]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
7b718769 NS |
2 | * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. |
3 | * All Rights Reserved. | |
1da177e4 | 4 | * |
7b718769 NS |
5 | * This program is free software; you can redistribute it and/or |
6 | * modify it under the terms of the GNU General Public License as | |
1da177e4 LT |
7 | * published by the Free Software Foundation. |
8 | * | |
7b718769 NS |
9 | * This program is distributed in the hope that it would be useful, |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
12 | * GNU General Public License for more details. | |
1da177e4 | 13 | * |
7b718769 NS |
14 | * You should have received a copy of the GNU General Public License |
15 | * along with this program; if not, write the Free Software Foundation, | |
16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |
1da177e4 | 17 | */ |
1da177e4 | 18 | #include "xfs.h" |
a844f451 | 19 | #include "xfs_fs.h" |
70a9883c | 20 | #include "xfs_shared.h" |
239880ef DC |
21 | #include "xfs_format.h" |
22 | #include "xfs_log_format.h" | |
23 | #include "xfs_trans_resv.h" | |
a844f451 | 24 | #include "xfs_bit.h" |
1da177e4 | 25 | #include "xfs_sb.h" |
1da177e4 | 26 | #include "xfs_mount.h" |
3ab78df2 | 27 | #include "xfs_defer.h" |
1da177e4 | 28 | #include "xfs_inode.h" |
a844f451 NS |
29 | #include "xfs_btree.h" |
30 | #include "xfs_ialloc.h" | |
a4fbe6ab | 31 | #include "xfs_ialloc_btree.h" |
1da177e4 | 32 | #include "xfs_alloc.h" |
1da177e4 LT |
33 | #include "xfs_rtalloc.h" |
34 | #include "xfs_error.h" | |
35 | #include "xfs_bmap.h" | |
983d09ff | 36 | #include "xfs_cksum.h" |
239880ef | 37 | #include "xfs_trans.h" |
983d09ff | 38 | #include "xfs_buf_item.h" |
ddf6ad01 | 39 | #include "xfs_icreate_item.h" |
7bb85ef3 | 40 | #include "xfs_icache.h" |
d123031a | 41 | #include "xfs_trace.h" |
a45086e2 | 42 | #include "xfs_log.h" |
340785cc | 43 | #include "xfs_rmap.h" |
1da177e4 | 44 | |
1da177e4 LT |
45 | |
46 | /* | |
47 | * Allocation group level functions. | |
48 | */ | |
75de2a91 DC |
49 | static inline int |
50 | xfs_ialloc_cluster_alignment( | |
7a1df156 | 51 | struct xfs_mount *mp) |
75de2a91 | 52 | { |
7a1df156 DC |
53 | if (xfs_sb_version_hasalign(&mp->m_sb) && |
54 | mp->m_sb.sb_inoalignmt >= | |
55 | XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) | |
56 | return mp->m_sb.sb_inoalignmt; | |
75de2a91 DC |
57 | return 1; |
58 | } | |
1da177e4 | 59 | |
fe033cc8 | 60 | /* |
21875505 | 61 | * Lookup a record by ino in the btree given by cur. |
fe033cc8 | 62 | */ |
81e25176 | 63 | int /* error */ |
21875505 | 64 | xfs_inobt_lookup( |
fe033cc8 CH |
65 | struct xfs_btree_cur *cur, /* btree cursor */ |
66 | xfs_agino_t ino, /* starting inode of chunk */ | |
21875505 | 67 | xfs_lookup_t dir, /* <=, >=, == */ |
fe033cc8 CH |
68 | int *stat) /* success/failure */ |
69 | { | |
70 | cur->bc_rec.i.ir_startino = ino; | |
5419040f BF |
71 | cur->bc_rec.i.ir_holemask = 0; |
72 | cur->bc_rec.i.ir_count = 0; | |
21875505 CH |
73 | cur->bc_rec.i.ir_freecount = 0; |
74 | cur->bc_rec.i.ir_free = 0; | |
75 | return xfs_btree_lookup(cur, dir, stat); | |
fe033cc8 CH |
76 | } |
77 | ||
278d0ca1 | 78 | /* |
afabc24a | 79 | * Update the record referred to by cur to the value given. |
278d0ca1 CH |
80 | * This either works (return 0) or gets an EFSCORRUPTED error. |
81 | */ | |
82 | STATIC int /* error */ | |
83 | xfs_inobt_update( | |
84 | struct xfs_btree_cur *cur, /* btree cursor */ | |
afabc24a | 85 | xfs_inobt_rec_incore_t *irec) /* btree record */ |
278d0ca1 CH |
86 | { |
87 | union xfs_btree_rec rec; | |
88 | ||
afabc24a | 89 | rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino); |
5419040f BF |
90 | if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { |
91 | rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask); | |
92 | rec.inobt.ir_u.sp.ir_count = irec->ir_count; | |
93 | rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount; | |
94 | } else { | |
95 | /* ir_holemask/ir_count not supported on-disk */ | |
96 | rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount); | |
97 | } | |
afabc24a | 98 | rec.inobt.ir_free = cpu_to_be64(irec->ir_free); |
278d0ca1 CH |
99 | return xfs_btree_update(cur, &rec); |
100 | } | |
101 | ||
8cc938fe CH |
102 | /* |
103 | * Get the data from the pointed-to record. | |
104 | */ | |
105 | int /* error */ | |
106 | xfs_inobt_get_rec( | |
107 | struct xfs_btree_cur *cur, /* btree cursor */ | |
2e287a73 | 108 | xfs_inobt_rec_incore_t *irec, /* btree record */ |
8cc938fe CH |
109 | int *stat) /* output: success/failure */ |
110 | { | |
111 | union xfs_btree_rec *rec; | |
112 | int error; | |
113 | ||
114 | error = xfs_btree_get_rec(cur, &rec, stat); | |
5419040f BF |
115 | if (error || *stat == 0) |
116 | return error; | |
117 | ||
118 | irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino); | |
119 | if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) { | |
120 | irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask); | |
121 | irec->ir_count = rec->inobt.ir_u.sp.ir_count; | |
122 | irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount; | |
123 | } else { | |
124 | /* | |
125 | * ir_holemask/ir_count not supported on-disk. Fill in hardcoded | |
126 | * values for full inode chunks. | |
127 | */ | |
128 | irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL; | |
129 | irec->ir_count = XFS_INODES_PER_CHUNK; | |
130 | irec->ir_freecount = | |
131 | be32_to_cpu(rec->inobt.ir_u.f.ir_freecount); | |
8cc938fe | 132 | } |
5419040f BF |
133 | irec->ir_free = be64_to_cpu(rec->inobt.ir_free); |
134 | ||
135 | return 0; | |
8cc938fe CH |
136 | } |
137 | ||
0aa0a756 BF |
138 | /* |
139 | * Insert a single inobt record. Cursor must already point to desired location. | |
140 | */ | |
141 | STATIC int | |
142 | xfs_inobt_insert_rec( | |
143 | struct xfs_btree_cur *cur, | |
5419040f BF |
144 | __uint16_t holemask, |
145 | __uint8_t count, | |
0aa0a756 BF |
146 | __int32_t freecount, |
147 | xfs_inofree_t free, | |
148 | int *stat) | |
149 | { | |
5419040f BF |
150 | cur->bc_rec.i.ir_holemask = holemask; |
151 | cur->bc_rec.i.ir_count = count; | |
0aa0a756 BF |
152 | cur->bc_rec.i.ir_freecount = freecount; |
153 | cur->bc_rec.i.ir_free = free; | |
154 | return xfs_btree_insert(cur, stat); | |
155 | } | |
156 | ||
157 | /* | |
158 | * Insert records describing a newly allocated inode chunk into the inobt. | |
159 | */ | |
160 | STATIC int | |
161 | xfs_inobt_insert( | |
162 | struct xfs_mount *mp, | |
163 | struct xfs_trans *tp, | |
164 | struct xfs_buf *agbp, | |
165 | xfs_agino_t newino, | |
166 | xfs_agino_t newlen, | |
167 | xfs_btnum_t btnum) | |
168 | { | |
169 | struct xfs_btree_cur *cur; | |
170 | struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); | |
171 | xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); | |
172 | xfs_agino_t thisino; | |
173 | int i; | |
174 | int error; | |
175 | ||
176 | cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); | |
177 | ||
178 | for (thisino = newino; | |
179 | thisino < newino + newlen; | |
180 | thisino += XFS_INODES_PER_CHUNK) { | |
181 | error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i); | |
182 | if (error) { | |
183 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
184 | return error; | |
185 | } | |
186 | ASSERT(i == 0); | |
187 | ||
5419040f BF |
188 | error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL, |
189 | XFS_INODES_PER_CHUNK, | |
190 | XFS_INODES_PER_CHUNK, | |
0aa0a756 BF |
191 | XFS_INOBT_ALL_FREE, &i); |
192 | if (error) { | |
193 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
194 | return error; | |
195 | } | |
196 | ASSERT(i == 1); | |
197 | } | |
198 | ||
199 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
200 | ||
201 | return 0; | |
202 | } | |
203 | ||
0b48db80 DC |
204 | /* |
205 | * Verify that the number of free inodes in the AGI is correct. | |
206 | */ | |
207 | #ifdef DEBUG | |
208 | STATIC int | |
209 | xfs_check_agi_freecount( | |
210 | struct xfs_btree_cur *cur, | |
211 | struct xfs_agi *agi) | |
212 | { | |
213 | if (cur->bc_nlevels == 1) { | |
214 | xfs_inobt_rec_incore_t rec; | |
215 | int freecount = 0; | |
216 | int error; | |
217 | int i; | |
218 | ||
21875505 | 219 | error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); |
0b48db80 DC |
220 | if (error) |
221 | return error; | |
222 | ||
223 | do { | |
224 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
225 | if (error) | |
226 | return error; | |
227 | ||
228 | if (i) { | |
229 | freecount += rec.ir_freecount; | |
230 | error = xfs_btree_increment(cur, 0, &i); | |
231 | if (error) | |
232 | return error; | |
233 | } | |
234 | } while (i == 1); | |
235 | ||
236 | if (!XFS_FORCED_SHUTDOWN(cur->bc_mp)) | |
237 | ASSERT(freecount == be32_to_cpu(agi->agi_freecount)); | |
238 | } | |
239 | return 0; | |
240 | } | |
241 | #else | |
242 | #define xfs_check_agi_freecount(cur, agi) 0 | |
243 | #endif | |
244 | ||
85c0b2ab | 245 | /* |
28c8e41a DC |
246 | * Initialise a new set of inodes. When called without a transaction context |
247 | * (e.g. from recovery) we initiate a delayed write of the inode buffers rather | |
248 | * than logging them (which in a transaction context puts them into the AIL | |
249 | * for writeback rather than the xfsbufd queue). | |
85c0b2ab | 250 | */ |
ddf6ad01 | 251 | int |
85c0b2ab DC |
252 | xfs_ialloc_inode_init( |
253 | struct xfs_mount *mp, | |
254 | struct xfs_trans *tp, | |
28c8e41a | 255 | struct list_head *buffer_list, |
463958af | 256 | int icount, |
85c0b2ab DC |
257 | xfs_agnumber_t agno, |
258 | xfs_agblock_t agbno, | |
259 | xfs_agblock_t length, | |
260 | unsigned int gen) | |
261 | { | |
262 | struct xfs_buf *fbuf; | |
263 | struct xfs_dinode *free; | |
6e0c7b8c | 264 | int nbufs, blks_per_cluster, inodes_per_cluster; |
85c0b2ab DC |
265 | int version; |
266 | int i, j; | |
267 | xfs_daddr_t d; | |
93848a99 | 268 | xfs_ino_t ino = 0; |
85c0b2ab DC |
269 | |
270 | /* | |
6e0c7b8c JL |
271 | * Loop over the new block(s), filling in the inodes. For small block |
272 | * sizes, manipulate the inodes in buffers which are multiples of the | |
273 | * blocks size. | |
85c0b2ab | 274 | */ |
6e0c7b8c JL |
275 | blks_per_cluster = xfs_icluster_size_fsb(mp); |
276 | inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog; | |
277 | nbufs = length / blks_per_cluster; | |
85c0b2ab DC |
278 | |
279 | /* | |
93848a99 CH |
280 | * Figure out what version number to use in the inodes we create. If |
281 | * the superblock version has caught up to the one that supports the new | |
282 | * inode format, then use the new inode version. Otherwise use the old | |
283 | * version so that old kernels will continue to be able to use the file | |
284 | * system. | |
285 | * | |
286 | * For v3 inodes, we also need to write the inode number into the inode, | |
287 | * so calculate the first inode number of the chunk here as | |
288 | * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not | |
289 | * across multiple filesystem blocks (such as a cluster) and so cannot | |
290 | * be used in the cluster buffer loop below. | |
291 | * | |
292 | * Further, because we are writing the inode directly into the buffer | |
293 | * and calculating a CRC on the entire inode, we have ot log the entire | |
294 | * inode so that the entire range the CRC covers is present in the log. | |
295 | * That means for v3 inode we log the entire buffer rather than just the | |
296 | * inode cores. | |
85c0b2ab | 297 | */ |
93848a99 CH |
298 | if (xfs_sb_version_hascrc(&mp->m_sb)) { |
299 | version = 3; | |
300 | ino = XFS_AGINO_TO_INO(mp, agno, | |
301 | XFS_OFFBNO_TO_AGINO(mp, agbno, 0)); | |
ddf6ad01 DC |
302 | |
303 | /* | |
304 | * log the initialisation that is about to take place as an | |
305 | * logical operation. This means the transaction does not | |
306 | * need to log the physical changes to the inode buffers as log | |
307 | * recovery will know what initialisation is actually needed. | |
308 | * Hence we only need to log the buffers as "ordered" buffers so | |
309 | * they track in the AIL as if they were physically logged. | |
310 | */ | |
311 | if (tp) | |
463958af | 312 | xfs_icreate_log(tp, agno, agbno, icount, |
ddf6ad01 | 313 | mp->m_sb.sb_inodesize, length, gen); |
263997a6 | 314 | } else |
85c0b2ab | 315 | version = 2; |
85c0b2ab DC |
316 | |
317 | for (j = 0; j < nbufs; j++) { | |
318 | /* | |
319 | * Get the block. | |
320 | */ | |
321 | d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster)); | |
322 | fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d, | |
7c4cebe8 DC |
323 | mp->m_bsize * blks_per_cluster, |
324 | XBF_UNMAPPED); | |
2a30f36d | 325 | if (!fbuf) |
2451337d | 326 | return -ENOMEM; |
ddf6ad01 DC |
327 | |
328 | /* Initialize the inode buffers and log them appropriately. */ | |
1813dd64 | 329 | fbuf->b_ops = &xfs_inode_buf_ops; |
93848a99 | 330 | xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length)); |
6e0c7b8c | 331 | for (i = 0; i < inodes_per_cluster; i++) { |
85c0b2ab | 332 | int ioffset = i << mp->m_sb.sb_inodelog; |
93848a99 | 333 | uint isize = xfs_dinode_size(version); |
85c0b2ab DC |
334 | |
335 | free = xfs_make_iptr(mp, fbuf, i); | |
336 | free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC); | |
337 | free->di_version = version; | |
338 | free->di_gen = cpu_to_be32(gen); | |
339 | free->di_next_unlinked = cpu_to_be32(NULLAGINO); | |
93848a99 CH |
340 | |
341 | if (version == 3) { | |
342 | free->di_ino = cpu_to_be64(ino); | |
343 | ino++; | |
ce748eaa ES |
344 | uuid_copy(&free->di_uuid, |
345 | &mp->m_sb.sb_meta_uuid); | |
93848a99 | 346 | xfs_dinode_calc_crc(mp, free); |
28c8e41a | 347 | } else if (tp) { |
93848a99 CH |
348 | /* just log the inode core */ |
349 | xfs_trans_log_buf(tp, fbuf, ioffset, | |
350 | ioffset + isize - 1); | |
351 | } | |
352 | } | |
28c8e41a DC |
353 | |
354 | if (tp) { | |
355 | /* | |
356 | * Mark the buffer as an inode allocation buffer so it | |
357 | * sticks in AIL at the point of this allocation | |
358 | * transaction. This ensures the they are on disk before | |
359 | * the tail of the log can be moved past this | |
360 | * transaction (i.e. by preventing relogging from moving | |
361 | * it forward in the log). | |
362 | */ | |
363 | xfs_trans_inode_alloc_buf(tp, fbuf); | |
364 | if (version == 3) { | |
ddf6ad01 DC |
365 | /* |
366 | * Mark the buffer as ordered so that they are | |
367 | * not physically logged in the transaction but | |
368 | * still tracked in the AIL as part of the | |
369 | * transaction and pin the log appropriately. | |
370 | */ | |
371 | xfs_trans_ordered_buf(tp, fbuf); | |
28c8e41a DC |
372 | xfs_trans_log_buf(tp, fbuf, 0, |
373 | BBTOB(fbuf->b_length) - 1); | |
374 | } | |
375 | } else { | |
376 | fbuf->b_flags |= XBF_DONE; | |
377 | xfs_buf_delwri_queue(fbuf, buffer_list); | |
378 | xfs_buf_relse(fbuf); | |
85c0b2ab | 379 | } |
85c0b2ab | 380 | } |
2a30f36d | 381 | return 0; |
85c0b2ab DC |
382 | } |
383 | ||
56d1115c BF |
384 | /* |
385 | * Align startino and allocmask for a recently allocated sparse chunk such that | |
386 | * they are fit for insertion (or merge) into the on-disk inode btrees. | |
387 | * | |
388 | * Background: | |
389 | * | |
390 | * When enabled, sparse inode support increases the inode alignment from cluster | |
391 | * size to inode chunk size. This means that the minimum range between two | |
392 | * non-adjacent inode records in the inobt is large enough for a full inode | |
393 | * record. This allows for cluster sized, cluster aligned block allocation | |
394 | * without need to worry about whether the resulting inode record overlaps with | |
395 | * another record in the tree. Without this basic rule, we would have to deal | |
396 | * with the consequences of overlap by potentially undoing recent allocations in | |
397 | * the inode allocation codepath. | |
398 | * | |
399 | * Because of this alignment rule (which is enforced on mount), there are two | |
400 | * inobt possibilities for newly allocated sparse chunks. One is that the | |
401 | * aligned inode record for the chunk covers a range of inodes not already | |
402 | * covered in the inobt (i.e., it is safe to insert a new sparse record). The | |
403 | * other is that a record already exists at the aligned startino that considers | |
404 | * the newly allocated range as sparse. In the latter case, record content is | |
405 | * merged in hope that sparse inode chunks fill to full chunks over time. | |
406 | */ | |
407 | STATIC void | |
408 | xfs_align_sparse_ino( | |
409 | struct xfs_mount *mp, | |
410 | xfs_agino_t *startino, | |
411 | uint16_t *allocmask) | |
412 | { | |
413 | xfs_agblock_t agbno; | |
414 | xfs_agblock_t mod; | |
415 | int offset; | |
416 | ||
417 | agbno = XFS_AGINO_TO_AGBNO(mp, *startino); | |
418 | mod = agbno % mp->m_sb.sb_inoalignmt; | |
419 | if (!mod) | |
420 | return; | |
421 | ||
422 | /* calculate the inode offset and align startino */ | |
423 | offset = mod << mp->m_sb.sb_inopblog; | |
424 | *startino -= offset; | |
425 | ||
426 | /* | |
427 | * Since startino has been aligned down, left shift allocmask such that | |
428 | * it continues to represent the same physical inodes relative to the | |
429 | * new startino. | |
430 | */ | |
431 | *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT; | |
432 | } | |
433 | ||
434 | /* | |
435 | * Determine whether the source inode record can merge into the target. Both | |
436 | * records must be sparse, the inode ranges must match and there must be no | |
437 | * allocation overlap between the records. | |
438 | */ | |
439 | STATIC bool | |
440 | __xfs_inobt_can_merge( | |
441 | struct xfs_inobt_rec_incore *trec, /* tgt record */ | |
442 | struct xfs_inobt_rec_incore *srec) /* src record */ | |
443 | { | |
444 | uint64_t talloc; | |
445 | uint64_t salloc; | |
446 | ||
447 | /* records must cover the same inode range */ | |
448 | if (trec->ir_startino != srec->ir_startino) | |
449 | return false; | |
450 | ||
451 | /* both records must be sparse */ | |
452 | if (!xfs_inobt_issparse(trec->ir_holemask) || | |
453 | !xfs_inobt_issparse(srec->ir_holemask)) | |
454 | return false; | |
455 | ||
456 | /* both records must track some inodes */ | |
457 | if (!trec->ir_count || !srec->ir_count) | |
458 | return false; | |
459 | ||
460 | /* can't exceed capacity of a full record */ | |
461 | if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK) | |
462 | return false; | |
463 | ||
464 | /* verify there is no allocation overlap */ | |
465 | talloc = xfs_inobt_irec_to_allocmask(trec); | |
466 | salloc = xfs_inobt_irec_to_allocmask(srec); | |
467 | if (talloc & salloc) | |
468 | return false; | |
469 | ||
470 | return true; | |
471 | } | |
472 | ||
473 | /* | |
474 | * Merge the source inode record into the target. The caller must call | |
475 | * __xfs_inobt_can_merge() to ensure the merge is valid. | |
476 | */ | |
477 | STATIC void | |
478 | __xfs_inobt_rec_merge( | |
479 | struct xfs_inobt_rec_incore *trec, /* target */ | |
480 | struct xfs_inobt_rec_incore *srec) /* src */ | |
481 | { | |
482 | ASSERT(trec->ir_startino == srec->ir_startino); | |
483 | ||
484 | /* combine the counts */ | |
485 | trec->ir_count += srec->ir_count; | |
486 | trec->ir_freecount += srec->ir_freecount; | |
487 | ||
488 | /* | |
489 | * Merge the holemask and free mask. For both fields, 0 bits refer to | |
490 | * allocated inodes. We combine the allocated ranges with bitwise AND. | |
491 | */ | |
492 | trec->ir_holemask &= srec->ir_holemask; | |
493 | trec->ir_free &= srec->ir_free; | |
494 | } | |
495 | ||
496 | /* | |
497 | * Insert a new sparse inode chunk into the associated inode btree. The inode | |
498 | * record for the sparse chunk is pre-aligned to a startino that should match | |
499 | * any pre-existing sparse inode record in the tree. This allows sparse chunks | |
500 | * to fill over time. | |
501 | * | |
502 | * This function supports two modes of handling preexisting records depending on | |
503 | * the merge flag. If merge is true, the provided record is merged with the | |
504 | * existing record and updated in place. The merged record is returned in nrec. | |
505 | * If merge is false, an existing record is replaced with the provided record. | |
506 | * If no preexisting record exists, the provided record is always inserted. | |
507 | * | |
508 | * It is considered corruption if a merge is requested and not possible. Given | |
509 | * the sparse inode alignment constraints, this should never happen. | |
510 | */ | |
511 | STATIC int | |
512 | xfs_inobt_insert_sprec( | |
513 | struct xfs_mount *mp, | |
514 | struct xfs_trans *tp, | |
515 | struct xfs_buf *agbp, | |
516 | int btnum, | |
517 | struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */ | |
518 | bool merge) /* merge or replace */ | |
519 | { | |
520 | struct xfs_btree_cur *cur; | |
521 | struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); | |
522 | xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); | |
523 | int error; | |
524 | int i; | |
525 | struct xfs_inobt_rec_incore rec; | |
526 | ||
527 | cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum); | |
528 | ||
529 | /* the new record is pre-aligned so we know where to look */ | |
530 | error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i); | |
531 | if (error) | |
532 | goto error; | |
533 | /* if nothing there, insert a new record and return */ | |
534 | if (i == 0) { | |
535 | error = xfs_inobt_insert_rec(cur, nrec->ir_holemask, | |
536 | nrec->ir_count, nrec->ir_freecount, | |
537 | nrec->ir_free, &i); | |
538 | if (error) | |
539 | goto error; | |
540 | XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); | |
541 | ||
542 | goto out; | |
543 | } | |
544 | ||
545 | /* | |
546 | * A record exists at this startino. Merge or replace the record | |
547 | * depending on what we've been asked to do. | |
548 | */ | |
549 | if (merge) { | |
550 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
551 | if (error) | |
552 | goto error; | |
553 | XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); | |
554 | XFS_WANT_CORRUPTED_GOTO(mp, | |
555 | rec.ir_startino == nrec->ir_startino, | |
556 | error); | |
557 | ||
558 | /* | |
559 | * This should never fail. If we have coexisting records that | |
560 | * cannot merge, something is seriously wrong. | |
561 | */ | |
562 | XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec), | |
563 | error); | |
564 | ||
565 | trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino, | |
566 | rec.ir_holemask, nrec->ir_startino, | |
567 | nrec->ir_holemask); | |
568 | ||
569 | /* merge to nrec to output the updated record */ | |
570 | __xfs_inobt_rec_merge(nrec, &rec); | |
571 | ||
572 | trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino, | |
573 | nrec->ir_holemask); | |
574 | ||
575 | error = xfs_inobt_rec_check_count(mp, nrec); | |
576 | if (error) | |
577 | goto error; | |
578 | } | |
579 | ||
580 | error = xfs_inobt_update(cur, nrec); | |
581 | if (error) | |
582 | goto error; | |
583 | ||
584 | out: | |
585 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
586 | return 0; | |
587 | error: | |
588 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
589 | return error; | |
590 | } | |
591 | ||
1da177e4 LT |
592 | /* |
593 | * Allocate new inodes in the allocation group specified by agbp. | |
594 | * Return 0 for success, else error code. | |
595 | */ | |
596 | STATIC int /* error code or 0 */ | |
597 | xfs_ialloc_ag_alloc( | |
598 | xfs_trans_t *tp, /* transaction pointer */ | |
599 | xfs_buf_t *agbp, /* alloc group buffer */ | |
600 | int *alloc) | |
601 | { | |
602 | xfs_agi_t *agi; /* allocation group header */ | |
603 | xfs_alloc_arg_t args; /* allocation argument structure */ | |
92821e2b | 604 | xfs_agnumber_t agno; |
1da177e4 | 605 | int error; |
1da177e4 LT |
606 | xfs_agino_t newino; /* new first inode's number */ |
607 | xfs_agino_t newlen; /* new number of inodes */ | |
3ccb8b5f | 608 | int isaligned = 0; /* inode allocation at stripe unit */ |
1da177e4 | 609 | /* boundary */ |
56d1115c BF |
610 | uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */ |
611 | struct xfs_inobt_rec_incore rec; | |
44b56e0a | 612 | struct xfs_perag *pag; |
1cdadee1 BF |
613 | int do_sparse = 0; |
614 | ||
a0041684 | 615 | memset(&args, 0, sizeof(args)); |
1da177e4 LT |
616 | args.tp = tp; |
617 | args.mp = tp->t_mountp; | |
1cdadee1 | 618 | args.fsbno = NULLFSBLOCK; |
340785cc | 619 | xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES); |
1da177e4 | 620 | |
46fc58da BF |
621 | #ifdef DEBUG |
622 | /* randomly do sparse inode allocations */ | |
623 | if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) && | |
624 | args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks) | |
625 | do_sparse = prandom_u32() & 1; | |
626 | #endif | |
627 | ||
1da177e4 LT |
628 | /* |
629 | * Locking will ensure that we don't have two callers in here | |
630 | * at one time. | |
631 | */ | |
71783438 | 632 | newlen = args.mp->m_ialloc_inos; |
1da177e4 | 633 | if (args.mp->m_maxicount && |
74f9ce1c | 634 | percpu_counter_read_positive(&args.mp->m_icount) + newlen > |
501ab323 | 635 | args.mp->m_maxicount) |
2451337d | 636 | return -ENOSPC; |
126cd105 | 637 | args.minlen = args.maxlen = args.mp->m_ialloc_blks; |
1da177e4 | 638 | /* |
3ccb8b5f GO |
639 | * First try to allocate inodes contiguous with the last-allocated |
640 | * chunk of inodes. If the filesystem is striped, this will fill | |
641 | * an entire stripe unit with inodes. | |
28c8e41a | 642 | */ |
1da177e4 | 643 | agi = XFS_BUF_TO_AGI(agbp); |
3ccb8b5f | 644 | newino = be32_to_cpu(agi->agi_newino); |
85c0b2ab | 645 | agno = be32_to_cpu(agi->agi_seqno); |
019ff2d5 | 646 | args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) + |
126cd105 | 647 | args.mp->m_ialloc_blks; |
1cdadee1 BF |
648 | if (do_sparse) |
649 | goto sparse_alloc; | |
019ff2d5 NS |
650 | if (likely(newino != NULLAGINO && |
651 | (args.agbno < be32_to_cpu(agi->agi_length)))) { | |
85c0b2ab | 652 | args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); |
3ccb8b5f | 653 | args.type = XFS_ALLOCTYPE_THIS_BNO; |
3ccb8b5f | 654 | args.prod = 1; |
75de2a91 | 655 | |
3ccb8b5f | 656 | /* |
75de2a91 DC |
657 | * We need to take into account alignment here to ensure that |
658 | * we don't modify the free list if we fail to have an exact | |
659 | * block. If we don't have an exact match, and every oher | |
660 | * attempt allocation attempt fails, we'll end up cancelling | |
661 | * a dirty transaction and shutting down. | |
662 | * | |
663 | * For an exact allocation, alignment must be 1, | |
664 | * however we need to take cluster alignment into account when | |
665 | * fixing up the freelist. Use the minalignslop field to | |
666 | * indicate that extra blocks might be required for alignment, | |
667 | * but not to use them in the actual exact allocation. | |
3ccb8b5f | 668 | */ |
75de2a91 | 669 | args.alignment = 1; |
7a1df156 | 670 | args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1; |
75de2a91 DC |
671 | |
672 | /* Allow space for the inode btree to split. */ | |
0d87e656 | 673 | args.minleft = args.mp->m_in_maxlevels - 1; |
3ccb8b5f GO |
674 | if ((error = xfs_alloc_vextent(&args))) |
675 | return error; | |
e480a723 BF |
676 | |
677 | /* | |
678 | * This request might have dirtied the transaction if the AG can | |
679 | * satisfy the request, but the exact block was not available. | |
680 | * If the allocation did fail, subsequent requests will relax | |
681 | * the exact agbno requirement and increase the alignment | |
682 | * instead. It is critical that the total size of the request | |
683 | * (len + alignment + slop) does not increase from this point | |
684 | * on, so reset minalignslop to ensure it is not included in | |
685 | * subsequent requests. | |
686 | */ | |
687 | args.minalignslop = 0; | |
1cdadee1 | 688 | } |
1da177e4 | 689 | |
3ccb8b5f GO |
690 | if (unlikely(args.fsbno == NULLFSBLOCK)) { |
691 | /* | |
692 | * Set the alignment for the allocation. | |
693 | * If stripe alignment is turned on then align at stripe unit | |
694 | * boundary. | |
019ff2d5 NS |
695 | * If the cluster size is smaller than a filesystem block |
696 | * then we're doing I/O for inodes in filesystem block size | |
3ccb8b5f GO |
697 | * pieces, so don't need alignment anyway. |
698 | */ | |
699 | isaligned = 0; | |
700 | if (args.mp->m_sinoalign) { | |
701 | ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN)); | |
702 | args.alignment = args.mp->m_dalign; | |
703 | isaligned = 1; | |
75de2a91 | 704 | } else |
7a1df156 | 705 | args.alignment = xfs_ialloc_cluster_alignment(args.mp); |
3ccb8b5f GO |
706 | /* |
707 | * Need to figure out where to allocate the inode blocks. | |
708 | * Ideally they should be spaced out through the a.g. | |
709 | * For now, just allocate blocks up front. | |
710 | */ | |
711 | args.agbno = be32_to_cpu(agi->agi_root); | |
85c0b2ab | 712 | args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); |
3ccb8b5f GO |
713 | /* |
714 | * Allocate a fixed-size extent of inodes. | |
715 | */ | |
716 | args.type = XFS_ALLOCTYPE_NEAR_BNO; | |
3ccb8b5f GO |
717 | args.prod = 1; |
718 | /* | |
719 | * Allow space for the inode btree to split. | |
720 | */ | |
0d87e656 | 721 | args.minleft = args.mp->m_in_maxlevels - 1; |
3ccb8b5f GO |
722 | if ((error = xfs_alloc_vextent(&args))) |
723 | return error; | |
724 | } | |
019ff2d5 | 725 | |
1da177e4 LT |
726 | /* |
727 | * If stripe alignment is turned on, then try again with cluster | |
728 | * alignment. | |
729 | */ | |
730 | if (isaligned && args.fsbno == NULLFSBLOCK) { | |
731 | args.type = XFS_ALLOCTYPE_NEAR_BNO; | |
16259e7d | 732 | args.agbno = be32_to_cpu(agi->agi_root); |
85c0b2ab | 733 | args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); |
7a1df156 | 734 | args.alignment = xfs_ialloc_cluster_alignment(args.mp); |
1da177e4 LT |
735 | if ((error = xfs_alloc_vextent(&args))) |
736 | return error; | |
737 | } | |
738 | ||
56d1115c BF |
739 | /* |
740 | * Finally, try a sparse allocation if the filesystem supports it and | |
741 | * the sparse allocation length is smaller than a full chunk. | |
742 | */ | |
743 | if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) && | |
744 | args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks && | |
745 | args.fsbno == NULLFSBLOCK) { | |
1cdadee1 | 746 | sparse_alloc: |
56d1115c BF |
747 | args.type = XFS_ALLOCTYPE_NEAR_BNO; |
748 | args.agbno = be32_to_cpu(agi->agi_root); | |
749 | args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno); | |
750 | args.alignment = args.mp->m_sb.sb_spino_align; | |
751 | args.prod = 1; | |
752 | ||
753 | args.minlen = args.mp->m_ialloc_min_blks; | |
754 | args.maxlen = args.minlen; | |
755 | ||
756 | /* | |
757 | * The inode record will be aligned to full chunk size. We must | |
758 | * prevent sparse allocation from AG boundaries that result in | |
759 | * invalid inode records, such as records that start at agbno 0 | |
760 | * or extend beyond the AG. | |
761 | * | |
762 | * Set min agbno to the first aligned, non-zero agbno and max to | |
763 | * the last aligned agbno that is at least one full chunk from | |
764 | * the end of the AG. | |
765 | */ | |
766 | args.min_agbno = args.mp->m_sb.sb_inoalignmt; | |
767 | args.max_agbno = round_down(args.mp->m_sb.sb_agblocks, | |
768 | args.mp->m_sb.sb_inoalignmt) - | |
769 | args.mp->m_ialloc_blks; | |
770 | ||
771 | error = xfs_alloc_vextent(&args); | |
772 | if (error) | |
773 | return error; | |
774 | ||
775 | newlen = args.len << args.mp->m_sb.sb_inopblog; | |
46fc58da | 776 | ASSERT(newlen <= XFS_INODES_PER_CHUNK); |
56d1115c BF |
777 | allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1; |
778 | } | |
779 | ||
1da177e4 LT |
780 | if (args.fsbno == NULLFSBLOCK) { |
781 | *alloc = 0; | |
782 | return 0; | |
783 | } | |
784 | ASSERT(args.len == args.minlen); | |
1da177e4 | 785 | |
359346a9 | 786 | /* |
85c0b2ab DC |
787 | * Stamp and write the inode buffers. |
788 | * | |
359346a9 DC |
789 | * Seed the new inode cluster with a random generation number. This |
790 | * prevents short-term reuse of generation numbers if a chunk is | |
791 | * freed and then immediately reallocated. We use random numbers | |
792 | * rather than a linear progression to prevent the next generation | |
793 | * number from being easily guessable. | |
794 | */ | |
463958af BF |
795 | error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno, |
796 | args.agbno, args.len, prandom_u32()); | |
d42f08f6 | 797 | |
2a30f36d CS |
798 | if (error) |
799 | return error; | |
85c0b2ab DC |
800 | /* |
801 | * Convert the results. | |
802 | */ | |
803 | newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0); | |
56d1115c BF |
804 | |
805 | if (xfs_inobt_issparse(~allocmask)) { | |
806 | /* | |
807 | * We've allocated a sparse chunk. Align the startino and mask. | |
808 | */ | |
809 | xfs_align_sparse_ino(args.mp, &newino, &allocmask); | |
810 | ||
811 | rec.ir_startino = newino; | |
812 | rec.ir_holemask = ~allocmask; | |
813 | rec.ir_count = newlen; | |
814 | rec.ir_freecount = newlen; | |
815 | rec.ir_free = XFS_INOBT_ALL_FREE; | |
816 | ||
817 | /* | |
818 | * Insert the sparse record into the inobt and allow for a merge | |
819 | * if necessary. If a merge does occur, rec is updated to the | |
820 | * merged record. | |
821 | */ | |
822 | error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO, | |
823 | &rec, true); | |
824 | if (error == -EFSCORRUPTED) { | |
825 | xfs_alert(args.mp, | |
826 | "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u", | |
827 | XFS_AGINO_TO_INO(args.mp, agno, | |
828 | rec.ir_startino), | |
829 | rec.ir_holemask, rec.ir_count); | |
830 | xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE); | |
831 | } | |
832 | if (error) | |
833 | return error; | |
834 | ||
835 | /* | |
836 | * We can't merge the part we've just allocated as for the inobt | |
837 | * due to finobt semantics. The original record may or may not | |
838 | * exist independent of whether physical inodes exist in this | |
839 | * sparse chunk. | |
840 | * | |
841 | * We must update the finobt record based on the inobt record. | |
842 | * rec contains the fully merged and up to date inobt record | |
843 | * from the previous call. Set merge false to replace any | |
844 | * existing record with this one. | |
845 | */ | |
846 | if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { | |
847 | error = xfs_inobt_insert_sprec(args.mp, tp, agbp, | |
848 | XFS_BTNUM_FINO, &rec, | |
849 | false); | |
850 | if (error) | |
851 | return error; | |
852 | } | |
853 | } else { | |
854 | /* full chunk - insert new records to both btrees */ | |
855 | error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen, | |
856 | XFS_BTNUM_INO); | |
857 | if (error) | |
858 | return error; | |
859 | ||
860 | if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) { | |
861 | error = xfs_inobt_insert(args.mp, tp, agbp, newino, | |
862 | newlen, XFS_BTNUM_FINO); | |
863 | if (error) | |
864 | return error; | |
865 | } | |
866 | } | |
867 | ||
868 | /* | |
869 | * Update AGI counts and newino. | |
870 | */ | |
413d57c9 MS |
871 | be32_add_cpu(&agi->agi_count, newlen); |
872 | be32_add_cpu(&agi->agi_freecount, newlen); | |
44b56e0a DC |
873 | pag = xfs_perag_get(args.mp, agno); |
874 | pag->pagi_freecount += newlen; | |
875 | xfs_perag_put(pag); | |
16259e7d | 876 | agi->agi_newino = cpu_to_be32(newino); |
85c0b2ab | 877 | |
1da177e4 LT |
878 | /* |
879 | * Log allocation group header fields | |
880 | */ | |
881 | xfs_ialloc_log_agi(tp, agbp, | |
882 | XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO); | |
883 | /* | |
884 | * Modify/log superblock values for inode count and inode free count. | |
885 | */ | |
886 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen); | |
887 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen); | |
888 | *alloc = 1; | |
889 | return 0; | |
890 | } | |
891 | ||
b8f82a4a | 892 | STATIC xfs_agnumber_t |
1da177e4 LT |
893 | xfs_ialloc_next_ag( |
894 | xfs_mount_t *mp) | |
895 | { | |
896 | xfs_agnumber_t agno; | |
897 | ||
898 | spin_lock(&mp->m_agirotor_lock); | |
899 | agno = mp->m_agirotor; | |
8aea3ff4 | 900 | if (++mp->m_agirotor >= mp->m_maxagi) |
1da177e4 LT |
901 | mp->m_agirotor = 0; |
902 | spin_unlock(&mp->m_agirotor_lock); | |
903 | ||
904 | return agno; | |
905 | } | |
906 | ||
907 | /* | |
908 | * Select an allocation group to look for a free inode in, based on the parent | |
2f21ff1c | 909 | * inode and the mode. Return the allocation group buffer. |
1da177e4 | 910 | */ |
55d6af64 | 911 | STATIC xfs_agnumber_t |
1da177e4 LT |
912 | xfs_ialloc_ag_select( |
913 | xfs_trans_t *tp, /* transaction pointer */ | |
914 | xfs_ino_t parent, /* parent directory inode number */ | |
576b1d67 | 915 | umode_t mode, /* bits set to indicate file type */ |
1da177e4 LT |
916 | int okalloc) /* ok to allocate more space */ |
917 | { | |
1da177e4 LT |
918 | xfs_agnumber_t agcount; /* number of ag's in the filesystem */ |
919 | xfs_agnumber_t agno; /* current ag number */ | |
920 | int flags; /* alloc buffer locking flags */ | |
921 | xfs_extlen_t ineed; /* blocks needed for inode allocation */ | |
922 | xfs_extlen_t longest = 0; /* longest extent available */ | |
923 | xfs_mount_t *mp; /* mount point structure */ | |
924 | int needspace; /* file mode implies space allocated */ | |
925 | xfs_perag_t *pag; /* per allocation group data */ | |
926 | xfs_agnumber_t pagno; /* parent (starting) ag number */ | |
55d6af64 | 927 | int error; |
1da177e4 LT |
928 | |
929 | /* | |
930 | * Files of these types need at least one block if length > 0 | |
931 | * (and they won't fit in the inode, but that's hard to figure out). | |
932 | */ | |
933 | needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode); | |
934 | mp = tp->t_mountp; | |
935 | agcount = mp->m_maxagi; | |
936 | if (S_ISDIR(mode)) | |
937 | pagno = xfs_ialloc_next_ag(mp); | |
938 | else { | |
939 | pagno = XFS_INO_TO_AGNO(mp, parent); | |
940 | if (pagno >= agcount) | |
941 | pagno = 0; | |
942 | } | |
55d6af64 | 943 | |
1da177e4 | 944 | ASSERT(pagno < agcount); |
55d6af64 | 945 | |
1da177e4 LT |
946 | /* |
947 | * Loop through allocation groups, looking for one with a little | |
948 | * free space in it. Note we don't look for free inodes, exactly. | |
949 | * Instead, we include whether there is a need to allocate inodes | |
950 | * to mean that blocks must be allocated for them, | |
951 | * if none are currently free. | |
952 | */ | |
953 | agno = pagno; | |
954 | flags = XFS_ALLOC_FLAG_TRYLOCK; | |
1da177e4 | 955 | for (;;) { |
44b56e0a | 956 | pag = xfs_perag_get(mp, agno); |
55d6af64 CH |
957 | if (!pag->pagi_inodeok) { |
958 | xfs_ialloc_next_ag(mp); | |
959 | goto nextag; | |
960 | } | |
961 | ||
1da177e4 | 962 | if (!pag->pagi_init) { |
55d6af64 CH |
963 | error = xfs_ialloc_pagi_init(mp, tp, agno); |
964 | if (error) | |
1da177e4 | 965 | goto nextag; |
55d6af64 | 966 | } |
1da177e4 | 967 | |
55d6af64 CH |
968 | if (pag->pagi_freecount) { |
969 | xfs_perag_put(pag); | |
970 | return agno; | |
1da177e4 LT |
971 | } |
972 | ||
55d6af64 CH |
973 | if (!okalloc) |
974 | goto nextag; | |
975 | ||
976 | if (!pag->pagf_init) { | |
977 | error = xfs_alloc_pagf_init(mp, tp, agno, flags); | |
978 | if (error) | |
1da177e4 | 979 | goto nextag; |
1da177e4 | 980 | } |
55d6af64 CH |
981 | |
982 | /* | |
7a1df156 DC |
983 | * Check that there is enough free space for the file plus a |
984 | * chunk of inodes if we need to allocate some. If this is the | |
985 | * first pass across the AGs, take into account the potential | |
986 | * space needed for alignment of inode chunks when checking the | |
987 | * longest contiguous free space in the AG - this prevents us | |
988 | * from getting ENOSPC because we have free space larger than | |
989 | * m_ialloc_blks but alignment constraints prevent us from using | |
990 | * it. | |
991 | * | |
992 | * If we can't find an AG with space for full alignment slack to | |
993 | * be taken into account, we must be near ENOSPC in all AGs. | |
994 | * Hence we don't include alignment for the second pass and so | |
995 | * if we fail allocation due to alignment issues then it is most | |
996 | * likely a real ENOSPC condition. | |
55d6af64 | 997 | */ |
066a1884 | 998 | ineed = mp->m_ialloc_min_blks; |
7a1df156 DC |
999 | if (flags && ineed > 1) |
1000 | ineed += xfs_ialloc_cluster_alignment(mp); | |
55d6af64 CH |
1001 | longest = pag->pagf_longest; |
1002 | if (!longest) | |
1003 | longest = pag->pagf_flcount > 0; | |
1004 | ||
1005 | if (pag->pagf_freeblks >= needspace + ineed && | |
1006 | longest >= ineed) { | |
1007 | xfs_perag_put(pag); | |
1008 | return agno; | |
1da177e4 | 1009 | } |
1da177e4 | 1010 | nextag: |
44b56e0a | 1011 | xfs_perag_put(pag); |
1da177e4 LT |
1012 | /* |
1013 | * No point in iterating over the rest, if we're shutting | |
1014 | * down. | |
1015 | */ | |
1c1c6ebc | 1016 | if (XFS_FORCED_SHUTDOWN(mp)) |
55d6af64 | 1017 | return NULLAGNUMBER; |
1da177e4 LT |
1018 | agno++; |
1019 | if (agno >= agcount) | |
1020 | agno = 0; | |
1021 | if (agno == pagno) { | |
1c1c6ebc | 1022 | if (flags == 0) |
55d6af64 | 1023 | return NULLAGNUMBER; |
1da177e4 LT |
1024 | flags = 0; |
1025 | } | |
1026 | } | |
1027 | } | |
1028 | ||
4254b0bb CH |
1029 | /* |
1030 | * Try to retrieve the next record to the left/right from the current one. | |
1031 | */ | |
1032 | STATIC int | |
1033 | xfs_ialloc_next_rec( | |
1034 | struct xfs_btree_cur *cur, | |
1035 | xfs_inobt_rec_incore_t *rec, | |
1036 | int *done, | |
1037 | int left) | |
1038 | { | |
1039 | int error; | |
1040 | int i; | |
1041 | ||
1042 | if (left) | |
1043 | error = xfs_btree_decrement(cur, 0, &i); | |
1044 | else | |
1045 | error = xfs_btree_increment(cur, 0, &i); | |
1046 | ||
1047 | if (error) | |
1048 | return error; | |
1049 | *done = !i; | |
1050 | if (i) { | |
1051 | error = xfs_inobt_get_rec(cur, rec, &i); | |
1052 | if (error) | |
1053 | return error; | |
5fb5aeee | 1054 | XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); |
4254b0bb CH |
1055 | } |
1056 | ||
1057 | return 0; | |
1058 | } | |
1059 | ||
bd169565 DC |
1060 | STATIC int |
1061 | xfs_ialloc_get_rec( | |
1062 | struct xfs_btree_cur *cur, | |
1063 | xfs_agino_t agino, | |
1064 | xfs_inobt_rec_incore_t *rec, | |
43df2ee6 | 1065 | int *done) |
bd169565 DC |
1066 | { |
1067 | int error; | |
1068 | int i; | |
1069 | ||
1070 | error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i); | |
1071 | if (error) | |
1072 | return error; | |
1073 | *done = !i; | |
1074 | if (i) { | |
1075 | error = xfs_inobt_get_rec(cur, rec, &i); | |
1076 | if (error) | |
1077 | return error; | |
5fb5aeee | 1078 | XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); |
bd169565 DC |
1079 | } |
1080 | ||
1081 | return 0; | |
1082 | } | |
0b48db80 | 1083 | |
d4cc540b | 1084 | /* |
26dd5217 BF |
1085 | * Return the offset of the first free inode in the record. If the inode chunk |
1086 | * is sparsely allocated, we convert the record holemask to inode granularity | |
1087 | * and mask off the unallocated regions from the inode free mask. | |
d4cc540b BF |
1088 | */ |
1089 | STATIC int | |
1090 | xfs_inobt_first_free_inode( | |
1091 | struct xfs_inobt_rec_incore *rec) | |
1092 | { | |
26dd5217 BF |
1093 | xfs_inofree_t realfree; |
1094 | ||
1095 | /* if there are no holes, return the first available offset */ | |
1096 | if (!xfs_inobt_issparse(rec->ir_holemask)) | |
1097 | return xfs_lowbit64(rec->ir_free); | |
1098 | ||
1099 | realfree = xfs_inobt_irec_to_allocmask(rec); | |
1100 | realfree &= rec->ir_free; | |
1101 | ||
1102 | return xfs_lowbit64(realfree); | |
d4cc540b BF |
1103 | } |
1104 | ||
1da177e4 | 1105 | /* |
6dd8638e | 1106 | * Allocate an inode using the inobt-only algorithm. |
1da177e4 | 1107 | */ |
f2ecc5e4 | 1108 | STATIC int |
6dd8638e | 1109 | xfs_dialloc_ag_inobt( |
f2ecc5e4 CH |
1110 | struct xfs_trans *tp, |
1111 | struct xfs_buf *agbp, | |
1112 | xfs_ino_t parent, | |
1113 | xfs_ino_t *inop) | |
1da177e4 | 1114 | { |
f2ecc5e4 CH |
1115 | struct xfs_mount *mp = tp->t_mountp; |
1116 | struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); | |
1117 | xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); | |
1118 | xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); | |
1119 | xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); | |
1120 | struct xfs_perag *pag; | |
1121 | struct xfs_btree_cur *cur, *tcur; | |
1122 | struct xfs_inobt_rec_incore rec, trec; | |
1123 | xfs_ino_t ino; | |
1124 | int error; | |
1125 | int offset; | |
1126 | int i, j; | |
1da177e4 | 1127 | |
44b56e0a | 1128 | pag = xfs_perag_get(mp, agno); |
bd169565 | 1129 | |
4bb61069 CH |
1130 | ASSERT(pag->pagi_init); |
1131 | ASSERT(pag->pagi_inodeok); | |
1132 | ASSERT(pag->pagi_freecount > 0); | |
1133 | ||
bd169565 | 1134 | restart_pagno: |
57bd3dbe | 1135 | cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); |
1da177e4 LT |
1136 | /* |
1137 | * If pagino is 0 (this is the root inode allocation) use newino. | |
1138 | * This must work because we've just allocated some. | |
1139 | */ | |
1140 | if (!pagino) | |
16259e7d | 1141 | pagino = be32_to_cpu(agi->agi_newino); |
1da177e4 | 1142 | |
0b48db80 DC |
1143 | error = xfs_check_agi_freecount(cur, agi); |
1144 | if (error) | |
1145 | goto error0; | |
1da177e4 | 1146 | |
1da177e4 | 1147 | /* |
4254b0bb | 1148 | * If in the same AG as the parent, try to get near the parent. |
1da177e4 LT |
1149 | */ |
1150 | if (pagno == agno) { | |
4254b0bb CH |
1151 | int doneleft; /* done, to the left */ |
1152 | int doneright; /* done, to the right */ | |
bd169565 | 1153 | int searchdistance = 10; |
4254b0bb | 1154 | |
21875505 | 1155 | error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i); |
4254b0bb | 1156 | if (error) |
1da177e4 | 1157 | goto error0; |
c29aad41 | 1158 | XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); |
4254b0bb CH |
1159 | |
1160 | error = xfs_inobt_get_rec(cur, &rec, &j); | |
1161 | if (error) | |
1162 | goto error0; | |
c29aad41 | 1163 | XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0); |
4254b0bb CH |
1164 | |
1165 | if (rec.ir_freecount > 0) { | |
1da177e4 LT |
1166 | /* |
1167 | * Found a free inode in the same chunk | |
4254b0bb | 1168 | * as the parent, done. |
1da177e4 | 1169 | */ |
4254b0bb | 1170 | goto alloc_inode; |
1da177e4 | 1171 | } |
4254b0bb CH |
1172 | |
1173 | ||
1da177e4 | 1174 | /* |
4254b0bb | 1175 | * In the same AG as parent, but parent's chunk is full. |
1da177e4 | 1176 | */ |
1da177e4 | 1177 | |
4254b0bb CH |
1178 | /* duplicate the cursor, search left & right simultaneously */ |
1179 | error = xfs_btree_dup_cursor(cur, &tcur); | |
1180 | if (error) | |
1181 | goto error0; | |
1182 | ||
bd169565 DC |
1183 | /* |
1184 | * Skip to last blocks looked up if same parent inode. | |
1185 | */ | |
1186 | if (pagino != NULLAGINO && | |
1187 | pag->pagl_pagino == pagino && | |
1188 | pag->pagl_leftrec != NULLAGINO && | |
1189 | pag->pagl_rightrec != NULLAGINO) { | |
1190 | error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec, | |
43df2ee6 | 1191 | &trec, &doneleft); |
bd169565 DC |
1192 | if (error) |
1193 | goto error1; | |
4254b0bb | 1194 | |
bd169565 | 1195 | error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec, |
43df2ee6 | 1196 | &rec, &doneright); |
bd169565 DC |
1197 | if (error) |
1198 | goto error1; | |
1199 | } else { | |
1200 | /* search left with tcur, back up 1 record */ | |
1201 | error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1); | |
1202 | if (error) | |
1203 | goto error1; | |
1204 | ||
1205 | /* search right with cur, go forward 1 record. */ | |
1206 | error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0); | |
1207 | if (error) | |
1208 | goto error1; | |
1209 | } | |
4254b0bb CH |
1210 | |
1211 | /* | |
1212 | * Loop until we find an inode chunk with a free inode. | |
1213 | */ | |
1214 | while (!doneleft || !doneright) { | |
1215 | int useleft; /* using left inode chunk this time */ | |
1216 | ||
bd169565 DC |
1217 | if (!--searchdistance) { |
1218 | /* | |
1219 | * Not in range - save last search | |
1220 | * location and allocate a new inode | |
1221 | */ | |
3b826386 | 1222 | xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); |
bd169565 DC |
1223 | pag->pagl_leftrec = trec.ir_startino; |
1224 | pag->pagl_rightrec = rec.ir_startino; | |
1225 | pag->pagl_pagino = pagino; | |
1226 | goto newino; | |
1227 | } | |
1228 | ||
4254b0bb CH |
1229 | /* figure out the closer block if both are valid. */ |
1230 | if (!doneleft && !doneright) { | |
1231 | useleft = pagino - | |
1232 | (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) < | |
1233 | rec.ir_startino - pagino; | |
1234 | } else { | |
1235 | useleft = !doneleft; | |
1da177e4 | 1236 | } |
4254b0bb CH |
1237 | |
1238 | /* free inodes to the left? */ | |
1239 | if (useleft && trec.ir_freecount) { | |
1240 | rec = trec; | |
1241 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
1242 | cur = tcur; | |
bd169565 DC |
1243 | |
1244 | pag->pagl_leftrec = trec.ir_startino; | |
1245 | pag->pagl_rightrec = rec.ir_startino; | |
1246 | pag->pagl_pagino = pagino; | |
4254b0bb | 1247 | goto alloc_inode; |
1da177e4 | 1248 | } |
1da177e4 | 1249 | |
4254b0bb CH |
1250 | /* free inodes to the right? */ |
1251 | if (!useleft && rec.ir_freecount) { | |
1252 | xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); | |
bd169565 DC |
1253 | |
1254 | pag->pagl_leftrec = trec.ir_startino; | |
1255 | pag->pagl_rightrec = rec.ir_startino; | |
1256 | pag->pagl_pagino = pagino; | |
4254b0bb | 1257 | goto alloc_inode; |
1da177e4 | 1258 | } |
4254b0bb CH |
1259 | |
1260 | /* get next record to check */ | |
1261 | if (useleft) { | |
1262 | error = xfs_ialloc_next_rec(tcur, &trec, | |
1263 | &doneleft, 1); | |
1264 | } else { | |
1265 | error = xfs_ialloc_next_rec(cur, &rec, | |
1266 | &doneright, 0); | |
1267 | } | |
1268 | if (error) | |
1269 | goto error1; | |
1da177e4 | 1270 | } |
bd169565 DC |
1271 | |
1272 | /* | |
1273 | * We've reached the end of the btree. because | |
1274 | * we are only searching a small chunk of the | |
1275 | * btree each search, there is obviously free | |
1276 | * inodes closer to the parent inode than we | |
1277 | * are now. restart the search again. | |
1278 | */ | |
1279 | pag->pagl_pagino = NULLAGINO; | |
1280 | pag->pagl_leftrec = NULLAGINO; | |
1281 | pag->pagl_rightrec = NULLAGINO; | |
1282 | xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); | |
1283 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
1284 | goto restart_pagno; | |
1da177e4 | 1285 | } |
4254b0bb | 1286 | |
1da177e4 | 1287 | /* |
4254b0bb | 1288 | * In a different AG from the parent. |
1da177e4 LT |
1289 | * See if the most recently allocated block has any free. |
1290 | */ | |
bd169565 | 1291 | newino: |
69ef921b | 1292 | if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { |
21875505 CH |
1293 | error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), |
1294 | XFS_LOOKUP_EQ, &i); | |
4254b0bb | 1295 | if (error) |
1da177e4 | 1296 | goto error0; |
4254b0bb CH |
1297 | |
1298 | if (i == 1) { | |
1299 | error = xfs_inobt_get_rec(cur, &rec, &j); | |
1300 | if (error) | |
1301 | goto error0; | |
1302 | ||
1303 | if (j == 1 && rec.ir_freecount > 0) { | |
1304 | /* | |
1305 | * The last chunk allocated in the group | |
1306 | * still has a free inode. | |
1307 | */ | |
1308 | goto alloc_inode; | |
1309 | } | |
1da177e4 | 1310 | } |
bd169565 | 1311 | } |
4254b0bb | 1312 | |
bd169565 DC |
1313 | /* |
1314 | * None left in the last group, search the whole AG | |
1315 | */ | |
1316 | error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); | |
1317 | if (error) | |
1318 | goto error0; | |
c29aad41 | 1319 | XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); |
bd169565 DC |
1320 | |
1321 | for (;;) { | |
1322 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
1323 | if (error) | |
1324 | goto error0; | |
c29aad41 | 1325 | XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); |
bd169565 DC |
1326 | if (rec.ir_freecount > 0) |
1327 | break; | |
1328 | error = xfs_btree_increment(cur, 0, &i); | |
4254b0bb CH |
1329 | if (error) |
1330 | goto error0; | |
c29aad41 | 1331 | XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); |
1da177e4 | 1332 | } |
4254b0bb CH |
1333 | |
1334 | alloc_inode: | |
d4cc540b | 1335 | offset = xfs_inobt_first_free_inode(&rec); |
1da177e4 LT |
1336 | ASSERT(offset >= 0); |
1337 | ASSERT(offset < XFS_INODES_PER_CHUNK); | |
1338 | ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % | |
1339 | XFS_INODES_PER_CHUNK) == 0); | |
1340 | ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); | |
0d87e656 | 1341 | rec.ir_free &= ~XFS_INOBT_MASK(offset); |
1da177e4 | 1342 | rec.ir_freecount--; |
afabc24a CH |
1343 | error = xfs_inobt_update(cur, &rec); |
1344 | if (error) | |
1da177e4 | 1345 | goto error0; |
413d57c9 | 1346 | be32_add_cpu(&agi->agi_freecount, -1); |
1da177e4 | 1347 | xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); |
44b56e0a | 1348 | pag->pagi_freecount--; |
1da177e4 | 1349 | |
0b48db80 DC |
1350 | error = xfs_check_agi_freecount(cur, agi); |
1351 | if (error) | |
1352 | goto error0; | |
1353 | ||
1da177e4 LT |
1354 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); |
1355 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); | |
44b56e0a | 1356 | xfs_perag_put(pag); |
1da177e4 LT |
1357 | *inop = ino; |
1358 | return 0; | |
1359 | error1: | |
1360 | xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); | |
1361 | error0: | |
1362 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
44b56e0a | 1363 | xfs_perag_put(pag); |
1da177e4 LT |
1364 | return error; |
1365 | } | |
1366 | ||
6dd8638e BF |
1367 | /* |
1368 | * Use the free inode btree to allocate an inode based on distance from the | |
1369 | * parent. Note that the provided cursor may be deleted and replaced. | |
1370 | */ | |
1371 | STATIC int | |
1372 | xfs_dialloc_ag_finobt_near( | |
1373 | xfs_agino_t pagino, | |
1374 | struct xfs_btree_cur **ocur, | |
1375 | struct xfs_inobt_rec_incore *rec) | |
1376 | { | |
1377 | struct xfs_btree_cur *lcur = *ocur; /* left search cursor */ | |
1378 | struct xfs_btree_cur *rcur; /* right search cursor */ | |
1379 | struct xfs_inobt_rec_incore rrec; | |
1380 | int error; | |
1381 | int i, j; | |
1382 | ||
1383 | error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i); | |
1384 | if (error) | |
1385 | return error; | |
1386 | ||
1387 | if (i == 1) { | |
1388 | error = xfs_inobt_get_rec(lcur, rec, &i); | |
1389 | if (error) | |
1390 | return error; | |
5fb5aeee | 1391 | XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1); |
6dd8638e BF |
1392 | |
1393 | /* | |
1394 | * See if we've landed in the parent inode record. The finobt | |
1395 | * only tracks chunks with at least one free inode, so record | |
1396 | * existence is enough. | |
1397 | */ | |
1398 | if (pagino >= rec->ir_startino && | |
1399 | pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK)) | |
1400 | return 0; | |
1401 | } | |
1402 | ||
1403 | error = xfs_btree_dup_cursor(lcur, &rcur); | |
1404 | if (error) | |
1405 | return error; | |
1406 | ||
1407 | error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j); | |
1408 | if (error) | |
1409 | goto error_rcur; | |
1410 | if (j == 1) { | |
1411 | error = xfs_inobt_get_rec(rcur, &rrec, &j); | |
1412 | if (error) | |
1413 | goto error_rcur; | |
c29aad41 | 1414 | XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur); |
6dd8638e BF |
1415 | } |
1416 | ||
c29aad41 | 1417 | XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur); |
6dd8638e BF |
1418 | if (i == 1 && j == 1) { |
1419 | /* | |
1420 | * Both the left and right records are valid. Choose the closer | |
1421 | * inode chunk to the target. | |
1422 | */ | |
1423 | if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) > | |
1424 | (rrec.ir_startino - pagino)) { | |
1425 | *rec = rrec; | |
1426 | xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); | |
1427 | *ocur = rcur; | |
1428 | } else { | |
1429 | xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); | |
1430 | } | |
1431 | } else if (j == 1) { | |
1432 | /* only the right record is valid */ | |
1433 | *rec = rrec; | |
1434 | xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR); | |
1435 | *ocur = rcur; | |
1436 | } else if (i == 1) { | |
1437 | /* only the left record is valid */ | |
1438 | xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR); | |
1439 | } | |
1440 | ||
1441 | return 0; | |
1442 | ||
1443 | error_rcur: | |
1444 | xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR); | |
1445 | return error; | |
1446 | } | |
1447 | ||
1448 | /* | |
1449 | * Use the free inode btree to find a free inode based on a newino hint. If | |
1450 | * the hint is NULL, find the first free inode in the AG. | |
1451 | */ | |
1452 | STATIC int | |
1453 | xfs_dialloc_ag_finobt_newino( | |
1454 | struct xfs_agi *agi, | |
1455 | struct xfs_btree_cur *cur, | |
1456 | struct xfs_inobt_rec_incore *rec) | |
1457 | { | |
1458 | int error; | |
1459 | int i; | |
1460 | ||
1461 | if (agi->agi_newino != cpu_to_be32(NULLAGINO)) { | |
e68ed775 DC |
1462 | error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino), |
1463 | XFS_LOOKUP_EQ, &i); | |
6dd8638e BF |
1464 | if (error) |
1465 | return error; | |
1466 | if (i == 1) { | |
1467 | error = xfs_inobt_get_rec(cur, rec, &i); | |
1468 | if (error) | |
1469 | return error; | |
5fb5aeee | 1470 | XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); |
6dd8638e BF |
1471 | return 0; |
1472 | } | |
1473 | } | |
1474 | ||
1475 | /* | |
1476 | * Find the first inode available in the AG. | |
1477 | */ | |
1478 | error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i); | |
1479 | if (error) | |
1480 | return error; | |
5fb5aeee | 1481 | XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); |
6dd8638e BF |
1482 | |
1483 | error = xfs_inobt_get_rec(cur, rec, &i); | |
1484 | if (error) | |
1485 | return error; | |
5fb5aeee | 1486 | XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); |
6dd8638e BF |
1487 | |
1488 | return 0; | |
1489 | } | |
1490 | ||
1491 | /* | |
1492 | * Update the inobt based on a modification made to the finobt. Also ensure that | |
1493 | * the records from both trees are equivalent post-modification. | |
1494 | */ | |
1495 | STATIC int | |
1496 | xfs_dialloc_ag_update_inobt( | |
1497 | struct xfs_btree_cur *cur, /* inobt cursor */ | |
1498 | struct xfs_inobt_rec_incore *frec, /* finobt record */ | |
1499 | int offset) /* inode offset */ | |
1500 | { | |
1501 | struct xfs_inobt_rec_incore rec; | |
1502 | int error; | |
1503 | int i; | |
1504 | ||
1505 | error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i); | |
1506 | if (error) | |
1507 | return error; | |
5fb5aeee | 1508 | XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); |
6dd8638e BF |
1509 | |
1510 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
1511 | if (error) | |
1512 | return error; | |
5fb5aeee | 1513 | XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1); |
6dd8638e BF |
1514 | ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) % |
1515 | XFS_INODES_PER_CHUNK) == 0); | |
1516 | ||
1517 | rec.ir_free &= ~XFS_INOBT_MASK(offset); | |
1518 | rec.ir_freecount--; | |
1519 | ||
5fb5aeee | 1520 | XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) && |
6dd8638e BF |
1521 | (rec.ir_freecount == frec->ir_freecount)); |
1522 | ||
b72091f2 | 1523 | return xfs_inobt_update(cur, &rec); |
6dd8638e BF |
1524 | } |
1525 | ||
1526 | /* | |
1527 | * Allocate an inode using the free inode btree, if available. Otherwise, fall | |
1528 | * back to the inobt search algorithm. | |
1529 | * | |
1530 | * The caller selected an AG for us, and made sure that free inodes are | |
1531 | * available. | |
1532 | */ | |
1533 | STATIC int | |
1534 | xfs_dialloc_ag( | |
1535 | struct xfs_trans *tp, | |
1536 | struct xfs_buf *agbp, | |
1537 | xfs_ino_t parent, | |
1538 | xfs_ino_t *inop) | |
1539 | { | |
1540 | struct xfs_mount *mp = tp->t_mountp; | |
1541 | struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); | |
1542 | xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); | |
1543 | xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent); | |
1544 | xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent); | |
1545 | struct xfs_perag *pag; | |
1546 | struct xfs_btree_cur *cur; /* finobt cursor */ | |
1547 | struct xfs_btree_cur *icur; /* inobt cursor */ | |
1548 | struct xfs_inobt_rec_incore rec; | |
1549 | xfs_ino_t ino; | |
1550 | int error; | |
1551 | int offset; | |
1552 | int i; | |
1553 | ||
1554 | if (!xfs_sb_version_hasfinobt(&mp->m_sb)) | |
1555 | return xfs_dialloc_ag_inobt(tp, agbp, parent, inop); | |
1556 | ||
1557 | pag = xfs_perag_get(mp, agno); | |
1558 | ||
1559 | /* | |
1560 | * If pagino is 0 (this is the root inode allocation) use newino. | |
1561 | * This must work because we've just allocated some. | |
1562 | */ | |
1563 | if (!pagino) | |
1564 | pagino = be32_to_cpu(agi->agi_newino); | |
1565 | ||
1566 | cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); | |
1567 | ||
1568 | error = xfs_check_agi_freecount(cur, agi); | |
1569 | if (error) | |
1570 | goto error_cur; | |
1571 | ||
1572 | /* | |
1573 | * The search algorithm depends on whether we're in the same AG as the | |
1574 | * parent. If so, find the closest available inode to the parent. If | |
1575 | * not, consider the agi hint or find the first free inode in the AG. | |
1576 | */ | |
1577 | if (agno == pagno) | |
1578 | error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec); | |
1579 | else | |
1580 | error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec); | |
1581 | if (error) | |
1582 | goto error_cur; | |
1583 | ||
d4cc540b | 1584 | offset = xfs_inobt_first_free_inode(&rec); |
6dd8638e BF |
1585 | ASSERT(offset >= 0); |
1586 | ASSERT(offset < XFS_INODES_PER_CHUNK); | |
1587 | ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) % | |
1588 | XFS_INODES_PER_CHUNK) == 0); | |
1589 | ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset); | |
1590 | ||
1591 | /* | |
1592 | * Modify or remove the finobt record. | |
1593 | */ | |
1594 | rec.ir_free &= ~XFS_INOBT_MASK(offset); | |
1595 | rec.ir_freecount--; | |
1596 | if (rec.ir_freecount) | |
1597 | error = xfs_inobt_update(cur, &rec); | |
1598 | else | |
1599 | error = xfs_btree_delete(cur, &i); | |
1600 | if (error) | |
1601 | goto error_cur; | |
1602 | ||
1603 | /* | |
1604 | * The finobt has now been updated appropriately. We haven't updated the | |
1605 | * agi and superblock yet, so we can create an inobt cursor and validate | |
1606 | * the original freecount. If all is well, make the equivalent update to | |
1607 | * the inobt using the finobt record and offset information. | |
1608 | */ | |
1609 | icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); | |
1610 | ||
1611 | error = xfs_check_agi_freecount(icur, agi); | |
1612 | if (error) | |
1613 | goto error_icur; | |
1614 | ||
1615 | error = xfs_dialloc_ag_update_inobt(icur, &rec, offset); | |
1616 | if (error) | |
1617 | goto error_icur; | |
1618 | ||
1619 | /* | |
1620 | * Both trees have now been updated. We must update the perag and | |
1621 | * superblock before we can check the freecount for each btree. | |
1622 | */ | |
1623 | be32_add_cpu(&agi->agi_freecount, -1); | |
1624 | xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); | |
1625 | pag->pagi_freecount--; | |
1626 | ||
1627 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1); | |
1628 | ||
1629 | error = xfs_check_agi_freecount(icur, agi); | |
1630 | if (error) | |
1631 | goto error_icur; | |
1632 | error = xfs_check_agi_freecount(cur, agi); | |
1633 | if (error) | |
1634 | goto error_icur; | |
1635 | ||
1636 | xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR); | |
1637 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
1638 | xfs_perag_put(pag); | |
1639 | *inop = ino; | |
1640 | return 0; | |
1641 | ||
1642 | error_icur: | |
1643 | xfs_btree_del_cursor(icur, XFS_BTREE_ERROR); | |
1644 | error_cur: | |
1645 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
1646 | xfs_perag_put(pag); | |
1647 | return error; | |
1648 | } | |
1649 | ||
f2ecc5e4 CH |
1650 | /* |
1651 | * Allocate an inode on disk. | |
1652 | * | |
1653 | * Mode is used to tell whether the new inode will need space, and whether it | |
1654 | * is a directory. | |
1655 | * | |
1656 | * This function is designed to be called twice if it has to do an allocation | |
1657 | * to make more free inodes. On the first call, *IO_agbp should be set to NULL. | |
1658 | * If an inode is available without having to performn an allocation, an inode | |
cd856db6 CM |
1659 | * number is returned. In this case, *IO_agbp is set to NULL. If an allocation |
1660 | * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp. | |
1661 | * The caller should then commit the current transaction, allocate a | |
f2ecc5e4 CH |
1662 | * new transaction, and call xfs_dialloc() again, passing in the previous value |
1663 | * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI | |
1664 | * buffer is locked across the two calls, the second call is guaranteed to have | |
1665 | * a free inode available. | |
1666 | * | |
1667 | * Once we successfully pick an inode its number is returned and the on-disk | |
1668 | * data structures are updated. The inode itself is not read in, since doing so | |
1669 | * would break ordering constraints with xfs_reclaim. | |
1670 | */ | |
1671 | int | |
1672 | xfs_dialloc( | |
1673 | struct xfs_trans *tp, | |
1674 | xfs_ino_t parent, | |
1675 | umode_t mode, | |
1676 | int okalloc, | |
1677 | struct xfs_buf **IO_agbp, | |
f2ecc5e4 CH |
1678 | xfs_ino_t *inop) |
1679 | { | |
55d6af64 | 1680 | struct xfs_mount *mp = tp->t_mountp; |
f2ecc5e4 CH |
1681 | struct xfs_buf *agbp; |
1682 | xfs_agnumber_t agno; | |
f2ecc5e4 CH |
1683 | int error; |
1684 | int ialloced; | |
1685 | int noroom = 0; | |
be60fe54 | 1686 | xfs_agnumber_t start_agno; |
f2ecc5e4 CH |
1687 | struct xfs_perag *pag; |
1688 | ||
4bb61069 | 1689 | if (*IO_agbp) { |
f2ecc5e4 | 1690 | /* |
4bb61069 CH |
1691 | * If the caller passes in a pointer to the AGI buffer, |
1692 | * continue where we left off before. In this case, we | |
f2ecc5e4 CH |
1693 | * know that the allocation group has free inodes. |
1694 | */ | |
1695 | agbp = *IO_agbp; | |
4bb61069 | 1696 | goto out_alloc; |
f2ecc5e4 | 1697 | } |
4bb61069 CH |
1698 | |
1699 | /* | |
1700 | * We do not have an agbp, so select an initial allocation | |
1701 | * group for inode allocation. | |
1702 | */ | |
be60fe54 CH |
1703 | start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc); |
1704 | if (start_agno == NULLAGNUMBER) { | |
4bb61069 CH |
1705 | *inop = NULLFSINO; |
1706 | return 0; | |
1707 | } | |
55d6af64 | 1708 | |
f2ecc5e4 CH |
1709 | /* |
1710 | * If we have already hit the ceiling of inode blocks then clear | |
1711 | * okalloc so we scan all available agi structures for a free | |
1712 | * inode. | |
74f9ce1c GW |
1713 | * |
1714 | * Read rough value of mp->m_icount by percpu_counter_read_positive, | |
1715 | * which will sacrifice the preciseness but improve the performance. | |
f2ecc5e4 | 1716 | */ |
f2ecc5e4 | 1717 | if (mp->m_maxicount && |
74f9ce1c GW |
1718 | percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos |
1719 | > mp->m_maxicount) { | |
f2ecc5e4 CH |
1720 | noroom = 1; |
1721 | okalloc = 0; | |
1722 | } | |
1723 | ||
1724 | /* | |
1725 | * Loop until we find an allocation group that either has free inodes | |
1726 | * or in which we can allocate some inodes. Iterate through the | |
1727 | * allocation groups upward, wrapping at the end. | |
1728 | */ | |
be60fe54 CH |
1729 | agno = start_agno; |
1730 | for (;;) { | |
1731 | pag = xfs_perag_get(mp, agno); | |
1732 | if (!pag->pagi_inodeok) { | |
1733 | xfs_ialloc_next_ag(mp); | |
1734 | goto nextag; | |
1735 | } | |
1736 | ||
1737 | if (!pag->pagi_init) { | |
1738 | error = xfs_ialloc_pagi_init(mp, tp, agno); | |
1739 | if (error) | |
1740 | goto out_error; | |
f2ecc5e4 | 1741 | } |
be60fe54 | 1742 | |
f2ecc5e4 | 1743 | /* |
be60fe54 | 1744 | * Do a first racy fast path check if this AG is usable. |
f2ecc5e4 | 1745 | */ |
be60fe54 CH |
1746 | if (!pag->pagi_freecount && !okalloc) |
1747 | goto nextag; | |
1748 | ||
c4982110 CH |
1749 | /* |
1750 | * Then read in the AGI buffer and recheck with the AGI buffer | |
1751 | * lock held. | |
1752 | */ | |
be60fe54 CH |
1753 | error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); |
1754 | if (error) | |
1755 | goto out_error; | |
1756 | ||
be60fe54 CH |
1757 | if (pag->pagi_freecount) { |
1758 | xfs_perag_put(pag); | |
1759 | goto out_alloc; | |
1760 | } | |
1761 | ||
c4982110 CH |
1762 | if (!okalloc) |
1763 | goto nextag_relse_buffer; | |
1764 | ||
be60fe54 CH |
1765 | |
1766 | error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced); | |
1767 | if (error) { | |
1768 | xfs_trans_brelse(tp, agbp); | |
1769 | ||
2451337d | 1770 | if (error != -ENOSPC) |
be60fe54 CH |
1771 | goto out_error; |
1772 | ||
1773 | xfs_perag_put(pag); | |
f2ecc5e4 | 1774 | *inop = NULLFSINO; |
be60fe54 | 1775 | return 0; |
f2ecc5e4 | 1776 | } |
be60fe54 CH |
1777 | |
1778 | if (ialloced) { | |
1779 | /* | |
1780 | * We successfully allocated some inodes, return | |
1781 | * the current context to the caller so that it | |
1782 | * can commit the current transaction and call | |
1783 | * us again where we left off. | |
1784 | */ | |
1785 | ASSERT(pag->pagi_freecount > 0); | |
f2ecc5e4 | 1786 | xfs_perag_put(pag); |
be60fe54 CH |
1787 | |
1788 | *IO_agbp = agbp; | |
1789 | *inop = NULLFSINO; | |
1790 | return 0; | |
f2ecc5e4 | 1791 | } |
be60fe54 | 1792 | |
c4982110 CH |
1793 | nextag_relse_buffer: |
1794 | xfs_trans_brelse(tp, agbp); | |
be60fe54 | 1795 | nextag: |
f2ecc5e4 | 1796 | xfs_perag_put(pag); |
be60fe54 CH |
1797 | if (++agno == mp->m_sb.sb_agcount) |
1798 | agno = 0; | |
1799 | if (agno == start_agno) { | |
1800 | *inop = NULLFSINO; | |
2451337d | 1801 | return noroom ? -ENOSPC : 0; |
be60fe54 | 1802 | } |
f2ecc5e4 CH |
1803 | } |
1804 | ||
4bb61069 | 1805 | out_alloc: |
f2ecc5e4 CH |
1806 | *IO_agbp = NULL; |
1807 | return xfs_dialloc_ag(tp, agbp, parent, inop); | |
be60fe54 CH |
1808 | out_error: |
1809 | xfs_perag_put(pag); | |
b474c7ae | 1810 | return error; |
f2ecc5e4 CH |
1811 | } |
1812 | ||
10ae3dc7 BF |
1813 | /* |
1814 | * Free the blocks of an inode chunk. We must consider that the inode chunk | |
1815 | * might be sparse and only free the regions that are allocated as part of the | |
1816 | * chunk. | |
1817 | */ | |
1818 | STATIC void | |
1819 | xfs_difree_inode_chunk( | |
1820 | struct xfs_mount *mp, | |
1821 | xfs_agnumber_t agno, | |
1822 | struct xfs_inobt_rec_incore *rec, | |
2c3234d1 | 1823 | struct xfs_defer_ops *dfops) |
10ae3dc7 BF |
1824 | { |
1825 | xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino); | |
1826 | int startidx, endidx; | |
1827 | int nextbit; | |
1828 | xfs_agblock_t agbno; | |
1829 | int contigblk; | |
340785cc | 1830 | struct xfs_owner_info oinfo; |
10ae3dc7 | 1831 | DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS); |
340785cc | 1832 | xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES); |
10ae3dc7 BF |
1833 | |
1834 | if (!xfs_inobt_issparse(rec->ir_holemask)) { | |
1835 | /* not sparse, calculate extent info directly */ | |
2c3234d1 | 1836 | xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno), |
340785cc | 1837 | mp->m_ialloc_blks, &oinfo); |
10ae3dc7 BF |
1838 | return; |
1839 | } | |
1840 | ||
1841 | /* holemask is only 16-bits (fits in an unsigned long) */ | |
1842 | ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0])); | |
1843 | holemask[0] = rec->ir_holemask; | |
1844 | ||
1845 | /* | |
1846 | * Find contiguous ranges of zeroes (i.e., allocated regions) in the | |
1847 | * holemask and convert the start/end index of each range to an extent. | |
1848 | * We start with the start and end index both pointing at the first 0 in | |
1849 | * the mask. | |
1850 | */ | |
1851 | startidx = endidx = find_first_zero_bit(holemask, | |
1852 | XFS_INOBT_HOLEMASK_BITS); | |
1853 | nextbit = startidx + 1; | |
1854 | while (startidx < XFS_INOBT_HOLEMASK_BITS) { | |
1855 | nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS, | |
1856 | nextbit); | |
1857 | /* | |
1858 | * If the next zero bit is contiguous, update the end index of | |
1859 | * the current range and continue. | |
1860 | */ | |
1861 | if (nextbit != XFS_INOBT_HOLEMASK_BITS && | |
1862 | nextbit == endidx + 1) { | |
1863 | endidx = nextbit; | |
1864 | goto next; | |
1865 | } | |
1866 | ||
1867 | /* | |
1868 | * nextbit is not contiguous with the current end index. Convert | |
1869 | * the current start/end to an extent and add it to the free | |
1870 | * list. | |
1871 | */ | |
1872 | agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) / | |
1873 | mp->m_sb.sb_inopblock; | |
1874 | contigblk = ((endidx - startidx + 1) * | |
1875 | XFS_INODES_PER_HOLEMASK_BIT) / | |
1876 | mp->m_sb.sb_inopblock; | |
1877 | ||
1878 | ASSERT(agbno % mp->m_sb.sb_spino_align == 0); | |
1879 | ASSERT(contigblk % mp->m_sb.sb_spino_align == 0); | |
2c3234d1 | 1880 | xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno), |
340785cc | 1881 | contigblk, &oinfo); |
10ae3dc7 BF |
1882 | |
1883 | /* reset range to current bit and carry on... */ | |
1884 | startidx = endidx = nextbit; | |
1885 | ||
1886 | next: | |
1887 | nextbit++; | |
1888 | } | |
1889 | } | |
1890 | ||
2b64ee5c BF |
1891 | STATIC int |
1892 | xfs_difree_inobt( | |
1893 | struct xfs_mount *mp, | |
1894 | struct xfs_trans *tp, | |
1895 | struct xfs_buf *agbp, | |
1896 | xfs_agino_t agino, | |
2c3234d1 | 1897 | struct xfs_defer_ops *dfops, |
09b56604 | 1898 | struct xfs_icluster *xic, |
2b64ee5c | 1899 | struct xfs_inobt_rec_incore *orec) |
1da177e4 | 1900 | { |
2b64ee5c BF |
1901 | struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); |
1902 | xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); | |
1903 | struct xfs_perag *pag; | |
1904 | struct xfs_btree_cur *cur; | |
1905 | struct xfs_inobt_rec_incore rec; | |
1906 | int ilen; | |
1907 | int error; | |
1908 | int i; | |
1909 | int off; | |
1da177e4 | 1910 | |
69ef921b | 1911 | ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); |
2b64ee5c BF |
1912 | ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length)); |
1913 | ||
1da177e4 LT |
1914 | /* |
1915 | * Initialize the cursor. | |
1916 | */ | |
57bd3dbe | 1917 | cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); |
1da177e4 | 1918 | |
0b48db80 DC |
1919 | error = xfs_check_agi_freecount(cur, agi); |
1920 | if (error) | |
1921 | goto error0; | |
1922 | ||
1da177e4 LT |
1923 | /* |
1924 | * Look for the entry describing this inode. | |
1925 | */ | |
21875505 | 1926 | if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) { |
0b932ccc DC |
1927 | xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.", |
1928 | __func__, error); | |
1da177e4 LT |
1929 | goto error0; |
1930 | } | |
c29aad41 | 1931 | XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); |
2e287a73 CH |
1932 | error = xfs_inobt_get_rec(cur, &rec, &i); |
1933 | if (error) { | |
0b932ccc DC |
1934 | xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.", |
1935 | __func__, error); | |
1da177e4 LT |
1936 | goto error0; |
1937 | } | |
c29aad41 | 1938 | XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0); |
1da177e4 LT |
1939 | /* |
1940 | * Get the offset in the inode chunk. | |
1941 | */ | |
1942 | off = agino - rec.ir_startino; | |
1943 | ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK); | |
0d87e656 | 1944 | ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off))); |
1da177e4 LT |
1945 | /* |
1946 | * Mark the inode free & increment the count. | |
1947 | */ | |
0d87e656 | 1948 | rec.ir_free |= XFS_INOBT_MASK(off); |
1da177e4 LT |
1949 | rec.ir_freecount++; |
1950 | ||
1951 | /* | |
999633d3 BF |
1952 | * When an inode chunk is free, it becomes eligible for removal. Don't |
1953 | * remove the chunk if the block size is large enough for multiple inode | |
1954 | * chunks (that might not be free). | |
1da177e4 | 1955 | */ |
1bd960ee | 1956 | if (!(mp->m_flags & XFS_MOUNT_IKEEP) && |
999633d3 BF |
1957 | rec.ir_free == XFS_INOBT_ALL_FREE && |
1958 | mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) { | |
09b56604 BF |
1959 | xic->deleted = 1; |
1960 | xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino); | |
1961 | xic->alloc = xfs_inobt_irec_to_allocmask(&rec); | |
1da177e4 LT |
1962 | |
1963 | /* | |
1964 | * Remove the inode cluster from the AGI B+Tree, adjust the | |
1965 | * AGI and Superblock inode counts, and mark the disk space | |
1966 | * to be freed when the transaction is committed. | |
1967 | */ | |
999633d3 | 1968 | ilen = rec.ir_freecount; |
413d57c9 MS |
1969 | be32_add_cpu(&agi->agi_count, -ilen); |
1970 | be32_add_cpu(&agi->agi_freecount, -(ilen - 1)); | |
1da177e4 | 1971 | xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT); |
44b56e0a DC |
1972 | pag = xfs_perag_get(mp, agno); |
1973 | pag->pagi_freecount -= ilen - 1; | |
1974 | xfs_perag_put(pag); | |
1da177e4 LT |
1975 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen); |
1976 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1)); | |
1977 | ||
91cca5df | 1978 | if ((error = xfs_btree_delete(cur, &i))) { |
0b932ccc DC |
1979 | xfs_warn(mp, "%s: xfs_btree_delete returned error %d.", |
1980 | __func__, error); | |
1da177e4 LT |
1981 | goto error0; |
1982 | } | |
1983 | ||
2c3234d1 | 1984 | xfs_difree_inode_chunk(mp, agno, &rec, dfops); |
1da177e4 | 1985 | } else { |
09b56604 | 1986 | xic->deleted = 0; |
1da177e4 | 1987 | |
afabc24a CH |
1988 | error = xfs_inobt_update(cur, &rec); |
1989 | if (error) { | |
0b932ccc DC |
1990 | xfs_warn(mp, "%s: xfs_inobt_update returned error %d.", |
1991 | __func__, error); | |
1da177e4 LT |
1992 | goto error0; |
1993 | } | |
afabc24a | 1994 | |
1da177e4 LT |
1995 | /* |
1996 | * Change the inode free counts and log the ag/sb changes. | |
1997 | */ | |
413d57c9 | 1998 | be32_add_cpu(&agi->agi_freecount, 1); |
1da177e4 | 1999 | xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT); |
44b56e0a DC |
2000 | pag = xfs_perag_get(mp, agno); |
2001 | pag->pagi_freecount++; | |
2002 | xfs_perag_put(pag); | |
1da177e4 LT |
2003 | xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1); |
2004 | } | |
2005 | ||
0b48db80 DC |
2006 | error = xfs_check_agi_freecount(cur, agi); |
2007 | if (error) | |
2008 | goto error0; | |
1da177e4 | 2009 | |
2b64ee5c | 2010 | *orec = rec; |
1da177e4 LT |
2011 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); |
2012 | return 0; | |
2013 | ||
2014 | error0: | |
2015 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
2016 | return error; | |
2017 | } | |
2018 | ||
3efa4ffd BF |
2019 | /* |
2020 | * Free an inode in the free inode btree. | |
2021 | */ | |
2022 | STATIC int | |
2023 | xfs_difree_finobt( | |
2024 | struct xfs_mount *mp, | |
2025 | struct xfs_trans *tp, | |
2026 | struct xfs_buf *agbp, | |
2027 | xfs_agino_t agino, | |
2028 | struct xfs_inobt_rec_incore *ibtrec) /* inobt record */ | |
2029 | { | |
2030 | struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp); | |
2031 | xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno); | |
2032 | struct xfs_btree_cur *cur; | |
2033 | struct xfs_inobt_rec_incore rec; | |
2034 | int offset = agino - ibtrec->ir_startino; | |
2035 | int error; | |
2036 | int i; | |
2037 | ||
2038 | cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO); | |
2039 | ||
2040 | error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i); | |
2041 | if (error) | |
2042 | goto error; | |
2043 | if (i == 0) { | |
2044 | /* | |
2045 | * If the record does not exist in the finobt, we must have just | |
2046 | * freed an inode in a previously fully allocated chunk. If not, | |
2047 | * something is out of sync. | |
2048 | */ | |
c29aad41 | 2049 | XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error); |
3efa4ffd | 2050 | |
5419040f BF |
2051 | error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask, |
2052 | ibtrec->ir_count, | |
2053 | ibtrec->ir_freecount, | |
3efa4ffd BF |
2054 | ibtrec->ir_free, &i); |
2055 | if (error) | |
2056 | goto error; | |
2057 | ASSERT(i == 1); | |
2058 | ||
2059 | goto out; | |
2060 | } | |
2061 | ||
2062 | /* | |
2063 | * Read and update the existing record. We could just copy the ibtrec | |
2064 | * across here, but that would defeat the purpose of having redundant | |
2065 | * metadata. By making the modifications independently, we can catch | |
2066 | * corruptions that we wouldn't see if we just copied from one record | |
2067 | * to another. | |
2068 | */ | |
2069 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
2070 | if (error) | |
2071 | goto error; | |
c29aad41 | 2072 | XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error); |
3efa4ffd BF |
2073 | |
2074 | rec.ir_free |= XFS_INOBT_MASK(offset); | |
2075 | rec.ir_freecount++; | |
2076 | ||
c29aad41 | 2077 | XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) && |
3efa4ffd BF |
2078 | (rec.ir_freecount == ibtrec->ir_freecount), |
2079 | error); | |
2080 | ||
2081 | /* | |
2082 | * The content of inobt records should always match between the inobt | |
2083 | * and finobt. The lifecycle of records in the finobt is different from | |
2084 | * the inobt in that the finobt only tracks records with at least one | |
2085 | * free inode. Hence, if all of the inodes are free and we aren't | |
2086 | * keeping inode chunks permanently on disk, remove the record. | |
2087 | * Otherwise, update the record with the new information. | |
999633d3 BF |
2088 | * |
2089 | * Note that we currently can't free chunks when the block size is large | |
2090 | * enough for multiple chunks. Leave the finobt record to remain in sync | |
2091 | * with the inobt. | |
3efa4ffd | 2092 | */ |
999633d3 BF |
2093 | if (rec.ir_free == XFS_INOBT_ALL_FREE && |
2094 | mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK && | |
3efa4ffd BF |
2095 | !(mp->m_flags & XFS_MOUNT_IKEEP)) { |
2096 | error = xfs_btree_delete(cur, &i); | |
2097 | if (error) | |
2098 | goto error; | |
2099 | ASSERT(i == 1); | |
2100 | } else { | |
2101 | error = xfs_inobt_update(cur, &rec); | |
2102 | if (error) | |
2103 | goto error; | |
2104 | } | |
2105 | ||
2106 | out: | |
2107 | error = xfs_check_agi_freecount(cur, agi); | |
2108 | if (error) | |
2109 | goto error; | |
2110 | ||
2111 | xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR); | |
2112 | return 0; | |
2113 | ||
2114 | error: | |
2115 | xfs_btree_del_cursor(cur, XFS_BTREE_ERROR); | |
2116 | return error; | |
2117 | } | |
2118 | ||
2b64ee5c BF |
2119 | /* |
2120 | * Free disk inode. Carefully avoids touching the incore inode, all | |
2121 | * manipulations incore are the caller's responsibility. | |
2122 | * The on-disk inode is not changed by this operation, only the | |
2123 | * btree (free inode mask) is changed. | |
2124 | */ | |
2125 | int | |
2126 | xfs_difree( | |
2127 | struct xfs_trans *tp, /* transaction pointer */ | |
2128 | xfs_ino_t inode, /* inode to be freed */ | |
2c3234d1 | 2129 | struct xfs_defer_ops *dfops, /* extents to free */ |
09b56604 | 2130 | struct xfs_icluster *xic) /* cluster info if deleted */ |
2b64ee5c BF |
2131 | { |
2132 | /* REFERENCED */ | |
2133 | xfs_agblock_t agbno; /* block number containing inode */ | |
2134 | struct xfs_buf *agbp; /* buffer for allocation group header */ | |
2135 | xfs_agino_t agino; /* allocation group inode number */ | |
2136 | xfs_agnumber_t agno; /* allocation group number */ | |
2137 | int error; /* error return value */ | |
2138 | struct xfs_mount *mp; /* mount structure for filesystem */ | |
2139 | struct xfs_inobt_rec_incore rec;/* btree record */ | |
2140 | ||
2141 | mp = tp->t_mountp; | |
2142 | ||
2143 | /* | |
2144 | * Break up inode number into its components. | |
2145 | */ | |
2146 | agno = XFS_INO_TO_AGNO(mp, inode); | |
2147 | if (agno >= mp->m_sb.sb_agcount) { | |
2148 | xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).", | |
2149 | __func__, agno, mp->m_sb.sb_agcount); | |
2150 | ASSERT(0); | |
2451337d | 2151 | return -EINVAL; |
2b64ee5c BF |
2152 | } |
2153 | agino = XFS_INO_TO_AGINO(mp, inode); | |
2154 | if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) { | |
2155 | xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).", | |
2156 | __func__, (unsigned long long)inode, | |
2157 | (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino)); | |
2158 | ASSERT(0); | |
2451337d | 2159 | return -EINVAL; |
2b64ee5c BF |
2160 | } |
2161 | agbno = XFS_AGINO_TO_AGBNO(mp, agino); | |
2162 | if (agbno >= mp->m_sb.sb_agblocks) { | |
2163 | xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).", | |
2164 | __func__, agbno, mp->m_sb.sb_agblocks); | |
2165 | ASSERT(0); | |
2451337d | 2166 | return -EINVAL; |
2b64ee5c BF |
2167 | } |
2168 | /* | |
2169 | * Get the allocation group header. | |
2170 | */ | |
2171 | error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); | |
2172 | if (error) { | |
2173 | xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.", | |
2174 | __func__, error); | |
2175 | return error; | |
2176 | } | |
2177 | ||
2178 | /* | |
2179 | * Fix up the inode allocation btree. | |
2180 | */ | |
2c3234d1 | 2181 | error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec); |
2b64ee5c BF |
2182 | if (error) |
2183 | goto error0; | |
2184 | ||
3efa4ffd BF |
2185 | /* |
2186 | * Fix up the free inode btree. | |
2187 | */ | |
2188 | if (xfs_sb_version_hasfinobt(&mp->m_sb)) { | |
2189 | error = xfs_difree_finobt(mp, tp, agbp, agino, &rec); | |
2190 | if (error) | |
2191 | goto error0; | |
2192 | } | |
2193 | ||
2b64ee5c BF |
2194 | return 0; |
2195 | ||
2196 | error0: | |
2197 | return error; | |
2198 | } | |
2199 | ||
7124fe0a DC |
2200 | STATIC int |
2201 | xfs_imap_lookup( | |
2202 | struct xfs_mount *mp, | |
2203 | struct xfs_trans *tp, | |
2204 | xfs_agnumber_t agno, | |
2205 | xfs_agino_t agino, | |
2206 | xfs_agblock_t agbno, | |
2207 | xfs_agblock_t *chunk_agbno, | |
2208 | xfs_agblock_t *offset_agbno, | |
2209 | int flags) | |
2210 | { | |
2211 | struct xfs_inobt_rec_incore rec; | |
2212 | struct xfs_btree_cur *cur; | |
2213 | struct xfs_buf *agbp; | |
7124fe0a DC |
2214 | int error; |
2215 | int i; | |
2216 | ||
2217 | error = xfs_ialloc_read_agi(mp, tp, agno, &agbp); | |
2218 | if (error) { | |
53487786 DC |
2219 | xfs_alert(mp, |
2220 | "%s: xfs_ialloc_read_agi() returned error %d, agno %d", | |
2221 | __func__, error, agno); | |
7124fe0a DC |
2222 | return error; |
2223 | } | |
2224 | ||
2225 | /* | |
4536f2ad DC |
2226 | * Lookup the inode record for the given agino. If the record cannot be |
2227 | * found, then it's an invalid inode number and we should abort. Once | |
2228 | * we have a record, we need to ensure it contains the inode number | |
2229 | * we are looking up. | |
7124fe0a | 2230 | */ |
57bd3dbe | 2231 | cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO); |
4536f2ad | 2232 | error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i); |
7124fe0a DC |
2233 | if (!error) { |
2234 | if (i) | |
2235 | error = xfs_inobt_get_rec(cur, &rec, &i); | |
2236 | if (!error && i == 0) | |
2451337d | 2237 | error = -EINVAL; |
7124fe0a DC |
2238 | } |
2239 | ||
2240 | xfs_trans_brelse(tp, agbp); | |
f307080a | 2241 | xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR); |
7124fe0a DC |
2242 | if (error) |
2243 | return error; | |
2244 | ||
4536f2ad DC |
2245 | /* check that the returned record contains the required inode */ |
2246 | if (rec.ir_startino > agino || | |
71783438 | 2247 | rec.ir_startino + mp->m_ialloc_inos <= agino) |
2451337d | 2248 | return -EINVAL; |
4536f2ad | 2249 | |
7124fe0a | 2250 | /* for untrusted inodes check it is allocated first */ |
1920779e | 2251 | if ((flags & XFS_IGET_UNTRUSTED) && |
7124fe0a | 2252 | (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino))) |
2451337d | 2253 | return -EINVAL; |
7124fe0a DC |
2254 | |
2255 | *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino); | |
2256 | *offset_agbno = agbno - *chunk_agbno; | |
2257 | return 0; | |
2258 | } | |
2259 | ||
1da177e4 | 2260 | /* |
94e1b69d | 2261 | * Return the location of the inode in imap, for mapping it into a buffer. |
1da177e4 | 2262 | */ |
1da177e4 | 2263 | int |
94e1b69d CH |
2264 | xfs_imap( |
2265 | xfs_mount_t *mp, /* file system mount structure */ | |
2266 | xfs_trans_t *tp, /* transaction pointer */ | |
1da177e4 | 2267 | xfs_ino_t ino, /* inode to locate */ |
94e1b69d CH |
2268 | struct xfs_imap *imap, /* location map structure */ |
2269 | uint flags) /* flags for inode btree lookup */ | |
1da177e4 LT |
2270 | { |
2271 | xfs_agblock_t agbno; /* block number of inode in the alloc group */ | |
1da177e4 LT |
2272 | xfs_agino_t agino; /* inode number within alloc group */ |
2273 | xfs_agnumber_t agno; /* allocation group number */ | |
2274 | int blks_per_cluster; /* num blocks per inode cluster */ | |
2275 | xfs_agblock_t chunk_agbno; /* first block in inode chunk */ | |
1da177e4 | 2276 | xfs_agblock_t cluster_agbno; /* first block in inode cluster */ |
1da177e4 | 2277 | int error; /* error code */ |
1da177e4 | 2278 | int offset; /* index of inode in its buffer */ |
836a94ad | 2279 | xfs_agblock_t offset_agbno; /* blks from chunk start to inode */ |
1da177e4 LT |
2280 | |
2281 | ASSERT(ino != NULLFSINO); | |
94e1b69d | 2282 | |
1da177e4 LT |
2283 | /* |
2284 | * Split up the inode number into its parts. | |
2285 | */ | |
2286 | agno = XFS_INO_TO_AGNO(mp, ino); | |
2287 | agino = XFS_INO_TO_AGINO(mp, ino); | |
2288 | agbno = XFS_AGINO_TO_AGBNO(mp, agino); | |
2289 | if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks || | |
2290 | ino != XFS_AGINO_TO_INO(mp, agno, agino)) { | |
2291 | #ifdef DEBUG | |
1920779e DC |
2292 | /* |
2293 | * Don't output diagnostic information for untrusted inodes | |
2294 | * as they can be invalid without implying corruption. | |
2295 | */ | |
2296 | if (flags & XFS_IGET_UNTRUSTED) | |
2451337d | 2297 | return -EINVAL; |
1da177e4 | 2298 | if (agno >= mp->m_sb.sb_agcount) { |
53487786 DC |
2299 | xfs_alert(mp, |
2300 | "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)", | |
2301 | __func__, agno, mp->m_sb.sb_agcount); | |
1da177e4 LT |
2302 | } |
2303 | if (agbno >= mp->m_sb.sb_agblocks) { | |
53487786 DC |
2304 | xfs_alert(mp, |
2305 | "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)", | |
2306 | __func__, (unsigned long long)agbno, | |
2307 | (unsigned long)mp->m_sb.sb_agblocks); | |
1da177e4 LT |
2308 | } |
2309 | if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) { | |
53487786 DC |
2310 | xfs_alert(mp, |
2311 | "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)", | |
2312 | __func__, ino, | |
2313 | XFS_AGINO_TO_INO(mp, agno, agino)); | |
1da177e4 | 2314 | } |
745b1f47 | 2315 | xfs_stack_trace(); |
1da177e4 | 2316 | #endif /* DEBUG */ |
2451337d | 2317 | return -EINVAL; |
1da177e4 | 2318 | } |
94e1b69d | 2319 | |
f9e5abcf | 2320 | blks_per_cluster = xfs_icluster_size_fsb(mp); |
7124fe0a DC |
2321 | |
2322 | /* | |
2323 | * For bulkstat and handle lookups, we have an untrusted inode number | |
2324 | * that we have to verify is valid. We cannot do this just by reading | |
2325 | * the inode buffer as it may have been unlinked and removed leaving | |
2326 | * inodes in stale state on disk. Hence we have to do a btree lookup | |
2327 | * in all cases where an untrusted inode number is passed. | |
2328 | */ | |
1920779e | 2329 | if (flags & XFS_IGET_UNTRUSTED) { |
7124fe0a DC |
2330 | error = xfs_imap_lookup(mp, tp, agno, agino, agbno, |
2331 | &chunk_agbno, &offset_agbno, flags); | |
2332 | if (error) | |
2333 | return error; | |
2334 | goto out_map; | |
2335 | } | |
2336 | ||
94e1b69d CH |
2337 | /* |
2338 | * If the inode cluster size is the same as the blocksize or | |
2339 | * smaller we get to the buffer by simple arithmetics. | |
2340 | */ | |
f9e5abcf | 2341 | if (blks_per_cluster == 1) { |
1da177e4 LT |
2342 | offset = XFS_INO_TO_OFFSET(mp, ino); |
2343 | ASSERT(offset < mp->m_sb.sb_inopblock); | |
94e1b69d CH |
2344 | |
2345 | imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno); | |
2346 | imap->im_len = XFS_FSB_TO_BB(mp, 1); | |
2347 | imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog); | |
1da177e4 LT |
2348 | return 0; |
2349 | } | |
94e1b69d | 2350 | |
94e1b69d CH |
2351 | /* |
2352 | * If the inode chunks are aligned then use simple maths to | |
2353 | * find the location. Otherwise we have to do a btree | |
2354 | * lookup to find the location. | |
2355 | */ | |
1da177e4 LT |
2356 | if (mp->m_inoalign_mask) { |
2357 | offset_agbno = agbno & mp->m_inoalign_mask; | |
2358 | chunk_agbno = agbno - offset_agbno; | |
2359 | } else { | |
7124fe0a DC |
2360 | error = xfs_imap_lookup(mp, tp, agno, agino, agbno, |
2361 | &chunk_agbno, &offset_agbno, flags); | |
1da177e4 LT |
2362 | if (error) |
2363 | return error; | |
1da177e4 | 2364 | } |
94e1b69d | 2365 | |
7124fe0a | 2366 | out_map: |
1da177e4 LT |
2367 | ASSERT(agbno >= chunk_agbno); |
2368 | cluster_agbno = chunk_agbno + | |
2369 | ((offset_agbno / blks_per_cluster) * blks_per_cluster); | |
2370 | offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) + | |
2371 | XFS_INO_TO_OFFSET(mp, ino); | |
94e1b69d CH |
2372 | |
2373 | imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno); | |
2374 | imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster); | |
2375 | imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog); | |
2376 | ||
2377 | /* | |
2378 | * If the inode number maps to a block outside the bounds | |
2379 | * of the file system then return NULL rather than calling | |
2380 | * read_buf and panicing when we get an error from the | |
2381 | * driver. | |
2382 | */ | |
2383 | if ((imap->im_blkno + imap->im_len) > | |
2384 | XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) { | |
53487786 DC |
2385 | xfs_alert(mp, |
2386 | "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)", | |
2387 | __func__, (unsigned long long) imap->im_blkno, | |
94e1b69d CH |
2388 | (unsigned long long) imap->im_len, |
2389 | XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)); | |
2451337d | 2390 | return -EINVAL; |
94e1b69d | 2391 | } |
1da177e4 | 2392 | return 0; |
1da177e4 LT |
2393 | } |
2394 | ||
2395 | /* | |
2396 | * Compute and fill in value of m_in_maxlevels. | |
2397 | */ | |
2398 | void | |
2399 | xfs_ialloc_compute_maxlevels( | |
2400 | xfs_mount_t *mp) /* file system mount structure */ | |
2401 | { | |
19b54ee6 DW |
2402 | uint inodes; |
2403 | ||
2404 | inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG; | |
2405 | mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr, | |
2406 | inodes); | |
1da177e4 LT |
2407 | } |
2408 | ||
2409 | /* | |
aafc3c24 BF |
2410 | * Log specified fields for the ag hdr (inode section). The growth of the agi |
2411 | * structure over time requires that we interpret the buffer as two logical | |
2412 | * regions delineated by the end of the unlinked list. This is due to the size | |
2413 | * of the hash table and its location in the middle of the agi. | |
2414 | * | |
2415 | * For example, a request to log a field before agi_unlinked and a field after | |
2416 | * agi_unlinked could cause us to log the entire hash table and use an excessive | |
2417 | * amount of log space. To avoid this behavior, log the region up through | |
2418 | * agi_unlinked in one call and the region after agi_unlinked through the end of | |
2419 | * the structure in another. | |
1da177e4 LT |
2420 | */ |
2421 | void | |
2422 | xfs_ialloc_log_agi( | |
2423 | xfs_trans_t *tp, /* transaction pointer */ | |
2424 | xfs_buf_t *bp, /* allocation group header buffer */ | |
2425 | int fields) /* bitmask of fields to log */ | |
2426 | { | |
2427 | int first; /* first byte number */ | |
2428 | int last; /* last byte number */ | |
2429 | static const short offsets[] = { /* field starting offsets */ | |
2430 | /* keep in sync with bit definitions */ | |
2431 | offsetof(xfs_agi_t, agi_magicnum), | |
2432 | offsetof(xfs_agi_t, agi_versionnum), | |
2433 | offsetof(xfs_agi_t, agi_seqno), | |
2434 | offsetof(xfs_agi_t, agi_length), | |
2435 | offsetof(xfs_agi_t, agi_count), | |
2436 | offsetof(xfs_agi_t, agi_root), | |
2437 | offsetof(xfs_agi_t, agi_level), | |
2438 | offsetof(xfs_agi_t, agi_freecount), | |
2439 | offsetof(xfs_agi_t, agi_newino), | |
2440 | offsetof(xfs_agi_t, agi_dirino), | |
2441 | offsetof(xfs_agi_t, agi_unlinked), | |
aafc3c24 BF |
2442 | offsetof(xfs_agi_t, agi_free_root), |
2443 | offsetof(xfs_agi_t, agi_free_level), | |
1da177e4 LT |
2444 | sizeof(xfs_agi_t) |
2445 | }; | |
2446 | #ifdef DEBUG | |
2447 | xfs_agi_t *agi; /* allocation group header */ | |
2448 | ||
2449 | agi = XFS_BUF_TO_AGI(bp); | |
69ef921b | 2450 | ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC)); |
1da177e4 | 2451 | #endif |
aafc3c24 | 2452 | |
1da177e4 | 2453 | /* |
aafc3c24 BF |
2454 | * Compute byte offsets for the first and last fields in the first |
2455 | * region and log the agi buffer. This only logs up through | |
2456 | * agi_unlinked. | |
1da177e4 | 2457 | */ |
aafc3c24 BF |
2458 | if (fields & XFS_AGI_ALL_BITS_R1) { |
2459 | xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1, | |
2460 | &first, &last); | |
2461 | xfs_trans_log_buf(tp, bp, first, last); | |
2462 | } | |
2463 | ||
1da177e4 | 2464 | /* |
aafc3c24 BF |
2465 | * Mask off the bits in the first region and calculate the first and |
2466 | * last field offsets for any bits in the second region. | |
1da177e4 | 2467 | */ |
aafc3c24 BF |
2468 | fields &= ~XFS_AGI_ALL_BITS_R1; |
2469 | if (fields) { | |
2470 | xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2, | |
2471 | &first, &last); | |
2472 | xfs_trans_log_buf(tp, bp, first, last); | |
2473 | } | |
1da177e4 LT |
2474 | } |
2475 | ||
5e1be0fb CH |
2476 | #ifdef DEBUG |
2477 | STATIC void | |
2478 | xfs_check_agi_unlinked( | |
2479 | struct xfs_agi *agi) | |
2480 | { | |
2481 | int i; | |
2482 | ||
2483 | for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) | |
2484 | ASSERT(agi->agi_unlinked[i]); | |
2485 | } | |
2486 | #else | |
2487 | #define xfs_check_agi_unlinked(agi) | |
2488 | #endif | |
2489 | ||
983d09ff | 2490 | static bool |
612cfbfe | 2491 | xfs_agi_verify( |
3702ce6e DC |
2492 | struct xfs_buf *bp) |
2493 | { | |
2494 | struct xfs_mount *mp = bp->b_target->bt_mount; | |
2495 | struct xfs_agi *agi = XFS_BUF_TO_AGI(bp); | |
3702ce6e | 2496 | |
a45086e2 BF |
2497 | if (xfs_sb_version_hascrc(&mp->m_sb)) { |
2498 | if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid)) | |
2499 | return false; | |
2500 | if (!xfs_log_check_lsn(mp, | |
2501 | be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn))) | |
983d09ff | 2502 | return false; |
a45086e2 BF |
2503 | } |
2504 | ||
3702ce6e DC |
2505 | /* |
2506 | * Validate the magic number of the agi block. | |
2507 | */ | |
983d09ff DC |
2508 | if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC)) |
2509 | return false; | |
2510 | if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum))) | |
2511 | return false; | |
3702ce6e | 2512 | |
e1b05723 ES |
2513 | if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS) |
2514 | return false; | |
3702ce6e DC |
2515 | /* |
2516 | * during growfs operations, the perag is not fully initialised, | |
2517 | * so we can't use it for any useful checking. growfs ensures we can't | |
2518 | * use it by using uncached buffers that don't have the perag attached | |
2519 | * so we can detect and avoid this problem. | |
2520 | */ | |
983d09ff DC |
2521 | if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno) |
2522 | return false; | |
3702ce6e | 2523 | |
3702ce6e | 2524 | xfs_check_agi_unlinked(agi); |
983d09ff | 2525 | return true; |
612cfbfe DC |
2526 | } |
2527 | ||
1813dd64 DC |
2528 | static void |
2529 | xfs_agi_read_verify( | |
612cfbfe DC |
2530 | struct xfs_buf *bp) |
2531 | { | |
983d09ff | 2532 | struct xfs_mount *mp = bp->b_target->bt_mount; |
983d09ff | 2533 | |
ce5028cf ES |
2534 | if (xfs_sb_version_hascrc(&mp->m_sb) && |
2535 | !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF)) | |
2451337d | 2536 | xfs_buf_ioerror(bp, -EFSBADCRC); |
ce5028cf ES |
2537 | else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp, |
2538 | XFS_ERRTAG_IALLOC_READ_AGI, | |
2539 | XFS_RANDOM_IALLOC_READ_AGI)) | |
2451337d | 2540 | xfs_buf_ioerror(bp, -EFSCORRUPTED); |
ce5028cf ES |
2541 | |
2542 | if (bp->b_error) | |
2543 | xfs_verifier_error(bp); | |
612cfbfe DC |
2544 | } |
2545 | ||
b0f539de | 2546 | static void |
1813dd64 | 2547 | xfs_agi_write_verify( |
612cfbfe DC |
2548 | struct xfs_buf *bp) |
2549 | { | |
983d09ff DC |
2550 | struct xfs_mount *mp = bp->b_target->bt_mount; |
2551 | struct xfs_buf_log_item *bip = bp->b_fspriv; | |
2552 | ||
2553 | if (!xfs_agi_verify(bp)) { | |
2451337d | 2554 | xfs_buf_ioerror(bp, -EFSCORRUPTED); |
ce5028cf | 2555 | xfs_verifier_error(bp); |
983d09ff DC |
2556 | return; |
2557 | } | |
2558 | ||
2559 | if (!xfs_sb_version_hascrc(&mp->m_sb)) | |
2560 | return; | |
2561 | ||
2562 | if (bip) | |
2563 | XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn); | |
f1dbcd7e | 2564 | xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF); |
3702ce6e DC |
2565 | } |
2566 | ||
1813dd64 | 2567 | const struct xfs_buf_ops xfs_agi_buf_ops = { |
233135b7 | 2568 | .name = "xfs_agi", |
1813dd64 DC |
2569 | .verify_read = xfs_agi_read_verify, |
2570 | .verify_write = xfs_agi_write_verify, | |
2571 | }; | |
2572 | ||
1da177e4 LT |
2573 | /* |
2574 | * Read in the allocation group header (inode allocation section) | |
2575 | */ | |
2576 | int | |
5e1be0fb CH |
2577 | xfs_read_agi( |
2578 | struct xfs_mount *mp, /* file system mount structure */ | |
2579 | struct xfs_trans *tp, /* transaction pointer */ | |
2580 | xfs_agnumber_t agno, /* allocation group number */ | |
2581 | struct xfs_buf **bpp) /* allocation group hdr buf */ | |
1da177e4 | 2582 | { |
5e1be0fb | 2583 | int error; |
1da177e4 | 2584 | |
d123031a | 2585 | trace_xfs_read_agi(mp, agno); |
5e1be0fb | 2586 | |
d123031a | 2587 | ASSERT(agno != NULLAGNUMBER); |
5e1be0fb | 2588 | error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, |
1da177e4 | 2589 | XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)), |
1813dd64 | 2590 | XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops); |
1da177e4 LT |
2591 | if (error) |
2592 | return error; | |
200237d6 ES |
2593 | if (tp) |
2594 | xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF); | |
5e1be0fb | 2595 | |
38f23232 | 2596 | xfs_buf_set_ref(*bpp, XFS_AGI_REF); |
5e1be0fb CH |
2597 | return 0; |
2598 | } | |
2599 | ||
2600 | int | |
2601 | xfs_ialloc_read_agi( | |
2602 | struct xfs_mount *mp, /* file system mount structure */ | |
2603 | struct xfs_trans *tp, /* transaction pointer */ | |
2604 | xfs_agnumber_t agno, /* allocation group number */ | |
2605 | struct xfs_buf **bpp) /* allocation group hdr buf */ | |
2606 | { | |
2607 | struct xfs_agi *agi; /* allocation group header */ | |
2608 | struct xfs_perag *pag; /* per allocation group data */ | |
2609 | int error; | |
2610 | ||
d123031a DC |
2611 | trace_xfs_ialloc_read_agi(mp, agno); |
2612 | ||
5e1be0fb CH |
2613 | error = xfs_read_agi(mp, tp, agno, bpp); |
2614 | if (error) | |
2615 | return error; | |
2616 | ||
2617 | agi = XFS_BUF_TO_AGI(*bpp); | |
44b56e0a | 2618 | pag = xfs_perag_get(mp, agno); |
1da177e4 | 2619 | if (!pag->pagi_init) { |
16259e7d | 2620 | pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); |
92821e2b | 2621 | pag->pagi_count = be32_to_cpu(agi->agi_count); |
1da177e4 | 2622 | pag->pagi_init = 1; |
1da177e4 | 2623 | } |
1da177e4 | 2624 | |
5e1be0fb CH |
2625 | /* |
2626 | * It's possible for these to be out of sync if | |
2627 | * we are in the middle of a forced shutdown. | |
2628 | */ | |
2629 | ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) || | |
2630 | XFS_FORCED_SHUTDOWN(mp)); | |
44b56e0a | 2631 | xfs_perag_put(pag); |
1da177e4 LT |
2632 | return 0; |
2633 | } | |
92821e2b DC |
2634 | |
2635 | /* | |
2636 | * Read in the agi to initialise the per-ag data in the mount structure | |
2637 | */ | |
2638 | int | |
2639 | xfs_ialloc_pagi_init( | |
2640 | xfs_mount_t *mp, /* file system mount structure */ | |
2641 | xfs_trans_t *tp, /* transaction pointer */ | |
2642 | xfs_agnumber_t agno) /* allocation group number */ | |
2643 | { | |
2644 | xfs_buf_t *bp = NULL; | |
2645 | int error; | |
2646 | ||
2647 | error = xfs_ialloc_read_agi(mp, tp, agno, &bp); | |
2648 | if (error) | |
2649 | return error; | |
2650 | if (bp) | |
2651 | xfs_trans_brelse(tp, bp); | |
2652 | return 0; | |
2653 | } |