]>
Commit | Line | Data |
---|---|---|
0b61f8a4 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 | 2 | /* |
7b718769 NS |
3 | * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. |
4 | * All Rights Reserved. | |
1da177e4 | 5 | */ |
1da177e4 | 6 | #include "xfs.h" |
a844f451 | 7 | #include "xfs_fs.h" |
70a9883c | 8 | #include "xfs_shared.h" |
239880ef DC |
9 | #include "xfs_format.h" |
10 | #include "xfs_log_format.h" | |
11 | #include "xfs_trans_resv.h" | |
a844f451 | 12 | #include "xfs_bit.h" |
1da177e4 | 13 | #include "xfs_mount.h" |
1da177e4 | 14 | #include "xfs_inode.h" |
a844f451 NS |
15 | #include "xfs_btree.h" |
16 | #include "xfs_ialloc.h" | |
a4fbe6ab | 17 | #include "xfs_ialloc_btree.h" |
1da177e4 | 18 | #include "xfs_alloc.h" |
e9e899a2 | 19 | #include "xfs_errortag.h" |
1da177e4 LT |
20 | #include "xfs_error.h" |
21 | #include "xfs_bmap.h" | |
239880ef | 22 | #include "xfs_trans.h" |
983d09ff | 23 | #include "xfs_buf_item.h" |
ddf6ad01 | 24 | #include "xfs_icreate_item.h" |
7bb85ef3 | 25 | #include "xfs_icache.h" |
d123031a | 26 | #include "xfs_trace.h" |
a45086e2 | 27 | #include "xfs_log.h" |
340785cc | 28 | #include "xfs_rmap.h" |
9bbafc71 | 29 | #include "xfs_ag.h" |
de6077ec | 30 | #include "xfs_health.h" |
1da177e4 | 31 | |
fe033cc8 | 32 | /* |
21875505 | 33 | * Lookup a record by ino in the btree given by cur. |
fe033cc8 | 34 | */ |
81e25176 | 35 | int /* error */ |
21875505 | 36 | xfs_inobt_lookup( |
fe033cc8 CH |
37 | struct xfs_btree_cur *cur, /* btree cursor */ |
38 | xfs_agino_t ino, /* starting inode of chunk */ | |
21875505 | 39 | xfs_lookup_t dir, /* <=, >=, == */ |
fe033cc8 CH |
40 | int *stat) /* success/failure */ |
41 | { | |
42 | cur->bc_rec.i.ir_startino = ino; | |
5419040f BF |
43 | cur->bc_rec.i.ir_holemask = 0; |
44 | cur->bc_rec.i.ir_count = 0; | |
21875505 CH |
45 | cur->bc_rec.i.ir_freecount = 0; |
46 | cur->bc_rec.i.ir_free = 0; | |
47 | return xfs_btree_lookup(cur, dir, stat); | |
fe033cc8 CH |
48 | } |
49 | ||
278d0ca1 | 50 | /* |
afabc24a | 51 | * Update the record referred to by cur to the value given. |
278d0ca1 CH |
52 | * This either works (return 0) or gets an EFSCORRUPTED error. |
53 | */ | |
54 | STATIC int /* error */ | |
55 | xfs_inobt_update( | |
56 | struct xfs_btree_cur *cur, /* btree cursor */ | |
afabc24a | 57 | xfs_inobt_rec_incore_t *irec) /* btree record */ |
278d0ca1 CH |
58 | { |
59 | union xfs_btree_rec rec; | |
60 | ||
afabc24a | 61 | rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); |
38c26bfd | 62 | if (xfs_has_sparseinodes(cur->bc_mp)) { |
5419040f BF |
63 | rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); |
64 | rec.inobt.ir_u.sp.ir_count = irec->ir_count; | |
65 | rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; | |
66 | } else { | |
67 | /* ir_holemask/ir_count not supported on-disk */ | |
68 | rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); | |
69 | } | |
afabc24a | 70 | rec.inobt.ir_free = cpu_to_be64(irec->ir_free); |
278d0ca1 CH |
71 | return xfs_btree_update(cur, &rec); |
72 | } | |
73 | ||
e936945e DW |
74 | /* Convert on-disk btree record to incore inobt record. */ |
75 | void | |
76 | xfs_inobt_btrec_to_irec( | |
77 | struct xfs_mount *mp, | |
159eb69d | 78 | const union xfs_btree_rec *rec, |
e936945e | 79 | struct xfs_inobt_rec_incore *irec) |
8cc938fe | 80 | { |
5419040f | 81 | irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); |
38c26bfd | 82 | if (xfs_has_sparseinodes(mp)) { |
5419040f BF |
83 | irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); |
84 | irec->ir_count = rec->inobt.ir_u.sp.ir_count; | |
85 | irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; | |
86 | } else { | |
87 | /* | |
88 | * ir_holemask/ir_count not supported on-disk. Fill in hardcoded | |
89 | * values for full inode chunks. | |
90 | */ | |
91 | irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; | |
92 | irec->ir_count = XFS_INODES_PER_CHUNK; | |
93 | irec->ir_freecount = | |
94 | be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); | |
8cc938fe | 95 | } |
5419040f | 96 | irec->ir_free = be64_to_cpu(rec->inobt.ir_free); |
e936945e DW |
97 | } |
98 | ||
dbfbf3bd DW |
99 | /* Compute the freecount of an incore inode record. */ |
100 | uint8_t | |
101 | xfs_inobt_rec_freecount( | |
102 | const struct xfs_inobt_rec_incore *irec) | |
103 | { | |
104 | uint64_t realfree = irec->ir_free; | |
105 | ||
106 | if (xfs_inobt_issparse(irec->ir_holemask)) | |
107 | realfree &= xfs_inobt_irec_to_allocmask(irec); | |
108 | return hweight64(realfree); | |
109 | } | |
110 | ||
366a0b8d DW |
111 | /* Simple checks for inode records. */ |
112 | xfs_failaddr_t | |
113 | xfs_inobt_check_irec( | |
dbfbf3bd | 114 | struct xfs_perag *pag, |
366a0b8d DW |
115 | const struct xfs_inobt_rec_incore *irec) |
116 | { | |
de1a9ce2 | 117 | /* Record has to be properly aligned within the AG. */ |
dbfbf3bd | 118 | if (!xfs_verify_agino(pag, irec->ir_startino)) |
366a0b8d | 119 | return __this_address; |
dbfbf3bd | 120 | if (!xfs_verify_agino(pag, |
de1a9ce2 DW |
121 | irec->ir_startino + XFS_INODES_PER_CHUNK - 1)) |
122 | return __this_address; | |
366a0b8d DW |
123 | if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT || |
124 | irec->ir_count > XFS_INODES_PER_CHUNK) | |
125 | return __this_address; | |
126 | if (irec->ir_freecount > XFS_INODES_PER_CHUNK) | |
127 | return __this_address; | |
128 | ||
dbfbf3bd | 129 | if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount) |
366a0b8d DW |
130 | return __this_address; |
131 | ||
132 | return NULL; | |
133 | } | |
134 | ||
ee12eaaa DW |
135 | static inline int |
136 | xfs_inobt_complain_bad_rec( | |
137 | struct xfs_btree_cur *cur, | |
138 | xfs_failaddr_t fa, | |
139 | const struct xfs_inobt_rec_incore *irec) | |
140 | { | |
141 | struct xfs_mount *mp = cur->bc_mp; | |
142 | ||
143 | xfs_warn(mp, | |
77953b97 CH |
144 | "%sbt record corruption in AG %d detected at %pS!", |
145 | cur->bc_ops->name, cur->bc_ag.pag->pag_agno, fa); | |
ee12eaaa DW |
146 | xfs_warn(mp, |
147 | "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x", | |
148 | irec->ir_startino, irec->ir_count, irec->ir_freecount, | |
149 | irec->ir_free, irec->ir_holemask); | |
a78d10f4 | 150 | xfs_btree_mark_sick(cur); |
ee12eaaa DW |
151 | return -EFSCORRUPTED; |
152 | } | |
153 | ||
e936945e DW |
154 | /* |
155 | * Get the data from the pointed-to record. | |
156 | */ | |
157 | int | |
158 | xfs_inobt_get_rec( | |
159 | struct xfs_btree_cur *cur, | |
160 | struct xfs_inobt_rec_incore *irec, | |
161 | int *stat) | |
162 | { | |
9e6c08d4 | 163 | struct xfs_mount *mp = cur->bc_mp; |
e936945e | 164 | union xfs_btree_rec *rec; |
366a0b8d | 165 | xfs_failaddr_t fa; |
e936945e DW |
166 | int error; |
167 | ||
168 | error = xfs_btree_get_rec(cur, &rec, stat); | |
169 | if (error || *stat == 0) | |
170 | return error; | |
171 | ||
9e6c08d4 | 172 | xfs_inobt_btrec_to_irec(mp, rec, irec); |
dbfbf3bd | 173 | fa = xfs_inobt_check_irec(cur->bc_ag.pag, irec); |
366a0b8d | 174 | if (fa) |
ee12eaaa | 175 | return xfs_inobt_complain_bad_rec(cur, fa, irec); |
5419040f BF |
176 | |
177 | return 0; | |
8cc938fe CH |
178 | } |
179 | ||
0aa0a756 BF |
180 | /* |
181 | * Insert a single inobt record. Cursor must already point to desired location. | |
182 | */ | |
7f8f1313 | 183 | int |
0aa0a756 BF |
184 | xfs_inobt_insert_rec( |
185 | struct xfs_btree_cur *cur, | |
c8ce540d DW |
186 | uint16_t holemask, |
187 | uint8_t count, | |
188 | int32_t freecount, | |
0aa0a756 BF |
189 | xfs_inofree_t free, |
190 | int *stat) | |
191 | { | |
5419040f BF |
192 | cur->bc_rec.i.ir_holemask = holemask; |
193 | cur->bc_rec.i.ir_count = count; | |
0aa0a756 BF |
194 | cur->bc_rec.i.ir_freecount = freecount; |
195 | cur->bc_rec.i.ir_free = free; | |
196 | return xfs_btree_insert(cur, stat); | |
197 | } | |
198 | ||
199 | /* | |
200 | * Insert records describing a newly allocated inode chunk into the inobt. | |
201 | */ | |
202 | STATIC int | |
203 | xfs_inobt_insert( | |
dedab3e4 | 204 | struct xfs_perag *pag, |
0aa0a756 BF |
205 | struct xfs_trans *tp, |
206 | struct xfs_buf *agbp, | |
207 | xfs_agino_t newino, | |
208 | xfs_agino_t newlen, | |
fbeef4e0 | 209 | bool is_finobt) |
0aa0a756 BF |
210 | { |
211 | struct xfs_btree_cur *cur; | |
0aa0a756 BF |
212 | xfs_agino_t thisino; |
213 | int i; | |
214 | int error; | |
215 | ||
fbeef4e0 | 216 | if (is_finobt) |
14dd46cf CH |
217 | cur = xfs_finobt_init_cursor(pag, tp, agbp); |
218 | else | |
219 | cur = xfs_inobt_init_cursor(pag, tp, agbp); | |
0aa0a756 BF |
220 | |
221 | for (thisino = newino; | |
222 | thisino < newino + newlen; | |
223 | thisino += XFS_INODES_PER_CHUNK) { | |
224 | error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); | |
225 | if (error) { | |
226 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
227 | return error; | |
228 | } | |
229 | ASSERT(i == 0); | |
230 | ||
5419040f BF |
231 | error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, |
232 | XFS_INODES_PER_CHUNK, | |
233 | XFS_INODES_PER_CHUNK, | |
0aa0a756 BF |
234 | XFS_INOBT_ALL_FREE, &i); |
235 | if (error) { | |
236 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
237 | return error; | |
238 | } | |
239 | ASSERT(i == 1); | |
240 | } | |
241 | ||
242 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
243 | ||
244 | return 0; | |
245 | } | |
246 | ||
0b48db80 DC |
247 | /* |
248 | * Verify that the number of free inodes in the AGI is correct. | |
249 | */ | |
250 | #ifdef DEBUG | |
9ba0889e | 251 | static int |
0b48db80 | 252 | xfs_check_agi_freecount( |
9ba0889e | 253 | struct xfs_btree_cur *cur) |
0b48db80 DC |
254 | { |
255 | if (cur->bc_nlevels == 1) { | |
256 | xfs_inobt_rec_incore_t rec; | |
257 | int freecount = 0; | |
258 | int error; | |
259 | int i; | |
260 | ||
21875505 | 261 | error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); |
0b48db80 DC |
262 | if (error) |
263 | return error; | |
264 | ||
265 | do { | |
266 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
267 | if (error) | |
268 | return error; | |
269 | ||
270 | if (i) { | |
271 | freecount += rec.ir_freecount; | |
272 | error = xfs_btree_increment(cur, 0, &i); | |
273 | if (error) | |
274 | return error; | |
275 | } | |
276 | } while (i == 1); | |
277 | ||
75c8c50f | 278 | if (!xfs_is_shutdown(cur->bc_mp)) |
9ba0889e | 279 | ASSERT(freecount == cur->bc_ag.pag->pagi_freecount); |
0b48db80 DC |
280 | } |
281 | return 0; | |
282 | } | |
283 | #else | |
9ba0889e | 284 | #define xfs_check_agi_freecount(cur) 0 |
0b48db80 DC |
285 | #endif |
286 | ||
85c0b2ab | 287 | /* |
28c8e41a DC |
288 | * Initialise a new set of inodes. When called without a transaction context |
289 | * (e.g. from recovery) we initiate a delayed write of the inode buffers rather | |
290 | * than logging them (which in a transaction context puts them into the AIL | |
291 | * for writeback rather than the xfsbufd queue). | |
85c0b2ab | 292 | */ |
ddf6ad01 | 293 | int |
85c0b2ab DC |
294 | xfs_ialloc_inode_init( |
295 | struct xfs_mount *mp, | |
296 | struct xfs_trans *tp, | |
28c8e41a | 297 | struct list_head *buffer_list, |
463958af | 298 | int icount, |
85c0b2ab DC |
299 | xfs_agnumber_t agno, |
300 | xfs_agblock_t agbno, | |
301 | xfs_agblock_t length, | |
302 | unsigned int gen) | |
303 | { | |
304 | struct xfs_buf *fbuf; | |
305 | struct xfs_dinode *free; | |
83dcdb44 | 306 | int nbufs; |
85c0b2ab DC |
307 | int version; |
308 | int i, j; | |
309 | xfs_daddr_t d; | |
93848a99 | 310 | xfs_ino_t ino = 0; |
ce92464c | 311 | int error; |
85c0b2ab DC |
312 | |
313 | /* | |
6e0c7b8c JL |
314 | * Loop over the new block(s), filling in the inodes. For small block |
315 | * sizes, manipulate the inodes in buffers which are multiples of the | |
316 | * blocks size. | |
85c0b2ab | 317 | */ |
ef325959 | 318 | nbufs = length / M_IGEO(mp)->blocks_per_cluster; |
85c0b2ab DC |
319 | |
320 | /* | |
93848a99 CH |
321 | * Figure out what version number to use in the inodes we create. If |
322 | * the superblock version has caught up to the one that supports the new | |
323 | * inode format, then use the new inode version. Otherwise use the old | |
324 | * version so that old kernels will continue to be able to use the file | |
325 | * system. | |
326 | * | |
327 | * For v3 inodes, we also need to write the inode number into the inode, | |
328 | * so calculate the first inode number of the chunk here as | |
43004b2a | 329 | * XFS_AGB_TO_AGINO() only works within a filesystem block, not |
93848a99 CH |
330 | * across multiple filesystem blocks (such as a cluster) and so cannot |
331 | * be used in the cluster buffer loop below. | |
332 | * | |
333 | * Further, because we are writing the inode directly into the buffer | |
334 | * and calculating a CRC on the entire inode, we have ot log the entire | |
335 | * inode so that the entire range the CRC covers is present in the log. | |
336 | * That means for v3 inode we log the entire buffer rather than just the | |
337 | * inode cores. | |
85c0b2ab | 338 | */ |
ebd9027d | 339 | if (xfs_has_v3inodes(mp)) { |
93848a99 | 340 | version = 3; |
43004b2a | 341 | ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno)); |
ddf6ad01 DC |
342 | |
343 | /* | |
344 | * log the initialisation that is about to take place as an | |
345 | * logical operation. This means the transaction does not | |
346 | * need to log the physical changes to the inode buffers as log | |
347 | * recovery will know what initialisation is actually needed. | |
348 | * Hence we only need to log the buffers as "ordered" buffers so | |
349 | * they track in the AIL as if they were physically logged. | |
350 | */ | |
351 | if (tp) | |
463958af | 352 | xfs_icreate_log(tp, agno, agbno, icount, |
ddf6ad01 | 353 | mp->m_sb.sb_inodesize, length, gen); |
263997a6 | 354 | } else |
85c0b2ab | 355 | version = 2; |
85c0b2ab DC |
356 | |
357 | for (j = 0; j < nbufs; j++) { | |
358 | /* | |
359 | * Get the block. | |
360 | */ | |
83dcdb44 | 361 | d = XFS_AGB_TO_DADDR(mp, agno, agbno + |
ef325959 | 362 | (j * M_IGEO(mp)->blocks_per_cluster)); |
ce92464c DW |
363 | error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, |
364 | mp->m_bsize * M_IGEO(mp)->blocks_per_cluster, | |
365 | XBF_UNMAPPED, &fbuf); | |
366 | if (error) | |
367 | return error; | |
ddf6ad01 DC |
368 | |
369 | /* Initialize the inode buffers and log them appropriately. */ | |
1813dd64 | 370 | fbuf->b_ops = &xfs_inode_buf_ops; |
93848a99 | 371 | xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); |
ef325959 | 372 | for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) { |
85c0b2ab | 373 | int ioffset = i << mp->m_sb.sb_inodelog; |
85c0b2ab DC |
374 | |
375 | free = xfs_make_iptr(mp, fbuf, i); | |
376 | free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); | |
377 | free->di_version = version; | |
378 | free->di_gen = cpu_to_be32(gen); | |
379 | free->di_next_unlinked = cpu_to_be32(NULLAGINO); | |
93848a99 CH |
380 | |
381 | if (version == 3) { | |
382 | free->di_ino = cpu_to_be64(ino); | |
383 | ino++; | |
ce748eaa ES |
384 | uuid_copy(&free->di_uuid, |
385 | &mp->m_sb.sb_meta_uuid); | |
93848a99 | 386 | xfs_dinode_calc_crc(mp, free); |
28c8e41a | 387 | } else if (tp) { |
93848a99 CH |
388 | /* just log the inode core */ |
389 | xfs_trans_log_buf(tp, fbuf, ioffset, | |
cf28e17c | 390 | ioffset + XFS_DINODE_SIZE(mp) - 1); |
93848a99 CH |
391 | } |
392 | } | |
28c8e41a DC |
393 | |
394 | if (tp) { | |
395 | /* | |
396 | * Mark the buffer as an inode allocation buffer so it | |
397 | * sticks in AIL at the point of this allocation | |
398 | * transaction. This ensures the they are on disk before | |
399 | * the tail of the log can be moved past this | |
400 | * transaction (i.e. by preventing relogging from moving | |
401 | * it forward in the log). | |
402 | */ | |
403 | xfs_trans_inode_alloc_buf(tp, fbuf); | |
404 | if (version == 3) { | |
ddf6ad01 DC |
405 | /* |
406 | * Mark the buffer as ordered so that they are | |
407 | * not physically logged in the transaction but | |
408 | * still tracked in the AIL as part of the | |
409 | * transaction and pin the log appropriately. | |
410 | */ | |
411 | xfs_trans_ordered_buf(tp, fbuf); | |
28c8e41a DC |
412 | } |
413 | } else { | |
414 | fbuf->b_flags |= XBF_DONE; | |
415 | xfs_buf_delwri_queue(fbuf, buffer_list); | |
416 | xfs_buf_relse(fbuf); | |
85c0b2ab | 417 | } |
85c0b2ab | 418 | } |
2a30f36d | 419 | return 0; |
85c0b2ab DC |
420 | } |
421 | ||
56d1115c BF |
422 | /* |
423 | * Align startino and allocmask for a recently allocated sparse chunk such that | |
424 | * they are fit for insertion (or merge) into the on-disk inode btrees. | |
425 | * | |
426 | * Background: | |
427 | * | |
428 | * When enabled, sparse inode support increases the inode alignment from cluster | |
429 | * size to inode chunk size. This means that the minimum range between two | |
430 | * non-adjacent inode records in the inobt is large enough for a full inode | |
431 | * record. This allows for cluster sized, cluster aligned block allocation | |
432 | * without need to worry about whether the resulting inode record overlaps with | |
433 | * another record in the tree. Without this basic rule, we would have to deal | |
434 | * with the consequences of overlap by potentially undoing recent allocations in | |
435 | * the inode allocation codepath. | |
436 | * | |
437 | * Because of this alignment rule (which is enforced on mount), there are two | |
438 | * inobt possibilities for newly allocated sparse chunks. One is that the | |
439 | * aligned inode record for the chunk covers a range of inodes not already | |
440 | * covered in the inobt (i.e., it is safe to insert a new sparse record). The | |
441 | * other is that a record already exists at the aligned startino that considers | |
442 | * the newly allocated range as sparse. In the latter case, record content is | |
443 | * merged in hope that sparse inode chunks fill to full chunks over time. | |
444 | */ | |
445 | STATIC void | |
446 | xfs_align_sparse_ino( | |
447 | struct xfs_mount *mp, | |
448 | xfs_agino_t *startino, | |
449 | uint16_t *allocmask) | |
450 | { | |
451 | xfs_agblock_t agbno; | |
452 | xfs_agblock_t mod; | |
453 | int offset; | |
454 | ||
455 | agbno = XFS_AGINO_TO_AGBNO(mp, *startino); | |
456 | mod = agbno % mp->m_sb.sb_inoalignmt; | |
457 | if (!mod) | |
458 | return; | |
459 | ||
460 | /* calculate the inode offset and align startino */ | |
43004b2a | 461 | offset = XFS_AGB_TO_AGINO(mp, mod); |
56d1115c BF |
462 | *startino -= offset; |
463 | ||
464 | /* | |
465 | * Since startino has been aligned down, left shift allocmask such that | |
466 | * it continues to represent the same physical inodes relative to the | |
467 | * new startino. | |
468 | */ | |
469 | *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; | |
470 | } | |
471 | ||
472 | /* | |
473 | * Determine whether the source inode record can merge into the target. Both | |
474 | * records must be sparse, the inode ranges must match and there must be no | |
475 | * allocation overlap between the records. | |
476 | */ | |
477 | STATIC bool | |
478 | __xfs_inobt_can_merge( | |
479 | struct xfs_inobt_rec_incore *trec, /* tgt record */ | |
480 | struct xfs_inobt_rec_incore *srec) /* src record */ | |
481 | { | |
482 | uint64_t talloc; | |
483 | uint64_t salloc; | |
484 | ||
485 | /* records must cover the same inode range */ | |
486 | if (trec->ir_startino != srec->ir_startino) | |
487 | return false; | |
488 | ||
489 | /* both records must be sparse */ | |
490 | if (!xfs_inobt_issparse(trec->ir_holemask) || | |
491 | !xfs_inobt_issparse(srec->ir_holemask)) | |
492 | return false; | |
493 | ||
494 | /* both records must track some inodes */ | |
495 | if (!trec->ir_count || !srec->ir_count) | |
496 | return false; | |
497 | ||
498 | /* can't exceed capacity of a full record */ | |
499 | if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) | |
500 | return false; | |
501 | ||
502 | /* verify there is no allocation overlap */ | |
503 | talloc = xfs_inobt_irec_to_allocmask(trec); | |
504 | salloc = xfs_inobt_irec_to_allocmask(srec); | |
505 | if (talloc & salloc) | |
506 | return false; | |
507 | ||
508 | return true; | |
509 | } | |
510 | ||
511 | /* | |
512 | * Merge the source inode record into the target. The caller must call | |
513 | * __xfs_inobt_can_merge() to ensure the merge is valid. | |
514 | */ | |
515 | STATIC void | |
516 | __xfs_inobt_rec_merge( | |
517 | struct xfs_inobt_rec_incore *trec, /* target */ | |
518 | struct xfs_inobt_rec_incore *srec) /* src */ | |
519 | { | |
520 | ASSERT(trec->ir_startino == srec->ir_startino); | |
521 | ||
522 | /* combine the counts */ | |
523 | trec->ir_count += srec->ir_count; | |
524 | trec->ir_freecount += srec->ir_freecount; | |
525 | ||
526 | /* | |
527 | * Merge the holemask and free mask. For both fields, 0 bits refer to | |
528 | * allocated inodes. We combine the allocated ranges with bitwise AND. | |
529 | */ | |
530 | trec->ir_holemask &= srec->ir_holemask; | |
531 | trec->ir_free &= srec->ir_free; | |
532 | } | |
533 | ||
534 | /* | |
8541a7d9 CH |
535 | * Insert a new sparse inode chunk into the associated inode allocation btree. |
536 | * The inode record for the sparse chunk is pre-aligned to a startino that | |
537 | * should match any pre-existing sparse inode record in the tree. This allows | |
538 | * sparse chunks to fill over time. | |
56d1115c | 539 | * |
8541a7d9 CH |
540 | * If no preexisting record exists, the provided record is inserted. |
541 | * If there is a preexisting record, the provided record is merged with the | |
56d1115c | 542 | * existing record and updated in place. The merged record is returned in nrec. |
56d1115c BF |
543 | * |
544 | * It is considered corruption if a merge is requested and not possible. Given | |
545 | * the sparse inode alignment constraints, this should never happen. | |
546 | */ | |
547 | STATIC int | |
548 | xfs_inobt_insert_sprec( | |
dedab3e4 | 549 | struct xfs_perag *pag, |
56d1115c BF |
550 | struct xfs_trans *tp, |
551 | struct xfs_buf *agbp, | |
8541a7d9 | 552 | struct xfs_inobt_rec_incore *nrec) /* in/out: new/merged rec. */ |
56d1115c | 553 | { |
dedab3e4 | 554 | struct xfs_mount *mp = pag->pag_mount; |
56d1115c | 555 | struct xfs_btree_cur *cur; |
56d1115c BF |
556 | int error; |
557 | int i; | |
558 | struct xfs_inobt_rec_incore rec; | |
559 | ||
14dd46cf | 560 | cur = xfs_inobt_init_cursor(pag, tp, agbp); |
56d1115c BF |
561 | |
562 | /* the new record is pre-aligned so we know where to look */ | |
563 | error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); | |
564 | if (error) | |
565 | goto error; | |
566 | /* if nothing there, insert a new record and return */ | |
567 | if (i == 0) { | |
568 | error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, | |
569 | nrec->ir_count, nrec->ir_freecount, | |
570 | nrec->ir_free, &i); | |
571 | if (error) | |
572 | goto error; | |
f9e03706 | 573 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
989d5ec3 | 574 | xfs_btree_mark_sick(cur); |
f9e03706 DW |
575 | error = -EFSCORRUPTED; |
576 | goto error; | |
577 | } | |
56d1115c BF |
578 | |
579 | goto out; | |
580 | } | |
581 | ||
582 | /* | |
8541a7d9 | 583 | * A record exists at this startino. Merge the records. |
56d1115c | 584 | */ |
8541a7d9 CH |
585 | error = xfs_inobt_get_rec(cur, &rec, &i); |
586 | if (error) | |
587 | goto error; | |
588 | if (XFS_IS_CORRUPT(mp, i != 1)) { | |
589 | xfs_btree_mark_sick(cur); | |
590 | error = -EFSCORRUPTED; | |
591 | goto error; | |
592 | } | |
593 | if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) { | |
594 | xfs_btree_mark_sick(cur); | |
595 | error = -EFSCORRUPTED; | |
596 | goto error; | |
597 | } | |
56d1115c | 598 | |
8541a7d9 CH |
599 | /* |
600 | * This should never fail. If we have coexisting records that | |
601 | * cannot merge, something is seriously wrong. | |
602 | */ | |
603 | if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) { | |
604 | xfs_btree_mark_sick(cur); | |
605 | error = -EFSCORRUPTED; | |
606 | goto error; | |
607 | } | |
56d1115c | 608 | |
8541a7d9 CH |
609 | trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino, |
610 | rec.ir_holemask, nrec->ir_startino, | |
611 | nrec->ir_holemask); | |
56d1115c | 612 | |
8541a7d9 CH |
613 | /* merge to nrec to output the updated record */ |
614 | __xfs_inobt_rec_merge(nrec, &rec); | |
56d1115c | 615 | |
8541a7d9 CH |
616 | trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino, |
617 | nrec->ir_holemask); | |
56d1115c | 618 | |
8541a7d9 CH |
619 | error = xfs_inobt_rec_check_count(mp, nrec); |
620 | if (error) | |
621 | goto error; | |
56d1115c BF |
622 | |
623 | error = xfs_inobt_update(cur, nrec); | |
624 | if (error) | |
625 | goto error; | |
626 | ||
627 | out: | |
628 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
629 | return 0; | |
630 | error: | |
631 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
632 | return error; | |
633 | } | |
634 | ||
8541a7d9 CH |
635 | /* |
636 | * Insert a new sparse inode chunk into the free inode btree. The inode | |
637 | * record for the sparse chunk is pre-aligned to a startino that should match | |
638 | * any pre-existing sparse inode record in the tree. This allows sparse chunks | |
639 | * to fill over time. | |
640 | * | |
641 | * The new record is always inserted, overwriting a pre-existing record if | |
642 | * there is one. | |
643 | */ | |
644 | STATIC int | |
645 | xfs_finobt_insert_sprec( | |
646 | struct xfs_perag *pag, | |
647 | struct xfs_trans *tp, | |
648 | struct xfs_buf *agbp, | |
649 | struct xfs_inobt_rec_incore *nrec) /* in/out: new rec. */ | |
650 | { | |
651 | struct xfs_mount *mp = pag->pag_mount; | |
652 | struct xfs_btree_cur *cur; | |
653 | int error; | |
654 | int i; | |
655 | ||
14dd46cf | 656 | cur = xfs_finobt_init_cursor(pag, tp, agbp); |
8541a7d9 CH |
657 | |
658 | /* the new record is pre-aligned so we know where to look */ | |
659 | error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); | |
660 | if (error) | |
661 | goto error; | |
662 | /* if nothing there, insert a new record and return */ | |
663 | if (i == 0) { | |
664 | error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, | |
665 | nrec->ir_count, nrec->ir_freecount, | |
666 | nrec->ir_free, &i); | |
667 | if (error) | |
668 | goto error; | |
669 | if (XFS_IS_CORRUPT(mp, i != 1)) { | |
670 | xfs_btree_mark_sick(cur); | |
671 | error = -EFSCORRUPTED; | |
672 | goto error; | |
673 | } | |
674 | } else { | |
675 | error = xfs_inobt_update(cur, nrec); | |
676 | if (error) | |
677 | goto error; | |
678 | } | |
679 | ||
680 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
681 | return 0; | |
682 | error: | |
683 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
684 | return error; | |
685 | } | |
686 | ||
687 | ||
1da177e4 | 688 | /* |
8237fbf5 DC |
689 | * Allocate new inodes in the allocation group specified by agbp. Returns 0 if |
690 | * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so | |
691 | * the caller knows it can try another AG, a hard -ENOSPC when over the maximum | |
692 | * inode count threshold, or the usual negative error code for other errors. | |
1da177e4 | 693 | */ |
ef325959 | 694 | STATIC int |
1da177e4 | 695 | xfs_ialloc_ag_alloc( |
dedab3e4 | 696 | struct xfs_perag *pag, |
ef325959 | 697 | struct xfs_trans *tp, |
dedab3e4 | 698 | struct xfs_buf *agbp) |
1da177e4 | 699 | { |
ef325959 DW |
700 | struct xfs_agi *agi; |
701 | struct xfs_alloc_arg args; | |
ef325959 DW |
702 | int error; |
703 | xfs_agino_t newino; /* new first inode's number */ | |
704 | xfs_agino_t newlen; /* new number of inodes */ | |
705 | int isaligned = 0; /* inode allocation at stripe */ | |
706 | /* unit boundary */ | |
707 | /* init. to full chunk */ | |
56d1115c | 708 | struct xfs_inobt_rec_incore rec; |
ef325959 | 709 | struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp); |
7b13c515 | 710 | uint16_t allocmask = (uint16_t) -1; |
ef325959 | 711 | int do_sparse = 0; |
1cdadee1 | 712 | |
a0041684 | 713 | memset(&args, 0, sizeof(args)); |
1da177e4 LT |
714 | args.tp = tp; |
715 | args.mp = tp->t_mountp; | |
1cdadee1 | 716 | args.fsbno = NULLFSBLOCK; |
7280feda | 717 | args.oinfo = XFS_RMAP_OINFO_INODES; |
74c36a86 | 718 | args.pag = pag; |
1da177e4 | 719 | |
46fc58da BF |
720 | #ifdef DEBUG |
721 | /* randomly do sparse inode allocations */ | |
ebd9027d | 722 | if (xfs_has_sparseinodes(tp->t_mountp) && |
ef325959 | 723 | igeo->ialloc_min_blks < igeo->ialloc_blks) |
8032bf12 | 724 | do_sparse = get_random_u32_below(2); |
46fc58da BF |
725 | #endif |
726 | ||
1da177e4 LT |
727 | /* |
728 | * Locking will ensure that we don't have two callers in here | |
729 | * at one time. | |
730 | */ | |
ef325959 DW |
731 | newlen = igeo->ialloc_inos; |
732 | if (igeo->maxicount && | |
74f9ce1c | 733 | percpu_counter_read_positive(&args.mp->m_icount) + newlen > |
ef325959 | 734 | igeo->maxicount) |
2451337d | 735 | return -ENOSPC; |
ef325959 | 736 | args.minlen = args.maxlen = igeo->ialloc_blks; |
1da177e4 | 737 | /* |
3ccb8b5f GO |
738 | * First try to allocate inodes contiguous with the last-allocated |
739 | * chunk of inodes. If the filesystem is striped, this will fill | |
740 | * an entire stripe unit with inodes. | |
28c8e41a | 741 | */ |
370c782b | 742 | agi = agbp->b_addr; |
3ccb8b5f | 743 | newino = be32_to_cpu(agi->agi_newino); |
019ff2d5 | 744 | args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + |
ef325959 | 745 | igeo->ialloc_blks; |
1cdadee1 BF |
746 | if (do_sparse) |
747 | goto sparse_alloc; | |
019ff2d5 NS |
748 | if (likely(newino != NULLAGINO && |
749 | (args.agbno < be32_to_cpu(agi->agi_length)))) { | |
3ccb8b5f | 750 | args.prod = 1; |
75de2a91 | 751 | |
3ccb8b5f | 752 | /* |
75de2a91 DC |
753 | * We need to take into account alignment here to ensure that |
754 | * we don't modify the free list if we fail to have an exact | |
755 | * block. If we don't have an exact match, and every oher | |
756 | * attempt allocation attempt fails, we'll end up cancelling | |
757 | * a dirty transaction and shutting down. | |
758 | * | |
759 | * For an exact allocation, alignment must be 1, | |
760 | * however we need to take cluster alignment into account when | |
761 | * fixing up the freelist. Use the minalignslop field to | |
762 | * indicate that extra blocks might be required for alignment, | |
763 | * but not to use them in the actual exact allocation. | |
3ccb8b5f | 764 | */ |
75de2a91 | 765 | args.alignment = 1; |
ef325959 | 766 | args.minalignslop = igeo->cluster_align - 1; |
75de2a91 DC |
767 | |
768 | /* Allow space for the inode btree to split. */ | |
657f1019 | 769 | args.minleft = igeo->inobt_maxlevels; |
5f36b2ce DC |
770 | error = xfs_alloc_vextent_exact_bno(&args, |
771 | XFS_AGB_TO_FSB(args.mp, pag->pag_agno, | |
772 | args.agbno)); | |
74c36a86 | 773 | if (error) |
3ccb8b5f | 774 | return error; |
e480a723 BF |
775 | |
776 | /* | |
777 | * This request might have dirtied the transaction if the AG can | |
778 | * satisfy the request, but the exact block was not available. | |
779 | * If the allocation did fail, subsequent requests will relax | |
780 | * the exact agbno requirement and increase the alignment | |
781 | * instead. It is critical that the total size of the request | |
782 | * (len + alignment + slop) does not increase from this point | |
783 | * on, so reset minalignslop to ensure it is not included in | |
784 | * subsequent requests. | |
785 | */ | |
786 | args.minalignslop = 0; | |
1cdadee1 | 787 | } |
1da177e4 | 788 | |
3ccb8b5f GO |
789 | if (unlikely(args.fsbno == NULLFSBLOCK)) { |
790 | /* | |
791 | * Set the alignment for the allocation. | |
792 | * If stripe alignment is turned on then align at stripe unit | |
793 | * boundary. | |
019ff2d5 NS |
794 | * If the cluster size is smaller than a filesystem block |
795 | * then we're doing I/O for inodes in filesystem block size | |
3ccb8b5f GO |
796 | * pieces, so don't need alignment anyway. |
797 | */ | |
798 | isaligned = 0; | |
ef325959 | 799 | if (igeo->ialloc_align) { |
0560f31a | 800 | ASSERT(!xfs_has_noalign(args.mp)); |
3ccb8b5f GO |
801 | args.alignment = args.mp->m_dalign; |
802 | isaligned = 1; | |
75de2a91 | 803 | } else |
ef325959 | 804 | args.alignment = igeo->cluster_align; |
3ccb8b5f GO |
805 | /* |
806 | * Allocate a fixed-size extent of inodes. | |
807 | */ | |
3ccb8b5f GO |
808 | args.prod = 1; |
809 | /* | |
810 | * Allow space for the inode btree to split. | |
811 | */ | |
657f1019 | 812 | args.minleft = igeo->inobt_maxlevels; |
db4710fd DC |
813 | error = xfs_alloc_vextent_near_bno(&args, |
814 | XFS_AGB_TO_FSB(args.mp, pag->pag_agno, | |
815 | be32_to_cpu(agi->agi_root))); | |
74c36a86 | 816 | if (error) |
3ccb8b5f GO |
817 | return error; |
818 | } | |
019ff2d5 | 819 | |
1da177e4 LT |
820 | /* |
821 | * If stripe alignment is turned on, then try again with cluster | |
822 | * alignment. | |
823 | */ | |
824 | if (isaligned && args.fsbno == NULLFSBLOCK) { | |
ef325959 | 825 | args.alignment = igeo->cluster_align; |
db4710fd DC |
826 | error = xfs_alloc_vextent_near_bno(&args, |
827 | XFS_AGB_TO_FSB(args.mp, pag->pag_agno, | |
828 | be32_to_cpu(agi->agi_root))); | |
829 | if (error) | |
1da177e4 LT |
830 | return error; |
831 | } | |
832 | ||
56d1115c BF |
833 | /* |
834 | * Finally, try a sparse allocation if the filesystem supports it and | |
835 | * the sparse allocation length is smaller than a full chunk. | |
836 | */ | |
ebd9027d | 837 | if (xfs_has_sparseinodes(args.mp) && |
ef325959 | 838 | igeo->ialloc_min_blks < igeo->ialloc_blks && |
56d1115c | 839 | args.fsbno == NULLFSBLOCK) { |
1cdadee1 | 840 | sparse_alloc: |
56d1115c BF |
841 | args.alignment = args.mp->m_sb.sb_spino_align; |
842 | args.prod = 1; | |
843 | ||
ef325959 | 844 | args.minlen = igeo->ialloc_min_blks; |
56d1115c BF |
845 | args.maxlen = args.minlen; |
846 | ||
847 | /* | |
848 | * The inode record will be aligned to full chunk size. We must | |
849 | * prevent sparse allocation from AG boundaries that result in | |
850 | * invalid inode records, such as records that start at agbno 0 | |
851 | * or extend beyond the AG. | |
852 | * | |
853 | * Set min agbno to the first aligned, non-zero agbno and max to | |
854 | * the last aligned agbno that is at least one full chunk from | |
855 | * the end of the AG. | |
856 | */ | |
857 | args.min_agbno = args.mp->m_sb.sb_inoalignmt; | |
858 | args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, | |
859 | args.mp->m_sb.sb_inoalignmt) - | |
ef325959 | 860 | igeo->ialloc_blks; |
56d1115c | 861 | |
db4710fd DC |
862 | error = xfs_alloc_vextent_near_bno(&args, |
863 | XFS_AGB_TO_FSB(args.mp, pag->pag_agno, | |
864 | be32_to_cpu(agi->agi_root))); | |
56d1115c BF |
865 | if (error) |
866 | return error; | |
867 | ||
43004b2a | 868 | newlen = XFS_AGB_TO_AGINO(args.mp, args.len); |
46fc58da | 869 | ASSERT(newlen <= XFS_INODES_PER_CHUNK); |
56d1115c BF |
870 | allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; |
871 | } | |
872 | ||
3937493c | 873 | if (args.fsbno == NULLFSBLOCK) |
8237fbf5 | 874 | return -EAGAIN; |
3937493c | 875 | |
1da177e4 | 876 | ASSERT(args.len == args.minlen); |
1da177e4 | 877 | |
359346a9 | 878 | /* |
85c0b2ab DC |
879 | * Stamp and write the inode buffers. |
880 | * | |
359346a9 DC |
881 | * Seed the new inode cluster with a random generation number. This |
882 | * prevents short-term reuse of generation numbers if a chunk is | |
883 | * freed and then immediately reallocated. We use random numbers | |
884 | * rather than a linear progression to prevent the next generation | |
885 | * number from being easily guessable. | |
886 | */ | |
7b13c515 | 887 | error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno, |
a251c17a | 888 | args.agbno, args.len, get_random_u32()); |
d42f08f6 | 889 | |
2a30f36d CS |
890 | if (error) |
891 | return error; | |
85c0b2ab DC |
892 | /* |
893 | * Convert the results. | |
894 | */ | |
43004b2a | 895 | newino = XFS_AGB_TO_AGINO(args.mp, args.agbno); |
56d1115c BF |
896 | |
897 | if (xfs_inobt_issparse(~allocmask)) { | |
898 | /* | |
899 | * We've allocated a sparse chunk. Align the startino and mask. | |
900 | */ | |
901 | xfs_align_sparse_ino(args.mp, &newino, &allocmask); | |
902 | ||
903 | rec.ir_startino = newino; | |
904 | rec.ir_holemask = ~allocmask; | |
905 | rec.ir_count = newlen; | |
906 | rec.ir_freecount = newlen; | |
907 | rec.ir_free = XFS_INOBT_ALL_FREE; | |
908 | ||
909 | /* | |
910 | * Insert the sparse record into the inobt and allow for a merge | |
911 | * if necessary. If a merge does occur, rec is updated to the | |
912 | * merged record. | |
913 | */ | |
8541a7d9 | 914 | error = xfs_inobt_insert_sprec(pag, tp, agbp, &rec); |
56d1115c BF |
915 | if (error == -EFSCORRUPTED) { |
916 | xfs_alert(args.mp, | |
917 | "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", | |
7b13c515 | 918 | XFS_AGINO_TO_INO(args.mp, pag->pag_agno, |
56d1115c BF |
919 | rec.ir_startino), |
920 | rec.ir_holemask, rec.ir_count); | |
921 | xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); | |
922 | } | |
923 | if (error) | |
924 | return error; | |
925 | ||
926 | /* | |
927 | * We can't merge the part we've just allocated as for the inobt | |
928 | * due to finobt semantics. The original record may or may not | |
929 | * exist independent of whether physical inodes exist in this | |
930 | * sparse chunk. | |
931 | * | |
932 | * We must update the finobt record based on the inobt record. | |
933 | * rec contains the fully merged and up to date inobt record | |
934 | * from the previous call. Set merge false to replace any | |
935 | * existing record with this one. | |
936 | */ | |
ebd9027d | 937 | if (xfs_has_finobt(args.mp)) { |
8541a7d9 | 938 | error = xfs_finobt_insert_sprec(pag, tp, agbp, &rec); |
56d1115c BF |
939 | if (error) |
940 | return error; | |
941 | } | |
942 | } else { | |
943 | /* full chunk - insert new records to both btrees */ | |
fbeef4e0 | 944 | error = xfs_inobt_insert(pag, tp, agbp, newino, newlen, false); |
56d1115c BF |
945 | if (error) |
946 | return error; | |
947 | ||
ebd9027d | 948 | if (xfs_has_finobt(args.mp)) { |
dedab3e4 | 949 | error = xfs_inobt_insert(pag, tp, agbp, newino, |
fbeef4e0 | 950 | newlen, true); |
56d1115c BF |
951 | if (error) |
952 | return error; | |
953 | } | |
954 | } | |
955 | ||
956 | /* | |
957 | * Update AGI counts and newino. | |
958 | */ | |
413d57c9 MS |
959 | be32_add_cpu(&agi->agi_count, newlen); |
960 | be32_add_cpu(&agi->agi_freecount, newlen); | |
44b56e0a | 961 | pag->pagi_freecount += newlen; |
89e9b5c0 | 962 | pag->pagi_count += newlen; |
16259e7d | 963 | agi->agi_newino = cpu_to_be32(newino); |
85c0b2ab | 964 | |
1da177e4 LT |
965 | /* |
966 | * Log allocation group header fields | |
967 | */ | |
968 | xfs_ialloc_log_agi(tp, agbp, | |
969 | XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); | |
970 | /* | |
971 | * Modify/log superblock values for inode count and inode free count. | |
972 | */ | |
973 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); | |
974 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); | |
1da177e4 LT |
975 | return 0; |
976 | } | |
977 | ||
4254b0bb CH |
978 | /* |
979 | * Try to retrieve the next record to the left/right from the current one. | |
980 | */ | |
981 | STATIC int | |
982 | xfs_ialloc_next_rec( | |
983 | struct xfs_btree_cur *cur, | |
984 | xfs_inobt_rec_incore_t *rec, | |
985 | int *done, | |
986 | int left) | |
987 | { | |
988 | int error; | |
989 | int i; | |
990 | ||
991 | if (left) | |
992 | error = xfs_btree_decrement(cur, 0, &i); | |
993 | else | |
994 | error = xfs_btree_increment(cur, 0, &i); | |
995 | ||
996 | if (error) | |
997 | return error; | |
998 | *done = !i; | |
999 | if (i) { | |
1000 | error = xfs_inobt_get_rec(cur, rec, &i); | |
1001 | if (error) | |
1002 | return error; | |
989d5ec3 DW |
1003 | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { |
1004 | xfs_btree_mark_sick(cur); | |
f9e03706 | 1005 | return -EFSCORRUPTED; |
989d5ec3 | 1006 | } |
4254b0bb CH |
1007 | } |
1008 | ||
1009 | return 0; | |
1010 | } | |
1011 | ||
bd169565 DC |
1012 | STATIC int |
1013 | xfs_ialloc_get_rec( | |
1014 | struct xfs_btree_cur *cur, | |
1015 | xfs_agino_t agino, | |
1016 | xfs_inobt_rec_incore_t *rec, | |
43df2ee6 | 1017 | int *done) |
bd169565 DC |
1018 | { |
1019 | int error; | |
1020 | int i; | |
1021 | ||
1022 | error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); | |
1023 | if (error) | |
1024 | return error; | |
1025 | *done = !i; | |
1026 | if (i) { | |
1027 | error = xfs_inobt_get_rec(cur, rec, &i); | |
1028 | if (error) | |
1029 | return error; | |
989d5ec3 DW |
1030 | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { |
1031 | xfs_btree_mark_sick(cur); | |
f9e03706 | 1032 | return -EFSCORRUPTED; |
989d5ec3 | 1033 | } |
bd169565 DC |
1034 | } |
1035 | ||
1036 | return 0; | |
1037 | } | |
0b48db80 | 1038 | |
d4cc540b | 1039 | /* |
26dd5217 BF |
1040 | * Return the offset of the first free inode in the record. If the inode chunk |
1041 | * is sparsely allocated, we convert the record holemask to inode granularity | |
1042 | * and mask off the unallocated regions from the inode free mask. | |
d4cc540b BF |
1043 | */ |
1044 | STATIC int | |
1045 | xfs_inobt_first_free_inode( | |
1046 | struct xfs_inobt_rec_incore *rec) | |
1047 | { | |
26dd5217 BF |
1048 | xfs_inofree_t realfree; |
1049 | ||
1050 | /* if there are no holes, return the first available offset */ | |
1051 | if (!xfs_inobt_issparse(rec->ir_holemask)) | |
1052 | return xfs_lowbit64(rec->ir_free); | |
1053 | ||
1054 | realfree = xfs_inobt_irec_to_allocmask(rec); | |
1055 | realfree &= rec->ir_free; | |
1056 | ||
1057 | return xfs_lowbit64(realfree); | |
d4cc540b BF |
1058 | } |
1059 | ||
2935213a DW |
1060 | /* |
1061 | * If this AG has corrupt inodes, check if allocating this inode would fail | |
1062 | * with corruption errors. Returns 0 if we're clear, or EAGAIN to try again | |
1063 | * somewhere else. | |
1064 | */ | |
1065 | static int | |
1066 | xfs_dialloc_check_ino( | |
1067 | struct xfs_perag *pag, | |
1068 | struct xfs_trans *tp, | |
1069 | xfs_ino_t ino) | |
1070 | { | |
1071 | struct xfs_imap imap; | |
1072 | struct xfs_buf *bp; | |
1073 | int error; | |
1074 | ||
1075 | error = xfs_imap(pag, tp, ino, &imap, 0); | |
1076 | if (error) | |
1077 | return -EAGAIN; | |
1078 | ||
1079 | error = xfs_imap_to_bp(pag->pag_mount, tp, &imap, &bp); | |
1080 | if (error) | |
1081 | return -EAGAIN; | |
1082 | ||
1083 | xfs_trans_brelse(tp, bp); | |
1084 | return 0; | |
1085 | } | |
1086 | ||
1da177e4 | 1087 | /* |
6dd8638e | 1088 | * Allocate an inode using the inobt-only algorithm. |
1da177e4 | 1089 | */ |
f2ecc5e4 | 1090 | STATIC int |
6dd8638e | 1091 | xfs_dialloc_ag_inobt( |
dedab3e4 | 1092 | struct xfs_perag *pag, |
f2ecc5e4 CH |
1093 | struct xfs_trans *tp, |
1094 | struct xfs_buf *agbp, | |
1095 | xfs_ino_t parent, | |
1096 | xfs_ino_t *inop) | |
1da177e4 | 1097 | { |
f2ecc5e4 | 1098 | struct xfs_mount *mp = tp->t_mountp; |
370c782b | 1099 | struct xfs_agi *agi = agbp->b_addr; |
f2ecc5e4 CH |
1100 | xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); |
1101 | xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); | |
f2ecc5e4 CH |
1102 | struct xfs_btree_cur *cur, *tcur; |
1103 | struct xfs_inobt_rec_incore rec, trec; | |
1104 | xfs_ino_t ino; | |
1105 | int error; | |
1106 | int offset; | |
1107 | int i, j; | |
2d32311c | 1108 | int searchdistance = 10; |
1da177e4 | 1109 | |
7ac2ff8b DC |
1110 | ASSERT(xfs_perag_initialised_agi(pag)); |
1111 | ASSERT(xfs_perag_allows_inodes(pag)); | |
4bb61069 CH |
1112 | ASSERT(pag->pagi_freecount > 0); |
1113 | ||
bd169565 | 1114 | restart_pagno: |
14dd46cf | 1115 | cur = xfs_inobt_init_cursor(pag, tp, agbp); |
1da177e4 LT |
1116 | /* |
1117 | * If pagino is 0 (this is the root inode allocation) use newino. | |
1118 | * This must work because we've just allocated some. | |
1119 | */ | |
1120 | if (!pagino) | |
16259e7d | 1121 | pagino = be32_to_cpu(agi->agi_newino); |
1da177e4 | 1122 | |
9ba0889e | 1123 | error = xfs_check_agi_freecount(cur); |
0b48db80 DC |
1124 | if (error) |
1125 | goto error0; | |
1da177e4 | 1126 | |
1da177e4 | 1127 | /* |
4254b0bb | 1128 | * If in the same AG as the parent, try to get near the parent. |
1da177e4 | 1129 | */ |
7b13c515 | 1130 | if (pagno == pag->pag_agno) { |
4254b0bb CH |
1131 | int doneleft; /* done, to the left */ |
1132 | int doneright; /* done, to the right */ | |
1133 | ||
21875505 | 1134 | error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); |
4254b0bb | 1135 | if (error) |
1da177e4 | 1136 | goto error0; |
f9e03706 | 1137 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
989d5ec3 | 1138 | xfs_btree_mark_sick(cur); |
f9e03706 DW |
1139 | error = -EFSCORRUPTED; |
1140 | goto error0; | |
1141 | } | |
4254b0bb CH |
1142 | |
1143 | error = xfs_inobt_get_rec(cur, &rec, &j); | |
1144 | if (error) | |
1145 | goto error0; | |
f9e03706 | 1146 | if (XFS_IS_CORRUPT(mp, j != 1)) { |
989d5ec3 | 1147 | xfs_btree_mark_sick(cur); |
f9e03706 DW |
1148 | error = -EFSCORRUPTED; |
1149 | goto error0; | |
1150 | } | |
4254b0bb CH |
1151 | |
1152 | if (rec.ir_freecount > 0) { | |
1da177e4 LT |
1153 | /* |
1154 | * Found a free inode in the same chunk | |
4254b0bb | 1155 | * as the parent, done. |
1da177e4 | 1156 | */ |
4254b0bb | 1157 | goto alloc_inode; |
1da177e4 | 1158 | } |
4254b0bb CH |
1159 | |
1160 | ||
1da177e4 | 1161 | /* |
4254b0bb | 1162 | * In the same AG as parent, but parent's chunk is full. |
1da177e4 | 1163 | */ |
1da177e4 | 1164 | |
4254b0bb CH |
1165 | /* duplicate the cursor, search left & right simultaneously */ |
1166 | error = xfs_btree_dup_cursor(cur, &tcur); | |
1167 | if (error) | |
1168 | goto error0; | |
1169 | ||
bd169565 DC |
1170 | /* |
1171 | * Skip to last blocks looked up if same parent inode. | |
1172 | */ | |
1173 | if (pagino != NULLAGINO && | |
1174 | pag->pagl_pagino == pagino && | |
1175 | pag->pagl_leftrec != NULLAGINO && | |
1176 | pag->pagl_rightrec != NULLAGINO) { | |
1177 | error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, | |
43df2ee6 | 1178 | &trec, &doneleft); |
bd169565 DC |
1179 | if (error) |
1180 | goto error1; | |
4254b0bb | 1181 | |
bd169565 | 1182 | error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, |
43df2ee6 | 1183 | &rec, &doneright); |
bd169565 DC |
1184 | if (error) |
1185 | goto error1; | |
1186 | } else { | |
1187 | /* search left with tcur, back up 1 record */ | |
1188 | error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); | |
1189 | if (error) | |
1190 | goto error1; | |
1191 | ||
1192 | /* search right with cur, go forward 1 record. */ | |
1193 | error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); | |
1194 | if (error) | |
1195 | goto error1; | |
1196 | } | |
4254b0bb CH |
1197 | |
1198 | /* | |
1199 | * Loop until we find an inode chunk with a free inode. | |
1200 | */ | |
2d32311c | 1201 | while (--searchdistance > 0 && (!doneleft || !doneright)) { |
4254b0bb CH |
1202 | int useleft; /* using left inode chunk this time */ |
1203 | ||
1204 | /* figure out the closer block if both are valid. */ | |
1205 | if (!doneleft && !doneright) { | |
1206 | useleft = pagino - | |
1207 | (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < | |
1208 | rec.ir_startino - pagino; | |
1209 | } else { | |
1210 | useleft = !doneleft; | |
1da177e4 | 1211 | } |
4254b0bb CH |
1212 | |
1213 | /* free inodes to the left? */ | |
1214 | if (useleft && trec.ir_freecount) { | |
4254b0bb CH |
1215 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); |
1216 | cur = tcur; | |
bd169565 DC |
1217 | |
1218 | pag->pagl_leftrec = trec.ir_startino; | |
1219 | pag->pagl_rightrec = rec.ir_startino; | |
1220 | pag->pagl_pagino = pagino; | |
c44245b3 | 1221 | rec = trec; |
4254b0bb | 1222 | goto alloc_inode; |
1da177e4 | 1223 | } |
1da177e4 | 1224 | |
4254b0bb CH |
1225 | /* free inodes to the right? */ |
1226 | if (!useleft && rec.ir_freecount) { | |
1227 | xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); | |
bd169565 DC |
1228 | |
1229 | pag->pagl_leftrec = trec.ir_startino; | |
1230 | pag->pagl_rightrec = rec.ir_startino; | |
1231 | pag->pagl_pagino = pagino; | |
4254b0bb | 1232 | goto alloc_inode; |
1da177e4 | 1233 | } |
4254b0bb CH |
1234 | |
1235 | /* get next record to check */ | |
1236 | if (useleft) { | |
1237 | error = xfs_ialloc_next_rec(tcur, &trec, | |
1238 | &doneleft, 1); | |
1239 | } else { | |
1240 | error = xfs_ialloc_next_rec(cur, &rec, | |
1241 | &doneright, 0); | |
1242 | } | |
1243 | if (error) | |
1244 | goto error1; | |
1da177e4 | 1245 | } |
bd169565 | 1246 | |
2d32311c CM |
1247 | if (searchdistance <= 0) { |
1248 | /* | |
1249 | * Not in range - save last search | |
1250 | * location and allocate a new inode | |
1251 | */ | |
1252 | xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); | |
1253 | pag->pagl_leftrec = trec.ir_startino; | |
1254 | pag->pagl_rightrec = rec.ir_startino; | |
1255 | pag->pagl_pagino = pagino; | |
1256 | ||
1257 | } else { | |
1258 | /* | |
1259 | * We've reached the end of the btree. because | |
1260 | * we are only searching a small chunk of the | |
1261 | * btree each search, there is obviously free | |
1262 | * inodes closer to the parent inode than we | |
1263 | * are now. restart the search again. | |
1264 | */ | |
1265 | pag->pagl_pagino = NULLAGINO; | |
1266 | pag->pagl_leftrec = NULLAGINO; | |
1267 | pag->pagl_rightrec = NULLAGINO; | |
1268 | xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); | |
1269 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
1270 | goto restart_pagno; | |
1271 | } | |
1da177e4 | 1272 | } |
4254b0bb | 1273 | |
1da177e4 | 1274 | /* |
4254b0bb | 1275 | * In a different AG from the parent. |
1da177e4 LT |
1276 | * See if the most recently allocated block has any free. |
1277 | */ | |
69ef921b | 1278 | if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { |
21875505 CH |
1279 | error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), |
1280 | XFS_LOOKUP_EQ, &i); | |
4254b0bb | 1281 | if (error) |
1da177e4 | 1282 | goto error0; |
4254b0bb CH |
1283 | |
1284 | if (i == 1) { | |
1285 | error = xfs_inobt_get_rec(cur, &rec, &j); | |
1286 | if (error) | |
1287 | goto error0; | |
1288 | ||
1289 | if (j == 1 && rec.ir_freecount > 0) { | |
1290 | /* | |
1291 | * The last chunk allocated in the group | |
1292 | * still has a free inode. | |
1293 | */ | |
1294 | goto alloc_inode; | |
1295 | } | |
1da177e4 | 1296 | } |
bd169565 | 1297 | } |
4254b0bb | 1298 | |
bd169565 DC |
1299 | /* |
1300 | * None left in the last group, search the whole AG | |
1301 | */ | |
1302 | error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); | |
1303 | if (error) | |
1304 | goto error0; | |
f9e03706 | 1305 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
989d5ec3 | 1306 | xfs_btree_mark_sick(cur); |
f9e03706 DW |
1307 | error = -EFSCORRUPTED; |
1308 | goto error0; | |
1309 | } | |
bd169565 DC |
1310 | |
1311 | for (;;) { | |
1312 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
1313 | if (error) | |
1314 | goto error0; | |
f9e03706 | 1315 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
989d5ec3 | 1316 | xfs_btree_mark_sick(cur); |
f9e03706 DW |
1317 | error = -EFSCORRUPTED; |
1318 | goto error0; | |
1319 | } | |
bd169565 DC |
1320 | if (rec.ir_freecount > 0) |
1321 | break; | |
1322 | error = xfs_btree_increment(cur, 0, &i); | |
4254b0bb CH |
1323 | if (error) |
1324 | goto error0; | |
f9e03706 | 1325 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
989d5ec3 | 1326 | xfs_btree_mark_sick(cur); |
f9e03706 DW |
1327 | error = -EFSCORRUPTED; |
1328 | goto error0; | |
1329 | } | |
1da177e4 | 1330 | } |
4254b0bb CH |
1331 | |
1332 | alloc_inode: | |
d4cc540b | 1333 | offset = xfs_inobt_first_free_inode(&rec); |
1da177e4 LT |
1334 | ASSERT(offset >= 0); |
1335 | ASSERT(offset < XFS_INODES_PER_CHUNK); | |
1336 | ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % | |
1337 | XFS_INODES_PER_CHUNK) == 0); | |
7b13c515 | 1338 | ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset); |
2935213a DW |
1339 | |
1340 | if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) { | |
1341 | error = xfs_dialloc_check_ino(pag, tp, ino); | |
1342 | if (error) | |
1343 | goto error0; | |
1344 | } | |
1345 | ||
0d87e656 | 1346 | rec.ir_free &= ~XFS_INOBT_MASK(offset); |
1da177e4 | 1347 | rec.ir_freecount--; |
afabc24a CH |
1348 | error = xfs_inobt_update(cur, &rec); |
1349 | if (error) | |
1da177e4 | 1350 | goto error0; |
413d57c9 | 1351 | be32_add_cpu(&agi->agi_freecount, -1); |
1da177e4 | 1352 | xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); |
44b56e0a | 1353 | pag->pagi_freecount--; |
1da177e4 | 1354 | |
9ba0889e | 1355 | error = xfs_check_agi_freecount(cur); |
0b48db80 DC |
1356 | if (error) |
1357 | goto error0; | |
1358 | ||
1da177e4 LT |
1359 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); |
1360 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); | |
1361 | *inop = ino; | |
1362 | return 0; | |
1363 | error1: | |
1364 | xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); | |
1365 | error0: | |
1366 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
1367 | return error; | |
1368 | } | |
1369 | ||
6dd8638e BF |
1370 | /* |
1371 | * Use the free inode btree to allocate an inode based on distance from the | |
1372 | * parent. Note that the provided cursor may be deleted and replaced. | |
1373 | */ | |
1374 | STATIC int | |
1375 | xfs_dialloc_ag_finobt_near( | |
1376 | xfs_agino_t pagino, | |
1377 | struct xfs_btree_cur **ocur, | |
1378 | struct xfs_inobt_rec_incore *rec) | |
1379 | { | |
1380 | struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ | |
1381 | struct xfs_btree_cur *rcur; /* right search cursor */ | |
1382 | struct xfs_inobt_rec_incore rrec; | |
1383 | int error; | |
1384 | int i, j; | |
1385 | ||
1386 | error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); | |
1387 | if (error) | |
1388 | return error; | |
1389 | ||
1390 | if (i == 1) { | |
1391 | error = xfs_inobt_get_rec(lcur, rec, &i); | |
1392 | if (error) | |
1393 | return error; | |
989d5ec3 DW |
1394 | if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) { |
1395 | xfs_btree_mark_sick(lcur); | |
f9e03706 | 1396 | return -EFSCORRUPTED; |
989d5ec3 | 1397 | } |
6dd8638e BF |
1398 | |
1399 | /* | |
1400 | * See if we've landed in the parent inode record. The finobt | |
1401 | * only tracks chunks with at least one free inode, so record | |
1402 | * existence is enough. | |
1403 | */ | |
1404 | if (pagino >= rec->ir_startino && | |
1405 | pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) | |
1406 | return 0; | |
1407 | } | |
1408 | ||
1409 | error = xfs_btree_dup_cursor(lcur, &rcur); | |
1410 | if (error) | |
1411 | return error; | |
1412 | ||
1413 | error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); | |
1414 | if (error) | |
1415 | goto error_rcur; | |
1416 | if (j == 1) { | |
1417 | error = xfs_inobt_get_rec(rcur, &rrec, &j); | |
1418 | if (error) | |
1419 | goto error_rcur; | |
f9e03706 | 1420 | if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) { |
989d5ec3 | 1421 | xfs_btree_mark_sick(lcur); |
f9e03706 DW |
1422 | error = -EFSCORRUPTED; |
1423 | goto error_rcur; | |
1424 | } | |
6dd8638e BF |
1425 | } |
1426 | ||
f9e03706 | 1427 | if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) { |
989d5ec3 | 1428 | xfs_btree_mark_sick(lcur); |
f9e03706 DW |
1429 | error = -EFSCORRUPTED; |
1430 | goto error_rcur; | |
1431 | } | |
6dd8638e BF |
1432 | if (i == 1 && j == 1) { |
1433 | /* | |
1434 | * Both the left and right records are valid. Choose the closer | |
1435 | * inode chunk to the target. | |
1436 | */ | |
1437 | if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > | |
1438 | (rrec.ir_startino - pagino)) { | |
1439 | *rec = rrec; | |
1440 | xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); | |
1441 | *ocur = rcur; | |
1442 | } else { | |
1443 | xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); | |
1444 | } | |
1445 | } else if (j == 1) { | |
1446 | /* only the right record is valid */ | |
1447 | *rec = rrec; | |
1448 | xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); | |
1449 | *ocur = rcur; | |
1450 | } else if (i == 1) { | |
1451 | /* only the left record is valid */ | |
1452 | xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); | |
1453 | } | |
1454 | ||
1455 | return 0; | |
1456 | ||
1457 | error_rcur: | |
1458 | xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); | |
1459 | return error; | |
1460 | } | |
1461 | ||
1462 | /* | |
1463 | * Use the free inode btree to find a free inode based on a newino hint. If | |
1464 | * the hint is NULL, find the first free inode in the AG. | |
1465 | */ | |
1466 | STATIC int | |
1467 | xfs_dialloc_ag_finobt_newino( | |
1468 | struct xfs_agi *agi, | |
1469 | struct xfs_btree_cur *cur, | |
1470 | struct xfs_inobt_rec_incore *rec) | |
1471 | { | |
1472 | int error; | |
1473 | int i; | |
1474 | ||
1475 | if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { | |
e68ed775 DC |
1476 | error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), |
1477 | XFS_LOOKUP_EQ, &i); | |
6dd8638e BF |
1478 | if (error) |
1479 | return error; | |
1480 | if (i == 1) { | |
1481 | error = xfs_inobt_get_rec(cur, rec, &i); | |
1482 | if (error) | |
1483 | return error; | |
989d5ec3 DW |
1484 | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { |
1485 | xfs_btree_mark_sick(cur); | |
f9e03706 | 1486 | return -EFSCORRUPTED; |
989d5ec3 | 1487 | } |
6dd8638e BF |
1488 | return 0; |
1489 | } | |
1490 | } | |
1491 | ||
1492 | /* | |
1493 | * Find the first inode available in the AG. | |
1494 | */ | |
1495 | error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); | |
1496 | if (error) | |
1497 | return error; | |
989d5ec3 DW |
1498 | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { |
1499 | xfs_btree_mark_sick(cur); | |
f9e03706 | 1500 | return -EFSCORRUPTED; |
989d5ec3 | 1501 | } |
6dd8638e BF |
1502 | |
1503 | error = xfs_inobt_get_rec(cur, rec, &i); | |
1504 | if (error) | |
1505 | return error; | |
989d5ec3 DW |
1506 | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { |
1507 | xfs_btree_mark_sick(cur); | |
f9e03706 | 1508 | return -EFSCORRUPTED; |
989d5ec3 | 1509 | } |
6dd8638e BF |
1510 | |
1511 | return 0; | |
1512 | } | |
1513 | ||
1514 | /* | |
1515 | * Update the inobt based on a modification made to the finobt. Also ensure that | |
1516 | * the records from both trees are equivalent post-modification. | |
1517 | */ | |
1518 | STATIC int | |
1519 | xfs_dialloc_ag_update_inobt( | |
1520 | struct xfs_btree_cur *cur, /* inobt cursor */ | |
1521 | struct xfs_inobt_rec_incore *frec, /* finobt record */ | |
1522 | int offset) /* inode offset */ | |
1523 | { | |
1524 | struct xfs_inobt_rec_incore rec; | |
1525 | int error; | |
1526 | int i; | |
1527 | ||
1528 | error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); | |
1529 | if (error) | |
1530 | return error; | |
989d5ec3 DW |
1531 | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { |
1532 | xfs_btree_mark_sick(cur); | |
f9e03706 | 1533 | return -EFSCORRUPTED; |
989d5ec3 | 1534 | } |
6dd8638e BF |
1535 | |
1536 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
1537 | if (error) | |
1538 | return error; | |
989d5ec3 DW |
1539 | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { |
1540 | xfs_btree_mark_sick(cur); | |
f9e03706 | 1541 | return -EFSCORRUPTED; |
989d5ec3 | 1542 | } |
6dd8638e BF |
1543 | ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % |
1544 | XFS_INODES_PER_CHUNK) == 0); | |
1545 | ||
1546 | rec.ir_free &= ~XFS_INOBT_MASK(offset); | |
1547 | rec.ir_freecount--; | |
1548 | ||
f9e03706 DW |
1549 | if (XFS_IS_CORRUPT(cur->bc_mp, |
1550 | rec.ir_free != frec->ir_free || | |
989d5ec3 DW |
1551 | rec.ir_freecount != frec->ir_freecount)) { |
1552 | xfs_btree_mark_sick(cur); | |
f9e03706 | 1553 | return -EFSCORRUPTED; |
989d5ec3 | 1554 | } |
6dd8638e | 1555 | |
b72091f2 | 1556 | return xfs_inobt_update(cur, &rec); |
6dd8638e BF |
1557 | } |
1558 | ||
1559 | /* | |
1560 | * Allocate an inode using the free inode btree, if available. Otherwise, fall | |
1561 | * back to the inobt search algorithm. | |
1562 | * | |
1563 | * The caller selected an AG for us, and made sure that free inodes are | |
1564 | * available. | |
1565 | */ | |
b652afd9 | 1566 | static int |
6dd8638e | 1567 | xfs_dialloc_ag( |
dedab3e4 | 1568 | struct xfs_perag *pag, |
6dd8638e BF |
1569 | struct xfs_trans *tp, |
1570 | struct xfs_buf *agbp, | |
1571 | xfs_ino_t parent, | |
1572 | xfs_ino_t *inop) | |
1573 | { | |
1574 | struct xfs_mount *mp = tp->t_mountp; | |
370c782b | 1575 | struct xfs_agi *agi = agbp->b_addr; |
6dd8638e BF |
1576 | xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); |
1577 | xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); | |
6dd8638e BF |
1578 | struct xfs_btree_cur *cur; /* finobt cursor */ |
1579 | struct xfs_btree_cur *icur; /* inobt cursor */ | |
1580 | struct xfs_inobt_rec_incore rec; | |
1581 | xfs_ino_t ino; | |
1582 | int error; | |
1583 | int offset; | |
1584 | int i; | |
1585 | ||
ebd9027d | 1586 | if (!xfs_has_finobt(mp)) |
dedab3e4 | 1587 | return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop); |
6dd8638e | 1588 | |
6dd8638e BF |
1589 | /* |
1590 | * If pagino is 0 (this is the root inode allocation) use newino. | |
1591 | * This must work because we've just allocated some. | |
1592 | */ | |
1593 | if (!pagino) | |
1594 | pagino = be32_to_cpu(agi->agi_newino); | |
1595 | ||
14dd46cf | 1596 | cur = xfs_finobt_init_cursor(pag, tp, agbp); |
6dd8638e | 1597 | |
9ba0889e | 1598 | error = xfs_check_agi_freecount(cur); |
6dd8638e BF |
1599 | if (error) |
1600 | goto error_cur; | |
1601 | ||
1602 | /* | |
1603 | * The search algorithm depends on whether we're in the same AG as the | |
1604 | * parent. If so, find the closest available inode to the parent. If | |
1605 | * not, consider the agi hint or find the first free inode in the AG. | |
1606 | */ | |
7b13c515 | 1607 | if (pag->pag_agno == pagno) |
6dd8638e BF |
1608 | error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); |
1609 | else | |
1610 | error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); | |
1611 | if (error) | |
1612 | goto error_cur; | |
1613 | ||
d4cc540b | 1614 | offset = xfs_inobt_first_free_inode(&rec); |
6dd8638e BF |
1615 | ASSERT(offset >= 0); |
1616 | ASSERT(offset < XFS_INODES_PER_CHUNK); | |
1617 | ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % | |
1618 | XFS_INODES_PER_CHUNK) == 0); | |
7b13c515 | 1619 | ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset); |
6dd8638e | 1620 | |
2935213a DW |
1621 | if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) { |
1622 | error = xfs_dialloc_check_ino(pag, tp, ino); | |
1623 | if (error) | |
1624 | goto error_cur; | |
1625 | } | |
1626 | ||
6dd8638e BF |
1627 | /* |
1628 | * Modify or remove the finobt record. | |
1629 | */ | |
1630 | rec.ir_free &= ~XFS_INOBT_MASK(offset); | |
1631 | rec.ir_freecount--; | |
1632 | if (rec.ir_freecount) | |
1633 | error = xfs_inobt_update(cur, &rec); | |
1634 | else | |
1635 | error = xfs_btree_delete(cur, &i); | |
1636 | if (error) | |
1637 | goto error_cur; | |
1638 | ||
1639 | /* | |
1640 | * The finobt has now been updated appropriately. We haven't updated the | |
1641 | * agi and superblock yet, so we can create an inobt cursor and validate | |
1642 | * the original freecount. If all is well, make the equivalent update to | |
1643 | * the inobt using the finobt record and offset information. | |
1644 | */ | |
14dd46cf | 1645 | icur = xfs_inobt_init_cursor(pag, tp, agbp); |
6dd8638e | 1646 | |
9ba0889e | 1647 | error = xfs_check_agi_freecount(icur); |
6dd8638e BF |
1648 | if (error) |
1649 | goto error_icur; | |
1650 | ||
1651 | error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); | |
1652 | if (error) | |
1653 | goto error_icur; | |
1654 | ||
1655 | /* | |
1656 | * Both trees have now been updated. We must update the perag and | |
1657 | * superblock before we can check the freecount for each btree. | |
1658 | */ | |
1659 | be32_add_cpu(&agi->agi_freecount, -1); | |
1660 | xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); | |
7b13c515 | 1661 | pag->pagi_freecount--; |
6dd8638e BF |
1662 | |
1663 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); | |
1664 | ||
9ba0889e | 1665 | error = xfs_check_agi_freecount(icur); |
6dd8638e BF |
1666 | if (error) |
1667 | goto error_icur; | |
9ba0889e | 1668 | error = xfs_check_agi_freecount(cur); |
6dd8638e BF |
1669 | if (error) |
1670 | goto error_icur; | |
1671 | ||
1672 | xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); | |
1673 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
6dd8638e BF |
1674 | *inop = ino; |
1675 | return 0; | |
1676 | ||
1677 | error_icur: | |
1678 | xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); | |
1679 | error_cur: | |
1680 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
6dd8638e BF |
1681 | return error; |
1682 | } | |
1683 | ||
f3bf6e0f | 1684 | static int |
aececc9f DC |
1685 | xfs_dialloc_roll( |
1686 | struct xfs_trans **tpp, | |
1687 | struct xfs_buf *agibp) | |
1688 | { | |
1689 | struct xfs_trans *tp = *tpp; | |
1690 | struct xfs_dquot_acct *dqinfo; | |
1691 | int error; | |
1692 | ||
1693 | /* | |
1694 | * Hold to on to the agibp across the commit so no other allocation can | |
1695 | * come in and take the free inodes we just allocated for our caller. | |
1696 | */ | |
1697 | xfs_trans_bhold(tp, agibp); | |
1698 | ||
1699 | /* | |
1700 | * We want the quota changes to be associated with the next transaction, | |
1701 | * NOT this one. So, detach the dqinfo from this and attach it to the | |
1702 | * next transaction. | |
1703 | */ | |
1704 | dqinfo = tp->t_dqinfo; | |
1705 | tp->t_dqinfo = NULL; | |
1706 | ||
1707 | error = xfs_trans_roll(&tp); | |
1708 | ||
1709 | /* Re-attach the quota info that we detached from prev trx. */ | |
1710 | tp->t_dqinfo = dqinfo; | |
1711 | ||
8237fbf5 DC |
1712 | /* |
1713 | * Join the buffer even on commit error so that the buffer is released | |
1714 | * when the caller cancels the transaction and doesn't have to handle | |
1715 | * this error case specially. | |
1716 | */ | |
aececc9f | 1717 | xfs_trans_bjoin(tp, agibp); |
8237fbf5 DC |
1718 | *tpp = tp; |
1719 | return error; | |
aececc9f DC |
1720 | } |
1721 | ||
8237fbf5 DC |
1722 | static bool |
1723 | xfs_dialloc_good_ag( | |
8237fbf5 | 1724 | struct xfs_perag *pag, |
dedab3e4 | 1725 | struct xfs_trans *tp, |
8237fbf5 DC |
1726 | umode_t mode, |
1727 | int flags, | |
1728 | bool ok_alloc) | |
1729 | { | |
1730 | struct xfs_mount *mp = tp->t_mountp; | |
1731 | xfs_extlen_t ineed; | |
1732 | xfs_extlen_t longest = 0; | |
1733 | int needspace; | |
1734 | int error; | |
1735 | ||
dedab3e4 DC |
1736 | if (!pag) |
1737 | return false; | |
7ac2ff8b | 1738 | if (!xfs_perag_allows_inodes(pag)) |
8237fbf5 DC |
1739 | return false; |
1740 | ||
7ac2ff8b | 1741 | if (!xfs_perag_initialised_agi(pag)) { |
549d3c9a | 1742 | error = xfs_ialloc_read_agi(pag, tp, 0, NULL); |
8237fbf5 DC |
1743 | if (error) |
1744 | return false; | |
1745 | } | |
1746 | ||
1747 | if (pag->pagi_freecount) | |
1748 | return true; | |
1749 | if (!ok_alloc) | |
1750 | return false; | |
1751 | ||
7ac2ff8b | 1752 | if (!xfs_perag_initialised_agf(pag)) { |
08d3e84f | 1753 | error = xfs_alloc_read_agf(pag, tp, flags, NULL); |
8237fbf5 DC |
1754 | if (error) |
1755 | return false; | |
1756 | } | |
1757 | ||
1758 | /* | |
1759 | * Check that there is enough free space for the file plus a chunk of | |
1760 | * inodes if we need to allocate some. If this is the first pass across | |
1761 | * the AGs, take into account the potential space needed for alignment | |
1762 | * of inode chunks when checking the longest contiguous free space in | |
1763 | * the AG - this prevents us from getting ENOSPC because we have free | |
1764 | * space larger than ialloc_blks but alignment constraints prevent us | |
1765 | * from using it. | |
1766 | * | |
1767 | * If we can't find an AG with space for full alignment slack to be | |
1768 | * taken into account, we must be near ENOSPC in all AGs. Hence we | |
1769 | * don't include alignment for the second pass and so if we fail | |
1770 | * allocation due to alignment issues then it is most likely a real | |
1771 | * ENOSPC condition. | |
1772 | * | |
1773 | * XXX(dgc): this calculation is now bogus thanks to the per-ag | |
1774 | * reservations that xfs_alloc_fix_freelist() now does via | |
1775 | * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will | |
1776 | * be more than large enough for the check below to succeed, but | |
1777 | * xfs_alloc_space_available() will fail because of the non-zero | |
1778 | * metadata reservation and hence we won't actually be able to allocate | |
1779 | * more inodes in this AG. We do soooo much unnecessary work near ENOSPC | |
1780 | * because of this. | |
1781 | */ | |
1782 | ineed = M_IGEO(mp)->ialloc_min_blks; | |
1783 | if (flags && ineed > 1) | |
1784 | ineed += M_IGEO(mp)->cluster_align; | |
1785 | longest = pag->pagf_longest; | |
1786 | if (!longest) | |
1787 | longest = pag->pagf_flcount > 0; | |
1788 | needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); | |
1789 | ||
1790 | if (pag->pagf_freeblks < needspace + ineed || longest < ineed) | |
1791 | return false; | |
1792 | return true; | |
1793 | } | |
1794 | ||
1795 | static int | |
1796 | xfs_dialloc_try_ag( | |
8237fbf5 | 1797 | struct xfs_perag *pag, |
dedab3e4 | 1798 | struct xfs_trans **tpp, |
8237fbf5 DC |
1799 | xfs_ino_t parent, |
1800 | xfs_ino_t *new_ino, | |
1801 | bool ok_alloc) | |
1802 | { | |
1803 | struct xfs_buf *agbp; | |
1804 | xfs_ino_t ino; | |
1805 | int error; | |
1806 | ||
1807 | /* | |
1808 | * Then read in the AGI buffer and recheck with the AGI buffer | |
1809 | * lock held. | |
1810 | */ | |
549d3c9a | 1811 | error = xfs_ialloc_read_agi(pag, *tpp, 0, &agbp); |
8237fbf5 DC |
1812 | if (error) |
1813 | return error; | |
1814 | ||
1815 | if (!pag->pagi_freecount) { | |
1816 | if (!ok_alloc) { | |
1817 | error = -EAGAIN; | |
1818 | goto out_release; | |
1819 | } | |
1820 | ||
dedab3e4 | 1821 | error = xfs_ialloc_ag_alloc(pag, *tpp, agbp); |
8237fbf5 DC |
1822 | if (error < 0) |
1823 | goto out_release; | |
1824 | ||
1825 | /* | |
1826 | * We successfully allocated space for an inode cluster in this | |
1827 | * AG. Roll the transaction so that we can allocate one of the | |
1828 | * new inodes. | |
1829 | */ | |
1830 | ASSERT(pag->pagi_freecount > 0); | |
1831 | error = xfs_dialloc_roll(tpp, agbp); | |
1832 | if (error) | |
1833 | goto out_release; | |
1834 | } | |
1835 | ||
1836 | /* Allocate an inode in the found AG */ | |
dedab3e4 | 1837 | error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino); |
8237fbf5 DC |
1838 | if (!error) |
1839 | *new_ino = ino; | |
1840 | return error; | |
1841 | ||
1842 | out_release: | |
1843 | xfs_trans_brelse(*tpp, agbp); | |
1844 | return error; | |
1845 | } | |
1846 | ||
f2ecc5e4 | 1847 | /* |
8237fbf5 | 1848 | * Allocate an on-disk inode. |
f2ecc5e4 | 1849 | * |
8d822dc3 | 1850 | * Mode is used to tell whether the new inode is a directory and hence where to |
8237fbf5 DC |
1851 | * locate it. The on-disk inode that is allocated will be returned in @new_ino |
1852 | * on success, otherwise an error will be set to indicate the failure (e.g. | |
1853 | * -ENOSPC). | |
f2ecc5e4 CH |
1854 | */ |
1855 | int | |
b652afd9 | 1856 | xfs_dialloc( |
f3bf6e0f | 1857 | struct xfs_trans **tpp, |
f2ecc5e4 CH |
1858 | xfs_ino_t parent, |
1859 | umode_t mode, | |
b652afd9 | 1860 | xfs_ino_t *new_ino) |
f2ecc5e4 | 1861 | { |
f3bf6e0f | 1862 | struct xfs_mount *mp = (*tpp)->t_mountp; |
f2ecc5e4 | 1863 | xfs_agnumber_t agno; |
b652afd9 | 1864 | int error = 0; |
be60fe54 | 1865 | xfs_agnumber_t start_agno; |
f2ecc5e4 | 1866 | struct xfs_perag *pag; |
ef325959 | 1867 | struct xfs_ino_geometry *igeo = M_IGEO(mp); |
8237fbf5 | 1868 | bool ok_alloc = true; |
f08f984c | 1869 | bool low_space = false; |
89b1f55a | 1870 | int flags; |
76257a15 | 1871 | xfs_ino_t ino = NULLFSINO; |
8d822dc3 | 1872 | |
4bb61069 | 1873 | /* |
89b1f55a DC |
1874 | * Directories, symlinks, and regular files frequently allocate at least |
1875 | * one block, so factor that potential expansion when we examine whether | |
1876 | * an AG has enough space for file creation. | |
4bb61069 | 1877 | */ |
89b1f55a | 1878 | if (S_ISDIR(mode)) |
6e2985c9 DW |
1879 | start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) % |
1880 | mp->m_maxagi; | |
89b1f55a DC |
1881 | else { |
1882 | start_agno = XFS_INO_TO_AGNO(mp, parent); | |
1883 | if (start_agno >= mp->m_maxagi) | |
1884 | start_agno = 0; | |
1885 | } | |
55d6af64 | 1886 | |
f2ecc5e4 CH |
1887 | /* |
1888 | * If we have already hit the ceiling of inode blocks then clear | |
8237fbf5 | 1889 | * ok_alloc so we scan all available agi structures for a free |
f2ecc5e4 | 1890 | * inode. |
74f9ce1c GW |
1891 | * |
1892 | * Read rough value of mp->m_icount by percpu_counter_read_positive, | |
1893 | * which will sacrifice the preciseness but improve the performance. | |
f2ecc5e4 | 1894 | */ |
ef325959 DW |
1895 | if (igeo->maxicount && |
1896 | percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos | |
1897 | > igeo->maxicount) { | |
8237fbf5 | 1898 | ok_alloc = false; |
f2ecc5e4 CH |
1899 | } |
1900 | ||
f08f984c DC |
1901 | /* |
1902 | * If we are near to ENOSPC, we want to prefer allocation from AGs that | |
1903 | * have free inodes in them rather than use up free space allocating new | |
1904 | * inode chunks. Hence we turn off allocation for the first non-blocking | |
1905 | * pass through the AGs if we are near ENOSPC to consume free inodes | |
1906 | * that we can immediately allocate, but then we allow allocation on the | |
1907 | * second pass if we fail to find an AG with free inodes in it. | |
1908 | */ | |
1909 | if (percpu_counter_read_positive(&mp->m_fdblocks) < | |
1910 | mp->m_low_space[XFS_LOWSP_1_PCNT]) { | |
1911 | ok_alloc = false; | |
1912 | low_space = true; | |
1913 | } | |
1914 | ||
f2ecc5e4 CH |
1915 | /* |
1916 | * Loop until we find an allocation group that either has free inodes | |
1917 | * or in which we can allocate some inodes. Iterate through the | |
1918 | * allocation groups upward, wrapping at the end. | |
1919 | */ | |
89b1f55a | 1920 | flags = XFS_ALLOC_FLAG_TRYLOCK; |
76257a15 DC |
1921 | retry: |
1922 | for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) { | |
dedab3e4 DC |
1923 | if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) { |
1924 | error = xfs_dialloc_try_ag(pag, tpp, parent, | |
8237fbf5 DC |
1925 | &ino, ok_alloc); |
1926 | if (error != -EAGAIN) | |
42685473 | 1927 | break; |
76257a15 | 1928 | error = 0; |
f2ecc5e4 | 1929 | } |
be60fe54 | 1930 | |
75c8c50f | 1931 | if (xfs_is_shutdown(mp)) { |
89b1f55a | 1932 | error = -EFSCORRUPTED; |
42685473 | 1933 | break; |
89b1f55a | 1934 | } |
76257a15 DC |
1935 | } |
1936 | if (pag) | |
1937 | xfs_perag_rele(pag); | |
1938 | if (error) | |
1939 | return error; | |
1940 | if (ino == NULLFSINO) { | |
1941 | if (flags) { | |
89b1f55a | 1942 | flags = 0; |
f08f984c DC |
1943 | if (low_space) |
1944 | ok_alloc = true; | |
76257a15 | 1945 | goto retry; |
89b1f55a | 1946 | } |
76257a15 | 1947 | return -ENOSPC; |
f2ecc5e4 | 1948 | } |
38fd3d6a DW |
1949 | |
1950 | /* | |
1951 | * Protect against obviously corrupt allocation btree records. Later | |
1952 | * xfs_iget checks will catch re-allocation of other active in-memory | |
1953 | * and on-disk inodes. If we don't catch reallocating the parent inode | |
1954 | * here we will deadlock in xfs_iget() so we have to do these checks | |
1955 | * first. | |
1956 | */ | |
1957 | if (ino == parent || !xfs_verify_dir_ino(mp, ino)) { | |
1958 | xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino); | |
1959 | xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino), | |
1960 | XFS_SICK_AG_INOBT); | |
1961 | return -EFSCORRUPTED; | |
1962 | } | |
1963 | ||
76257a15 DC |
1964 | *new_ino = ino; |
1965 | return 0; | |
f2ecc5e4 CH |
1966 | } |
1967 | ||
10ae3dc7 BF |
1968 | /* |
1969 | * Free the blocks of an inode chunk. We must consider that the inode chunk | |
1970 | * might be sparse and only free the regions that are allocated as part of the | |
1971 | * chunk. | |
1972 | */ | |
7dfee17b | 1973 | static int |
10ae3dc7 | 1974 | xfs_difree_inode_chunk( |
0f37d178 | 1975 | struct xfs_trans *tp, |
10ae3dc7 | 1976 | xfs_agnumber_t agno, |
0f37d178 | 1977 | struct xfs_inobt_rec_incore *rec) |
10ae3dc7 | 1978 | { |
0f37d178 BF |
1979 | struct xfs_mount *mp = tp->t_mountp; |
1980 | xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, | |
1981 | rec->ir_startino); | |
1982 | int startidx, endidx; | |
1983 | int nextbit; | |
1984 | xfs_agblock_t agbno; | |
1985 | int contigblk; | |
10ae3dc7 BF |
1986 | DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); |
1987 | ||
1988 | if (!xfs_inobt_issparse(rec->ir_holemask)) { | |
1989 | /* not sparse, calculate extent info directly */ | |
7dfee17b DC |
1990 | return xfs_free_extent_later(tp, |
1991 | XFS_AGB_TO_FSB(mp, agno, sagbno), | |
b742d7b4 | 1992 | M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES, |
980faece | 1993 | XFS_AG_RESV_NONE, 0); |
10ae3dc7 BF |
1994 | } |
1995 | ||
1996 | /* holemask is only 16-bits (fits in an unsigned long) */ | |
1997 | ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); | |
1998 | holemask[0] = rec->ir_holemask; | |
1999 | ||
2000 | /* | |
2001 | * Find contiguous ranges of zeroes (i.e., allocated regions) in the | |
2002 | * holemask and convert the start/end index of each range to an extent. | |
2003 | * We start with the start and end index both pointing at the first 0 in | |
2004 | * the mask. | |
2005 | */ | |
2006 | startidx = endidx = find_first_zero_bit(holemask, | |
2007 | XFS_INOBT_HOLEMASK_BITS); | |
2008 | nextbit = startidx + 1; | |
2009 | while (startidx < XFS_INOBT_HOLEMASK_BITS) { | |
7dfee17b DC |
2010 | int error; |
2011 | ||
10ae3dc7 BF |
2012 | nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, |
2013 | nextbit); | |
2014 | /* | |
2015 | * If the next zero bit is contiguous, update the end index of | |
2016 | * the current range and continue. | |
2017 | */ | |
2018 | if (nextbit != XFS_INOBT_HOLEMASK_BITS && | |
2019 | nextbit == endidx + 1) { | |
2020 | endidx = nextbit; | |
2021 | goto next; | |
2022 | } | |
2023 | ||
2024 | /* | |
2025 | * nextbit is not contiguous with the current end index. Convert | |
2026 | * the current start/end to an extent and add it to the free | |
2027 | * list. | |
2028 | */ | |
2029 | agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / | |
2030 | mp->m_sb.sb_inopblock; | |
2031 | contigblk = ((endidx - startidx + 1) * | |
2032 | XFS_INODES_PER_HOLEMASK_BIT) / | |
2033 | mp->m_sb.sb_inopblock; | |
2034 | ||
2035 | ASSERT(agbno % mp->m_sb.sb_spino_align == 0); | |
2036 | ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); | |
7dfee17b | 2037 | error = xfs_free_extent_later(tp, |
b742d7b4 | 2038 | XFS_AGB_TO_FSB(mp, agno, agbno), contigblk, |
980faece | 2039 | &XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE, 0); |
7dfee17b DC |
2040 | if (error) |
2041 | return error; | |
10ae3dc7 BF |
2042 | |
2043 | /* reset range to current bit and carry on... */ | |
2044 | startidx = endidx = nextbit; | |
2045 | ||
2046 | next: | |
2047 | nextbit++; | |
2048 | } | |
7dfee17b | 2049 | return 0; |
10ae3dc7 BF |
2050 | } |
2051 | ||
2b64ee5c BF |
2052 | STATIC int |
2053 | xfs_difree_inobt( | |
dedab3e4 | 2054 | struct xfs_perag *pag, |
2b64ee5c BF |
2055 | struct xfs_trans *tp, |
2056 | struct xfs_buf *agbp, | |
2057 | xfs_agino_t agino, | |
09b56604 | 2058 | struct xfs_icluster *xic, |
2b64ee5c | 2059 | struct xfs_inobt_rec_incore *orec) |
1da177e4 | 2060 | { |
dedab3e4 | 2061 | struct xfs_mount *mp = pag->pag_mount; |
370c782b | 2062 | struct xfs_agi *agi = agbp->b_addr; |
2b64ee5c BF |
2063 | struct xfs_btree_cur *cur; |
2064 | struct xfs_inobt_rec_incore rec; | |
2065 | int ilen; | |
2066 | int error; | |
2067 | int i; | |
2068 | int off; | |
1da177e4 | 2069 | |
69ef921b | 2070 | ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); |
2b64ee5c BF |
2071 | ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); |
2072 | ||
1da177e4 LT |
2073 | /* |
2074 | * Initialize the cursor. | |
2075 | */ | |
14dd46cf | 2076 | cur = xfs_inobt_init_cursor(pag, tp, agbp); |
1da177e4 | 2077 | |
9ba0889e | 2078 | error = xfs_check_agi_freecount(cur); |
0b48db80 DC |
2079 | if (error) |
2080 | goto error0; | |
2081 | ||
1da177e4 LT |
2082 | /* |
2083 | * Look for the entry describing this inode. | |
2084 | */ | |
21875505 | 2085 | if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { |
0b932ccc DC |
2086 | xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", |
2087 | __func__, error); | |
1da177e4 LT |
2088 | goto error0; |
2089 | } | |
f9e03706 | 2090 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
989d5ec3 | 2091 | xfs_btree_mark_sick(cur); |
f9e03706 DW |
2092 | error = -EFSCORRUPTED; |
2093 | goto error0; | |
2094 | } | |
2e287a73 CH |
2095 | error = xfs_inobt_get_rec(cur, &rec, &i); |
2096 | if (error) { | |
0b932ccc DC |
2097 | xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", |
2098 | __func__, error); | |
1da177e4 LT |
2099 | goto error0; |
2100 | } | |
f9e03706 | 2101 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
989d5ec3 | 2102 | xfs_btree_mark_sick(cur); |
f9e03706 DW |
2103 | error = -EFSCORRUPTED; |
2104 | goto error0; | |
2105 | } | |
1da177e4 LT |
2106 | /* |
2107 | * Get the offset in the inode chunk. | |
2108 | */ | |
2109 | off = agino - rec.ir_startino; | |
2110 | ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); | |
0d87e656 | 2111 | ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); |
1da177e4 LT |
2112 | /* |
2113 | * Mark the inode free & increment the count. | |
2114 | */ | |
0d87e656 | 2115 | rec.ir_free |= XFS_INOBT_MASK(off); |
1da177e4 LT |
2116 | rec.ir_freecount++; |
2117 | ||
2118 | /* | |
999633d3 BF |
2119 | * When an inode chunk is free, it becomes eligible for removal. Don't |
2120 | * remove the chunk if the block size is large enough for multiple inode | |
2121 | * chunks (that might not be free). | |
1da177e4 | 2122 | */ |
0560f31a | 2123 | if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE && |
999633d3 | 2124 | mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { |
749f24f3 | 2125 | xic->deleted = true; |
7b13c515 DC |
2126 | xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, |
2127 | rec.ir_startino); | |
09b56604 | 2128 | xic->alloc = xfs_inobt_irec_to_allocmask(&rec); |
1da177e4 LT |
2129 | |
2130 | /* | |
2131 | * Remove the inode cluster from the AGI B+Tree, adjust the | |
2132 | * AGI and Superblock inode counts, and mark the disk space | |
2133 | * to be freed when the transaction is committed. | |
2134 | */ | |
999633d3 | 2135 | ilen = rec.ir_freecount; |
413d57c9 MS |
2136 | be32_add_cpu(&agi->agi_count, -ilen); |
2137 | be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); | |
1da177e4 | 2138 | xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); |
44b56e0a | 2139 | pag->pagi_freecount -= ilen - 1; |
89e9b5c0 | 2140 | pag->pagi_count -= ilen; |
1da177e4 LT |
2141 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); |
2142 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); | |
2143 | ||
91cca5df | 2144 | if ((error = xfs_btree_delete(cur, &i))) { |
0b932ccc DC |
2145 | xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", |
2146 | __func__, error); | |
1da177e4 LT |
2147 | goto error0; |
2148 | } | |
2149 | ||
7dfee17b DC |
2150 | error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec); |
2151 | if (error) | |
2152 | goto error0; | |
1da177e4 | 2153 | } else { |
749f24f3 | 2154 | xic->deleted = false; |
1da177e4 | 2155 | |
afabc24a CH |
2156 | error = xfs_inobt_update(cur, &rec); |
2157 | if (error) { | |
0b932ccc DC |
2158 | xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", |
2159 | __func__, error); | |
1da177e4 LT |
2160 | goto error0; |
2161 | } | |
afabc24a | 2162 | |
b7df7630 | 2163 | /* |
1da177e4 LT |
2164 | * Change the inode free counts and log the ag/sb changes. |
2165 | */ | |
413d57c9 | 2166 | be32_add_cpu(&agi->agi_freecount, 1); |
1da177e4 | 2167 | xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); |
7b13c515 | 2168 | pag->pagi_freecount++; |
1da177e4 LT |
2169 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); |
2170 | } | |
2171 | ||
9ba0889e | 2172 | error = xfs_check_agi_freecount(cur); |
0b48db80 DC |
2173 | if (error) |
2174 | goto error0; | |
1da177e4 | 2175 | |
2b64ee5c | 2176 | *orec = rec; |
1da177e4 LT |
2177 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); |
2178 | return 0; | |
2179 | ||
2180 | error0: | |
2181 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
2182 | return error; | |
2183 | } | |
2184 | ||
3efa4ffd BF |
2185 | /* |
2186 | * Free an inode in the free inode btree. | |
2187 | */ | |
2188 | STATIC int | |
2189 | xfs_difree_finobt( | |
dedab3e4 | 2190 | struct xfs_perag *pag, |
3efa4ffd BF |
2191 | struct xfs_trans *tp, |
2192 | struct xfs_buf *agbp, | |
2193 | xfs_agino_t agino, | |
2194 | struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ | |
2195 | { | |
dedab3e4 | 2196 | struct xfs_mount *mp = pag->pag_mount; |
3efa4ffd BF |
2197 | struct xfs_btree_cur *cur; |
2198 | struct xfs_inobt_rec_incore rec; | |
2199 | int offset = agino - ibtrec->ir_startino; | |
2200 | int error; | |
2201 | int i; | |
2202 | ||
14dd46cf | 2203 | cur = xfs_finobt_init_cursor(pag, tp, agbp); |
3efa4ffd BF |
2204 | |
2205 | error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); | |
2206 | if (error) | |
2207 | goto error; | |
2208 | if (i == 0) { | |
2209 | /* | |
2210 | * If the record does not exist in the finobt, we must have just | |
2211 | * freed an inode in a previously fully allocated chunk. If not, | |
2212 | * something is out of sync. | |
2213 | */ | |
f9e03706 | 2214 | if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) { |
989d5ec3 | 2215 | xfs_btree_mark_sick(cur); |
f9e03706 DW |
2216 | error = -EFSCORRUPTED; |
2217 | goto error; | |
2218 | } | |
3efa4ffd | 2219 | |
5419040f BF |
2220 | error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, |
2221 | ibtrec->ir_count, | |
2222 | ibtrec->ir_freecount, | |
3efa4ffd BF |
2223 | ibtrec->ir_free, &i); |
2224 | if (error) | |
2225 | goto error; | |
2226 | ASSERT(i == 1); | |
2227 | ||
2228 | goto out; | |
2229 | } | |
2230 | ||
2231 | /* | |
2232 | * Read and update the existing record. We could just copy the ibtrec | |
2233 | * across here, but that would defeat the purpose of having redundant | |
2234 | * metadata. By making the modifications independently, we can catch | |
2235 | * corruptions that we wouldn't see if we just copied from one record | |
2236 | * to another. | |
2237 | */ | |
2238 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
2239 | if (error) | |
2240 | goto error; | |
f9e03706 | 2241 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
989d5ec3 | 2242 | xfs_btree_mark_sick(cur); |
f9e03706 DW |
2243 | error = -EFSCORRUPTED; |
2244 | goto error; | |
2245 | } | |
3efa4ffd BF |
2246 | |
2247 | rec.ir_free |= XFS_INOBT_MASK(offset); | |
2248 | rec.ir_freecount++; | |
2249 | ||
f9e03706 DW |
2250 | if (XFS_IS_CORRUPT(mp, |
2251 | rec.ir_free != ibtrec->ir_free || | |
2252 | rec.ir_freecount != ibtrec->ir_freecount)) { | |
989d5ec3 | 2253 | xfs_btree_mark_sick(cur); |
f9e03706 DW |
2254 | error = -EFSCORRUPTED; |
2255 | goto error; | |
2256 | } | |
3efa4ffd BF |
2257 | |
2258 | /* | |
2259 | * The content of inobt records should always match between the inobt | |
2260 | * and finobt. The lifecycle of records in the finobt is different from | |
2261 | * the inobt in that the finobt only tracks records with at least one | |
2262 | * free inode. Hence, if all of the inodes are free and we aren't | |
2263 | * keeping inode chunks permanently on disk, remove the record. | |
2264 | * Otherwise, update the record with the new information. | |
999633d3 BF |
2265 | * |
2266 | * Note that we currently can't free chunks when the block size is large | |
2267 | * enough for multiple chunks. Leave the finobt record to remain in sync | |
2268 | * with the inobt. | |
3efa4ffd | 2269 | */ |
0560f31a DC |
2270 | if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE && |
2271 | mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { | |
3efa4ffd BF |
2272 | error = xfs_btree_delete(cur, &i); |
2273 | if (error) | |
2274 | goto error; | |
2275 | ASSERT(i == 1); | |
2276 | } else { | |
2277 | error = xfs_inobt_update(cur, &rec); | |
2278 | if (error) | |
2279 | goto error; | |
2280 | } | |
2281 | ||
2282 | out: | |
9ba0889e | 2283 | error = xfs_check_agi_freecount(cur); |
3efa4ffd BF |
2284 | if (error) |
2285 | goto error; | |
2286 | ||
2287 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
2288 | return 0; | |
2289 | ||
2290 | error: | |
2291 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
2292 | return error; | |
2293 | } | |
2294 | ||
2b64ee5c BF |
2295 | /* |
2296 | * Free disk inode. Carefully avoids touching the incore inode, all | |
2297 | * manipulations incore are the caller's responsibility. | |
2298 | * The on-disk inode is not changed by this operation, only the | |
2299 | * btree (free inode mask) is changed. | |
2300 | */ | |
2301 | int | |
2302 | xfs_difree( | |
f40aadb2 DC |
2303 | struct xfs_trans *tp, |
2304 | struct xfs_perag *pag, | |
2305 | xfs_ino_t inode, | |
2306 | struct xfs_icluster *xic) | |
2b64ee5c BF |
2307 | { |
2308 | /* REFERENCED */ | |
2309 | xfs_agblock_t agbno; /* block number containing inode */ | |
2310 | struct xfs_buf *agbp; /* buffer for allocation group header */ | |
2311 | xfs_agino_t agino; /* allocation group inode number */ | |
2b64ee5c | 2312 | int error; /* error return value */ |
7b13c515 | 2313 | struct xfs_mount *mp = tp->t_mountp; |
2b64ee5c | 2314 | struct xfs_inobt_rec_incore rec;/* btree record */ |
2b64ee5c BF |
2315 | |
2316 | /* | |
2317 | * Break up inode number into its components. | |
2318 | */ | |
f40aadb2 DC |
2319 | if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) { |
2320 | xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).", | |
2321 | __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno); | |
2b64ee5c | 2322 | ASSERT(0); |
2451337d | 2323 | return -EINVAL; |
2b64ee5c BF |
2324 | } |
2325 | agino = XFS_INO_TO_AGINO(mp, inode); | |
f40aadb2 | 2326 | if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { |
2b64ee5c BF |
2327 | xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", |
2328 | __func__, (unsigned long long)inode, | |
f40aadb2 | 2329 | (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)); |
2b64ee5c | 2330 | ASSERT(0); |
2451337d | 2331 | return -EINVAL; |
2b64ee5c BF |
2332 | } |
2333 | agbno = XFS_AGINO_TO_AGBNO(mp, agino); | |
2334 | if (agbno >= mp->m_sb.sb_agblocks) { | |
2335 | xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", | |
2336 | __func__, agbno, mp->m_sb.sb_agblocks); | |
2337 | ASSERT(0); | |
2451337d | 2338 | return -EINVAL; |
2b64ee5c BF |
2339 | } |
2340 | /* | |
2341 | * Get the allocation group header. | |
2342 | */ | |
549d3c9a | 2343 | error = xfs_ialloc_read_agi(pag, tp, 0, &agbp); |
2b64ee5c BF |
2344 | if (error) { |
2345 | xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", | |
2346 | __func__, error); | |
2347 | return error; | |
2348 | } | |
2349 | ||
2350 | /* | |
2351 | * Fix up the inode allocation btree. | |
2352 | */ | |
dedab3e4 | 2353 | error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec); |
2b64ee5c BF |
2354 | if (error) |
2355 | goto error0; | |
2356 | ||
3efa4ffd BF |
2357 | /* |
2358 | * Fix up the free inode btree. | |
2359 | */ | |
ebd9027d | 2360 | if (xfs_has_finobt(mp)) { |
dedab3e4 | 2361 | error = xfs_difree_finobt(pag, tp, agbp, agino, &rec); |
3efa4ffd BF |
2362 | if (error) |
2363 | goto error0; | |
2364 | } | |
2365 | ||
2b64ee5c BF |
2366 | return 0; |
2367 | ||
2368 | error0: | |
2369 | return error; | |
2370 | } | |
2371 | ||
7124fe0a DC |
2372 | STATIC int |
2373 | xfs_imap_lookup( | |
7b13c515 | 2374 | struct xfs_perag *pag, |
498f0adb | 2375 | struct xfs_trans *tp, |
7124fe0a DC |
2376 | xfs_agino_t agino, |
2377 | xfs_agblock_t agbno, | |
2378 | xfs_agblock_t *chunk_agbno, | |
2379 | xfs_agblock_t *offset_agbno, | |
2380 | int flags) | |
2381 | { | |
498f0adb | 2382 | struct xfs_mount *mp = pag->pag_mount; |
7124fe0a DC |
2383 | struct xfs_inobt_rec_incore rec; |
2384 | struct xfs_btree_cur *cur; | |
2385 | struct xfs_buf *agbp; | |
7124fe0a DC |
2386 | int error; |
2387 | int i; | |
2388 | ||
549d3c9a | 2389 | error = xfs_ialloc_read_agi(pag, tp, 0, &agbp); |
7124fe0a | 2390 | if (error) { |
53487786 DC |
2391 | xfs_alert(mp, |
2392 | "%s: xfs_ialloc_read_agi() returned error %d, agno %d", | |
7b13c515 | 2393 | __func__, error, pag->pag_agno); |
7124fe0a DC |
2394 | return error; |
2395 | } | |
2396 | ||
2397 | /* | |
4536f2ad DC |
2398 | * Lookup the inode record for the given agino. If the record cannot be |
2399 | * found, then it's an invalid inode number and we should abort. Once | |
2400 | * we have a record, we need to ensure it contains the inode number | |
2401 | * we are looking up. | |
7124fe0a | 2402 | */ |
14dd46cf | 2403 | cur = xfs_inobt_init_cursor(pag, tp, agbp); |
4536f2ad | 2404 | error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); |
7124fe0a DC |
2405 | if (!error) { |
2406 | if (i) | |
2407 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
2408 | if (!error && i == 0) | |
2451337d | 2409 | error = -EINVAL; |
7124fe0a DC |
2410 | } |
2411 | ||
2412 | xfs_trans_brelse(tp, agbp); | |
0b04b6b8 | 2413 | xfs_btree_del_cursor(cur, error); |
7124fe0a DC |
2414 | if (error) |
2415 | return error; | |
2416 | ||
4536f2ad DC |
2417 | /* check that the returned record contains the required inode */ |
2418 | if (rec.ir_startino > agino || | |
ef325959 | 2419 | rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino) |
2451337d | 2420 | return -EINVAL; |
4536f2ad | 2421 | |
7124fe0a | 2422 | /* for untrusted inodes check it is allocated first */ |
1920779e | 2423 | if ((flags & XFS_IGET_UNTRUSTED) && |
7124fe0a | 2424 | (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) |
2451337d | 2425 | return -EINVAL; |
7124fe0a DC |
2426 | |
2427 | *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); | |
2428 | *offset_agbno = agbno - *chunk_agbno; | |
2429 | return 0; | |
2430 | } | |
2431 | ||
1da177e4 | 2432 | /* |
94e1b69d | 2433 | * Return the location of the inode in imap, for mapping it into a buffer. |
1da177e4 | 2434 | */ |
1da177e4 | 2435 | int |
94e1b69d | 2436 | xfs_imap( |
498f0adb DC |
2437 | struct xfs_perag *pag, |
2438 | struct xfs_trans *tp, | |
7b13c515 DC |
2439 | xfs_ino_t ino, /* inode to locate */ |
2440 | struct xfs_imap *imap, /* location map structure */ | |
2441 | uint flags) /* flags for inode btree lookup */ | |
1da177e4 | 2442 | { |
498f0adb | 2443 | struct xfs_mount *mp = pag->pag_mount; |
7b13c515 DC |
2444 | xfs_agblock_t agbno; /* block number of inode in the alloc group */ |
2445 | xfs_agino_t agino; /* inode number within alloc group */ | |
2446 | xfs_agblock_t chunk_agbno; /* first block in inode chunk */ | |
2447 | xfs_agblock_t cluster_agbno; /* first block in inode cluster */ | |
2448 | int error; /* error code */ | |
2449 | int offset; /* index of inode in its buffer */ | |
2450 | xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ | |
1da177e4 LT |
2451 | |
2452 | ASSERT(ino != NULLFSINO); | |
94e1b69d | 2453 | |
1da177e4 LT |
2454 | /* |
2455 | * Split up the inode number into its parts. | |
2456 | */ | |
1da177e4 LT |
2457 | agino = XFS_INO_TO_AGINO(mp, ino); |
2458 | agbno = XFS_AGINO_TO_AGBNO(mp, agino); | |
498f0adb | 2459 | if (agbno >= mp->m_sb.sb_agblocks || |
7b13c515 DC |
2460 | ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { |
2461 | error = -EINVAL; | |
1da177e4 | 2462 | #ifdef DEBUG |
1920779e DC |
2463 | /* |
2464 | * Don't output diagnostic information for untrusted inodes | |
2465 | * as they can be invalid without implying corruption. | |
2466 | */ | |
2467 | if (flags & XFS_IGET_UNTRUSTED) | |
498f0adb | 2468 | return error; |
1da177e4 | 2469 | if (agbno >= mp->m_sb.sb_agblocks) { |
53487786 DC |
2470 | xfs_alert(mp, |
2471 | "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", | |
2472 | __func__, (unsigned long long)agbno, | |
2473 | (unsigned long)mp->m_sb.sb_agblocks); | |
1da177e4 | 2474 | } |
498f0adb | 2475 | if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) { |
53487786 DC |
2476 | xfs_alert(mp, |
2477 | "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", | |
2478 | __func__, ino, | |
7b13c515 | 2479 | XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)); |
1da177e4 | 2480 | } |
745b1f47 | 2481 | xfs_stack_trace(); |
1da177e4 | 2482 | #endif /* DEBUG */ |
498f0adb | 2483 | return error; |
1da177e4 | 2484 | } |
94e1b69d | 2485 | |
7124fe0a DC |
2486 | /* |
2487 | * For bulkstat and handle lookups, we have an untrusted inode number | |
2488 | * that we have to verify is valid. We cannot do this just by reading | |
2489 | * the inode buffer as it may have been unlinked and removed leaving | |
2490 | * inodes in stale state on disk. Hence we have to do a btree lookup | |
2491 | * in all cases where an untrusted inode number is passed. | |
2492 | */ | |
1920779e | 2493 | if (flags & XFS_IGET_UNTRUSTED) { |
498f0adb | 2494 | error = xfs_imap_lookup(pag, tp, agino, agbno, |
7124fe0a DC |
2495 | &chunk_agbno, &offset_agbno, flags); |
2496 | if (error) | |
498f0adb | 2497 | return error; |
7124fe0a DC |
2498 | goto out_map; |
2499 | } | |
2500 | ||
94e1b69d CH |
2501 | /* |
2502 | * If the inode cluster size is the same as the blocksize or | |
2503 | * smaller we get to the buffer by simple arithmetics. | |
2504 | */ | |
ef325959 | 2505 | if (M_IGEO(mp)->blocks_per_cluster == 1) { |
1da177e4 LT |
2506 | offset = XFS_INO_TO_OFFSET(mp, ino); |
2507 | ASSERT(offset < mp->m_sb.sb_inopblock); | |
94e1b69d | 2508 | |
7b13c515 | 2509 | imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno); |
94e1b69d | 2510 | imap->im_len = XFS_FSB_TO_BB(mp, 1); |
755c7bf5 DW |
2511 | imap->im_boffset = (unsigned short)(offset << |
2512 | mp->m_sb.sb_inodelog); | |
498f0adb | 2513 | return 0; |
1da177e4 | 2514 | } |
94e1b69d | 2515 | |
94e1b69d CH |
2516 | /* |
2517 | * If the inode chunks are aligned then use simple maths to | |
2518 | * find the location. Otherwise we have to do a btree | |
2519 | * lookup to find the location. | |
2520 | */ | |
ef325959 DW |
2521 | if (M_IGEO(mp)->inoalign_mask) { |
2522 | offset_agbno = agbno & M_IGEO(mp)->inoalign_mask; | |
1da177e4 LT |
2523 | chunk_agbno = agbno - offset_agbno; |
2524 | } else { | |
498f0adb | 2525 | error = xfs_imap_lookup(pag, tp, agino, agbno, |
7124fe0a | 2526 | &chunk_agbno, &offset_agbno, flags); |
1da177e4 | 2527 | if (error) |
498f0adb | 2528 | return error; |
1da177e4 | 2529 | } |
94e1b69d | 2530 | |
7124fe0a | 2531 | out_map: |
1da177e4 LT |
2532 | ASSERT(agbno >= chunk_agbno); |
2533 | cluster_agbno = chunk_agbno + | |
ef325959 DW |
2534 | ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) * |
2535 | M_IGEO(mp)->blocks_per_cluster); | |
1da177e4 LT |
2536 | offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + |
2537 | XFS_INO_TO_OFFSET(mp, ino); | |
94e1b69d | 2538 | |
7b13c515 | 2539 | imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno); |
ef325959 | 2540 | imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster); |
755c7bf5 | 2541 | imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); |
94e1b69d CH |
2542 | |
2543 | /* | |
2544 | * If the inode number maps to a block outside the bounds | |
2545 | * of the file system then return NULL rather than calling | |
2546 | * read_buf and panicing when we get an error from the | |
2547 | * driver. | |
2548 | */ | |
2549 | if ((imap->im_blkno + imap->im_len) > | |
2550 | XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { | |
53487786 DC |
2551 | xfs_alert(mp, |
2552 | "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", | |
2553 | __func__, (unsigned long long) imap->im_blkno, | |
94e1b69d CH |
2554 | (unsigned long long) imap->im_len, |
2555 | XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); | |
498f0adb | 2556 | return -EINVAL; |
94e1b69d | 2557 | } |
498f0adb | 2558 | return 0; |
1da177e4 LT |
2559 | } |
2560 | ||
1da177e4 | 2561 | /* |
aafc3c24 BF |
2562 | * Log specified fields for the ag hdr (inode section). The growth of the agi |
2563 | * structure over time requires that we interpret the buffer as two logical | |
2564 | * regions delineated by the end of the unlinked list. This is due to the size | |
2565 | * of the hash table and its location in the middle of the agi. | |
2566 | * | |
2567 | * For example, a request to log a field before agi_unlinked and a field after | |
2568 | * agi_unlinked could cause us to log the entire hash table and use an excessive | |
2569 | * amount of log space. To avoid this behavior, log the region up through | |
2570 | * agi_unlinked in one call and the region after agi_unlinked through the end of | |
2571 | * the structure in another. | |
1da177e4 LT |
2572 | */ |
2573 | void | |
2574 | xfs_ialloc_log_agi( | |
0d1b9769 DC |
2575 | struct xfs_trans *tp, |
2576 | struct xfs_buf *bp, | |
2577 | uint32_t fields) | |
1da177e4 LT |
2578 | { |
2579 | int first; /* first byte number */ | |
2580 | int last; /* last byte number */ | |
2581 | static const short offsets[] = { /* field starting offsets */ | |
2582 | /* keep in sync with bit definitions */ | |
2583 | offsetof(xfs_agi_t, agi_magicnum), | |
2584 | offsetof(xfs_agi_t, agi_versionnum), | |
2585 | offsetof(xfs_agi_t, agi_seqno), | |
2586 | offsetof(xfs_agi_t, agi_length), | |
2587 | offsetof(xfs_agi_t, agi_count), | |
2588 | offsetof(xfs_agi_t, agi_root), | |
2589 | offsetof(xfs_agi_t, agi_level), | |
2590 | offsetof(xfs_agi_t, agi_freecount), | |
2591 | offsetof(xfs_agi_t, agi_newino), | |
2592 | offsetof(xfs_agi_t, agi_dirino), | |
2593 | offsetof(xfs_agi_t, agi_unlinked), | |
aafc3c24 BF |
2594 | offsetof(xfs_agi_t, agi_free_root), |
2595 | offsetof(xfs_agi_t, agi_free_level), | |
2a39946c | 2596 | offsetof(xfs_agi_t, agi_iblocks), |
1da177e4 LT |
2597 | sizeof(xfs_agi_t) |
2598 | }; | |
2599 | #ifdef DEBUG | |
370c782b | 2600 | struct xfs_agi *agi = bp->b_addr; |
1da177e4 | 2601 | |
69ef921b | 2602 | ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); |
1da177e4 | 2603 | #endif |
aafc3c24 | 2604 | |
1da177e4 | 2605 | /* |
aafc3c24 BF |
2606 | * Compute byte offsets for the first and last fields in the first |
2607 | * region and log the agi buffer. This only logs up through | |
2608 | * agi_unlinked. | |
1da177e4 | 2609 | */ |
aafc3c24 BF |
2610 | if (fields & XFS_AGI_ALL_BITS_R1) { |
2611 | xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, | |
2612 | &first, &last); | |
2613 | xfs_trans_log_buf(tp, bp, first, last); | |
2614 | } | |
2615 | ||
1da177e4 | 2616 | /* |
aafc3c24 BF |
2617 | * Mask off the bits in the first region and calculate the first and |
2618 | * last field offsets for any bits in the second region. | |
1da177e4 | 2619 | */ |
aafc3c24 BF |
2620 | fields &= ~XFS_AGI_ALL_BITS_R1; |
2621 | if (fields) { | |
2622 | xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, | |
2623 | &first, &last); | |
2624 | xfs_trans_log_buf(tp, bp, first, last); | |
2625 | } | |
1da177e4 LT |
2626 | } |
2627 | ||
a6a781a5 | 2628 | static xfs_failaddr_t |
612cfbfe | 2629 | xfs_agi_verify( |
2d7d1e7e | 2630 | struct xfs_buf *bp) |
3702ce6e | 2631 | { |
2d7d1e7e DW |
2632 | struct xfs_mount *mp = bp->b_mount; |
2633 | struct xfs_agi *agi = bp->b_addr; | |
2634 | xfs_failaddr_t fa; | |
2635 | uint32_t agi_seqno = be32_to_cpu(agi->agi_seqno); | |
2636 | uint32_t agi_length = be32_to_cpu(agi->agi_length); | |
2637 | int i; | |
3702ce6e | 2638 | |
38c26bfd | 2639 | if (xfs_has_crc(mp)) { |
a45086e2 | 2640 | if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) |
a6a781a5 | 2641 | return __this_address; |
370c782b | 2642 | if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn))) |
a6a781a5 | 2643 | return __this_address; |
a45086e2 BF |
2644 | } |
2645 | ||
3702ce6e DC |
2646 | /* |
2647 | * Validate the magic number of the agi block. | |
2648 | */ | |
39708c20 | 2649 | if (!xfs_verify_magic(bp, agi->agi_magicnum)) |
a6a781a5 | 2650 | return __this_address; |
983d09ff | 2651 | if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) |
a6a781a5 | 2652 | return __this_address; |
3702ce6e | 2653 | |
2d7d1e7e DW |
2654 | fa = xfs_validate_ag_length(bp, agi_seqno, agi_length); |
2655 | if (fa) | |
2656 | return fa; | |
2657 | ||
d2a047f3 | 2658 | if (be32_to_cpu(agi->agi_level) < 1 || |
973975b7 | 2659 | be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels) |
a6a781a5 | 2660 | return __this_address; |
d2a047f3 | 2661 | |
38c26bfd | 2662 | if (xfs_has_finobt(mp) && |
d2a047f3 | 2663 | (be32_to_cpu(agi->agi_free_level) < 1 || |
973975b7 | 2664 | be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels)) |
a6a781a5 | 2665 | return __this_address; |
d2a047f3 | 2666 | |
9f96cc95 | 2667 | for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) { |
5089eaff | 2668 | if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO)) |
9f96cc95 DC |
2669 | continue; |
2670 | if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i]))) | |
2671 | return __this_address; | |
2672 | } | |
2673 | ||
a6a781a5 | 2674 | return NULL; |
612cfbfe DC |
2675 | } |
2676 | ||
1813dd64 DC |
2677 | static void |
2678 | xfs_agi_read_verify( | |
612cfbfe DC |
2679 | struct xfs_buf *bp) |
2680 | { | |
dbd329f1 | 2681 | struct xfs_mount *mp = bp->b_mount; |
bc1a09b8 | 2682 | xfs_failaddr_t fa; |
983d09ff | 2683 | |
38c26bfd | 2684 | if (xfs_has_crc(mp) && |
ce5028cf | 2685 | !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) |
bc1a09b8 DW |
2686 | xfs_verifier_error(bp, -EFSBADCRC, __this_address); |
2687 | else { | |
2688 | fa = xfs_agi_verify(bp); | |
2689 | if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI)) | |
2690 | xfs_verifier_error(bp, -EFSCORRUPTED, fa); | |
2691 | } | |
612cfbfe DC |
2692 | } |
2693 | ||
b0f539de | 2694 | static void |
1813dd64 | 2695 | xfs_agi_write_verify( |
612cfbfe DC |
2696 | struct xfs_buf *bp) |
2697 | { | |
dbd329f1 | 2698 | struct xfs_mount *mp = bp->b_mount; |
fb1755a6 | 2699 | struct xfs_buf_log_item *bip = bp->b_log_item; |
370c782b | 2700 | struct xfs_agi *agi = bp->b_addr; |
bc1a09b8 | 2701 | xfs_failaddr_t fa; |
983d09ff | 2702 | |
bc1a09b8 DW |
2703 | fa = xfs_agi_verify(bp); |
2704 | if (fa) { | |
2705 | xfs_verifier_error(bp, -EFSCORRUPTED, fa); | |
983d09ff DC |
2706 | return; |
2707 | } | |
2708 | ||
38c26bfd | 2709 | if (!xfs_has_crc(mp)) |
983d09ff DC |
2710 | return; |
2711 | ||
2712 | if (bip) | |
370c782b | 2713 | agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); |
f1dbcd7e | 2714 | xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); |
3702ce6e DC |
2715 | } |
2716 | ||
1813dd64 | 2717 | const struct xfs_buf_ops xfs_agi_buf_ops = { |
233135b7 | 2718 | .name = "xfs_agi", |
39708c20 | 2719 | .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) }, |
1813dd64 DC |
2720 | .verify_read = xfs_agi_read_verify, |
2721 | .verify_write = xfs_agi_write_verify, | |
b5572597 | 2722 | .verify_struct = xfs_agi_verify, |
1813dd64 DC |
2723 | }; |
2724 | ||
1da177e4 LT |
2725 | /* |
2726 | * Read in the allocation group header (inode allocation section) | |
2727 | */ | |
2728 | int | |
5e1be0fb | 2729 | xfs_read_agi( |
61021deb DC |
2730 | struct xfs_perag *pag, |
2731 | struct xfs_trans *tp, | |
549d3c9a | 2732 | xfs_buf_flags_t flags, |
61021deb | 2733 | struct xfs_buf **agibpp) |
1da177e4 | 2734 | { |
61021deb | 2735 | struct xfs_mount *mp = pag->pag_mount; |
5e1be0fb | 2736 | int error; |
1da177e4 | 2737 | |
61021deb | 2738 | trace_xfs_read_agi(pag->pag_mount, pag->pag_agno); |
5e1be0fb CH |
2739 | |
2740 | error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, | |
61021deb | 2741 | XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)), |
549d3c9a | 2742 | XFS_FSS_TO_BB(mp, 1), flags, agibpp, &xfs_agi_buf_ops); |
de6077ec DW |
2743 | if (xfs_metadata_is_sick(error)) |
2744 | xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI); | |
1da177e4 LT |
2745 | if (error) |
2746 | return error; | |
200237d6 | 2747 | if (tp) |
61021deb | 2748 | xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF); |
5e1be0fb | 2749 | |
61021deb | 2750 | xfs_buf_set_ref(*agibpp, XFS_AGI_REF); |
5e1be0fb CH |
2751 | return 0; |
2752 | } | |
2753 | ||
a95fee40 DC |
2754 | /* |
2755 | * Read in the agi and initialise the per-ag data. If the caller supplies a | |
2756 | * @agibpp, return the locked AGI buffer to them, otherwise release it. | |
2757 | */ | |
5e1be0fb CH |
2758 | int |
2759 | xfs_ialloc_read_agi( | |
99b13c7f DC |
2760 | struct xfs_perag *pag, |
2761 | struct xfs_trans *tp, | |
549d3c9a | 2762 | int flags, |
a95fee40 | 2763 | struct xfs_buf **agibpp) |
5e1be0fb | 2764 | { |
a95fee40 | 2765 | struct xfs_buf *agibp; |
99b13c7f | 2766 | struct xfs_agi *agi; |
5e1be0fb CH |
2767 | int error; |
2768 | ||
99b13c7f | 2769 | trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno); |
d123031a | 2770 | |
549d3c9a DW |
2771 | error = xfs_read_agi(pag, tp, |
2772 | (flags & XFS_IALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0, | |
2773 | &agibp); | |
5e1be0fb CH |
2774 | if (error) |
2775 | return error; | |
2776 | ||
a95fee40 | 2777 | agi = agibp->b_addr; |
7ac2ff8b | 2778 | if (!xfs_perag_initialised_agi(pag)) { |
16259e7d | 2779 | pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); |
92821e2b | 2780 | pag->pagi_count = be32_to_cpu(agi->agi_count); |
7ac2ff8b | 2781 | set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate); |
1da177e4 | 2782 | } |
1da177e4 | 2783 | |
5e1be0fb CH |
2784 | /* |
2785 | * It's possible for these to be out of sync if | |
2786 | * we are in the middle of a forced shutdown. | |
2787 | */ | |
2788 | ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || | |
99b13c7f | 2789 | xfs_is_shutdown(pag->pag_mount)); |
a95fee40 DC |
2790 | if (agibpp) |
2791 | *agibpp = agibp; | |
2792 | else | |
2793 | xfs_trans_brelse(tp, agibp); | |
92821e2b DC |
2794 | return 0; |
2795 | } | |
91fb9afc | 2796 | |
efc0845f DW |
2797 | /* How many inodes are backed by inode clusters ondisk? */ |
2798 | STATIC int | |
2799 | xfs_ialloc_count_ondisk( | |
2800 | struct xfs_btree_cur *cur, | |
2801 | xfs_agino_t low, | |
2802 | xfs_agino_t high, | |
2803 | unsigned int *allocated) | |
2e001266 DW |
2804 | { |
2805 | struct xfs_inobt_rec_incore irec; | |
efc0845f DW |
2806 | unsigned int ret = 0; |
2807 | int has_record; | |
2808 | int error; | |
2e001266 | 2809 | |
2e001266 | 2810 | error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record); |
efc0845f DW |
2811 | if (error) |
2812 | return error; | |
2813 | ||
2814 | while (has_record) { | |
2815 | unsigned int i, hole_idx; | |
2816 | ||
2e001266 | 2817 | error = xfs_inobt_get_rec(cur, &irec, &has_record); |
efc0845f DW |
2818 | if (error) |
2819 | return error; | |
2820 | if (irec.ir_startino > high) | |
2e001266 DW |
2821 | break; |
2822 | ||
efc0845f DW |
2823 | for (i = 0; i < XFS_INODES_PER_CHUNK; i++) { |
2824 | if (irec.ir_startino + i < low) | |
2e001266 | 2825 | continue; |
efc0845f DW |
2826 | if (irec.ir_startino + i > high) |
2827 | break; | |
2828 | ||
2829 | hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT; | |
2830 | if (!(irec.ir_holemask & (1U << hole_idx))) | |
2831 | ret++; | |
2e001266 DW |
2832 | } |
2833 | ||
2834 | error = xfs_btree_increment(cur, 0, &has_record); | |
efc0845f DW |
2835 | if (error) |
2836 | return error; | |
2e001266 | 2837 | } |
efc0845f DW |
2838 | |
2839 | *allocated = ret; | |
2840 | return 0; | |
2e001266 DW |
2841 | } |
2842 | ||
2843 | /* Is there an inode record covering a given extent? */ | |
2844 | int | |
2845 | xfs_ialloc_has_inodes_at_extent( | |
2846 | struct xfs_btree_cur *cur, | |
2847 | xfs_agblock_t bno, | |
2848 | xfs_extlen_t len, | |
efc0845f | 2849 | enum xbtree_recpacking *outcome) |
2e001266 | 2850 | { |
efc0845f DW |
2851 | xfs_agino_t agino; |
2852 | xfs_agino_t last_agino; | |
2853 | unsigned int allocated; | |
2854 | int error; | |
2e001266 | 2855 | |
efc0845f DW |
2856 | agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno); |
2857 | last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1; | |
2e001266 | 2858 | |
efc0845f DW |
2859 | error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated); |
2860 | if (error) | |
2861 | return error; | |
2862 | ||
2863 | if (allocated == 0) | |
2864 | *outcome = XBTREE_RECPACKING_EMPTY; | |
2865 | else if (allocated == last_agino - agino + 1) | |
2866 | *outcome = XBTREE_RECPACKING_FULL; | |
2867 | else | |
2868 | *outcome = XBTREE_RECPACKING_SPARSE; | |
2869 | return 0; | |
2e001266 DW |
2870 | } |
2871 | ||
2872 | struct xfs_ialloc_count_inodes { | |
2873 | xfs_agino_t count; | |
2874 | xfs_agino_t freecount; | |
2875 | }; | |
2876 | ||
2877 | /* Record inode counts across all inobt records. */ | |
2878 | STATIC int | |
2879 | xfs_ialloc_count_inodes_rec( | |
2880 | struct xfs_btree_cur *cur, | |
159eb69d | 2881 | const union xfs_btree_rec *rec, |
2e001266 DW |
2882 | void *priv) |
2883 | { | |
2884 | struct xfs_inobt_rec_incore irec; | |
2885 | struct xfs_ialloc_count_inodes *ci = priv; | |
ee12eaaa | 2886 | xfs_failaddr_t fa; |
2e001266 DW |
2887 | |
2888 | xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec); | |
dbfbf3bd | 2889 | fa = xfs_inobt_check_irec(cur->bc_ag.pag, &irec); |
ee12eaaa DW |
2890 | if (fa) |
2891 | return xfs_inobt_complain_bad_rec(cur, fa, &irec); | |
366a0b8d | 2892 | |
2e001266 DW |
2893 | ci->count += irec.ir_count; |
2894 | ci->freecount += irec.ir_freecount; | |
2895 | ||
2896 | return 0; | |
2897 | } | |
2898 | ||
2899 | /* Count allocated and free inodes under an inobt. */ | |
2900 | int | |
2901 | xfs_ialloc_count_inodes( | |
2902 | struct xfs_btree_cur *cur, | |
2903 | xfs_agino_t *count, | |
2904 | xfs_agino_t *freecount) | |
2905 | { | |
2906 | struct xfs_ialloc_count_inodes ci = {0}; | |
2907 | int error; | |
2908 | ||
ec793e69 | 2909 | ASSERT(xfs_btree_is_ino(cur->bc_ops)); |
2e001266 DW |
2910 | error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci); |
2911 | if (error) | |
2912 | return error; | |
2913 | ||
2914 | *count = ci.count; | |
2915 | *freecount = ci.freecount; | |
2916 | return 0; | |
2917 | } | |
494dba7b DW |
2918 | |
2919 | /* | |
2920 | * Initialize inode-related geometry information. | |
2921 | * | |
2922 | * Compute the inode btree min and max levels and set maxicount. | |
2923 | * | |
2924 | * Set the inode cluster size. This may still be overridden by the file | |
2925 | * system block size if it is larger than the chosen cluster size. | |
2926 | * | |
2927 | * For v5 filesystems, scale the cluster size with the inode size to keep a | |
2928 | * constant ratio of inode per cluster buffer, but only if mkfs has set the | |
2929 | * inode alignment value appropriately for larger cluster sizes. | |
2930 | * | |
2931 | * Then compute the inode cluster alignment information. | |
2932 | */ | |
2933 | void | |
2934 | xfs_ialloc_setup_geometry( | |
2935 | struct xfs_mount *mp) | |
2936 | { | |
2937 | struct xfs_sb *sbp = &mp->m_sb; | |
2938 | struct xfs_ino_geometry *igeo = M_IGEO(mp); | |
2939 | uint64_t icount; | |
2940 | uint inodes; | |
2941 | ||
f93e5436 | 2942 | igeo->new_diflags2 = 0; |
ebd9027d | 2943 | if (xfs_has_bigtime(mp)) |
f93e5436 | 2944 | igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME; |
9b7d16e3 CB |
2945 | if (xfs_has_large_extent_counts(mp)) |
2946 | igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64; | |
f93e5436 | 2947 | |
494dba7b DW |
2948 | /* Compute inode btree geometry. */ |
2949 | igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog; | |
2950 | igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); | |
2951 | igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); | |
2952 | igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2; | |
2953 | igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2; | |
2954 | ||
2955 | igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK, | |
2956 | sbp->sb_inopblock); | |
2957 | igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog; | |
2958 | ||
2959 | if (sbp->sb_spino_align) | |
2960 | igeo->ialloc_min_blks = sbp->sb_spino_align; | |
2961 | else | |
2962 | igeo->ialloc_min_blks = igeo->ialloc_blks; | |
2963 | ||
2964 | /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */ | |
2965 | inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; | |
2966 | igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr, | |
2967 | inodes); | |
0ed5f735 | 2968 | ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk()); |
494dba7b | 2969 | |
c94613fe DW |
2970 | /* |
2971 | * Set the maximum inode count for this filesystem, being careful not | |
2972 | * to use obviously garbage sb_inopblog/sb_inopblock values. Regular | |
2973 | * users should never get here due to failing sb verification, but | |
2974 | * certain users (xfs_db) need to be usable even with corrupt metadata. | |
2975 | */ | |
2976 | if (sbp->sb_imax_pct && igeo->ialloc_blks) { | |
494dba7b DW |
2977 | /* |
2978 | * Make sure the maximum inode count is a multiple | |
2979 | * of the units we allocate inodes in. | |
2980 | */ | |
2981 | icount = sbp->sb_dblocks * sbp->sb_imax_pct; | |
2982 | do_div(icount, 100); | |
2983 | do_div(icount, igeo->ialloc_blks); | |
2984 | igeo->maxicount = XFS_FSB_TO_INO(mp, | |
2985 | icount * igeo->ialloc_blks); | |
2986 | } else { | |
2987 | igeo->maxicount = 0; | |
2988 | } | |
2989 | ||
490d451f DW |
2990 | /* |
2991 | * Compute the desired size of an inode cluster buffer size, which | |
2992 | * starts at 8K and (on v5 filesystems) scales up with larger inode | |
2993 | * sizes. | |
2994 | * | |
2995 | * Preserve the desired inode cluster size because the sparse inodes | |
2996 | * feature uses that desired size (not the actual size) to compute the | |
2997 | * sparse inode alignment. The mount code validates this value, so we | |
2998 | * cannot change the behavior. | |
2999 | */ | |
3000 | igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE; | |
ebd9027d | 3001 | if (xfs_has_v3inodes(mp)) { |
490d451f | 3002 | int new_size = igeo->inode_cluster_size_raw; |
494dba7b DW |
3003 | |
3004 | new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; | |
3005 | if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) | |
490d451f | 3006 | igeo->inode_cluster_size_raw = new_size; |
494dba7b DW |
3007 | } |
3008 | ||
3009 | /* Calculate inode cluster ratios. */ | |
490d451f | 3010 | if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize) |
494dba7b | 3011 | igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp, |
490d451f | 3012 | igeo->inode_cluster_size_raw); |
494dba7b DW |
3013 | else |
3014 | igeo->blocks_per_cluster = 1; | |
490d451f | 3015 | igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster); |
494dba7b DW |
3016 | igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster); |
3017 | ||
3018 | /* Calculate inode cluster alignment. */ | |
ebd9027d | 3019 | if (xfs_has_align(mp) && |
494dba7b DW |
3020 | mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster) |
3021 | igeo->cluster_align = mp->m_sb.sb_inoalignmt; | |
3022 | else | |
3023 | igeo->cluster_align = 1; | |
3024 | igeo->inoalign_mask = igeo->cluster_align - 1; | |
3025 | igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align); | |
3026 | ||
3027 | /* | |
3028 | * If we are using stripe alignment, check whether | |
3029 | * the stripe unit is a multiple of the inode alignment | |
3030 | */ | |
3031 | if (mp->m_dalign && igeo->inoalign_mask && | |
3032 | !(mp->m_dalign & igeo->inoalign_mask)) | |
3033 | igeo->ialloc_align = mp->m_dalign; | |
3034 | else | |
3035 | igeo->ialloc_align = 0; | |
3036 | } | |
13eaec4b DW |
3037 | |
3038 | /* Compute the location of the root directory inode that is laid out by mkfs. */ | |
3039 | xfs_ino_t | |
3040 | xfs_ialloc_calc_rootino( | |
3041 | struct xfs_mount *mp, | |
3042 | int sunit) | |
3043 | { | |
3044 | struct xfs_ino_geometry *igeo = M_IGEO(mp); | |
3045 | xfs_agblock_t first_bno; | |
3046 | ||
3047 | /* | |
3048 | * Pre-calculate the geometry of AG 0. We know what it looks like | |
3049 | * because libxfs knows how to create allocation groups now. | |
3050 | * | |
3051 | * first_bno is the first block in which mkfs could possibly have | |
3052 | * allocated the root directory inode, once we factor in the metadata | |
3053 | * that mkfs formats before it. Namely, the four AG headers... | |
3054 | */ | |
3055 | first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize); | |
3056 | ||
3057 | /* ...the two free space btree roots... */ | |
3058 | first_bno += 2; | |
3059 | ||
3060 | /* ...the inode btree root... */ | |
3061 | first_bno += 1; | |
3062 | ||
3063 | /* ...the initial AGFL... */ | |
3064 | first_bno += xfs_alloc_min_freelist(mp, NULL); | |
3065 | ||
3066 | /* ...the free inode btree root... */ | |
ebd9027d | 3067 | if (xfs_has_finobt(mp)) |
13eaec4b DW |
3068 | first_bno++; |
3069 | ||
3070 | /* ...the reverse mapping btree root... */ | |
ebd9027d | 3071 | if (xfs_has_rmapbt(mp)) |
13eaec4b DW |
3072 | first_bno++; |
3073 | ||
3074 | /* ...the reference count btree... */ | |
ebd9027d | 3075 | if (xfs_has_reflink(mp)) |
13eaec4b DW |
3076 | first_bno++; |
3077 | ||
3078 | /* | |
3079 | * ...and the log, if it is allocated in the first allocation group. | |
3080 | * | |
3081 | * This can happen with filesystems that only have a single | |
3082 | * allocation group, or very odd geometries created by old mkfs | |
3083 | * versions on very small filesystems. | |
3084 | */ | |
36029dee | 3085 | if (xfs_ag_contains_log(mp, 0)) |
13eaec4b DW |
3086 | first_bno += mp->m_sb.sb_logblocks; |
3087 | ||
3088 | /* | |
3089 | * Now round first_bno up to whatever allocation alignment is given | |
3090 | * by the filesystem or was passed in. | |
3091 | */ | |
ebd9027d | 3092 | if (xfs_has_dalign(mp) && igeo->ialloc_align > 0) |
13eaec4b | 3093 | first_bno = roundup(first_bno, sunit); |
ebd9027d | 3094 | else if (xfs_has_align(mp) && |
13eaec4b DW |
3095 | mp->m_sb.sb_inoalignmt > 1) |
3096 | first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt); | |
3097 | ||
3098 | return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno)); | |
3099 | } | |
da062d16 DW |
3100 | |
3101 | /* | |
3102 | * Ensure there are not sparse inode clusters that cross the new EOAG. | |
3103 | * | |
3104 | * This is a no-op for non-spinode filesystems since clusters are always fully | |
3105 | * allocated and checking the bnobt suffices. However, a spinode filesystem | |
3106 | * could have a record where the upper inodes are free blocks. If those blocks | |
3107 | * were removed from the filesystem, the inode record would extend beyond EOAG, | |
3108 | * which will be flagged as corruption. | |
3109 | */ | |
3110 | int | |
3111 | xfs_ialloc_check_shrink( | |
dedab3e4 | 3112 | struct xfs_perag *pag, |
da062d16 | 3113 | struct xfs_trans *tp, |
da062d16 DW |
3114 | struct xfs_buf *agibp, |
3115 | xfs_agblock_t new_length) | |
3116 | { | |
3117 | struct xfs_inobt_rec_incore rec; | |
3118 | struct xfs_btree_cur *cur; | |
bab8b795 | 3119 | xfs_agino_t agino; |
da062d16 DW |
3120 | int has; |
3121 | int error; | |
3122 | ||
bab8b795 | 3123 | if (!xfs_has_sparseinodes(pag->pag_mount)) |
da062d16 DW |
3124 | return 0; |
3125 | ||
14dd46cf | 3126 | cur = xfs_inobt_init_cursor(pag, tp, agibp); |
da062d16 DW |
3127 | |
3128 | /* Look up the inobt record that would correspond to the new EOFS. */ | |
bab8b795 | 3129 | agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length); |
da062d16 DW |
3130 | error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has); |
3131 | if (error || !has) | |
3132 | goto out; | |
3133 | ||
3134 | error = xfs_inobt_get_rec(cur, &rec, &has); | |
3135 | if (error) | |
3136 | goto out; | |
3137 | ||
3138 | if (!has) { | |
baf44fa5 | 3139 | xfs_ag_mark_sick(pag, XFS_SICK_AG_INOBT); |
da062d16 DW |
3140 | error = -EFSCORRUPTED; |
3141 | goto out; | |
3142 | } | |
3143 | ||
3144 | /* If the record covers inodes that would be beyond EOFS, bail out. */ | |
3145 | if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) { | |
3146 | error = -ENOSPC; | |
3147 | goto out; | |
3148 | } | |
3149 | out: | |
3150 | xfs_btree_del_cursor(cur, error); | |
da062d16 DW |
3151 | return error; |
3152 | } |