4
JW
2587 if (sc->nr_reclaimed - nr_reclaimed)
2588 reclaimable = true;
2589
a9dd0a83 2590 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2591 sc->nr_scanned - nr_scanned, sc));
2344d7e4 2592
c73322d0
JW
2593 /*
2594 * Kswapd gives up on balancing particular nodes after too
2595 * many failures to reclaim anything from them and goes to
2596 * sleep. On reclaim progress, reset the failure counter. A
2597 * successful direct reclaim run will revive a dormant kswapd.
2598 */
2599 if (reclaimable)
2600 pgdat->kswapd_failures = 0;
2601
2344d7e4 2602 return reclaimable;
f16015fb
JW
2603}
2604
53853e2d 2605/*
fdd4c614
VB
2606 * Returns true if compaction should go ahead for a costly-order request, or
2607 * the allocation would already succeed without compaction. Return false if we
2608 * should reclaim first.
53853e2d 2609 */
4f588331 2610static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2611{
31483b6a 2612 unsigned long watermark;
fdd4c614 2613 enum compact_result suitable;
fe4b1b24 2614
fdd4c614
VB
2615 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2616 if (suitable == COMPACT_SUCCESS)
2617 /* Allocation should succeed already. Don't reclaim. */
2618 return true;
2619 if (suitable == COMPACT_SKIPPED)
2620 /* Compaction cannot yet proceed. Do reclaim. */
2621 return false;
fe4b1b24 2622
53853e2d 2623 /*
fdd4c614
VB
2624 * Compaction is already possible, but it takes time to run and there
2625 * are potentially other callers using the pages just freed. So proceed
2626 * with reclaim to make a buffer of free pages available to give
2627 * compaction a reasonable chance of completing and allocating the page.
2628 * Note that we won't actually reclaim the whole buffer in one attempt
2629 * as the target watermark in should_continue_reclaim() is lower. But if
2630 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2631 */
fdd4c614 2632 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2633
fdd4c614 2634 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2635}
2636
1da177e4
LT
2637/*
2638 * This is the direct reclaim path, for page-allocating processes. We only
2639 * try to reclaim pages from zones which will satisfy the caller's allocation
2640 * request.
2641 *
1da177e4
LT
2642 * If a zone is deemed to be full of pinned pages then just give it a light
2643 * scan then give up on it.
2644 */
0a0337e0 2645static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2646{
dd1a239f 2647 struct zoneref *z;
54a6eb5c 2648 struct zone *zone;
0608f43d
AM
2649 unsigned long nr_soft_reclaimed;
2650 unsigned long nr_soft_scanned;
619d0d76 2651 gfp_t orig_mask;
79dafcdc 2652 pg_data_t *last_pgdat = NULL;
1cfb419b 2653
cc715d99
MG
2654 /*
2655 * If the number of buffer_heads in the machine exceeds the maximum
2656 * allowed level, force direct reclaim to scan the highmem zone as
2657 * highmem pages could be pinning lowmem pages storing buffer_heads
2658 */
619d0d76 2659 orig_mask = sc->gfp_mask;
b2e18757 2660 if (buffer_heads_over_limit) {
cc715d99 2661 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2662 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2663 }
cc715d99 2664
d4debc66 2665 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2666 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2667 /*
2668 * Take care memory controller reclaiming has small influence
2669 * to global LRU.
2670 */
89b5fae5 2671 if (global_reclaim(sc)) {
344736f2
VD
2672 if (!cpuset_zone_allowed(zone,
2673 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2674 continue;
65ec02cb 2675
0b06496a
JW
2676 /*
2677 * If we already have plenty of memory free for
2678 * compaction in this zone, don't free any more.
2679 * Even though compaction is invoked for any
2680 * non-zero order, only frequent costly order
2681 * reclamation is disruptive enough to become a
2682 * noticeable problem, like transparent huge
2683 * page allocations.
2684 */
2685 if (IS_ENABLED(CONFIG_COMPACTION) &&
2686 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2687 compaction_ready(zone, sc)) {
0b06496a
JW
2688 sc->compaction_ready = true;
2689 continue;
e0887c19 2690 }
0b06496a 2691
79dafcdc
MG
2692 /*
2693 * Shrink each node in the zonelist once. If the
2694 * zonelist is ordered by zone (not the default) then a
2695 * node may be shrunk multiple times but in that case
2696 * the user prefers lower zones being preserved.
2697 */
2698 if (zone->zone_pgdat == last_pgdat)
2699 continue;
2700
0608f43d
AM
2701 /*
2702 * This steals pages from memory cgroups over softlimit
2703 * and returns the number of reclaimed pages and
2704 * scanned pages. This works for global memory pressure
2705 * and balancing, not for a memcg's limit.
2706 */
2707 nr_soft_scanned = 0;
ef8f2327 2708 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2709 sc->order, sc->gfp_mask,
2710 &nr_soft_scanned);
2711 sc->nr_reclaimed += nr_soft_reclaimed;
2712 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2713 /* need some check for avoid more shrink_zone() */
1cfb419b 2714 }
408d8544 2715
79dafcdc
MG
2716 /* See comment about same check for global reclaim above */
2717 if (zone->zone_pgdat == last_pgdat)
2718 continue;
2719 last_pgdat = zone->zone_pgdat;
970a39a3 2720 shrink_node(zone->zone_pgdat, sc);
1da177e4 2721 }
e0c23279 2722
619d0d76
WY
2723 /*
2724 * Restore to original mask to avoid the impact on the caller if we
2725 * promoted it to __GFP_HIGHMEM.
2726 */
2727 sc->gfp_mask = orig_mask;
1da177e4 2728}
4f98a2fe 2729
2a2e4885
JW
2730static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2731{
2732 struct mem_cgroup *memcg;
2733
2734 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2735 do {
2736 unsigned long refaults;
2737 struct lruvec *lruvec;
2738
2739 if (memcg)
ccda7f43 2740 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2a2e4885
JW
2741 else
2742 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2743
2744 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2745 lruvec->refaults = refaults;
2746 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2747}
2748
1da177e4
LT
2749/*
2750 * This is the main entry point to direct page reclaim.
2751 *
2752 * If a full scan of the inactive list fails to free enough memory then we
2753 * are "out of memory" and something needs to be killed.
2754 *
2755 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2756 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2757 * caller can't do much about. We kick the writeback threads and take explicit
2758 * naps in the hope that some of these pages can be written. But if the
2759 * allocating task holds filesystem locks which prevent writeout this might not
2760 * work, and the allocation attempt will fail.
a41f24ea
NA
2761 *
2762 * returns: 0, if no pages reclaimed
2763 * else, the number of pages reclaimed
1da177e4 2764 */
dac1d27b 2765static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2766 struct scan_control *sc)
1da177e4 2767{
241994ed 2768 int initial_priority = sc->priority;
2a2e4885
JW
2769 pg_data_t *last_pgdat;
2770 struct zoneref *z;
2771 struct zone *zone;
241994ed 2772retry:
873b4771
KK
2773 delayacct_freepages_start();
2774
89b5fae5 2775 if (global_reclaim(sc))
7cc30fcf 2776 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 2777
9e3b2f8c 2778 do {
70ddf637
AV
2779 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2780 sc->priority);
66e1707b 2781 sc->nr_scanned = 0;
0a0337e0 2782 shrink_zones(zonelist, sc);
c6a8a8c5 2783
bb21c7ce 2784 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2785 break;
2786
2787 if (sc->compaction_ready)
2788 break;
1da177e4 2789
0e50ce3b
MK
2790 /*
2791 * If we're getting trouble reclaiming, start doing
2792 * writepage even in laptop mode.
2793 */
2794 if (sc->priority < DEF_PRIORITY - 2)
2795 sc->may_writepage = 1;
0b06496a 2796 } while (--sc->priority >= 0);
bb21c7ce 2797
2a2e4885
JW
2798 last_pgdat = NULL;
2799 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2800 sc->nodemask) {
2801 if (zone->zone_pgdat == last_pgdat)
2802 continue;
2803 last_pgdat = zone->zone_pgdat;
2804 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2805 }
2806
873b4771
KK
2807 delayacct_freepages_end();
2808
bb21c7ce
KM
2809 if (sc->nr_reclaimed)
2810 return sc->nr_reclaimed;
2811
0cee34fd 2812 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2813 if (sc->compaction_ready)
7335084d
MG
2814 return 1;
2815
241994ed 2816 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 2817 if (sc->memcg_low_skipped) {
241994ed 2818 sc->priority = initial_priority;
d6622f63
YX
2819 sc->memcg_low_reclaim = 1;
2820 sc->memcg_low_skipped = 0;
241994ed
JW
2821 goto retry;
2822 }
2823
bb21c7ce 2824 return 0;
1da177e4
LT
2825}
2826
c73322d0 2827static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
2828{
2829 struct zone *zone;
2830 unsigned long pfmemalloc_reserve = 0;
2831 unsigned long free_pages = 0;
2832 int i;
2833 bool wmark_ok;
2834
c73322d0
JW
2835 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2836 return true;
2837
5515061d
MG
2838 for (i = 0; i <= ZONE_NORMAL; i++) {
2839 zone = &pgdat->node_zones[i];
d450abd8
JW
2840 if (!managed_zone(zone))
2841 continue;
2842
2843 if (!zone_reclaimable_pages(zone))
675becce
MG
2844 continue;
2845
5515061d
MG
2846 pfmemalloc_reserve += min_wmark_pages(zone);
2847 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2848 }
2849
675becce
MG
2850 /* If there are no reserves (unexpected config) then do not throttle */
2851 if (!pfmemalloc_reserve)
2852 return true;
2853
5515061d
MG
2854 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2855
2856 /* kswapd must be awake if processes are being throttled */
2857 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 2858 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
2859 (enum zone_type)ZONE_NORMAL);
2860 wake_up_interruptible(&pgdat->kswapd_wait);
2861 }
2862
2863 return wmark_ok;
2864}
2865
2866/*
2867 * Throttle direct reclaimers if backing storage is backed by the network
2868 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2869 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2870 * when the low watermark is reached.
2871 *
2872 * Returns true if a fatal signal was delivered during throttling. If this
2873 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2874 */
50694c28 2875static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2876 nodemask_t *nodemask)
2877{
675becce 2878 struct zoneref *z;
5515061d 2879 struct zone *zone;
675becce 2880 pg_data_t *pgdat = NULL;
5515061d
MG
2881
2882 /*
2883 * Kernel threads should not be throttled as they may be indirectly
2884 * responsible for cleaning pages necessary for reclaim to make forward
2885 * progress. kjournald for example may enter direct reclaim while
2886 * committing a transaction where throttling it could forcing other
2887 * processes to block on log_wait_commit().
2888 */
2889 if (current->flags & PF_KTHREAD)
50694c28
MG
2890 goto out;
2891
2892 /*
2893 * If a fatal signal is pending, this process should not throttle.
2894 * It should return quickly so it can exit and free its memory
2895 */
2896 if (fatal_signal_pending(current))
2897 goto out;
5515061d 2898
675becce
MG
2899 /*
2900 * Check if the pfmemalloc reserves are ok by finding the first node
2901 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2902 * GFP_KERNEL will be required for allocating network buffers when
2903 * swapping over the network so ZONE_HIGHMEM is unusable.
2904 *
2905 * Throttling is based on the first usable node and throttled processes
2906 * wait on a queue until kswapd makes progress and wakes them. There
2907 * is an affinity then between processes waking up and where reclaim
2908 * progress has been made assuming the process wakes on the same node.
2909 * More importantly, processes running on remote nodes will not compete
2910 * for remote pfmemalloc reserves and processes on different nodes
2911 * should make reasonable progress.
2912 */
2913 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2914 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2915 if (zone_idx(zone) > ZONE_NORMAL)
2916 continue;
2917
2918 /* Throttle based on the first usable node */
2919 pgdat = zone->zone_pgdat;
c73322d0 2920 if (allow_direct_reclaim(pgdat))
675becce
MG
2921 goto out;
2922 break;
2923 }
2924
2925 /* If no zone was usable by the allocation flags then do not throttle */
2926 if (!pgdat)
50694c28 2927 goto out;
5515061d 2928
68243e76
MG
2929 /* Account for the throttling */
2930 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2931
5515061d
MG
2932 /*
2933 * If the caller cannot enter the filesystem, it's possible that it
2934 * is due to the caller holding an FS lock or performing a journal
2935 * transaction in the case of a filesystem like ext[3|4]. In this case,
2936 * it is not safe to block on pfmemalloc_wait as kswapd could be
2937 * blocked waiting on the same lock. Instead, throttle for up to a
2938 * second before continuing.
2939 */
2940 if (!(gfp_mask & __GFP_FS)) {
2941 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 2942 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
2943
2944 goto check_pending;
5515061d
MG
2945 }
2946
2947 /* Throttle until kswapd wakes the process */
2948 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 2949 allow_direct_reclaim(pgdat));
50694c28
MG
2950
2951check_pending:
2952 if (fatal_signal_pending(current))
2953 return true;
2954
2955out:
2956 return false;
5515061d
MG
2957}
2958
dac1d27b 2959unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2960 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2961{
33906bc5 2962 unsigned long nr_reclaimed;
66e1707b 2963 struct scan_control sc = {
ee814fe2 2964 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 2965 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 2966 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
2967 .order = order,
2968 .nodemask = nodemask,
2969 .priority = DEF_PRIORITY,
66e1707b 2970 .may_writepage = !laptop_mode,
a6dc60f8 2971 .may_unmap = 1,
2e2e4259 2972 .may_swap = 1,
66e1707b
BS
2973 };
2974
5515061d 2975 /*
50694c28
MG
2976 * Do not enter reclaim if fatal signal was delivered while throttled.
2977 * 1 is returned so that the page allocator does not OOM kill at this
2978 * point.
5515061d 2979 */
f2f43e56 2980 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
2981 return 1;
2982
33906bc5
MG
2983 trace_mm_vmscan_direct_reclaim_begin(order,
2984 sc.may_writepage,
f2f43e56 2985 sc.gfp_mask,
e5146b12 2986 sc.reclaim_idx);
33906bc5 2987
3115cd91 2988 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2989
2990 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2991
2992 return nr_reclaimed;
66e1707b
BS
2993}
2994
c255a458 2995#ifdef CONFIG_MEMCG
66e1707b 2996
a9dd0a83 2997unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 2998 gfp_t gfp_mask, bool noswap,
ef8f2327 2999 pg_data_t *pgdat,
0ae5e89c 3000 unsigned long *nr_scanned)
4e416953
BS
3001{
3002 struct scan_control sc = {
b8f5c566 3003 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3004 .target_mem_cgroup = memcg,
4e416953
BS
3005 .may_writepage = !laptop_mode,
3006 .may_unmap = 1,
b2e18757 3007 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3008 .may_swap = !noswap,
4e416953 3009 };
6b4f7799 3010 unsigned long lru_pages;
0ae5e89c 3011
4e416953
BS
3012 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3013 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3014
9e3b2f8c 3015 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e 3016 sc.may_writepage,
e5146b12
MG
3017 sc.gfp_mask,
3018 sc.reclaim_idx);
bdce6d9e 3019
4e416953
BS
3020 /*
3021 * NOTE: Although we can get the priority field, using it
3022 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3023 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3024 * will pick up pages from other mem cgroup's as well. We hack
3025 * the priority and make it zero.
3026 */
ef8f2327 3027 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
3028
3029 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3030
0ae5e89c 3031 *nr_scanned = sc.nr_scanned;
4e416953
BS
3032 return sc.nr_reclaimed;
3033}
3034
72835c86 3035unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3036 unsigned long nr_pages,
a7885eb8 3037 gfp_t gfp_mask,
b70a2a21 3038 bool may_swap)
66e1707b 3039{
4e416953 3040 struct zonelist *zonelist;
bdce6d9e 3041 unsigned long nr_reclaimed;
889976db 3042 int nid;
499118e9 3043 unsigned int noreclaim_flag;
66e1707b 3044 struct scan_control sc = {
b70a2a21 3045 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3046 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3047 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3048 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3049 .target_mem_cgroup = memcg,
3050 .priority = DEF_PRIORITY,
3051 .may_writepage = !laptop_mode,
3052 .may_unmap = 1,
b70a2a21 3053 .may_swap = may_swap,
a09ed5e0 3054 };
66e1707b 3055
889976db
YH
3056 /*
3057 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3058 * take care of from where we get pages. So the node where we start the
3059 * scan does not need to be the current node.
3060 */
72835c86 3061 nid = mem_cgroup_select_victim_node(memcg);
889976db 3062
c9634cf0 3063 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e
KM
3064
3065 trace_mm_vmscan_memcg_reclaim_begin(0,
3066 sc.may_writepage,
e5146b12
MG
3067 sc.gfp_mask,
3068 sc.reclaim_idx);
bdce6d9e 3069
499118e9 3070 noreclaim_flag = memalloc_noreclaim_save();
3115cd91 3071 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
499118e9 3072 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e
KM
3073
3074 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3075
3076 return nr_reclaimed;
66e1707b
BS
3077}
3078#endif
3079
1d82de61 3080static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3081 struct scan_control *sc)
f16015fb 3082{
b95a2f2d 3083 struct mem_cgroup *memcg;
f16015fb 3084
b95a2f2d
JW
3085 if (!total_swap_pages)
3086 return;
3087
3088 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3089 do {
ef8f2327 3090 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3091
2a2e4885 3092 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
1a93be0e 3093 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3094 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3095
3096 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3097 } while (memcg);
f16015fb
JW
3098}
3099
e716f2eb
MG
3100/*
3101 * Returns true if there is an eligible zone balanced for the request order
3102 * and classzone_idx
3103 */
3104static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
60cefed4 3105{
e716f2eb
MG
3106 int i;
3107 unsigned long mark = -1;
3108 struct zone *zone;
60cefed4 3109
e716f2eb
MG
3110 for (i = 0; i <= classzone_idx; i++) {
3111 zone = pgdat->node_zones + i;
6256c6b4 3112
e716f2eb
MG
3113 if (!managed_zone(zone))
3114 continue;
3115
3116 mark = high_wmark_pages(zone);
3117 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3118 return true;
3119 }
3120
3121 /*
3122 * If a node has no populated zone within classzone_idx, it does not
3123 * need balancing by definition. This can happen if a zone-restricted
3124 * allocation tries to wake a remote kswapd.
3125 */
3126 if (mark == -1)
3127 return true;
3128
3129 return false;
60cefed4
JW
3130}
3131
631b6e08
MG
3132/* Clear pgdat state for congested, dirty or under writeback. */
3133static void clear_pgdat_congested(pg_data_t *pgdat)
3134{
3135 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3136 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3137 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3138}
3139
5515061d
MG
3140/*
3141 * Prepare kswapd for sleeping. This verifies that there are no processes
3142 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3143 *
3144 * Returns true if kswapd is ready to sleep
3145 */
d9f21d42 3146static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3147{
5515061d 3148 /*
9e5e3661 3149 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3150 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3151 * race between when kswapd checks the watermarks and a process gets
3152 * throttled. There is also a potential race if processes get
3153 * throttled, kswapd wakes, a large process exits thereby balancing the
3154 * zones, which causes kswapd to exit balance_pgdat() before reaching
3155 * the wake up checks. If kswapd is going to sleep, no process should
3156 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3157 * the wake up is premature, processes will wake kswapd and get
3158 * throttled again. The difference from wake ups in balance_pgdat() is
3159 * that here we are under prepare_to_wait().
5515061d 3160 */
9e5e3661
VB
3161 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3162 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3163
c73322d0
JW
3164 /* Hopeless node, leave it to direct reclaim */
3165 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3166 return true;
3167
e716f2eb
MG
3168 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3169 clear_pgdat_congested(pgdat);
3170 return true;
1d82de61
MG
3171 }
3172
333b0a45 3173 return false;
f50de2d3
MG
3174}
3175
75485363 3176/*
1d82de61
MG
3177 * kswapd shrinks a node of pages that are at or below the highest usable
3178 * zone that is currently unbalanced.
b8e83b94
MG
3179 *
3180 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3181 * reclaim or if the lack of progress was due to pages under writeback.
3182 * This is used to determine if the scanning priority needs to be raised.
75485363 3183 */
1d82de61 3184static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3185 struct scan_control *sc)
75485363 3186{
1d82de61
MG
3187 struct zone *zone;
3188 int z;
75485363 3189
1d82de61
MG
3190 /* Reclaim a number of pages proportional to the number of zones */
3191 sc->nr_to_reclaim = 0;
970a39a3 3192 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3193 zone = pgdat->node_zones + z;
6aa303de 3194 if (!managed_zone(zone))
1d82de61 3195 continue;
7c954f6d 3196
1d82de61
MG
3197 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3198 }
7c954f6d
MG
3199
3200 /*
1d82de61
MG
3201 * Historically care was taken to put equal pressure on all zones but
3202 * now pressure is applied based on node LRU order.
7c954f6d 3203 */
970a39a3 3204 shrink_node(pgdat, sc);
283aba9f 3205
7c954f6d 3206 /*
1d82de61
MG
3207 * Fragmentation may mean that the system cannot be rebalanced for
3208 * high-order allocations. If twice the allocation size has been
3209 * reclaimed then recheck watermarks only at order-0 to prevent
3210 * excessive reclaim. Assume that a process requested a high-order
3211 * can direct reclaim/compact.
7c954f6d 3212 */
9861a62c 3213 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3214 sc->order = 0;
7c954f6d 3215
b8e83b94 3216 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3217}
3218
1da177e4 3219/*
1d82de61
MG
3220 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3221 * that are eligible for use by the caller until at least one zone is
3222 * balanced.
1da177e4 3223 *
1d82de61 3224 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3225 *
3226 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3227 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1d82de61
MG
3228 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3229 * or lower is eligible for reclaim until at least one usable zone is
3230 * balanced.
1da177e4 3231 */
accf6242 3232static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3233{
1da177e4 3234 int i;
0608f43d
AM
3235 unsigned long nr_soft_reclaimed;
3236 unsigned long nr_soft_scanned;
1d82de61 3237 struct zone *zone;
179e9639
AM
3238 struct scan_control sc = {
3239 .gfp_mask = GFP_KERNEL,
ee814fe2 3240 .order = order,
b8e83b94 3241 .priority = DEF_PRIORITY,
ee814fe2 3242 .may_writepage = !laptop_mode,
a6dc60f8 3243 .may_unmap = 1,
2e2e4259 3244 .may_swap = 1,
179e9639 3245 };
f8891e5e 3246 count_vm_event(PAGEOUTRUN);
1da177e4 3247
9e3b2f8c 3248 do {
c73322d0 3249 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94
MG
3250 bool raise_priority = true;
3251
84c7a777 3252 sc.reclaim_idx = classzone_idx;
1da177e4 3253
86c79f6b 3254 /*
84c7a777
MG
3255 * If the number of buffer_heads exceeds the maximum allowed
3256 * then consider reclaiming from all zones. This has a dual
3257 * purpose -- on 64-bit systems it is expected that
3258 * buffer_heads are stripped during active rotation. On 32-bit
3259 * systems, highmem pages can pin lowmem memory and shrinking
3260 * buffers can relieve lowmem pressure. Reclaim may still not
3261 * go ahead if all eligible zones for the original allocation
3262 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3263 */
3264 if (buffer_heads_over_limit) {
3265 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3266 zone = pgdat->node_zones + i;
6aa303de 3267 if (!managed_zone(zone))
86c79f6b 3268 continue;
cc715d99 3269
970a39a3 3270 sc.reclaim_idx = i;
e1dbeda6 3271 break;
1da177e4 3272 }
1da177e4 3273 }
dafcb73e 3274
86c79f6b 3275 /*
e716f2eb
MG
3276 * Only reclaim if there are no eligible zones. Note that
3277 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3278 * have adjusted it.
86c79f6b 3279 */
e716f2eb
MG
3280 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3281 goto out;
e1dbeda6 3282
1d82de61
MG
3283 /*
3284 * Do some background aging of the anon list, to give
3285 * pages a chance to be referenced before reclaiming. All
3286 * pages are rotated regardless of classzone as this is
3287 * about consistent aging.
3288 */
ef8f2327 3289 age_active_anon(pgdat, &sc);
1d82de61 3290
b7ea3c41
MG
3291 /*
3292 * If we're getting trouble reclaiming, start doing writepage
3293 * even in laptop mode.
3294 */
047d72c3 3295 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3296 sc.may_writepage = 1;
3297
1d82de61
MG
3298 /* Call soft limit reclaim before calling shrink_node. */
3299 sc.nr_scanned = 0;
3300 nr_soft_scanned = 0;
ef8f2327 3301 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3302 sc.gfp_mask, &nr_soft_scanned);
3303 sc.nr_reclaimed += nr_soft_reclaimed;
3304
1da177e4 3305 /*
1d82de61
MG
3306 * There should be no need to raise the scanning priority if
3307 * enough pages are already being scanned that that high
3308 * watermark would be met at 100% efficiency.
1da177e4 3309 */
970a39a3 3310 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3311 raise_priority = false;
5515061d
MG
3312
3313 /*
3314 * If the low watermark is met there is no need for processes
3315 * to be throttled on pfmemalloc_wait as they should not be
3316 * able to safely make forward progress. Wake them
3317 */
3318 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3319 allow_direct_reclaim(pgdat))
cfc51155 3320 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3321
b8e83b94
MG
3322 /* Check if kswapd should be suspending */
3323 if (try_to_freeze() || kthread_should_stop())
3324 break;
8357376d 3325
73ce02e9 3326 /*
b8e83b94
MG
3327 * Raise priority if scanning rate is too low or there was no
3328 * progress in reclaiming pages
73ce02e9 3329 */
c73322d0
JW
3330 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3331 if (raise_priority || !nr_reclaimed)
b8e83b94 3332 sc.priority--;
1d82de61 3333 } while (sc.priority >= 1);
1da177e4 3334
c73322d0
JW
3335 if (!sc.nr_reclaimed)
3336 pgdat->kswapd_failures++;
3337
b8e83b94 3338out:
2a2e4885 3339 snapshot_refaults(NULL, pgdat);
0abdee2b 3340 /*
1d82de61
MG
3341 * Return the order kswapd stopped reclaiming at as
3342 * prepare_kswapd_sleep() takes it into account. If another caller
3343 * entered the allocator slow path while kswapd was awake, order will
3344 * remain at the higher level.
0abdee2b 3345 */
1d82de61 3346 return sc.order;
1da177e4
LT
3347}
3348
e716f2eb
MG
3349/*
3350 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3351 * allocation request woke kswapd for. When kswapd has not woken recently,
3352 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3353 * given classzone and returns it or the highest classzone index kswapd
3354 * was recently woke for.
3355 */
3356static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3357 enum zone_type classzone_idx)
3358{
3359 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3360 return classzone_idx;
3361
3362 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3363}
3364
38087d9b
MG
3365static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3366 unsigned int classzone_idx)
f0bc0a60
KM
3367{
3368 long remaining = 0;
3369 DEFINE_WAIT(wait);
3370
3371 if (freezing(current) || kthread_should_stop())
3372 return;
3373
3374 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3375
333b0a45
SG
3376 /*
3377 * Try to sleep for a short interval. Note that kcompactd will only be
3378 * woken if it is possible to sleep for a short interval. This is
3379 * deliberate on the assumption that if reclaim cannot keep an
3380 * eligible zone balanced that it's also unlikely that compaction will
3381 * succeed.
3382 */
d9f21d42 3383 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3384 /*
3385 * Compaction records what page blocks it recently failed to
3386 * isolate pages from and skips them in the future scanning.
3387 * When kswapd is going to sleep, it is reasonable to assume
3388 * that pages and compaction may succeed so reset the cache.
3389 */
3390 reset_isolation_suitable(pgdat);
3391
3392 /*
3393 * We have freed the memory, now we should compact it to make
3394 * allocation of the requested order possible.
3395 */
38087d9b 3396 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3397
f0bc0a60 3398 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3399
3400 /*
3401 * If woken prematurely then reset kswapd_classzone_idx and
3402 * order. The values will either be from a wakeup request or
3403 * the previous request that slept prematurely.
3404 */
3405 if (remaining) {
e716f2eb 3406 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b
MG
3407 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3408 }
3409
f0bc0a60
KM
3410 finish_wait(&pgdat->kswapd_wait, &wait);
3411 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3412 }
3413
3414 /*
3415 * After a short sleep, check if it was a premature sleep. If not, then
3416 * go fully to sleep until explicitly woken up.
3417 */
d9f21d42
MG
3418 if (!remaining &&
3419 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3420 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3421
3422 /*
3423 * vmstat counters are not perfectly accurate and the estimated
3424 * value for counters such as NR_FREE_PAGES can deviate from the
3425 * true value by nr_online_cpus * threshold. To avoid the zone
3426 * watermarks being breached while under pressure, we reduce the
3427 * per-cpu vmstat threshold while kswapd is awake and restore
3428 * them before going back to sleep.
3429 */
3430 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3431
3432 if (!kthread_should_stop())
3433 schedule();
3434
f0bc0a60
KM
3435 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3436 } else {
3437 if (remaining)
3438 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3439 else
3440 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3441 }
3442 finish_wait(&pgdat->kswapd_wait, &wait);
3443}
3444
1da177e4
LT
3445/*
3446 * The background pageout daemon, started as a kernel thread
4f98a2fe 3447 * from the init process.
1da177e4
LT
3448 *
3449 * This basically trickles out pages so that we have _some_
3450 * free memory available even if there is no other activity
3451 * that frees anything up. This is needed for things like routing
3452 * etc, where we otherwise might have all activity going on in
3453 * asynchronous contexts that cannot page things out.
3454 *
3455 * If there are applications that are active memory-allocators
3456 * (most normal use), this basically shouldn't matter.
3457 */
3458static int kswapd(void *p)
3459{
e716f2eb
MG
3460 unsigned int alloc_order, reclaim_order;
3461 unsigned int classzone_idx = MAX_NR_ZONES - 1;
1da177e4
LT
3462 pg_data_t *pgdat = (pg_data_t*)p;
3463 struct task_struct *tsk = current;
f0bc0a60 3464
1da177e4
LT
3465 struct reclaim_state reclaim_state = {
3466 .reclaimed_slab = 0,
3467 };
a70f7302 3468 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3469
174596a0 3470 if (!cpumask_empty(cpumask))
c5f59f08 3471 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3472 current->reclaim_state = &reclaim_state;
3473
3474 /*
3475 * Tell the memory management that we're a "memory allocator",
3476 * and that if we need more memory we should get access to it
3477 * regardless (see "__alloc_pages()"). "kswapd" should
3478 * never get caught in the normal page freeing logic.
3479 *
3480 * (Kswapd normally doesn't need memory anyway, but sometimes
3481 * you need a small amount of memory in order to be able to
3482 * page out something else, and this flag essentially protects
3483 * us from recursively trying to free more memory as we're
3484 * trying to free the first piece of memory in the first place).
3485 */
930d9152 3486 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3487 set_freezable();
1da177e4 3488
e716f2eb
MG
3489 pgdat->kswapd_order = 0;
3490 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3491 for ( ; ; ) {
6f6313d4 3492 bool ret;
3e1d1d28 3493
e716f2eb
MG
3494 alloc_order = reclaim_order = pgdat->kswapd_order;
3495 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3496
38087d9b
MG
3497kswapd_try_sleep:
3498 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3499 classzone_idx);
215ddd66 3500
38087d9b
MG
3501 /* Read the new order and classzone_idx */
3502 alloc_order = reclaim_order = pgdat->kswapd_order;
e716f2eb 3503 classzone_idx = kswapd_classzone_idx(pgdat, 0);
38087d9b 3504 pgdat->kswapd_order = 0;
e716f2eb 3505 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3506
8fe23e05
DR
3507 ret = try_to_freeze();
3508 if (kthread_should_stop())
3509 break;
3510
3511 /*
3512 * We can speed up thawing tasks if we don't call balance_pgdat
3513 * after returning from the refrigerator
3514 */
38087d9b
MG
3515 if (ret)
3516 continue;
3517
3518 /*
3519 * Reclaim begins at the requested order but if a high-order
3520 * reclaim fails then kswapd falls back to reclaiming for
3521 * order-0. If that happens, kswapd will consider sleeping
3522 * for the order it finished reclaiming at (reclaim_order)
3523 * but kcompactd is woken to compact for the original
3524 * request (alloc_order).
3525 */
e5146b12
MG
3526 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3527 alloc_order);
d92a8cfc 3528 fs_reclaim_acquire(GFP_KERNEL);
38087d9b 3529 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
d92a8cfc 3530 fs_reclaim_release(GFP_KERNEL);
38087d9b
MG
3531 if (reclaim_order < alloc_order)
3532 goto kswapd_try_sleep;
1da177e4 3533 }
b0a8cc58 3534
71abdc15 3535 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3536 current->reclaim_state = NULL;
71abdc15 3537
1da177e4
LT
3538 return 0;
3539}
3540
3541/*
5ecd9d40
DR
3542 * A zone is low on free memory or too fragmented for high-order memory. If
3543 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3544 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3545 * has failed or is not needed, still wake up kcompactd if only compaction is
3546 * needed.
1da177e4 3547 */
5ecd9d40
DR
3548void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3549 enum zone_type classzone_idx)
1da177e4
LT
3550{
3551 pg_data_t *pgdat;
3552
6aa303de 3553 if (!managed_zone(zone))
1da177e4
LT
3554 return;
3555
5ecd9d40 3556 if (!cpuset_zone_allowed(zone, gfp_flags))
1da177e4 3557 return;
88f5acf8 3558 pgdat = zone->zone_pgdat;
e716f2eb
MG
3559 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3560 classzone_idx);
38087d9b 3561 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3562 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3563 return;
e1a55637 3564
5ecd9d40
DR
3565 /* Hopeless node, leave it to direct reclaim if possible */
3566 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3567 pgdat_balanced(pgdat, order, classzone_idx)) {
3568 /*
3569 * There may be plenty of free memory available, but it's too
3570 * fragmented for high-order allocations. Wake up kcompactd
3571 * and rely on compaction_suitable() to determine if it's
3572 * needed. If it fails, it will defer subsequent attempts to
3573 * ratelimit its work.
3574 */
3575 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3576 wakeup_kcompactd(pgdat, order, classzone_idx);
e716f2eb 3577 return;
5ecd9d40 3578 }
88f5acf8 3579
5ecd9d40
DR
3580 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3581 gfp_flags);
8d0986e2 3582 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3583}
3584
c6f37f12 3585#ifdef CONFIG_HIBERNATION
1da177e4 3586/*
7b51755c 3587 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3588 * freed pages.
3589 *
3590 * Rather than trying to age LRUs the aim is to preserve the overall
3591 * LRU order by reclaiming preferentially
3592 * inactive > active > active referenced > active mapped
1da177e4 3593 */
7b51755c 3594unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3595{
d6277db4 3596 struct reclaim_state reclaim_state;
d6277db4 3597 struct scan_control sc = {
ee814fe2 3598 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3599 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3600 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3601 .priority = DEF_PRIORITY,
d6277db4 3602 .may_writepage = 1,
ee814fe2
JW
3603 .may_unmap = 1,
3604 .may_swap = 1,
7b51755c 3605 .hibernation_mode = 1,
1da177e4 3606 };
a09ed5e0 3607 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3608 struct task_struct *p = current;
3609 unsigned long nr_reclaimed;
499118e9 3610 unsigned int noreclaim_flag;
1da177e4 3611
499118e9 3612 noreclaim_flag = memalloc_noreclaim_save();
d92a8cfc 3613 fs_reclaim_acquire(sc.gfp_mask);
7b51755c
KM
3614 reclaim_state.reclaimed_slab = 0;
3615 p->reclaim_state = &reclaim_state;
d6277db4 3616
3115cd91 3617 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3618
7b51755c 3619 p->reclaim_state = NULL;
d92a8cfc 3620 fs_reclaim_release(sc.gfp_mask);
499118e9 3621 memalloc_noreclaim_restore(noreclaim_flag);
d6277db4 3622
7b51755c 3623 return nr_reclaimed;
1da177e4 3624}
c6f37f12 3625#endif /* CONFIG_HIBERNATION */
1da177e4 3626
1da177e4
LT
3627/* It's optimal to keep kswapds on the same CPUs as their memory, but
3628 not required for correctness. So if the last cpu in a node goes
3629 away, we get changed to run anywhere: as the first one comes back,
3630 restore their cpu bindings. */
517bbed9 3631static int kswapd_cpu_online(unsigned int cpu)
1da177e4 3632{
58c0a4a7 3633 int nid;
1da177e4 3634
517bbed9
SAS
3635 for_each_node_state(nid, N_MEMORY) {
3636 pg_data_t *pgdat = NODE_DATA(nid);
3637 const struct cpumask *mask;
a70f7302 3638
517bbed9 3639 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3640
517bbed9
SAS
3641 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3642 /* One of our CPUs online: restore mask */
3643 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 3644 }
517bbed9 3645 return 0;
1da177e4 3646}
1da177e4 3647
3218ae14
YG
3648/*
3649 * This kswapd start function will be called by init and node-hot-add.
3650 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3651 */
3652int kswapd_run(int nid)
3653{
3654 pg_data_t *pgdat = NODE_DATA(nid);
3655 int ret = 0;
3656
3657 if (pgdat->kswapd)
3658 return 0;
3659
3660 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3661 if (IS_ERR(pgdat->kswapd)) {
3662 /* failure at boot is fatal */
c6202adf 3663 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
3664 pr_err("Failed to start kswapd on node %d\n", nid);
3665 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3666 pgdat->kswapd = NULL;
3218ae14
YG
3667 }
3668 return ret;
3669}
3670
8fe23e05 3671/*
d8adde17 3672 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3673 * hold mem_hotplug_begin/end().
8fe23e05
DR
3674 */
3675void kswapd_stop(int nid)
3676{
3677 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3678
d8adde17 3679 if (kswapd) {
8fe23e05 3680 kthread_stop(kswapd);
d8adde17
JL
3681 NODE_DATA(nid)->kswapd = NULL;
3682 }
8fe23e05
DR
3683}
3684
1da177e4
LT
3685static int __init kswapd_init(void)
3686{
517bbed9 3687 int nid, ret;
69e05944 3688
1da177e4 3689 swap_setup();
48fb2e24 3690 for_each_node_state(nid, N_MEMORY)
3218ae14 3691 kswapd_run(nid);
517bbed9
SAS
3692 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3693 "mm/vmscan:online", kswapd_cpu_online,
3694 NULL);
3695 WARN_ON(ret < 0);
1da177e4
LT
3696 return 0;
3697}
3698
3699module_init(kswapd_init)
9eeff239
CL
3700
3701#ifdef CONFIG_NUMA
3702/*
a5f5f91d 3703 * Node reclaim mode
9eeff239 3704 *
a5f5f91d 3705 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 3706 * the watermarks.
9eeff239 3707 */
a5f5f91d 3708int node_reclaim_mode __read_mostly;
9eeff239 3709
1b2ffb78 3710#define RECLAIM_OFF 0
7d03431c 3711#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3712#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3713#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3714
a92f7126 3715/*
a5f5f91d 3716 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
3717 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3718 * a zone.
3719 */
a5f5f91d 3720#define NODE_RECLAIM_PRIORITY 4
a92f7126 3721
9614634f 3722/*
a5f5f91d 3723 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
3724 * occur.
3725 */
3726int sysctl_min_unmapped_ratio = 1;
3727
0ff38490
CL
3728/*
3729 * If the number of slab pages in a zone grows beyond this percentage then
3730 * slab reclaim needs to occur.
3731 */
3732int sysctl_min_slab_ratio = 5;
3733
11fb9989 3734static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 3735{
11fb9989
MG
3736 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3737 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3738 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
3739
3740 /*
3741 * It's possible for there to be more file mapped pages than
3742 * accounted for by the pages on the file LRU lists because
3743 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3744 */
3745 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3746}
3747
3748/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 3749static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 3750{
d031a157
AM
3751 unsigned long nr_pagecache_reclaimable;
3752 unsigned long delta = 0;
90afa5de
MG
3753
3754 /*
95bbc0c7 3755 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 3756 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 3757 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
3758 * a better estimate
3759 */
a5f5f91d
MG
3760 if (node_reclaim_mode & RECLAIM_UNMAP)
3761 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 3762 else
a5f5f91d 3763 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
3764
3765 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
3766 if (!(node_reclaim_mode & RECLAIM_WRITE))
3767 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
3768
3769 /* Watch for any possible underflows due to delta */
3770 if (unlikely(delta > nr_pagecache_reclaimable))
3771 delta = nr_pagecache_reclaimable;
3772
3773 return nr_pagecache_reclaimable - delta;
3774}
3775
9eeff239 3776/*
a5f5f91d 3777 * Try to free up some pages from this node through reclaim.
9eeff239 3778 */
a5f5f91d 3779static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 3780{
7fb2d46d 3781 /* Minimum pages needed in order to stay on node */
69e05944 3782 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3783 struct task_struct *p = current;
3784 struct reclaim_state reclaim_state;
499118e9 3785 unsigned int noreclaim_flag;
179e9639 3786 struct scan_control sc = {
62b726c1 3787 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 3788 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 3789 .order = order,
a5f5f91d
MG
3790 .priority = NODE_RECLAIM_PRIORITY,
3791 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3792 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3793 .may_swap = 1,
f2f43e56 3794 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 3795 };
9eeff239 3796
9eeff239 3797 cond_resched();
d4f7796e 3798 /*
95bbc0c7 3799 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3800 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3801 * and RECLAIM_UNMAP.
d4f7796e 3802 */
499118e9
VB
3803 noreclaim_flag = memalloc_noreclaim_save();
3804 p->flags |= PF_SWAPWRITE;
d92a8cfc 3805 fs_reclaim_acquire(sc.gfp_mask);
9eeff239
CL
3806 reclaim_state.reclaimed_slab = 0;
3807 p->reclaim_state = &reclaim_state;
c84db23c 3808
a5f5f91d 3809 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490
CL
3810 /*
3811 * Free memory by calling shrink zone with increasing
3812 * priorities until we have enough memory freed.
3813 */
0ff38490 3814 do {
970a39a3 3815 shrink_node(pgdat, &sc);
9e3b2f8c 3816 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3817 }
c84db23c 3818
9eeff239 3819 p->reclaim_state = NULL;
d92a8cfc 3820 fs_reclaim_release(gfp_mask);
499118e9
VB
3821 current->flags &= ~PF_SWAPWRITE;
3822 memalloc_noreclaim_restore(noreclaim_flag);
a79311c1 3823 return sc.nr_reclaimed >= nr_pages;
9eeff239 3824}
179e9639 3825
a5f5f91d 3826int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 3827{
d773ed6b 3828 int ret;
179e9639
AM
3829
3830 /*
a5f5f91d 3831 * Node reclaim reclaims unmapped file backed pages and
0ff38490 3832 * slab pages if we are over the defined limits.
34aa1330 3833 *
9614634f
CL
3834 * A small portion of unmapped file backed pages is needed for
3835 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
3836 * thrown out if the node is overallocated. So we do not reclaim
3837 * if less than a specified percentage of the node is used by
9614634f 3838 * unmapped file backed pages.
179e9639 3839 */
a5f5f91d 3840 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
385386cf 3841 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
a5f5f91d 3842 return NODE_RECLAIM_FULL;
179e9639
AM
3843
3844 /*
d773ed6b 3845 * Do not scan if the allocation should not be delayed.
179e9639 3846 */
d0164adc 3847 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 3848 return NODE_RECLAIM_NOSCAN;
179e9639
AM
3849
3850 /*
a5f5f91d 3851 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
3852 * have associated processors. This will favor the local processor
3853 * over remote processors and spread off node memory allocations
3854 * as wide as possible.
3855 */
a5f5f91d
MG
3856 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3857 return NODE_RECLAIM_NOSCAN;
d773ed6b 3858
a5f5f91d
MG
3859 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3860 return NODE_RECLAIM_NOSCAN;
fa5e084e 3861
a5f5f91d
MG
3862 ret = __node_reclaim(pgdat, gfp_mask, order);
3863 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 3864
24cf7251
MG
3865 if (!ret)
3866 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3867
d773ed6b 3868 return ret;
179e9639 3869}
9eeff239 3870#endif
894bc310 3871
894bc310
LS
3872/*
3873 * page_evictable - test whether a page is evictable
3874 * @page: the page to test
894bc310
LS
3875 *
3876 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3877 * lists vs unevictable list.
894bc310
LS
3878 *
3879 * Reasons page might not be evictable:
ba9ddf49 3880 * (1) page's mapping marked unevictable
b291f000 3881 * (2) page is part of an mlocked VMA
ba9ddf49 3882 *
894bc310 3883 */
39b5f29a 3884int page_evictable(struct page *page)
894bc310 3885{
e92bb4dd
YH
3886 int ret;
3887
3888 /* Prevent address_space of inode and swap cache from being freed */
3889 rcu_read_lock();
3890 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3891 rcu_read_unlock();
3892 return ret;
894bc310 3893}
89e004ea 3894
85046579 3895#ifdef CONFIG_SHMEM
89e004ea 3896/**
24513264
HD
3897 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3898 * @pages: array of pages to check
3899 * @nr_pages: number of pages to check
89e004ea 3900 *
24513264 3901 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3902 *
3903 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3904 */
24513264 3905void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3906{
925b7673 3907 struct lruvec *lruvec;
785b99fe 3908 struct pglist_data *pgdat = NULL;
24513264
HD
3909 int pgscanned = 0;
3910 int pgrescued = 0;
3911 int i;
89e004ea 3912
24513264
HD
3913 for (i = 0; i < nr_pages; i++) {
3914 struct page *page = pages[i];
785b99fe 3915 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 3916
24513264 3917 pgscanned++;
785b99fe
MG
3918 if (pagepgdat != pgdat) {
3919 if (pgdat)
3920 spin_unlock_irq(&pgdat->lru_lock);
3921 pgdat = pagepgdat;
3922 spin_lock_irq(&pgdat->lru_lock);
24513264 3923 }
785b99fe 3924 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 3925
24513264
HD
3926 if (!PageLRU(page) || !PageUnevictable(page))
3927 continue;
89e004ea 3928
39b5f29a 3929 if (page_evictable(page)) {
24513264
HD
3930 enum lru_list lru = page_lru_base_type(page);
3931
309381fe 3932 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3933 ClearPageUnevictable(page);
fa9add64
HD
3934 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3935 add_page_to_lru_list(page, lruvec, lru);
24513264 3936 pgrescued++;
89e004ea 3937 }
24513264 3938 }
89e004ea 3939
785b99fe 3940 if (pgdat) {
24513264
HD
3941 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3942 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 3943 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 3944 }
89e004ea 3945}
85046579 3946#endif /* CONFIG_SHMEM */
This page took 2.057065 seconds and 4 git commands to generate.