]>
Commit | Line | Data |
---|---|---|
0b61f8a4 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 | 2 | /* |
7b718769 NS |
3 | * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. |
4 | * All Rights Reserved. | |
1da177e4 | 5 | */ |
1da177e4 | 6 | #include "xfs.h" |
a844f451 | 7 | #include "xfs_fs.h" |
70a9883c | 8 | #include "xfs_shared.h" |
239880ef DC |
9 | #include "xfs_format.h" |
10 | #include "xfs_log_format.h" | |
11 | #include "xfs_trans_resv.h" | |
a844f451 | 12 | #include "xfs_bit.h" |
1da177e4 | 13 | #include "xfs_sb.h" |
1da177e4 | 14 | #include "xfs_mount.h" |
1da177e4 | 15 | #include "xfs_inode.h" |
a844f451 NS |
16 | #include "xfs_btree.h" |
17 | #include "xfs_ialloc.h" | |
a4fbe6ab | 18 | #include "xfs_ialloc_btree.h" |
1da177e4 | 19 | #include "xfs_alloc.h" |
e9e899a2 | 20 | #include "xfs_errortag.h" |
1da177e4 LT |
21 | #include "xfs_error.h" |
22 | #include "xfs_bmap.h" | |
239880ef | 23 | #include "xfs_trans.h" |
983d09ff | 24 | #include "xfs_buf_item.h" |
ddf6ad01 | 25 | #include "xfs_icreate_item.h" |
7bb85ef3 | 26 | #include "xfs_icache.h" |
d123031a | 27 | #include "xfs_trace.h" |
a45086e2 | 28 | #include "xfs_log.h" |
340785cc | 29 | #include "xfs_rmap.h" |
1da177e4 | 30 | |
fe033cc8 | 31 | /* |
21875505 | 32 | * Lookup a record by ino in the btree given by cur. |
fe033cc8 | 33 | */ |
81e25176 | 34 | int /* error */ |
21875505 | 35 | xfs_inobt_lookup( |
fe033cc8 CH |
36 | struct xfs_btree_cur *cur, /* btree cursor */ |
37 | xfs_agino_t ino, /* starting inode of chunk */ | |
21875505 | 38 | xfs_lookup_t dir, /* <=, >=, == */ |
fe033cc8 CH |
39 | int *stat) /* success/failure */ |
40 | { | |
41 | cur->bc_rec.i.ir_startino = ino; | |
5419040f BF |
42 | cur->bc_rec.i.ir_holemask = 0; |
43 | cur->bc_rec.i.ir_count = 0; | |
21875505 CH |
44 | cur->bc_rec.i.ir_freecount = 0; |
45 | cur->bc_rec.i.ir_free = 0; | |
46 | return xfs_btree_lookup(cur, dir, stat); | |
fe033cc8 CH |
47 | } |
48 | ||
278d0ca1 | 49 | /* |
afabc24a | 50 | * Update the record referred to by cur to the value given. |
278d0ca1 CH |
51 | * This either works (return 0) or gets an EFSCORRUPTED error. |
52 | */ | |
53 | STATIC int /* error */ | |
54 | xfs_inobt_update( | |
55 | struct xfs_btree_cur *cur, /* btree cursor */ | |
afabc24a | 56 | xfs_inobt_rec_incore_t *irec) /* btree record */ |
278d0ca1 CH |
57 | { |
58 | union xfs_btree_rec rec; | |
59 | ||
afabc24a | 60 | rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); |
5419040f BF |
61 | if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { |
62 | rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); | |
63 | rec.inobt.ir_u.sp.ir_count = irec->ir_count; | |
64 | rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; | |
65 | } else { | |
66 | /* ir_holemask/ir_count not supported on-disk */ | |
67 | rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); | |
68 | } | |
afabc24a | 69 | rec.inobt.ir_free = cpu_to_be64(irec->ir_free); |
278d0ca1 CH |
70 | return xfs_btree_update(cur, &rec); |
71 | } | |
72 | ||
e936945e DW |
73 | /* Convert on-disk btree record to incore inobt record. */ |
74 | void | |
75 | xfs_inobt_btrec_to_irec( | |
76 | struct xfs_mount *mp, | |
77 | union xfs_btree_rec *rec, | |
78 | struct xfs_inobt_rec_incore *irec) | |
8cc938fe | 79 | { |
5419040f | 80 | irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); |
e936945e | 81 | if (xfs_sb_version_hassparseinodes(&mp->m_sb)) { |
5419040f BF |
82 | irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); |
83 | irec->ir_count = rec->inobt.ir_u.sp.ir_count; | |
84 | irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; | |
85 | } else { | |
86 | /* | |
87 | * ir_holemask/ir_count not supported on-disk. Fill in hardcoded | |
88 | * values for full inode chunks. | |
89 | */ | |
90 | irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; | |
91 | irec->ir_count = XFS_INODES_PER_CHUNK; | |
92 | irec->ir_freecount = | |
93 | be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); | |
8cc938fe | 94 | } |
5419040f | 95 | irec->ir_free = be64_to_cpu(rec->inobt.ir_free); |
e936945e DW |
96 | } |
97 | ||
98 | /* | |
99 | * Get the data from the pointed-to record. | |
100 | */ | |
101 | int | |
102 | xfs_inobt_get_rec( | |
103 | struct xfs_btree_cur *cur, | |
104 | struct xfs_inobt_rec_incore *irec, | |
105 | int *stat) | |
106 | { | |
9e6c08d4 | 107 | struct xfs_mount *mp = cur->bc_mp; |
576af732 | 108 | xfs_agnumber_t agno = cur->bc_ag.agno; |
e936945e DW |
109 | union xfs_btree_rec *rec; |
110 | int error; | |
9e6c08d4 | 111 | uint64_t realfree; |
e936945e DW |
112 | |
113 | error = xfs_btree_get_rec(cur, &rec, stat); | |
114 | if (error || *stat == 0) | |
115 | return error; | |
116 | ||
9e6c08d4 DC |
117 | xfs_inobt_btrec_to_irec(mp, rec, irec); |
118 | ||
119 | if (!xfs_verify_agino(mp, agno, irec->ir_startino)) | |
120 | goto out_bad_rec; | |
121 | if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT || | |
122 | irec->ir_count > XFS_INODES_PER_CHUNK) | |
123 | goto out_bad_rec; | |
124 | if (irec->ir_freecount > XFS_INODES_PER_CHUNK) | |
125 | goto out_bad_rec; | |
126 | ||
127 | /* if there are no holes, return the first available offset */ | |
128 | if (!xfs_inobt_issparse(irec->ir_holemask)) | |
129 | realfree = irec->ir_free; | |
130 | else | |
131 | realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec); | |
132 | if (hweight64(realfree) != irec->ir_freecount) | |
133 | goto out_bad_rec; | |
5419040f BF |
134 | |
135 | return 0; | |
9e6c08d4 DC |
136 | |
137 | out_bad_rec: | |
138 | xfs_warn(mp, | |
139 | "%s Inode BTree record corruption in AG %d detected!", | |
140 | cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free", agno); | |
141 | xfs_warn(mp, | |
142 | "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x", | |
143 | irec->ir_startino, irec->ir_count, irec->ir_freecount, | |
144 | irec->ir_free, irec->ir_holemask); | |
145 | return -EFSCORRUPTED; | |
8cc938fe CH |
146 | } |
147 | ||
0aa0a756 BF |
148 | /* |
149 | * Insert a single inobt record. Cursor must already point to desired location. | |
150 | */ | |
7f8f1313 | 151 | int |
0aa0a756 BF |
152 | xfs_inobt_insert_rec( |
153 | struct xfs_btree_cur *cur, | |
c8ce540d DW |
154 | uint16_t holemask, |
155 | uint8_t count, | |
156 | int32_t freecount, | |
0aa0a756 BF |
157 | xfs_inofree_t free, |
158 | int *stat) | |
159 | { | |
5419040f BF |
160 | cur->bc_rec.i.ir_holemask = holemask; |
161 | cur->bc_rec.i.ir_count = count; | |
0aa0a756 BF |
162 | cur->bc_rec.i.ir_freecount = freecount; |
163 | cur->bc_rec.i.ir_free = free; | |
164 | return xfs_btree_insert(cur, stat); | |
165 | } | |
166 | ||
167 | /* | |
168 | * Insert records describing a newly allocated inode chunk into the inobt. | |
169 | */ | |
170 | STATIC int | |
171 | xfs_inobt_insert( | |
172 | struct xfs_mount *mp, | |
173 | struct xfs_trans *tp, | |
174 | struct xfs_buf *agbp, | |
175 | xfs_agino_t newino, | |
176 | xfs_agino_t newlen, | |
177 | xfs_btnum_t btnum) | |
178 | { | |
179 | struct xfs_btree_cur *cur; | |
370c782b | 180 | struct xfs_agi *agi = agbp->b_addr; |
0aa0a756 BF |
181 | xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); |
182 | xfs_agino_t thisino; | |
183 | int i; | |
184 | int error; | |
185 | ||
186 | cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); | |
187 | ||
188 | for (thisino = newino; | |
189 | thisino < newino + newlen; | |
190 | thisino += XFS_INODES_PER_CHUNK) { | |
191 | error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); | |
192 | if (error) { | |
193 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
194 | return error; | |
195 | } | |
196 | ASSERT(i == 0); | |
197 | ||
5419040f BF |
198 | error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, |
199 | XFS_INODES_PER_CHUNK, | |
200 | XFS_INODES_PER_CHUNK, | |
0aa0a756 BF |
201 | XFS_INOBT_ALL_FREE, &i); |
202 | if (error) { | |
203 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
204 | return error; | |
205 | } | |
206 | ASSERT(i == 1); | |
207 | } | |
208 | ||
209 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
210 | ||
211 | return 0; | |
212 | } | |
213 | ||
0b48db80 DC |
214 | /* |
215 | * Verify that the number of free inodes in the AGI is correct. | |
216 | */ | |
217 | #ifdef DEBUG | |
218 | STATIC int | |
219 | xfs_check_agi_freecount( | |
220 | struct xfs_btree_cur *cur, | |
221 | struct xfs_agi *agi) | |
222 | { | |
223 | if (cur->bc_nlevels == 1) { | |
224 | xfs_inobt_rec_incore_t rec; | |
225 | int freecount = 0; | |
226 | int error; | |
227 | int i; | |
228 | ||
21875505 | 229 | error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); |
0b48db80 DC |
230 | if (error) |
231 | return error; | |
232 | ||
233 | do { | |
234 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
235 | if (error) | |
236 | return error; | |
237 | ||
238 | if (i) { | |
239 | freecount += rec.ir_freecount; | |
240 | error = xfs_btree_increment(cur, 0, &i); | |
241 | if (error) | |
242 | return error; | |
243 | } | |
244 | } while (i == 1); | |
245 | ||
246 | if (!XFS_FORCED_SHUTDOWN(cur->bc_mp)) | |
247 | ASSERT(freecount == be32_to_cpu(agi->agi_freecount)); | |
248 | } | |
249 | return 0; | |
250 | } | |
251 | #else | |
252 | #define xfs_check_agi_freecount(cur, agi) 0 | |
253 | #endif | |
254 | ||
85c0b2ab | 255 | /* |
28c8e41a DC |
256 | * Initialise a new set of inodes. When called without a transaction context |
257 | * (e.g. from recovery) we initiate a delayed write of the inode buffers rather | |
258 | * than logging them (which in a transaction context puts them into the AIL | |
259 | * for writeback rather than the xfsbufd queue). | |
85c0b2ab | 260 | */ |
ddf6ad01 | 261 | int |
85c0b2ab DC |
262 | xfs_ialloc_inode_init( |
263 | struct xfs_mount *mp, | |
264 | struct xfs_trans *tp, | |
28c8e41a | 265 | struct list_head *buffer_list, |
463958af | 266 | int icount, |
85c0b2ab DC |
267 | xfs_agnumber_t agno, |
268 | xfs_agblock_t agbno, | |
269 | xfs_agblock_t length, | |
270 | unsigned int gen) | |
271 | { | |
272 | struct xfs_buf *fbuf; | |
273 | struct xfs_dinode *free; | |
83dcdb44 | 274 | int nbufs; |
85c0b2ab DC |
275 | int version; |
276 | int i, j; | |
277 | xfs_daddr_t d; | |
93848a99 | 278 | xfs_ino_t ino = 0; |
ce92464c | 279 | int error; |
85c0b2ab DC |
280 | |
281 | /* | |
6e0c7b8c JL |
282 | * Loop over the new block(s), filling in the inodes. For small block |
283 | * sizes, manipulate the inodes in buffers which are multiples of the | |
284 | * blocks size. | |
85c0b2ab | 285 | */ |
ef325959 | 286 | nbufs = length / M_IGEO(mp)->blocks_per_cluster; |
85c0b2ab DC |
287 | |
288 | /* | |
93848a99 CH |
289 | * Figure out what version number to use in the inodes we create. If |
290 | * the superblock version has caught up to the one that supports the new | |
291 | * inode format, then use the new inode version. Otherwise use the old | |
292 | * version so that old kernels will continue to be able to use the file | |
293 | * system. | |
294 | * | |
295 | * For v3 inodes, we also need to write the inode number into the inode, | |
296 | * so calculate the first inode number of the chunk here as | |
43004b2a | 297 | * XFS_AGB_TO_AGINO() only works within a filesystem block, not |
93848a99 CH |
298 | * across multiple filesystem blocks (such as a cluster) and so cannot |
299 | * be used in the cluster buffer loop below. | |
300 | * | |
301 | * Further, because we are writing the inode directly into the buffer | |
302 | * and calculating a CRC on the entire inode, we have ot log the entire | |
303 | * inode so that the entire range the CRC covers is present in the log. | |
304 | * That means for v3 inode we log the entire buffer rather than just the | |
305 | * inode cores. | |
85c0b2ab | 306 | */ |
b81b79f4 | 307 | if (xfs_sb_version_has_v3inode(&mp->m_sb)) { |
93848a99 | 308 | version = 3; |
43004b2a | 309 | ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno)); |
ddf6ad01 DC |
310 | |
311 | /* | |
312 | * log the initialisation that is about to take place as an | |
313 | * logical operation. This means the transaction does not | |
314 | * need to log the physical changes to the inode buffers as log | |
315 | * recovery will know what initialisation is actually needed. | |
316 | * Hence we only need to log the buffers as "ordered" buffers so | |
317 | * they track in the AIL as if they were physically logged. | |
318 | */ | |
319 | if (tp) | |
463958af | 320 | xfs_icreate_log(tp, agno, agbno, icount, |
ddf6ad01 | 321 | mp->m_sb.sb_inodesize, length, gen); |
263997a6 | 322 | } else |
85c0b2ab | 323 | version = 2; |
85c0b2ab DC |
324 | |
325 | for (j = 0; j < nbufs; j++) { | |
326 | /* | |
327 | * Get the block. | |
328 | */ | |
83dcdb44 | 329 | d = XFS_AGB_TO_DADDR(mp, agno, agbno + |
ef325959 | 330 | (j * M_IGEO(mp)->blocks_per_cluster)); |
ce92464c DW |
331 | error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, |
332 | mp->m_bsize * M_IGEO(mp)->blocks_per_cluster, | |
333 | XBF_UNMAPPED, &fbuf); | |
334 | if (error) | |
335 | return error; | |
ddf6ad01 DC |
336 | |
337 | /* Initialize the inode buffers and log them appropriately. */ | |
1813dd64 | 338 | fbuf->b_ops = &xfs_inode_buf_ops; |
93848a99 | 339 | xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); |
ef325959 | 340 | for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) { |
85c0b2ab | 341 | int ioffset = i << mp->m_sb.sb_inodelog; |
e9e2eae8 | 342 | uint isize = XFS_DINODE_SIZE(&mp->m_sb); |
85c0b2ab DC |
343 | |
344 | free = xfs_make_iptr(mp, fbuf, i); | |
345 | free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); | |
346 | free->di_version = version; | |
347 | free->di_gen = cpu_to_be32(gen); | |
348 | free->di_next_unlinked = cpu_to_be32(NULLAGINO); | |
93848a99 CH |
349 | |
350 | if (version == 3) { | |
351 | free->di_ino = cpu_to_be64(ino); | |
352 | ino++; | |
ce748eaa ES |
353 | uuid_copy(&free->di_uuid, |
354 | &mp->m_sb.sb_meta_uuid); | |
93848a99 | 355 | xfs_dinode_calc_crc(mp, free); |
28c8e41a | 356 | } else if (tp) { |
93848a99 CH |
357 | /* just log the inode core */ |
358 | xfs_trans_log_buf(tp, fbuf, ioffset, | |
359 | ioffset + isize - 1); | |
360 | } | |
361 | } | |
28c8e41a DC |
362 | |
363 | if (tp) { | |
364 | /* | |
365 | * Mark the buffer as an inode allocation buffer so it | |
366 | * sticks in AIL at the point of this allocation | |
367 | * transaction. This ensures the they are on disk before | |
368 | * the tail of the log can be moved past this | |
369 | * transaction (i.e. by preventing relogging from moving | |
370 | * it forward in the log). | |
371 | */ | |
372 | xfs_trans_inode_alloc_buf(tp, fbuf); | |
373 | if (version == 3) { | |
ddf6ad01 DC |
374 | /* |
375 | * Mark the buffer as ordered so that they are | |
376 | * not physically logged in the transaction but | |
377 | * still tracked in the AIL as part of the | |
378 | * transaction and pin the log appropriately. | |
379 | */ | |
380 | xfs_trans_ordered_buf(tp, fbuf); | |
28c8e41a DC |
381 | } |
382 | } else { | |
383 | fbuf->b_flags |= XBF_DONE; | |
384 | xfs_buf_delwri_queue(fbuf, buffer_list); | |
385 | xfs_buf_relse(fbuf); | |
85c0b2ab | 386 | } |
85c0b2ab | 387 | } |
2a30f36d | 388 | return 0; |
85c0b2ab DC |
389 | } |
390 | ||
56d1115c BF |
391 | /* |
392 | * Align startino and allocmask for a recently allocated sparse chunk such that | |
393 | * they are fit for insertion (or merge) into the on-disk inode btrees. | |
394 | * | |
395 | * Background: | |
396 | * | |
397 | * When enabled, sparse inode support increases the inode alignment from cluster | |
398 | * size to inode chunk size. This means that the minimum range between two | |
399 | * non-adjacent inode records in the inobt is large enough for a full inode | |
400 | * record. This allows for cluster sized, cluster aligned block allocation | |
401 | * without need to worry about whether the resulting inode record overlaps with | |
402 | * another record in the tree. Without this basic rule, we would have to deal | |
403 | * with the consequences of overlap by potentially undoing recent allocations in | |
404 | * the inode allocation codepath. | |
405 | * | |
406 | * Because of this alignment rule (which is enforced on mount), there are two | |
407 | * inobt possibilities for newly allocated sparse chunks. One is that the | |
408 | * aligned inode record for the chunk covers a range of inodes not already | |
409 | * covered in the inobt (i.e., it is safe to insert a new sparse record). The | |
410 | * other is that a record already exists at the aligned startino that considers | |
411 | * the newly allocated range as sparse. In the latter case, record content is | |
412 | * merged in hope that sparse inode chunks fill to full chunks over time. | |
413 | */ | |
414 | STATIC void | |
415 | xfs_align_sparse_ino( | |
416 | struct xfs_mount *mp, | |
417 | xfs_agino_t *startino, | |
418 | uint16_t *allocmask) | |
419 | { | |
420 | xfs_agblock_t agbno; | |
421 | xfs_agblock_t mod; | |
422 | int offset; | |
423 | ||
424 | agbno = XFS_AGINO_TO_AGBNO(mp, *startino); | |
425 | mod = agbno % mp->m_sb.sb_inoalignmt; | |
426 | if (!mod) | |
427 | return; | |
428 | ||
429 | /* calculate the inode offset and align startino */ | |
43004b2a | 430 | offset = XFS_AGB_TO_AGINO(mp, mod); |
56d1115c BF |
431 | *startino -= offset; |
432 | ||
433 | /* | |
434 | * Since startino has been aligned down, left shift allocmask such that | |
435 | * it continues to represent the same physical inodes relative to the | |
436 | * new startino. | |
437 | */ | |
438 | *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; | |
439 | } | |
440 | ||
441 | /* | |
442 | * Determine whether the source inode record can merge into the target. Both | |
443 | * records must be sparse, the inode ranges must match and there must be no | |
444 | * allocation overlap between the records. | |
445 | */ | |
446 | STATIC bool | |
447 | __xfs_inobt_can_merge( | |
448 | struct xfs_inobt_rec_incore *trec, /* tgt record */ | |
449 | struct xfs_inobt_rec_incore *srec) /* src record */ | |
450 | { | |
451 | uint64_t talloc; | |
452 | uint64_t salloc; | |
453 | ||
454 | /* records must cover the same inode range */ | |
455 | if (trec->ir_startino != srec->ir_startino) | |
456 | return false; | |
457 | ||
458 | /* both records must be sparse */ | |
459 | if (!xfs_inobt_issparse(trec->ir_holemask) || | |
460 | !xfs_inobt_issparse(srec->ir_holemask)) | |
461 | return false; | |
462 | ||
463 | /* both records must track some inodes */ | |
464 | if (!trec->ir_count || !srec->ir_count) | |
465 | return false; | |
466 | ||
467 | /* can't exceed capacity of a full record */ | |
468 | if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) | |
469 | return false; | |
470 | ||
471 | /* verify there is no allocation overlap */ | |
472 | talloc = xfs_inobt_irec_to_allocmask(trec); | |
473 | salloc = xfs_inobt_irec_to_allocmask(srec); | |
474 | if (talloc & salloc) | |
475 | return false; | |
476 | ||
477 | return true; | |
478 | } | |
479 | ||
480 | /* | |
481 | * Merge the source inode record into the target. The caller must call | |
482 | * __xfs_inobt_can_merge() to ensure the merge is valid. | |
483 | */ | |
484 | STATIC void | |
485 | __xfs_inobt_rec_merge( | |
486 | struct xfs_inobt_rec_incore *trec, /* target */ | |
487 | struct xfs_inobt_rec_incore *srec) /* src */ | |
488 | { | |
489 | ASSERT(trec->ir_startino == srec->ir_startino); | |
490 | ||
491 | /* combine the counts */ | |
492 | trec->ir_count += srec->ir_count; | |
493 | trec->ir_freecount += srec->ir_freecount; | |
494 | ||
495 | /* | |
496 | * Merge the holemask and free mask. For both fields, 0 bits refer to | |
497 | * allocated inodes. We combine the allocated ranges with bitwise AND. | |
498 | */ | |
499 | trec->ir_holemask &= srec->ir_holemask; | |
500 | trec->ir_free &= srec->ir_free; | |
501 | } | |
502 | ||
503 | /* | |
504 | * Insert a new sparse inode chunk into the associated inode btree. The inode | |
505 | * record for the sparse chunk is pre-aligned to a startino that should match | |
506 | * any pre-existing sparse inode record in the tree. This allows sparse chunks | |
507 | * to fill over time. | |
508 | * | |
509 | * This function supports two modes of handling preexisting records depending on | |
510 | * the merge flag. If merge is true, the provided record is merged with the | |
511 | * existing record and updated in place. The merged record is returned in nrec. | |
512 | * If merge is false, an existing record is replaced with the provided record. | |
513 | * If no preexisting record exists, the provided record is always inserted. | |
514 | * | |
515 | * It is considered corruption if a merge is requested and not possible. Given | |
516 | * the sparse inode alignment constraints, this should never happen. | |
517 | */ | |
518 | STATIC int | |
519 | xfs_inobt_insert_sprec( | |
520 | struct xfs_mount *mp, | |
521 | struct xfs_trans *tp, | |
522 | struct xfs_buf *agbp, | |
523 | int btnum, | |
524 | struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */ | |
525 | bool merge) /* merge or replace */ | |
526 | { | |
527 | struct xfs_btree_cur *cur; | |
370c782b | 528 | struct xfs_agi *agi = agbp->b_addr; |
56d1115c BF |
529 | xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); |
530 | int error; | |
531 | int i; | |
532 | struct xfs_inobt_rec_incore rec; | |
533 | ||
534 | cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); | |
535 | ||
536 | /* the new record is pre-aligned so we know where to look */ | |
537 | error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); | |
538 | if (error) | |
539 | goto error; | |
540 | /* if nothing there, insert a new record and return */ | |
541 | if (i == 0) { | |
542 | error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, | |
543 | nrec->ir_count, nrec->ir_freecount, | |
544 | nrec->ir_free, &i); | |
545 | if (error) | |
546 | goto error; | |
f9e03706 DW |
547 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
548 | error = -EFSCORRUPTED; | |
549 | goto error; | |
550 | } | |
56d1115c BF |
551 | |
552 | goto out; | |
553 | } | |
554 | ||
555 | /* | |
556 | * A record exists at this startino. Merge or replace the record | |
557 | * depending on what we've been asked to do. | |
558 | */ | |
559 | if (merge) { | |
560 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
561 | if (error) | |
562 | goto error; | |
f9e03706 DW |
563 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
564 | error = -EFSCORRUPTED; | |
565 | goto error; | |
566 | } | |
567 | if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) { | |
568 | error = -EFSCORRUPTED; | |
569 | goto error; | |
570 | } | |
56d1115c BF |
571 | |
572 | /* | |
573 | * This should never fail. If we have coexisting records that | |
574 | * cannot merge, something is seriously wrong. | |
575 | */ | |
f9e03706 DW |
576 | if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) { |
577 | error = -EFSCORRUPTED; | |
578 | goto error; | |
579 | } | |
56d1115c BF |
580 | |
581 | trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino, | |
582 | rec.ir_holemask, nrec->ir_startino, | |
583 | nrec->ir_holemask); | |
584 | ||
585 | /* merge to nrec to output the updated record */ | |
586 | __xfs_inobt_rec_merge(nrec, &rec); | |
587 | ||
588 | trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino, | |
589 | nrec->ir_holemask); | |
590 | ||
591 | error = xfs_inobt_rec_check_count(mp, nrec); | |
592 | if (error) | |
593 | goto error; | |
594 | } | |
595 | ||
596 | error = xfs_inobt_update(cur, nrec); | |
597 | if (error) | |
598 | goto error; | |
599 | ||
600 | out: | |
601 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
602 | return 0; | |
603 | error: | |
604 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
605 | return error; | |
606 | } | |
607 | ||
1da177e4 LT |
608 | /* |
609 | * Allocate new inodes in the allocation group specified by agbp. | |
3937493c GX |
610 | * Returns 0 if inodes were allocated in this AG; 1 if there was no space |
611 | * in this AG; or the usual negative error code. | |
1da177e4 | 612 | */ |
ef325959 | 613 | STATIC int |
1da177e4 | 614 | xfs_ialloc_ag_alloc( |
ef325959 | 615 | struct xfs_trans *tp, |
3937493c | 616 | struct xfs_buf *agbp) |
1da177e4 | 617 | { |
ef325959 DW |
618 | struct xfs_agi *agi; |
619 | struct xfs_alloc_arg args; | |
620 | xfs_agnumber_t agno; | |
621 | int error; | |
622 | xfs_agino_t newino; /* new first inode's number */ | |
623 | xfs_agino_t newlen; /* new number of inodes */ | |
624 | int isaligned = 0; /* inode allocation at stripe */ | |
625 | /* unit boundary */ | |
626 | /* init. to full chunk */ | |
627 | uint16_t allocmask = (uint16_t) -1; | |
56d1115c | 628 | struct xfs_inobt_rec_incore rec; |
ef325959 DW |
629 | struct xfs_perag *pag; |
630 | struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp); | |
631 | int do_sparse = 0; | |
1cdadee1 | 632 | |
a0041684 | 633 | memset(&args, 0, sizeof(args)); |
1da177e4 LT |
634 | args.tp = tp; |
635 | args.mp = tp->t_mountp; | |
1cdadee1 | 636 | args.fsbno = NULLFSBLOCK; |
7280feda | 637 | args.oinfo = XFS_RMAP_OINFO_INODES; |
1da177e4 | 638 | |
46fc58da BF |
639 | #ifdef DEBUG |
640 | /* randomly do sparse inode allocations */ | |
641 | if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) && | |
ef325959 | 642 | igeo->ialloc_min_blks < igeo->ialloc_blks) |
46fc58da BF |
643 | do_sparse = prandom_u32() & 1; |
644 | #endif | |
645 | ||
1da177e4 LT |
646 | /* |
647 | * Locking will ensure that we don't have two callers in here | |
648 | * at one time. | |
649 | */ | |
ef325959 DW |
650 | newlen = igeo->ialloc_inos; |
651 | if (igeo->maxicount && | |
74f9ce1c | 652 | percpu_counter_read_positive(&args.mp->m_icount) + newlen > |
ef325959 | 653 | igeo->maxicount) |
2451337d | 654 | return -ENOSPC; |
ef325959 | 655 | args.minlen = args.maxlen = igeo->ialloc_blks; |
1da177e4 | 656 | /* |
3ccb8b5f GO |
657 | * First try to allocate inodes contiguous with the last-allocated |
658 | * chunk of inodes. If the filesystem is striped, this will fill | |
659 | * an entire stripe unit with inodes. | |
28c8e41a | 660 | */ |
370c782b | 661 | agi = agbp->b_addr; |
3ccb8b5f | 662 | newino = be32_to_cpu(agi->agi_newino); |
85c0b2ab | 663 | agno = be32_to_cpu(agi->agi_seqno); |
019ff2d5 | 664 | args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + |
ef325959 | 665 | igeo->ialloc_blks; |
1cdadee1 BF |
666 | if (do_sparse) |
667 | goto sparse_alloc; | |
019ff2d5 NS |
668 | if (likely(newino != NULLAGINO && |
669 | (args.agbno < be32_to_cpu(agi->agi_length)))) { | |
85c0b2ab | 670 | args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); |
3ccb8b5f | 671 | args.type = XFS_ALLOCTYPE_THIS_BNO; |
3ccb8b5f | 672 | args.prod = 1; |
75de2a91 | 673 | |
3ccb8b5f | 674 | /* |
75de2a91 DC |
675 | * We need to take into account alignment here to ensure that |
676 | * we don't modify the free list if we fail to have an exact | |
677 | * block. If we don't have an exact match, and every oher | |
678 | * attempt allocation attempt fails, we'll end up cancelling | |
679 | * a dirty transaction and shutting down. | |
680 | * | |
681 | * For an exact allocation, alignment must be 1, | |
682 | * however we need to take cluster alignment into account when | |
683 | * fixing up the freelist. Use the minalignslop field to | |
684 | * indicate that extra blocks might be required for alignment, | |
685 | * but not to use them in the actual exact allocation. | |
3ccb8b5f | 686 | */ |
75de2a91 | 687 | args.alignment = 1; |
ef325959 | 688 | args.minalignslop = igeo->cluster_align - 1; |
75de2a91 DC |
689 | |
690 | /* Allow space for the inode btree to split. */ | |
657f1019 | 691 | args.minleft = igeo->inobt_maxlevels; |
3ccb8b5f GO |
692 | if ((error = xfs_alloc_vextent(&args))) |
693 | return error; | |
e480a723 BF |
694 | |
695 | /* | |
696 | * This request might have dirtied the transaction if the AG can | |
697 | * satisfy the request, but the exact block was not available. | |
698 | * If the allocation did fail, subsequent requests will relax | |
699 | * the exact agbno requirement and increase the alignment | |
700 | * instead. It is critical that the total size of the request | |
701 | * (len + alignment + slop) does not increase from this point | |
702 | * on, so reset minalignslop to ensure it is not included in | |
703 | * subsequent requests. | |
704 | */ | |
705 | args.minalignslop = 0; | |
1cdadee1 | 706 | } |
1da177e4 | 707 | |
3ccb8b5f GO |
708 | if (unlikely(args.fsbno == NULLFSBLOCK)) { |
709 | /* | |
710 | * Set the alignment for the allocation. | |
711 | * If stripe alignment is turned on then align at stripe unit | |
712 | * boundary. | |
019ff2d5 NS |
713 | * If the cluster size is smaller than a filesystem block |
714 | * then we're doing I/O for inodes in filesystem block size | |
3ccb8b5f GO |
715 | * pieces, so don't need alignment anyway. |
716 | */ | |
717 | isaligned = 0; | |
ef325959 | 718 | if (igeo->ialloc_align) { |
3ccb8b5f GO |
719 | ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN)); |
720 | args.alignment = args.mp->m_dalign; | |
721 | isaligned = 1; | |
75de2a91 | 722 | } else |
ef325959 | 723 | args.alignment = igeo->cluster_align; |
3ccb8b5f GO |
724 | /* |
725 | * Need to figure out where to allocate the inode blocks. | |
726 | * Ideally they should be spaced out through the a.g. | |
727 | * For now, just allocate blocks up front. | |
728 | */ | |
729 | args.agbno = be32_to_cpu(agi->agi_root); | |
85c0b2ab | 730 | args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); |
3ccb8b5f GO |
731 | /* |
732 | * Allocate a fixed-size extent of inodes. | |
733 | */ | |
734 | args.type = XFS_ALLOCTYPE_NEAR_BNO; | |
3ccb8b5f GO |
735 | args.prod = 1; |
736 | /* | |
737 | * Allow space for the inode btree to split. | |
738 | */ | |
657f1019 | 739 | args.minleft = igeo->inobt_maxlevels; |
3ccb8b5f GO |
740 | if ((error = xfs_alloc_vextent(&args))) |
741 | return error; | |
742 | } | |
019ff2d5 | 743 | |
1da177e4 LT |
744 | /* |
745 | * If stripe alignment is turned on, then try again with cluster | |
746 | * alignment. | |
747 | */ | |
748 | if (isaligned && args.fsbno == NULLFSBLOCK) { | |
749 | args.type = XFS_ALLOCTYPE_NEAR_BNO; | |
16259e7d | 750 | args.agbno = be32_to_cpu(agi->agi_root); |
85c0b2ab | 751 | args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); |
ef325959 | 752 | args.alignment = igeo->cluster_align; |
1da177e4 LT |
753 | if ((error = xfs_alloc_vextent(&args))) |
754 | return error; | |
755 | } | |
756 | ||
56d1115c BF |
757 | /* |
758 | * Finally, try a sparse allocation if the filesystem supports it and | |
759 | * the sparse allocation length is smaller than a full chunk. | |
760 | */ | |
761 | if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) && | |
ef325959 | 762 | igeo->ialloc_min_blks < igeo->ialloc_blks && |
56d1115c | 763 | args.fsbno == NULLFSBLOCK) { |
1cdadee1 | 764 | sparse_alloc: |
56d1115c BF |
765 | args.type = XFS_ALLOCTYPE_NEAR_BNO; |
766 | args.agbno = be32_to_cpu(agi->agi_root); | |
767 | args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); | |
768 | args.alignment = args.mp->m_sb.sb_spino_align; | |
769 | args.prod = 1; | |
770 | ||
ef325959 | 771 | args.minlen = igeo->ialloc_min_blks; |
56d1115c BF |
772 | args.maxlen = args.minlen; |
773 | ||
774 | /* | |
775 | * The inode record will be aligned to full chunk size. We must | |
776 | * prevent sparse allocation from AG boundaries that result in | |
777 | * invalid inode records, such as records that start at agbno 0 | |
778 | * or extend beyond the AG. | |
779 | * | |
780 | * Set min agbno to the first aligned, non-zero agbno and max to | |
781 | * the last aligned agbno that is at least one full chunk from | |
782 | * the end of the AG. | |
783 | */ | |
784 | args.min_agbno = args.mp->m_sb.sb_inoalignmt; | |
785 | args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, | |
786 | args.mp->m_sb.sb_inoalignmt) - | |
ef325959 | 787 | igeo->ialloc_blks; |
56d1115c BF |
788 | |
789 | error = xfs_alloc_vextent(&args); | |
790 | if (error) | |
791 | return error; | |
792 | ||
43004b2a | 793 | newlen = XFS_AGB_TO_AGINO(args.mp, args.len); |
46fc58da | 794 | ASSERT(newlen <= XFS_INODES_PER_CHUNK); |
56d1115c BF |
795 | allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; |
796 | } | |
797 | ||
3937493c GX |
798 | if (args.fsbno == NULLFSBLOCK) |
799 | return 1; | |
800 | ||
1da177e4 | 801 | ASSERT(args.len == args.minlen); |
1da177e4 | 802 | |
359346a9 | 803 | /* |
85c0b2ab DC |
804 | * Stamp and write the inode buffers. |
805 | * | |
359346a9 DC |
806 | * Seed the new inode cluster with a random generation number. This |
807 | * prevents short-term reuse of generation numbers if a chunk is | |
808 | * freed and then immediately reallocated. We use random numbers | |
809 | * rather than a linear progression to prevent the next generation | |
810 | * number from being easily guessable. | |
811 | */ | |
463958af BF |
812 | error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno, |
813 | args.agbno, args.len, prandom_u32()); | |
d42f08f6 | 814 | |
2a30f36d CS |
815 | if (error) |
816 | return error; | |
85c0b2ab DC |
817 | /* |
818 | * Convert the results. | |
819 | */ | |
43004b2a | 820 | newino = XFS_AGB_TO_AGINO(args.mp, args.agbno); |
56d1115c BF |
821 | |
822 | if (xfs_inobt_issparse(~allocmask)) { | |
823 | /* | |
824 | * We've allocated a sparse chunk. Align the startino and mask. | |
825 | */ | |
826 | xfs_align_sparse_ino(args.mp, &newino, &allocmask); | |
827 | ||
828 | rec.ir_startino = newino; | |
829 | rec.ir_holemask = ~allocmask; | |
830 | rec.ir_count = newlen; | |
831 | rec.ir_freecount = newlen; | |
832 | rec.ir_free = XFS_INOBT_ALL_FREE; | |
833 | ||
834 | /* | |
835 | * Insert the sparse record into the inobt and allow for a merge | |
836 | * if necessary. If a merge does occur, rec is updated to the | |
837 | * merged record. | |
838 | */ | |
839 | error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO, | |
840 | &rec, true); | |
841 | if (error == -EFSCORRUPTED) { | |
842 | xfs_alert(args.mp, | |
843 | "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", | |
844 | XFS_AGINO_TO_INO(args.mp, agno, | |
845 | rec.ir_startino), | |
846 | rec.ir_holemask, rec.ir_count); | |
847 | xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); | |
848 | } | |
849 | if (error) | |
850 | return error; | |
851 | ||
852 | /* | |
853 | * We can't merge the part we've just allocated as for the inobt | |
854 | * due to finobt semantics. The original record may or may not | |
855 | * exist independent of whether physical inodes exist in this | |
856 | * sparse chunk. | |
857 | * | |
858 | * We must update the finobt record based on the inobt record. | |
859 | * rec contains the fully merged and up to date inobt record | |
860 | * from the previous call. Set merge false to replace any | |
861 | * existing record with this one. | |
862 | */ | |
863 | if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { | |
864 | error = xfs_inobt_insert_sprec(args.mp, tp, agbp, | |
865 | XFS_BTNUM_FINO, &rec, | |
866 | false); | |
867 | if (error) | |
868 | return error; | |
869 | } | |
870 | } else { | |
871 | /* full chunk - insert new records to both btrees */ | |
872 | error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, | |
873 | XFS_BTNUM_INO); | |
874 | if (error) | |
875 | return error; | |
876 | ||
877 | if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { | |
878 | error = xfs_inobt_insert(args.mp, tp, agbp, newino, | |
879 | newlen, XFS_BTNUM_FINO); | |
880 | if (error) | |
881 | return error; | |
882 | } | |
883 | } | |
884 | ||
885 | /* | |
886 | * Update AGI counts and newino. | |
887 | */ | |
413d57c9 MS |
888 | be32_add_cpu(&agi->agi_count, newlen); |
889 | be32_add_cpu(&agi->agi_freecount, newlen); | |
92a00544 | 890 | pag = agbp->b_pag; |
44b56e0a | 891 | pag->pagi_freecount += newlen; |
89e9b5c0 | 892 | pag->pagi_count += newlen; |
16259e7d | 893 | agi->agi_newino = cpu_to_be32(newino); |
85c0b2ab | 894 | |
1da177e4 LT |
895 | /* |
896 | * Log allocation group header fields | |
897 | */ | |
898 | xfs_ialloc_log_agi(tp, agbp, | |
899 | XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); | |
900 | /* | |
901 | * Modify/log superblock values for inode count and inode free count. | |
902 | */ | |
903 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); | |
904 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); | |
1da177e4 LT |
905 | return 0; |
906 | } | |
907 | ||
b8f82a4a | 908 | STATIC xfs_agnumber_t |
1da177e4 LT |
909 | xfs_ialloc_next_ag( |
910 | xfs_mount_t *mp) | |
911 | { | |
912 | xfs_agnumber_t agno; | |
913 | ||
914 | spin_lock(&mp->m_agirotor_lock); | |
915 | agno = mp->m_agirotor; | |
8aea3ff4 | 916 | if (++mp->m_agirotor >= mp->m_maxagi) |
1da177e4 LT |
917 | mp->m_agirotor = 0; |
918 | spin_unlock(&mp->m_agirotor_lock); | |
919 | ||
920 | return agno; | |
921 | } | |
922 | ||
923 | /* | |
924 | * Select an allocation group to look for a free inode in, based on the parent | |
2f21ff1c | 925 | * inode and the mode. Return the allocation group buffer. |
1da177e4 | 926 | */ |
55d6af64 | 927 | STATIC xfs_agnumber_t |
1da177e4 LT |
928 | xfs_ialloc_ag_select( |
929 | xfs_trans_t *tp, /* transaction pointer */ | |
930 | xfs_ino_t parent, /* parent directory inode number */ | |
f59cf5c2 | 931 | umode_t mode) /* bits set to indicate file type */ |
1da177e4 | 932 | { |
1da177e4 LT |
933 | xfs_agnumber_t agcount; /* number of ag's in the filesystem */ |
934 | xfs_agnumber_t agno; /* current ag number */ | |
935 | int flags; /* alloc buffer locking flags */ | |
936 | xfs_extlen_t ineed; /* blocks needed for inode allocation */ | |
937 | xfs_extlen_t longest = 0; /* longest extent available */ | |
938 | xfs_mount_t *mp; /* mount point structure */ | |
939 | int needspace; /* file mode implies space allocated */ | |
940 | xfs_perag_t *pag; /* per allocation group data */ | |
941 | xfs_agnumber_t pagno; /* parent (starting) ag number */ | |
55d6af64 | 942 | int error; |
1da177e4 LT |
943 | |
944 | /* | |
945 | * Files of these types need at least one block if length > 0 | |
946 | * (and they won't fit in the inode, but that's hard to figure out). | |
947 | */ | |
948 | needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); | |
949 | mp = tp->t_mountp; | |
950 | agcount = mp->m_maxagi; | |
951 | if (S_ISDIR(mode)) | |
952 | pagno = xfs_ialloc_next_ag(mp); | |
953 | else { | |
954 | pagno = XFS_INO_TO_AGNO(mp, parent); | |
955 | if (pagno >= agcount) | |
956 | pagno = 0; | |
957 | } | |
55d6af64 | 958 | |
1da177e4 | 959 | ASSERT(pagno < agcount); |
55d6af64 | 960 | |
1da177e4 LT |
961 | /* |
962 | * Loop through allocation groups, looking for one with a little | |
963 | * free space in it. Note we don't look for free inodes, exactly. | |
964 | * Instead, we include whether there is a need to allocate inodes | |
965 | * to mean that blocks must be allocated for them, | |
966 | * if none are currently free. | |
967 | */ | |
968 | agno = pagno; | |
969 | flags = XFS_ALLOC_FLAG_TRYLOCK; | |
1da177e4 | 970 | for (;;) { |
44b56e0a | 971 | pag = xfs_perag_get(mp, agno); |
55d6af64 CH |
972 | if (!pag->pagi_inodeok) { |
973 | xfs_ialloc_next_ag(mp); | |
974 | goto nextag; | |
975 | } | |
976 | ||
1da177e4 | 977 | if (!pag->pagi_init) { |
55d6af64 CH |
978 | error = xfs_ialloc_pagi_init(mp, tp, agno); |
979 | if (error) | |
1da177e4 | 980 | goto nextag; |
55d6af64 | 981 | } |
1da177e4 | 982 | |
55d6af64 CH |
983 | if (pag->pagi_freecount) { |
984 | xfs_perag_put(pag); | |
985 | return agno; | |
1da177e4 LT |
986 | } |
987 | ||
55d6af64 CH |
988 | if (!pag->pagf_init) { |
989 | error = xfs_alloc_pagf_init(mp, tp, agno, flags); | |
990 | if (error) | |
1da177e4 | 991 | goto nextag; |
1da177e4 | 992 | } |
55d6af64 CH |
993 | |
994 | /* | |
7a1df156 DC |
995 | * Check that there is enough free space for the file plus a |
996 | * chunk of inodes if we need to allocate some. If this is the | |
997 | * first pass across the AGs, take into account the potential | |
998 | * space needed for alignment of inode chunks when checking the | |
999 | * longest contiguous free space in the AG - this prevents us | |
1000 | * from getting ENOSPC because we have free space larger than | |
ef325959 | 1001 | * ialloc_blks but alignment constraints prevent us from using |
7a1df156 DC |
1002 | * it. |
1003 | * | |
1004 | * If we can't find an AG with space for full alignment slack to | |
1005 | * be taken into account, we must be near ENOSPC in all AGs. | |
1006 | * Hence we don't include alignment for the second pass and so | |
1007 | * if we fail allocation due to alignment issues then it is most | |
1008 | * likely a real ENOSPC condition. | |
55d6af64 | 1009 | */ |
ef325959 | 1010 | ineed = M_IGEO(mp)->ialloc_min_blks; |
7a1df156 | 1011 | if (flags && ineed > 1) |
ef325959 | 1012 | ineed += M_IGEO(mp)->cluster_align; |
55d6af64 CH |
1013 | longest = pag->pagf_longest; |
1014 | if (!longest) | |
1015 | longest = pag->pagf_flcount > 0; | |
1016 | ||
1017 | if (pag->pagf_freeblks >= needspace + ineed && | |
1018 | longest >= ineed) { | |
1019 | xfs_perag_put(pag); | |
1020 | return agno; | |
1da177e4 | 1021 | } |
1da177e4 | 1022 | nextag: |
44b56e0a | 1023 | xfs_perag_put(pag); |
1da177e4 LT |
1024 | /* |
1025 | * No point in iterating over the rest, if we're shutting | |
1026 | * down. | |
1027 | */ | |
1c1c6ebc | 1028 | if (XFS_FORCED_SHUTDOWN(mp)) |
55d6af64 | 1029 | return NULLAGNUMBER; |
1da177e4 LT |
1030 | agno++; |
1031 | if (agno >= agcount) | |
1032 | agno = 0; | |
1033 | if (agno == pagno) { | |
1c1c6ebc | 1034 | if (flags == 0) |
55d6af64 | 1035 | return NULLAGNUMBER; |
1da177e4 LT |
1036 | flags = 0; |
1037 | } | |
1038 | } | |
1039 | } | |
1040 | ||
4254b0bb CH |
1041 | /* |
1042 | * Try to retrieve the next record to the left/right from the current one. | |
1043 | */ | |
1044 | STATIC int | |
1045 | xfs_ialloc_next_rec( | |
1046 | struct xfs_btree_cur *cur, | |
1047 | xfs_inobt_rec_incore_t *rec, | |
1048 | int *done, | |
1049 | int left) | |
1050 | { | |
1051 | int error; | |
1052 | int i; | |
1053 | ||
1054 | if (left) | |
1055 | error = xfs_btree_decrement(cur, 0, &i); | |
1056 | else | |
1057 | error = xfs_btree_increment(cur, 0, &i); | |
1058 | ||
1059 | if (error) | |
1060 | return error; | |
1061 | *done = !i; | |
1062 | if (i) { | |
1063 | error = xfs_inobt_get_rec(cur, rec, &i); | |
1064 | if (error) | |
1065 | return error; | |
f9e03706 DW |
1066 | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) |
1067 | return -EFSCORRUPTED; | |
4254b0bb CH |
1068 | } |
1069 | ||
1070 | return 0; | |
1071 | } | |
1072 | ||
bd169565 DC |
1073 | STATIC int |
1074 | xfs_ialloc_get_rec( | |
1075 | struct xfs_btree_cur *cur, | |
1076 | xfs_agino_t agino, | |
1077 | xfs_inobt_rec_incore_t *rec, | |
43df2ee6 | 1078 | int *done) |
bd169565 DC |
1079 | { |
1080 | int error; | |
1081 | int i; | |
1082 | ||
1083 | error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); | |
1084 | if (error) | |
1085 | return error; | |
1086 | *done = !i; | |
1087 | if (i) { | |
1088 | error = xfs_inobt_get_rec(cur, rec, &i); | |
1089 | if (error) | |
1090 | return error; | |
f9e03706 DW |
1091 | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) |
1092 | return -EFSCORRUPTED; | |
bd169565 DC |
1093 | } |
1094 | ||
1095 | return 0; | |
1096 | } | |
0b48db80 | 1097 | |
d4cc540b | 1098 | /* |
26dd5217 BF |
1099 | * Return the offset of the first free inode in the record. If the inode chunk |
1100 | * is sparsely allocated, we convert the record holemask to inode granularity | |
1101 | * and mask off the unallocated regions from the inode free mask. | |
d4cc540b BF |
1102 | */ |
1103 | STATIC int | |
1104 | xfs_inobt_first_free_inode( | |
1105 | struct xfs_inobt_rec_incore *rec) | |
1106 | { | |
26dd5217 BF |
1107 | xfs_inofree_t realfree; |
1108 | ||
1109 | /* if there are no holes, return the first available offset */ | |
1110 | if (!xfs_inobt_issparse(rec->ir_holemask)) | |
1111 | return xfs_lowbit64(rec->ir_free); | |
1112 | ||
1113 | realfree = xfs_inobt_irec_to_allocmask(rec); | |
1114 | realfree &= rec->ir_free; | |
1115 | ||
1116 | return xfs_lowbit64(realfree); | |
d4cc540b BF |
1117 | } |
1118 | ||
1da177e4 | 1119 | /* |
6dd8638e | 1120 | * Allocate an inode using the inobt-only algorithm. |
1da177e4 | 1121 | */ |
f2ecc5e4 | 1122 | STATIC int |
6dd8638e | 1123 | xfs_dialloc_ag_inobt( |
f2ecc5e4 CH |
1124 | struct xfs_trans *tp, |
1125 | struct xfs_buf *agbp, | |
1126 | xfs_ino_t parent, | |
1127 | xfs_ino_t *inop) | |
1da177e4 | 1128 | { |
f2ecc5e4 | 1129 | struct xfs_mount *mp = tp->t_mountp; |
370c782b | 1130 | struct xfs_agi *agi = agbp->b_addr; |
f2ecc5e4 CH |
1131 | xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); |
1132 | xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); | |
1133 | xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); | |
92a00544 | 1134 | struct xfs_perag *pag = agbp->b_pag; |
f2ecc5e4 CH |
1135 | struct xfs_btree_cur *cur, *tcur; |
1136 | struct xfs_inobt_rec_incore rec, trec; | |
1137 | xfs_ino_t ino; | |
1138 | int error; | |
1139 | int offset; | |
1140 | int i, j; | |
2d32311c | 1141 | int searchdistance = 10; |
1da177e4 | 1142 | |
4bb61069 CH |
1143 | ASSERT(pag->pagi_init); |
1144 | ASSERT(pag->pagi_inodeok); | |
1145 | ASSERT(pag->pagi_freecount > 0); | |
1146 | ||
bd169565 | 1147 | restart_pagno: |
57bd3dbe | 1148 | cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); |
1da177e4 LT |
1149 | /* |
1150 | * If pagino is 0 (this is the root inode allocation) use newino. | |
1151 | * This must work because we've just allocated some. | |
1152 | */ | |
1153 | if (!pagino) | |
16259e7d | 1154 | pagino = be32_to_cpu(agi->agi_newino); |
1da177e4 | 1155 | |
0b48db80 DC |
1156 | error = xfs_check_agi_freecount(cur, agi); |
1157 | if (error) | |
1158 | goto error0; | |
1da177e4 | 1159 | |
1da177e4 | 1160 | /* |
4254b0bb | 1161 | * If in the same AG as the parent, try to get near the parent. |
1da177e4 LT |
1162 | */ |
1163 | if (pagno == agno) { | |
4254b0bb CH |
1164 | int doneleft; /* done, to the left */ |
1165 | int doneright; /* done, to the right */ | |
1166 | ||
21875505 | 1167 | error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); |
4254b0bb | 1168 | if (error) |
1da177e4 | 1169 | goto error0; |
f9e03706 DW |
1170 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
1171 | error = -EFSCORRUPTED; | |
1172 | goto error0; | |
1173 | } | |
4254b0bb CH |
1174 | |
1175 | error = xfs_inobt_get_rec(cur, &rec, &j); | |
1176 | if (error) | |
1177 | goto error0; | |
f9e03706 DW |
1178 | if (XFS_IS_CORRUPT(mp, j != 1)) { |
1179 | error = -EFSCORRUPTED; | |
1180 | goto error0; | |
1181 | } | |
4254b0bb CH |
1182 | |
1183 | if (rec.ir_freecount > 0) { | |
1da177e4 LT |
1184 | /* |
1185 | * Found a free inode in the same chunk | |
4254b0bb | 1186 | * as the parent, done. |
1da177e4 | 1187 | */ |
4254b0bb | 1188 | goto alloc_inode; |
1da177e4 | 1189 | } |
4254b0bb CH |
1190 | |
1191 | ||
1da177e4 | 1192 | /* |
4254b0bb | 1193 | * In the same AG as parent, but parent's chunk is full. |
1da177e4 | 1194 | */ |
1da177e4 | 1195 | |
4254b0bb CH |
1196 | /* duplicate the cursor, search left & right simultaneously */ |
1197 | error = xfs_btree_dup_cursor(cur, &tcur); | |
1198 | if (error) | |
1199 | goto error0; | |
1200 | ||
bd169565 DC |
1201 | /* |
1202 | * Skip to last blocks looked up if same parent inode. | |
1203 | */ | |
1204 | if (pagino != NULLAGINO && | |
1205 | pag->pagl_pagino == pagino && | |
1206 | pag->pagl_leftrec != NULLAGINO && | |
1207 | pag->pagl_rightrec != NULLAGINO) { | |
1208 | error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, | |
43df2ee6 | 1209 | &trec, &doneleft); |
bd169565 DC |
1210 | if (error) |
1211 | goto error1; | |
4254b0bb | 1212 | |
bd169565 | 1213 | error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, |
43df2ee6 | 1214 | &rec, &doneright); |
bd169565 DC |
1215 | if (error) |
1216 | goto error1; | |
1217 | } else { | |
1218 | /* search left with tcur, back up 1 record */ | |
1219 | error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); | |
1220 | if (error) | |
1221 | goto error1; | |
1222 | ||
1223 | /* search right with cur, go forward 1 record. */ | |
1224 | error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); | |
1225 | if (error) | |
1226 | goto error1; | |
1227 | } | |
4254b0bb CH |
1228 | |
1229 | /* | |
1230 | * Loop until we find an inode chunk with a free inode. | |
1231 | */ | |
2d32311c | 1232 | while (--searchdistance > 0 && (!doneleft || !doneright)) { |
4254b0bb CH |
1233 | int useleft; /* using left inode chunk this time */ |
1234 | ||
1235 | /* figure out the closer block if both are valid. */ | |
1236 | if (!doneleft && !doneright) { | |
1237 | useleft = pagino - | |
1238 | (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < | |
1239 | rec.ir_startino - pagino; | |
1240 | } else { | |
1241 | useleft = !doneleft; | |
1da177e4 | 1242 | } |
4254b0bb CH |
1243 | |
1244 | /* free inodes to the left? */ | |
1245 | if (useleft && trec.ir_freecount) { | |
4254b0bb CH |
1246 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); |
1247 | cur = tcur; | |
bd169565 DC |
1248 | |
1249 | pag->pagl_leftrec = trec.ir_startino; | |
1250 | pag->pagl_rightrec = rec.ir_startino; | |
1251 | pag->pagl_pagino = pagino; | |
c44245b3 | 1252 | rec = trec; |
4254b0bb | 1253 | goto alloc_inode; |
1da177e4 | 1254 | } |
1da177e4 | 1255 | |
4254b0bb CH |
1256 | /* free inodes to the right? */ |
1257 | if (!useleft && rec.ir_freecount) { | |
1258 | xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); | |
bd169565 DC |
1259 | |
1260 | pag->pagl_leftrec = trec.ir_startino; | |
1261 | pag->pagl_rightrec = rec.ir_startino; | |
1262 | pag->pagl_pagino = pagino; | |
4254b0bb | 1263 | goto alloc_inode; |
1da177e4 | 1264 | } |
4254b0bb CH |
1265 | |
1266 | /* get next record to check */ | |
1267 | if (useleft) { | |
1268 | error = xfs_ialloc_next_rec(tcur, &trec, | |
1269 | &doneleft, 1); | |
1270 | } else { | |
1271 | error = xfs_ialloc_next_rec(cur, &rec, | |
1272 | &doneright, 0); | |
1273 | } | |
1274 | if (error) | |
1275 | goto error1; | |
1da177e4 | 1276 | } |
bd169565 | 1277 | |
2d32311c CM |
1278 | if (searchdistance <= 0) { |
1279 | /* | |
1280 | * Not in range - save last search | |
1281 | * location and allocate a new inode | |
1282 | */ | |
1283 | xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); | |
1284 | pag->pagl_leftrec = trec.ir_startino; | |
1285 | pag->pagl_rightrec = rec.ir_startino; | |
1286 | pag->pagl_pagino = pagino; | |
1287 | ||
1288 | } else { | |
1289 | /* | |
1290 | * We've reached the end of the btree. because | |
1291 | * we are only searching a small chunk of the | |
1292 | * btree each search, there is obviously free | |
1293 | * inodes closer to the parent inode than we | |
1294 | * are now. restart the search again. | |
1295 | */ | |
1296 | pag->pagl_pagino = NULLAGINO; | |
1297 | pag->pagl_leftrec = NULLAGINO; | |
1298 | pag->pagl_rightrec = NULLAGINO; | |
1299 | xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); | |
1300 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
1301 | goto restart_pagno; | |
1302 | } | |
1da177e4 | 1303 | } |
4254b0bb | 1304 | |
1da177e4 | 1305 | /* |
4254b0bb | 1306 | * In a different AG from the parent. |
1da177e4 LT |
1307 | * See if the most recently allocated block has any free. |
1308 | */ | |
69ef921b | 1309 | if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { |
21875505 CH |
1310 | error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), |
1311 | XFS_LOOKUP_EQ, &i); | |
4254b0bb | 1312 | if (error) |
1da177e4 | 1313 | goto error0; |
4254b0bb CH |
1314 | |
1315 | if (i == 1) { | |
1316 | error = xfs_inobt_get_rec(cur, &rec, &j); | |
1317 | if (error) | |
1318 | goto error0; | |
1319 | ||
1320 | if (j == 1 && rec.ir_freecount > 0) { | |
1321 | /* | |
1322 | * The last chunk allocated in the group | |
1323 | * still has a free inode. | |
1324 | */ | |
1325 | goto alloc_inode; | |
1326 | } | |
1da177e4 | 1327 | } |
bd169565 | 1328 | } |
4254b0bb | 1329 | |
bd169565 DC |
1330 | /* |
1331 | * None left in the last group, search the whole AG | |
1332 | */ | |
1333 | error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); | |
1334 | if (error) | |
1335 | goto error0; | |
f9e03706 DW |
1336 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
1337 | error = -EFSCORRUPTED; | |
1338 | goto error0; | |
1339 | } | |
bd169565 DC |
1340 | |
1341 | for (;;) { | |
1342 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
1343 | if (error) | |
1344 | goto error0; | |
f9e03706 DW |
1345 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
1346 | error = -EFSCORRUPTED; | |
1347 | goto error0; | |
1348 | } | |
bd169565 DC |
1349 | if (rec.ir_freecount > 0) |
1350 | break; | |
1351 | error = xfs_btree_increment(cur, 0, &i); | |
4254b0bb CH |
1352 | if (error) |
1353 | goto error0; | |
f9e03706 DW |
1354 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
1355 | error = -EFSCORRUPTED; | |
1356 | goto error0; | |
1357 | } | |
1da177e4 | 1358 | } |
4254b0bb CH |
1359 | |
1360 | alloc_inode: | |
d4cc540b | 1361 | offset = xfs_inobt_first_free_inode(&rec); |
1da177e4 LT |
1362 | ASSERT(offset >= 0); |
1363 | ASSERT(offset < XFS_INODES_PER_CHUNK); | |
1364 | ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % | |
1365 | XFS_INODES_PER_CHUNK) == 0); | |
1366 | ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); | |
0d87e656 | 1367 | rec.ir_free &= ~XFS_INOBT_MASK(offset); |
1da177e4 | 1368 | rec.ir_freecount--; |
afabc24a CH |
1369 | error = xfs_inobt_update(cur, &rec); |
1370 | if (error) | |
1da177e4 | 1371 | goto error0; |
413d57c9 | 1372 | be32_add_cpu(&agi->agi_freecount, -1); |
1da177e4 | 1373 | xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); |
44b56e0a | 1374 | pag->pagi_freecount--; |
1da177e4 | 1375 | |
0b48db80 DC |
1376 | error = xfs_check_agi_freecount(cur, agi); |
1377 | if (error) | |
1378 | goto error0; | |
1379 | ||
1da177e4 LT |
1380 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); |
1381 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); | |
1382 | *inop = ino; | |
1383 | return 0; | |
1384 | error1: | |
1385 | xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); | |
1386 | error0: | |
1387 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
1388 | return error; | |
1389 | } | |
1390 | ||
6dd8638e BF |
1391 | /* |
1392 | * Use the free inode btree to allocate an inode based on distance from the | |
1393 | * parent. Note that the provided cursor may be deleted and replaced. | |
1394 | */ | |
1395 | STATIC int | |
1396 | xfs_dialloc_ag_finobt_near( | |
1397 | xfs_agino_t pagino, | |
1398 | struct xfs_btree_cur **ocur, | |
1399 | struct xfs_inobt_rec_incore *rec) | |
1400 | { | |
1401 | struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ | |
1402 | struct xfs_btree_cur *rcur; /* right search cursor */ | |
1403 | struct xfs_inobt_rec_incore rrec; | |
1404 | int error; | |
1405 | int i, j; | |
1406 | ||
1407 | error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); | |
1408 | if (error) | |
1409 | return error; | |
1410 | ||
1411 | if (i == 1) { | |
1412 | error = xfs_inobt_get_rec(lcur, rec, &i); | |
1413 | if (error) | |
1414 | return error; | |
f9e03706 DW |
1415 | if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) |
1416 | return -EFSCORRUPTED; | |
6dd8638e BF |
1417 | |
1418 | /* | |
1419 | * See if we've landed in the parent inode record. The finobt | |
1420 | * only tracks chunks with at least one free inode, so record | |
1421 | * existence is enough. | |
1422 | */ | |
1423 | if (pagino >= rec->ir_startino && | |
1424 | pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) | |
1425 | return 0; | |
1426 | } | |
1427 | ||
1428 | error = xfs_btree_dup_cursor(lcur, &rcur); | |
1429 | if (error) | |
1430 | return error; | |
1431 | ||
1432 | error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); | |
1433 | if (error) | |
1434 | goto error_rcur; | |
1435 | if (j == 1) { | |
1436 | error = xfs_inobt_get_rec(rcur, &rrec, &j); | |
1437 | if (error) | |
1438 | goto error_rcur; | |
f9e03706 DW |
1439 | if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) { |
1440 | error = -EFSCORRUPTED; | |
1441 | goto error_rcur; | |
1442 | } | |
6dd8638e BF |
1443 | } |
1444 | ||
f9e03706 DW |
1445 | if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) { |
1446 | error = -EFSCORRUPTED; | |
1447 | goto error_rcur; | |
1448 | } | |
6dd8638e BF |
1449 | if (i == 1 && j == 1) { |
1450 | /* | |
1451 | * Both the left and right records are valid. Choose the closer | |
1452 | * inode chunk to the target. | |
1453 | */ | |
1454 | if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > | |
1455 | (rrec.ir_startino - pagino)) { | |
1456 | *rec = rrec; | |
1457 | xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); | |
1458 | *ocur = rcur; | |
1459 | } else { | |
1460 | xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); | |
1461 | } | |
1462 | } else if (j == 1) { | |
1463 | /* only the right record is valid */ | |
1464 | *rec = rrec; | |
1465 | xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); | |
1466 | *ocur = rcur; | |
1467 | } else if (i == 1) { | |
1468 | /* only the left record is valid */ | |
1469 | xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); | |
1470 | } | |
1471 | ||
1472 | return 0; | |
1473 | ||
1474 | error_rcur: | |
1475 | xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); | |
1476 | return error; | |
1477 | } | |
1478 | ||
1479 | /* | |
1480 | * Use the free inode btree to find a free inode based on a newino hint. If | |
1481 | * the hint is NULL, find the first free inode in the AG. | |
1482 | */ | |
1483 | STATIC int | |
1484 | xfs_dialloc_ag_finobt_newino( | |
1485 | struct xfs_agi *agi, | |
1486 | struct xfs_btree_cur *cur, | |
1487 | struct xfs_inobt_rec_incore *rec) | |
1488 | { | |
1489 | int error; | |
1490 | int i; | |
1491 | ||
1492 | if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { | |
e68ed775 DC |
1493 | error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), |
1494 | XFS_LOOKUP_EQ, &i); | |
6dd8638e BF |
1495 | if (error) |
1496 | return error; | |
1497 | if (i == 1) { | |
1498 | error = xfs_inobt_get_rec(cur, rec, &i); | |
1499 | if (error) | |
1500 | return error; | |
f9e03706 DW |
1501 | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) |
1502 | return -EFSCORRUPTED; | |
6dd8638e BF |
1503 | return 0; |
1504 | } | |
1505 | } | |
1506 | ||
1507 | /* | |
1508 | * Find the first inode available in the AG. | |
1509 | */ | |
1510 | error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); | |
1511 | if (error) | |
1512 | return error; | |
f9e03706 DW |
1513 | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) |
1514 | return -EFSCORRUPTED; | |
6dd8638e BF |
1515 | |
1516 | error = xfs_inobt_get_rec(cur, rec, &i); | |
1517 | if (error) | |
1518 | return error; | |
f9e03706 DW |
1519 | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) |
1520 | return -EFSCORRUPTED; | |
6dd8638e BF |
1521 | |
1522 | return 0; | |
1523 | } | |
1524 | ||
1525 | /* | |
1526 | * Update the inobt based on a modification made to the finobt. Also ensure that | |
1527 | * the records from both trees are equivalent post-modification. | |
1528 | */ | |
1529 | STATIC int | |
1530 | xfs_dialloc_ag_update_inobt( | |
1531 | struct xfs_btree_cur *cur, /* inobt cursor */ | |
1532 | struct xfs_inobt_rec_incore *frec, /* finobt record */ | |
1533 | int offset) /* inode offset */ | |
1534 | { | |
1535 | struct xfs_inobt_rec_incore rec; | |
1536 | int error; | |
1537 | int i; | |
1538 | ||
1539 | error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); | |
1540 | if (error) | |
1541 | return error; | |
f9e03706 DW |
1542 | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) |
1543 | return -EFSCORRUPTED; | |
6dd8638e BF |
1544 | |
1545 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
1546 | if (error) | |
1547 | return error; | |
f9e03706 DW |
1548 | if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) |
1549 | return -EFSCORRUPTED; | |
6dd8638e BF |
1550 | ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % |
1551 | XFS_INODES_PER_CHUNK) == 0); | |
1552 | ||
1553 | rec.ir_free &= ~XFS_INOBT_MASK(offset); | |
1554 | rec.ir_freecount--; | |
1555 | ||
f9e03706 DW |
1556 | if (XFS_IS_CORRUPT(cur->bc_mp, |
1557 | rec.ir_free != frec->ir_free || | |
1558 | rec.ir_freecount != frec->ir_freecount)) | |
1559 | return -EFSCORRUPTED; | |
6dd8638e | 1560 | |
b72091f2 | 1561 | return xfs_inobt_update(cur, &rec); |
6dd8638e BF |
1562 | } |
1563 | ||
1564 | /* | |
1565 | * Allocate an inode using the free inode btree, if available. Otherwise, fall | |
1566 | * back to the inobt search algorithm. | |
1567 | * | |
1568 | * The caller selected an AG for us, and made sure that free inodes are | |
1569 | * available. | |
1570 | */ | |
8d822dc3 | 1571 | int |
6dd8638e BF |
1572 | xfs_dialloc_ag( |
1573 | struct xfs_trans *tp, | |
1574 | struct xfs_buf *agbp, | |
1575 | xfs_ino_t parent, | |
1576 | xfs_ino_t *inop) | |
1577 | { | |
1578 | struct xfs_mount *mp = tp->t_mountp; | |
370c782b | 1579 | struct xfs_agi *agi = agbp->b_addr; |
6dd8638e BF |
1580 | xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); |
1581 | xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); | |
1582 | xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); | |
6dd8638e BF |
1583 | struct xfs_btree_cur *cur; /* finobt cursor */ |
1584 | struct xfs_btree_cur *icur; /* inobt cursor */ | |
1585 | struct xfs_inobt_rec_incore rec; | |
1586 | xfs_ino_t ino; | |
1587 | int error; | |
1588 | int offset; | |
1589 | int i; | |
1590 | ||
1591 | if (!xfs_sb_version_hasfinobt(&mp->m_sb)) | |
1592 | return xfs_dialloc_ag_inobt(tp, agbp, parent, inop); | |
1593 | ||
6dd8638e BF |
1594 | /* |
1595 | * If pagino is 0 (this is the root inode allocation) use newino. | |
1596 | * This must work because we've just allocated some. | |
1597 | */ | |
1598 | if (!pagino) | |
1599 | pagino = be32_to_cpu(agi->agi_newino); | |
1600 | ||
1601 | cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); | |
1602 | ||
1603 | error = xfs_check_agi_freecount(cur, agi); | |
1604 | if (error) | |
1605 | goto error_cur; | |
1606 | ||
1607 | /* | |
1608 | * The search algorithm depends on whether we're in the same AG as the | |
1609 | * parent. If so, find the closest available inode to the parent. If | |
1610 | * not, consider the agi hint or find the first free inode in the AG. | |
1611 | */ | |
1612 | if (agno == pagno) | |
1613 | error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); | |
1614 | else | |
1615 | error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); | |
1616 | if (error) | |
1617 | goto error_cur; | |
1618 | ||
d4cc540b | 1619 | offset = xfs_inobt_first_free_inode(&rec); |
6dd8638e BF |
1620 | ASSERT(offset >= 0); |
1621 | ASSERT(offset < XFS_INODES_PER_CHUNK); | |
1622 | ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % | |
1623 | XFS_INODES_PER_CHUNK) == 0); | |
1624 | ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); | |
1625 | ||
1626 | /* | |
1627 | * Modify or remove the finobt record. | |
1628 | */ | |
1629 | rec.ir_free &= ~XFS_INOBT_MASK(offset); | |
1630 | rec.ir_freecount--; | |
1631 | if (rec.ir_freecount) | |
1632 | error = xfs_inobt_update(cur, &rec); | |
1633 | else | |
1634 | error = xfs_btree_delete(cur, &i); | |
1635 | if (error) | |
1636 | goto error_cur; | |
1637 | ||
1638 | /* | |
1639 | * The finobt has now been updated appropriately. We haven't updated the | |
1640 | * agi and superblock yet, so we can create an inobt cursor and validate | |
1641 | * the original freecount. If all is well, make the equivalent update to | |
1642 | * the inobt using the finobt record and offset information. | |
1643 | */ | |
1644 | icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); | |
1645 | ||
1646 | error = xfs_check_agi_freecount(icur, agi); | |
1647 | if (error) | |
1648 | goto error_icur; | |
1649 | ||
1650 | error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); | |
1651 | if (error) | |
1652 | goto error_icur; | |
1653 | ||
1654 | /* | |
1655 | * Both trees have now been updated. We must update the perag and | |
1656 | * superblock before we can check the freecount for each btree. | |
1657 | */ | |
1658 | be32_add_cpu(&agi->agi_freecount, -1); | |
1659 | xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); | |
92a00544 | 1660 | agbp->b_pag->pagi_freecount--; |
6dd8638e BF |
1661 | |
1662 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); | |
1663 | ||
1664 | error = xfs_check_agi_freecount(icur, agi); | |
1665 | if (error) | |
1666 | goto error_icur; | |
1667 | error = xfs_check_agi_freecount(cur, agi); | |
1668 | if (error) | |
1669 | goto error_icur; | |
1670 | ||
1671 | xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); | |
1672 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
6dd8638e BF |
1673 | *inop = ino; |
1674 | return 0; | |
1675 | ||
1676 | error_icur: | |
1677 | xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); | |
1678 | error_cur: | |
1679 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
6dd8638e BF |
1680 | return error; |
1681 | } | |
1682 | ||
f3bf6e0f | 1683 | static int |
aececc9f DC |
1684 | xfs_dialloc_roll( |
1685 | struct xfs_trans **tpp, | |
1686 | struct xfs_buf *agibp) | |
1687 | { | |
1688 | struct xfs_trans *tp = *tpp; | |
1689 | struct xfs_dquot_acct *dqinfo; | |
1690 | int error; | |
1691 | ||
1692 | /* | |
1693 | * Hold to on to the agibp across the commit so no other allocation can | |
1694 | * come in and take the free inodes we just allocated for our caller. | |
1695 | */ | |
1696 | xfs_trans_bhold(tp, agibp); | |
1697 | ||
1698 | /* | |
1699 | * We want the quota changes to be associated with the next transaction, | |
1700 | * NOT this one. So, detach the dqinfo from this and attach it to the | |
1701 | * next transaction. | |
1702 | */ | |
1703 | dqinfo = tp->t_dqinfo; | |
1704 | tp->t_dqinfo = NULL; | |
1705 | ||
1706 | error = xfs_trans_roll(&tp); | |
1707 | ||
1708 | /* Re-attach the quota info that we detached from prev trx. */ | |
1709 | tp->t_dqinfo = dqinfo; | |
1710 | ||
1711 | *tpp = tp; | |
1712 | if (error) | |
1713 | return error; | |
1714 | xfs_trans_bjoin(tp, agibp); | |
1715 | return 0; | |
1716 | } | |
1717 | ||
f2ecc5e4 | 1718 | /* |
8d822dc3 | 1719 | * Select and prepare an AG for inode allocation. |
f2ecc5e4 | 1720 | * |
8d822dc3 DC |
1721 | * Mode is used to tell whether the new inode is a directory and hence where to |
1722 | * locate it. | |
f2ecc5e4 | 1723 | * |
8d822dc3 DC |
1724 | * This function will ensure that the selected AG has free inodes available to |
1725 | * allocate from. The selected AGI will be returned locked to the caller, and it | |
1726 | * will allocate more free inodes if required. If no free inodes are found or | |
1727 | * can be allocated, no AGI will be returned. | |
f2ecc5e4 CH |
1728 | */ |
1729 | int | |
8d822dc3 | 1730 | xfs_dialloc_select_ag( |
f3bf6e0f | 1731 | struct xfs_trans **tpp, |
f2ecc5e4 CH |
1732 | xfs_ino_t parent, |
1733 | umode_t mode, | |
8d822dc3 | 1734 | struct xfs_buf **IO_agbp) |
f2ecc5e4 | 1735 | { |
f3bf6e0f | 1736 | struct xfs_mount *mp = (*tpp)->t_mountp; |
f2ecc5e4 CH |
1737 | struct xfs_buf *agbp; |
1738 | xfs_agnumber_t agno; | |
f2ecc5e4 | 1739 | int error; |
15574ebb | 1740 | bool noroom = false; |
be60fe54 | 1741 | xfs_agnumber_t start_agno; |
f2ecc5e4 | 1742 | struct xfs_perag *pag; |
ef325959 | 1743 | struct xfs_ino_geometry *igeo = M_IGEO(mp); |
15574ebb | 1744 | bool okalloc = true; |
f2ecc5e4 | 1745 | |
8d822dc3 DC |
1746 | *IO_agbp = NULL; |
1747 | ||
4bb61069 CH |
1748 | /* |
1749 | * We do not have an agbp, so select an initial allocation | |
1750 | * group for inode allocation. | |
1751 | */ | |
f3bf6e0f | 1752 | start_agno = xfs_ialloc_ag_select(*tpp, parent, mode); |
8d822dc3 | 1753 | if (start_agno == NULLAGNUMBER) |
4bb61069 | 1754 | return 0; |
55d6af64 | 1755 | |
f2ecc5e4 CH |
1756 | /* |
1757 | * If we have already hit the ceiling of inode blocks then clear | |
1758 | * okalloc so we scan all available agi structures for a free | |
1759 | * inode. | |
74f9ce1c GW |
1760 | * |
1761 | * Read rough value of mp->m_icount by percpu_counter_read_positive, | |
1762 | * which will sacrifice the preciseness but improve the performance. | |
f2ecc5e4 | 1763 | */ |
ef325959 DW |
1764 | if (igeo->maxicount && |
1765 | percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos | |
1766 | > igeo->maxicount) { | |
15574ebb GX |
1767 | noroom = true; |
1768 | okalloc = false; | |
f2ecc5e4 CH |
1769 | } |
1770 | ||
1771 | /* | |
1772 | * Loop until we find an allocation group that either has free inodes | |
1773 | * or in which we can allocate some inodes. Iterate through the | |
1774 | * allocation groups upward, wrapping at the end. | |
1775 | */ | |
be60fe54 CH |
1776 | agno = start_agno; |
1777 | for (;;) { | |
1778 | pag = xfs_perag_get(mp, agno); | |
1779 | if (!pag->pagi_inodeok) { | |
1780 | xfs_ialloc_next_ag(mp); | |
1781 | goto nextag; | |
1782 | } | |
1783 | ||
1784 | if (!pag->pagi_init) { | |
f3bf6e0f | 1785 | error = xfs_ialloc_pagi_init(mp, *tpp, agno); |
be60fe54 | 1786 | if (error) |
8d822dc3 | 1787 | break; |
f2ecc5e4 | 1788 | } |
be60fe54 | 1789 | |
f2ecc5e4 | 1790 | /* |
be60fe54 | 1791 | * Do a first racy fast path check if this AG is usable. |
f2ecc5e4 | 1792 | */ |
be60fe54 CH |
1793 | if (!pag->pagi_freecount && !okalloc) |
1794 | goto nextag; | |
1795 | ||
c4982110 CH |
1796 | /* |
1797 | * Then read in the AGI buffer and recheck with the AGI buffer | |
1798 | * lock held. | |
1799 | */ | |
f3bf6e0f | 1800 | error = xfs_ialloc_read_agi(mp, *tpp, agno, &agbp); |
be60fe54 | 1801 | if (error) |
8d822dc3 | 1802 | break; |
be60fe54 | 1803 | |
be60fe54 CH |
1804 | if (pag->pagi_freecount) { |
1805 | xfs_perag_put(pag); | |
8d822dc3 | 1806 | goto found_ag; |
be60fe54 CH |
1807 | } |
1808 | ||
c4982110 CH |
1809 | if (!okalloc) |
1810 | goto nextag_relse_buffer; | |
1811 | ||
3937493c GX |
1812 | error = xfs_ialloc_ag_alloc(*tpp, agbp); |
1813 | if (error < 0) { | |
f3bf6e0f | 1814 | xfs_trans_brelse(*tpp, agbp); |
be60fe54 | 1815 | |
8d822dc3 DC |
1816 | if (error == -ENOSPC) |
1817 | error = 0; | |
1818 | break; | |
f2ecc5e4 | 1819 | } |
be60fe54 | 1820 | |
3937493c | 1821 | if (error == 0) { |
be60fe54 | 1822 | /* |
f3bf6e0f DC |
1823 | * We successfully allocated space for an inode cluster |
1824 | * in this AG. Roll the transaction so that we can | |
1825 | * allocate one of the new inodes. | |
be60fe54 CH |
1826 | */ |
1827 | ASSERT(pag->pagi_freecount > 0); | |
f2ecc5e4 | 1828 | xfs_perag_put(pag); |
be60fe54 | 1829 | |
f3bf6e0f DC |
1830 | error = xfs_dialloc_roll(tpp, agbp); |
1831 | if (error) { | |
1832 | xfs_buf_relse(agbp); | |
1833 | return error; | |
1834 | } | |
8d822dc3 | 1835 | goto found_ag; |
f2ecc5e4 | 1836 | } |
be60fe54 | 1837 | |
c4982110 | 1838 | nextag_relse_buffer: |
f3bf6e0f | 1839 | xfs_trans_brelse(*tpp, agbp); |
be60fe54 | 1840 | nextag: |
f2ecc5e4 | 1841 | xfs_perag_put(pag); |
be60fe54 CH |
1842 | if (++agno == mp->m_sb.sb_agcount) |
1843 | agno = 0; | |
8d822dc3 | 1844 | if (agno == start_agno) |
2451337d | 1845 | return noroom ? -ENOSPC : 0; |
f2ecc5e4 CH |
1846 | } |
1847 | ||
be60fe54 | 1848 | xfs_perag_put(pag); |
b474c7ae | 1849 | return error; |
8d822dc3 DC |
1850 | found_ag: |
1851 | *IO_agbp = agbp; | |
1852 | return 0; | |
f2ecc5e4 CH |
1853 | } |
1854 | ||
10ae3dc7 BF |
1855 | /* |
1856 | * Free the blocks of an inode chunk. We must consider that the inode chunk | |
1857 | * might be sparse and only free the regions that are allocated as part of the | |
1858 | * chunk. | |
1859 | */ | |
1860 | STATIC void | |
1861 | xfs_difree_inode_chunk( | |
0f37d178 | 1862 | struct xfs_trans *tp, |
10ae3dc7 | 1863 | xfs_agnumber_t agno, |
0f37d178 | 1864 | struct xfs_inobt_rec_incore *rec) |
10ae3dc7 | 1865 | { |
0f37d178 BF |
1866 | struct xfs_mount *mp = tp->t_mountp; |
1867 | xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, | |
1868 | rec->ir_startino); | |
1869 | int startidx, endidx; | |
1870 | int nextbit; | |
1871 | xfs_agblock_t agbno; | |
1872 | int contigblk; | |
10ae3dc7 BF |
1873 | DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); |
1874 | ||
1875 | if (!xfs_inobt_issparse(rec->ir_holemask)) { | |
1876 | /* not sparse, calculate extent info directly */ | |
0f37d178 | 1877 | xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, sagbno), |
ef325959 DW |
1878 | M_IGEO(mp)->ialloc_blks, |
1879 | &XFS_RMAP_OINFO_INODES); | |
10ae3dc7 BF |
1880 | return; |
1881 | } | |
1882 | ||
1883 | /* holemask is only 16-bits (fits in an unsigned long) */ | |
1884 | ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); | |
1885 | holemask[0] = rec->ir_holemask; | |
1886 | ||
1887 | /* | |
1888 | * Find contiguous ranges of zeroes (i.e., allocated regions) in the | |
1889 | * holemask and convert the start/end index of each range to an extent. | |
1890 | * We start with the start and end index both pointing at the first 0 in | |
1891 | * the mask. | |
1892 | */ | |
1893 | startidx = endidx = find_first_zero_bit(holemask, | |
1894 | XFS_INOBT_HOLEMASK_BITS); | |
1895 | nextbit = startidx + 1; | |
1896 | while (startidx < XFS_INOBT_HOLEMASK_BITS) { | |
1897 | nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, | |
1898 | nextbit); | |
1899 | /* | |
1900 | * If the next zero bit is contiguous, update the end index of | |
1901 | * the current range and continue. | |
1902 | */ | |
1903 | if (nextbit != XFS_INOBT_HOLEMASK_BITS && | |
1904 | nextbit == endidx + 1) { | |
1905 | endidx = nextbit; | |
1906 | goto next; | |
1907 | } | |
1908 | ||
1909 | /* | |
1910 | * nextbit is not contiguous with the current end index. Convert | |
1911 | * the current start/end to an extent and add it to the free | |
1912 | * list. | |
1913 | */ | |
1914 | agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / | |
1915 | mp->m_sb.sb_inopblock; | |
1916 | contigblk = ((endidx - startidx + 1) * | |
1917 | XFS_INODES_PER_HOLEMASK_BIT) / | |
1918 | mp->m_sb.sb_inopblock; | |
1919 | ||
1920 | ASSERT(agbno % mp->m_sb.sb_spino_align == 0); | |
1921 | ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); | |
0f37d178 | 1922 | xfs_bmap_add_free(tp, XFS_AGB_TO_FSB(mp, agno, agbno), |
7280feda | 1923 | contigblk, &XFS_RMAP_OINFO_INODES); |
10ae3dc7 BF |
1924 | |
1925 | /* reset range to current bit and carry on... */ | |
1926 | startidx = endidx = nextbit; | |
1927 | ||
1928 | next: | |
1929 | nextbit++; | |
1930 | } | |
1931 | } | |
1932 | ||
2b64ee5c BF |
1933 | STATIC int |
1934 | xfs_difree_inobt( | |
1935 | struct xfs_mount *mp, | |
1936 | struct xfs_trans *tp, | |
1937 | struct xfs_buf *agbp, | |
1938 | xfs_agino_t agino, | |
09b56604 | 1939 | struct xfs_icluster *xic, |
2b64ee5c | 1940 | struct xfs_inobt_rec_incore *orec) |
1da177e4 | 1941 | { |
370c782b | 1942 | struct xfs_agi *agi = agbp->b_addr; |
2b64ee5c | 1943 | xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); |
2b64ee5c BF |
1944 | struct xfs_btree_cur *cur; |
1945 | struct xfs_inobt_rec_incore rec; | |
1946 | int ilen; | |
1947 | int error; | |
1948 | int i; | |
1949 | int off; | |
1da177e4 | 1950 | |
69ef921b | 1951 | ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); |
2b64ee5c BF |
1952 | ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); |
1953 | ||
1da177e4 LT |
1954 | /* |
1955 | * Initialize the cursor. | |
1956 | */ | |
57bd3dbe | 1957 | cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); |
1da177e4 | 1958 | |
0b48db80 DC |
1959 | error = xfs_check_agi_freecount(cur, agi); |
1960 | if (error) | |
1961 | goto error0; | |
1962 | ||
1da177e4 LT |
1963 | /* |
1964 | * Look for the entry describing this inode. | |
1965 | */ | |
21875505 | 1966 | if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { |
0b932ccc DC |
1967 | xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", |
1968 | __func__, error); | |
1da177e4 LT |
1969 | goto error0; |
1970 | } | |
f9e03706 DW |
1971 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
1972 | error = -EFSCORRUPTED; | |
1973 | goto error0; | |
1974 | } | |
2e287a73 CH |
1975 | error = xfs_inobt_get_rec(cur, &rec, &i); |
1976 | if (error) { | |
0b932ccc DC |
1977 | xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", |
1978 | __func__, error); | |
1da177e4 LT |
1979 | goto error0; |
1980 | } | |
f9e03706 DW |
1981 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
1982 | error = -EFSCORRUPTED; | |
1983 | goto error0; | |
1984 | } | |
1da177e4 LT |
1985 | /* |
1986 | * Get the offset in the inode chunk. | |
1987 | */ | |
1988 | off = agino - rec.ir_startino; | |
1989 | ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); | |
0d87e656 | 1990 | ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); |
1da177e4 LT |
1991 | /* |
1992 | * Mark the inode free & increment the count. | |
1993 | */ | |
0d87e656 | 1994 | rec.ir_free |= XFS_INOBT_MASK(off); |
1da177e4 LT |
1995 | rec.ir_freecount++; |
1996 | ||
1997 | /* | |
999633d3 BF |
1998 | * When an inode chunk is free, it becomes eligible for removal. Don't |
1999 | * remove the chunk if the block size is large enough for multiple inode | |
2000 | * chunks (that might not be free). | |
1da177e4 | 2001 | */ |
1bd960ee | 2002 | if (!(mp->m_flags & XFS_MOUNT_IKEEP) && |
999633d3 BF |
2003 | rec.ir_free == XFS_INOBT_ALL_FREE && |
2004 | mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { | |
92a00544 GX |
2005 | struct xfs_perag *pag = agbp->b_pag; |
2006 | ||
749f24f3 | 2007 | xic->deleted = true; |
09b56604 BF |
2008 | xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino); |
2009 | xic->alloc = xfs_inobt_irec_to_allocmask(&rec); | |
1da177e4 LT |
2010 | |
2011 | /* | |
2012 | * Remove the inode cluster from the AGI B+Tree, adjust the | |
2013 | * AGI and Superblock inode counts, and mark the disk space | |
2014 | * to be freed when the transaction is committed. | |
2015 | */ | |
999633d3 | 2016 | ilen = rec.ir_freecount; |
413d57c9 MS |
2017 | be32_add_cpu(&agi->agi_count, -ilen); |
2018 | be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); | |
1da177e4 | 2019 | xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); |
44b56e0a | 2020 | pag->pagi_freecount -= ilen - 1; |
89e9b5c0 | 2021 | pag->pagi_count -= ilen; |
1da177e4 LT |
2022 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); |
2023 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); | |
2024 | ||
91cca5df | 2025 | if ((error = xfs_btree_delete(cur, &i))) { |
0b932ccc DC |
2026 | xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", |
2027 | __func__, error); | |
1da177e4 LT |
2028 | goto error0; |
2029 | } | |
2030 | ||
0f37d178 | 2031 | xfs_difree_inode_chunk(tp, agno, &rec); |
1da177e4 | 2032 | } else { |
749f24f3 | 2033 | xic->deleted = false; |
1da177e4 | 2034 | |
afabc24a CH |
2035 | error = xfs_inobt_update(cur, &rec); |
2036 | if (error) { | |
0b932ccc DC |
2037 | xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", |
2038 | __func__, error); | |
1da177e4 LT |
2039 | goto error0; |
2040 | } | |
afabc24a | 2041 | |
1da177e4 LT |
2042 | /* |
2043 | * Change the inode free counts and log the ag/sb changes. | |
2044 | */ | |
413d57c9 | 2045 | be32_add_cpu(&agi->agi_freecount, 1); |
1da177e4 | 2046 | xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); |
92a00544 | 2047 | agbp->b_pag->pagi_freecount++; |
1da177e4 LT |
2048 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); |
2049 | } | |
2050 | ||
0b48db80 DC |
2051 | error = xfs_check_agi_freecount(cur, agi); |
2052 | if (error) | |
2053 | goto error0; | |
1da177e4 | 2054 | |
2b64ee5c | 2055 | *orec = rec; |
1da177e4 LT |
2056 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); |
2057 | return 0; | |
2058 | ||
2059 | error0: | |
2060 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
2061 | return error; | |
2062 | } | |
2063 | ||
3efa4ffd BF |
2064 | /* |
2065 | * Free an inode in the free inode btree. | |
2066 | */ | |
2067 | STATIC int | |
2068 | xfs_difree_finobt( | |
2069 | struct xfs_mount *mp, | |
2070 | struct xfs_trans *tp, | |
2071 | struct xfs_buf *agbp, | |
2072 | xfs_agino_t agino, | |
2073 | struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ | |
2074 | { | |
370c782b | 2075 | struct xfs_agi *agi = agbp->b_addr; |
3efa4ffd BF |
2076 | xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); |
2077 | struct xfs_btree_cur *cur; | |
2078 | struct xfs_inobt_rec_incore rec; | |
2079 | int offset = agino - ibtrec->ir_startino; | |
2080 | int error; | |
2081 | int i; | |
2082 | ||
2083 | cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); | |
2084 | ||
2085 | error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); | |
2086 | if (error) | |
2087 | goto error; | |
2088 | if (i == 0) { | |
2089 | /* | |
2090 | * If the record does not exist in the finobt, we must have just | |
2091 | * freed an inode in a previously fully allocated chunk. If not, | |
2092 | * something is out of sync. | |
2093 | */ | |
f9e03706 DW |
2094 | if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) { |
2095 | error = -EFSCORRUPTED; | |
2096 | goto error; | |
2097 | } | |
3efa4ffd | 2098 | |
5419040f BF |
2099 | error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, |
2100 | ibtrec->ir_count, | |
2101 | ibtrec->ir_freecount, | |
3efa4ffd BF |
2102 | ibtrec->ir_free, &i); |
2103 | if (error) | |
2104 | goto error; | |
2105 | ASSERT(i == 1); | |
2106 | ||
2107 | goto out; | |
2108 | } | |
2109 | ||
2110 | /* | |
2111 | * Read and update the existing record. We could just copy the ibtrec | |
2112 | * across here, but that would defeat the purpose of having redundant | |
2113 | * metadata. By making the modifications independently, we can catch | |
2114 | * corruptions that we wouldn't see if we just copied from one record | |
2115 | * to another. | |
2116 | */ | |
2117 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
2118 | if (error) | |
2119 | goto error; | |
f9e03706 DW |
2120 | if (XFS_IS_CORRUPT(mp, i != 1)) { |
2121 | error = -EFSCORRUPTED; | |
2122 | goto error; | |
2123 | } | |
3efa4ffd BF |
2124 | |
2125 | rec.ir_free |= XFS_INOBT_MASK(offset); | |
2126 | rec.ir_freecount++; | |
2127 | ||
f9e03706 DW |
2128 | if (XFS_IS_CORRUPT(mp, |
2129 | rec.ir_free != ibtrec->ir_free || | |
2130 | rec.ir_freecount != ibtrec->ir_freecount)) { | |
2131 | error = -EFSCORRUPTED; | |
2132 | goto error; | |
2133 | } | |
3efa4ffd BF |
2134 | |
2135 | /* | |
2136 | * The content of inobt records should always match between the inobt | |
2137 | * and finobt. The lifecycle of records in the finobt is different from | |
2138 | * the inobt in that the finobt only tracks records with at least one | |
2139 | * free inode. Hence, if all of the inodes are free and we aren't | |
2140 | * keeping inode chunks permanently on disk, remove the record. | |
2141 | * Otherwise, update the record with the new information. | |
999633d3 BF |
2142 | * |
2143 | * Note that we currently can't free chunks when the block size is large | |
2144 | * enough for multiple chunks. Leave the finobt record to remain in sync | |
2145 | * with the inobt. | |
3efa4ffd | 2146 | */ |
999633d3 BF |
2147 | if (rec.ir_free == XFS_INOBT_ALL_FREE && |
2148 | mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK && | |
3efa4ffd BF |
2149 | !(mp->m_flags & XFS_MOUNT_IKEEP)) { |
2150 | error = xfs_btree_delete(cur, &i); | |
2151 | if (error) | |
2152 | goto error; | |
2153 | ASSERT(i == 1); | |
2154 | } else { | |
2155 | error = xfs_inobt_update(cur, &rec); | |
2156 | if (error) | |
2157 | goto error; | |
2158 | } | |
2159 | ||
2160 | out: | |
2161 | error = xfs_check_agi_freecount(cur, agi); | |
2162 | if (error) | |
2163 | goto error; | |
2164 | ||
2165 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
2166 | return 0; | |
2167 | ||
2168 | error: | |
2169 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
2170 | return error; | |
2171 | } | |
2172 | ||
2b64ee5c BF |
2173 | /* |
2174 | * Free disk inode. Carefully avoids touching the incore inode, all | |
2175 | * manipulations incore are the caller's responsibility. | |
2176 | * The on-disk inode is not changed by this operation, only the | |
2177 | * btree (free inode mask) is changed. | |
2178 | */ | |
2179 | int | |
2180 | xfs_difree( | |
2181 | struct xfs_trans *tp, /* transaction pointer */ | |
2182 | xfs_ino_t inode, /* inode to be freed */ | |
09b56604 | 2183 | struct xfs_icluster *xic) /* cluster info if deleted */ |
2b64ee5c BF |
2184 | { |
2185 | /* REFERENCED */ | |
2186 | xfs_agblock_t agbno; /* block number containing inode */ | |
2187 | struct xfs_buf *agbp; /* buffer for allocation group header */ | |
2188 | xfs_agino_t agino; /* allocation group inode number */ | |
2189 | xfs_agnumber_t agno; /* allocation group number */ | |
2190 | int error; /* error return value */ | |
2191 | struct xfs_mount *mp; /* mount structure for filesystem */ | |
2192 | struct xfs_inobt_rec_incore rec;/* btree record */ | |
2193 | ||
2194 | mp = tp->t_mountp; | |
2195 | ||
2196 | /* | |
2197 | * Break up inode number into its components. | |
2198 | */ | |
2199 | agno = XFS_INO_TO_AGNO(mp, inode); | |
2200 | if (agno >= mp->m_sb.sb_agcount) { | |
2201 | xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).", | |
2202 | __func__, agno, mp->m_sb.sb_agcount); | |
2203 | ASSERT(0); | |
2451337d | 2204 | return -EINVAL; |
2b64ee5c BF |
2205 | } |
2206 | agino = XFS_INO_TO_AGINO(mp, inode); | |
2207 | if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) { | |
2208 | xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", | |
2209 | __func__, (unsigned long long)inode, | |
2210 | (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino)); | |
2211 | ASSERT(0); | |
2451337d | 2212 | return -EINVAL; |
2b64ee5c BF |
2213 | } |
2214 | agbno = XFS_AGINO_TO_AGBNO(mp, agino); | |
2215 | if (agbno >= mp->m_sb.sb_agblocks) { | |
2216 | xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", | |
2217 | __func__, agbno, mp->m_sb.sb_agblocks); | |
2218 | ASSERT(0); | |
2451337d | 2219 | return -EINVAL; |
2b64ee5c BF |
2220 | } |
2221 | /* | |
2222 | * Get the allocation group header. | |
2223 | */ | |
2224 | error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); | |
2225 | if (error) { | |
2226 | xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", | |
2227 | __func__, error); | |
2228 | return error; | |
2229 | } | |
2230 | ||
2231 | /* | |
2232 | * Fix up the inode allocation btree. | |
2233 | */ | |
0e0417f3 | 2234 | error = xfs_difree_inobt(mp, tp, agbp, agino, xic, &rec); |
2b64ee5c BF |
2235 | if (error) |
2236 | goto error0; | |
2237 | ||
3efa4ffd BF |
2238 | /* |
2239 | * Fix up the free inode btree. | |
2240 | */ | |
2241 | if (xfs_sb_version_hasfinobt(&mp->m_sb)) { | |
2242 | error = xfs_difree_finobt(mp, tp, agbp, agino, &rec); | |
2243 | if (error) | |
2244 | goto error0; | |
2245 | } | |
2246 | ||
2b64ee5c BF |
2247 | return 0; |
2248 | ||
2249 | error0: | |
2250 | return error; | |
2251 | } | |
2252 | ||
7124fe0a DC |
2253 | STATIC int |
2254 | xfs_imap_lookup( | |
2255 | struct xfs_mount *mp, | |
2256 | struct xfs_trans *tp, | |
2257 | xfs_agnumber_t agno, | |
2258 | xfs_agino_t agino, | |
2259 | xfs_agblock_t agbno, | |
2260 | xfs_agblock_t *chunk_agbno, | |
2261 | xfs_agblock_t *offset_agbno, | |
2262 | int flags) | |
2263 | { | |
2264 | struct xfs_inobt_rec_incore rec; | |
2265 | struct xfs_btree_cur *cur; | |
2266 | struct xfs_buf *agbp; | |
7124fe0a DC |
2267 | int error; |
2268 | int i; | |
2269 | ||
2270 | error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); | |
2271 | if (error) { | |
53487786 DC |
2272 | xfs_alert(mp, |
2273 | "%s: xfs_ialloc_read_agi() returned error %d, agno %d", | |
2274 | __func__, error, agno); | |
7124fe0a DC |
2275 | return error; |
2276 | } | |
2277 | ||
2278 | /* | |
4536f2ad DC |
2279 | * Lookup the inode record for the given agino. If the record cannot be |
2280 | * found, then it's an invalid inode number and we should abort. Once | |
2281 | * we have a record, we need to ensure it contains the inode number | |
2282 | * we are looking up. | |
7124fe0a | 2283 | */ |
57bd3dbe | 2284 | cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); |
4536f2ad | 2285 | error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); |
7124fe0a DC |
2286 | if (!error) { |
2287 | if (i) | |
2288 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
2289 | if (!error && i == 0) | |
2451337d | 2290 | error = -EINVAL; |
7124fe0a DC |
2291 | } |
2292 | ||
2293 | xfs_trans_brelse(tp, agbp); | |
0b04b6b8 | 2294 | xfs_btree_del_cursor(cur, error); |
7124fe0a DC |
2295 | if (error) |
2296 | return error; | |
2297 | ||
4536f2ad DC |
2298 | /* check that the returned record contains the required inode */ |
2299 | if (rec.ir_startino > agino || | |
ef325959 | 2300 | rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino) |
2451337d | 2301 | return -EINVAL; |
4536f2ad | 2302 | |
7124fe0a | 2303 | /* for untrusted inodes check it is allocated first */ |
1920779e | 2304 | if ((flags & XFS_IGET_UNTRUSTED) && |
7124fe0a | 2305 | (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) |
2451337d | 2306 | return -EINVAL; |
7124fe0a DC |
2307 | |
2308 | *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); | |
2309 | *offset_agbno = agbno - *chunk_agbno; | |
2310 | return 0; | |
2311 | } | |
2312 | ||
1da177e4 | 2313 | /* |
94e1b69d | 2314 | * Return the location of the inode in imap, for mapping it into a buffer. |
1da177e4 | 2315 | */ |
1da177e4 | 2316 | int |
94e1b69d CH |
2317 | xfs_imap( |
2318 | xfs_mount_t *mp, /* file system mount structure */ | |
2319 | xfs_trans_t *tp, /* transaction pointer */ | |
1da177e4 | 2320 | xfs_ino_t ino, /* inode to locate */ |
94e1b69d CH |
2321 | struct xfs_imap *imap, /* location map structure */ |
2322 | uint flags) /* flags for inode btree lookup */ | |
1da177e4 LT |
2323 | { |
2324 | xfs_agblock_t agbno; /* block number of inode in the alloc group */ | |
1da177e4 LT |
2325 | xfs_agino_t agino; /* inode number within alloc group */ |
2326 | xfs_agnumber_t agno; /* allocation group number */ | |
1da177e4 | 2327 | xfs_agblock_t chunk_agbno; /* first block in inode chunk */ |
1da177e4 | 2328 | xfs_agblock_t cluster_agbno; /* first block in inode cluster */ |
1da177e4 | 2329 | int error; /* error code */ |
1da177e4 | 2330 | int offset; /* index of inode in its buffer */ |
836a94ad | 2331 | xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ |
1da177e4 LT |
2332 | |
2333 | ASSERT(ino != NULLFSINO); | |
94e1b69d | 2334 | |
1da177e4 LT |
2335 | /* |
2336 | * Split up the inode number into its parts. | |
2337 | */ | |
2338 | agno = XFS_INO_TO_AGNO(mp, ino); | |
2339 | agino = XFS_INO_TO_AGINO(mp, ino); | |
2340 | agbno = XFS_AGINO_TO_AGBNO(mp, agino); | |
2341 | if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks || | |
2342 | ino != XFS_AGINO_TO_INO(mp, agno, agino)) { | |
2343 | #ifdef DEBUG | |
1920779e DC |
2344 | /* |
2345 | * Don't output diagnostic information for untrusted inodes | |
2346 | * as they can be invalid without implying corruption. | |
2347 | */ | |
2348 | if (flags & XFS_IGET_UNTRUSTED) | |
2451337d | 2349 | return -EINVAL; |
1da177e4 | 2350 | if (agno >= mp->m_sb.sb_agcount) { |
53487786 DC |
2351 | xfs_alert(mp, |
2352 | "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)", | |
2353 | __func__, agno, mp->m_sb.sb_agcount); | |
1da177e4 LT |
2354 | } |
2355 | if (agbno >= mp->m_sb.sb_agblocks) { | |
53487786 DC |
2356 | xfs_alert(mp, |
2357 | "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", | |
2358 | __func__, (unsigned long long)agbno, | |
2359 | (unsigned long)mp->m_sb.sb_agblocks); | |
1da177e4 LT |
2360 | } |
2361 | if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) { | |
53487786 DC |
2362 | xfs_alert(mp, |
2363 | "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", | |
2364 | __func__, ino, | |
2365 | XFS_AGINO_TO_INO(mp, agno, agino)); | |
1da177e4 | 2366 | } |
745b1f47 | 2367 | xfs_stack_trace(); |
1da177e4 | 2368 | #endif /* DEBUG */ |
2451337d | 2369 | return -EINVAL; |
1da177e4 | 2370 | } |
94e1b69d | 2371 | |
7124fe0a DC |
2372 | /* |
2373 | * For bulkstat and handle lookups, we have an untrusted inode number | |
2374 | * that we have to verify is valid. We cannot do this just by reading | |
2375 | * the inode buffer as it may have been unlinked and removed leaving | |
2376 | * inodes in stale state on disk. Hence we have to do a btree lookup | |
2377 | * in all cases where an untrusted inode number is passed. | |
2378 | */ | |
1920779e | 2379 | if (flags & XFS_IGET_UNTRUSTED) { |
7124fe0a DC |
2380 | error = xfs_imap_lookup(mp, tp, agno, agino, agbno, |
2381 | &chunk_agbno, &offset_agbno, flags); | |
2382 | if (error) | |
2383 | return error; | |
2384 | goto out_map; | |
2385 | } | |
2386 | ||
94e1b69d CH |
2387 | /* |
2388 | * If the inode cluster size is the same as the blocksize or | |
2389 | * smaller we get to the buffer by simple arithmetics. | |
2390 | */ | |
ef325959 | 2391 | if (M_IGEO(mp)->blocks_per_cluster == 1) { |
1da177e4 LT |
2392 | offset = XFS_INO_TO_OFFSET(mp, ino); |
2393 | ASSERT(offset < mp->m_sb.sb_inopblock); | |
94e1b69d CH |
2394 | |
2395 | imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno); | |
2396 | imap->im_len = XFS_FSB_TO_BB(mp, 1); | |
755c7bf5 DW |
2397 | imap->im_boffset = (unsigned short)(offset << |
2398 | mp->m_sb.sb_inodelog); | |
1da177e4 LT |
2399 | return 0; |
2400 | } | |
94e1b69d | 2401 | |
94e1b69d CH |
2402 | /* |
2403 | * If the inode chunks are aligned then use simple maths to | |
2404 | * find the location. Otherwise we have to do a btree | |
2405 | * lookup to find the location. | |
2406 | */ | |
ef325959 DW |
2407 | if (M_IGEO(mp)->inoalign_mask) { |
2408 | offset_agbno = agbno & M_IGEO(mp)->inoalign_mask; | |
1da177e4 LT |
2409 | chunk_agbno = agbno - offset_agbno; |
2410 | } else { | |
7124fe0a DC |
2411 | error = xfs_imap_lookup(mp, tp, agno, agino, agbno, |
2412 | &chunk_agbno, &offset_agbno, flags); | |
1da177e4 LT |
2413 | if (error) |
2414 | return error; | |
1da177e4 | 2415 | } |
94e1b69d | 2416 | |
7124fe0a | 2417 | out_map: |
1da177e4 LT |
2418 | ASSERT(agbno >= chunk_agbno); |
2419 | cluster_agbno = chunk_agbno + | |
ef325959 DW |
2420 | ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) * |
2421 | M_IGEO(mp)->blocks_per_cluster); | |
1da177e4 LT |
2422 | offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + |
2423 | XFS_INO_TO_OFFSET(mp, ino); | |
94e1b69d CH |
2424 | |
2425 | imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno); | |
ef325959 | 2426 | imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster); |
755c7bf5 | 2427 | imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog); |
94e1b69d CH |
2428 | |
2429 | /* | |
2430 | * If the inode number maps to a block outside the bounds | |
2431 | * of the file system then return NULL rather than calling | |
2432 | * read_buf and panicing when we get an error from the | |
2433 | * driver. | |
2434 | */ | |
2435 | if ((imap->im_blkno + imap->im_len) > | |
2436 | XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { | |
53487786 DC |
2437 | xfs_alert(mp, |
2438 | "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", | |
2439 | __func__, (unsigned long long) imap->im_blkno, | |
94e1b69d CH |
2440 | (unsigned long long) imap->im_len, |
2441 | XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); | |
2451337d | 2442 | return -EINVAL; |
94e1b69d | 2443 | } |
1da177e4 | 2444 | return 0; |
1da177e4 LT |
2445 | } |
2446 | ||
1da177e4 | 2447 | /* |
aafc3c24 BF |
2448 | * Log specified fields for the ag hdr (inode section). The growth of the agi |
2449 | * structure over time requires that we interpret the buffer as two logical | |
2450 | * regions delineated by the end of the unlinked list. This is due to the size | |
2451 | * of the hash table and its location in the middle of the agi. | |
2452 | * | |
2453 | * For example, a request to log a field before agi_unlinked and a field after | |
2454 | * agi_unlinked could cause us to log the entire hash table and use an excessive | |
2455 | * amount of log space. To avoid this behavior, log the region up through | |
2456 | * agi_unlinked in one call and the region after agi_unlinked through the end of | |
2457 | * the structure in another. | |
1da177e4 LT |
2458 | */ |
2459 | void | |
2460 | xfs_ialloc_log_agi( | |
2461 | xfs_trans_t *tp, /* transaction pointer */ | |
e8222613 | 2462 | struct xfs_buf *bp, /* allocation group header buffer */ |
1da177e4 LT |
2463 | int fields) /* bitmask of fields to log */ |
2464 | { | |
2465 | int first; /* first byte number */ | |
2466 | int last; /* last byte number */ | |
2467 | static const short offsets[] = { /* field starting offsets */ | |
2468 | /* keep in sync with bit definitions */ | |
2469 | offsetof(xfs_agi_t, agi_magicnum), | |
2470 | offsetof(xfs_agi_t, agi_versionnum), | |
2471 | offsetof(xfs_agi_t, agi_seqno), | |
2472 | offsetof(xfs_agi_t, agi_length), | |
2473 | offsetof(xfs_agi_t, agi_count), | |
2474 | offsetof(xfs_agi_t, agi_root), | |
2475 | offsetof(xfs_agi_t, agi_level), | |
2476 | offsetof(xfs_agi_t, agi_freecount), | |
2477 | offsetof(xfs_agi_t, agi_newino), | |
2478 | offsetof(xfs_agi_t, agi_dirino), | |
2479 | offsetof(xfs_agi_t, agi_unlinked), | |
aafc3c24 BF |
2480 | offsetof(xfs_agi_t, agi_free_root), |
2481 | offsetof(xfs_agi_t, agi_free_level), | |
2a39946c | 2482 | offsetof(xfs_agi_t, agi_iblocks), |
1da177e4 LT |
2483 | sizeof(xfs_agi_t) |
2484 | }; | |
2485 | #ifdef DEBUG | |
370c782b | 2486 | struct xfs_agi *agi = bp->b_addr; |
1da177e4 | 2487 | |
69ef921b | 2488 | ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); |
1da177e4 | 2489 | #endif |
aafc3c24 | 2490 | |
1da177e4 | 2491 | /* |
aafc3c24 BF |
2492 | * Compute byte offsets for the first and last fields in the first |
2493 | * region and log the agi buffer. This only logs up through | |
2494 | * agi_unlinked. | |
1da177e4 | 2495 | */ |
aafc3c24 BF |
2496 | if (fields & XFS_AGI_ALL_BITS_R1) { |
2497 | xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, | |
2498 | &first, &last); | |
2499 | xfs_trans_log_buf(tp, bp, first, last); | |
2500 | } | |
2501 | ||
1da177e4 | 2502 | /* |
aafc3c24 BF |
2503 | * Mask off the bits in the first region and calculate the first and |
2504 | * last field offsets for any bits in the second region. | |
1da177e4 | 2505 | */ |
aafc3c24 BF |
2506 | fields &= ~XFS_AGI_ALL_BITS_R1; |
2507 | if (fields) { | |
2508 | xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, | |
2509 | &first, &last); | |
2510 | xfs_trans_log_buf(tp, bp, first, last); | |
2511 | } | |
1da177e4 LT |
2512 | } |
2513 | ||
a6a781a5 | 2514 | static xfs_failaddr_t |
612cfbfe | 2515 | xfs_agi_verify( |
3702ce6e DC |
2516 | struct xfs_buf *bp) |
2517 | { | |
dbd329f1 | 2518 | struct xfs_mount *mp = bp->b_mount; |
370c782b | 2519 | struct xfs_agi *agi = bp->b_addr; |
9f96cc95 | 2520 | int i; |
3702ce6e | 2521 | |
a45086e2 BF |
2522 | if (xfs_sb_version_hascrc(&mp->m_sb)) { |
2523 | if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) | |
a6a781a5 | 2524 | return __this_address; |
370c782b | 2525 | if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn))) |
a6a781a5 | 2526 | return __this_address; |
a45086e2 BF |
2527 | } |
2528 | ||
3702ce6e DC |
2529 | /* |
2530 | * Validate the magic number of the agi block. | |
2531 | */ | |
39708c20 | 2532 | if (!xfs_verify_magic(bp, agi->agi_magicnum)) |
a6a781a5 | 2533 | return __this_address; |
983d09ff | 2534 | if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) |
a6a781a5 | 2535 | return __this_address; |
3702ce6e | 2536 | |
d2a047f3 | 2537 | if (be32_to_cpu(agi->agi_level) < 1 || |
973975b7 | 2538 | be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels) |
a6a781a5 | 2539 | return __this_address; |
d2a047f3 DW |
2540 | |
2541 | if (xfs_sb_version_hasfinobt(&mp->m_sb) && | |
2542 | (be32_to_cpu(agi->agi_free_level) < 1 || | |
973975b7 | 2543 | be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels)) |
a6a781a5 | 2544 | return __this_address; |
d2a047f3 | 2545 | |
3702ce6e DC |
2546 | /* |
2547 | * during growfs operations, the perag is not fully initialised, | |
2548 | * so we can't use it for any useful checking. growfs ensures we can't | |
2549 | * use it by using uncached buffers that don't have the perag attached | |
2550 | * so we can detect and avoid this problem. | |
2551 | */ | |
983d09ff | 2552 | if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno) |
a6a781a5 | 2553 | return __this_address; |
3702ce6e | 2554 | |
9f96cc95 | 2555 | for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) { |
5089eaff | 2556 | if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO)) |
9f96cc95 DC |
2557 | continue; |
2558 | if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i]))) | |
2559 | return __this_address; | |
2560 | } | |
2561 | ||
a6a781a5 | 2562 | return NULL; |
612cfbfe DC |
2563 | } |
2564 | ||
1813dd64 DC |
2565 | static void |
2566 | xfs_agi_read_verify( | |
612cfbfe DC |
2567 | struct xfs_buf *bp) |
2568 | { | |
dbd329f1 | 2569 | struct xfs_mount *mp = bp->b_mount; |
bc1a09b8 | 2570 | xfs_failaddr_t fa; |
983d09ff | 2571 | |
ce5028cf ES |
2572 | if (xfs_sb_version_hascrc(&mp->m_sb) && |
2573 | !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) | |
bc1a09b8 DW |
2574 | xfs_verifier_error(bp, -EFSBADCRC, __this_address); |
2575 | else { | |
2576 | fa = xfs_agi_verify(bp); | |
2577 | if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI)) | |
2578 | xfs_verifier_error(bp, -EFSCORRUPTED, fa); | |
2579 | } | |
612cfbfe DC |
2580 | } |
2581 | ||
b0f539de | 2582 | static void |
1813dd64 | 2583 | xfs_agi_write_verify( |
612cfbfe DC |
2584 | struct xfs_buf *bp) |
2585 | { | |
dbd329f1 | 2586 | struct xfs_mount *mp = bp->b_mount; |
fb1755a6 | 2587 | struct xfs_buf_log_item *bip = bp->b_log_item; |
370c782b | 2588 | struct xfs_agi *agi = bp->b_addr; |
bc1a09b8 | 2589 | xfs_failaddr_t fa; |
983d09ff | 2590 | |
bc1a09b8 DW |
2591 | fa = xfs_agi_verify(bp); |
2592 | if (fa) { | |
2593 | xfs_verifier_error(bp, -EFSCORRUPTED, fa); | |
983d09ff DC |
2594 | return; |
2595 | } | |
2596 | ||
2597 | if (!xfs_sb_version_hascrc(&mp->m_sb)) | |
2598 | return; | |
2599 | ||
2600 | if (bip) | |
370c782b | 2601 | agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); |
f1dbcd7e | 2602 | xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); |
3702ce6e DC |
2603 | } |
2604 | ||
1813dd64 | 2605 | const struct xfs_buf_ops xfs_agi_buf_ops = { |
233135b7 | 2606 | .name = "xfs_agi", |
39708c20 | 2607 | .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) }, |
1813dd64 DC |
2608 | .verify_read = xfs_agi_read_verify, |
2609 | .verify_write = xfs_agi_write_verify, | |
b5572597 | 2610 | .verify_struct = xfs_agi_verify, |
1813dd64 DC |
2611 | }; |
2612 | ||
1da177e4 LT |
2613 | /* |
2614 | * Read in the allocation group header (inode allocation section) | |
2615 | */ | |
2616 | int | |
5e1be0fb CH |
2617 | xfs_read_agi( |
2618 | struct xfs_mount *mp, /* file system mount structure */ | |
2619 | struct xfs_trans *tp, /* transaction pointer */ | |
2620 | xfs_agnumber_t agno, /* allocation group number */ | |
2621 | struct xfs_buf **bpp) /* allocation group hdr buf */ | |
1da177e4 | 2622 | { |
5e1be0fb | 2623 | int error; |
1da177e4 | 2624 | |
d123031a | 2625 | trace_xfs_read_agi(mp, agno); |
5e1be0fb | 2626 | |
d123031a | 2627 | ASSERT(agno != NULLAGNUMBER); |
5e1be0fb | 2628 | error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, |
1da177e4 | 2629 | XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), |
1813dd64 | 2630 | XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops); |
1da177e4 LT |
2631 | if (error) |
2632 | return error; | |
200237d6 ES |
2633 | if (tp) |
2634 | xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF); | |
5e1be0fb | 2635 | |
38f23232 | 2636 | xfs_buf_set_ref(*bpp, XFS_AGI_REF); |
5e1be0fb CH |
2637 | return 0; |
2638 | } | |
2639 | ||
2640 | int | |
2641 | xfs_ialloc_read_agi( | |
2642 | struct xfs_mount *mp, /* file system mount structure */ | |
2643 | struct xfs_trans *tp, /* transaction pointer */ | |
2644 | xfs_agnumber_t agno, /* allocation group number */ | |
2645 | struct xfs_buf **bpp) /* allocation group hdr buf */ | |
2646 | { | |
2647 | struct xfs_agi *agi; /* allocation group header */ | |
2648 | struct xfs_perag *pag; /* per allocation group data */ | |
2649 | int error; | |
2650 | ||
d123031a DC |
2651 | trace_xfs_ialloc_read_agi(mp, agno); |
2652 | ||
5e1be0fb CH |
2653 | error = xfs_read_agi(mp, tp, agno, bpp); |
2654 | if (error) | |
2655 | return error; | |
2656 | ||
370c782b | 2657 | agi = (*bpp)->b_addr; |
92a00544 | 2658 | pag = (*bpp)->b_pag; |
1da177e4 | 2659 | if (!pag->pagi_init) { |
16259e7d | 2660 | pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); |
92821e2b | 2661 | pag->pagi_count = be32_to_cpu(agi->agi_count); |
1da177e4 | 2662 | pag->pagi_init = 1; |
1da177e4 | 2663 | } |
1da177e4 | 2664 | |
5e1be0fb CH |
2665 | /* |
2666 | * It's possible for these to be out of sync if | |
2667 | * we are in the middle of a forced shutdown. | |
2668 | */ | |
2669 | ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || | |
2670 | XFS_FORCED_SHUTDOWN(mp)); | |
1da177e4 LT |
2671 | return 0; |
2672 | } | |
92821e2b DC |
2673 | |
2674 | /* | |
2675 | * Read in the agi to initialise the per-ag data in the mount structure | |
2676 | */ | |
2677 | int | |
2678 | xfs_ialloc_pagi_init( | |
2679 | xfs_mount_t *mp, /* file system mount structure */ | |
2680 | xfs_trans_t *tp, /* transaction pointer */ | |
2681 | xfs_agnumber_t agno) /* allocation group number */ | |
2682 | { | |
e8222613 | 2683 | struct xfs_buf *bp = NULL; |
92821e2b DC |
2684 | int error; |
2685 | ||
2686 | error = xfs_ialloc_read_agi(mp, tp, agno, &bp); | |
2687 | if (error) | |
2688 | return error; | |
2689 | if (bp) | |
2690 | xfs_trans_brelse(tp, bp); | |
2691 | return 0; | |
2692 | } | |
91fb9afc | 2693 | |
2e001266 DW |
2694 | /* Is there an inode record covering a given range of inode numbers? */ |
2695 | int | |
2696 | xfs_ialloc_has_inode_record( | |
2697 | struct xfs_btree_cur *cur, | |
2698 | xfs_agino_t low, | |
2699 | xfs_agino_t high, | |
2700 | bool *exists) | |
2701 | { | |
2702 | struct xfs_inobt_rec_incore irec; | |
2703 | xfs_agino_t agino; | |
2704 | uint16_t holemask; | |
2705 | int has_record; | |
2706 | int i; | |
2707 | int error; | |
2708 | ||
2709 | *exists = false; | |
2710 | error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record); | |
2711 | while (error == 0 && has_record) { | |
2712 | error = xfs_inobt_get_rec(cur, &irec, &has_record); | |
2713 | if (error || irec.ir_startino > high) | |
2714 | break; | |
2715 | ||
2716 | agino = irec.ir_startino; | |
2717 | holemask = irec.ir_holemask; | |
2718 | for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1, | |
2719 | i++, agino += XFS_INODES_PER_HOLEMASK_BIT) { | |
2720 | if (holemask & 1) | |
2721 | continue; | |
2722 | if (agino + XFS_INODES_PER_HOLEMASK_BIT > low && | |
2723 | agino <= high) { | |
2724 | *exists = true; | |
2725 | return 0; | |
2726 | } | |
2727 | } | |
2728 | ||
2729 | error = xfs_btree_increment(cur, 0, &has_record); | |
2730 | } | |
2731 | return error; | |
2732 | } | |
2733 | ||
2734 | /* Is there an inode record covering a given extent? */ | |
2735 | int | |
2736 | xfs_ialloc_has_inodes_at_extent( | |
2737 | struct xfs_btree_cur *cur, | |
2738 | xfs_agblock_t bno, | |
2739 | xfs_extlen_t len, | |
2740 | bool *exists) | |
2741 | { | |
2742 | xfs_agino_t low; | |
2743 | xfs_agino_t high; | |
2744 | ||
43004b2a DW |
2745 | low = XFS_AGB_TO_AGINO(cur->bc_mp, bno); |
2746 | high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1; | |
2e001266 DW |
2747 | |
2748 | return xfs_ialloc_has_inode_record(cur, low, high, exists); | |
2749 | } | |
2750 | ||
2751 | struct xfs_ialloc_count_inodes { | |
2752 | xfs_agino_t count; | |
2753 | xfs_agino_t freecount; | |
2754 | }; | |
2755 | ||
2756 | /* Record inode counts across all inobt records. */ | |
2757 | STATIC int | |
2758 | xfs_ialloc_count_inodes_rec( | |
2759 | struct xfs_btree_cur *cur, | |
2760 | union xfs_btree_rec *rec, | |
2761 | void *priv) | |
2762 | { | |
2763 | struct xfs_inobt_rec_incore irec; | |
2764 | struct xfs_ialloc_count_inodes *ci = priv; | |
2765 | ||
2766 | xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec); | |
2767 | ci->count += irec.ir_count; | |
2768 | ci->freecount += irec.ir_freecount; | |
2769 | ||
2770 | return 0; | |
2771 | } | |
2772 | ||
2773 | /* Count allocated and free inodes under an inobt. */ | |
2774 | int | |
2775 | xfs_ialloc_count_inodes( | |
2776 | struct xfs_btree_cur *cur, | |
2777 | xfs_agino_t *count, | |
2778 | xfs_agino_t *freecount) | |
2779 | { | |
2780 | struct xfs_ialloc_count_inodes ci = {0}; | |
2781 | int error; | |
2782 | ||
2783 | ASSERT(cur->bc_btnum == XFS_BTNUM_INO); | |
2784 | error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci); | |
2785 | if (error) | |
2786 | return error; | |
2787 | ||
2788 | *count = ci.count; | |
2789 | *freecount = ci.freecount; | |
2790 | return 0; | |
2791 | } | |
494dba7b DW |
2792 | |
2793 | /* | |
2794 | * Initialize inode-related geometry information. | |
2795 | * | |
2796 | * Compute the inode btree min and max levels and set maxicount. | |
2797 | * | |
2798 | * Set the inode cluster size. This may still be overridden by the file | |
2799 | * system block size if it is larger than the chosen cluster size. | |
2800 | * | |
2801 | * For v5 filesystems, scale the cluster size with the inode size to keep a | |
2802 | * constant ratio of inode per cluster buffer, but only if mkfs has set the | |
2803 | * inode alignment value appropriately for larger cluster sizes. | |
2804 | * | |
2805 | * Then compute the inode cluster alignment information. | |
2806 | */ | |
2807 | void | |
2808 | xfs_ialloc_setup_geometry( | |
2809 | struct xfs_mount *mp) | |
2810 | { | |
2811 | struct xfs_sb *sbp = &mp->m_sb; | |
2812 | struct xfs_ino_geometry *igeo = M_IGEO(mp); | |
2813 | uint64_t icount; | |
2814 | uint inodes; | |
2815 | ||
f93e5436 DW |
2816 | igeo->new_diflags2 = 0; |
2817 | if (xfs_sb_version_hasbigtime(&mp->m_sb)) | |
2818 | igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME; | |
2819 | ||
494dba7b DW |
2820 | /* Compute inode btree geometry. */ |
2821 | igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog; | |
2822 | igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); | |
2823 | igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0); | |
2824 | igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2; | |
2825 | igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2; | |
2826 | ||
2827 | igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK, | |
2828 | sbp->sb_inopblock); | |
2829 | igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog; | |
2830 | ||
2831 | if (sbp->sb_spino_align) | |
2832 | igeo->ialloc_min_blks = sbp->sb_spino_align; | |
2833 | else | |
2834 | igeo->ialloc_min_blks = igeo->ialloc_blks; | |
2835 | ||
2836 | /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */ | |
2837 | inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; | |
2838 | igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr, | |
2839 | inodes); | |
2840 | ||
c94613fe DW |
2841 | /* |
2842 | * Set the maximum inode count for this filesystem, being careful not | |
2843 | * to use obviously garbage sb_inopblog/sb_inopblock values. Regular | |
2844 | * users should never get here due to failing sb verification, but | |
2845 | * certain users (xfs_db) need to be usable even with corrupt metadata. | |
2846 | */ | |
2847 | if (sbp->sb_imax_pct && igeo->ialloc_blks) { | |
494dba7b DW |
2848 | /* |
2849 | * Make sure the maximum inode count is a multiple | |
2850 | * of the units we allocate inodes in. | |
2851 | */ | |
2852 | icount = sbp->sb_dblocks * sbp->sb_imax_pct; | |
2853 | do_div(icount, 100); | |
2854 | do_div(icount, igeo->ialloc_blks); | |
2855 | igeo->maxicount = XFS_FSB_TO_INO(mp, | |
2856 | icount * igeo->ialloc_blks); | |
2857 | } else { | |
2858 | igeo->maxicount = 0; | |
2859 | } | |
2860 | ||
490d451f DW |
2861 | /* |
2862 | * Compute the desired size of an inode cluster buffer size, which | |
2863 | * starts at 8K and (on v5 filesystems) scales up with larger inode | |
2864 | * sizes. | |
2865 | * | |
2866 | * Preserve the desired inode cluster size because the sparse inodes | |
2867 | * feature uses that desired size (not the actual size) to compute the | |
2868 | * sparse inode alignment. The mount code validates this value, so we | |
2869 | * cannot change the behavior. | |
2870 | */ | |
2871 | igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE; | |
b81b79f4 | 2872 | if (xfs_sb_version_has_v3inode(&mp->m_sb)) { |
490d451f | 2873 | int new_size = igeo->inode_cluster_size_raw; |
494dba7b DW |
2874 | |
2875 | new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; | |
2876 | if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) | |
490d451f | 2877 | igeo->inode_cluster_size_raw = new_size; |
494dba7b DW |
2878 | } |
2879 | ||
2880 | /* Calculate inode cluster ratios. */ | |
490d451f | 2881 | if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize) |
494dba7b | 2882 | igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp, |
490d451f | 2883 | igeo->inode_cluster_size_raw); |
494dba7b DW |
2884 | else |
2885 | igeo->blocks_per_cluster = 1; | |
490d451f | 2886 | igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster); |
494dba7b DW |
2887 | igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster); |
2888 | ||
2889 | /* Calculate inode cluster alignment. */ | |
2890 | if (xfs_sb_version_hasalign(&mp->m_sb) && | |
2891 | mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster) | |
2892 | igeo->cluster_align = mp->m_sb.sb_inoalignmt; | |
2893 | else | |
2894 | igeo->cluster_align = 1; | |
2895 | igeo->inoalign_mask = igeo->cluster_align - 1; | |
2896 | igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align); | |
2897 | ||
2898 | /* | |
2899 | * If we are using stripe alignment, check whether | |
2900 | * the stripe unit is a multiple of the inode alignment | |
2901 | */ | |
2902 | if (mp->m_dalign && igeo->inoalign_mask && | |
2903 | !(mp->m_dalign & igeo->inoalign_mask)) | |
2904 | igeo->ialloc_align = mp->m_dalign; | |
2905 | else | |
2906 | igeo->ialloc_align = 0; | |
2907 | } | |
13eaec4b DW |
2908 | |
2909 | /* Compute the location of the root directory inode that is laid out by mkfs. */ | |
2910 | xfs_ino_t | |
2911 | xfs_ialloc_calc_rootino( | |
2912 | struct xfs_mount *mp, | |
2913 | int sunit) | |
2914 | { | |
2915 | struct xfs_ino_geometry *igeo = M_IGEO(mp); | |
2916 | xfs_agblock_t first_bno; | |
2917 | ||
2918 | /* | |
2919 | * Pre-calculate the geometry of AG 0. We know what it looks like | |
2920 | * because libxfs knows how to create allocation groups now. | |
2921 | * | |
2922 | * first_bno is the first block in which mkfs could possibly have | |
2923 | * allocated the root directory inode, once we factor in the metadata | |
2924 | * that mkfs formats before it. Namely, the four AG headers... | |
2925 | */ | |
2926 | first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize); | |
2927 | ||
2928 | /* ...the two free space btree roots... */ | |
2929 | first_bno += 2; | |
2930 | ||
2931 | /* ...the inode btree root... */ | |
2932 | first_bno += 1; | |
2933 | ||
2934 | /* ...the initial AGFL... */ | |
2935 | first_bno += xfs_alloc_min_freelist(mp, NULL); | |
2936 | ||
2937 | /* ...the free inode btree root... */ | |
2938 | if (xfs_sb_version_hasfinobt(&mp->m_sb)) | |
2939 | first_bno++; | |
2940 | ||
2941 | /* ...the reverse mapping btree root... */ | |
2942 | if (xfs_sb_version_hasrmapbt(&mp->m_sb)) | |
2943 | first_bno++; | |
2944 | ||
2945 | /* ...the reference count btree... */ | |
2946 | if (xfs_sb_version_hasreflink(&mp->m_sb)) | |
2947 | first_bno++; | |
2948 | ||
2949 | /* | |
2950 | * ...and the log, if it is allocated in the first allocation group. | |
2951 | * | |
2952 | * This can happen with filesystems that only have a single | |
2953 | * allocation group, or very odd geometries created by old mkfs | |
2954 | * versions on very small filesystems. | |
2955 | */ | |
2956 | if (mp->m_sb.sb_logstart && | |
2957 | XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == 0) | |
2958 | first_bno += mp->m_sb.sb_logblocks; | |
2959 | ||
2960 | /* | |
2961 | * Now round first_bno up to whatever allocation alignment is given | |
2962 | * by the filesystem or was passed in. | |
2963 | */ | |
2964 | if (xfs_sb_version_hasdalign(&mp->m_sb) && igeo->ialloc_align > 0) | |
2965 | first_bno = roundup(first_bno, sunit); | |
2966 | else if (xfs_sb_version_hasalign(&mp->m_sb) && | |
2967 | mp->m_sb.sb_inoalignmt > 1) | |
2968 | first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt); | |
2969 | ||
2970 | return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno)); | |
2971 | } |