]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/vmscan.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | * | |
6 | * Swap reorganised 29.12.95, Stephen Tweedie. | |
7 | * kswapd added: 7.1.96 sct | |
8 | * Removed kswapd_ctl limits, and swap out as many pages as needed | |
9 | * to bring the system back to freepages.high: 2.4.97, Rik van Riel. | |
10 | * Zone aware kswapd started 02/00, Kanoj Sarcar ([email protected]). | |
11 | * Multiqueue VM started 5.8.00, Rik van Riel. | |
12 | */ | |
13 | ||
14 | #include <linux/mm.h> | |
15 | #include <linux/module.h> | |
5a0e3ad6 | 16 | #include <linux/gfp.h> |
1da177e4 LT |
17 | #include <linux/kernel_stat.h> |
18 | #include <linux/swap.h> | |
19 | #include <linux/pagemap.h> | |
20 | #include <linux/init.h> | |
21 | #include <linux/highmem.h> | |
70ddf637 | 22 | #include <linux/vmpressure.h> |
e129b5c2 | 23 | #include <linux/vmstat.h> |
1da177e4 LT |
24 | #include <linux/file.h> |
25 | #include <linux/writeback.h> | |
26 | #include <linux/blkdev.h> | |
27 | #include <linux/buffer_head.h> /* for try_to_release_page(), | |
28 | buffer_heads_over_limit */ | |
29 | #include <linux/mm_inline.h> | |
1da177e4 LT |
30 | #include <linux/backing-dev.h> |
31 | #include <linux/rmap.h> | |
32 | #include <linux/topology.h> | |
33 | #include <linux/cpu.h> | |
34 | #include <linux/cpuset.h> | |
3e7d3449 | 35 | #include <linux/compaction.h> |
1da177e4 LT |
36 | #include <linux/notifier.h> |
37 | #include <linux/rwsem.h> | |
248a0301 | 38 | #include <linux/delay.h> |
3218ae14 | 39 | #include <linux/kthread.h> |
7dfb7103 | 40 | #include <linux/freezer.h> |
66e1707b | 41 | #include <linux/memcontrol.h> |
873b4771 | 42 | #include <linux/delayacct.h> |
af936a16 | 43 | #include <linux/sysctl.h> |
929bea7c | 44 | #include <linux/oom.h> |
268bb0ce | 45 | #include <linux/prefetch.h> |
1da177e4 LT |
46 | |
47 | #include <asm/tlbflush.h> | |
48 | #include <asm/div64.h> | |
49 | ||
50 | #include <linux/swapops.h> | |
51 | ||
0f8053a5 NP |
52 | #include "internal.h" |
53 | ||
33906bc5 MG |
54 | #define CREATE_TRACE_POINTS |
55 | #include <trace/events/vmscan.h> | |
56 | ||
1da177e4 | 57 | struct scan_control { |
1da177e4 LT |
58 | /* Incremented by the number of inactive pages that were scanned */ |
59 | unsigned long nr_scanned; | |
60 | ||
a79311c1 RR |
61 | /* Number of pages freed so far during a call to shrink_zones() */ |
62 | unsigned long nr_reclaimed; | |
63 | ||
22fba335 KM |
64 | /* How many pages shrink_list() should reclaim */ |
65 | unsigned long nr_to_reclaim; | |
66 | ||
7b51755c KM |
67 | unsigned long hibernation_mode; |
68 | ||
1da177e4 | 69 | /* This context's GFP mask */ |
6daa0e28 | 70 | gfp_t gfp_mask; |
1da177e4 LT |
71 | |
72 | int may_writepage; | |
73 | ||
a6dc60f8 JW |
74 | /* Can mapped pages be reclaimed? */ |
75 | int may_unmap; | |
f1fd1067 | 76 | |
2e2e4259 KM |
77 | /* Can pages be swapped as part of reclaim? */ |
78 | int may_swap; | |
79 | ||
5ad333eb | 80 | int order; |
66e1707b | 81 | |
9e3b2f8c KK |
82 | /* Scan (total_size >> priority) pages at once */ |
83 | int priority; | |
84 | ||
f16015fb JW |
85 | /* |
86 | * The memory cgroup that hit its limit and as a result is the | |
87 | * primary target of this reclaim invocation. | |
88 | */ | |
89 | struct mem_cgroup *target_mem_cgroup; | |
66e1707b | 90 | |
327c0e96 KH |
91 | /* |
92 | * Nodemask of nodes allowed by the caller. If NULL, all nodes | |
93 | * are scanned. | |
94 | */ | |
95 | nodemask_t *nodemask; | |
1da177e4 LT |
96 | }; |
97 | ||
1da177e4 LT |
98 | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) |
99 | ||
100 | #ifdef ARCH_HAS_PREFETCH | |
101 | #define prefetch_prev_lru_page(_page, _base, _field) \ | |
102 | do { \ | |
103 | if ((_page)->lru.prev != _base) { \ | |
104 | struct page *prev; \ | |
105 | \ | |
106 | prev = lru_to_page(&(_page->lru)); \ | |
107 | prefetch(&prev->_field); \ | |
108 | } \ | |
109 | } while (0) | |
110 | #else | |
111 | #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) | |
112 | #endif | |
113 | ||
114 | #ifdef ARCH_HAS_PREFETCHW | |
115 | #define prefetchw_prev_lru_page(_page, _base, _field) \ | |
116 | do { \ | |
117 | if ((_page)->lru.prev != _base) { \ | |
118 | struct page *prev; \ | |
119 | \ | |
120 | prev = lru_to_page(&(_page->lru)); \ | |
121 | prefetchw(&prev->_field); \ | |
122 | } \ | |
123 | } while (0) | |
124 | #else | |
125 | #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) | |
126 | #endif | |
127 | ||
128 | /* | |
129 | * From 0 .. 100. Higher means more swappy. | |
130 | */ | |
131 | int vm_swappiness = 60; | |
b21e0b90 | 132 | unsigned long vm_total_pages; /* The total number of pages which the VM controls */ |
1da177e4 LT |
133 | |
134 | static LIST_HEAD(shrinker_list); | |
135 | static DECLARE_RWSEM(shrinker_rwsem); | |
136 | ||
c255a458 | 137 | #ifdef CONFIG_MEMCG |
89b5fae5 JW |
138 | static bool global_reclaim(struct scan_control *sc) |
139 | { | |
f16015fb | 140 | return !sc->target_mem_cgroup; |
89b5fae5 | 141 | } |
91a45470 | 142 | #else |
89b5fae5 JW |
143 | static bool global_reclaim(struct scan_control *sc) |
144 | { | |
145 | return true; | |
146 | } | |
91a45470 KH |
147 | #endif |
148 | ||
4d7dcca2 | 149 | static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) |
c9f299d9 | 150 | { |
c3c787e8 | 151 | if (!mem_cgroup_disabled()) |
4d7dcca2 | 152 | return mem_cgroup_get_lru_size(lruvec, lru); |
a3d8e054 | 153 | |
074291fe | 154 | return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); |
c9f299d9 KM |
155 | } |
156 | ||
1da177e4 LT |
157 | /* |
158 | * Add a shrinker callback to be called from the vm | |
159 | */ | |
8e1f936b | 160 | void register_shrinker(struct shrinker *shrinker) |
1da177e4 | 161 | { |
83aeeada | 162 | atomic_long_set(&shrinker->nr_in_batch, 0); |
8e1f936b RR |
163 | down_write(&shrinker_rwsem); |
164 | list_add_tail(&shrinker->list, &shrinker_list); | |
165 | up_write(&shrinker_rwsem); | |
1da177e4 | 166 | } |
8e1f936b | 167 | EXPORT_SYMBOL(register_shrinker); |
1da177e4 LT |
168 | |
169 | /* | |
170 | * Remove one | |
171 | */ | |
8e1f936b | 172 | void unregister_shrinker(struct shrinker *shrinker) |
1da177e4 LT |
173 | { |
174 | down_write(&shrinker_rwsem); | |
175 | list_del(&shrinker->list); | |
176 | up_write(&shrinker_rwsem); | |
1da177e4 | 177 | } |
8e1f936b | 178 | EXPORT_SYMBOL(unregister_shrinker); |
1da177e4 | 179 | |
1495f230 YH |
180 | static inline int do_shrinker_shrink(struct shrinker *shrinker, |
181 | struct shrink_control *sc, | |
182 | unsigned long nr_to_scan) | |
183 | { | |
184 | sc->nr_to_scan = nr_to_scan; | |
185 | return (*shrinker->shrink)(shrinker, sc); | |
186 | } | |
187 | ||
1da177e4 LT |
188 | #define SHRINK_BATCH 128 |
189 | /* | |
190 | * Call the shrink functions to age shrinkable caches | |
191 | * | |
192 | * Here we assume it costs one seek to replace a lru page and that it also | |
193 | * takes a seek to recreate a cache object. With this in mind we age equal | |
194 | * percentages of the lru and ageable caches. This should balance the seeks | |
195 | * generated by these structures. | |
196 | * | |
183ff22b | 197 | * If the vm encountered mapped pages on the LRU it increase the pressure on |
1da177e4 LT |
198 | * slab to avoid swapping. |
199 | * | |
200 | * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. | |
201 | * | |
202 | * `lru_pages' represents the number of on-LRU pages in all the zones which | |
203 | * are eligible for the caller's allocation attempt. It is used for balancing | |
204 | * slab reclaim versus page reclaim. | |
b15e0905 | 205 | * |
206 | * Returns the number of slab objects which we shrunk. | |
1da177e4 | 207 | */ |
a09ed5e0 | 208 | unsigned long shrink_slab(struct shrink_control *shrink, |
1495f230 | 209 | unsigned long nr_pages_scanned, |
a09ed5e0 | 210 | unsigned long lru_pages) |
1da177e4 LT |
211 | { |
212 | struct shrinker *shrinker; | |
69e05944 | 213 | unsigned long ret = 0; |
1da177e4 | 214 | |
1495f230 YH |
215 | if (nr_pages_scanned == 0) |
216 | nr_pages_scanned = SWAP_CLUSTER_MAX; | |
1da177e4 | 217 | |
f06590bd MK |
218 | if (!down_read_trylock(&shrinker_rwsem)) { |
219 | /* Assume we'll be able to shrink next time */ | |
220 | ret = 1; | |
221 | goto out; | |
222 | } | |
1da177e4 LT |
223 | |
224 | list_for_each_entry(shrinker, &shrinker_list, list) { | |
225 | unsigned long long delta; | |
635697c6 KK |
226 | long total_scan; |
227 | long max_pass; | |
09576073 | 228 | int shrink_ret = 0; |
acf92b48 DC |
229 | long nr; |
230 | long new_nr; | |
e9299f50 DC |
231 | long batch_size = shrinker->batch ? shrinker->batch |
232 | : SHRINK_BATCH; | |
1da177e4 | 233 | |
635697c6 KK |
234 | max_pass = do_shrinker_shrink(shrinker, shrink, 0); |
235 | if (max_pass <= 0) | |
236 | continue; | |
237 | ||
acf92b48 DC |
238 | /* |
239 | * copy the current shrinker scan count into a local variable | |
240 | * and zero it so that other concurrent shrinker invocations | |
241 | * don't also do this scanning work. | |
242 | */ | |
83aeeada | 243 | nr = atomic_long_xchg(&shrinker->nr_in_batch, 0); |
acf92b48 DC |
244 | |
245 | total_scan = nr; | |
1495f230 | 246 | delta = (4 * nr_pages_scanned) / shrinker->seeks; |
ea164d73 | 247 | delta *= max_pass; |
1da177e4 | 248 | do_div(delta, lru_pages + 1); |
acf92b48 DC |
249 | total_scan += delta; |
250 | if (total_scan < 0) { | |
88c3bd70 DR |
251 | printk(KERN_ERR "shrink_slab: %pF negative objects to " |
252 | "delete nr=%ld\n", | |
acf92b48 DC |
253 | shrinker->shrink, total_scan); |
254 | total_scan = max_pass; | |
ea164d73 AA |
255 | } |
256 | ||
3567b59a DC |
257 | /* |
258 | * We need to avoid excessive windup on filesystem shrinkers | |
259 | * due to large numbers of GFP_NOFS allocations causing the | |
260 | * shrinkers to return -1 all the time. This results in a large | |
261 | * nr being built up so when a shrink that can do some work | |
262 | * comes along it empties the entire cache due to nr >>> | |
263 | * max_pass. This is bad for sustaining a working set in | |
264 | * memory. | |
265 | * | |
266 | * Hence only allow the shrinker to scan the entire cache when | |
267 | * a large delta change is calculated directly. | |
268 | */ | |
269 | if (delta < max_pass / 4) | |
270 | total_scan = min(total_scan, max_pass / 2); | |
271 | ||
ea164d73 AA |
272 | /* |
273 | * Avoid risking looping forever due to too large nr value: | |
274 | * never try to free more than twice the estimate number of | |
275 | * freeable entries. | |
276 | */ | |
acf92b48 DC |
277 | if (total_scan > max_pass * 2) |
278 | total_scan = max_pass * 2; | |
1da177e4 | 279 | |
acf92b48 | 280 | trace_mm_shrink_slab_start(shrinker, shrink, nr, |
09576073 DC |
281 | nr_pages_scanned, lru_pages, |
282 | max_pass, delta, total_scan); | |
283 | ||
e9299f50 | 284 | while (total_scan >= batch_size) { |
b15e0905 | 285 | int nr_before; |
1da177e4 | 286 | |
1495f230 YH |
287 | nr_before = do_shrinker_shrink(shrinker, shrink, 0); |
288 | shrink_ret = do_shrinker_shrink(shrinker, shrink, | |
e9299f50 | 289 | batch_size); |
1da177e4 LT |
290 | if (shrink_ret == -1) |
291 | break; | |
b15e0905 | 292 | if (shrink_ret < nr_before) |
293 | ret += nr_before - shrink_ret; | |
e9299f50 DC |
294 | count_vm_events(SLABS_SCANNED, batch_size); |
295 | total_scan -= batch_size; | |
1da177e4 LT |
296 | |
297 | cond_resched(); | |
298 | } | |
299 | ||
acf92b48 DC |
300 | /* |
301 | * move the unused scan count back into the shrinker in a | |
302 | * manner that handles concurrent updates. If we exhausted the | |
303 | * scan, there is no need to do an update. | |
304 | */ | |
83aeeada KK |
305 | if (total_scan > 0) |
306 | new_nr = atomic_long_add_return(total_scan, | |
307 | &shrinker->nr_in_batch); | |
308 | else | |
309 | new_nr = atomic_long_read(&shrinker->nr_in_batch); | |
acf92b48 DC |
310 | |
311 | trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr); | |
1da177e4 LT |
312 | } |
313 | up_read(&shrinker_rwsem); | |
f06590bd MK |
314 | out: |
315 | cond_resched(); | |
b15e0905 | 316 | return ret; |
1da177e4 LT |
317 | } |
318 | ||
1da177e4 LT |
319 | static inline int is_page_cache_freeable(struct page *page) |
320 | { | |
ceddc3a5 JW |
321 | /* |
322 | * A freeable page cache page is referenced only by the caller | |
323 | * that isolated the page, the page cache radix tree and | |
324 | * optional buffer heads at page->private. | |
325 | */ | |
edcf4748 | 326 | return page_count(page) - page_has_private(page) == 2; |
1da177e4 LT |
327 | } |
328 | ||
7d3579e8 KM |
329 | static int may_write_to_queue(struct backing_dev_info *bdi, |
330 | struct scan_control *sc) | |
1da177e4 | 331 | { |
930d9152 | 332 | if (current->flags & PF_SWAPWRITE) |
1da177e4 LT |
333 | return 1; |
334 | if (!bdi_write_congested(bdi)) | |
335 | return 1; | |
336 | if (bdi == current->backing_dev_info) | |
337 | return 1; | |
338 | return 0; | |
339 | } | |
340 | ||
341 | /* | |
342 | * We detected a synchronous write error writing a page out. Probably | |
343 | * -ENOSPC. We need to propagate that into the address_space for a subsequent | |
344 | * fsync(), msync() or close(). | |
345 | * | |
346 | * The tricky part is that after writepage we cannot touch the mapping: nothing | |
347 | * prevents it from being freed up. But we have a ref on the page and once | |
348 | * that page is locked, the mapping is pinned. | |
349 | * | |
350 | * We're allowed to run sleeping lock_page() here because we know the caller has | |
351 | * __GFP_FS. | |
352 | */ | |
353 | static void handle_write_error(struct address_space *mapping, | |
354 | struct page *page, int error) | |
355 | { | |
7eaceacc | 356 | lock_page(page); |
3e9f45bd GC |
357 | if (page_mapping(page) == mapping) |
358 | mapping_set_error(mapping, error); | |
1da177e4 LT |
359 | unlock_page(page); |
360 | } | |
361 | ||
04e62a29 CL |
362 | /* possible outcome of pageout() */ |
363 | typedef enum { | |
364 | /* failed to write page out, page is locked */ | |
365 | PAGE_KEEP, | |
366 | /* move page to the active list, page is locked */ | |
367 | PAGE_ACTIVATE, | |
368 | /* page has been sent to the disk successfully, page is unlocked */ | |
369 | PAGE_SUCCESS, | |
370 | /* page is clean and locked */ | |
371 | PAGE_CLEAN, | |
372 | } pageout_t; | |
373 | ||
1da177e4 | 374 | /* |
1742f19f AM |
375 | * pageout is called by shrink_page_list() for each dirty page. |
376 | * Calls ->writepage(). | |
1da177e4 | 377 | */ |
c661b078 | 378 | static pageout_t pageout(struct page *page, struct address_space *mapping, |
7d3579e8 | 379 | struct scan_control *sc) |
1da177e4 LT |
380 | { |
381 | /* | |
382 | * If the page is dirty, only perform writeback if that write | |
383 | * will be non-blocking. To prevent this allocation from being | |
384 | * stalled by pagecache activity. But note that there may be | |
385 | * stalls if we need to run get_block(). We could test | |
386 | * PagePrivate for that. | |
387 | * | |
6aceb53b | 388 | * If this process is currently in __generic_file_aio_write() against |
1da177e4 LT |
389 | * this page's queue, we can perform writeback even if that |
390 | * will block. | |
391 | * | |
392 | * If the page is swapcache, write it back even if that would | |
393 | * block, for some throttling. This happens by accident, because | |
394 | * swap_backing_dev_info is bust: it doesn't reflect the | |
395 | * congestion state of the swapdevs. Easy to fix, if needed. | |
1da177e4 LT |
396 | */ |
397 | if (!is_page_cache_freeable(page)) | |
398 | return PAGE_KEEP; | |
399 | if (!mapping) { | |
400 | /* | |
401 | * Some data journaling orphaned pages can have | |
402 | * page->mapping == NULL while being dirty with clean buffers. | |
403 | */ | |
266cf658 | 404 | if (page_has_private(page)) { |
1da177e4 LT |
405 | if (try_to_free_buffers(page)) { |
406 | ClearPageDirty(page); | |
d40cee24 | 407 | printk("%s: orphaned page\n", __func__); |
1da177e4 LT |
408 | return PAGE_CLEAN; |
409 | } | |
410 | } | |
411 | return PAGE_KEEP; | |
412 | } | |
413 | if (mapping->a_ops->writepage == NULL) | |
414 | return PAGE_ACTIVATE; | |
0e093d99 | 415 | if (!may_write_to_queue(mapping->backing_dev_info, sc)) |
1da177e4 LT |
416 | return PAGE_KEEP; |
417 | ||
418 | if (clear_page_dirty_for_io(page)) { | |
419 | int res; | |
420 | struct writeback_control wbc = { | |
421 | .sync_mode = WB_SYNC_NONE, | |
422 | .nr_to_write = SWAP_CLUSTER_MAX, | |
111ebb6e OH |
423 | .range_start = 0, |
424 | .range_end = LLONG_MAX, | |
1da177e4 LT |
425 | .for_reclaim = 1, |
426 | }; | |
427 | ||
428 | SetPageReclaim(page); | |
429 | res = mapping->a_ops->writepage(page, &wbc); | |
430 | if (res < 0) | |
431 | handle_write_error(mapping, page, res); | |
994fc28c | 432 | if (res == AOP_WRITEPAGE_ACTIVATE) { |
1da177e4 LT |
433 | ClearPageReclaim(page); |
434 | return PAGE_ACTIVATE; | |
435 | } | |
c661b078 | 436 | |
1da177e4 LT |
437 | if (!PageWriteback(page)) { |
438 | /* synchronous write or broken a_ops? */ | |
439 | ClearPageReclaim(page); | |
440 | } | |
23b9da55 | 441 | trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); |
e129b5c2 | 442 | inc_zone_page_state(page, NR_VMSCAN_WRITE); |
1da177e4 LT |
443 | return PAGE_SUCCESS; |
444 | } | |
445 | ||
446 | return PAGE_CLEAN; | |
447 | } | |
448 | ||
a649fd92 | 449 | /* |
e286781d NP |
450 | * Same as remove_mapping, but if the page is removed from the mapping, it |
451 | * gets returned with a refcount of 0. | |
a649fd92 | 452 | */ |
e286781d | 453 | static int __remove_mapping(struct address_space *mapping, struct page *page) |
49d2e9cc | 454 | { |
28e4d965 NP |
455 | BUG_ON(!PageLocked(page)); |
456 | BUG_ON(mapping != page_mapping(page)); | |
49d2e9cc | 457 | |
19fd6231 | 458 | spin_lock_irq(&mapping->tree_lock); |
49d2e9cc | 459 | /* |
0fd0e6b0 NP |
460 | * The non racy check for a busy page. |
461 | * | |
462 | * Must be careful with the order of the tests. When someone has | |
463 | * a ref to the page, it may be possible that they dirty it then | |
464 | * drop the reference. So if PageDirty is tested before page_count | |
465 | * here, then the following race may occur: | |
466 | * | |
467 | * get_user_pages(&page); | |
468 | * [user mapping goes away] | |
469 | * write_to(page); | |
470 | * !PageDirty(page) [good] | |
471 | * SetPageDirty(page); | |
472 | * put_page(page); | |
473 | * !page_count(page) [good, discard it] | |
474 | * | |
475 | * [oops, our write_to data is lost] | |
476 | * | |
477 | * Reversing the order of the tests ensures such a situation cannot | |
478 | * escape unnoticed. The smp_rmb is needed to ensure the page->flags | |
479 | * load is not satisfied before that of page->_count. | |
480 | * | |
481 | * Note that if SetPageDirty is always performed via set_page_dirty, | |
482 | * and thus under tree_lock, then this ordering is not required. | |
49d2e9cc | 483 | */ |
e286781d | 484 | if (!page_freeze_refs(page, 2)) |
49d2e9cc | 485 | goto cannot_free; |
e286781d NP |
486 | /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ |
487 | if (unlikely(PageDirty(page))) { | |
488 | page_unfreeze_refs(page, 2); | |
49d2e9cc | 489 | goto cannot_free; |
e286781d | 490 | } |
49d2e9cc CL |
491 | |
492 | if (PageSwapCache(page)) { | |
493 | swp_entry_t swap = { .val = page_private(page) }; | |
494 | __delete_from_swap_cache(page); | |
19fd6231 | 495 | spin_unlock_irq(&mapping->tree_lock); |
cb4b86ba | 496 | swapcache_free(swap, page); |
e286781d | 497 | } else { |
6072d13c LT |
498 | void (*freepage)(struct page *); |
499 | ||
500 | freepage = mapping->a_ops->freepage; | |
501 | ||
e64a782f | 502 | __delete_from_page_cache(page); |
19fd6231 | 503 | spin_unlock_irq(&mapping->tree_lock); |
e767e056 | 504 | mem_cgroup_uncharge_cache_page(page); |
6072d13c LT |
505 | |
506 | if (freepage != NULL) | |
507 | freepage(page); | |
49d2e9cc CL |
508 | } |
509 | ||
49d2e9cc CL |
510 | return 1; |
511 | ||
512 | cannot_free: | |
19fd6231 | 513 | spin_unlock_irq(&mapping->tree_lock); |
49d2e9cc CL |
514 | return 0; |
515 | } | |
516 | ||
e286781d NP |
517 | /* |
518 | * Attempt to detach a locked page from its ->mapping. If it is dirty or if | |
519 | * someone else has a ref on the page, abort and return 0. If it was | |
520 | * successfully detached, return 1. Assumes the caller has a single ref on | |
521 | * this page. | |
522 | */ | |
523 | int remove_mapping(struct address_space *mapping, struct page *page) | |
524 | { | |
525 | if (__remove_mapping(mapping, page)) { | |
526 | /* | |
527 | * Unfreezing the refcount with 1 rather than 2 effectively | |
528 | * drops the pagecache ref for us without requiring another | |
529 | * atomic operation. | |
530 | */ | |
531 | page_unfreeze_refs(page, 1); | |
532 | return 1; | |
533 | } | |
534 | return 0; | |
535 | } | |
536 | ||
894bc310 LS |
537 | /** |
538 | * putback_lru_page - put previously isolated page onto appropriate LRU list | |
539 | * @page: page to be put back to appropriate lru list | |
540 | * | |
541 | * Add previously isolated @page to appropriate LRU list. | |
542 | * Page may still be unevictable for other reasons. | |
543 | * | |
544 | * lru_lock must not be held, interrupts must be enabled. | |
545 | */ | |
894bc310 LS |
546 | void putback_lru_page(struct page *page) |
547 | { | |
548 | int lru; | |
549 | int active = !!TestClearPageActive(page); | |
bbfd28ee | 550 | int was_unevictable = PageUnevictable(page); |
894bc310 LS |
551 | |
552 | VM_BUG_ON(PageLRU(page)); | |
553 | ||
554 | redo: | |
555 | ClearPageUnevictable(page); | |
556 | ||
39b5f29a | 557 | if (page_evictable(page)) { |
894bc310 LS |
558 | /* |
559 | * For evictable pages, we can use the cache. | |
560 | * In event of a race, worst case is we end up with an | |
561 | * unevictable page on [in]active list. | |
562 | * We know how to handle that. | |
563 | */ | |
401a8e1c | 564 | lru = active + page_lru_base_type(page); |
894bc310 LS |
565 | lru_cache_add_lru(page, lru); |
566 | } else { | |
567 | /* | |
568 | * Put unevictable pages directly on zone's unevictable | |
569 | * list. | |
570 | */ | |
571 | lru = LRU_UNEVICTABLE; | |
572 | add_page_to_unevictable_list(page); | |
6a7b9548 | 573 | /* |
21ee9f39 MK |
574 | * When racing with an mlock or AS_UNEVICTABLE clearing |
575 | * (page is unlocked) make sure that if the other thread | |
576 | * does not observe our setting of PG_lru and fails | |
24513264 | 577 | * isolation/check_move_unevictable_pages, |
21ee9f39 | 578 | * we see PG_mlocked/AS_UNEVICTABLE cleared below and move |
6a7b9548 JW |
579 | * the page back to the evictable list. |
580 | * | |
21ee9f39 | 581 | * The other side is TestClearPageMlocked() or shmem_lock(). |
6a7b9548 JW |
582 | */ |
583 | smp_mb(); | |
894bc310 | 584 | } |
894bc310 LS |
585 | |
586 | /* | |
587 | * page's status can change while we move it among lru. If an evictable | |
588 | * page is on unevictable list, it never be freed. To avoid that, | |
589 | * check after we added it to the list, again. | |
590 | */ | |
39b5f29a | 591 | if (lru == LRU_UNEVICTABLE && page_evictable(page)) { |
894bc310 LS |
592 | if (!isolate_lru_page(page)) { |
593 | put_page(page); | |
594 | goto redo; | |
595 | } | |
596 | /* This means someone else dropped this page from LRU | |
597 | * So, it will be freed or putback to LRU again. There is | |
598 | * nothing to do here. | |
599 | */ | |
600 | } | |
601 | ||
bbfd28ee LS |
602 | if (was_unevictable && lru != LRU_UNEVICTABLE) |
603 | count_vm_event(UNEVICTABLE_PGRESCUED); | |
604 | else if (!was_unevictable && lru == LRU_UNEVICTABLE) | |
605 | count_vm_event(UNEVICTABLE_PGCULLED); | |
606 | ||
894bc310 LS |
607 | put_page(page); /* drop ref from isolate */ |
608 | } | |
609 | ||
dfc8d636 JW |
610 | enum page_references { |
611 | PAGEREF_RECLAIM, | |
612 | PAGEREF_RECLAIM_CLEAN, | |
64574746 | 613 | PAGEREF_KEEP, |
dfc8d636 JW |
614 | PAGEREF_ACTIVATE, |
615 | }; | |
616 | ||
617 | static enum page_references page_check_references(struct page *page, | |
618 | struct scan_control *sc) | |
619 | { | |
64574746 | 620 | int referenced_ptes, referenced_page; |
dfc8d636 | 621 | unsigned long vm_flags; |
dfc8d636 | 622 | |
c3ac9a8a JW |
623 | referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, |
624 | &vm_flags); | |
64574746 | 625 | referenced_page = TestClearPageReferenced(page); |
dfc8d636 | 626 | |
dfc8d636 JW |
627 | /* |
628 | * Mlock lost the isolation race with us. Let try_to_unmap() | |
629 | * move the page to the unevictable list. | |
630 | */ | |
631 | if (vm_flags & VM_LOCKED) | |
632 | return PAGEREF_RECLAIM; | |
633 | ||
64574746 | 634 | if (referenced_ptes) { |
e4898273 | 635 | if (PageSwapBacked(page)) |
64574746 JW |
636 | return PAGEREF_ACTIVATE; |
637 | /* | |
638 | * All mapped pages start out with page table | |
639 | * references from the instantiating fault, so we need | |
640 | * to look twice if a mapped file page is used more | |
641 | * than once. | |
642 | * | |
643 | * Mark it and spare it for another trip around the | |
644 | * inactive list. Another page table reference will | |
645 | * lead to its activation. | |
646 | * | |
647 | * Note: the mark is set for activated pages as well | |
648 | * so that recently deactivated but used pages are | |
649 | * quickly recovered. | |
650 | */ | |
651 | SetPageReferenced(page); | |
652 | ||
34dbc67a | 653 | if (referenced_page || referenced_ptes > 1) |
64574746 JW |
654 | return PAGEREF_ACTIVATE; |
655 | ||
c909e993 KK |
656 | /* |
657 | * Activate file-backed executable pages after first usage. | |
658 | */ | |
659 | if (vm_flags & VM_EXEC) | |
660 | return PAGEREF_ACTIVATE; | |
661 | ||
64574746 JW |
662 | return PAGEREF_KEEP; |
663 | } | |
dfc8d636 JW |
664 | |
665 | /* Reclaim if clean, defer dirty pages to writeback */ | |
2e30244a | 666 | if (referenced_page && !PageSwapBacked(page)) |
64574746 JW |
667 | return PAGEREF_RECLAIM_CLEAN; |
668 | ||
669 | return PAGEREF_RECLAIM; | |
dfc8d636 JW |
670 | } |
671 | ||
1da177e4 | 672 | /* |
1742f19f | 673 | * shrink_page_list() returns the number of reclaimed pages |
1da177e4 | 674 | */ |
1742f19f | 675 | static unsigned long shrink_page_list(struct list_head *page_list, |
6a18adb3 | 676 | struct zone *zone, |
f84f6e2b | 677 | struct scan_control *sc, |
02c6de8d | 678 | enum ttu_flags ttu_flags, |
92df3a72 | 679 | unsigned long *ret_nr_dirty, |
02c6de8d MK |
680 | unsigned long *ret_nr_writeback, |
681 | bool force_reclaim) | |
1da177e4 LT |
682 | { |
683 | LIST_HEAD(ret_pages); | |
abe4c3b5 | 684 | LIST_HEAD(free_pages); |
1da177e4 | 685 | int pgactivate = 0; |
0e093d99 MG |
686 | unsigned long nr_dirty = 0; |
687 | unsigned long nr_congested = 0; | |
05ff5137 | 688 | unsigned long nr_reclaimed = 0; |
92df3a72 | 689 | unsigned long nr_writeback = 0; |
1da177e4 LT |
690 | |
691 | cond_resched(); | |
692 | ||
69980e31 | 693 | mem_cgroup_uncharge_start(); |
1da177e4 LT |
694 | while (!list_empty(page_list)) { |
695 | struct address_space *mapping; | |
696 | struct page *page; | |
697 | int may_enter_fs; | |
02c6de8d | 698 | enum page_references references = PAGEREF_RECLAIM_CLEAN; |
1da177e4 LT |
699 | |
700 | cond_resched(); | |
701 | ||
702 | page = lru_to_page(page_list); | |
703 | list_del(&page->lru); | |
704 | ||
529ae9aa | 705 | if (!trylock_page(page)) |
1da177e4 LT |
706 | goto keep; |
707 | ||
725d704e | 708 | VM_BUG_ON(PageActive(page)); |
6a18adb3 | 709 | VM_BUG_ON(page_zone(page) != zone); |
1da177e4 LT |
710 | |
711 | sc->nr_scanned++; | |
80e43426 | 712 | |
39b5f29a | 713 | if (unlikely(!page_evictable(page))) |
b291f000 | 714 | goto cull_mlocked; |
894bc310 | 715 | |
a6dc60f8 | 716 | if (!sc->may_unmap && page_mapped(page)) |
80e43426 CL |
717 | goto keep_locked; |
718 | ||
1da177e4 LT |
719 | /* Double the slab pressure for mapped and swapcache pages */ |
720 | if (page_mapped(page) || PageSwapCache(page)) | |
721 | sc->nr_scanned++; | |
722 | ||
c661b078 AW |
723 | may_enter_fs = (sc->gfp_mask & __GFP_FS) || |
724 | (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); | |
725 | ||
726 | if (PageWriteback(page)) { | |
e62e384e MH |
727 | /* |
728 | * memcg doesn't have any dirty pages throttling so we | |
729 | * could easily OOM just because too many pages are in | |
c3b94f44 | 730 | * writeback and there is nothing else to reclaim. |
e62e384e | 731 | * |
c3b94f44 | 732 | * Check __GFP_IO, certainly because a loop driver |
e62e384e MH |
733 | * thread might enter reclaim, and deadlock if it waits |
734 | * on a page for which it is needed to do the write | |
735 | * (loop masks off __GFP_IO|__GFP_FS for this reason); | |
736 | * but more thought would probably show more reasons. | |
c3b94f44 HD |
737 | * |
738 | * Don't require __GFP_FS, since we're not going into | |
739 | * the FS, just waiting on its writeback completion. | |
740 | * Worryingly, ext4 gfs2 and xfs allocate pages with | |
741 | * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so | |
742 | * testing may_enter_fs here is liable to OOM on them. | |
e62e384e | 743 | */ |
c3b94f44 HD |
744 | if (global_reclaim(sc) || |
745 | !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { | |
746 | /* | |
747 | * This is slightly racy - end_page_writeback() | |
748 | * might have just cleared PageReclaim, then | |
749 | * setting PageReclaim here end up interpreted | |
750 | * as PageReadahead - but that does not matter | |
751 | * enough to care. What we do want is for this | |
752 | * page to have PageReclaim set next time memcg | |
753 | * reclaim reaches the tests above, so it will | |
754 | * then wait_on_page_writeback() to avoid OOM; | |
755 | * and it's also appropriate in global reclaim. | |
756 | */ | |
757 | SetPageReclaim(page); | |
e62e384e | 758 | nr_writeback++; |
c3b94f44 | 759 | goto keep_locked; |
e62e384e | 760 | } |
c3b94f44 | 761 | wait_on_page_writeback(page); |
c661b078 | 762 | } |
1da177e4 | 763 | |
02c6de8d MK |
764 | if (!force_reclaim) |
765 | references = page_check_references(page, sc); | |
766 | ||
dfc8d636 JW |
767 | switch (references) { |
768 | case PAGEREF_ACTIVATE: | |
1da177e4 | 769 | goto activate_locked; |
64574746 JW |
770 | case PAGEREF_KEEP: |
771 | goto keep_locked; | |
dfc8d636 JW |
772 | case PAGEREF_RECLAIM: |
773 | case PAGEREF_RECLAIM_CLEAN: | |
774 | ; /* try to reclaim the page below */ | |
775 | } | |
1da177e4 | 776 | |
1da177e4 LT |
777 | /* |
778 | * Anonymous process memory has backing store? | |
779 | * Try to allocate it some swap space here. | |
780 | */ | |
b291f000 | 781 | if (PageAnon(page) && !PageSwapCache(page)) { |
63eb6b93 HD |
782 | if (!(sc->gfp_mask & __GFP_IO)) |
783 | goto keep_locked; | |
5bc7b8ac | 784 | if (!add_to_swap(page, page_list)) |
1da177e4 | 785 | goto activate_locked; |
63eb6b93 | 786 | may_enter_fs = 1; |
b291f000 | 787 | } |
1da177e4 LT |
788 | |
789 | mapping = page_mapping(page); | |
1da177e4 LT |
790 | |
791 | /* | |
792 | * The page is mapped into the page tables of one or more | |
793 | * processes. Try to unmap it here. | |
794 | */ | |
795 | if (page_mapped(page) && mapping) { | |
02c6de8d | 796 | switch (try_to_unmap(page, ttu_flags)) { |
1da177e4 LT |
797 | case SWAP_FAIL: |
798 | goto activate_locked; | |
799 | case SWAP_AGAIN: | |
800 | goto keep_locked; | |
b291f000 NP |
801 | case SWAP_MLOCK: |
802 | goto cull_mlocked; | |
1da177e4 LT |
803 | case SWAP_SUCCESS: |
804 | ; /* try to free the page below */ | |
805 | } | |
806 | } | |
807 | ||
808 | if (PageDirty(page)) { | |
0e093d99 MG |
809 | nr_dirty++; |
810 | ||
ee72886d MG |
811 | /* |
812 | * Only kswapd can writeback filesystem pages to | |
f84f6e2b MG |
813 | * avoid risk of stack overflow but do not writeback |
814 | * unless under significant pressure. | |
ee72886d | 815 | */ |
f84f6e2b | 816 | if (page_is_file_cache(page) && |
9e3b2f8c KK |
817 | (!current_is_kswapd() || |
818 | sc->priority >= DEF_PRIORITY - 2)) { | |
49ea7eb6 MG |
819 | /* |
820 | * Immediately reclaim when written back. | |
821 | * Similar in principal to deactivate_page() | |
822 | * except we already have the page isolated | |
823 | * and know it's dirty | |
824 | */ | |
825 | inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); | |
826 | SetPageReclaim(page); | |
827 | ||
ee72886d MG |
828 | goto keep_locked; |
829 | } | |
830 | ||
dfc8d636 | 831 | if (references == PAGEREF_RECLAIM_CLEAN) |
1da177e4 | 832 | goto keep_locked; |
4dd4b920 | 833 | if (!may_enter_fs) |
1da177e4 | 834 | goto keep_locked; |
52a8363e | 835 | if (!sc->may_writepage) |
1da177e4 LT |
836 | goto keep_locked; |
837 | ||
838 | /* Page is dirty, try to write it out here */ | |
7d3579e8 | 839 | switch (pageout(page, mapping, sc)) { |
1da177e4 | 840 | case PAGE_KEEP: |
0e093d99 | 841 | nr_congested++; |
1da177e4 LT |
842 | goto keep_locked; |
843 | case PAGE_ACTIVATE: | |
844 | goto activate_locked; | |
845 | case PAGE_SUCCESS: | |
7d3579e8 | 846 | if (PageWriteback(page)) |
41ac1999 | 847 | goto keep; |
7d3579e8 | 848 | if (PageDirty(page)) |
1da177e4 | 849 | goto keep; |
7d3579e8 | 850 | |
1da177e4 LT |
851 | /* |
852 | * A synchronous write - probably a ramdisk. Go | |
853 | * ahead and try to reclaim the page. | |
854 | */ | |
529ae9aa | 855 | if (!trylock_page(page)) |
1da177e4 LT |
856 | goto keep; |
857 | if (PageDirty(page) || PageWriteback(page)) | |
858 | goto keep_locked; | |
859 | mapping = page_mapping(page); | |
860 | case PAGE_CLEAN: | |
861 | ; /* try to free the page below */ | |
862 | } | |
863 | } | |
864 | ||
865 | /* | |
866 | * If the page has buffers, try to free the buffer mappings | |
867 | * associated with this page. If we succeed we try to free | |
868 | * the page as well. | |
869 | * | |
870 | * We do this even if the page is PageDirty(). | |
871 | * try_to_release_page() does not perform I/O, but it is | |
872 | * possible for a page to have PageDirty set, but it is actually | |
873 | * clean (all its buffers are clean). This happens if the | |
874 | * buffers were written out directly, with submit_bh(). ext3 | |
894bc310 | 875 | * will do this, as well as the blockdev mapping. |
1da177e4 LT |
876 | * try_to_release_page() will discover that cleanness and will |
877 | * drop the buffers and mark the page clean - it can be freed. | |
878 | * | |
879 | * Rarely, pages can have buffers and no ->mapping. These are | |
880 | * the pages which were not successfully invalidated in | |
881 | * truncate_complete_page(). We try to drop those buffers here | |
882 | * and if that worked, and the page is no longer mapped into | |
883 | * process address space (page_count == 1) it can be freed. | |
884 | * Otherwise, leave the page on the LRU so it is swappable. | |
885 | */ | |
266cf658 | 886 | if (page_has_private(page)) { |
1da177e4 LT |
887 | if (!try_to_release_page(page, sc->gfp_mask)) |
888 | goto activate_locked; | |
e286781d NP |
889 | if (!mapping && page_count(page) == 1) { |
890 | unlock_page(page); | |
891 | if (put_page_testzero(page)) | |
892 | goto free_it; | |
893 | else { | |
894 | /* | |
895 | * rare race with speculative reference. | |
896 | * the speculative reference will free | |
897 | * this page shortly, so we may | |
898 | * increment nr_reclaimed here (and | |
899 | * leave it off the LRU). | |
900 | */ | |
901 | nr_reclaimed++; | |
902 | continue; | |
903 | } | |
904 | } | |
1da177e4 LT |
905 | } |
906 | ||
e286781d | 907 | if (!mapping || !__remove_mapping(mapping, page)) |
49d2e9cc | 908 | goto keep_locked; |
1da177e4 | 909 | |
a978d6f5 NP |
910 | /* |
911 | * At this point, we have no other references and there is | |
912 | * no way to pick any more up (removed from LRU, removed | |
913 | * from pagecache). Can use non-atomic bitops now (and | |
914 | * we obviously don't have to worry about waking up a process | |
915 | * waiting on the page lock, because there are no references. | |
916 | */ | |
917 | __clear_page_locked(page); | |
e286781d | 918 | free_it: |
05ff5137 | 919 | nr_reclaimed++; |
abe4c3b5 MG |
920 | |
921 | /* | |
922 | * Is there need to periodically free_page_list? It would | |
923 | * appear not as the counts should be low | |
924 | */ | |
925 | list_add(&page->lru, &free_pages); | |
1da177e4 LT |
926 | continue; |
927 | ||
b291f000 | 928 | cull_mlocked: |
63d6c5ad HD |
929 | if (PageSwapCache(page)) |
930 | try_to_free_swap(page); | |
b291f000 NP |
931 | unlock_page(page); |
932 | putback_lru_page(page); | |
933 | continue; | |
934 | ||
1da177e4 | 935 | activate_locked: |
68a22394 RR |
936 | /* Not a candidate for swapping, so reclaim swap space. */ |
937 | if (PageSwapCache(page) && vm_swap_full()) | |
a2c43eed | 938 | try_to_free_swap(page); |
894bc310 | 939 | VM_BUG_ON(PageActive(page)); |
1da177e4 LT |
940 | SetPageActive(page); |
941 | pgactivate++; | |
942 | keep_locked: | |
943 | unlock_page(page); | |
944 | keep: | |
945 | list_add(&page->lru, &ret_pages); | |
b291f000 | 946 | VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); |
1da177e4 | 947 | } |
abe4c3b5 | 948 | |
0e093d99 MG |
949 | /* |
950 | * Tag a zone as congested if all the dirty pages encountered were | |
951 | * backed by a congested BDI. In this case, reclaimers should just | |
952 | * back off and wait for congestion to clear because further reclaim | |
953 | * will encounter the same problem | |
954 | */ | |
89b5fae5 | 955 | if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc)) |
6a18adb3 | 956 | zone_set_flag(zone, ZONE_CONGESTED); |
0e093d99 | 957 | |
cc59850e | 958 | free_hot_cold_page_list(&free_pages, 1); |
abe4c3b5 | 959 | |
1da177e4 | 960 | list_splice(&ret_pages, page_list); |
f8891e5e | 961 | count_vm_events(PGACTIVATE, pgactivate); |
69980e31 | 962 | mem_cgroup_uncharge_end(); |
92df3a72 MG |
963 | *ret_nr_dirty += nr_dirty; |
964 | *ret_nr_writeback += nr_writeback; | |
05ff5137 | 965 | return nr_reclaimed; |
1da177e4 LT |
966 | } |
967 | ||
02c6de8d MK |
968 | unsigned long reclaim_clean_pages_from_list(struct zone *zone, |
969 | struct list_head *page_list) | |
970 | { | |
971 | struct scan_control sc = { | |
972 | .gfp_mask = GFP_KERNEL, | |
973 | .priority = DEF_PRIORITY, | |
974 | .may_unmap = 1, | |
975 | }; | |
976 | unsigned long ret, dummy1, dummy2; | |
977 | struct page *page, *next; | |
978 | LIST_HEAD(clean_pages); | |
979 | ||
980 | list_for_each_entry_safe(page, next, page_list, lru) { | |
981 | if (page_is_file_cache(page) && !PageDirty(page)) { | |
982 | ClearPageActive(page); | |
983 | list_move(&page->lru, &clean_pages); | |
984 | } | |
985 | } | |
986 | ||
987 | ret = shrink_page_list(&clean_pages, zone, &sc, | |
988 | TTU_UNMAP|TTU_IGNORE_ACCESS, | |
989 | &dummy1, &dummy2, true); | |
990 | list_splice(&clean_pages, page_list); | |
991 | __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); | |
992 | return ret; | |
993 | } | |
994 | ||
5ad333eb AW |
995 | /* |
996 | * Attempt to remove the specified page from its LRU. Only take this page | |
997 | * if it is of the appropriate PageActive status. Pages which are being | |
998 | * freed elsewhere are also ignored. | |
999 | * | |
1000 | * page: page to consider | |
1001 | * mode: one of the LRU isolation modes defined above | |
1002 | * | |
1003 | * returns 0 on success, -ve errno on failure. | |
1004 | */ | |
f3fd4a61 | 1005 | int __isolate_lru_page(struct page *page, isolate_mode_t mode) |
5ad333eb AW |
1006 | { |
1007 | int ret = -EINVAL; | |
1008 | ||
1009 | /* Only take pages on the LRU. */ | |
1010 | if (!PageLRU(page)) | |
1011 | return ret; | |
1012 | ||
e46a2879 MK |
1013 | /* Compaction should not handle unevictable pages but CMA can do so */ |
1014 | if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) | |
894bc310 LS |
1015 | return ret; |
1016 | ||
5ad333eb | 1017 | ret = -EBUSY; |
08e552c6 | 1018 | |
c8244935 MG |
1019 | /* |
1020 | * To minimise LRU disruption, the caller can indicate that it only | |
1021 | * wants to isolate pages it will be able to operate on without | |
1022 | * blocking - clean pages for the most part. | |
1023 | * | |
1024 | * ISOLATE_CLEAN means that only clean pages should be isolated. This | |
1025 | * is used by reclaim when it is cannot write to backing storage | |
1026 | * | |
1027 | * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages | |
1028 | * that it is possible to migrate without blocking | |
1029 | */ | |
1030 | if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { | |
1031 | /* All the caller can do on PageWriteback is block */ | |
1032 | if (PageWriteback(page)) | |
1033 | return ret; | |
1034 | ||
1035 | if (PageDirty(page)) { | |
1036 | struct address_space *mapping; | |
1037 | ||
1038 | /* ISOLATE_CLEAN means only clean pages */ | |
1039 | if (mode & ISOLATE_CLEAN) | |
1040 | return ret; | |
1041 | ||
1042 | /* | |
1043 | * Only pages without mappings or that have a | |
1044 | * ->migratepage callback are possible to migrate | |
1045 | * without blocking | |
1046 | */ | |
1047 | mapping = page_mapping(page); | |
1048 | if (mapping && !mapping->a_ops->migratepage) | |
1049 | return ret; | |
1050 | } | |
1051 | } | |
39deaf85 | 1052 | |
f80c0673 MK |
1053 | if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) |
1054 | return ret; | |
1055 | ||
5ad333eb AW |
1056 | if (likely(get_page_unless_zero(page))) { |
1057 | /* | |
1058 | * Be careful not to clear PageLRU until after we're | |
1059 | * sure the page is not being freed elsewhere -- the | |
1060 | * page release code relies on it. | |
1061 | */ | |
1062 | ClearPageLRU(page); | |
1063 | ret = 0; | |
1064 | } | |
1065 | ||
1066 | return ret; | |
1067 | } | |
1068 | ||
1da177e4 LT |
1069 | /* |
1070 | * zone->lru_lock is heavily contended. Some of the functions that | |
1071 | * shrink the lists perform better by taking out a batch of pages | |
1072 | * and working on them outside the LRU lock. | |
1073 | * | |
1074 | * For pagecache intensive workloads, this function is the hottest | |
1075 | * spot in the kernel (apart from copy_*_user functions). | |
1076 | * | |
1077 | * Appropriate locks must be held before calling this function. | |
1078 | * | |
1079 | * @nr_to_scan: The number of pages to look through on the list. | |
5dc35979 | 1080 | * @lruvec: The LRU vector to pull pages from. |
1da177e4 | 1081 | * @dst: The temp list to put pages on to. |
f626012d | 1082 | * @nr_scanned: The number of pages that were scanned. |
fe2c2a10 | 1083 | * @sc: The scan_control struct for this reclaim session |
5ad333eb | 1084 | * @mode: One of the LRU isolation modes |
3cb99451 | 1085 | * @lru: LRU list id for isolating |
1da177e4 LT |
1086 | * |
1087 | * returns how many pages were moved onto *@dst. | |
1088 | */ | |
69e05944 | 1089 | static unsigned long isolate_lru_pages(unsigned long nr_to_scan, |
5dc35979 | 1090 | struct lruvec *lruvec, struct list_head *dst, |
fe2c2a10 | 1091 | unsigned long *nr_scanned, struct scan_control *sc, |
3cb99451 | 1092 | isolate_mode_t mode, enum lru_list lru) |
1da177e4 | 1093 | { |
75b00af7 | 1094 | struct list_head *src = &lruvec->lists[lru]; |
69e05944 | 1095 | unsigned long nr_taken = 0; |
c9b02d97 | 1096 | unsigned long scan; |
1da177e4 | 1097 | |
c9b02d97 | 1098 | for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { |
5ad333eb | 1099 | struct page *page; |
fa9add64 | 1100 | int nr_pages; |
5ad333eb | 1101 | |
1da177e4 LT |
1102 | page = lru_to_page(src); |
1103 | prefetchw_prev_lru_page(page, src, flags); | |
1104 | ||
725d704e | 1105 | VM_BUG_ON(!PageLRU(page)); |
8d438f96 | 1106 | |
f3fd4a61 | 1107 | switch (__isolate_lru_page(page, mode)) { |
5ad333eb | 1108 | case 0: |
fa9add64 HD |
1109 | nr_pages = hpage_nr_pages(page); |
1110 | mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); | |
5ad333eb | 1111 | list_move(&page->lru, dst); |
fa9add64 | 1112 | nr_taken += nr_pages; |
5ad333eb AW |
1113 | break; |
1114 | ||
1115 | case -EBUSY: | |
1116 | /* else it is being freed elsewhere */ | |
1117 | list_move(&page->lru, src); | |
1118 | continue; | |
46453a6e | 1119 | |
5ad333eb AW |
1120 | default: |
1121 | BUG(); | |
1122 | } | |
1da177e4 LT |
1123 | } |
1124 | ||
f626012d | 1125 | *nr_scanned = scan; |
75b00af7 HD |
1126 | trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, |
1127 | nr_taken, mode, is_file_lru(lru)); | |
1da177e4 LT |
1128 | return nr_taken; |
1129 | } | |
1130 | ||
62695a84 NP |
1131 | /** |
1132 | * isolate_lru_page - tries to isolate a page from its LRU list | |
1133 | * @page: page to isolate from its LRU list | |
1134 | * | |
1135 | * Isolates a @page from an LRU list, clears PageLRU and adjusts the | |
1136 | * vmstat statistic corresponding to whatever LRU list the page was on. | |
1137 | * | |
1138 | * Returns 0 if the page was removed from an LRU list. | |
1139 | * Returns -EBUSY if the page was not on an LRU list. | |
1140 | * | |
1141 | * The returned page will have PageLRU() cleared. If it was found on | |
894bc310 LS |
1142 | * the active list, it will have PageActive set. If it was found on |
1143 | * the unevictable list, it will have the PageUnevictable bit set. That flag | |
1144 | * may need to be cleared by the caller before letting the page go. | |
62695a84 NP |
1145 | * |
1146 | * The vmstat statistic corresponding to the list on which the page was | |
1147 | * found will be decremented. | |
1148 | * | |
1149 | * Restrictions: | |
1150 | * (1) Must be called with an elevated refcount on the page. This is a | |
1151 | * fundamentnal difference from isolate_lru_pages (which is called | |
1152 | * without a stable reference). | |
1153 | * (2) the lru_lock must not be held. | |
1154 | * (3) interrupts must be enabled. | |
1155 | */ | |
1156 | int isolate_lru_page(struct page *page) | |
1157 | { | |
1158 | int ret = -EBUSY; | |
1159 | ||
0c917313 KK |
1160 | VM_BUG_ON(!page_count(page)); |
1161 | ||
62695a84 NP |
1162 | if (PageLRU(page)) { |
1163 | struct zone *zone = page_zone(page); | |
fa9add64 | 1164 | struct lruvec *lruvec; |
62695a84 NP |
1165 | |
1166 | spin_lock_irq(&zone->lru_lock); | |
fa9add64 | 1167 | lruvec = mem_cgroup_page_lruvec(page, zone); |
0c917313 | 1168 | if (PageLRU(page)) { |
894bc310 | 1169 | int lru = page_lru(page); |
0c917313 | 1170 | get_page(page); |
62695a84 | 1171 | ClearPageLRU(page); |
fa9add64 HD |
1172 | del_page_from_lru_list(page, lruvec, lru); |
1173 | ret = 0; | |
62695a84 NP |
1174 | } |
1175 | spin_unlock_irq(&zone->lru_lock); | |
1176 | } | |
1177 | return ret; | |
1178 | } | |
1179 | ||
35cd7815 | 1180 | /* |
d37dd5dc FW |
1181 | * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and |
1182 | * then get resheduled. When there are massive number of tasks doing page | |
1183 | * allocation, such sleeping direct reclaimers may keep piling up on each CPU, | |
1184 | * the LRU list will go small and be scanned faster than necessary, leading to | |
1185 | * unnecessary swapping, thrashing and OOM. | |
35cd7815 RR |
1186 | */ |
1187 | static int too_many_isolated(struct zone *zone, int file, | |
1188 | struct scan_control *sc) | |
1189 | { | |
1190 | unsigned long inactive, isolated; | |
1191 | ||
1192 | if (current_is_kswapd()) | |
1193 | return 0; | |
1194 | ||
89b5fae5 | 1195 | if (!global_reclaim(sc)) |
35cd7815 RR |
1196 | return 0; |
1197 | ||
1198 | if (file) { | |
1199 | inactive = zone_page_state(zone, NR_INACTIVE_FILE); | |
1200 | isolated = zone_page_state(zone, NR_ISOLATED_FILE); | |
1201 | } else { | |
1202 | inactive = zone_page_state(zone, NR_INACTIVE_ANON); | |
1203 | isolated = zone_page_state(zone, NR_ISOLATED_ANON); | |
1204 | } | |
1205 | ||
3cf23841 FW |
1206 | /* |
1207 | * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they | |
1208 | * won't get blocked by normal direct-reclaimers, forming a circular | |
1209 | * deadlock. | |
1210 | */ | |
1211 | if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS) | |
1212 | inactive >>= 3; | |
1213 | ||
35cd7815 RR |
1214 | return isolated > inactive; |
1215 | } | |
1216 | ||
66635629 | 1217 | static noinline_for_stack void |
75b00af7 | 1218 | putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) |
66635629 | 1219 | { |
27ac81d8 KK |
1220 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
1221 | struct zone *zone = lruvec_zone(lruvec); | |
3f79768f | 1222 | LIST_HEAD(pages_to_free); |
66635629 | 1223 | |
66635629 MG |
1224 | /* |
1225 | * Put back any unfreeable pages. | |
1226 | */ | |
66635629 | 1227 | while (!list_empty(page_list)) { |
3f79768f | 1228 | struct page *page = lru_to_page(page_list); |
66635629 | 1229 | int lru; |
3f79768f | 1230 | |
66635629 MG |
1231 | VM_BUG_ON(PageLRU(page)); |
1232 | list_del(&page->lru); | |
39b5f29a | 1233 | if (unlikely(!page_evictable(page))) { |
66635629 MG |
1234 | spin_unlock_irq(&zone->lru_lock); |
1235 | putback_lru_page(page); | |
1236 | spin_lock_irq(&zone->lru_lock); | |
1237 | continue; | |
1238 | } | |
fa9add64 HD |
1239 | |
1240 | lruvec = mem_cgroup_page_lruvec(page, zone); | |
1241 | ||
7a608572 | 1242 | SetPageLRU(page); |
66635629 | 1243 | lru = page_lru(page); |
fa9add64 HD |
1244 | add_page_to_lru_list(page, lruvec, lru); |
1245 | ||
66635629 MG |
1246 | if (is_active_lru(lru)) { |
1247 | int file = is_file_lru(lru); | |
9992af10 RR |
1248 | int numpages = hpage_nr_pages(page); |
1249 | reclaim_stat->recent_rotated[file] += numpages; | |
66635629 | 1250 | } |
2bcf8879 HD |
1251 | if (put_page_testzero(page)) { |
1252 | __ClearPageLRU(page); | |
1253 | __ClearPageActive(page); | |
fa9add64 | 1254 | del_page_from_lru_list(page, lruvec, lru); |
2bcf8879 HD |
1255 | |
1256 | if (unlikely(PageCompound(page))) { | |
1257 | spin_unlock_irq(&zone->lru_lock); | |
1258 | (*get_compound_page_dtor(page))(page); | |
1259 | spin_lock_irq(&zone->lru_lock); | |
1260 | } else | |
1261 | list_add(&page->lru, &pages_to_free); | |
66635629 MG |
1262 | } |
1263 | } | |
66635629 | 1264 | |
3f79768f HD |
1265 | /* |
1266 | * To save our caller's stack, now use input list for pages to free. | |
1267 | */ | |
1268 | list_splice(&pages_to_free, page_list); | |
66635629 MG |
1269 | } |
1270 | ||
1da177e4 | 1271 | /* |
1742f19f AM |
1272 | * shrink_inactive_list() is a helper for shrink_zone(). It returns the number |
1273 | * of reclaimed pages | |
1da177e4 | 1274 | */ |
66635629 | 1275 | static noinline_for_stack unsigned long |
1a93be0e | 1276 | shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, |
9e3b2f8c | 1277 | struct scan_control *sc, enum lru_list lru) |
1da177e4 LT |
1278 | { |
1279 | LIST_HEAD(page_list); | |
e247dbce | 1280 | unsigned long nr_scanned; |
05ff5137 | 1281 | unsigned long nr_reclaimed = 0; |
e247dbce | 1282 | unsigned long nr_taken; |
92df3a72 MG |
1283 | unsigned long nr_dirty = 0; |
1284 | unsigned long nr_writeback = 0; | |
f3fd4a61 | 1285 | isolate_mode_t isolate_mode = 0; |
3cb99451 | 1286 | int file = is_file_lru(lru); |
1a93be0e KK |
1287 | struct zone *zone = lruvec_zone(lruvec); |
1288 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; | |
78dc583d | 1289 | |
35cd7815 | 1290 | while (unlikely(too_many_isolated(zone, file, sc))) { |
58355c78 | 1291 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
35cd7815 RR |
1292 | |
1293 | /* We are about to die and free our memory. Return now. */ | |
1294 | if (fatal_signal_pending(current)) | |
1295 | return SWAP_CLUSTER_MAX; | |
1296 | } | |
1297 | ||
1da177e4 | 1298 | lru_add_drain(); |
f80c0673 MK |
1299 | |
1300 | if (!sc->may_unmap) | |
61317289 | 1301 | isolate_mode |= ISOLATE_UNMAPPED; |
f80c0673 | 1302 | if (!sc->may_writepage) |
61317289 | 1303 | isolate_mode |= ISOLATE_CLEAN; |
f80c0673 | 1304 | |
1da177e4 | 1305 | spin_lock_irq(&zone->lru_lock); |
b35ea17b | 1306 | |
5dc35979 KK |
1307 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, |
1308 | &nr_scanned, sc, isolate_mode, lru); | |
95d918fc KK |
1309 | |
1310 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); | |
1311 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); | |
1312 | ||
89b5fae5 | 1313 | if (global_reclaim(sc)) { |
e247dbce KM |
1314 | zone->pages_scanned += nr_scanned; |
1315 | if (current_is_kswapd()) | |
75b00af7 | 1316 | __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); |
e247dbce | 1317 | else |
75b00af7 | 1318 | __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); |
e247dbce | 1319 | } |
d563c050 | 1320 | spin_unlock_irq(&zone->lru_lock); |
b35ea17b | 1321 | |
d563c050 | 1322 | if (nr_taken == 0) |
66635629 | 1323 | return 0; |
5ad333eb | 1324 | |
02c6de8d MK |
1325 | nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, |
1326 | &nr_dirty, &nr_writeback, false); | |
c661b078 | 1327 | |
3f79768f HD |
1328 | spin_lock_irq(&zone->lru_lock); |
1329 | ||
95d918fc | 1330 | reclaim_stat->recent_scanned[file] += nr_taken; |
d563c050 | 1331 | |
904249aa YH |
1332 | if (global_reclaim(sc)) { |
1333 | if (current_is_kswapd()) | |
1334 | __count_zone_vm_events(PGSTEAL_KSWAPD, zone, | |
1335 | nr_reclaimed); | |
1336 | else | |
1337 | __count_zone_vm_events(PGSTEAL_DIRECT, zone, | |
1338 | nr_reclaimed); | |
1339 | } | |
a74609fa | 1340 | |
27ac81d8 | 1341 | putback_inactive_pages(lruvec, &page_list); |
3f79768f | 1342 | |
95d918fc | 1343 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); |
3f79768f HD |
1344 | |
1345 | spin_unlock_irq(&zone->lru_lock); | |
1346 | ||
1347 | free_hot_cold_page_list(&page_list, 1); | |
e11da5b4 | 1348 | |
92df3a72 MG |
1349 | /* |
1350 | * If reclaim is isolating dirty pages under writeback, it implies | |
1351 | * that the long-lived page allocation rate is exceeding the page | |
1352 | * laundering rate. Either the global limits are not being effective | |
1353 | * at throttling processes due to the page distribution throughout | |
1354 | * zones or there is heavy usage of a slow backing device. The | |
1355 | * only option is to throttle from reclaim context which is not ideal | |
1356 | * as there is no guarantee the dirtying process is throttled in the | |
1357 | * same way balance_dirty_pages() manages. | |
1358 | * | |
1359 | * This scales the number of dirty pages that must be under writeback | |
1360 | * before throttling depending on priority. It is a simple backoff | |
1361 | * function that has the most effect in the range DEF_PRIORITY to | |
1362 | * DEF_PRIORITY-2 which is the priority reclaim is considered to be | |
1363 | * in trouble and reclaim is considered to be in trouble. | |
1364 | * | |
1365 | * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle | |
1366 | * DEF_PRIORITY-1 50% must be PageWriteback | |
1367 | * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble | |
1368 | * ... | |
1369 | * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any | |
1370 | * isolated page is PageWriteback | |
1371 | */ | |
9e3b2f8c KK |
1372 | if (nr_writeback && nr_writeback >= |
1373 | (nr_taken >> (DEF_PRIORITY - sc->priority))) | |
92df3a72 MG |
1374 | wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); |
1375 | ||
e11da5b4 MG |
1376 | trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, |
1377 | zone_idx(zone), | |
1378 | nr_scanned, nr_reclaimed, | |
9e3b2f8c | 1379 | sc->priority, |
23b9da55 | 1380 | trace_shrink_flags(file)); |
05ff5137 | 1381 | return nr_reclaimed; |
1da177e4 LT |
1382 | } |
1383 | ||
1384 | /* | |
1385 | * This moves pages from the active list to the inactive list. | |
1386 | * | |
1387 | * We move them the other way if the page is referenced by one or more | |
1388 | * processes, from rmap. | |
1389 | * | |
1390 | * If the pages are mostly unmapped, the processing is fast and it is | |
1391 | * appropriate to hold zone->lru_lock across the whole operation. But if | |
1392 | * the pages are mapped, the processing is slow (page_referenced()) so we | |
1393 | * should drop zone->lru_lock around each page. It's impossible to balance | |
1394 | * this, so instead we remove the pages from the LRU while processing them. | |
1395 | * It is safe to rely on PG_active against the non-LRU pages in here because | |
1396 | * nobody will play with that bit on a non-LRU page. | |
1397 | * | |
1398 | * The downside is that we have to touch page->_count against each page. | |
1399 | * But we had to alter page->flags anyway. | |
1400 | */ | |
1cfb419b | 1401 | |
fa9add64 | 1402 | static void move_active_pages_to_lru(struct lruvec *lruvec, |
3eb4140f | 1403 | struct list_head *list, |
2bcf8879 | 1404 | struct list_head *pages_to_free, |
3eb4140f WF |
1405 | enum lru_list lru) |
1406 | { | |
fa9add64 | 1407 | struct zone *zone = lruvec_zone(lruvec); |
3eb4140f | 1408 | unsigned long pgmoved = 0; |
3eb4140f | 1409 | struct page *page; |
fa9add64 | 1410 | int nr_pages; |
3eb4140f | 1411 | |
3eb4140f WF |
1412 | while (!list_empty(list)) { |
1413 | page = lru_to_page(list); | |
fa9add64 | 1414 | lruvec = mem_cgroup_page_lruvec(page, zone); |
3eb4140f WF |
1415 | |
1416 | VM_BUG_ON(PageLRU(page)); | |
1417 | SetPageLRU(page); | |
1418 | ||
fa9add64 HD |
1419 | nr_pages = hpage_nr_pages(page); |
1420 | mem_cgroup_update_lru_size(lruvec, lru, nr_pages); | |
925b7673 | 1421 | list_move(&page->lru, &lruvec->lists[lru]); |
fa9add64 | 1422 | pgmoved += nr_pages; |
3eb4140f | 1423 | |
2bcf8879 HD |
1424 | if (put_page_testzero(page)) { |
1425 | __ClearPageLRU(page); | |
1426 | __ClearPageActive(page); | |
fa9add64 | 1427 | del_page_from_lru_list(page, lruvec, lru); |
2bcf8879 HD |
1428 | |
1429 | if (unlikely(PageCompound(page))) { | |
1430 | spin_unlock_irq(&zone->lru_lock); | |
1431 | (*get_compound_page_dtor(page))(page); | |
1432 | spin_lock_irq(&zone->lru_lock); | |
1433 | } else | |
1434 | list_add(&page->lru, pages_to_free); | |
3eb4140f WF |
1435 | } |
1436 | } | |
1437 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); | |
1438 | if (!is_active_lru(lru)) | |
1439 | __count_vm_events(PGDEACTIVATE, pgmoved); | |
1440 | } | |
1cfb419b | 1441 | |
f626012d | 1442 | static void shrink_active_list(unsigned long nr_to_scan, |
1a93be0e | 1443 | struct lruvec *lruvec, |
f16015fb | 1444 | struct scan_control *sc, |
9e3b2f8c | 1445 | enum lru_list lru) |
1da177e4 | 1446 | { |
44c241f1 | 1447 | unsigned long nr_taken; |
f626012d | 1448 | unsigned long nr_scanned; |
6fe6b7e3 | 1449 | unsigned long vm_flags; |
1da177e4 | 1450 | LIST_HEAD(l_hold); /* The pages which were snipped off */ |
8cab4754 | 1451 | LIST_HEAD(l_active); |
b69408e8 | 1452 | LIST_HEAD(l_inactive); |
1da177e4 | 1453 | struct page *page; |
1a93be0e | 1454 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
44c241f1 | 1455 | unsigned long nr_rotated = 0; |
f3fd4a61 | 1456 | isolate_mode_t isolate_mode = 0; |
3cb99451 | 1457 | int file = is_file_lru(lru); |
1a93be0e | 1458 | struct zone *zone = lruvec_zone(lruvec); |
1da177e4 LT |
1459 | |
1460 | lru_add_drain(); | |
f80c0673 MK |
1461 | |
1462 | if (!sc->may_unmap) | |
61317289 | 1463 | isolate_mode |= ISOLATE_UNMAPPED; |
f80c0673 | 1464 | if (!sc->may_writepage) |
61317289 | 1465 | isolate_mode |= ISOLATE_CLEAN; |
f80c0673 | 1466 | |
1da177e4 | 1467 | spin_lock_irq(&zone->lru_lock); |
925b7673 | 1468 | |
5dc35979 KK |
1469 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, |
1470 | &nr_scanned, sc, isolate_mode, lru); | |
89b5fae5 | 1471 | if (global_reclaim(sc)) |
f626012d | 1472 | zone->pages_scanned += nr_scanned; |
89b5fae5 | 1473 | |
b7c46d15 | 1474 | reclaim_stat->recent_scanned[file] += nr_taken; |
1cfb419b | 1475 | |
f626012d | 1476 | __count_zone_vm_events(PGREFILL, zone, nr_scanned); |
3cb99451 | 1477 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); |
a731286d | 1478 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); |
1da177e4 LT |
1479 | spin_unlock_irq(&zone->lru_lock); |
1480 | ||
1da177e4 LT |
1481 | while (!list_empty(&l_hold)) { |
1482 | cond_resched(); | |
1483 | page = lru_to_page(&l_hold); | |
1484 | list_del(&page->lru); | |
7e9cd484 | 1485 | |
39b5f29a | 1486 | if (unlikely(!page_evictable(page))) { |
894bc310 LS |
1487 | putback_lru_page(page); |
1488 | continue; | |
1489 | } | |
1490 | ||
cc715d99 MG |
1491 | if (unlikely(buffer_heads_over_limit)) { |
1492 | if (page_has_private(page) && trylock_page(page)) { | |
1493 | if (page_has_private(page)) | |
1494 | try_to_release_page(page, 0); | |
1495 | unlock_page(page); | |
1496 | } | |
1497 | } | |
1498 | ||
c3ac9a8a JW |
1499 | if (page_referenced(page, 0, sc->target_mem_cgroup, |
1500 | &vm_flags)) { | |
9992af10 | 1501 | nr_rotated += hpage_nr_pages(page); |
8cab4754 WF |
1502 | /* |
1503 | * Identify referenced, file-backed active pages and | |
1504 | * give them one more trip around the active list. So | |
1505 | * that executable code get better chances to stay in | |
1506 | * memory under moderate memory pressure. Anon pages | |
1507 | * are not likely to be evicted by use-once streaming | |
1508 | * IO, plus JVM can create lots of anon VM_EXEC pages, | |
1509 | * so we ignore them here. | |
1510 | */ | |
41e20983 | 1511 | if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { |
8cab4754 WF |
1512 | list_add(&page->lru, &l_active); |
1513 | continue; | |
1514 | } | |
1515 | } | |
7e9cd484 | 1516 | |
5205e56e | 1517 | ClearPageActive(page); /* we are de-activating */ |
1da177e4 LT |
1518 | list_add(&page->lru, &l_inactive); |
1519 | } | |
1520 | ||
b555749a | 1521 | /* |
8cab4754 | 1522 | * Move pages back to the lru list. |
b555749a | 1523 | */ |
2a1dc509 | 1524 | spin_lock_irq(&zone->lru_lock); |
556adecb | 1525 | /* |
8cab4754 WF |
1526 | * Count referenced pages from currently used mappings as rotated, |
1527 | * even though only some of them are actually re-activated. This | |
1528 | * helps balance scan pressure between file and anonymous pages in | |
1529 | * get_scan_ratio. | |
7e9cd484 | 1530 | */ |
b7c46d15 | 1531 | reclaim_stat->recent_rotated[file] += nr_rotated; |
556adecb | 1532 | |
fa9add64 HD |
1533 | move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); |
1534 | move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); | |
a731286d | 1535 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); |
f8891e5e | 1536 | spin_unlock_irq(&zone->lru_lock); |
2bcf8879 HD |
1537 | |
1538 | free_hot_cold_page_list(&l_hold, 1); | |
1da177e4 LT |
1539 | } |
1540 | ||
74e3f3c3 | 1541 | #ifdef CONFIG_SWAP |
14797e23 | 1542 | static int inactive_anon_is_low_global(struct zone *zone) |
f89eb90e KM |
1543 | { |
1544 | unsigned long active, inactive; | |
1545 | ||
1546 | active = zone_page_state(zone, NR_ACTIVE_ANON); | |
1547 | inactive = zone_page_state(zone, NR_INACTIVE_ANON); | |
1548 | ||
1549 | if (inactive * zone->inactive_ratio < active) | |
1550 | return 1; | |
1551 | ||
1552 | return 0; | |
1553 | } | |
1554 | ||
14797e23 KM |
1555 | /** |
1556 | * inactive_anon_is_low - check if anonymous pages need to be deactivated | |
c56d5c7d | 1557 | * @lruvec: LRU vector to check |
14797e23 KM |
1558 | * |
1559 | * Returns true if the zone does not have enough inactive anon pages, | |
1560 | * meaning some active anon pages need to be deactivated. | |
1561 | */ | |
c56d5c7d | 1562 | static int inactive_anon_is_low(struct lruvec *lruvec) |
14797e23 | 1563 | { |
74e3f3c3 MK |
1564 | /* |
1565 | * If we don't have swap space, anonymous page deactivation | |
1566 | * is pointless. | |
1567 | */ | |
1568 | if (!total_swap_pages) | |
1569 | return 0; | |
1570 | ||
c3c787e8 | 1571 | if (!mem_cgroup_disabled()) |
c56d5c7d | 1572 | return mem_cgroup_inactive_anon_is_low(lruvec); |
f16015fb | 1573 | |
c56d5c7d | 1574 | return inactive_anon_is_low_global(lruvec_zone(lruvec)); |
14797e23 | 1575 | } |
74e3f3c3 | 1576 | #else |
c56d5c7d | 1577 | static inline int inactive_anon_is_low(struct lruvec *lruvec) |
74e3f3c3 MK |
1578 | { |
1579 | return 0; | |
1580 | } | |
1581 | #endif | |
14797e23 | 1582 | |
56e49d21 RR |
1583 | /** |
1584 | * inactive_file_is_low - check if file pages need to be deactivated | |
c56d5c7d | 1585 | * @lruvec: LRU vector to check |
56e49d21 RR |
1586 | * |
1587 | * When the system is doing streaming IO, memory pressure here | |
1588 | * ensures that active file pages get deactivated, until more | |
1589 | * than half of the file pages are on the inactive list. | |
1590 | * | |
1591 | * Once we get to that situation, protect the system's working | |
1592 | * set from being evicted by disabling active file page aging. | |
1593 | * | |
1594 | * This uses a different ratio than the anonymous pages, because | |
1595 | * the page cache uses a use-once replacement algorithm. | |
1596 | */ | |
c56d5c7d | 1597 | static int inactive_file_is_low(struct lruvec *lruvec) |
56e49d21 | 1598 | { |
e3790144 JW |
1599 | unsigned long inactive; |
1600 | unsigned long active; | |
1601 | ||
1602 | inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE); | |
1603 | active = get_lru_size(lruvec, LRU_ACTIVE_FILE); | |
56e49d21 | 1604 | |
e3790144 | 1605 | return active > inactive; |
56e49d21 RR |
1606 | } |
1607 | ||
75b00af7 | 1608 | static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) |
b39415b2 | 1609 | { |
75b00af7 | 1610 | if (is_file_lru(lru)) |
c56d5c7d | 1611 | return inactive_file_is_low(lruvec); |
b39415b2 | 1612 | else |
c56d5c7d | 1613 | return inactive_anon_is_low(lruvec); |
b39415b2 RR |
1614 | } |
1615 | ||
4f98a2fe | 1616 | static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, |
1a93be0e | 1617 | struct lruvec *lruvec, struct scan_control *sc) |
b69408e8 | 1618 | { |
b39415b2 | 1619 | if (is_active_lru(lru)) { |
75b00af7 | 1620 | if (inactive_list_is_low(lruvec, lru)) |
1a93be0e | 1621 | shrink_active_list(nr_to_scan, lruvec, sc, lru); |
556adecb RR |
1622 | return 0; |
1623 | } | |
1624 | ||
1a93be0e | 1625 | return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); |
4f98a2fe RR |
1626 | } |
1627 | ||
3d58ab5c | 1628 | static int vmscan_swappiness(struct scan_control *sc) |
1f4c025b | 1629 | { |
89b5fae5 | 1630 | if (global_reclaim(sc)) |
1f4c025b | 1631 | return vm_swappiness; |
3d58ab5c | 1632 | return mem_cgroup_swappiness(sc->target_mem_cgroup); |
1f4c025b KH |
1633 | } |
1634 | ||
9a265114 JW |
1635 | enum scan_balance { |
1636 | SCAN_EQUAL, | |
1637 | SCAN_FRACT, | |
1638 | SCAN_ANON, | |
1639 | SCAN_FILE, | |
1640 | }; | |
1641 | ||
4f98a2fe RR |
1642 | /* |
1643 | * Determine how aggressively the anon and file LRU lists should be | |
1644 | * scanned. The relative value of each set of LRU lists is determined | |
1645 | * by looking at the fraction of the pages scanned we did rotate back | |
1646 | * onto the active list instead of evict. | |
1647 | * | |
be7bd59d WL |
1648 | * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan |
1649 | * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan | |
4f98a2fe | 1650 | */ |
90126375 | 1651 | static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, |
9e3b2f8c | 1652 | unsigned long *nr) |
4f98a2fe | 1653 | { |
9a265114 JW |
1654 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
1655 | u64 fraction[2]; | |
1656 | u64 denominator = 0; /* gcc */ | |
1657 | struct zone *zone = lruvec_zone(lruvec); | |
4f98a2fe | 1658 | unsigned long anon_prio, file_prio; |
9a265114 JW |
1659 | enum scan_balance scan_balance; |
1660 | unsigned long anon, file, free; | |
1661 | bool force_scan = false; | |
4f98a2fe | 1662 | unsigned long ap, fp; |
4111304d | 1663 | enum lru_list lru; |
246e87a9 | 1664 | |
f11c0ca5 JW |
1665 | /* |
1666 | * If the zone or memcg is small, nr[l] can be 0. This | |
1667 | * results in no scanning on this priority and a potential | |
1668 | * priority drop. Global direct reclaim can go to the next | |
1669 | * zone and tends to have no problems. Global kswapd is for | |
1670 | * zone balancing and it needs to scan a minimum amount. When | |
1671 | * reclaiming for a memcg, a priority drop can cause high | |
1672 | * latencies, so it's better to scan a minimum amount there as | |
1673 | * well. | |
1674 | */ | |
90126375 | 1675 | if (current_is_kswapd() && zone->all_unreclaimable) |
a4d3e9e7 | 1676 | force_scan = true; |
89b5fae5 | 1677 | if (!global_reclaim(sc)) |
a4d3e9e7 | 1678 | force_scan = true; |
76a33fc3 SL |
1679 | |
1680 | /* If we have no swap space, do not bother scanning anon pages. */ | |
ec8acf20 | 1681 | if (!sc->may_swap || (get_nr_swap_pages() <= 0)) { |
9a265114 | 1682 | scan_balance = SCAN_FILE; |
76a33fc3 SL |
1683 | goto out; |
1684 | } | |
4f98a2fe | 1685 | |
10316b31 JW |
1686 | /* |
1687 | * Global reclaim will swap to prevent OOM even with no | |
1688 | * swappiness, but memcg users want to use this knob to | |
1689 | * disable swapping for individual groups completely when | |
1690 | * using the memory controller's swap limit feature would be | |
1691 | * too expensive. | |
1692 | */ | |
1693 | if (!global_reclaim(sc) && !vmscan_swappiness(sc)) { | |
9a265114 | 1694 | scan_balance = SCAN_FILE; |
10316b31 JW |
1695 | goto out; |
1696 | } | |
1697 | ||
1698 | /* | |
1699 | * Do not apply any pressure balancing cleverness when the | |
1700 | * system is close to OOM, scan both anon and file equally | |
1701 | * (unless the swappiness setting disagrees with swapping). | |
1702 | */ | |
1703 | if (!sc->priority && vmscan_swappiness(sc)) { | |
9a265114 | 1704 | scan_balance = SCAN_EQUAL; |
10316b31 JW |
1705 | goto out; |
1706 | } | |
1707 | ||
4d7dcca2 HD |
1708 | anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + |
1709 | get_lru_size(lruvec, LRU_INACTIVE_ANON); | |
1710 | file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + | |
1711 | get_lru_size(lruvec, LRU_INACTIVE_FILE); | |
a4d3e9e7 | 1712 | |
11d16c25 JW |
1713 | /* |
1714 | * If it's foreseeable that reclaiming the file cache won't be | |
1715 | * enough to get the zone back into a desirable shape, we have | |
1716 | * to swap. Better start now and leave the - probably heavily | |
1717 | * thrashing - remaining file pages alone. | |
1718 | */ | |
89b5fae5 | 1719 | if (global_reclaim(sc)) { |
11d16c25 | 1720 | free = zone_page_state(zone, NR_FREE_PAGES); |
90126375 | 1721 | if (unlikely(file + free <= high_wmark_pages(zone))) { |
9a265114 | 1722 | scan_balance = SCAN_ANON; |
76a33fc3 | 1723 | goto out; |
eeee9a8c | 1724 | } |
4f98a2fe RR |
1725 | } |
1726 | ||
7c5bd705 JW |
1727 | /* |
1728 | * There is enough inactive page cache, do not reclaim | |
1729 | * anything from the anonymous working set right now. | |
1730 | */ | |
1731 | if (!inactive_file_is_low(lruvec)) { | |
9a265114 | 1732 | scan_balance = SCAN_FILE; |
7c5bd705 JW |
1733 | goto out; |
1734 | } | |
1735 | ||
9a265114 JW |
1736 | scan_balance = SCAN_FRACT; |
1737 | ||
58c37f6e KM |
1738 | /* |
1739 | * With swappiness at 100, anonymous and file have the same priority. | |
1740 | * This scanning priority is essentially the inverse of IO cost. | |
1741 | */ | |
3d58ab5c | 1742 | anon_prio = vmscan_swappiness(sc); |
75b00af7 | 1743 | file_prio = 200 - anon_prio; |
58c37f6e | 1744 | |
4f98a2fe RR |
1745 | /* |
1746 | * OK, so we have swap space and a fair amount of page cache | |
1747 | * pages. We use the recently rotated / recently scanned | |
1748 | * ratios to determine how valuable each cache is. | |
1749 | * | |
1750 | * Because workloads change over time (and to avoid overflow) | |
1751 | * we keep these statistics as a floating average, which ends | |
1752 | * up weighing recent references more than old ones. | |
1753 | * | |
1754 | * anon in [0], file in [1] | |
1755 | */ | |
90126375 | 1756 | spin_lock_irq(&zone->lru_lock); |
6e901571 | 1757 | if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { |
6e901571 KM |
1758 | reclaim_stat->recent_scanned[0] /= 2; |
1759 | reclaim_stat->recent_rotated[0] /= 2; | |
4f98a2fe RR |
1760 | } |
1761 | ||
6e901571 | 1762 | if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { |
6e901571 KM |
1763 | reclaim_stat->recent_scanned[1] /= 2; |
1764 | reclaim_stat->recent_rotated[1] /= 2; | |
4f98a2fe RR |
1765 | } |
1766 | ||
4f98a2fe | 1767 | /* |
00d8089c RR |
1768 | * The amount of pressure on anon vs file pages is inversely |
1769 | * proportional to the fraction of recently scanned pages on | |
1770 | * each list that were recently referenced and in active use. | |
4f98a2fe | 1771 | */ |
fe35004f | 1772 | ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); |
6e901571 | 1773 | ap /= reclaim_stat->recent_rotated[0] + 1; |
4f98a2fe | 1774 | |
fe35004f | 1775 | fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); |
6e901571 | 1776 | fp /= reclaim_stat->recent_rotated[1] + 1; |
90126375 | 1777 | spin_unlock_irq(&zone->lru_lock); |
4f98a2fe | 1778 | |
76a33fc3 SL |
1779 | fraction[0] = ap; |
1780 | fraction[1] = fp; | |
1781 | denominator = ap + fp + 1; | |
1782 | out: | |
4111304d HD |
1783 | for_each_evictable_lru(lru) { |
1784 | int file = is_file_lru(lru); | |
d778df51 | 1785 | unsigned long size; |
76a33fc3 | 1786 | unsigned long scan; |
6e08a369 | 1787 | |
d778df51 | 1788 | size = get_lru_size(lruvec, lru); |
10316b31 | 1789 | scan = size >> sc->priority; |
9a265114 | 1790 | |
10316b31 JW |
1791 | if (!scan && force_scan) |
1792 | scan = min(size, SWAP_CLUSTER_MAX); | |
9a265114 JW |
1793 | |
1794 | switch (scan_balance) { | |
1795 | case SCAN_EQUAL: | |
1796 | /* Scan lists relative to size */ | |
1797 | break; | |
1798 | case SCAN_FRACT: | |
1799 | /* | |
1800 | * Scan types proportional to swappiness and | |
1801 | * their relative recent reclaim efficiency. | |
1802 | */ | |
1803 | scan = div64_u64(scan * fraction[file], denominator); | |
1804 | break; | |
1805 | case SCAN_FILE: | |
1806 | case SCAN_ANON: | |
1807 | /* Scan one type exclusively */ | |
1808 | if ((scan_balance == SCAN_FILE) != file) | |
1809 | scan = 0; | |
1810 | break; | |
1811 | default: | |
1812 | /* Look ma, no brain */ | |
1813 | BUG(); | |
1814 | } | |
4111304d | 1815 | nr[lru] = scan; |
76a33fc3 | 1816 | } |
6e08a369 | 1817 | } |
4f98a2fe | 1818 | |
9b4f98cd JW |
1819 | /* |
1820 | * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. | |
1821 | */ | |
1822 | static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) | |
1823 | { | |
1824 | unsigned long nr[NR_LRU_LISTS]; | |
e82e0561 | 1825 | unsigned long targets[NR_LRU_LISTS]; |
9b4f98cd JW |
1826 | unsigned long nr_to_scan; |
1827 | enum lru_list lru; | |
1828 | unsigned long nr_reclaimed = 0; | |
1829 | unsigned long nr_to_reclaim = sc->nr_to_reclaim; | |
1830 | struct blk_plug plug; | |
e82e0561 | 1831 | bool scan_adjusted = false; |
9b4f98cd JW |
1832 | |
1833 | get_scan_count(lruvec, sc, nr); | |
1834 | ||
e82e0561 MG |
1835 | /* Record the original scan target for proportional adjustments later */ |
1836 | memcpy(targets, nr, sizeof(nr)); | |
1837 | ||
9b4f98cd JW |
1838 | blk_start_plug(&plug); |
1839 | while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || | |
1840 | nr[LRU_INACTIVE_FILE]) { | |
e82e0561 MG |
1841 | unsigned long nr_anon, nr_file, percentage; |
1842 | unsigned long nr_scanned; | |
1843 | ||
9b4f98cd JW |
1844 | for_each_evictable_lru(lru) { |
1845 | if (nr[lru]) { | |
1846 | nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); | |
1847 | nr[lru] -= nr_to_scan; | |
1848 | ||
1849 | nr_reclaimed += shrink_list(lru, nr_to_scan, | |
1850 | lruvec, sc); | |
1851 | } | |
1852 | } | |
e82e0561 MG |
1853 | |
1854 | if (nr_reclaimed < nr_to_reclaim || scan_adjusted) | |
1855 | continue; | |
1856 | ||
9b4f98cd | 1857 | /* |
e82e0561 MG |
1858 | * For global direct reclaim, reclaim only the number of pages |
1859 | * requested. Less care is taken to scan proportionally as it | |
1860 | * is more important to minimise direct reclaim stall latency | |
1861 | * than it is to properly age the LRU lists. | |
9b4f98cd | 1862 | */ |
e82e0561 | 1863 | if (global_reclaim(sc) && !current_is_kswapd()) |
9b4f98cd | 1864 | break; |
e82e0561 MG |
1865 | |
1866 | /* | |
1867 | * For kswapd and memcg, reclaim at least the number of pages | |
1868 | * requested. Ensure that the anon and file LRUs shrink | |
1869 | * proportionally what was requested by get_scan_count(). We | |
1870 | * stop reclaiming one LRU and reduce the amount scanning | |
1871 | * proportional to the original scan target. | |
1872 | */ | |
1873 | nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; | |
1874 | nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; | |
1875 | ||
1876 | if (nr_file > nr_anon) { | |
1877 | unsigned long scan_target = targets[LRU_INACTIVE_ANON] + | |
1878 | targets[LRU_ACTIVE_ANON] + 1; | |
1879 | lru = LRU_BASE; | |
1880 | percentage = nr_anon * 100 / scan_target; | |
1881 | } else { | |
1882 | unsigned long scan_target = targets[LRU_INACTIVE_FILE] + | |
1883 | targets[LRU_ACTIVE_FILE] + 1; | |
1884 | lru = LRU_FILE; | |
1885 | percentage = nr_file * 100 / scan_target; | |
1886 | } | |
1887 | ||
1888 | /* Stop scanning the smaller of the LRU */ | |
1889 | nr[lru] = 0; | |
1890 | nr[lru + LRU_ACTIVE] = 0; | |
1891 | ||
1892 | /* | |
1893 | * Recalculate the other LRU scan count based on its original | |
1894 | * scan target and the percentage scanning already complete | |
1895 | */ | |
1896 | lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; | |
1897 | nr_scanned = targets[lru] - nr[lru]; | |
1898 | nr[lru] = targets[lru] * (100 - percentage) / 100; | |
1899 | nr[lru] -= min(nr[lru], nr_scanned); | |
1900 | ||
1901 | lru += LRU_ACTIVE; | |
1902 | nr_scanned = targets[lru] - nr[lru]; | |
1903 | nr[lru] = targets[lru] * (100 - percentage) / 100; | |
1904 | nr[lru] -= min(nr[lru], nr_scanned); | |
1905 | ||
1906 | scan_adjusted = true; | |
9b4f98cd JW |
1907 | } |
1908 | blk_finish_plug(&plug); | |
1909 | sc->nr_reclaimed += nr_reclaimed; | |
1910 | ||
1911 | /* | |
1912 | * Even if we did not try to evict anon pages at all, we want to | |
1913 | * rebalance the anon lru active/inactive ratio. | |
1914 | */ | |
1915 | if (inactive_anon_is_low(lruvec)) | |
1916 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, | |
1917 | sc, LRU_ACTIVE_ANON); | |
1918 | ||
1919 | throttle_vm_writeout(sc->gfp_mask); | |
1920 | } | |
1921 | ||
23b9da55 | 1922 | /* Use reclaim/compaction for costly allocs or under memory pressure */ |
9e3b2f8c | 1923 | static bool in_reclaim_compaction(struct scan_control *sc) |
23b9da55 | 1924 | { |
d84da3f9 | 1925 | if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && |
23b9da55 | 1926 | (sc->order > PAGE_ALLOC_COSTLY_ORDER || |
9e3b2f8c | 1927 | sc->priority < DEF_PRIORITY - 2)) |
23b9da55 MG |
1928 | return true; |
1929 | ||
1930 | return false; | |
1931 | } | |
1932 | ||
3e7d3449 | 1933 | /* |
23b9da55 MG |
1934 | * Reclaim/compaction is used for high-order allocation requests. It reclaims |
1935 | * order-0 pages before compacting the zone. should_continue_reclaim() returns | |
1936 | * true if more pages should be reclaimed such that when the page allocator | |
1937 | * calls try_to_compact_zone() that it will have enough free pages to succeed. | |
1938 | * It will give up earlier than that if there is difficulty reclaiming pages. | |
3e7d3449 | 1939 | */ |
9b4f98cd | 1940 | static inline bool should_continue_reclaim(struct zone *zone, |
3e7d3449 MG |
1941 | unsigned long nr_reclaimed, |
1942 | unsigned long nr_scanned, | |
1943 | struct scan_control *sc) | |
1944 | { | |
1945 | unsigned long pages_for_compaction; | |
1946 | unsigned long inactive_lru_pages; | |
1947 | ||
1948 | /* If not in reclaim/compaction mode, stop */ | |
9e3b2f8c | 1949 | if (!in_reclaim_compaction(sc)) |
3e7d3449 MG |
1950 | return false; |
1951 | ||
2876592f MG |
1952 | /* Consider stopping depending on scan and reclaim activity */ |
1953 | if (sc->gfp_mask & __GFP_REPEAT) { | |
1954 | /* | |
1955 | * For __GFP_REPEAT allocations, stop reclaiming if the | |
1956 | * full LRU list has been scanned and we are still failing | |
1957 | * to reclaim pages. This full LRU scan is potentially | |
1958 | * expensive but a __GFP_REPEAT caller really wants to succeed | |
1959 | */ | |
1960 | if (!nr_reclaimed && !nr_scanned) | |
1961 | return false; | |
1962 | } else { | |
1963 | /* | |
1964 | * For non-__GFP_REPEAT allocations which can presumably | |
1965 | * fail without consequence, stop if we failed to reclaim | |
1966 | * any pages from the last SWAP_CLUSTER_MAX number of | |
1967 | * pages that were scanned. This will return to the | |
1968 | * caller faster at the risk reclaim/compaction and | |
1969 | * the resulting allocation attempt fails | |
1970 | */ | |
1971 | if (!nr_reclaimed) | |
1972 | return false; | |
1973 | } | |
3e7d3449 MG |
1974 | |
1975 | /* | |
1976 | * If we have not reclaimed enough pages for compaction and the | |
1977 | * inactive lists are large enough, continue reclaiming | |
1978 | */ | |
1979 | pages_for_compaction = (2UL << sc->order); | |
9b4f98cd | 1980 | inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); |
ec8acf20 | 1981 | if (get_nr_swap_pages() > 0) |
9b4f98cd | 1982 | inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); |
3e7d3449 MG |
1983 | if (sc->nr_reclaimed < pages_for_compaction && |
1984 | inactive_lru_pages > pages_for_compaction) | |
1985 | return true; | |
1986 | ||
1987 | /* If compaction would go ahead or the allocation would succeed, stop */ | |
9b4f98cd | 1988 | switch (compaction_suitable(zone, sc->order)) { |
3e7d3449 MG |
1989 | case COMPACT_PARTIAL: |
1990 | case COMPACT_CONTINUE: | |
1991 | return false; | |
1992 | default: | |
1993 | return true; | |
1994 | } | |
1995 | } | |
1996 | ||
9b4f98cd | 1997 | static void shrink_zone(struct zone *zone, struct scan_control *sc) |
1da177e4 | 1998 | { |
f0fdc5e8 | 1999 | unsigned long nr_reclaimed, nr_scanned; |
1da177e4 | 2000 | |
9b4f98cd JW |
2001 | do { |
2002 | struct mem_cgroup *root = sc->target_mem_cgroup; | |
2003 | struct mem_cgroup_reclaim_cookie reclaim = { | |
2004 | .zone = zone, | |
2005 | .priority = sc->priority, | |
2006 | }; | |
2007 | struct mem_cgroup *memcg; | |
3e7d3449 | 2008 | |
9b4f98cd JW |
2009 | nr_reclaimed = sc->nr_reclaimed; |
2010 | nr_scanned = sc->nr_scanned; | |
1da177e4 | 2011 | |
9b4f98cd JW |
2012 | memcg = mem_cgroup_iter(root, NULL, &reclaim); |
2013 | do { | |
2014 | struct lruvec *lruvec; | |
5660048c | 2015 | |
9b4f98cd | 2016 | lruvec = mem_cgroup_zone_lruvec(zone, memcg); |
f9be23d6 | 2017 | |
9b4f98cd | 2018 | shrink_lruvec(lruvec, sc); |
f16015fb | 2019 | |
9b4f98cd | 2020 | /* |
a394cb8e MH |
2021 | * Direct reclaim and kswapd have to scan all memory |
2022 | * cgroups to fulfill the overall scan target for the | |
9b4f98cd | 2023 | * zone. |
a394cb8e MH |
2024 | * |
2025 | * Limit reclaim, on the other hand, only cares about | |
2026 | * nr_to_reclaim pages to be reclaimed and it will | |
2027 | * retry with decreasing priority if one round over the | |
2028 | * whole hierarchy is not sufficient. | |
9b4f98cd | 2029 | */ |
a394cb8e MH |
2030 | if (!global_reclaim(sc) && |
2031 | sc->nr_reclaimed >= sc->nr_to_reclaim) { | |
9b4f98cd JW |
2032 | mem_cgroup_iter_break(root, memcg); |
2033 | break; | |
2034 | } | |
2035 | memcg = mem_cgroup_iter(root, memcg, &reclaim); | |
2036 | } while (memcg); | |
70ddf637 AV |
2037 | |
2038 | vmpressure(sc->gfp_mask, sc->target_mem_cgroup, | |
2039 | sc->nr_scanned - nr_scanned, | |
2040 | sc->nr_reclaimed - nr_reclaimed); | |
2041 | ||
9b4f98cd JW |
2042 | } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, |
2043 | sc->nr_scanned - nr_scanned, sc)); | |
f16015fb JW |
2044 | } |
2045 | ||
fe4b1b24 MG |
2046 | /* Returns true if compaction should go ahead for a high-order request */ |
2047 | static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) | |
2048 | { | |
2049 | unsigned long balance_gap, watermark; | |
2050 | bool watermark_ok; | |
2051 | ||
2052 | /* Do not consider compaction for orders reclaim is meant to satisfy */ | |
2053 | if (sc->order <= PAGE_ALLOC_COSTLY_ORDER) | |
2054 | return false; | |
2055 | ||
2056 | /* | |
2057 | * Compaction takes time to run and there are potentially other | |
2058 | * callers using the pages just freed. Continue reclaiming until | |
2059 | * there is a buffer of free pages available to give compaction | |
2060 | * a reasonable chance of completing and allocating the page | |
2061 | */ | |
2062 | balance_gap = min(low_wmark_pages(zone), | |
b40da049 | 2063 | (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / |
fe4b1b24 MG |
2064 | KSWAPD_ZONE_BALANCE_GAP_RATIO); |
2065 | watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order); | |
2066 | watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); | |
2067 | ||
2068 | /* | |
2069 | * If compaction is deferred, reclaim up to a point where | |
2070 | * compaction will have a chance of success when re-enabled | |
2071 | */ | |
aff62249 | 2072 | if (compaction_deferred(zone, sc->order)) |
fe4b1b24 MG |
2073 | return watermark_ok; |
2074 | ||
2075 | /* If compaction is not ready to start, keep reclaiming */ | |
2076 | if (!compaction_suitable(zone, sc->order)) | |
2077 | return false; | |
2078 | ||
2079 | return watermark_ok; | |
2080 | } | |
2081 | ||
1da177e4 LT |
2082 | /* |
2083 | * This is the direct reclaim path, for page-allocating processes. We only | |
2084 | * try to reclaim pages from zones which will satisfy the caller's allocation | |
2085 | * request. | |
2086 | * | |
41858966 MG |
2087 | * We reclaim from a zone even if that zone is over high_wmark_pages(zone). |
2088 | * Because: | |
1da177e4 LT |
2089 | * a) The caller may be trying to free *extra* pages to satisfy a higher-order |
2090 | * allocation or | |
41858966 MG |
2091 | * b) The target zone may be at high_wmark_pages(zone) but the lower zones |
2092 | * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' | |
2093 | * zone defense algorithm. | |
1da177e4 | 2094 | * |
1da177e4 LT |
2095 | * If a zone is deemed to be full of pinned pages then just give it a light |
2096 | * scan then give up on it. | |
e0c23279 MG |
2097 | * |
2098 | * This function returns true if a zone is being reclaimed for a costly | |
fe4b1b24 | 2099 | * high-order allocation and compaction is ready to begin. This indicates to |
0cee34fd MG |
2100 | * the caller that it should consider retrying the allocation instead of |
2101 | * further reclaim. | |
1da177e4 | 2102 | */ |
9e3b2f8c | 2103 | static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) |
1da177e4 | 2104 | { |
dd1a239f | 2105 | struct zoneref *z; |
54a6eb5c | 2106 | struct zone *zone; |
d149e3b2 YH |
2107 | unsigned long nr_soft_reclaimed; |
2108 | unsigned long nr_soft_scanned; | |
0cee34fd | 2109 | bool aborted_reclaim = false; |
1cfb419b | 2110 | |
cc715d99 MG |
2111 | /* |
2112 | * If the number of buffer_heads in the machine exceeds the maximum | |
2113 | * allowed level, force direct reclaim to scan the highmem zone as | |
2114 | * highmem pages could be pinning lowmem pages storing buffer_heads | |
2115 | */ | |
2116 | if (buffer_heads_over_limit) | |
2117 | sc->gfp_mask |= __GFP_HIGHMEM; | |
2118 | ||
d4debc66 MG |
2119 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
2120 | gfp_zone(sc->gfp_mask), sc->nodemask) { | |
f3fe6512 | 2121 | if (!populated_zone(zone)) |
1da177e4 | 2122 | continue; |
1cfb419b KH |
2123 | /* |
2124 | * Take care memory controller reclaiming has small influence | |
2125 | * to global LRU. | |
2126 | */ | |
89b5fae5 | 2127 | if (global_reclaim(sc)) { |
1cfb419b KH |
2128 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
2129 | continue; | |
9e3b2f8c KK |
2130 | if (zone->all_unreclaimable && |
2131 | sc->priority != DEF_PRIORITY) | |
1cfb419b | 2132 | continue; /* Let kswapd poll it */ |
d84da3f9 | 2133 | if (IS_ENABLED(CONFIG_COMPACTION)) { |
e0887c19 | 2134 | /* |
e0c23279 MG |
2135 | * If we already have plenty of memory free for |
2136 | * compaction in this zone, don't free any more. | |
2137 | * Even though compaction is invoked for any | |
2138 | * non-zero order, only frequent costly order | |
2139 | * reclamation is disruptive enough to become a | |
c7cfa37b CA |
2140 | * noticeable problem, like transparent huge |
2141 | * page allocations. | |
e0887c19 | 2142 | */ |
fe4b1b24 | 2143 | if (compaction_ready(zone, sc)) { |
0cee34fd | 2144 | aborted_reclaim = true; |
e0887c19 | 2145 | continue; |
e0c23279 | 2146 | } |
e0887c19 | 2147 | } |
ac34a1a3 KH |
2148 | /* |
2149 | * This steals pages from memory cgroups over softlimit | |
2150 | * and returns the number of reclaimed pages and | |
2151 | * scanned pages. This works for global memory pressure | |
2152 | * and balancing, not for a memcg's limit. | |
2153 | */ | |
2154 | nr_soft_scanned = 0; | |
2155 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, | |
2156 | sc->order, sc->gfp_mask, | |
2157 | &nr_soft_scanned); | |
2158 | sc->nr_reclaimed += nr_soft_reclaimed; | |
2159 | sc->nr_scanned += nr_soft_scanned; | |
2160 | /* need some check for avoid more shrink_zone() */ | |
1cfb419b | 2161 | } |
408d8544 | 2162 | |
9e3b2f8c | 2163 | shrink_zone(zone, sc); |
1da177e4 | 2164 | } |
e0c23279 | 2165 | |
0cee34fd | 2166 | return aborted_reclaim; |
d1908362 MK |
2167 | } |
2168 | ||
2169 | static bool zone_reclaimable(struct zone *zone) | |
2170 | { | |
2171 | return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; | |
2172 | } | |
2173 | ||
929bea7c | 2174 | /* All zones in zonelist are unreclaimable? */ |
d1908362 MK |
2175 | static bool all_unreclaimable(struct zonelist *zonelist, |
2176 | struct scan_control *sc) | |
2177 | { | |
2178 | struct zoneref *z; | |
2179 | struct zone *zone; | |
d1908362 MK |
2180 | |
2181 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | |
2182 | gfp_zone(sc->gfp_mask), sc->nodemask) { | |
2183 | if (!populated_zone(zone)) | |
2184 | continue; | |
2185 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) | |
2186 | continue; | |
929bea7c KM |
2187 | if (!zone->all_unreclaimable) |
2188 | return false; | |
d1908362 MK |
2189 | } |
2190 | ||
929bea7c | 2191 | return true; |
1da177e4 | 2192 | } |
4f98a2fe | 2193 | |
1da177e4 LT |
2194 | /* |
2195 | * This is the main entry point to direct page reclaim. | |
2196 | * | |
2197 | * If a full scan of the inactive list fails to free enough memory then we | |
2198 | * are "out of memory" and something needs to be killed. | |
2199 | * | |
2200 | * If the caller is !__GFP_FS then the probability of a failure is reasonably | |
2201 | * high - the zone may be full of dirty or under-writeback pages, which this | |
5b0830cb JA |
2202 | * caller can't do much about. We kick the writeback threads and take explicit |
2203 | * naps in the hope that some of these pages can be written. But if the | |
2204 | * allocating task holds filesystem locks which prevent writeout this might not | |
2205 | * work, and the allocation attempt will fail. | |
a41f24ea NA |
2206 | * |
2207 | * returns: 0, if no pages reclaimed | |
2208 | * else, the number of pages reclaimed | |
1da177e4 | 2209 | */ |
dac1d27b | 2210 | static unsigned long do_try_to_free_pages(struct zonelist *zonelist, |
a09ed5e0 YH |
2211 | struct scan_control *sc, |
2212 | struct shrink_control *shrink) | |
1da177e4 | 2213 | { |
69e05944 | 2214 | unsigned long total_scanned = 0; |
1da177e4 | 2215 | struct reclaim_state *reclaim_state = current->reclaim_state; |
dd1a239f | 2216 | struct zoneref *z; |
54a6eb5c | 2217 | struct zone *zone; |
22fba335 | 2218 | unsigned long writeback_threshold; |
0cee34fd | 2219 | bool aborted_reclaim; |
1da177e4 | 2220 | |
873b4771 KK |
2221 | delayacct_freepages_start(); |
2222 | ||
89b5fae5 | 2223 | if (global_reclaim(sc)) |
1cfb419b | 2224 | count_vm_event(ALLOCSTALL); |
1da177e4 | 2225 | |
9e3b2f8c | 2226 | do { |
70ddf637 AV |
2227 | vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, |
2228 | sc->priority); | |
66e1707b | 2229 | sc->nr_scanned = 0; |
9e3b2f8c | 2230 | aborted_reclaim = shrink_zones(zonelist, sc); |
e0c23279 | 2231 | |
66e1707b BS |
2232 | /* |
2233 | * Don't shrink slabs when reclaiming memory from | |
2234 | * over limit cgroups | |
2235 | */ | |
89b5fae5 | 2236 | if (global_reclaim(sc)) { |
c6a8a8c5 | 2237 | unsigned long lru_pages = 0; |
d4debc66 MG |
2238 | for_each_zone_zonelist(zone, z, zonelist, |
2239 | gfp_zone(sc->gfp_mask)) { | |
c6a8a8c5 KM |
2240 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
2241 | continue; | |
2242 | ||
2243 | lru_pages += zone_reclaimable_pages(zone); | |
2244 | } | |
2245 | ||
1495f230 | 2246 | shrink_slab(shrink, sc->nr_scanned, lru_pages); |
91a45470 | 2247 | if (reclaim_state) { |
a79311c1 | 2248 | sc->nr_reclaimed += reclaim_state->reclaimed_slab; |
91a45470 KH |
2249 | reclaim_state->reclaimed_slab = 0; |
2250 | } | |
1da177e4 | 2251 | } |
66e1707b | 2252 | total_scanned += sc->nr_scanned; |
bb21c7ce | 2253 | if (sc->nr_reclaimed >= sc->nr_to_reclaim) |
1da177e4 | 2254 | goto out; |
1da177e4 | 2255 | |
0e50ce3b MK |
2256 | /* |
2257 | * If we're getting trouble reclaiming, start doing | |
2258 | * writepage even in laptop mode. | |
2259 | */ | |
2260 | if (sc->priority < DEF_PRIORITY - 2) | |
2261 | sc->may_writepage = 1; | |
2262 | ||
1da177e4 LT |
2263 | /* |
2264 | * Try to write back as many pages as we just scanned. This | |
2265 | * tends to cause slow streaming writers to write data to the | |
2266 | * disk smoothly, at the dirtying rate, which is nice. But | |
2267 | * that's undesirable in laptop mode, where we *want* lumpy | |
2268 | * writeout. So in laptop mode, write out the whole world. | |
2269 | */ | |
22fba335 KM |
2270 | writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; |
2271 | if (total_scanned > writeback_threshold) { | |
0e175a18 CW |
2272 | wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, |
2273 | WB_REASON_TRY_TO_FREE_PAGES); | |
66e1707b | 2274 | sc->may_writepage = 1; |
1da177e4 LT |
2275 | } |
2276 | ||
2277 | /* Take a nap, wait for some writeback to complete */ | |
7b51755c | 2278 | if (!sc->hibernation_mode && sc->nr_scanned && |
9e3b2f8c | 2279 | sc->priority < DEF_PRIORITY - 2) { |
0e093d99 MG |
2280 | struct zone *preferred_zone; |
2281 | ||
2282 | first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask), | |
f33261d7 DR |
2283 | &cpuset_current_mems_allowed, |
2284 | &preferred_zone); | |
0e093d99 MG |
2285 | wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10); |
2286 | } | |
9e3b2f8c | 2287 | } while (--sc->priority >= 0); |
bb21c7ce | 2288 | |
1da177e4 | 2289 | out: |
873b4771 KK |
2290 | delayacct_freepages_end(); |
2291 | ||
bb21c7ce KM |
2292 | if (sc->nr_reclaimed) |
2293 | return sc->nr_reclaimed; | |
2294 | ||
929bea7c KM |
2295 | /* |
2296 | * As hibernation is going on, kswapd is freezed so that it can't mark | |
2297 | * the zone into all_unreclaimable. Thus bypassing all_unreclaimable | |
2298 | * check. | |
2299 | */ | |
2300 | if (oom_killer_disabled) | |
2301 | return 0; | |
2302 | ||
0cee34fd MG |
2303 | /* Aborted reclaim to try compaction? don't OOM, then */ |
2304 | if (aborted_reclaim) | |
7335084d MG |
2305 | return 1; |
2306 | ||
bb21c7ce | 2307 | /* top priority shrink_zones still had more to do? don't OOM, then */ |
89b5fae5 | 2308 | if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc)) |
bb21c7ce KM |
2309 | return 1; |
2310 | ||
2311 | return 0; | |
1da177e4 LT |
2312 | } |
2313 | ||
5515061d MG |
2314 | static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) |
2315 | { | |
2316 | struct zone *zone; | |
2317 | unsigned long pfmemalloc_reserve = 0; | |
2318 | unsigned long free_pages = 0; | |
2319 | int i; | |
2320 | bool wmark_ok; | |
2321 | ||
2322 | for (i = 0; i <= ZONE_NORMAL; i++) { | |
2323 | zone = &pgdat->node_zones[i]; | |
2324 | pfmemalloc_reserve += min_wmark_pages(zone); | |
2325 | free_pages += zone_page_state(zone, NR_FREE_PAGES); | |
2326 | } | |
2327 | ||
2328 | wmark_ok = free_pages > pfmemalloc_reserve / 2; | |
2329 | ||
2330 | /* kswapd must be awake if processes are being throttled */ | |
2331 | if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { | |
2332 | pgdat->classzone_idx = min(pgdat->classzone_idx, | |
2333 | (enum zone_type)ZONE_NORMAL); | |
2334 | wake_up_interruptible(&pgdat->kswapd_wait); | |
2335 | } | |
2336 | ||
2337 | return wmark_ok; | |
2338 | } | |
2339 | ||
2340 | /* | |
2341 | * Throttle direct reclaimers if backing storage is backed by the network | |
2342 | * and the PFMEMALLOC reserve for the preferred node is getting dangerously | |
2343 | * depleted. kswapd will continue to make progress and wake the processes | |
50694c28 MG |
2344 | * when the low watermark is reached. |
2345 | * | |
2346 | * Returns true if a fatal signal was delivered during throttling. If this | |
2347 | * happens, the page allocator should not consider triggering the OOM killer. | |
5515061d | 2348 | */ |
50694c28 | 2349 | static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, |
5515061d MG |
2350 | nodemask_t *nodemask) |
2351 | { | |
2352 | struct zone *zone; | |
2353 | int high_zoneidx = gfp_zone(gfp_mask); | |
2354 | pg_data_t *pgdat; | |
2355 | ||
2356 | /* | |
2357 | * Kernel threads should not be throttled as they may be indirectly | |
2358 | * responsible for cleaning pages necessary for reclaim to make forward | |
2359 | * progress. kjournald for example may enter direct reclaim while | |
2360 | * committing a transaction where throttling it could forcing other | |
2361 | * processes to block on log_wait_commit(). | |
2362 | */ | |
2363 | if (current->flags & PF_KTHREAD) | |
50694c28 MG |
2364 | goto out; |
2365 | ||
2366 | /* | |
2367 | * If a fatal signal is pending, this process should not throttle. | |
2368 | * It should return quickly so it can exit and free its memory | |
2369 | */ | |
2370 | if (fatal_signal_pending(current)) | |
2371 | goto out; | |
5515061d MG |
2372 | |
2373 | /* Check if the pfmemalloc reserves are ok */ | |
2374 | first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone); | |
2375 | pgdat = zone->zone_pgdat; | |
2376 | if (pfmemalloc_watermark_ok(pgdat)) | |
50694c28 | 2377 | goto out; |
5515061d | 2378 | |
68243e76 MG |
2379 | /* Account for the throttling */ |
2380 | count_vm_event(PGSCAN_DIRECT_THROTTLE); | |
2381 | ||
5515061d MG |
2382 | /* |
2383 | * If the caller cannot enter the filesystem, it's possible that it | |
2384 | * is due to the caller holding an FS lock or performing a journal | |
2385 | * transaction in the case of a filesystem like ext[3|4]. In this case, | |
2386 | * it is not safe to block on pfmemalloc_wait as kswapd could be | |
2387 | * blocked waiting on the same lock. Instead, throttle for up to a | |
2388 | * second before continuing. | |
2389 | */ | |
2390 | if (!(gfp_mask & __GFP_FS)) { | |
2391 | wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, | |
2392 | pfmemalloc_watermark_ok(pgdat), HZ); | |
50694c28 MG |
2393 | |
2394 | goto check_pending; | |
5515061d MG |
2395 | } |
2396 | ||
2397 | /* Throttle until kswapd wakes the process */ | |
2398 | wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, | |
2399 | pfmemalloc_watermark_ok(pgdat)); | |
50694c28 MG |
2400 | |
2401 | check_pending: | |
2402 | if (fatal_signal_pending(current)) | |
2403 | return true; | |
2404 | ||
2405 | out: | |
2406 | return false; | |
5515061d MG |
2407 | } |
2408 | ||
dac1d27b | 2409 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, |
327c0e96 | 2410 | gfp_t gfp_mask, nodemask_t *nodemask) |
66e1707b | 2411 | { |
33906bc5 | 2412 | unsigned long nr_reclaimed; |
66e1707b | 2413 | struct scan_control sc = { |
21caf2fc | 2414 | .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), |
66e1707b | 2415 | .may_writepage = !laptop_mode, |
22fba335 | 2416 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
a6dc60f8 | 2417 | .may_unmap = 1, |
2e2e4259 | 2418 | .may_swap = 1, |
66e1707b | 2419 | .order = order, |
9e3b2f8c | 2420 | .priority = DEF_PRIORITY, |
f16015fb | 2421 | .target_mem_cgroup = NULL, |
327c0e96 | 2422 | .nodemask = nodemask, |
66e1707b | 2423 | }; |
a09ed5e0 YH |
2424 | struct shrink_control shrink = { |
2425 | .gfp_mask = sc.gfp_mask, | |
2426 | }; | |
66e1707b | 2427 | |
5515061d | 2428 | /* |
50694c28 MG |
2429 | * Do not enter reclaim if fatal signal was delivered while throttled. |
2430 | * 1 is returned so that the page allocator does not OOM kill at this | |
2431 | * point. | |
5515061d | 2432 | */ |
50694c28 | 2433 | if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) |
5515061d MG |
2434 | return 1; |
2435 | ||
33906bc5 MG |
2436 | trace_mm_vmscan_direct_reclaim_begin(order, |
2437 | sc.may_writepage, | |
2438 | gfp_mask); | |
2439 | ||
a09ed5e0 | 2440 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); |
33906bc5 MG |
2441 | |
2442 | trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); | |
2443 | ||
2444 | return nr_reclaimed; | |
66e1707b BS |
2445 | } |
2446 | ||
c255a458 | 2447 | #ifdef CONFIG_MEMCG |
66e1707b | 2448 | |
72835c86 | 2449 | unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, |
4e416953 | 2450 | gfp_t gfp_mask, bool noswap, |
0ae5e89c YH |
2451 | struct zone *zone, |
2452 | unsigned long *nr_scanned) | |
4e416953 BS |
2453 | { |
2454 | struct scan_control sc = { | |
0ae5e89c | 2455 | .nr_scanned = 0, |
b8f5c566 | 2456 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
4e416953 BS |
2457 | .may_writepage = !laptop_mode, |
2458 | .may_unmap = 1, | |
2459 | .may_swap = !noswap, | |
4e416953 | 2460 | .order = 0, |
9e3b2f8c | 2461 | .priority = 0, |
72835c86 | 2462 | .target_mem_cgroup = memcg, |
4e416953 | 2463 | }; |
f9be23d6 | 2464 | struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); |
0ae5e89c | 2465 | |
4e416953 BS |
2466 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
2467 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); | |
bdce6d9e | 2468 | |
9e3b2f8c | 2469 | trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, |
bdce6d9e KM |
2470 | sc.may_writepage, |
2471 | sc.gfp_mask); | |
2472 | ||
4e416953 BS |
2473 | /* |
2474 | * NOTE: Although we can get the priority field, using it | |
2475 | * here is not a good idea, since it limits the pages we can scan. | |
2476 | * if we don't reclaim here, the shrink_zone from balance_pgdat | |
2477 | * will pick up pages from other mem cgroup's as well. We hack | |
2478 | * the priority and make it zero. | |
2479 | */ | |
f9be23d6 | 2480 | shrink_lruvec(lruvec, &sc); |
bdce6d9e KM |
2481 | |
2482 | trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); | |
2483 | ||
0ae5e89c | 2484 | *nr_scanned = sc.nr_scanned; |
4e416953 BS |
2485 | return sc.nr_reclaimed; |
2486 | } | |
2487 | ||
72835c86 | 2488 | unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, |
a7885eb8 | 2489 | gfp_t gfp_mask, |
185efc0f | 2490 | bool noswap) |
66e1707b | 2491 | { |
4e416953 | 2492 | struct zonelist *zonelist; |
bdce6d9e | 2493 | unsigned long nr_reclaimed; |
889976db | 2494 | int nid; |
66e1707b | 2495 | struct scan_control sc = { |
66e1707b | 2496 | .may_writepage = !laptop_mode, |
a6dc60f8 | 2497 | .may_unmap = 1, |
2e2e4259 | 2498 | .may_swap = !noswap, |
22fba335 | 2499 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
66e1707b | 2500 | .order = 0, |
9e3b2f8c | 2501 | .priority = DEF_PRIORITY, |
72835c86 | 2502 | .target_mem_cgroup = memcg, |
327c0e96 | 2503 | .nodemask = NULL, /* we don't care the placement */ |
a09ed5e0 YH |
2504 | .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
2505 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), | |
2506 | }; | |
2507 | struct shrink_control shrink = { | |
2508 | .gfp_mask = sc.gfp_mask, | |
66e1707b | 2509 | }; |
66e1707b | 2510 | |
889976db YH |
2511 | /* |
2512 | * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't | |
2513 | * take care of from where we get pages. So the node where we start the | |
2514 | * scan does not need to be the current node. | |
2515 | */ | |
72835c86 | 2516 | nid = mem_cgroup_select_victim_node(memcg); |
889976db YH |
2517 | |
2518 | zonelist = NODE_DATA(nid)->node_zonelists; | |
bdce6d9e KM |
2519 | |
2520 | trace_mm_vmscan_memcg_reclaim_begin(0, | |
2521 | sc.may_writepage, | |
2522 | sc.gfp_mask); | |
2523 | ||
a09ed5e0 | 2524 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); |
bdce6d9e KM |
2525 | |
2526 | trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); | |
2527 | ||
2528 | return nr_reclaimed; | |
66e1707b BS |
2529 | } |
2530 | #endif | |
2531 | ||
9e3b2f8c | 2532 | static void age_active_anon(struct zone *zone, struct scan_control *sc) |
f16015fb | 2533 | { |
b95a2f2d | 2534 | struct mem_cgroup *memcg; |
f16015fb | 2535 | |
b95a2f2d JW |
2536 | if (!total_swap_pages) |
2537 | return; | |
2538 | ||
2539 | memcg = mem_cgroup_iter(NULL, NULL, NULL); | |
2540 | do { | |
c56d5c7d | 2541 | struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); |
b95a2f2d | 2542 | |
c56d5c7d | 2543 | if (inactive_anon_is_low(lruvec)) |
1a93be0e | 2544 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, |
9e3b2f8c | 2545 | sc, LRU_ACTIVE_ANON); |
b95a2f2d JW |
2546 | |
2547 | memcg = mem_cgroup_iter(NULL, memcg, NULL); | |
2548 | } while (memcg); | |
f16015fb JW |
2549 | } |
2550 | ||
60cefed4 JW |
2551 | static bool zone_balanced(struct zone *zone, int order, |
2552 | unsigned long balance_gap, int classzone_idx) | |
2553 | { | |
2554 | if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + | |
2555 | balance_gap, classzone_idx, 0)) | |
2556 | return false; | |
2557 | ||
d84da3f9 KS |
2558 | if (IS_ENABLED(CONFIG_COMPACTION) && order && |
2559 | !compaction_suitable(zone, order)) | |
60cefed4 JW |
2560 | return false; |
2561 | ||
2562 | return true; | |
2563 | } | |
2564 | ||
1741c877 | 2565 | /* |
4ae0a48b ZC |
2566 | * pgdat_balanced() is used when checking if a node is balanced. |
2567 | * | |
2568 | * For order-0, all zones must be balanced! | |
2569 | * | |
2570 | * For high-order allocations only zones that meet watermarks and are in a | |
2571 | * zone allowed by the callers classzone_idx are added to balanced_pages. The | |
2572 | * total of balanced pages must be at least 25% of the zones allowed by | |
2573 | * classzone_idx for the node to be considered balanced. Forcing all zones to | |
2574 | * be balanced for high orders can cause excessive reclaim when there are | |
2575 | * imbalanced zones. | |
1741c877 MG |
2576 | * The choice of 25% is due to |
2577 | * o a 16M DMA zone that is balanced will not balance a zone on any | |
2578 | * reasonable sized machine | |
2579 | * o On all other machines, the top zone must be at least a reasonable | |
25985edc | 2580 | * percentage of the middle zones. For example, on 32-bit x86, highmem |
1741c877 MG |
2581 | * would need to be at least 256M for it to be balance a whole node. |
2582 | * Similarly, on x86-64 the Normal zone would need to be at least 1G | |
2583 | * to balance a node on its own. These seemed like reasonable ratios. | |
2584 | */ | |
4ae0a48b | 2585 | static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) |
1741c877 | 2586 | { |
b40da049 | 2587 | unsigned long managed_pages = 0; |
4ae0a48b | 2588 | unsigned long balanced_pages = 0; |
1741c877 MG |
2589 | int i; |
2590 | ||
4ae0a48b ZC |
2591 | /* Check the watermark levels */ |
2592 | for (i = 0; i <= classzone_idx; i++) { | |
2593 | struct zone *zone = pgdat->node_zones + i; | |
1741c877 | 2594 | |
4ae0a48b ZC |
2595 | if (!populated_zone(zone)) |
2596 | continue; | |
2597 | ||
b40da049 | 2598 | managed_pages += zone->managed_pages; |
4ae0a48b ZC |
2599 | |
2600 | /* | |
2601 | * A special case here: | |
2602 | * | |
2603 | * balance_pgdat() skips over all_unreclaimable after | |
2604 | * DEF_PRIORITY. Effectively, it considers them balanced so | |
2605 | * they must be considered balanced here as well! | |
2606 | */ | |
2607 | if (zone->all_unreclaimable) { | |
b40da049 | 2608 | balanced_pages += zone->managed_pages; |
4ae0a48b ZC |
2609 | continue; |
2610 | } | |
2611 | ||
2612 | if (zone_balanced(zone, order, 0, i)) | |
b40da049 | 2613 | balanced_pages += zone->managed_pages; |
4ae0a48b ZC |
2614 | else if (!order) |
2615 | return false; | |
2616 | } | |
2617 | ||
2618 | if (order) | |
b40da049 | 2619 | return balanced_pages >= (managed_pages >> 2); |
4ae0a48b ZC |
2620 | else |
2621 | return true; | |
1741c877 MG |
2622 | } |
2623 | ||
5515061d MG |
2624 | /* |
2625 | * Prepare kswapd for sleeping. This verifies that there are no processes | |
2626 | * waiting in throttle_direct_reclaim() and that watermarks have been met. | |
2627 | * | |
2628 | * Returns true if kswapd is ready to sleep | |
2629 | */ | |
2630 | static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, | |
dc83edd9 | 2631 | int classzone_idx) |
f50de2d3 | 2632 | { |
f50de2d3 MG |
2633 | /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ |
2634 | if (remaining) | |
5515061d MG |
2635 | return false; |
2636 | ||
2637 | /* | |
2638 | * There is a potential race between when kswapd checks its watermarks | |
2639 | * and a process gets throttled. There is also a potential race if | |
2640 | * processes get throttled, kswapd wakes, a large process exits therby | |
2641 | * balancing the zones that causes kswapd to miss a wakeup. If kswapd | |
2642 | * is going to sleep, no process should be sleeping on pfmemalloc_wait | |
2643 | * so wake them now if necessary. If necessary, processes will wake | |
2644 | * kswapd and get throttled again | |
2645 | */ | |
2646 | if (waitqueue_active(&pgdat->pfmemalloc_wait)) { | |
2647 | wake_up(&pgdat->pfmemalloc_wait); | |
2648 | return false; | |
2649 | } | |
f50de2d3 | 2650 | |
4ae0a48b | 2651 | return pgdat_balanced(pgdat, order, classzone_idx); |
f50de2d3 MG |
2652 | } |
2653 | ||
75485363 MG |
2654 | /* |
2655 | * kswapd shrinks the zone by the number of pages required to reach | |
2656 | * the high watermark. | |
b8e83b94 MG |
2657 | * |
2658 | * Returns true if kswapd scanned at least the requested number of pages to | |
2659 | * reclaim. This is used to determine if the scanning priority needs to be | |
2660 | * raised. | |
75485363 | 2661 | */ |
b8e83b94 | 2662 | static bool kswapd_shrink_zone(struct zone *zone, |
75485363 | 2663 | struct scan_control *sc, |
2ab44f43 MG |
2664 | unsigned long lru_pages, |
2665 | unsigned long *nr_attempted) | |
75485363 MG |
2666 | { |
2667 | unsigned long nr_slab; | |
2668 | struct reclaim_state *reclaim_state = current->reclaim_state; | |
2669 | struct shrink_control shrink = { | |
2670 | .gfp_mask = sc->gfp_mask, | |
2671 | }; | |
2672 | ||
2673 | /* Reclaim above the high watermark. */ | |
2674 | sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); | |
2675 | shrink_zone(zone, sc); | |
2676 | ||
2677 | reclaim_state->reclaimed_slab = 0; | |
2678 | nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages); | |
2679 | sc->nr_reclaimed += reclaim_state->reclaimed_slab; | |
2680 | ||
2ab44f43 MG |
2681 | /* Account for the number of pages attempted to reclaim */ |
2682 | *nr_attempted += sc->nr_to_reclaim; | |
2683 | ||
75485363 MG |
2684 | if (nr_slab == 0 && !zone_reclaimable(zone)) |
2685 | zone->all_unreclaimable = 1; | |
b8e83b94 MG |
2686 | |
2687 | return sc->nr_scanned >= sc->nr_to_reclaim; | |
75485363 MG |
2688 | } |
2689 | ||
1da177e4 LT |
2690 | /* |
2691 | * For kswapd, balance_pgdat() will work across all this node's zones until | |
41858966 | 2692 | * they are all at high_wmark_pages(zone). |
1da177e4 | 2693 | * |
0abdee2b | 2694 | * Returns the final order kswapd was reclaiming at |
1da177e4 LT |
2695 | * |
2696 | * There is special handling here for zones which are full of pinned pages. | |
2697 | * This can happen if the pages are all mlocked, or if they are all used by | |
2698 | * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. | |
2699 | * What we do is to detect the case where all pages in the zone have been | |
2700 | * scanned twice and there has been zero successful reclaim. Mark the zone as | |
2701 | * dead and from now on, only perform a short scan. Basically we're polling | |
2702 | * the zone for when the problem goes away. | |
2703 | * | |
2704 | * kswapd scans the zones in the highmem->normal->dma direction. It skips | |
41858966 MG |
2705 | * zones which have free_pages > high_wmark_pages(zone), but once a zone is |
2706 | * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the | |
2707 | * lower zones regardless of the number of free pages in the lower zones. This | |
2708 | * interoperates with the page allocator fallback scheme to ensure that aging | |
2709 | * of pages is balanced across the zones. | |
1da177e4 | 2710 | */ |
99504748 | 2711 | static unsigned long balance_pgdat(pg_data_t *pgdat, int order, |
dc83edd9 | 2712 | int *classzone_idx) |
1da177e4 | 2713 | { |
1da177e4 | 2714 | int i; |
99504748 | 2715 | int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ |
0ae5e89c YH |
2716 | unsigned long nr_soft_reclaimed; |
2717 | unsigned long nr_soft_scanned; | |
179e9639 AM |
2718 | struct scan_control sc = { |
2719 | .gfp_mask = GFP_KERNEL, | |
b8e83b94 | 2720 | .priority = DEF_PRIORITY, |
a6dc60f8 | 2721 | .may_unmap = 1, |
2e2e4259 | 2722 | .may_swap = 1, |
b8e83b94 | 2723 | .may_writepage = !laptop_mode, |
5ad333eb | 2724 | .order = order, |
f16015fb | 2725 | .target_mem_cgroup = NULL, |
179e9639 | 2726 | }; |
f8891e5e | 2727 | count_vm_event(PAGEOUTRUN); |
1da177e4 | 2728 | |
9e3b2f8c | 2729 | do { |
1da177e4 | 2730 | unsigned long lru_pages = 0; |
2ab44f43 | 2731 | unsigned long nr_attempted = 0; |
b8e83b94 | 2732 | bool raise_priority = true; |
2ab44f43 | 2733 | bool pgdat_needs_compaction = (order > 0); |
b8e83b94 MG |
2734 | |
2735 | sc.nr_reclaimed = 0; | |
1da177e4 | 2736 | |
d6277db4 RW |
2737 | /* |
2738 | * Scan in the highmem->dma direction for the highest | |
2739 | * zone which needs scanning | |
2740 | */ | |
2741 | for (i = pgdat->nr_zones - 1; i >= 0; i--) { | |
2742 | struct zone *zone = pgdat->node_zones + i; | |
1da177e4 | 2743 | |
d6277db4 RW |
2744 | if (!populated_zone(zone)) |
2745 | continue; | |
1da177e4 | 2746 | |
9e3b2f8c KK |
2747 | if (zone->all_unreclaimable && |
2748 | sc.priority != DEF_PRIORITY) | |
d6277db4 | 2749 | continue; |
1da177e4 | 2750 | |
556adecb RR |
2751 | /* |
2752 | * Do some background aging of the anon list, to give | |
2753 | * pages a chance to be referenced before reclaiming. | |
2754 | */ | |
9e3b2f8c | 2755 | age_active_anon(zone, &sc); |
556adecb | 2756 | |
cc715d99 MG |
2757 | /* |
2758 | * If the number of buffer_heads in the machine | |
2759 | * exceeds the maximum allowed level and this node | |
2760 | * has a highmem zone, force kswapd to reclaim from | |
2761 | * it to relieve lowmem pressure. | |
2762 | */ | |
2763 | if (buffer_heads_over_limit && is_highmem_idx(i)) { | |
2764 | end_zone = i; | |
2765 | break; | |
2766 | } | |
2767 | ||
60cefed4 | 2768 | if (!zone_balanced(zone, order, 0, 0)) { |
d6277db4 | 2769 | end_zone = i; |
e1dbeda6 | 2770 | break; |
439423f6 SL |
2771 | } else { |
2772 | /* If balanced, clear the congested flag */ | |
2773 | zone_clear_flag(zone, ZONE_CONGESTED); | |
1da177e4 | 2774 | } |
1da177e4 | 2775 | } |
dafcb73e | 2776 | |
b8e83b94 | 2777 | if (i < 0) |
e1dbeda6 AM |
2778 | goto out; |
2779 | ||
1da177e4 LT |
2780 | for (i = 0; i <= end_zone; i++) { |
2781 | struct zone *zone = pgdat->node_zones + i; | |
2782 | ||
2ab44f43 MG |
2783 | if (!populated_zone(zone)) |
2784 | continue; | |
2785 | ||
adea02a1 | 2786 | lru_pages += zone_reclaimable_pages(zone); |
2ab44f43 MG |
2787 | |
2788 | /* | |
2789 | * If any zone is currently balanced then kswapd will | |
2790 | * not call compaction as it is expected that the | |
2791 | * necessary pages are already available. | |
2792 | */ | |
2793 | if (pgdat_needs_compaction && | |
2794 | zone_watermark_ok(zone, order, | |
2795 | low_wmark_pages(zone), | |
2796 | *classzone_idx, 0)) | |
2797 | pgdat_needs_compaction = false; | |
1da177e4 LT |
2798 | } |
2799 | ||
2800 | /* | |
2801 | * Now scan the zone in the dma->highmem direction, stopping | |
2802 | * at the last zone which needs scanning. | |
2803 | * | |
2804 | * We do this because the page allocator works in the opposite | |
2805 | * direction. This prevents the page allocator from allocating | |
2806 | * pages behind kswapd's direction of progress, which would | |
2807 | * cause too much scanning of the lower zones. | |
2808 | */ | |
2809 | for (i = 0; i <= end_zone; i++) { | |
2810 | struct zone *zone = pgdat->node_zones + i; | |
75485363 | 2811 | int testorder; |
8afdcece | 2812 | unsigned long balance_gap; |
1da177e4 | 2813 | |
f3fe6512 | 2814 | if (!populated_zone(zone)) |
1da177e4 LT |
2815 | continue; |
2816 | ||
9e3b2f8c KK |
2817 | if (zone->all_unreclaimable && |
2818 | sc.priority != DEF_PRIORITY) | |
1da177e4 LT |
2819 | continue; |
2820 | ||
1da177e4 | 2821 | sc.nr_scanned = 0; |
4e416953 | 2822 | |
0ae5e89c | 2823 | nr_soft_scanned = 0; |
4e416953 BS |
2824 | /* |
2825 | * Call soft limit reclaim before calling shrink_zone. | |
4e416953 | 2826 | */ |
0ae5e89c YH |
2827 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, |
2828 | order, sc.gfp_mask, | |
2829 | &nr_soft_scanned); | |
2830 | sc.nr_reclaimed += nr_soft_reclaimed; | |
00918b6a | 2831 | |
32a4330d | 2832 | /* |
8afdcece MG |
2833 | * We put equal pressure on every zone, unless |
2834 | * one zone has way too many pages free | |
2835 | * already. The "too many pages" is defined | |
2836 | * as the high wmark plus a "gap" where the | |
2837 | * gap is either the low watermark or 1% | |
2838 | * of the zone, whichever is smaller. | |
32a4330d | 2839 | */ |
8afdcece | 2840 | balance_gap = min(low_wmark_pages(zone), |
b40da049 | 2841 | (zone->managed_pages + |
8afdcece MG |
2842 | KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / |
2843 | KSWAPD_ZONE_BALANCE_GAP_RATIO); | |
fe2c2a10 RR |
2844 | /* |
2845 | * Kswapd reclaims only single pages with compaction | |
2846 | * enabled. Trying too hard to reclaim until contiguous | |
2847 | * free pages have become available can hurt performance | |
2848 | * by evicting too much useful data from memory. | |
2849 | * Do not reclaim more than needed for compaction. | |
2850 | */ | |
2851 | testorder = order; | |
d84da3f9 | 2852 | if (IS_ENABLED(CONFIG_COMPACTION) && order && |
fe2c2a10 RR |
2853 | compaction_suitable(zone, order) != |
2854 | COMPACT_SKIPPED) | |
2855 | testorder = 0; | |
2856 | ||
cc715d99 | 2857 | if ((buffer_heads_over_limit && is_highmem_idx(i)) || |
60cefed4 | 2858 | !zone_balanced(zone, testorder, |
b8e83b94 MG |
2859 | balance_gap, end_zone)) { |
2860 | /* | |
2861 | * There should be no need to raise the | |
2862 | * scanning priority if enough pages are | |
2863 | * already being scanned that high | |
2864 | * watermark would be met at 100% efficiency. | |
2865 | */ | |
2ab44f43 MG |
2866 | if (kswapd_shrink_zone(zone, &sc, lru_pages, |
2867 | &nr_attempted)) | |
b8e83b94 MG |
2868 | raise_priority = false; |
2869 | } | |
d7868dae | 2870 | |
1da177e4 | 2871 | /* |
0e50ce3b MK |
2872 | * If we're getting trouble reclaiming, start doing |
2873 | * writepage even in laptop mode. | |
1da177e4 | 2874 | */ |
0e50ce3b | 2875 | if (sc.priority < DEF_PRIORITY - 2) |
1da177e4 | 2876 | sc.may_writepage = 1; |
bb3ab596 | 2877 | |
215ddd66 MG |
2878 | if (zone->all_unreclaimable) { |
2879 | if (end_zone && end_zone == i) | |
2880 | end_zone--; | |
d7868dae | 2881 | continue; |
215ddd66 | 2882 | } |
d7868dae | 2883 | |
258401a6 | 2884 | if (zone_balanced(zone, testorder, 0, end_zone)) |
0e093d99 MG |
2885 | /* |
2886 | * If a zone reaches its high watermark, | |
2887 | * consider it to be no longer congested. It's | |
2888 | * possible there are dirty pages backed by | |
2889 | * congested BDIs but as pressure is relieved, | |
ab8704b8 | 2890 | * speculatively avoid congestion waits |
0e093d99 MG |
2891 | */ |
2892 | zone_clear_flag(zone, ZONE_CONGESTED); | |
1da177e4 | 2893 | } |
5515061d MG |
2894 | |
2895 | /* | |
2896 | * If the low watermark is met there is no need for processes | |
2897 | * to be throttled on pfmemalloc_wait as they should not be | |
2898 | * able to safely make forward progress. Wake them | |
2899 | */ | |
2900 | if (waitqueue_active(&pgdat->pfmemalloc_wait) && | |
2901 | pfmemalloc_watermark_ok(pgdat)) | |
2902 | wake_up(&pgdat->pfmemalloc_wait); | |
2903 | ||
1da177e4 | 2904 | /* |
b8e83b94 MG |
2905 | * Fragmentation may mean that the system cannot be rebalanced |
2906 | * for high-order allocations in all zones. If twice the | |
2907 | * allocation size has been reclaimed and the zones are still | |
2908 | * not balanced then recheck the watermarks at order-0 to | |
2909 | * prevent kswapd reclaiming excessively. Assume that a | |
2910 | * process requested a high-order can direct reclaim/compact. | |
1da177e4 | 2911 | */ |
b8e83b94 MG |
2912 | if (order && sc.nr_reclaimed >= 2UL << order) |
2913 | order = sc.order = 0; | |
8357376d | 2914 | |
b8e83b94 MG |
2915 | /* Check if kswapd should be suspending */ |
2916 | if (try_to_freeze() || kthread_should_stop()) | |
2917 | break; | |
8357376d | 2918 | |
2ab44f43 MG |
2919 | /* |
2920 | * Compact if necessary and kswapd is reclaiming at least the | |
2921 | * high watermark number of pages as requsted | |
2922 | */ | |
2923 | if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted) | |
2924 | compact_pgdat(pgdat, order); | |
2925 | ||
73ce02e9 | 2926 | /* |
b8e83b94 MG |
2927 | * Raise priority if scanning rate is too low or there was no |
2928 | * progress in reclaiming pages | |
73ce02e9 | 2929 | */ |
b8e83b94 MG |
2930 | if (raise_priority || !sc.nr_reclaimed) |
2931 | sc.priority--; | |
9aa41348 | 2932 | } while (sc.priority >= 1 && |
b8e83b94 | 2933 | !pgdat_balanced(pgdat, order, *classzone_idx)); |
1da177e4 | 2934 | |
b8e83b94 | 2935 | out: |
0abdee2b | 2936 | /* |
5515061d | 2937 | * Return the order we were reclaiming at so prepare_kswapd_sleep() |
0abdee2b MG |
2938 | * makes a decision on the order we were last reclaiming at. However, |
2939 | * if another caller entered the allocator slow path while kswapd | |
2940 | * was awake, order will remain at the higher level | |
2941 | */ | |
dc83edd9 | 2942 | *classzone_idx = end_zone; |
0abdee2b | 2943 | return order; |
1da177e4 LT |
2944 | } |
2945 | ||
dc83edd9 | 2946 | static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) |
f0bc0a60 KM |
2947 | { |
2948 | long remaining = 0; | |
2949 | DEFINE_WAIT(wait); | |
2950 | ||
2951 | if (freezing(current) || kthread_should_stop()) | |
2952 | return; | |
2953 | ||
2954 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
2955 | ||
2956 | /* Try to sleep for a short interval */ | |
5515061d | 2957 | if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { |
f0bc0a60 KM |
2958 | remaining = schedule_timeout(HZ/10); |
2959 | finish_wait(&pgdat->kswapd_wait, &wait); | |
2960 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
2961 | } | |
2962 | ||
2963 | /* | |
2964 | * After a short sleep, check if it was a premature sleep. If not, then | |
2965 | * go fully to sleep until explicitly woken up. | |
2966 | */ | |
5515061d | 2967 | if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { |
f0bc0a60 KM |
2968 | trace_mm_vmscan_kswapd_sleep(pgdat->node_id); |
2969 | ||
2970 | /* | |
2971 | * vmstat counters are not perfectly accurate and the estimated | |
2972 | * value for counters such as NR_FREE_PAGES can deviate from the | |
2973 | * true value by nr_online_cpus * threshold. To avoid the zone | |
2974 | * watermarks being breached while under pressure, we reduce the | |
2975 | * per-cpu vmstat threshold while kswapd is awake and restore | |
2976 | * them before going back to sleep. | |
2977 | */ | |
2978 | set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); | |
1c7e7f6c | 2979 | |
62997027 MG |
2980 | /* |
2981 | * Compaction records what page blocks it recently failed to | |
2982 | * isolate pages from and skips them in the future scanning. | |
2983 | * When kswapd is going to sleep, it is reasonable to assume | |
2984 | * that pages and compaction may succeed so reset the cache. | |
2985 | */ | |
2986 | reset_isolation_suitable(pgdat); | |
2987 | ||
1c7e7f6c AK |
2988 | if (!kthread_should_stop()) |
2989 | schedule(); | |
2990 | ||
f0bc0a60 KM |
2991 | set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); |
2992 | } else { | |
2993 | if (remaining) | |
2994 | count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); | |
2995 | else | |
2996 | count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); | |
2997 | } | |
2998 | finish_wait(&pgdat->kswapd_wait, &wait); | |
2999 | } | |
3000 | ||
1da177e4 LT |
3001 | /* |
3002 | * The background pageout daemon, started as a kernel thread | |
4f98a2fe | 3003 | * from the init process. |
1da177e4 LT |
3004 | * |
3005 | * This basically trickles out pages so that we have _some_ | |
3006 | * free memory available even if there is no other activity | |
3007 | * that frees anything up. This is needed for things like routing | |
3008 | * etc, where we otherwise might have all activity going on in | |
3009 | * asynchronous contexts that cannot page things out. | |
3010 | * | |
3011 | * If there are applications that are active memory-allocators | |
3012 | * (most normal use), this basically shouldn't matter. | |
3013 | */ | |
3014 | static int kswapd(void *p) | |
3015 | { | |
215ddd66 | 3016 | unsigned long order, new_order; |
d2ebd0f6 | 3017 | unsigned balanced_order; |
215ddd66 | 3018 | int classzone_idx, new_classzone_idx; |
d2ebd0f6 | 3019 | int balanced_classzone_idx; |
1da177e4 LT |
3020 | pg_data_t *pgdat = (pg_data_t*)p; |
3021 | struct task_struct *tsk = current; | |
f0bc0a60 | 3022 | |
1da177e4 LT |
3023 | struct reclaim_state reclaim_state = { |
3024 | .reclaimed_slab = 0, | |
3025 | }; | |
a70f7302 | 3026 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); |
1da177e4 | 3027 | |
cf40bd16 NP |
3028 | lockdep_set_current_reclaim_state(GFP_KERNEL); |
3029 | ||
174596a0 | 3030 | if (!cpumask_empty(cpumask)) |
c5f59f08 | 3031 | set_cpus_allowed_ptr(tsk, cpumask); |
1da177e4 LT |
3032 | current->reclaim_state = &reclaim_state; |
3033 | ||
3034 | /* | |
3035 | * Tell the memory management that we're a "memory allocator", | |
3036 | * and that if we need more memory we should get access to it | |
3037 | * regardless (see "__alloc_pages()"). "kswapd" should | |
3038 | * never get caught in the normal page freeing logic. | |
3039 | * | |
3040 | * (Kswapd normally doesn't need memory anyway, but sometimes | |
3041 | * you need a small amount of memory in order to be able to | |
3042 | * page out something else, and this flag essentially protects | |
3043 | * us from recursively trying to free more memory as we're | |
3044 | * trying to free the first piece of memory in the first place). | |
3045 | */ | |
930d9152 | 3046 | tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; |
83144186 | 3047 | set_freezable(); |
1da177e4 | 3048 | |
215ddd66 | 3049 | order = new_order = 0; |
d2ebd0f6 | 3050 | balanced_order = 0; |
215ddd66 | 3051 | classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; |
d2ebd0f6 | 3052 | balanced_classzone_idx = classzone_idx; |
1da177e4 | 3053 | for ( ; ; ) { |
6f6313d4 | 3054 | bool ret; |
3e1d1d28 | 3055 | |
215ddd66 MG |
3056 | /* |
3057 | * If the last balance_pgdat was unsuccessful it's unlikely a | |
3058 | * new request of a similar or harder type will succeed soon | |
3059 | * so consider going to sleep on the basis we reclaimed at | |
3060 | */ | |
d2ebd0f6 AS |
3061 | if (balanced_classzone_idx >= new_classzone_idx && |
3062 | balanced_order == new_order) { | |
215ddd66 MG |
3063 | new_order = pgdat->kswapd_max_order; |
3064 | new_classzone_idx = pgdat->classzone_idx; | |
3065 | pgdat->kswapd_max_order = 0; | |
3066 | pgdat->classzone_idx = pgdat->nr_zones - 1; | |
3067 | } | |
3068 | ||
99504748 | 3069 | if (order < new_order || classzone_idx > new_classzone_idx) { |
1da177e4 LT |
3070 | /* |
3071 | * Don't sleep if someone wants a larger 'order' | |
99504748 | 3072 | * allocation or has tigher zone constraints |
1da177e4 LT |
3073 | */ |
3074 | order = new_order; | |
99504748 | 3075 | classzone_idx = new_classzone_idx; |
1da177e4 | 3076 | } else { |
d2ebd0f6 AS |
3077 | kswapd_try_to_sleep(pgdat, balanced_order, |
3078 | balanced_classzone_idx); | |
1da177e4 | 3079 | order = pgdat->kswapd_max_order; |
99504748 | 3080 | classzone_idx = pgdat->classzone_idx; |
f0dfcde0 AS |
3081 | new_order = order; |
3082 | new_classzone_idx = classzone_idx; | |
4d40502e | 3083 | pgdat->kswapd_max_order = 0; |
215ddd66 | 3084 | pgdat->classzone_idx = pgdat->nr_zones - 1; |
1da177e4 | 3085 | } |
1da177e4 | 3086 | |
8fe23e05 DR |
3087 | ret = try_to_freeze(); |
3088 | if (kthread_should_stop()) | |
3089 | break; | |
3090 | ||
3091 | /* | |
3092 | * We can speed up thawing tasks if we don't call balance_pgdat | |
3093 | * after returning from the refrigerator | |
3094 | */ | |
33906bc5 MG |
3095 | if (!ret) { |
3096 | trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); | |
d2ebd0f6 AS |
3097 | balanced_classzone_idx = classzone_idx; |
3098 | balanced_order = balance_pgdat(pgdat, order, | |
3099 | &balanced_classzone_idx); | |
33906bc5 | 3100 | } |
1da177e4 | 3101 | } |
b0a8cc58 TY |
3102 | |
3103 | current->reclaim_state = NULL; | |
1da177e4 LT |
3104 | return 0; |
3105 | } | |
3106 | ||
3107 | /* | |
3108 | * A zone is low on free memory, so wake its kswapd task to service it. | |
3109 | */ | |
99504748 | 3110 | void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) |
1da177e4 LT |
3111 | { |
3112 | pg_data_t *pgdat; | |
3113 | ||
f3fe6512 | 3114 | if (!populated_zone(zone)) |
1da177e4 LT |
3115 | return; |
3116 | ||
88f5acf8 | 3117 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
1da177e4 | 3118 | return; |
88f5acf8 | 3119 | pgdat = zone->zone_pgdat; |
99504748 | 3120 | if (pgdat->kswapd_max_order < order) { |
1da177e4 | 3121 | pgdat->kswapd_max_order = order; |
99504748 MG |
3122 | pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); |
3123 | } | |
8d0986e2 | 3124 | if (!waitqueue_active(&pgdat->kswapd_wait)) |
1da177e4 | 3125 | return; |
88f5acf8 MG |
3126 | if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0)) |
3127 | return; | |
3128 | ||
3129 | trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); | |
8d0986e2 | 3130 | wake_up_interruptible(&pgdat->kswapd_wait); |
1da177e4 LT |
3131 | } |
3132 | ||
adea02a1 WF |
3133 | /* |
3134 | * The reclaimable count would be mostly accurate. | |
3135 | * The less reclaimable pages may be | |
3136 | * - mlocked pages, which will be moved to unevictable list when encountered | |
3137 | * - mapped pages, which may require several travels to be reclaimed | |
3138 | * - dirty pages, which is not "instantly" reclaimable | |
3139 | */ | |
3140 | unsigned long global_reclaimable_pages(void) | |
4f98a2fe | 3141 | { |
adea02a1 WF |
3142 | int nr; |
3143 | ||
3144 | nr = global_page_state(NR_ACTIVE_FILE) + | |
3145 | global_page_state(NR_INACTIVE_FILE); | |
3146 | ||
ec8acf20 | 3147 | if (get_nr_swap_pages() > 0) |
adea02a1 WF |
3148 | nr += global_page_state(NR_ACTIVE_ANON) + |
3149 | global_page_state(NR_INACTIVE_ANON); | |
3150 | ||
3151 | return nr; | |
3152 | } | |
3153 | ||
3154 | unsigned long zone_reclaimable_pages(struct zone *zone) | |
3155 | { | |
3156 | int nr; | |
3157 | ||
3158 | nr = zone_page_state(zone, NR_ACTIVE_FILE) + | |
3159 | zone_page_state(zone, NR_INACTIVE_FILE); | |
3160 | ||
ec8acf20 | 3161 | if (get_nr_swap_pages() > 0) |
adea02a1 WF |
3162 | nr += zone_page_state(zone, NR_ACTIVE_ANON) + |
3163 | zone_page_state(zone, NR_INACTIVE_ANON); | |
3164 | ||
3165 | return nr; | |
4f98a2fe RR |
3166 | } |
3167 | ||
c6f37f12 | 3168 | #ifdef CONFIG_HIBERNATION |
1da177e4 | 3169 | /* |
7b51755c | 3170 | * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of |
d6277db4 RW |
3171 | * freed pages. |
3172 | * | |
3173 | * Rather than trying to age LRUs the aim is to preserve the overall | |
3174 | * LRU order by reclaiming preferentially | |
3175 | * inactive > active > active referenced > active mapped | |
1da177e4 | 3176 | */ |
7b51755c | 3177 | unsigned long shrink_all_memory(unsigned long nr_to_reclaim) |
1da177e4 | 3178 | { |
d6277db4 | 3179 | struct reclaim_state reclaim_state; |
d6277db4 | 3180 | struct scan_control sc = { |
7b51755c KM |
3181 | .gfp_mask = GFP_HIGHUSER_MOVABLE, |
3182 | .may_swap = 1, | |
3183 | .may_unmap = 1, | |
d6277db4 | 3184 | .may_writepage = 1, |
7b51755c KM |
3185 | .nr_to_reclaim = nr_to_reclaim, |
3186 | .hibernation_mode = 1, | |
7b51755c | 3187 | .order = 0, |
9e3b2f8c | 3188 | .priority = DEF_PRIORITY, |
1da177e4 | 3189 | }; |
a09ed5e0 YH |
3190 | struct shrink_control shrink = { |
3191 | .gfp_mask = sc.gfp_mask, | |
3192 | }; | |
3193 | struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); | |
7b51755c KM |
3194 | struct task_struct *p = current; |
3195 | unsigned long nr_reclaimed; | |
1da177e4 | 3196 | |
7b51755c KM |
3197 | p->flags |= PF_MEMALLOC; |
3198 | lockdep_set_current_reclaim_state(sc.gfp_mask); | |
3199 | reclaim_state.reclaimed_slab = 0; | |
3200 | p->reclaim_state = &reclaim_state; | |
d6277db4 | 3201 | |
a09ed5e0 | 3202 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); |
d979677c | 3203 | |
7b51755c KM |
3204 | p->reclaim_state = NULL; |
3205 | lockdep_clear_current_reclaim_state(); | |
3206 | p->flags &= ~PF_MEMALLOC; | |
d6277db4 | 3207 | |
7b51755c | 3208 | return nr_reclaimed; |
1da177e4 | 3209 | } |
c6f37f12 | 3210 | #endif /* CONFIG_HIBERNATION */ |
1da177e4 | 3211 | |
1da177e4 LT |
3212 | /* It's optimal to keep kswapds on the same CPUs as their memory, but |
3213 | not required for correctness. So if the last cpu in a node goes | |
3214 | away, we get changed to run anywhere: as the first one comes back, | |
3215 | restore their cpu bindings. */ | |
fcb35a9b GKH |
3216 | static int cpu_callback(struct notifier_block *nfb, unsigned long action, |
3217 | void *hcpu) | |
1da177e4 | 3218 | { |
58c0a4a7 | 3219 | int nid; |
1da177e4 | 3220 | |
8bb78442 | 3221 | if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { |
48fb2e24 | 3222 | for_each_node_state(nid, N_MEMORY) { |
c5f59f08 | 3223 | pg_data_t *pgdat = NODE_DATA(nid); |
a70f7302 RR |
3224 | const struct cpumask *mask; |
3225 | ||
3226 | mask = cpumask_of_node(pgdat->node_id); | |
c5f59f08 | 3227 | |
3e597945 | 3228 | if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) |
1da177e4 | 3229 | /* One of our CPUs online: restore mask */ |
c5f59f08 | 3230 | set_cpus_allowed_ptr(pgdat->kswapd, mask); |
1da177e4 LT |
3231 | } |
3232 | } | |
3233 | return NOTIFY_OK; | |
3234 | } | |
1da177e4 | 3235 | |
3218ae14 YG |
3236 | /* |
3237 | * This kswapd start function will be called by init and node-hot-add. | |
3238 | * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. | |
3239 | */ | |
3240 | int kswapd_run(int nid) | |
3241 | { | |
3242 | pg_data_t *pgdat = NODE_DATA(nid); | |
3243 | int ret = 0; | |
3244 | ||
3245 | if (pgdat->kswapd) | |
3246 | return 0; | |
3247 | ||
3248 | pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); | |
3249 | if (IS_ERR(pgdat->kswapd)) { | |
3250 | /* failure at boot is fatal */ | |
3251 | BUG_ON(system_state == SYSTEM_BOOTING); | |
d5dc0ad9 GS |
3252 | pr_err("Failed to start kswapd on node %d\n", nid); |
3253 | ret = PTR_ERR(pgdat->kswapd); | |
d72515b8 | 3254 | pgdat->kswapd = NULL; |
3218ae14 YG |
3255 | } |
3256 | return ret; | |
3257 | } | |
3258 | ||
8fe23e05 | 3259 | /* |
d8adde17 JL |
3260 | * Called by memory hotplug when all memory in a node is offlined. Caller must |
3261 | * hold lock_memory_hotplug(). | |
8fe23e05 DR |
3262 | */ |
3263 | void kswapd_stop(int nid) | |
3264 | { | |
3265 | struct task_struct *kswapd = NODE_DATA(nid)->kswapd; | |
3266 | ||
d8adde17 | 3267 | if (kswapd) { |
8fe23e05 | 3268 | kthread_stop(kswapd); |
d8adde17 JL |
3269 | NODE_DATA(nid)->kswapd = NULL; |
3270 | } | |
8fe23e05 DR |
3271 | } |
3272 | ||
1da177e4 LT |
3273 | static int __init kswapd_init(void) |
3274 | { | |
3218ae14 | 3275 | int nid; |
69e05944 | 3276 | |
1da177e4 | 3277 | swap_setup(); |
48fb2e24 | 3278 | for_each_node_state(nid, N_MEMORY) |
3218ae14 | 3279 | kswapd_run(nid); |
1da177e4 LT |
3280 | hotcpu_notifier(cpu_callback, 0); |
3281 | return 0; | |
3282 | } | |
3283 | ||
3284 | module_init(kswapd_init) | |
9eeff239 CL |
3285 | |
3286 | #ifdef CONFIG_NUMA | |
3287 | /* | |
3288 | * Zone reclaim mode | |
3289 | * | |
3290 | * If non-zero call zone_reclaim when the number of free pages falls below | |
3291 | * the watermarks. | |
9eeff239 CL |
3292 | */ |
3293 | int zone_reclaim_mode __read_mostly; | |
3294 | ||
1b2ffb78 | 3295 | #define RECLAIM_OFF 0 |
7d03431c | 3296 | #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ |
1b2ffb78 CL |
3297 | #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ |
3298 | #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ | |
3299 | ||
a92f7126 CL |
3300 | /* |
3301 | * Priority for ZONE_RECLAIM. This determines the fraction of pages | |
3302 | * of a node considered for each zone_reclaim. 4 scans 1/16th of | |
3303 | * a zone. | |
3304 | */ | |
3305 | #define ZONE_RECLAIM_PRIORITY 4 | |
3306 | ||
9614634f CL |
3307 | /* |
3308 | * Percentage of pages in a zone that must be unmapped for zone_reclaim to | |
3309 | * occur. | |
3310 | */ | |
3311 | int sysctl_min_unmapped_ratio = 1; | |
3312 | ||
0ff38490 CL |
3313 | /* |
3314 | * If the number of slab pages in a zone grows beyond this percentage then | |
3315 | * slab reclaim needs to occur. | |
3316 | */ | |
3317 | int sysctl_min_slab_ratio = 5; | |
3318 | ||
90afa5de MG |
3319 | static inline unsigned long zone_unmapped_file_pages(struct zone *zone) |
3320 | { | |
3321 | unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); | |
3322 | unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + | |
3323 | zone_page_state(zone, NR_ACTIVE_FILE); | |
3324 | ||
3325 | /* | |
3326 | * It's possible for there to be more file mapped pages than | |
3327 | * accounted for by the pages on the file LRU lists because | |
3328 | * tmpfs pages accounted for as ANON can also be FILE_MAPPED | |
3329 | */ | |
3330 | return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; | |
3331 | } | |
3332 | ||
3333 | /* Work out how many page cache pages we can reclaim in this reclaim_mode */ | |
3334 | static long zone_pagecache_reclaimable(struct zone *zone) | |
3335 | { | |
3336 | long nr_pagecache_reclaimable; | |
3337 | long delta = 0; | |
3338 | ||
3339 | /* | |
3340 | * If RECLAIM_SWAP is set, then all file pages are considered | |
3341 | * potentially reclaimable. Otherwise, we have to worry about | |
3342 | * pages like swapcache and zone_unmapped_file_pages() provides | |
3343 | * a better estimate | |
3344 | */ | |
3345 | if (zone_reclaim_mode & RECLAIM_SWAP) | |
3346 | nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); | |
3347 | else | |
3348 | nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); | |
3349 | ||
3350 | /* If we can't clean pages, remove dirty pages from consideration */ | |
3351 | if (!(zone_reclaim_mode & RECLAIM_WRITE)) | |
3352 | delta += zone_page_state(zone, NR_FILE_DIRTY); | |
3353 | ||
3354 | /* Watch for any possible underflows due to delta */ | |
3355 | if (unlikely(delta > nr_pagecache_reclaimable)) | |
3356 | delta = nr_pagecache_reclaimable; | |
3357 | ||
3358 | return nr_pagecache_reclaimable - delta; | |
3359 | } | |
3360 | ||
9eeff239 CL |
3361 | /* |
3362 | * Try to free up some pages from this zone through reclaim. | |
3363 | */ | |
179e9639 | 3364 | static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) |
9eeff239 | 3365 | { |
7fb2d46d | 3366 | /* Minimum pages needed in order to stay on node */ |
69e05944 | 3367 | const unsigned long nr_pages = 1 << order; |
9eeff239 CL |
3368 | struct task_struct *p = current; |
3369 | struct reclaim_state reclaim_state; | |
179e9639 AM |
3370 | struct scan_control sc = { |
3371 | .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), | |
a6dc60f8 | 3372 | .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), |
2e2e4259 | 3373 | .may_swap = 1, |
62b726c1 | 3374 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), |
21caf2fc | 3375 | .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), |
bd2f6199 | 3376 | .order = order, |
9e3b2f8c | 3377 | .priority = ZONE_RECLAIM_PRIORITY, |
179e9639 | 3378 | }; |
a09ed5e0 YH |
3379 | struct shrink_control shrink = { |
3380 | .gfp_mask = sc.gfp_mask, | |
3381 | }; | |
15748048 | 3382 | unsigned long nr_slab_pages0, nr_slab_pages1; |
9eeff239 | 3383 | |
9eeff239 | 3384 | cond_resched(); |
d4f7796e CL |
3385 | /* |
3386 | * We need to be able to allocate from the reserves for RECLAIM_SWAP | |
3387 | * and we also need to be able to write out pages for RECLAIM_WRITE | |
3388 | * and RECLAIM_SWAP. | |
3389 | */ | |
3390 | p->flags |= PF_MEMALLOC | PF_SWAPWRITE; | |
76ca542d | 3391 | lockdep_set_current_reclaim_state(gfp_mask); |
9eeff239 CL |
3392 | reclaim_state.reclaimed_slab = 0; |
3393 | p->reclaim_state = &reclaim_state; | |
c84db23c | 3394 | |
90afa5de | 3395 | if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { |
0ff38490 CL |
3396 | /* |
3397 | * Free memory by calling shrink zone with increasing | |
3398 | * priorities until we have enough memory freed. | |
3399 | */ | |
0ff38490 | 3400 | do { |
9e3b2f8c KK |
3401 | shrink_zone(zone, &sc); |
3402 | } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); | |
0ff38490 | 3403 | } |
c84db23c | 3404 | |
15748048 KM |
3405 | nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); |
3406 | if (nr_slab_pages0 > zone->min_slab_pages) { | |
2a16e3f4 | 3407 | /* |
7fb2d46d | 3408 | * shrink_slab() does not currently allow us to determine how |
0ff38490 CL |
3409 | * many pages were freed in this zone. So we take the current |
3410 | * number of slab pages and shake the slab until it is reduced | |
3411 | * by the same nr_pages that we used for reclaiming unmapped | |
3412 | * pages. | |
2a16e3f4 | 3413 | * |
0ff38490 CL |
3414 | * Note that shrink_slab will free memory on all zones and may |
3415 | * take a long time. | |
2a16e3f4 | 3416 | */ |
4dc4b3d9 KM |
3417 | for (;;) { |
3418 | unsigned long lru_pages = zone_reclaimable_pages(zone); | |
3419 | ||
3420 | /* No reclaimable slab or very low memory pressure */ | |
1495f230 | 3421 | if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages)) |
4dc4b3d9 KM |
3422 | break; |
3423 | ||
3424 | /* Freed enough memory */ | |
3425 | nr_slab_pages1 = zone_page_state(zone, | |
3426 | NR_SLAB_RECLAIMABLE); | |
3427 | if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) | |
3428 | break; | |
3429 | } | |
83e33a47 CL |
3430 | |
3431 | /* | |
3432 | * Update nr_reclaimed by the number of slab pages we | |
3433 | * reclaimed from this zone. | |
3434 | */ | |
15748048 KM |
3435 | nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); |
3436 | if (nr_slab_pages1 < nr_slab_pages0) | |
3437 | sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; | |
2a16e3f4 CL |
3438 | } |
3439 | ||
9eeff239 | 3440 | p->reclaim_state = NULL; |
d4f7796e | 3441 | current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); |
76ca542d | 3442 | lockdep_clear_current_reclaim_state(); |
a79311c1 | 3443 | return sc.nr_reclaimed >= nr_pages; |
9eeff239 | 3444 | } |
179e9639 AM |
3445 | |
3446 | int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) | |
3447 | { | |
179e9639 | 3448 | int node_id; |
d773ed6b | 3449 | int ret; |
179e9639 AM |
3450 | |
3451 | /* | |
0ff38490 CL |
3452 | * Zone reclaim reclaims unmapped file backed pages and |
3453 | * slab pages if we are over the defined limits. | |
34aa1330 | 3454 | * |
9614634f CL |
3455 | * A small portion of unmapped file backed pages is needed for |
3456 | * file I/O otherwise pages read by file I/O will be immediately | |
3457 | * thrown out if the zone is overallocated. So we do not reclaim | |
3458 | * if less than a specified percentage of the zone is used by | |
3459 | * unmapped file backed pages. | |
179e9639 | 3460 | */ |
90afa5de MG |
3461 | if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && |
3462 | zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) | |
fa5e084e | 3463 | return ZONE_RECLAIM_FULL; |
179e9639 | 3464 | |
93e4a89a | 3465 | if (zone->all_unreclaimable) |
fa5e084e | 3466 | return ZONE_RECLAIM_FULL; |
d773ed6b | 3467 | |
179e9639 | 3468 | /* |
d773ed6b | 3469 | * Do not scan if the allocation should not be delayed. |
179e9639 | 3470 | */ |
d773ed6b | 3471 | if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) |
fa5e084e | 3472 | return ZONE_RECLAIM_NOSCAN; |
179e9639 AM |
3473 | |
3474 | /* | |
3475 | * Only run zone reclaim on the local zone or on zones that do not | |
3476 | * have associated processors. This will favor the local processor | |
3477 | * over remote processors and spread off node memory allocations | |
3478 | * as wide as possible. | |
3479 | */ | |
89fa3024 | 3480 | node_id = zone_to_nid(zone); |
37c0708d | 3481 | if (node_state(node_id, N_CPU) && node_id != numa_node_id()) |
fa5e084e | 3482 | return ZONE_RECLAIM_NOSCAN; |
d773ed6b DR |
3483 | |
3484 | if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) | |
fa5e084e MG |
3485 | return ZONE_RECLAIM_NOSCAN; |
3486 | ||
d773ed6b DR |
3487 | ret = __zone_reclaim(zone, gfp_mask, order); |
3488 | zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); | |
3489 | ||
24cf7251 MG |
3490 | if (!ret) |
3491 | count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); | |
3492 | ||
d773ed6b | 3493 | return ret; |
179e9639 | 3494 | } |
9eeff239 | 3495 | #endif |
894bc310 | 3496 | |
894bc310 LS |
3497 | /* |
3498 | * page_evictable - test whether a page is evictable | |
3499 | * @page: the page to test | |
894bc310 LS |
3500 | * |
3501 | * Test whether page is evictable--i.e., should be placed on active/inactive | |
39b5f29a | 3502 | * lists vs unevictable list. |
894bc310 LS |
3503 | * |
3504 | * Reasons page might not be evictable: | |
ba9ddf49 | 3505 | * (1) page's mapping marked unevictable |
b291f000 | 3506 | * (2) page is part of an mlocked VMA |
ba9ddf49 | 3507 | * |
894bc310 | 3508 | */ |
39b5f29a | 3509 | int page_evictable(struct page *page) |
894bc310 | 3510 | { |
39b5f29a | 3511 | return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); |
894bc310 | 3512 | } |
89e004ea | 3513 | |
85046579 | 3514 | #ifdef CONFIG_SHMEM |
89e004ea | 3515 | /** |
24513264 HD |
3516 | * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list |
3517 | * @pages: array of pages to check | |
3518 | * @nr_pages: number of pages to check | |
89e004ea | 3519 | * |
24513264 | 3520 | * Checks pages for evictability and moves them to the appropriate lru list. |
85046579 HD |
3521 | * |
3522 | * This function is only used for SysV IPC SHM_UNLOCK. | |
89e004ea | 3523 | */ |
24513264 | 3524 | void check_move_unevictable_pages(struct page **pages, int nr_pages) |
89e004ea | 3525 | { |
925b7673 | 3526 | struct lruvec *lruvec; |
24513264 HD |
3527 | struct zone *zone = NULL; |
3528 | int pgscanned = 0; | |
3529 | int pgrescued = 0; | |
3530 | int i; | |
89e004ea | 3531 | |
24513264 HD |
3532 | for (i = 0; i < nr_pages; i++) { |
3533 | struct page *page = pages[i]; | |
3534 | struct zone *pagezone; | |
89e004ea | 3535 | |
24513264 HD |
3536 | pgscanned++; |
3537 | pagezone = page_zone(page); | |
3538 | if (pagezone != zone) { | |
3539 | if (zone) | |
3540 | spin_unlock_irq(&zone->lru_lock); | |
3541 | zone = pagezone; | |
3542 | spin_lock_irq(&zone->lru_lock); | |
3543 | } | |
fa9add64 | 3544 | lruvec = mem_cgroup_page_lruvec(page, zone); |
89e004ea | 3545 | |
24513264 HD |
3546 | if (!PageLRU(page) || !PageUnevictable(page)) |
3547 | continue; | |
89e004ea | 3548 | |
39b5f29a | 3549 | if (page_evictable(page)) { |
24513264 HD |
3550 | enum lru_list lru = page_lru_base_type(page); |
3551 | ||
3552 | VM_BUG_ON(PageActive(page)); | |
3553 | ClearPageUnevictable(page); | |
fa9add64 HD |
3554 | del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); |
3555 | add_page_to_lru_list(page, lruvec, lru); | |
24513264 | 3556 | pgrescued++; |
89e004ea | 3557 | } |
24513264 | 3558 | } |
89e004ea | 3559 | |
24513264 HD |
3560 | if (zone) { |
3561 | __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); | |
3562 | __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); | |
3563 | spin_unlock_irq(&zone->lru_lock); | |
89e004ea | 3564 | } |
89e004ea | 3565 | } |
85046579 | 3566 | #endif /* CONFIG_SHMEM */ |
af936a16 | 3567 | |
264e56d8 | 3568 | static void warn_scan_unevictable_pages(void) |
af936a16 | 3569 | { |
264e56d8 | 3570 | printk_once(KERN_WARNING |
25bd91bd | 3571 | "%s: The scan_unevictable_pages sysctl/node-interface has been " |
264e56d8 | 3572 | "disabled for lack of a legitimate use case. If you have " |
25bd91bd KM |
3573 | "one, please send an email to [email protected].\n", |
3574 | current->comm); | |
af936a16 LS |
3575 | } |
3576 | ||
3577 | /* | |
3578 | * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of | |
3579 | * all nodes' unevictable lists for evictable pages | |
3580 | */ | |
3581 | unsigned long scan_unevictable_pages; | |
3582 | ||
3583 | int scan_unevictable_handler(struct ctl_table *table, int write, | |
8d65af78 | 3584 | void __user *buffer, |
af936a16 LS |
3585 | size_t *length, loff_t *ppos) |
3586 | { | |
264e56d8 | 3587 | warn_scan_unevictable_pages(); |
8d65af78 | 3588 | proc_doulongvec_minmax(table, write, buffer, length, ppos); |
af936a16 LS |
3589 | scan_unevictable_pages = 0; |
3590 | return 0; | |
3591 | } | |
3592 | ||
e4455abb | 3593 | #ifdef CONFIG_NUMA |
af936a16 LS |
3594 | /* |
3595 | * per node 'scan_unevictable_pages' attribute. On demand re-scan of | |
3596 | * a specified node's per zone unevictable lists for evictable pages. | |
3597 | */ | |
3598 | ||
10fbcf4c KS |
3599 | static ssize_t read_scan_unevictable_node(struct device *dev, |
3600 | struct device_attribute *attr, | |
af936a16 LS |
3601 | char *buf) |
3602 | { | |
264e56d8 | 3603 | warn_scan_unevictable_pages(); |
af936a16 LS |
3604 | return sprintf(buf, "0\n"); /* always zero; should fit... */ |
3605 | } | |
3606 | ||
10fbcf4c KS |
3607 | static ssize_t write_scan_unevictable_node(struct device *dev, |
3608 | struct device_attribute *attr, | |
af936a16 LS |
3609 | const char *buf, size_t count) |
3610 | { | |
264e56d8 | 3611 | warn_scan_unevictable_pages(); |
af936a16 LS |
3612 | return 1; |
3613 | } | |
3614 | ||
3615 | ||
10fbcf4c | 3616 | static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, |
af936a16 LS |
3617 | read_scan_unevictable_node, |
3618 | write_scan_unevictable_node); | |
3619 | ||
3620 | int scan_unevictable_register_node(struct node *node) | |
3621 | { | |
10fbcf4c | 3622 | return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages); |
af936a16 LS |
3623 | } |
3624 | ||
3625 | void scan_unevictable_unregister_node(struct node *node) | |
3626 | { | |
10fbcf4c | 3627 | device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages); |
af936a16 | 3628 | } |
e4455abb | 3629 | #endif |