]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/vmscan.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | * | |
6 | * Swap reorganised 29.12.95, Stephen Tweedie. | |
7 | * kswapd added: 7.1.96 sct | |
8 | * Removed kswapd_ctl limits, and swap out as many pages as needed | |
9 | * to bring the system back to freepages.high: 2.4.97, Rik van Riel. | |
10 | * Zone aware kswapd started 02/00, Kanoj Sarcar ([email protected]). | |
11 | * Multiqueue VM started 5.8.00, Rik van Riel. | |
12 | */ | |
13 | ||
14 | #include <linux/mm.h> | |
15 | #include <linux/module.h> | |
16 | #include <linux/slab.h> | |
17 | #include <linux/kernel_stat.h> | |
18 | #include <linux/swap.h> | |
19 | #include <linux/pagemap.h> | |
20 | #include <linux/init.h> | |
21 | #include <linux/highmem.h> | |
e129b5c2 | 22 | #include <linux/vmstat.h> |
1da177e4 LT |
23 | #include <linux/file.h> |
24 | #include <linux/writeback.h> | |
25 | #include <linux/blkdev.h> | |
26 | #include <linux/buffer_head.h> /* for try_to_release_page(), | |
27 | buffer_heads_over_limit */ | |
28 | #include <linux/mm_inline.h> | |
29 | #include <linux/pagevec.h> | |
30 | #include <linux/backing-dev.h> | |
31 | #include <linux/rmap.h> | |
32 | #include <linux/topology.h> | |
33 | #include <linux/cpu.h> | |
34 | #include <linux/cpuset.h> | |
35 | #include <linux/notifier.h> | |
36 | #include <linux/rwsem.h> | |
248a0301 | 37 | #include <linux/delay.h> |
3218ae14 | 38 | #include <linux/kthread.h> |
7dfb7103 | 39 | #include <linux/freezer.h> |
66e1707b | 40 | #include <linux/memcontrol.h> |
1da177e4 LT |
41 | |
42 | #include <asm/tlbflush.h> | |
43 | #include <asm/div64.h> | |
44 | ||
45 | #include <linux/swapops.h> | |
46 | ||
0f8053a5 NP |
47 | #include "internal.h" |
48 | ||
1da177e4 | 49 | struct scan_control { |
1da177e4 LT |
50 | /* Incremented by the number of inactive pages that were scanned */ |
51 | unsigned long nr_scanned; | |
52 | ||
1da177e4 | 53 | /* This context's GFP mask */ |
6daa0e28 | 54 | gfp_t gfp_mask; |
1da177e4 LT |
55 | |
56 | int may_writepage; | |
57 | ||
f1fd1067 CL |
58 | /* Can pages be swapped as part of reclaim? */ |
59 | int may_swap; | |
60 | ||
1da177e4 LT |
61 | /* This context's SWAP_CLUSTER_MAX. If freeing memory for |
62 | * suspend, we effectively ignore SWAP_CLUSTER_MAX. | |
63 | * In this context, it doesn't matter that we scan the | |
64 | * whole list at once. */ | |
65 | int swap_cluster_max; | |
d6277db4 RW |
66 | |
67 | int swappiness; | |
408d8544 NP |
68 | |
69 | int all_unreclaimable; | |
5ad333eb AW |
70 | |
71 | int order; | |
66e1707b BS |
72 | |
73 | /* Which cgroup do we reclaim from */ | |
74 | struct mem_cgroup *mem_cgroup; | |
75 | ||
76 | /* Pluggable isolate pages callback */ | |
77 | unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst, | |
78 | unsigned long *scanned, int order, int mode, | |
79 | struct zone *z, struct mem_cgroup *mem_cont, | |
80 | int active); | |
1da177e4 LT |
81 | }; |
82 | ||
1da177e4 LT |
83 | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) |
84 | ||
85 | #ifdef ARCH_HAS_PREFETCH | |
86 | #define prefetch_prev_lru_page(_page, _base, _field) \ | |
87 | do { \ | |
88 | if ((_page)->lru.prev != _base) { \ | |
89 | struct page *prev; \ | |
90 | \ | |
91 | prev = lru_to_page(&(_page->lru)); \ | |
92 | prefetch(&prev->_field); \ | |
93 | } \ | |
94 | } while (0) | |
95 | #else | |
96 | #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) | |
97 | #endif | |
98 | ||
99 | #ifdef ARCH_HAS_PREFETCHW | |
100 | #define prefetchw_prev_lru_page(_page, _base, _field) \ | |
101 | do { \ | |
102 | if ((_page)->lru.prev != _base) { \ | |
103 | struct page *prev; \ | |
104 | \ | |
105 | prev = lru_to_page(&(_page->lru)); \ | |
106 | prefetchw(&prev->_field); \ | |
107 | } \ | |
108 | } while (0) | |
109 | #else | |
110 | #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) | |
111 | #endif | |
112 | ||
113 | /* | |
114 | * From 0 .. 100. Higher means more swappy. | |
115 | */ | |
116 | int vm_swappiness = 60; | |
bd1e22b8 | 117 | long vm_total_pages; /* The total number of pages which the VM controls */ |
1da177e4 LT |
118 | |
119 | static LIST_HEAD(shrinker_list); | |
120 | static DECLARE_RWSEM(shrinker_rwsem); | |
121 | ||
00f0b825 | 122 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR |
91a45470 KH |
123 | #define scan_global_lru(sc) (!(sc)->mem_cgroup) |
124 | #else | |
125 | #define scan_global_lru(sc) (1) | |
126 | #endif | |
127 | ||
1da177e4 LT |
128 | /* |
129 | * Add a shrinker callback to be called from the vm | |
130 | */ | |
8e1f936b | 131 | void register_shrinker(struct shrinker *shrinker) |
1da177e4 | 132 | { |
8e1f936b RR |
133 | shrinker->nr = 0; |
134 | down_write(&shrinker_rwsem); | |
135 | list_add_tail(&shrinker->list, &shrinker_list); | |
136 | up_write(&shrinker_rwsem); | |
1da177e4 | 137 | } |
8e1f936b | 138 | EXPORT_SYMBOL(register_shrinker); |
1da177e4 LT |
139 | |
140 | /* | |
141 | * Remove one | |
142 | */ | |
8e1f936b | 143 | void unregister_shrinker(struct shrinker *shrinker) |
1da177e4 LT |
144 | { |
145 | down_write(&shrinker_rwsem); | |
146 | list_del(&shrinker->list); | |
147 | up_write(&shrinker_rwsem); | |
1da177e4 | 148 | } |
8e1f936b | 149 | EXPORT_SYMBOL(unregister_shrinker); |
1da177e4 LT |
150 | |
151 | #define SHRINK_BATCH 128 | |
152 | /* | |
153 | * Call the shrink functions to age shrinkable caches | |
154 | * | |
155 | * Here we assume it costs one seek to replace a lru page and that it also | |
156 | * takes a seek to recreate a cache object. With this in mind we age equal | |
157 | * percentages of the lru and ageable caches. This should balance the seeks | |
158 | * generated by these structures. | |
159 | * | |
183ff22b | 160 | * If the vm encountered mapped pages on the LRU it increase the pressure on |
1da177e4 LT |
161 | * slab to avoid swapping. |
162 | * | |
163 | * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. | |
164 | * | |
165 | * `lru_pages' represents the number of on-LRU pages in all the zones which | |
166 | * are eligible for the caller's allocation attempt. It is used for balancing | |
167 | * slab reclaim versus page reclaim. | |
b15e0905 | 168 | * |
169 | * Returns the number of slab objects which we shrunk. | |
1da177e4 | 170 | */ |
69e05944 AM |
171 | unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, |
172 | unsigned long lru_pages) | |
1da177e4 LT |
173 | { |
174 | struct shrinker *shrinker; | |
69e05944 | 175 | unsigned long ret = 0; |
1da177e4 LT |
176 | |
177 | if (scanned == 0) | |
178 | scanned = SWAP_CLUSTER_MAX; | |
179 | ||
180 | if (!down_read_trylock(&shrinker_rwsem)) | |
b15e0905 | 181 | return 1; /* Assume we'll be able to shrink next time */ |
1da177e4 LT |
182 | |
183 | list_for_each_entry(shrinker, &shrinker_list, list) { | |
184 | unsigned long long delta; | |
185 | unsigned long total_scan; | |
8e1f936b | 186 | unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask); |
1da177e4 LT |
187 | |
188 | delta = (4 * scanned) / shrinker->seeks; | |
ea164d73 | 189 | delta *= max_pass; |
1da177e4 LT |
190 | do_div(delta, lru_pages + 1); |
191 | shrinker->nr += delta; | |
ea164d73 AA |
192 | if (shrinker->nr < 0) { |
193 | printk(KERN_ERR "%s: nr=%ld\n", | |
194 | __FUNCTION__, shrinker->nr); | |
195 | shrinker->nr = max_pass; | |
196 | } | |
197 | ||
198 | /* | |
199 | * Avoid risking looping forever due to too large nr value: | |
200 | * never try to free more than twice the estimate number of | |
201 | * freeable entries. | |
202 | */ | |
203 | if (shrinker->nr > max_pass * 2) | |
204 | shrinker->nr = max_pass * 2; | |
1da177e4 LT |
205 | |
206 | total_scan = shrinker->nr; | |
207 | shrinker->nr = 0; | |
208 | ||
209 | while (total_scan >= SHRINK_BATCH) { | |
210 | long this_scan = SHRINK_BATCH; | |
211 | int shrink_ret; | |
b15e0905 | 212 | int nr_before; |
1da177e4 | 213 | |
8e1f936b RR |
214 | nr_before = (*shrinker->shrink)(0, gfp_mask); |
215 | shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask); | |
1da177e4 LT |
216 | if (shrink_ret == -1) |
217 | break; | |
b15e0905 | 218 | if (shrink_ret < nr_before) |
219 | ret += nr_before - shrink_ret; | |
f8891e5e | 220 | count_vm_events(SLABS_SCANNED, this_scan); |
1da177e4 LT |
221 | total_scan -= this_scan; |
222 | ||
223 | cond_resched(); | |
224 | } | |
225 | ||
226 | shrinker->nr += total_scan; | |
227 | } | |
228 | up_read(&shrinker_rwsem); | |
b15e0905 | 229 | return ret; |
1da177e4 LT |
230 | } |
231 | ||
232 | /* Called without lock on whether page is mapped, so answer is unstable */ | |
233 | static inline int page_mapping_inuse(struct page *page) | |
234 | { | |
235 | struct address_space *mapping; | |
236 | ||
237 | /* Page is in somebody's page tables. */ | |
238 | if (page_mapped(page)) | |
239 | return 1; | |
240 | ||
241 | /* Be more reluctant to reclaim swapcache than pagecache */ | |
242 | if (PageSwapCache(page)) | |
243 | return 1; | |
244 | ||
245 | mapping = page_mapping(page); | |
246 | if (!mapping) | |
247 | return 0; | |
248 | ||
249 | /* File is mmap'd by somebody? */ | |
250 | return mapping_mapped(mapping); | |
251 | } | |
252 | ||
253 | static inline int is_page_cache_freeable(struct page *page) | |
254 | { | |
255 | return page_count(page) - !!PagePrivate(page) == 2; | |
256 | } | |
257 | ||
258 | static int may_write_to_queue(struct backing_dev_info *bdi) | |
259 | { | |
930d9152 | 260 | if (current->flags & PF_SWAPWRITE) |
1da177e4 LT |
261 | return 1; |
262 | if (!bdi_write_congested(bdi)) | |
263 | return 1; | |
264 | if (bdi == current->backing_dev_info) | |
265 | return 1; | |
266 | return 0; | |
267 | } | |
268 | ||
269 | /* | |
270 | * We detected a synchronous write error writing a page out. Probably | |
271 | * -ENOSPC. We need to propagate that into the address_space for a subsequent | |
272 | * fsync(), msync() or close(). | |
273 | * | |
274 | * The tricky part is that after writepage we cannot touch the mapping: nothing | |
275 | * prevents it from being freed up. But we have a ref on the page and once | |
276 | * that page is locked, the mapping is pinned. | |
277 | * | |
278 | * We're allowed to run sleeping lock_page() here because we know the caller has | |
279 | * __GFP_FS. | |
280 | */ | |
281 | static void handle_write_error(struct address_space *mapping, | |
282 | struct page *page, int error) | |
283 | { | |
284 | lock_page(page); | |
3e9f45bd GC |
285 | if (page_mapping(page) == mapping) |
286 | mapping_set_error(mapping, error); | |
1da177e4 LT |
287 | unlock_page(page); |
288 | } | |
289 | ||
c661b078 AW |
290 | /* Request for sync pageout. */ |
291 | enum pageout_io { | |
292 | PAGEOUT_IO_ASYNC, | |
293 | PAGEOUT_IO_SYNC, | |
294 | }; | |
295 | ||
04e62a29 CL |
296 | /* possible outcome of pageout() */ |
297 | typedef enum { | |
298 | /* failed to write page out, page is locked */ | |
299 | PAGE_KEEP, | |
300 | /* move page to the active list, page is locked */ | |
301 | PAGE_ACTIVATE, | |
302 | /* page has been sent to the disk successfully, page is unlocked */ | |
303 | PAGE_SUCCESS, | |
304 | /* page is clean and locked */ | |
305 | PAGE_CLEAN, | |
306 | } pageout_t; | |
307 | ||
1da177e4 | 308 | /* |
1742f19f AM |
309 | * pageout is called by shrink_page_list() for each dirty page. |
310 | * Calls ->writepage(). | |
1da177e4 | 311 | */ |
c661b078 AW |
312 | static pageout_t pageout(struct page *page, struct address_space *mapping, |
313 | enum pageout_io sync_writeback) | |
1da177e4 LT |
314 | { |
315 | /* | |
316 | * If the page is dirty, only perform writeback if that write | |
317 | * will be non-blocking. To prevent this allocation from being | |
318 | * stalled by pagecache activity. But note that there may be | |
319 | * stalls if we need to run get_block(). We could test | |
320 | * PagePrivate for that. | |
321 | * | |
322 | * If this process is currently in generic_file_write() against | |
323 | * this page's queue, we can perform writeback even if that | |
324 | * will block. | |
325 | * | |
326 | * If the page is swapcache, write it back even if that would | |
327 | * block, for some throttling. This happens by accident, because | |
328 | * swap_backing_dev_info is bust: it doesn't reflect the | |
329 | * congestion state of the swapdevs. Easy to fix, if needed. | |
330 | * See swapfile.c:page_queue_congested(). | |
331 | */ | |
332 | if (!is_page_cache_freeable(page)) | |
333 | return PAGE_KEEP; | |
334 | if (!mapping) { | |
335 | /* | |
336 | * Some data journaling orphaned pages can have | |
337 | * page->mapping == NULL while being dirty with clean buffers. | |
338 | */ | |
323aca6c | 339 | if (PagePrivate(page)) { |
1da177e4 LT |
340 | if (try_to_free_buffers(page)) { |
341 | ClearPageDirty(page); | |
342 | printk("%s: orphaned page\n", __FUNCTION__); | |
343 | return PAGE_CLEAN; | |
344 | } | |
345 | } | |
346 | return PAGE_KEEP; | |
347 | } | |
348 | if (mapping->a_ops->writepage == NULL) | |
349 | return PAGE_ACTIVATE; | |
350 | if (!may_write_to_queue(mapping->backing_dev_info)) | |
351 | return PAGE_KEEP; | |
352 | ||
353 | if (clear_page_dirty_for_io(page)) { | |
354 | int res; | |
355 | struct writeback_control wbc = { | |
356 | .sync_mode = WB_SYNC_NONE, | |
357 | .nr_to_write = SWAP_CLUSTER_MAX, | |
111ebb6e OH |
358 | .range_start = 0, |
359 | .range_end = LLONG_MAX, | |
1da177e4 LT |
360 | .nonblocking = 1, |
361 | .for_reclaim = 1, | |
362 | }; | |
363 | ||
364 | SetPageReclaim(page); | |
365 | res = mapping->a_ops->writepage(page, &wbc); | |
366 | if (res < 0) | |
367 | handle_write_error(mapping, page, res); | |
994fc28c | 368 | if (res == AOP_WRITEPAGE_ACTIVATE) { |
1da177e4 LT |
369 | ClearPageReclaim(page); |
370 | return PAGE_ACTIVATE; | |
371 | } | |
c661b078 AW |
372 | |
373 | /* | |
374 | * Wait on writeback if requested to. This happens when | |
375 | * direct reclaiming a large contiguous area and the | |
376 | * first attempt to free a range of pages fails. | |
377 | */ | |
378 | if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC) | |
379 | wait_on_page_writeback(page); | |
380 | ||
1da177e4 LT |
381 | if (!PageWriteback(page)) { |
382 | /* synchronous write or broken a_ops? */ | |
383 | ClearPageReclaim(page); | |
384 | } | |
e129b5c2 | 385 | inc_zone_page_state(page, NR_VMSCAN_WRITE); |
1da177e4 LT |
386 | return PAGE_SUCCESS; |
387 | } | |
388 | ||
389 | return PAGE_CLEAN; | |
390 | } | |
391 | ||
a649fd92 AM |
392 | /* |
393 | * Attempt to detach a locked page from its ->mapping. If it is dirty or if | |
394 | * someone else has a ref on the page, abort and return 0. If it was | |
395 | * successfully detached, return 1. Assumes the caller has a single ref on | |
396 | * this page. | |
397 | */ | |
b20a3503 | 398 | int remove_mapping(struct address_space *mapping, struct page *page) |
49d2e9cc | 399 | { |
28e4d965 NP |
400 | BUG_ON(!PageLocked(page)); |
401 | BUG_ON(mapping != page_mapping(page)); | |
49d2e9cc CL |
402 | |
403 | write_lock_irq(&mapping->tree_lock); | |
49d2e9cc | 404 | /* |
0fd0e6b0 NP |
405 | * The non racy check for a busy page. |
406 | * | |
407 | * Must be careful with the order of the tests. When someone has | |
408 | * a ref to the page, it may be possible that they dirty it then | |
409 | * drop the reference. So if PageDirty is tested before page_count | |
410 | * here, then the following race may occur: | |
411 | * | |
412 | * get_user_pages(&page); | |
413 | * [user mapping goes away] | |
414 | * write_to(page); | |
415 | * !PageDirty(page) [good] | |
416 | * SetPageDirty(page); | |
417 | * put_page(page); | |
418 | * !page_count(page) [good, discard it] | |
419 | * | |
420 | * [oops, our write_to data is lost] | |
421 | * | |
422 | * Reversing the order of the tests ensures such a situation cannot | |
423 | * escape unnoticed. The smp_rmb is needed to ensure the page->flags | |
424 | * load is not satisfied before that of page->_count. | |
425 | * | |
426 | * Note that if SetPageDirty is always performed via set_page_dirty, | |
427 | * and thus under tree_lock, then this ordering is not required. | |
49d2e9cc CL |
428 | */ |
429 | if (unlikely(page_count(page) != 2)) | |
430 | goto cannot_free; | |
431 | smp_rmb(); | |
432 | if (unlikely(PageDirty(page))) | |
433 | goto cannot_free; | |
434 | ||
435 | if (PageSwapCache(page)) { | |
436 | swp_entry_t swap = { .val = page_private(page) }; | |
437 | __delete_from_swap_cache(page); | |
438 | write_unlock_irq(&mapping->tree_lock); | |
439 | swap_free(swap); | |
440 | __put_page(page); /* The pagecache ref */ | |
441 | return 1; | |
442 | } | |
443 | ||
444 | __remove_from_page_cache(page); | |
445 | write_unlock_irq(&mapping->tree_lock); | |
446 | __put_page(page); | |
447 | return 1; | |
448 | ||
449 | cannot_free: | |
450 | write_unlock_irq(&mapping->tree_lock); | |
451 | return 0; | |
452 | } | |
453 | ||
1da177e4 | 454 | /* |
1742f19f | 455 | * shrink_page_list() returns the number of reclaimed pages |
1da177e4 | 456 | */ |
1742f19f | 457 | static unsigned long shrink_page_list(struct list_head *page_list, |
c661b078 AW |
458 | struct scan_control *sc, |
459 | enum pageout_io sync_writeback) | |
1da177e4 LT |
460 | { |
461 | LIST_HEAD(ret_pages); | |
462 | struct pagevec freed_pvec; | |
463 | int pgactivate = 0; | |
05ff5137 | 464 | unsigned long nr_reclaimed = 0; |
1da177e4 LT |
465 | |
466 | cond_resched(); | |
467 | ||
468 | pagevec_init(&freed_pvec, 1); | |
469 | while (!list_empty(page_list)) { | |
470 | struct address_space *mapping; | |
471 | struct page *page; | |
472 | int may_enter_fs; | |
473 | int referenced; | |
474 | ||
475 | cond_resched(); | |
476 | ||
477 | page = lru_to_page(page_list); | |
478 | list_del(&page->lru); | |
479 | ||
480 | if (TestSetPageLocked(page)) | |
481 | goto keep; | |
482 | ||
725d704e | 483 | VM_BUG_ON(PageActive(page)); |
1da177e4 LT |
484 | |
485 | sc->nr_scanned++; | |
80e43426 CL |
486 | |
487 | if (!sc->may_swap && page_mapped(page)) | |
488 | goto keep_locked; | |
489 | ||
1da177e4 LT |
490 | /* Double the slab pressure for mapped and swapcache pages */ |
491 | if (page_mapped(page) || PageSwapCache(page)) | |
492 | sc->nr_scanned++; | |
493 | ||
c661b078 AW |
494 | may_enter_fs = (sc->gfp_mask & __GFP_FS) || |
495 | (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); | |
496 | ||
497 | if (PageWriteback(page)) { | |
498 | /* | |
499 | * Synchronous reclaim is performed in two passes, | |
500 | * first an asynchronous pass over the list to | |
501 | * start parallel writeback, and a second synchronous | |
502 | * pass to wait for the IO to complete. Wait here | |
503 | * for any page for which writeback has already | |
504 | * started. | |
505 | */ | |
506 | if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs) | |
507 | wait_on_page_writeback(page); | |
4dd4b920 | 508 | else |
c661b078 AW |
509 | goto keep_locked; |
510 | } | |
1da177e4 | 511 | |
bed7161a | 512 | referenced = page_referenced(page, 1, sc->mem_cgroup); |
1da177e4 | 513 | /* In active use or really unfreeable? Activate it. */ |
5ad333eb AW |
514 | if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && |
515 | referenced && page_mapping_inuse(page)) | |
1da177e4 LT |
516 | goto activate_locked; |
517 | ||
518 | #ifdef CONFIG_SWAP | |
519 | /* | |
520 | * Anonymous process memory has backing store? | |
521 | * Try to allocate it some swap space here. | |
522 | */ | |
6e5ef1a9 | 523 | if (PageAnon(page) && !PageSwapCache(page)) |
1480a540 | 524 | if (!add_to_swap(page, GFP_ATOMIC)) |
1da177e4 | 525 | goto activate_locked; |
1da177e4 LT |
526 | #endif /* CONFIG_SWAP */ |
527 | ||
528 | mapping = page_mapping(page); | |
1da177e4 LT |
529 | |
530 | /* | |
531 | * The page is mapped into the page tables of one or more | |
532 | * processes. Try to unmap it here. | |
533 | */ | |
534 | if (page_mapped(page) && mapping) { | |
a48d07af | 535 | switch (try_to_unmap(page, 0)) { |
1da177e4 LT |
536 | case SWAP_FAIL: |
537 | goto activate_locked; | |
538 | case SWAP_AGAIN: | |
539 | goto keep_locked; | |
540 | case SWAP_SUCCESS: | |
541 | ; /* try to free the page below */ | |
542 | } | |
543 | } | |
544 | ||
545 | if (PageDirty(page)) { | |
5ad333eb | 546 | if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced) |
1da177e4 | 547 | goto keep_locked; |
4dd4b920 | 548 | if (!may_enter_fs) |
1da177e4 | 549 | goto keep_locked; |
52a8363e | 550 | if (!sc->may_writepage) |
1da177e4 LT |
551 | goto keep_locked; |
552 | ||
553 | /* Page is dirty, try to write it out here */ | |
c661b078 | 554 | switch (pageout(page, mapping, sync_writeback)) { |
1da177e4 LT |
555 | case PAGE_KEEP: |
556 | goto keep_locked; | |
557 | case PAGE_ACTIVATE: | |
558 | goto activate_locked; | |
559 | case PAGE_SUCCESS: | |
4dd4b920 | 560 | if (PageWriteback(page) || PageDirty(page)) |
1da177e4 LT |
561 | goto keep; |
562 | /* | |
563 | * A synchronous write - probably a ramdisk. Go | |
564 | * ahead and try to reclaim the page. | |
565 | */ | |
566 | if (TestSetPageLocked(page)) | |
567 | goto keep; | |
568 | if (PageDirty(page) || PageWriteback(page)) | |
569 | goto keep_locked; | |
570 | mapping = page_mapping(page); | |
571 | case PAGE_CLEAN: | |
572 | ; /* try to free the page below */ | |
573 | } | |
574 | } | |
575 | ||
576 | /* | |
577 | * If the page has buffers, try to free the buffer mappings | |
578 | * associated with this page. If we succeed we try to free | |
579 | * the page as well. | |
580 | * | |
581 | * We do this even if the page is PageDirty(). | |
582 | * try_to_release_page() does not perform I/O, but it is | |
583 | * possible for a page to have PageDirty set, but it is actually | |
584 | * clean (all its buffers are clean). This happens if the | |
585 | * buffers were written out directly, with submit_bh(). ext3 | |
586 | * will do this, as well as the blockdev mapping. | |
587 | * try_to_release_page() will discover that cleanness and will | |
588 | * drop the buffers and mark the page clean - it can be freed. | |
589 | * | |
590 | * Rarely, pages can have buffers and no ->mapping. These are | |
591 | * the pages which were not successfully invalidated in | |
592 | * truncate_complete_page(). We try to drop those buffers here | |
593 | * and if that worked, and the page is no longer mapped into | |
594 | * process address space (page_count == 1) it can be freed. | |
595 | * Otherwise, leave the page on the LRU so it is swappable. | |
596 | */ | |
597 | if (PagePrivate(page)) { | |
598 | if (!try_to_release_page(page, sc->gfp_mask)) | |
599 | goto activate_locked; | |
600 | if (!mapping && page_count(page) == 1) | |
601 | goto free_it; | |
602 | } | |
603 | ||
28e4d965 | 604 | if (!mapping || !remove_mapping(mapping, page)) |
49d2e9cc | 605 | goto keep_locked; |
1da177e4 LT |
606 | |
607 | free_it: | |
608 | unlock_page(page); | |
05ff5137 | 609 | nr_reclaimed++; |
1da177e4 LT |
610 | if (!pagevec_add(&freed_pvec, page)) |
611 | __pagevec_release_nonlru(&freed_pvec); | |
612 | continue; | |
613 | ||
614 | activate_locked: | |
615 | SetPageActive(page); | |
616 | pgactivate++; | |
617 | keep_locked: | |
618 | unlock_page(page); | |
619 | keep: | |
620 | list_add(&page->lru, &ret_pages); | |
725d704e | 621 | VM_BUG_ON(PageLRU(page)); |
1da177e4 LT |
622 | } |
623 | list_splice(&ret_pages, page_list); | |
624 | if (pagevec_count(&freed_pvec)) | |
625 | __pagevec_release_nonlru(&freed_pvec); | |
f8891e5e | 626 | count_vm_events(PGACTIVATE, pgactivate); |
05ff5137 | 627 | return nr_reclaimed; |
1da177e4 LT |
628 | } |
629 | ||
5ad333eb AW |
630 | /* LRU Isolation modes. */ |
631 | #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */ | |
632 | #define ISOLATE_ACTIVE 1 /* Isolate active pages. */ | |
633 | #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */ | |
634 | ||
635 | /* | |
636 | * Attempt to remove the specified page from its LRU. Only take this page | |
637 | * if it is of the appropriate PageActive status. Pages which are being | |
638 | * freed elsewhere are also ignored. | |
639 | * | |
640 | * page: page to consider | |
641 | * mode: one of the LRU isolation modes defined above | |
642 | * | |
643 | * returns 0 on success, -ve errno on failure. | |
644 | */ | |
66e1707b | 645 | int __isolate_lru_page(struct page *page, int mode) |
5ad333eb AW |
646 | { |
647 | int ret = -EINVAL; | |
648 | ||
649 | /* Only take pages on the LRU. */ | |
650 | if (!PageLRU(page)) | |
651 | return ret; | |
652 | ||
653 | /* | |
654 | * When checking the active state, we need to be sure we are | |
655 | * dealing with comparible boolean values. Take the logical not | |
656 | * of each. | |
657 | */ | |
658 | if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode)) | |
659 | return ret; | |
660 | ||
661 | ret = -EBUSY; | |
662 | if (likely(get_page_unless_zero(page))) { | |
663 | /* | |
664 | * Be careful not to clear PageLRU until after we're | |
665 | * sure the page is not being freed elsewhere -- the | |
666 | * page release code relies on it. | |
667 | */ | |
668 | ClearPageLRU(page); | |
669 | ret = 0; | |
670 | } | |
671 | ||
672 | return ret; | |
673 | } | |
674 | ||
1da177e4 LT |
675 | /* |
676 | * zone->lru_lock is heavily contended. Some of the functions that | |
677 | * shrink the lists perform better by taking out a batch of pages | |
678 | * and working on them outside the LRU lock. | |
679 | * | |
680 | * For pagecache intensive workloads, this function is the hottest | |
681 | * spot in the kernel (apart from copy_*_user functions). | |
682 | * | |
683 | * Appropriate locks must be held before calling this function. | |
684 | * | |
685 | * @nr_to_scan: The number of pages to look through on the list. | |
686 | * @src: The LRU list to pull pages off. | |
687 | * @dst: The temp list to put pages on to. | |
688 | * @scanned: The number of pages that were scanned. | |
5ad333eb AW |
689 | * @order: The caller's attempted allocation order |
690 | * @mode: One of the LRU isolation modes | |
1da177e4 LT |
691 | * |
692 | * returns how many pages were moved onto *@dst. | |
693 | */ | |
69e05944 AM |
694 | static unsigned long isolate_lru_pages(unsigned long nr_to_scan, |
695 | struct list_head *src, struct list_head *dst, | |
5ad333eb | 696 | unsigned long *scanned, int order, int mode) |
1da177e4 | 697 | { |
69e05944 | 698 | unsigned long nr_taken = 0; |
c9b02d97 | 699 | unsigned long scan; |
1da177e4 | 700 | |
c9b02d97 | 701 | for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { |
5ad333eb AW |
702 | struct page *page; |
703 | unsigned long pfn; | |
704 | unsigned long end_pfn; | |
705 | unsigned long page_pfn; | |
706 | int zone_id; | |
707 | ||
1da177e4 LT |
708 | page = lru_to_page(src); |
709 | prefetchw_prev_lru_page(page, src, flags); | |
710 | ||
725d704e | 711 | VM_BUG_ON(!PageLRU(page)); |
8d438f96 | 712 | |
5ad333eb AW |
713 | switch (__isolate_lru_page(page, mode)) { |
714 | case 0: | |
715 | list_move(&page->lru, dst); | |
7c8ee9a8 | 716 | nr_taken++; |
5ad333eb AW |
717 | break; |
718 | ||
719 | case -EBUSY: | |
720 | /* else it is being freed elsewhere */ | |
721 | list_move(&page->lru, src); | |
722 | continue; | |
46453a6e | 723 | |
5ad333eb AW |
724 | default: |
725 | BUG(); | |
726 | } | |
727 | ||
728 | if (!order) | |
729 | continue; | |
730 | ||
731 | /* | |
732 | * Attempt to take all pages in the order aligned region | |
733 | * surrounding the tag page. Only take those pages of | |
734 | * the same active state as that tag page. We may safely | |
735 | * round the target page pfn down to the requested order | |
736 | * as the mem_map is guarenteed valid out to MAX_ORDER, | |
737 | * where that page is in a different zone we will detect | |
738 | * it from its zone id and abort this block scan. | |
739 | */ | |
740 | zone_id = page_zone_id(page); | |
741 | page_pfn = page_to_pfn(page); | |
742 | pfn = page_pfn & ~((1 << order) - 1); | |
743 | end_pfn = pfn + (1 << order); | |
744 | for (; pfn < end_pfn; pfn++) { | |
745 | struct page *cursor_page; | |
746 | ||
747 | /* The target page is in the block, ignore it. */ | |
748 | if (unlikely(pfn == page_pfn)) | |
749 | continue; | |
750 | ||
751 | /* Avoid holes within the zone. */ | |
752 | if (unlikely(!pfn_valid_within(pfn))) | |
753 | break; | |
754 | ||
755 | cursor_page = pfn_to_page(pfn); | |
756 | /* Check that we have not crossed a zone boundary. */ | |
757 | if (unlikely(page_zone_id(cursor_page) != zone_id)) | |
758 | continue; | |
759 | switch (__isolate_lru_page(cursor_page, mode)) { | |
760 | case 0: | |
761 | list_move(&cursor_page->lru, dst); | |
762 | nr_taken++; | |
763 | scan++; | |
764 | break; | |
765 | ||
766 | case -EBUSY: | |
767 | /* else it is being freed elsewhere */ | |
768 | list_move(&cursor_page->lru, src); | |
769 | default: | |
770 | break; | |
771 | } | |
772 | } | |
1da177e4 LT |
773 | } |
774 | ||
775 | *scanned = scan; | |
776 | return nr_taken; | |
777 | } | |
778 | ||
66e1707b BS |
779 | static unsigned long isolate_pages_global(unsigned long nr, |
780 | struct list_head *dst, | |
781 | unsigned long *scanned, int order, | |
782 | int mode, struct zone *z, | |
783 | struct mem_cgroup *mem_cont, | |
784 | int active) | |
785 | { | |
786 | if (active) | |
787 | return isolate_lru_pages(nr, &z->active_list, dst, | |
788 | scanned, order, mode); | |
789 | else | |
790 | return isolate_lru_pages(nr, &z->inactive_list, dst, | |
791 | scanned, order, mode); | |
792 | } | |
793 | ||
5ad333eb AW |
794 | /* |
795 | * clear_active_flags() is a helper for shrink_active_list(), clearing | |
796 | * any active bits from the pages in the list. | |
797 | */ | |
798 | static unsigned long clear_active_flags(struct list_head *page_list) | |
799 | { | |
800 | int nr_active = 0; | |
801 | struct page *page; | |
802 | ||
803 | list_for_each_entry(page, page_list, lru) | |
804 | if (PageActive(page)) { | |
805 | ClearPageActive(page); | |
806 | nr_active++; | |
807 | } | |
808 | ||
809 | return nr_active; | |
810 | } | |
811 | ||
1da177e4 | 812 | /* |
1742f19f AM |
813 | * shrink_inactive_list() is a helper for shrink_zone(). It returns the number |
814 | * of reclaimed pages | |
1da177e4 | 815 | */ |
1742f19f AM |
816 | static unsigned long shrink_inactive_list(unsigned long max_scan, |
817 | struct zone *zone, struct scan_control *sc) | |
1da177e4 LT |
818 | { |
819 | LIST_HEAD(page_list); | |
820 | struct pagevec pvec; | |
69e05944 | 821 | unsigned long nr_scanned = 0; |
05ff5137 | 822 | unsigned long nr_reclaimed = 0; |
1da177e4 LT |
823 | |
824 | pagevec_init(&pvec, 1); | |
825 | ||
826 | lru_add_drain(); | |
827 | spin_lock_irq(&zone->lru_lock); | |
69e05944 | 828 | do { |
1da177e4 | 829 | struct page *page; |
69e05944 AM |
830 | unsigned long nr_taken; |
831 | unsigned long nr_scan; | |
832 | unsigned long nr_freed; | |
5ad333eb | 833 | unsigned long nr_active; |
1da177e4 | 834 | |
66e1707b | 835 | nr_taken = sc->isolate_pages(sc->swap_cluster_max, |
5ad333eb AW |
836 | &page_list, &nr_scan, sc->order, |
837 | (sc->order > PAGE_ALLOC_COSTLY_ORDER)? | |
66e1707b BS |
838 | ISOLATE_BOTH : ISOLATE_INACTIVE, |
839 | zone, sc->mem_cgroup, 0); | |
5ad333eb | 840 | nr_active = clear_active_flags(&page_list); |
e9187bdc | 841 | __count_vm_events(PGDEACTIVATE, nr_active); |
5ad333eb AW |
842 | |
843 | __mod_zone_page_state(zone, NR_ACTIVE, -nr_active); | |
844 | __mod_zone_page_state(zone, NR_INACTIVE, | |
845 | -(nr_taken - nr_active)); | |
1cfb419b KH |
846 | if (scan_global_lru(sc)) |
847 | zone->pages_scanned += nr_scan; | |
1da177e4 LT |
848 | spin_unlock_irq(&zone->lru_lock); |
849 | ||
69e05944 | 850 | nr_scanned += nr_scan; |
c661b078 AW |
851 | nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC); |
852 | ||
853 | /* | |
854 | * If we are direct reclaiming for contiguous pages and we do | |
855 | * not reclaim everything in the list, try again and wait | |
856 | * for IO to complete. This will stall high-order allocations | |
857 | * but that should be acceptable to the caller | |
858 | */ | |
859 | if (nr_freed < nr_taken && !current_is_kswapd() && | |
860 | sc->order > PAGE_ALLOC_COSTLY_ORDER) { | |
861 | congestion_wait(WRITE, HZ/10); | |
862 | ||
863 | /* | |
864 | * The attempt at page out may have made some | |
865 | * of the pages active, mark them inactive again. | |
866 | */ | |
867 | nr_active = clear_active_flags(&page_list); | |
868 | count_vm_events(PGDEACTIVATE, nr_active); | |
869 | ||
870 | nr_freed += shrink_page_list(&page_list, sc, | |
871 | PAGEOUT_IO_SYNC); | |
872 | } | |
873 | ||
05ff5137 | 874 | nr_reclaimed += nr_freed; |
a74609fa NP |
875 | local_irq_disable(); |
876 | if (current_is_kswapd()) { | |
f8891e5e CL |
877 | __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan); |
878 | __count_vm_events(KSWAPD_STEAL, nr_freed); | |
1cfb419b | 879 | } else if (scan_global_lru(sc)) |
f8891e5e | 880 | __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan); |
1cfb419b | 881 | |
918d3f90 | 882 | __count_zone_vm_events(PGSTEAL, zone, nr_freed); |
a74609fa | 883 | |
fb8d14e1 WF |
884 | if (nr_taken == 0) |
885 | goto done; | |
886 | ||
a74609fa | 887 | spin_lock(&zone->lru_lock); |
1da177e4 LT |
888 | /* |
889 | * Put back any unfreeable pages. | |
890 | */ | |
891 | while (!list_empty(&page_list)) { | |
892 | page = lru_to_page(&page_list); | |
725d704e | 893 | VM_BUG_ON(PageLRU(page)); |
8d438f96 | 894 | SetPageLRU(page); |
1da177e4 LT |
895 | list_del(&page->lru); |
896 | if (PageActive(page)) | |
897 | add_page_to_active_list(zone, page); | |
898 | else | |
899 | add_page_to_inactive_list(zone, page); | |
900 | if (!pagevec_add(&pvec, page)) { | |
901 | spin_unlock_irq(&zone->lru_lock); | |
902 | __pagevec_release(&pvec); | |
903 | spin_lock_irq(&zone->lru_lock); | |
904 | } | |
905 | } | |
69e05944 | 906 | } while (nr_scanned < max_scan); |
fb8d14e1 | 907 | spin_unlock(&zone->lru_lock); |
1da177e4 | 908 | done: |
fb8d14e1 | 909 | local_irq_enable(); |
1da177e4 | 910 | pagevec_release(&pvec); |
05ff5137 | 911 | return nr_reclaimed; |
1da177e4 LT |
912 | } |
913 | ||
3bb1a852 MB |
914 | /* |
915 | * We are about to scan this zone at a certain priority level. If that priority | |
916 | * level is smaller (ie: more urgent) than the previous priority, then note | |
917 | * that priority level within the zone. This is done so that when the next | |
918 | * process comes in to scan this zone, it will immediately start out at this | |
919 | * priority level rather than having to build up its own scanning priority. | |
920 | * Here, this priority affects only the reclaim-mapped threshold. | |
921 | */ | |
922 | static inline void note_zone_scanning_priority(struct zone *zone, int priority) | |
923 | { | |
924 | if (priority < zone->prev_priority) | |
925 | zone->prev_priority = priority; | |
926 | } | |
927 | ||
4ff1ffb4 NP |
928 | static inline int zone_is_near_oom(struct zone *zone) |
929 | { | |
c8785385 CL |
930 | return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE) |
931 | + zone_page_state(zone, NR_INACTIVE))*3; | |
4ff1ffb4 NP |
932 | } |
933 | ||
1cfb419b KH |
934 | /* |
935 | * Determine we should try to reclaim mapped pages. | |
936 | * This is called only when sc->mem_cgroup is NULL. | |
937 | */ | |
938 | static int calc_reclaim_mapped(struct scan_control *sc, struct zone *zone, | |
939 | int priority) | |
940 | { | |
941 | long mapped_ratio; | |
942 | long distress; | |
943 | long swap_tendency; | |
944 | long imbalance; | |
945 | int reclaim_mapped = 0; | |
946 | int prev_priority; | |
947 | ||
948 | if (scan_global_lru(sc) && zone_is_near_oom(zone)) | |
949 | return 1; | |
950 | /* | |
951 | * `distress' is a measure of how much trouble we're having | |
952 | * reclaiming pages. 0 -> no problems. 100 -> great trouble. | |
953 | */ | |
954 | if (scan_global_lru(sc)) | |
955 | prev_priority = zone->prev_priority; | |
956 | else | |
957 | prev_priority = mem_cgroup_get_reclaim_priority(sc->mem_cgroup); | |
958 | ||
959 | distress = 100 >> min(prev_priority, priority); | |
960 | ||
961 | /* | |
962 | * The point of this algorithm is to decide when to start | |
963 | * reclaiming mapped memory instead of just pagecache. Work out | |
964 | * how much memory | |
965 | * is mapped. | |
966 | */ | |
967 | if (scan_global_lru(sc)) | |
968 | mapped_ratio = ((global_page_state(NR_FILE_MAPPED) + | |
969 | global_page_state(NR_ANON_PAGES)) * 100) / | |
970 | vm_total_pages; | |
971 | else | |
972 | mapped_ratio = mem_cgroup_calc_mapped_ratio(sc->mem_cgroup); | |
973 | ||
974 | /* | |
975 | * Now decide how much we really want to unmap some pages. The | |
976 | * mapped ratio is downgraded - just because there's a lot of | |
977 | * mapped memory doesn't necessarily mean that page reclaim | |
978 | * isn't succeeding. | |
979 | * | |
980 | * The distress ratio is important - we don't want to start | |
981 | * going oom. | |
982 | * | |
983 | * A 100% value of vm_swappiness overrides this algorithm | |
984 | * altogether. | |
985 | */ | |
986 | swap_tendency = mapped_ratio / 2 + distress + sc->swappiness; | |
987 | ||
988 | /* | |
989 | * If there's huge imbalance between active and inactive | |
990 | * (think active 100 times larger than inactive) we should | |
991 | * become more permissive, or the system will take too much | |
992 | * cpu before it start swapping during memory pressure. | |
993 | * Distress is about avoiding early-oom, this is about | |
994 | * making swappiness graceful despite setting it to low | |
995 | * values. | |
996 | * | |
997 | * Avoid div by zero with nr_inactive+1, and max resulting | |
998 | * value is vm_total_pages. | |
999 | */ | |
1000 | if (scan_global_lru(sc)) { | |
1001 | imbalance = zone_page_state(zone, NR_ACTIVE); | |
1002 | imbalance /= zone_page_state(zone, NR_INACTIVE) + 1; | |
1003 | } else | |
1004 | imbalance = mem_cgroup_reclaim_imbalance(sc->mem_cgroup); | |
1005 | ||
1006 | /* | |
1007 | * Reduce the effect of imbalance if swappiness is low, | |
1008 | * this means for a swappiness very low, the imbalance | |
1009 | * must be much higher than 100 for this logic to make | |
1010 | * the difference. | |
1011 | * | |
1012 | * Max temporary value is vm_total_pages*100. | |
1013 | */ | |
1014 | imbalance *= (vm_swappiness + 1); | |
1015 | imbalance /= 100; | |
1016 | ||
1017 | /* | |
1018 | * If not much of the ram is mapped, makes the imbalance | |
1019 | * less relevant, it's high priority we refill the inactive | |
1020 | * list with mapped pages only in presence of high ratio of | |
1021 | * mapped pages. | |
1022 | * | |
1023 | * Max temporary value is vm_total_pages*100. | |
1024 | */ | |
1025 | imbalance *= mapped_ratio; | |
1026 | imbalance /= 100; | |
1027 | ||
1028 | /* apply imbalance feedback to swap_tendency */ | |
1029 | swap_tendency += imbalance; | |
1030 | ||
1031 | /* | |
1032 | * Now use this metric to decide whether to start moving mapped | |
1033 | * memory onto the inactive list. | |
1034 | */ | |
1035 | if (swap_tendency >= 100) | |
1036 | reclaim_mapped = 1; | |
1037 | ||
1038 | return reclaim_mapped; | |
1039 | } | |
1040 | ||
1da177e4 LT |
1041 | /* |
1042 | * This moves pages from the active list to the inactive list. | |
1043 | * | |
1044 | * We move them the other way if the page is referenced by one or more | |
1045 | * processes, from rmap. | |
1046 | * | |
1047 | * If the pages are mostly unmapped, the processing is fast and it is | |
1048 | * appropriate to hold zone->lru_lock across the whole operation. But if | |
1049 | * the pages are mapped, the processing is slow (page_referenced()) so we | |
1050 | * should drop zone->lru_lock around each page. It's impossible to balance | |
1051 | * this, so instead we remove the pages from the LRU while processing them. | |
1052 | * It is safe to rely on PG_active against the non-LRU pages in here because | |
1053 | * nobody will play with that bit on a non-LRU page. | |
1054 | * | |
1055 | * The downside is that we have to touch page->_count against each page. | |
1056 | * But we had to alter page->flags anyway. | |
1057 | */ | |
1cfb419b KH |
1058 | |
1059 | ||
1742f19f | 1060 | static void shrink_active_list(unsigned long nr_pages, struct zone *zone, |
bbdb396a | 1061 | struct scan_control *sc, int priority) |
1da177e4 | 1062 | { |
69e05944 | 1063 | unsigned long pgmoved; |
1da177e4 | 1064 | int pgdeactivate = 0; |
69e05944 | 1065 | unsigned long pgscanned; |
1da177e4 LT |
1066 | LIST_HEAD(l_hold); /* The pages which were snipped off */ |
1067 | LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */ | |
1068 | LIST_HEAD(l_active); /* Pages to go onto the active_list */ | |
1069 | struct page *page; | |
1070 | struct pagevec pvec; | |
1071 | int reclaim_mapped = 0; | |
2903fb16 | 1072 | |
1cfb419b KH |
1073 | if (sc->may_swap) |
1074 | reclaim_mapped = calc_reclaim_mapped(sc, zone, priority); | |
1da177e4 LT |
1075 | |
1076 | lru_add_drain(); | |
1077 | spin_lock_irq(&zone->lru_lock); | |
66e1707b BS |
1078 | pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order, |
1079 | ISOLATE_ACTIVE, zone, | |
1080 | sc->mem_cgroup, 1); | |
1cfb419b KH |
1081 | /* |
1082 | * zone->pages_scanned is used for detect zone's oom | |
1083 | * mem_cgroup remembers nr_scan by itself. | |
1084 | */ | |
1085 | if (scan_global_lru(sc)) | |
1086 | zone->pages_scanned += pgscanned; | |
1087 | ||
c8785385 | 1088 | __mod_zone_page_state(zone, NR_ACTIVE, -pgmoved); |
1da177e4 LT |
1089 | spin_unlock_irq(&zone->lru_lock); |
1090 | ||
1da177e4 LT |
1091 | while (!list_empty(&l_hold)) { |
1092 | cond_resched(); | |
1093 | page = lru_to_page(&l_hold); | |
1094 | list_del(&page->lru); | |
1095 | if (page_mapped(page)) { | |
1096 | if (!reclaim_mapped || | |
1097 | (total_swap_pages == 0 && PageAnon(page)) || | |
bed7161a | 1098 | page_referenced(page, 0, sc->mem_cgroup)) { |
1da177e4 LT |
1099 | list_add(&page->lru, &l_active); |
1100 | continue; | |
1101 | } | |
1102 | } | |
1103 | list_add(&page->lru, &l_inactive); | |
1104 | } | |
1105 | ||
1106 | pagevec_init(&pvec, 1); | |
1107 | pgmoved = 0; | |
1108 | spin_lock_irq(&zone->lru_lock); | |
1109 | while (!list_empty(&l_inactive)) { | |
1110 | page = lru_to_page(&l_inactive); | |
1111 | prefetchw_prev_lru_page(page, &l_inactive, flags); | |
725d704e | 1112 | VM_BUG_ON(PageLRU(page)); |
8d438f96 | 1113 | SetPageLRU(page); |
725d704e | 1114 | VM_BUG_ON(!PageActive(page)); |
4c84cacf NP |
1115 | ClearPageActive(page); |
1116 | ||
1da177e4 | 1117 | list_move(&page->lru, &zone->inactive_list); |
427d5416 | 1118 | mem_cgroup_move_lists(page, false); |
1da177e4 LT |
1119 | pgmoved++; |
1120 | if (!pagevec_add(&pvec, page)) { | |
c8785385 | 1121 | __mod_zone_page_state(zone, NR_INACTIVE, pgmoved); |
1da177e4 LT |
1122 | spin_unlock_irq(&zone->lru_lock); |
1123 | pgdeactivate += pgmoved; | |
1124 | pgmoved = 0; | |
1125 | if (buffer_heads_over_limit) | |
1126 | pagevec_strip(&pvec); | |
1127 | __pagevec_release(&pvec); | |
1128 | spin_lock_irq(&zone->lru_lock); | |
1129 | } | |
1130 | } | |
c8785385 | 1131 | __mod_zone_page_state(zone, NR_INACTIVE, pgmoved); |
1da177e4 LT |
1132 | pgdeactivate += pgmoved; |
1133 | if (buffer_heads_over_limit) { | |
1134 | spin_unlock_irq(&zone->lru_lock); | |
1135 | pagevec_strip(&pvec); | |
1136 | spin_lock_irq(&zone->lru_lock); | |
1137 | } | |
1138 | ||
1139 | pgmoved = 0; | |
1140 | while (!list_empty(&l_active)) { | |
1141 | page = lru_to_page(&l_active); | |
1142 | prefetchw_prev_lru_page(page, &l_active, flags); | |
725d704e | 1143 | VM_BUG_ON(PageLRU(page)); |
8d438f96 | 1144 | SetPageLRU(page); |
725d704e | 1145 | VM_BUG_ON(!PageActive(page)); |
427d5416 | 1146 | |
1da177e4 | 1147 | list_move(&page->lru, &zone->active_list); |
427d5416 | 1148 | mem_cgroup_move_lists(page, true); |
1da177e4 LT |
1149 | pgmoved++; |
1150 | if (!pagevec_add(&pvec, page)) { | |
c8785385 | 1151 | __mod_zone_page_state(zone, NR_ACTIVE, pgmoved); |
1da177e4 LT |
1152 | pgmoved = 0; |
1153 | spin_unlock_irq(&zone->lru_lock); | |
1154 | __pagevec_release(&pvec); | |
1155 | spin_lock_irq(&zone->lru_lock); | |
1156 | } | |
1157 | } | |
c8785385 | 1158 | __mod_zone_page_state(zone, NR_ACTIVE, pgmoved); |
a74609fa | 1159 | |
f8891e5e CL |
1160 | __count_zone_vm_events(PGREFILL, zone, pgscanned); |
1161 | __count_vm_events(PGDEACTIVATE, pgdeactivate); | |
1162 | spin_unlock_irq(&zone->lru_lock); | |
1da177e4 | 1163 | |
a74609fa | 1164 | pagevec_release(&pvec); |
1da177e4 LT |
1165 | } |
1166 | ||
1167 | /* | |
1168 | * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. | |
1169 | */ | |
05ff5137 AM |
1170 | static unsigned long shrink_zone(int priority, struct zone *zone, |
1171 | struct scan_control *sc) | |
1da177e4 LT |
1172 | { |
1173 | unsigned long nr_active; | |
1174 | unsigned long nr_inactive; | |
8695949a | 1175 | unsigned long nr_to_scan; |
05ff5137 | 1176 | unsigned long nr_reclaimed = 0; |
1da177e4 | 1177 | |
1cfb419b KH |
1178 | if (scan_global_lru(sc)) { |
1179 | /* | |
1180 | * Add one to nr_to_scan just to make sure that the kernel | |
1181 | * will slowly sift through the active list. | |
1182 | */ | |
1183 | zone->nr_scan_active += | |
1184 | (zone_page_state(zone, NR_ACTIVE) >> priority) + 1; | |
1185 | nr_active = zone->nr_scan_active; | |
1186 | zone->nr_scan_inactive += | |
1187 | (zone_page_state(zone, NR_INACTIVE) >> priority) + 1; | |
1188 | nr_inactive = zone->nr_scan_inactive; | |
1189 | if (nr_inactive >= sc->swap_cluster_max) | |
1190 | zone->nr_scan_inactive = 0; | |
1191 | else | |
1192 | nr_inactive = 0; | |
1193 | ||
1194 | if (nr_active >= sc->swap_cluster_max) | |
1195 | zone->nr_scan_active = 0; | |
1196 | else | |
1197 | nr_active = 0; | |
1198 | } else { | |
1199 | /* | |
1200 | * This reclaim occurs not because zone memory shortage but | |
1201 | * because memory controller hits its limit. | |
1202 | * Then, don't modify zone reclaim related data. | |
1203 | */ | |
1204 | nr_active = mem_cgroup_calc_reclaim_active(sc->mem_cgroup, | |
1205 | zone, priority); | |
1206 | ||
1207 | nr_inactive = mem_cgroup_calc_reclaim_inactive(sc->mem_cgroup, | |
1208 | zone, priority); | |
1209 | } | |
1da177e4 | 1210 | |
1da177e4 | 1211 | |
1da177e4 LT |
1212 | while (nr_active || nr_inactive) { |
1213 | if (nr_active) { | |
8695949a | 1214 | nr_to_scan = min(nr_active, |
1da177e4 | 1215 | (unsigned long)sc->swap_cluster_max); |
8695949a | 1216 | nr_active -= nr_to_scan; |
bbdb396a | 1217 | shrink_active_list(nr_to_scan, zone, sc, priority); |
1da177e4 LT |
1218 | } |
1219 | ||
1220 | if (nr_inactive) { | |
8695949a | 1221 | nr_to_scan = min(nr_inactive, |
1da177e4 | 1222 | (unsigned long)sc->swap_cluster_max); |
8695949a | 1223 | nr_inactive -= nr_to_scan; |
1742f19f AM |
1224 | nr_reclaimed += shrink_inactive_list(nr_to_scan, zone, |
1225 | sc); | |
1da177e4 LT |
1226 | } |
1227 | } | |
1228 | ||
232ea4d6 | 1229 | throttle_vm_writeout(sc->gfp_mask); |
05ff5137 | 1230 | return nr_reclaimed; |
1da177e4 LT |
1231 | } |
1232 | ||
1233 | /* | |
1234 | * This is the direct reclaim path, for page-allocating processes. We only | |
1235 | * try to reclaim pages from zones which will satisfy the caller's allocation | |
1236 | * request. | |
1237 | * | |
1238 | * We reclaim from a zone even if that zone is over pages_high. Because: | |
1239 | * a) The caller may be trying to free *extra* pages to satisfy a higher-order | |
1240 | * allocation or | |
1241 | * b) The zones may be over pages_high but they must go *over* pages_high to | |
1242 | * satisfy the `incremental min' zone defense algorithm. | |
1243 | * | |
1244 | * Returns the number of reclaimed pages. | |
1245 | * | |
1246 | * If a zone is deemed to be full of pinned pages then just give it a light | |
1247 | * scan then give up on it. | |
1248 | */ | |
dac1d27b | 1249 | static unsigned long shrink_zones(int priority, struct zonelist *zonelist, |
05ff5137 | 1250 | struct scan_control *sc) |
1da177e4 | 1251 | { |
54a6eb5c | 1252 | enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask); |
05ff5137 | 1253 | unsigned long nr_reclaimed = 0; |
54a6eb5c MG |
1254 | struct zone **z; |
1255 | struct zone *zone; | |
1cfb419b | 1256 | |
408d8544 | 1257 | sc->all_unreclaimable = 1; |
54a6eb5c | 1258 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
f3fe6512 | 1259 | if (!populated_zone(zone)) |
1da177e4 | 1260 | continue; |
1cfb419b KH |
1261 | /* |
1262 | * Take care memory controller reclaiming has small influence | |
1263 | * to global LRU. | |
1264 | */ | |
1265 | if (scan_global_lru(sc)) { | |
1266 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) | |
1267 | continue; | |
1268 | note_zone_scanning_priority(zone, priority); | |
1da177e4 | 1269 | |
1cfb419b KH |
1270 | if (zone_is_all_unreclaimable(zone) && |
1271 | priority != DEF_PRIORITY) | |
1272 | continue; /* Let kswapd poll it */ | |
1273 | sc->all_unreclaimable = 0; | |
1274 | } else { | |
1275 | /* | |
1276 | * Ignore cpuset limitation here. We just want to reduce | |
1277 | * # of used pages by us regardless of memory shortage. | |
1278 | */ | |
1279 | sc->all_unreclaimable = 0; | |
1280 | mem_cgroup_note_reclaim_priority(sc->mem_cgroup, | |
1281 | priority); | |
1282 | } | |
408d8544 | 1283 | |
05ff5137 | 1284 | nr_reclaimed += shrink_zone(priority, zone, sc); |
1da177e4 | 1285 | } |
1cfb419b | 1286 | |
05ff5137 | 1287 | return nr_reclaimed; |
1da177e4 LT |
1288 | } |
1289 | ||
1290 | /* | |
1291 | * This is the main entry point to direct page reclaim. | |
1292 | * | |
1293 | * If a full scan of the inactive list fails to free enough memory then we | |
1294 | * are "out of memory" and something needs to be killed. | |
1295 | * | |
1296 | * If the caller is !__GFP_FS then the probability of a failure is reasonably | |
1297 | * high - the zone may be full of dirty or under-writeback pages, which this | |
1298 | * caller can't do much about. We kick pdflush and take explicit naps in the | |
1299 | * hope that some of these pages can be written. But if the allocating task | |
1300 | * holds filesystem locks which prevent writeout this might not work, and the | |
1301 | * allocation attempt will fail. | |
1302 | */ | |
dac1d27b MG |
1303 | static unsigned long do_try_to_free_pages(struct zonelist *zonelist, |
1304 | gfp_t gfp_mask, struct scan_control *sc) | |
1da177e4 LT |
1305 | { |
1306 | int priority; | |
1307 | int ret = 0; | |
69e05944 | 1308 | unsigned long total_scanned = 0; |
05ff5137 | 1309 | unsigned long nr_reclaimed = 0; |
1da177e4 | 1310 | struct reclaim_state *reclaim_state = current->reclaim_state; |
1da177e4 | 1311 | unsigned long lru_pages = 0; |
54a6eb5c MG |
1312 | struct zone **z; |
1313 | struct zone *zone; | |
1314 | enum zone_type high_zoneidx = gfp_zone(gfp_mask); | |
1da177e4 | 1315 | |
1cfb419b KH |
1316 | if (scan_global_lru(sc)) |
1317 | count_vm_event(ALLOCSTALL); | |
1318 | /* | |
1319 | * mem_cgroup will not do shrink_slab. | |
1320 | */ | |
1321 | if (scan_global_lru(sc)) { | |
54a6eb5c | 1322 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
1da177e4 | 1323 | |
1cfb419b KH |
1324 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
1325 | continue; | |
1da177e4 | 1326 | |
1cfb419b KH |
1327 | lru_pages += zone_page_state(zone, NR_ACTIVE) |
1328 | + zone_page_state(zone, NR_INACTIVE); | |
1329 | } | |
1da177e4 LT |
1330 | } |
1331 | ||
1332 | for (priority = DEF_PRIORITY; priority >= 0; priority--) { | |
66e1707b | 1333 | sc->nr_scanned = 0; |
f7b7fd8f RR |
1334 | if (!priority) |
1335 | disable_swap_token(); | |
dac1d27b | 1336 | nr_reclaimed += shrink_zones(priority, zonelist, sc); |
66e1707b BS |
1337 | /* |
1338 | * Don't shrink slabs when reclaiming memory from | |
1339 | * over limit cgroups | |
1340 | */ | |
91a45470 | 1341 | if (scan_global_lru(sc)) { |
66e1707b | 1342 | shrink_slab(sc->nr_scanned, gfp_mask, lru_pages); |
91a45470 KH |
1343 | if (reclaim_state) { |
1344 | nr_reclaimed += reclaim_state->reclaimed_slab; | |
1345 | reclaim_state->reclaimed_slab = 0; | |
1346 | } | |
1da177e4 | 1347 | } |
66e1707b BS |
1348 | total_scanned += sc->nr_scanned; |
1349 | if (nr_reclaimed >= sc->swap_cluster_max) { | |
1da177e4 LT |
1350 | ret = 1; |
1351 | goto out; | |
1352 | } | |
1353 | ||
1354 | /* | |
1355 | * Try to write back as many pages as we just scanned. This | |
1356 | * tends to cause slow streaming writers to write data to the | |
1357 | * disk smoothly, at the dirtying rate, which is nice. But | |
1358 | * that's undesirable in laptop mode, where we *want* lumpy | |
1359 | * writeout. So in laptop mode, write out the whole world. | |
1360 | */ | |
66e1707b BS |
1361 | if (total_scanned > sc->swap_cluster_max + |
1362 | sc->swap_cluster_max / 2) { | |
687a21ce | 1363 | wakeup_pdflush(laptop_mode ? 0 : total_scanned); |
66e1707b | 1364 | sc->may_writepage = 1; |
1da177e4 LT |
1365 | } |
1366 | ||
1367 | /* Take a nap, wait for some writeback to complete */ | |
4dd4b920 | 1368 | if (sc->nr_scanned && priority < DEF_PRIORITY - 2) |
3fcfab16 | 1369 | congestion_wait(WRITE, HZ/10); |
1da177e4 | 1370 | } |
408d8544 | 1371 | /* top priority shrink_caches still had more to do? don't OOM, then */ |
91a45470 | 1372 | if (!sc->all_unreclaimable && scan_global_lru(sc)) |
408d8544 | 1373 | ret = 1; |
1da177e4 | 1374 | out: |
3bb1a852 MB |
1375 | /* |
1376 | * Now that we've scanned all the zones at this priority level, note | |
1377 | * that level within the zone so that the next thread which performs | |
1378 | * scanning of this zone will immediately start out at this priority | |
1379 | * level. This affects only the decision whether or not to bring | |
1380 | * mapped pages onto the inactive list. | |
1381 | */ | |
1382 | if (priority < 0) | |
1383 | priority = 0; | |
1da177e4 | 1384 | |
1cfb419b | 1385 | if (scan_global_lru(sc)) { |
54a6eb5c | 1386 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
1cfb419b KH |
1387 | |
1388 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) | |
1389 | continue; | |
1390 | ||
1391 | zone->prev_priority = priority; | |
1392 | } | |
1393 | } else | |
1394 | mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority); | |
1da177e4 | 1395 | |
1da177e4 LT |
1396 | return ret; |
1397 | } | |
1398 | ||
dac1d27b MG |
1399 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, |
1400 | gfp_t gfp_mask) | |
66e1707b BS |
1401 | { |
1402 | struct scan_control sc = { | |
1403 | .gfp_mask = gfp_mask, | |
1404 | .may_writepage = !laptop_mode, | |
1405 | .swap_cluster_max = SWAP_CLUSTER_MAX, | |
1406 | .may_swap = 1, | |
1407 | .swappiness = vm_swappiness, | |
1408 | .order = order, | |
1409 | .mem_cgroup = NULL, | |
1410 | .isolate_pages = isolate_pages_global, | |
1411 | }; | |
1412 | ||
dac1d27b | 1413 | return do_try_to_free_pages(zonelist, gfp_mask, &sc); |
66e1707b BS |
1414 | } |
1415 | ||
00f0b825 | 1416 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR |
66e1707b | 1417 | |
e1a1cd59 BS |
1418 | unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont, |
1419 | gfp_t gfp_mask) | |
66e1707b BS |
1420 | { |
1421 | struct scan_control sc = { | |
e1a1cd59 | 1422 | .gfp_mask = gfp_mask, |
66e1707b BS |
1423 | .may_writepage = !laptop_mode, |
1424 | .may_swap = 1, | |
1425 | .swap_cluster_max = SWAP_CLUSTER_MAX, | |
1426 | .swappiness = vm_swappiness, | |
1427 | .order = 0, | |
1428 | .mem_cgroup = mem_cont, | |
1429 | .isolate_pages = mem_cgroup_isolate_pages, | |
1430 | }; | |
dac1d27b | 1431 | struct zonelist *zonelist; |
e1a1cd59 | 1432 | int target_zone = gfp_zone(GFP_HIGHUSER_MOVABLE); |
66e1707b | 1433 | |
dac1d27b MG |
1434 | zonelist = &NODE_DATA(numa_node_id())->node_zonelists[target_zone]; |
1435 | if (do_try_to_free_pages(zonelist, sc.gfp_mask, &sc)) | |
417eead3 | 1436 | return 1; |
66e1707b BS |
1437 | return 0; |
1438 | } | |
1439 | #endif | |
1440 | ||
1da177e4 LT |
1441 | /* |
1442 | * For kswapd, balance_pgdat() will work across all this node's zones until | |
1443 | * they are all at pages_high. | |
1444 | * | |
1da177e4 LT |
1445 | * Returns the number of pages which were actually freed. |
1446 | * | |
1447 | * There is special handling here for zones which are full of pinned pages. | |
1448 | * This can happen if the pages are all mlocked, or if they are all used by | |
1449 | * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. | |
1450 | * What we do is to detect the case where all pages in the zone have been | |
1451 | * scanned twice and there has been zero successful reclaim. Mark the zone as | |
1452 | * dead and from now on, only perform a short scan. Basically we're polling | |
1453 | * the zone for when the problem goes away. | |
1454 | * | |
1455 | * kswapd scans the zones in the highmem->normal->dma direction. It skips | |
1456 | * zones which have free_pages > pages_high, but once a zone is found to have | |
1457 | * free_pages <= pages_high, we scan that zone and the lower zones regardless | |
1458 | * of the number of free pages in the lower zones. This interoperates with | |
1459 | * the page allocator fallback scheme to ensure that aging of pages is balanced | |
1460 | * across the zones. | |
1461 | */ | |
d6277db4 | 1462 | static unsigned long balance_pgdat(pg_data_t *pgdat, int order) |
1da177e4 | 1463 | { |
1da177e4 LT |
1464 | int all_zones_ok; |
1465 | int priority; | |
1466 | int i; | |
69e05944 | 1467 | unsigned long total_scanned; |
05ff5137 | 1468 | unsigned long nr_reclaimed; |
1da177e4 | 1469 | struct reclaim_state *reclaim_state = current->reclaim_state; |
179e9639 AM |
1470 | struct scan_control sc = { |
1471 | .gfp_mask = GFP_KERNEL, | |
1472 | .may_swap = 1, | |
d6277db4 RW |
1473 | .swap_cluster_max = SWAP_CLUSTER_MAX, |
1474 | .swappiness = vm_swappiness, | |
5ad333eb | 1475 | .order = order, |
66e1707b BS |
1476 | .mem_cgroup = NULL, |
1477 | .isolate_pages = isolate_pages_global, | |
179e9639 | 1478 | }; |
3bb1a852 MB |
1479 | /* |
1480 | * temp_priority is used to remember the scanning priority at which | |
1481 | * this zone was successfully refilled to free_pages == pages_high. | |
1482 | */ | |
1483 | int temp_priority[MAX_NR_ZONES]; | |
1da177e4 LT |
1484 | |
1485 | loop_again: | |
1486 | total_scanned = 0; | |
05ff5137 | 1487 | nr_reclaimed = 0; |
c0bbbc73 | 1488 | sc.may_writepage = !laptop_mode; |
f8891e5e | 1489 | count_vm_event(PAGEOUTRUN); |
1da177e4 | 1490 | |
3bb1a852 MB |
1491 | for (i = 0; i < pgdat->nr_zones; i++) |
1492 | temp_priority[i] = DEF_PRIORITY; | |
1da177e4 LT |
1493 | |
1494 | for (priority = DEF_PRIORITY; priority >= 0; priority--) { | |
1495 | int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ | |
1496 | unsigned long lru_pages = 0; | |
1497 | ||
f7b7fd8f RR |
1498 | /* The swap token gets in the way of swapout... */ |
1499 | if (!priority) | |
1500 | disable_swap_token(); | |
1501 | ||
1da177e4 LT |
1502 | all_zones_ok = 1; |
1503 | ||
d6277db4 RW |
1504 | /* |
1505 | * Scan in the highmem->dma direction for the highest | |
1506 | * zone which needs scanning | |
1507 | */ | |
1508 | for (i = pgdat->nr_zones - 1; i >= 0; i--) { | |
1509 | struct zone *zone = pgdat->node_zones + i; | |
1da177e4 | 1510 | |
d6277db4 RW |
1511 | if (!populated_zone(zone)) |
1512 | continue; | |
1da177e4 | 1513 | |
e815af95 DR |
1514 | if (zone_is_all_unreclaimable(zone) && |
1515 | priority != DEF_PRIORITY) | |
d6277db4 | 1516 | continue; |
1da177e4 | 1517 | |
d6277db4 RW |
1518 | if (!zone_watermark_ok(zone, order, zone->pages_high, |
1519 | 0, 0)) { | |
1520 | end_zone = i; | |
e1dbeda6 | 1521 | break; |
1da177e4 | 1522 | } |
1da177e4 | 1523 | } |
e1dbeda6 AM |
1524 | if (i < 0) |
1525 | goto out; | |
1526 | ||
1da177e4 LT |
1527 | for (i = 0; i <= end_zone; i++) { |
1528 | struct zone *zone = pgdat->node_zones + i; | |
1529 | ||
c8785385 CL |
1530 | lru_pages += zone_page_state(zone, NR_ACTIVE) |
1531 | + zone_page_state(zone, NR_INACTIVE); | |
1da177e4 LT |
1532 | } |
1533 | ||
1534 | /* | |
1535 | * Now scan the zone in the dma->highmem direction, stopping | |
1536 | * at the last zone which needs scanning. | |
1537 | * | |
1538 | * We do this because the page allocator works in the opposite | |
1539 | * direction. This prevents the page allocator from allocating | |
1540 | * pages behind kswapd's direction of progress, which would | |
1541 | * cause too much scanning of the lower zones. | |
1542 | */ | |
1543 | for (i = 0; i <= end_zone; i++) { | |
1544 | struct zone *zone = pgdat->node_zones + i; | |
b15e0905 | 1545 | int nr_slab; |
1da177e4 | 1546 | |
f3fe6512 | 1547 | if (!populated_zone(zone)) |
1da177e4 LT |
1548 | continue; |
1549 | ||
e815af95 DR |
1550 | if (zone_is_all_unreclaimable(zone) && |
1551 | priority != DEF_PRIORITY) | |
1da177e4 LT |
1552 | continue; |
1553 | ||
d6277db4 RW |
1554 | if (!zone_watermark_ok(zone, order, zone->pages_high, |
1555 | end_zone, 0)) | |
1556 | all_zones_ok = 0; | |
3bb1a852 | 1557 | temp_priority[i] = priority; |
1da177e4 | 1558 | sc.nr_scanned = 0; |
3bb1a852 | 1559 | note_zone_scanning_priority(zone, priority); |
32a4330d RR |
1560 | /* |
1561 | * We put equal pressure on every zone, unless one | |
1562 | * zone has way too many pages free already. | |
1563 | */ | |
1564 | if (!zone_watermark_ok(zone, order, 8*zone->pages_high, | |
1565 | end_zone, 0)) | |
1566 | nr_reclaimed += shrink_zone(priority, zone, &sc); | |
1da177e4 | 1567 | reclaim_state->reclaimed_slab = 0; |
b15e0905 | 1568 | nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL, |
1569 | lru_pages); | |
05ff5137 | 1570 | nr_reclaimed += reclaim_state->reclaimed_slab; |
1da177e4 | 1571 | total_scanned += sc.nr_scanned; |
e815af95 | 1572 | if (zone_is_all_unreclaimable(zone)) |
1da177e4 | 1573 | continue; |
b15e0905 | 1574 | if (nr_slab == 0 && zone->pages_scanned >= |
c8785385 CL |
1575 | (zone_page_state(zone, NR_ACTIVE) |
1576 | + zone_page_state(zone, NR_INACTIVE)) * 6) | |
e815af95 DR |
1577 | zone_set_flag(zone, |
1578 | ZONE_ALL_UNRECLAIMABLE); | |
1da177e4 LT |
1579 | /* |
1580 | * If we've done a decent amount of scanning and | |
1581 | * the reclaim ratio is low, start doing writepage | |
1582 | * even in laptop mode | |
1583 | */ | |
1584 | if (total_scanned > SWAP_CLUSTER_MAX * 2 && | |
05ff5137 | 1585 | total_scanned > nr_reclaimed + nr_reclaimed / 2) |
1da177e4 LT |
1586 | sc.may_writepage = 1; |
1587 | } | |
1da177e4 LT |
1588 | if (all_zones_ok) |
1589 | break; /* kswapd: all done */ | |
1590 | /* | |
1591 | * OK, kswapd is getting into trouble. Take a nap, then take | |
1592 | * another pass across the zones. | |
1593 | */ | |
4dd4b920 | 1594 | if (total_scanned && priority < DEF_PRIORITY - 2) |
3fcfab16 | 1595 | congestion_wait(WRITE, HZ/10); |
1da177e4 LT |
1596 | |
1597 | /* | |
1598 | * We do this so kswapd doesn't build up large priorities for | |
1599 | * example when it is freeing in parallel with allocators. It | |
1600 | * matches the direct reclaim path behaviour in terms of impact | |
1601 | * on zone->*_priority. | |
1602 | */ | |
d6277db4 | 1603 | if (nr_reclaimed >= SWAP_CLUSTER_MAX) |
1da177e4 LT |
1604 | break; |
1605 | } | |
1606 | out: | |
3bb1a852 MB |
1607 | /* |
1608 | * Note within each zone the priority level at which this zone was | |
1609 | * brought into a happy state. So that the next thread which scans this | |
1610 | * zone will start out at that priority level. | |
1611 | */ | |
1da177e4 LT |
1612 | for (i = 0; i < pgdat->nr_zones; i++) { |
1613 | struct zone *zone = pgdat->node_zones + i; | |
1614 | ||
3bb1a852 | 1615 | zone->prev_priority = temp_priority[i]; |
1da177e4 LT |
1616 | } |
1617 | if (!all_zones_ok) { | |
1618 | cond_resched(); | |
8357376d RW |
1619 | |
1620 | try_to_freeze(); | |
1621 | ||
1da177e4 LT |
1622 | goto loop_again; |
1623 | } | |
1624 | ||
05ff5137 | 1625 | return nr_reclaimed; |
1da177e4 LT |
1626 | } |
1627 | ||
1628 | /* | |
1629 | * The background pageout daemon, started as a kernel thread | |
1630 | * from the init process. | |
1631 | * | |
1632 | * This basically trickles out pages so that we have _some_ | |
1633 | * free memory available even if there is no other activity | |
1634 | * that frees anything up. This is needed for things like routing | |
1635 | * etc, where we otherwise might have all activity going on in | |
1636 | * asynchronous contexts that cannot page things out. | |
1637 | * | |
1638 | * If there are applications that are active memory-allocators | |
1639 | * (most normal use), this basically shouldn't matter. | |
1640 | */ | |
1641 | static int kswapd(void *p) | |
1642 | { | |
1643 | unsigned long order; | |
1644 | pg_data_t *pgdat = (pg_data_t*)p; | |
1645 | struct task_struct *tsk = current; | |
1646 | DEFINE_WAIT(wait); | |
1647 | struct reclaim_state reclaim_state = { | |
1648 | .reclaimed_slab = 0, | |
1649 | }; | |
c5f59f08 | 1650 | node_to_cpumask_ptr(cpumask, pgdat->node_id); |
1da177e4 | 1651 | |
c5f59f08 MT |
1652 | if (!cpus_empty(*cpumask)) |
1653 | set_cpus_allowed_ptr(tsk, cpumask); | |
1da177e4 LT |
1654 | current->reclaim_state = &reclaim_state; |
1655 | ||
1656 | /* | |
1657 | * Tell the memory management that we're a "memory allocator", | |
1658 | * and that if we need more memory we should get access to it | |
1659 | * regardless (see "__alloc_pages()"). "kswapd" should | |
1660 | * never get caught in the normal page freeing logic. | |
1661 | * | |
1662 | * (Kswapd normally doesn't need memory anyway, but sometimes | |
1663 | * you need a small amount of memory in order to be able to | |
1664 | * page out something else, and this flag essentially protects | |
1665 | * us from recursively trying to free more memory as we're | |
1666 | * trying to free the first piece of memory in the first place). | |
1667 | */ | |
930d9152 | 1668 | tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; |
83144186 | 1669 | set_freezable(); |
1da177e4 LT |
1670 | |
1671 | order = 0; | |
1672 | for ( ; ; ) { | |
1673 | unsigned long new_order; | |
3e1d1d28 | 1674 | |
1da177e4 LT |
1675 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); |
1676 | new_order = pgdat->kswapd_max_order; | |
1677 | pgdat->kswapd_max_order = 0; | |
1678 | if (order < new_order) { | |
1679 | /* | |
1680 | * Don't sleep if someone wants a larger 'order' | |
1681 | * allocation | |
1682 | */ | |
1683 | order = new_order; | |
1684 | } else { | |
b1296cc4 RW |
1685 | if (!freezing(current)) |
1686 | schedule(); | |
1687 | ||
1da177e4 LT |
1688 | order = pgdat->kswapd_max_order; |
1689 | } | |
1690 | finish_wait(&pgdat->kswapd_wait, &wait); | |
1691 | ||
b1296cc4 RW |
1692 | if (!try_to_freeze()) { |
1693 | /* We can speed up thawing tasks if we don't call | |
1694 | * balance_pgdat after returning from the refrigerator | |
1695 | */ | |
1696 | balance_pgdat(pgdat, order); | |
1697 | } | |
1da177e4 LT |
1698 | } |
1699 | return 0; | |
1700 | } | |
1701 | ||
1702 | /* | |
1703 | * A zone is low on free memory, so wake its kswapd task to service it. | |
1704 | */ | |
1705 | void wakeup_kswapd(struct zone *zone, int order) | |
1706 | { | |
1707 | pg_data_t *pgdat; | |
1708 | ||
f3fe6512 | 1709 | if (!populated_zone(zone)) |
1da177e4 LT |
1710 | return; |
1711 | ||
1712 | pgdat = zone->zone_pgdat; | |
7fb1d9fc | 1713 | if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0)) |
1da177e4 LT |
1714 | return; |
1715 | if (pgdat->kswapd_max_order < order) | |
1716 | pgdat->kswapd_max_order = order; | |
02a0e53d | 1717 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
1da177e4 | 1718 | return; |
8d0986e2 | 1719 | if (!waitqueue_active(&pgdat->kswapd_wait)) |
1da177e4 | 1720 | return; |
8d0986e2 | 1721 | wake_up_interruptible(&pgdat->kswapd_wait); |
1da177e4 LT |
1722 | } |
1723 | ||
1724 | #ifdef CONFIG_PM | |
1725 | /* | |
d6277db4 RW |
1726 | * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages |
1727 | * from LRU lists system-wide, for given pass and priority, and returns the | |
1728 | * number of reclaimed pages | |
1729 | * | |
1730 | * For pass > 3 we also try to shrink the LRU lists that contain a few pages | |
1731 | */ | |
e07aa05b NC |
1732 | static unsigned long shrink_all_zones(unsigned long nr_pages, int prio, |
1733 | int pass, struct scan_control *sc) | |
d6277db4 RW |
1734 | { |
1735 | struct zone *zone; | |
1736 | unsigned long nr_to_scan, ret = 0; | |
1737 | ||
1738 | for_each_zone(zone) { | |
1739 | ||
1740 | if (!populated_zone(zone)) | |
1741 | continue; | |
1742 | ||
e815af95 | 1743 | if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY) |
d6277db4 RW |
1744 | continue; |
1745 | ||
1746 | /* For pass = 0 we don't shrink the active list */ | |
1747 | if (pass > 0) { | |
c8785385 CL |
1748 | zone->nr_scan_active += |
1749 | (zone_page_state(zone, NR_ACTIVE) >> prio) + 1; | |
d6277db4 RW |
1750 | if (zone->nr_scan_active >= nr_pages || pass > 3) { |
1751 | zone->nr_scan_active = 0; | |
c8785385 CL |
1752 | nr_to_scan = min(nr_pages, |
1753 | zone_page_state(zone, NR_ACTIVE)); | |
bbdb396a | 1754 | shrink_active_list(nr_to_scan, zone, sc, prio); |
d6277db4 RW |
1755 | } |
1756 | } | |
1757 | ||
c8785385 CL |
1758 | zone->nr_scan_inactive += |
1759 | (zone_page_state(zone, NR_INACTIVE) >> prio) + 1; | |
d6277db4 RW |
1760 | if (zone->nr_scan_inactive >= nr_pages || pass > 3) { |
1761 | zone->nr_scan_inactive = 0; | |
c8785385 CL |
1762 | nr_to_scan = min(nr_pages, |
1763 | zone_page_state(zone, NR_INACTIVE)); | |
d6277db4 RW |
1764 | ret += shrink_inactive_list(nr_to_scan, zone, sc); |
1765 | if (ret >= nr_pages) | |
1766 | return ret; | |
1767 | } | |
1768 | } | |
1769 | ||
1770 | return ret; | |
1771 | } | |
1772 | ||
76395d37 AM |
1773 | static unsigned long count_lru_pages(void) |
1774 | { | |
c8785385 | 1775 | return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE); |
76395d37 AM |
1776 | } |
1777 | ||
d6277db4 RW |
1778 | /* |
1779 | * Try to free `nr_pages' of memory, system-wide, and return the number of | |
1780 | * freed pages. | |
1781 | * | |
1782 | * Rather than trying to age LRUs the aim is to preserve the overall | |
1783 | * LRU order by reclaiming preferentially | |
1784 | * inactive > active > active referenced > active mapped | |
1da177e4 | 1785 | */ |
69e05944 | 1786 | unsigned long shrink_all_memory(unsigned long nr_pages) |
1da177e4 | 1787 | { |
d6277db4 | 1788 | unsigned long lru_pages, nr_slab; |
69e05944 | 1789 | unsigned long ret = 0; |
d6277db4 RW |
1790 | int pass; |
1791 | struct reclaim_state reclaim_state; | |
d6277db4 RW |
1792 | struct scan_control sc = { |
1793 | .gfp_mask = GFP_KERNEL, | |
1794 | .may_swap = 0, | |
1795 | .swap_cluster_max = nr_pages, | |
1796 | .may_writepage = 1, | |
1797 | .swappiness = vm_swappiness, | |
66e1707b | 1798 | .isolate_pages = isolate_pages_global, |
1da177e4 LT |
1799 | }; |
1800 | ||
1801 | current->reclaim_state = &reclaim_state; | |
69e05944 | 1802 | |
76395d37 | 1803 | lru_pages = count_lru_pages(); |
972d1a7b | 1804 | nr_slab = global_page_state(NR_SLAB_RECLAIMABLE); |
d6277db4 RW |
1805 | /* If slab caches are huge, it's better to hit them first */ |
1806 | while (nr_slab >= lru_pages) { | |
1807 | reclaim_state.reclaimed_slab = 0; | |
1808 | shrink_slab(nr_pages, sc.gfp_mask, lru_pages); | |
1809 | if (!reclaim_state.reclaimed_slab) | |
1da177e4 | 1810 | break; |
d6277db4 RW |
1811 | |
1812 | ret += reclaim_state.reclaimed_slab; | |
1813 | if (ret >= nr_pages) | |
1814 | goto out; | |
1815 | ||
1816 | nr_slab -= reclaim_state.reclaimed_slab; | |
1da177e4 | 1817 | } |
d6277db4 RW |
1818 | |
1819 | /* | |
1820 | * We try to shrink LRUs in 5 passes: | |
1821 | * 0 = Reclaim from inactive_list only | |
1822 | * 1 = Reclaim from active list but don't reclaim mapped | |
1823 | * 2 = 2nd pass of type 1 | |
1824 | * 3 = Reclaim mapped (normal reclaim) | |
1825 | * 4 = 2nd pass of type 3 | |
1826 | */ | |
1827 | for (pass = 0; pass < 5; pass++) { | |
1828 | int prio; | |
1829 | ||
d6277db4 RW |
1830 | /* Force reclaiming mapped pages in the passes #3 and #4 */ |
1831 | if (pass > 2) { | |
1832 | sc.may_swap = 1; | |
1833 | sc.swappiness = 100; | |
1834 | } | |
1835 | ||
1836 | for (prio = DEF_PRIORITY; prio >= 0; prio--) { | |
1837 | unsigned long nr_to_scan = nr_pages - ret; | |
1838 | ||
d6277db4 | 1839 | sc.nr_scanned = 0; |
d6277db4 RW |
1840 | ret += shrink_all_zones(nr_to_scan, prio, pass, &sc); |
1841 | if (ret >= nr_pages) | |
1842 | goto out; | |
1843 | ||
1844 | reclaim_state.reclaimed_slab = 0; | |
76395d37 AM |
1845 | shrink_slab(sc.nr_scanned, sc.gfp_mask, |
1846 | count_lru_pages()); | |
d6277db4 RW |
1847 | ret += reclaim_state.reclaimed_slab; |
1848 | if (ret >= nr_pages) | |
1849 | goto out; | |
1850 | ||
1851 | if (sc.nr_scanned && prio < DEF_PRIORITY - 2) | |
3fcfab16 | 1852 | congestion_wait(WRITE, HZ / 10); |
d6277db4 | 1853 | } |
248a0301 | 1854 | } |
d6277db4 RW |
1855 | |
1856 | /* | |
1857 | * If ret = 0, we could not shrink LRUs, but there may be something | |
1858 | * in slab caches | |
1859 | */ | |
76395d37 | 1860 | if (!ret) { |
d6277db4 RW |
1861 | do { |
1862 | reclaim_state.reclaimed_slab = 0; | |
76395d37 | 1863 | shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages()); |
d6277db4 RW |
1864 | ret += reclaim_state.reclaimed_slab; |
1865 | } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0); | |
76395d37 | 1866 | } |
d6277db4 RW |
1867 | |
1868 | out: | |
1da177e4 | 1869 | current->reclaim_state = NULL; |
d6277db4 | 1870 | |
1da177e4 LT |
1871 | return ret; |
1872 | } | |
1873 | #endif | |
1874 | ||
1da177e4 LT |
1875 | /* It's optimal to keep kswapds on the same CPUs as their memory, but |
1876 | not required for correctness. So if the last cpu in a node goes | |
1877 | away, we get changed to run anywhere: as the first one comes back, | |
1878 | restore their cpu bindings. */ | |
9c7b216d | 1879 | static int __devinit cpu_callback(struct notifier_block *nfb, |
69e05944 | 1880 | unsigned long action, void *hcpu) |
1da177e4 | 1881 | { |
58c0a4a7 | 1882 | int nid; |
1da177e4 | 1883 | |
8bb78442 | 1884 | if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { |
58c0a4a7 | 1885 | for_each_node_state(nid, N_HIGH_MEMORY) { |
c5f59f08 MT |
1886 | pg_data_t *pgdat = NODE_DATA(nid); |
1887 | node_to_cpumask_ptr(mask, pgdat->node_id); | |
1888 | ||
1889 | if (any_online_cpu(*mask) < nr_cpu_ids) | |
1da177e4 | 1890 | /* One of our CPUs online: restore mask */ |
c5f59f08 | 1891 | set_cpus_allowed_ptr(pgdat->kswapd, mask); |
1da177e4 LT |
1892 | } |
1893 | } | |
1894 | return NOTIFY_OK; | |
1895 | } | |
1da177e4 | 1896 | |
3218ae14 YG |
1897 | /* |
1898 | * This kswapd start function will be called by init and node-hot-add. | |
1899 | * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. | |
1900 | */ | |
1901 | int kswapd_run(int nid) | |
1902 | { | |
1903 | pg_data_t *pgdat = NODE_DATA(nid); | |
1904 | int ret = 0; | |
1905 | ||
1906 | if (pgdat->kswapd) | |
1907 | return 0; | |
1908 | ||
1909 | pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); | |
1910 | if (IS_ERR(pgdat->kswapd)) { | |
1911 | /* failure at boot is fatal */ | |
1912 | BUG_ON(system_state == SYSTEM_BOOTING); | |
1913 | printk("Failed to start kswapd on node %d\n",nid); | |
1914 | ret = -1; | |
1915 | } | |
1916 | return ret; | |
1917 | } | |
1918 | ||
1da177e4 LT |
1919 | static int __init kswapd_init(void) |
1920 | { | |
3218ae14 | 1921 | int nid; |
69e05944 | 1922 | |
1da177e4 | 1923 | swap_setup(); |
9422ffba | 1924 | for_each_node_state(nid, N_HIGH_MEMORY) |
3218ae14 | 1925 | kswapd_run(nid); |
1da177e4 LT |
1926 | hotcpu_notifier(cpu_callback, 0); |
1927 | return 0; | |
1928 | } | |
1929 | ||
1930 | module_init(kswapd_init) | |
9eeff239 CL |
1931 | |
1932 | #ifdef CONFIG_NUMA | |
1933 | /* | |
1934 | * Zone reclaim mode | |
1935 | * | |
1936 | * If non-zero call zone_reclaim when the number of free pages falls below | |
1937 | * the watermarks. | |
9eeff239 CL |
1938 | */ |
1939 | int zone_reclaim_mode __read_mostly; | |
1940 | ||
1b2ffb78 CL |
1941 | #define RECLAIM_OFF 0 |
1942 | #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */ | |
1943 | #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ | |
1944 | #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ | |
1945 | ||
a92f7126 CL |
1946 | /* |
1947 | * Priority for ZONE_RECLAIM. This determines the fraction of pages | |
1948 | * of a node considered for each zone_reclaim. 4 scans 1/16th of | |
1949 | * a zone. | |
1950 | */ | |
1951 | #define ZONE_RECLAIM_PRIORITY 4 | |
1952 | ||
9614634f CL |
1953 | /* |
1954 | * Percentage of pages in a zone that must be unmapped for zone_reclaim to | |
1955 | * occur. | |
1956 | */ | |
1957 | int sysctl_min_unmapped_ratio = 1; | |
1958 | ||
0ff38490 CL |
1959 | /* |
1960 | * If the number of slab pages in a zone grows beyond this percentage then | |
1961 | * slab reclaim needs to occur. | |
1962 | */ | |
1963 | int sysctl_min_slab_ratio = 5; | |
1964 | ||
9eeff239 CL |
1965 | /* |
1966 | * Try to free up some pages from this zone through reclaim. | |
1967 | */ | |
179e9639 | 1968 | static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) |
9eeff239 | 1969 | { |
7fb2d46d | 1970 | /* Minimum pages needed in order to stay on node */ |
69e05944 | 1971 | const unsigned long nr_pages = 1 << order; |
9eeff239 CL |
1972 | struct task_struct *p = current; |
1973 | struct reclaim_state reclaim_state; | |
8695949a | 1974 | int priority; |
05ff5137 | 1975 | unsigned long nr_reclaimed = 0; |
179e9639 AM |
1976 | struct scan_control sc = { |
1977 | .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), | |
1978 | .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP), | |
69e05944 AM |
1979 | .swap_cluster_max = max_t(unsigned long, nr_pages, |
1980 | SWAP_CLUSTER_MAX), | |
179e9639 | 1981 | .gfp_mask = gfp_mask, |
d6277db4 | 1982 | .swappiness = vm_swappiness, |
66e1707b | 1983 | .isolate_pages = isolate_pages_global, |
179e9639 | 1984 | }; |
83e33a47 | 1985 | unsigned long slab_reclaimable; |
9eeff239 CL |
1986 | |
1987 | disable_swap_token(); | |
9eeff239 | 1988 | cond_resched(); |
d4f7796e CL |
1989 | /* |
1990 | * We need to be able to allocate from the reserves for RECLAIM_SWAP | |
1991 | * and we also need to be able to write out pages for RECLAIM_WRITE | |
1992 | * and RECLAIM_SWAP. | |
1993 | */ | |
1994 | p->flags |= PF_MEMALLOC | PF_SWAPWRITE; | |
9eeff239 CL |
1995 | reclaim_state.reclaimed_slab = 0; |
1996 | p->reclaim_state = &reclaim_state; | |
c84db23c | 1997 | |
0ff38490 CL |
1998 | if (zone_page_state(zone, NR_FILE_PAGES) - |
1999 | zone_page_state(zone, NR_FILE_MAPPED) > | |
2000 | zone->min_unmapped_pages) { | |
2001 | /* | |
2002 | * Free memory by calling shrink zone with increasing | |
2003 | * priorities until we have enough memory freed. | |
2004 | */ | |
2005 | priority = ZONE_RECLAIM_PRIORITY; | |
2006 | do { | |
3bb1a852 | 2007 | note_zone_scanning_priority(zone, priority); |
0ff38490 CL |
2008 | nr_reclaimed += shrink_zone(priority, zone, &sc); |
2009 | priority--; | |
2010 | } while (priority >= 0 && nr_reclaimed < nr_pages); | |
2011 | } | |
c84db23c | 2012 | |
83e33a47 CL |
2013 | slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE); |
2014 | if (slab_reclaimable > zone->min_slab_pages) { | |
2a16e3f4 | 2015 | /* |
7fb2d46d | 2016 | * shrink_slab() does not currently allow us to determine how |
0ff38490 CL |
2017 | * many pages were freed in this zone. So we take the current |
2018 | * number of slab pages and shake the slab until it is reduced | |
2019 | * by the same nr_pages that we used for reclaiming unmapped | |
2020 | * pages. | |
2a16e3f4 | 2021 | * |
0ff38490 CL |
2022 | * Note that shrink_slab will free memory on all zones and may |
2023 | * take a long time. | |
2a16e3f4 | 2024 | */ |
0ff38490 | 2025 | while (shrink_slab(sc.nr_scanned, gfp_mask, order) && |
83e33a47 CL |
2026 | zone_page_state(zone, NR_SLAB_RECLAIMABLE) > |
2027 | slab_reclaimable - nr_pages) | |
0ff38490 | 2028 | ; |
83e33a47 CL |
2029 | |
2030 | /* | |
2031 | * Update nr_reclaimed by the number of slab pages we | |
2032 | * reclaimed from this zone. | |
2033 | */ | |
2034 | nr_reclaimed += slab_reclaimable - | |
2035 | zone_page_state(zone, NR_SLAB_RECLAIMABLE); | |
2a16e3f4 CL |
2036 | } |
2037 | ||
9eeff239 | 2038 | p->reclaim_state = NULL; |
d4f7796e | 2039 | current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); |
05ff5137 | 2040 | return nr_reclaimed >= nr_pages; |
9eeff239 | 2041 | } |
179e9639 AM |
2042 | |
2043 | int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) | |
2044 | { | |
179e9639 | 2045 | int node_id; |
d773ed6b | 2046 | int ret; |
179e9639 AM |
2047 | |
2048 | /* | |
0ff38490 CL |
2049 | * Zone reclaim reclaims unmapped file backed pages and |
2050 | * slab pages if we are over the defined limits. | |
34aa1330 | 2051 | * |
9614634f CL |
2052 | * A small portion of unmapped file backed pages is needed for |
2053 | * file I/O otherwise pages read by file I/O will be immediately | |
2054 | * thrown out if the zone is overallocated. So we do not reclaim | |
2055 | * if less than a specified percentage of the zone is used by | |
2056 | * unmapped file backed pages. | |
179e9639 | 2057 | */ |
34aa1330 | 2058 | if (zone_page_state(zone, NR_FILE_PAGES) - |
0ff38490 CL |
2059 | zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages |
2060 | && zone_page_state(zone, NR_SLAB_RECLAIMABLE) | |
2061 | <= zone->min_slab_pages) | |
9614634f | 2062 | return 0; |
179e9639 | 2063 | |
d773ed6b DR |
2064 | if (zone_is_all_unreclaimable(zone)) |
2065 | return 0; | |
2066 | ||
179e9639 | 2067 | /* |
d773ed6b | 2068 | * Do not scan if the allocation should not be delayed. |
179e9639 | 2069 | */ |
d773ed6b | 2070 | if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) |
179e9639 AM |
2071 | return 0; |
2072 | ||
2073 | /* | |
2074 | * Only run zone reclaim on the local zone or on zones that do not | |
2075 | * have associated processors. This will favor the local processor | |
2076 | * over remote processors and spread off node memory allocations | |
2077 | * as wide as possible. | |
2078 | */ | |
89fa3024 | 2079 | node_id = zone_to_nid(zone); |
37c0708d | 2080 | if (node_state(node_id, N_CPU) && node_id != numa_node_id()) |
179e9639 | 2081 | return 0; |
d773ed6b DR |
2082 | |
2083 | if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) | |
2084 | return 0; | |
2085 | ret = __zone_reclaim(zone, gfp_mask, order); | |
2086 | zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); | |
2087 | ||
2088 | return ret; | |
179e9639 | 2089 | } |
9eeff239 | 2090 | #endif |