]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/memory.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * demand-loading started 01.12.91 - seems it is high on the list of | |
9 | * things wanted, and it should be easy to implement. - Linus | |
10 | */ | |
11 | ||
12 | /* | |
13 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | |
14 | * pages started 02.12.91, seems to work. - Linus. | |
15 | * | |
16 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | |
17 | * would have taken more than the 6M I have free, but it worked well as | |
18 | * far as I could see. | |
19 | * | |
20 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | |
21 | */ | |
22 | ||
23 | /* | |
24 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | |
25 | * thought has to go into this. Oh, well.. | |
26 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | |
27 | * Found it. Everything seems to work now. | |
28 | * 20.12.91 - Ok, making the swap-device changeable like the root. | |
29 | */ | |
30 | ||
31 | /* | |
32 | * 05.04.94 - Multi-page memory management added for v1.1. | |
33 | * Idea by Alex Bligh ([email protected]) | |
34 | * | |
35 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | |
36 | * ([email protected]) | |
37 | * | |
38 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | |
39 | */ | |
40 | ||
41 | #include <linux/kernel_stat.h> | |
42 | #include <linux/mm.h> | |
43 | #include <linux/hugetlb.h> | |
44 | #include <linux/mman.h> | |
45 | #include <linux/swap.h> | |
46 | #include <linux/highmem.h> | |
47 | #include <linux/pagemap.h> | |
48 | #include <linux/rmap.h> | |
49 | #include <linux/module.h> | |
0ff92245 | 50 | #include <linux/delayacct.h> |
1da177e4 | 51 | #include <linux/init.h> |
edc79b2a | 52 | #include <linux/writeback.h> |
8a9f3ccd | 53 | #include <linux/memcontrol.h> |
1da177e4 LT |
54 | |
55 | #include <asm/pgalloc.h> | |
56 | #include <asm/uaccess.h> | |
57 | #include <asm/tlb.h> | |
58 | #include <asm/tlbflush.h> | |
59 | #include <asm/pgtable.h> | |
60 | ||
61 | #include <linux/swapops.h> | |
62 | #include <linux/elf.h> | |
63 | ||
42b77728 JB |
64 | #include "internal.h" |
65 | ||
d41dee36 | 66 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
67 | /* use the per-pgdat data instead for discontigmem - mbligh */ |
68 | unsigned long max_mapnr; | |
69 | struct page *mem_map; | |
70 | ||
71 | EXPORT_SYMBOL(max_mapnr); | |
72 | EXPORT_SYMBOL(mem_map); | |
73 | #endif | |
74 | ||
75 | unsigned long num_physpages; | |
76 | /* | |
77 | * A number of key systems in x86 including ioremap() rely on the assumption | |
78 | * that high_memory defines the upper bound on direct map memory, then end | |
79 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and | |
80 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | |
81 | * and ZONE_HIGHMEM. | |
82 | */ | |
83 | void * high_memory; | |
1da177e4 LT |
84 | |
85 | EXPORT_SYMBOL(num_physpages); | |
86 | EXPORT_SYMBOL(high_memory); | |
1da177e4 | 87 | |
32a93233 IM |
88 | /* |
89 | * Randomize the address space (stacks, mmaps, brk, etc.). | |
90 | * | |
91 | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, | |
92 | * as ancient (libc5 based) binaries can segfault. ) | |
93 | */ | |
94 | int randomize_va_space __read_mostly = | |
95 | #ifdef CONFIG_COMPAT_BRK | |
96 | 1; | |
97 | #else | |
98 | 2; | |
99 | #endif | |
a62eaf15 AK |
100 | |
101 | static int __init disable_randmaps(char *s) | |
102 | { | |
103 | randomize_va_space = 0; | |
9b41046c | 104 | return 1; |
a62eaf15 AK |
105 | } |
106 | __setup("norandmaps", disable_randmaps); | |
107 | ||
108 | ||
1da177e4 LT |
109 | /* |
110 | * If a p?d_bad entry is found while walking page tables, report | |
111 | * the error, before resetting entry to p?d_none. Usually (but | |
112 | * very seldom) called out from the p?d_none_or_clear_bad macros. | |
113 | */ | |
114 | ||
115 | void pgd_clear_bad(pgd_t *pgd) | |
116 | { | |
117 | pgd_ERROR(*pgd); | |
118 | pgd_clear(pgd); | |
119 | } | |
120 | ||
121 | void pud_clear_bad(pud_t *pud) | |
122 | { | |
123 | pud_ERROR(*pud); | |
124 | pud_clear(pud); | |
125 | } | |
126 | ||
127 | void pmd_clear_bad(pmd_t *pmd) | |
128 | { | |
129 | pmd_ERROR(*pmd); | |
130 | pmd_clear(pmd); | |
131 | } | |
132 | ||
133 | /* | |
134 | * Note: this doesn't free the actual pages themselves. That | |
135 | * has been handled earlier when unmapping all the memory regions. | |
136 | */ | |
e0da382c | 137 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) |
1da177e4 | 138 | { |
2f569afd | 139 | pgtable_t token = pmd_pgtable(*pmd); |
e0da382c | 140 | pmd_clear(pmd); |
2f569afd | 141 | pte_free_tlb(tlb, token); |
e0da382c | 142 | tlb->mm->nr_ptes--; |
1da177e4 LT |
143 | } |
144 | ||
e0da382c HD |
145 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
146 | unsigned long addr, unsigned long end, | |
147 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
148 | { |
149 | pmd_t *pmd; | |
150 | unsigned long next; | |
e0da382c | 151 | unsigned long start; |
1da177e4 | 152 | |
e0da382c | 153 | start = addr; |
1da177e4 | 154 | pmd = pmd_offset(pud, addr); |
1da177e4 LT |
155 | do { |
156 | next = pmd_addr_end(addr, end); | |
157 | if (pmd_none_or_clear_bad(pmd)) | |
158 | continue; | |
e0da382c | 159 | free_pte_range(tlb, pmd); |
1da177e4 LT |
160 | } while (pmd++, addr = next, addr != end); |
161 | ||
e0da382c HD |
162 | start &= PUD_MASK; |
163 | if (start < floor) | |
164 | return; | |
165 | if (ceiling) { | |
166 | ceiling &= PUD_MASK; | |
167 | if (!ceiling) | |
168 | return; | |
1da177e4 | 169 | } |
e0da382c HD |
170 | if (end - 1 > ceiling - 1) |
171 | return; | |
172 | ||
173 | pmd = pmd_offset(pud, start); | |
174 | pud_clear(pud); | |
175 | pmd_free_tlb(tlb, pmd); | |
1da177e4 LT |
176 | } |
177 | ||
e0da382c HD |
178 | static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, |
179 | unsigned long addr, unsigned long end, | |
180 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
181 | { |
182 | pud_t *pud; | |
183 | unsigned long next; | |
e0da382c | 184 | unsigned long start; |
1da177e4 | 185 | |
e0da382c | 186 | start = addr; |
1da177e4 | 187 | pud = pud_offset(pgd, addr); |
1da177e4 LT |
188 | do { |
189 | next = pud_addr_end(addr, end); | |
190 | if (pud_none_or_clear_bad(pud)) | |
191 | continue; | |
e0da382c | 192 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); |
1da177e4 LT |
193 | } while (pud++, addr = next, addr != end); |
194 | ||
e0da382c HD |
195 | start &= PGDIR_MASK; |
196 | if (start < floor) | |
197 | return; | |
198 | if (ceiling) { | |
199 | ceiling &= PGDIR_MASK; | |
200 | if (!ceiling) | |
201 | return; | |
1da177e4 | 202 | } |
e0da382c HD |
203 | if (end - 1 > ceiling - 1) |
204 | return; | |
205 | ||
206 | pud = pud_offset(pgd, start); | |
207 | pgd_clear(pgd); | |
208 | pud_free_tlb(tlb, pud); | |
1da177e4 LT |
209 | } |
210 | ||
211 | /* | |
e0da382c HD |
212 | * This function frees user-level page tables of a process. |
213 | * | |
1da177e4 LT |
214 | * Must be called with pagetable lock held. |
215 | */ | |
42b77728 | 216 | void free_pgd_range(struct mmu_gather *tlb, |
e0da382c HD |
217 | unsigned long addr, unsigned long end, |
218 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
219 | { |
220 | pgd_t *pgd; | |
221 | unsigned long next; | |
e0da382c HD |
222 | unsigned long start; |
223 | ||
224 | /* | |
225 | * The next few lines have given us lots of grief... | |
226 | * | |
227 | * Why are we testing PMD* at this top level? Because often | |
228 | * there will be no work to do at all, and we'd prefer not to | |
229 | * go all the way down to the bottom just to discover that. | |
230 | * | |
231 | * Why all these "- 1"s? Because 0 represents both the bottom | |
232 | * of the address space and the top of it (using -1 for the | |
233 | * top wouldn't help much: the masks would do the wrong thing). | |
234 | * The rule is that addr 0 and floor 0 refer to the bottom of | |
235 | * the address space, but end 0 and ceiling 0 refer to the top | |
236 | * Comparisons need to use "end - 1" and "ceiling - 1" (though | |
237 | * that end 0 case should be mythical). | |
238 | * | |
239 | * Wherever addr is brought up or ceiling brought down, we must | |
240 | * be careful to reject "the opposite 0" before it confuses the | |
241 | * subsequent tests. But what about where end is brought down | |
242 | * by PMD_SIZE below? no, end can't go down to 0 there. | |
243 | * | |
244 | * Whereas we round start (addr) and ceiling down, by different | |
245 | * masks at different levels, in order to test whether a table | |
246 | * now has no other vmas using it, so can be freed, we don't | |
247 | * bother to round floor or end up - the tests don't need that. | |
248 | */ | |
1da177e4 | 249 | |
e0da382c HD |
250 | addr &= PMD_MASK; |
251 | if (addr < floor) { | |
252 | addr += PMD_SIZE; | |
253 | if (!addr) | |
254 | return; | |
255 | } | |
256 | if (ceiling) { | |
257 | ceiling &= PMD_MASK; | |
258 | if (!ceiling) | |
259 | return; | |
260 | } | |
261 | if (end - 1 > ceiling - 1) | |
262 | end -= PMD_SIZE; | |
263 | if (addr > end - 1) | |
264 | return; | |
265 | ||
266 | start = addr; | |
42b77728 | 267 | pgd = pgd_offset(tlb->mm, addr); |
1da177e4 LT |
268 | do { |
269 | next = pgd_addr_end(addr, end); | |
270 | if (pgd_none_or_clear_bad(pgd)) | |
271 | continue; | |
42b77728 | 272 | free_pud_range(tlb, pgd, addr, next, floor, ceiling); |
1da177e4 | 273 | } while (pgd++, addr = next, addr != end); |
e0da382c HD |
274 | } |
275 | ||
42b77728 | 276 | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, |
3bf5ee95 | 277 | unsigned long floor, unsigned long ceiling) |
e0da382c HD |
278 | { |
279 | while (vma) { | |
280 | struct vm_area_struct *next = vma->vm_next; | |
281 | unsigned long addr = vma->vm_start; | |
282 | ||
8f4f8c16 HD |
283 | /* |
284 | * Hide vma from rmap and vmtruncate before freeing pgtables | |
285 | */ | |
286 | anon_vma_unlink(vma); | |
287 | unlink_file_vma(vma); | |
288 | ||
9da61aef | 289 | if (is_vm_hugetlb_page(vma)) { |
3bf5ee95 | 290 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, |
e0da382c | 291 | floor, next? next->vm_start: ceiling); |
3bf5ee95 HD |
292 | } else { |
293 | /* | |
294 | * Optimization: gather nearby vmas into one call down | |
295 | */ | |
296 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | |
4866920b | 297 | && !is_vm_hugetlb_page(next)) { |
3bf5ee95 HD |
298 | vma = next; |
299 | next = vma->vm_next; | |
8f4f8c16 HD |
300 | anon_vma_unlink(vma); |
301 | unlink_file_vma(vma); | |
3bf5ee95 HD |
302 | } |
303 | free_pgd_range(tlb, addr, vma->vm_end, | |
304 | floor, next? next->vm_start: ceiling); | |
305 | } | |
e0da382c HD |
306 | vma = next; |
307 | } | |
1da177e4 LT |
308 | } |
309 | ||
1bb3630e | 310 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) |
1da177e4 | 311 | { |
2f569afd | 312 | pgtable_t new = pte_alloc_one(mm, address); |
1bb3630e HD |
313 | if (!new) |
314 | return -ENOMEM; | |
315 | ||
362a61ad NP |
316 | /* |
317 | * Ensure all pte setup (eg. pte page lock and page clearing) are | |
318 | * visible before the pte is made visible to other CPUs by being | |
319 | * put into page tables. | |
320 | * | |
321 | * The other side of the story is the pointer chasing in the page | |
322 | * table walking code (when walking the page table without locking; | |
323 | * ie. most of the time). Fortunately, these data accesses consist | |
324 | * of a chain of data-dependent loads, meaning most CPUs (alpha | |
325 | * being the notable exception) will already guarantee loads are | |
326 | * seen in-order. See the alpha page table accessors for the | |
327 | * smp_read_barrier_depends() barriers in page table walking code. | |
328 | */ | |
329 | smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ | |
330 | ||
c74df32c | 331 | spin_lock(&mm->page_table_lock); |
2f569afd | 332 | if (!pmd_present(*pmd)) { /* Has another populated it ? */ |
1da177e4 | 333 | mm->nr_ptes++; |
1da177e4 | 334 | pmd_populate(mm, pmd, new); |
2f569afd | 335 | new = NULL; |
1da177e4 | 336 | } |
c74df32c | 337 | spin_unlock(&mm->page_table_lock); |
2f569afd MS |
338 | if (new) |
339 | pte_free(mm, new); | |
1bb3630e | 340 | return 0; |
1da177e4 LT |
341 | } |
342 | ||
1bb3630e | 343 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) |
1da177e4 | 344 | { |
1bb3630e HD |
345 | pte_t *new = pte_alloc_one_kernel(&init_mm, address); |
346 | if (!new) | |
347 | return -ENOMEM; | |
348 | ||
362a61ad NP |
349 | smp_wmb(); /* See comment in __pte_alloc */ |
350 | ||
1bb3630e | 351 | spin_lock(&init_mm.page_table_lock); |
2f569afd | 352 | if (!pmd_present(*pmd)) { /* Has another populated it ? */ |
1bb3630e | 353 | pmd_populate_kernel(&init_mm, pmd, new); |
2f569afd MS |
354 | new = NULL; |
355 | } | |
1bb3630e | 356 | spin_unlock(&init_mm.page_table_lock); |
2f569afd MS |
357 | if (new) |
358 | pte_free_kernel(&init_mm, new); | |
1bb3630e | 359 | return 0; |
1da177e4 LT |
360 | } |
361 | ||
ae859762 HD |
362 | static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) |
363 | { | |
364 | if (file_rss) | |
365 | add_mm_counter(mm, file_rss, file_rss); | |
366 | if (anon_rss) | |
367 | add_mm_counter(mm, anon_rss, anon_rss); | |
368 | } | |
369 | ||
b5810039 | 370 | /* |
6aab341e LT |
371 | * This function is called to print an error when a bad pte |
372 | * is found. For example, we might have a PFN-mapped pte in | |
373 | * a region that doesn't allow it. | |
b5810039 NP |
374 | * |
375 | * The calling function must still handle the error. | |
376 | */ | |
377 | void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) | |
378 | { | |
379 | printk(KERN_ERR "Bad pte = %08llx, process = %s, " | |
380 | "vm_flags = %lx, vaddr = %lx\n", | |
381 | (long long)pte_val(pte), | |
382 | (vma->vm_mm == current->mm ? current->comm : "???"), | |
383 | vma->vm_flags, vaddr); | |
384 | dump_stack(); | |
385 | } | |
386 | ||
67121172 LT |
387 | static inline int is_cow_mapping(unsigned int flags) |
388 | { | |
389 | return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | |
390 | } | |
391 | ||
ee498ed7 | 392 | /* |
7e675137 | 393 | * vm_normal_page -- This function gets the "struct page" associated with a pte. |
6aab341e | 394 | * |
7e675137 NP |
395 | * "Special" mappings do not wish to be associated with a "struct page" (either |
396 | * it doesn't exist, or it exists but they don't want to touch it). In this | |
397 | * case, NULL is returned here. "Normal" mappings do have a struct page. | |
b379d790 | 398 | * |
7e675137 NP |
399 | * There are 2 broad cases. Firstly, an architecture may define a pte_special() |
400 | * pte bit, in which case this function is trivial. Secondly, an architecture | |
401 | * may not have a spare pte bit, which requires a more complicated scheme, | |
402 | * described below. | |
403 | * | |
404 | * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a | |
405 | * special mapping (even if there are underlying and valid "struct pages"). | |
406 | * COWed pages of a VM_PFNMAP are always normal. | |
6aab341e | 407 | * |
b379d790 JH |
408 | * The way we recognize COWed pages within VM_PFNMAP mappings is through the |
409 | * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit | |
7e675137 NP |
410 | * set, and the vm_pgoff will point to the first PFN mapped: thus every special |
411 | * mapping will always honor the rule | |
6aab341e LT |
412 | * |
413 | * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | |
414 | * | |
7e675137 NP |
415 | * And for normal mappings this is false. |
416 | * | |
417 | * This restricts such mappings to be a linear translation from virtual address | |
418 | * to pfn. To get around this restriction, we allow arbitrary mappings so long | |
419 | * as the vma is not a COW mapping; in that case, we know that all ptes are | |
420 | * special (because none can have been COWed). | |
b379d790 | 421 | * |
b379d790 | 422 | * |
7e675137 | 423 | * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. |
b379d790 JH |
424 | * |
425 | * VM_MIXEDMAP mappings can likewise contain memory with or without "struct | |
426 | * page" backing, however the difference is that _all_ pages with a struct | |
427 | * page (that is, those where pfn_valid is true) are refcounted and considered | |
428 | * normal pages by the VM. The disadvantage is that pages are refcounted | |
429 | * (which can be slower and simply not an option for some PFNMAP users). The | |
430 | * advantage is that we don't have to follow the strict linearity rule of | |
431 | * PFNMAP mappings in order to support COWable mappings. | |
432 | * | |
ee498ed7 | 433 | */ |
7e675137 NP |
434 | #ifdef __HAVE_ARCH_PTE_SPECIAL |
435 | # define HAVE_PTE_SPECIAL 1 | |
436 | #else | |
437 | # define HAVE_PTE_SPECIAL 0 | |
438 | #endif | |
439 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, | |
440 | pte_t pte) | |
ee498ed7 | 441 | { |
7e675137 NP |
442 | unsigned long pfn; |
443 | ||
444 | if (HAVE_PTE_SPECIAL) { | |
445 | if (likely(!pte_special(pte))) { | |
446 | VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | |
447 | return pte_page(pte); | |
448 | } | |
449 | VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); | |
450 | return NULL; | |
451 | } | |
452 | ||
453 | /* !HAVE_PTE_SPECIAL case follows: */ | |
454 | ||
455 | pfn = pte_pfn(pte); | |
6aab341e | 456 | |
b379d790 JH |
457 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { |
458 | if (vma->vm_flags & VM_MIXEDMAP) { | |
459 | if (!pfn_valid(pfn)) | |
460 | return NULL; | |
461 | goto out; | |
462 | } else { | |
7e675137 NP |
463 | unsigned long off; |
464 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
b379d790 JH |
465 | if (pfn == vma->vm_pgoff + off) |
466 | return NULL; | |
467 | if (!is_cow_mapping(vma->vm_flags)) | |
468 | return NULL; | |
469 | } | |
6aab341e LT |
470 | } |
471 | ||
7e675137 | 472 | VM_BUG_ON(!pfn_valid(pfn)); |
6aab341e LT |
473 | |
474 | /* | |
7e675137 | 475 | * NOTE! We still have PageReserved() pages in the page tables. |
6aab341e | 476 | * |
7e675137 | 477 | * eg. VDSO mappings can cause them to exist. |
6aab341e | 478 | */ |
b379d790 | 479 | out: |
6aab341e | 480 | return pfn_to_page(pfn); |
ee498ed7 HD |
481 | } |
482 | ||
1da177e4 LT |
483 | /* |
484 | * copy one vm_area from one task to the other. Assumes the page tables | |
485 | * already present in the new task to be cleared in the whole range | |
486 | * covered by this vma. | |
1da177e4 LT |
487 | */ |
488 | ||
8c103762 | 489 | static inline void |
1da177e4 | 490 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
b5810039 | 491 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, |
8c103762 | 492 | unsigned long addr, int *rss) |
1da177e4 | 493 | { |
b5810039 | 494 | unsigned long vm_flags = vma->vm_flags; |
1da177e4 LT |
495 | pte_t pte = *src_pte; |
496 | struct page *page; | |
1da177e4 LT |
497 | |
498 | /* pte contains position in swap or file, so copy. */ | |
499 | if (unlikely(!pte_present(pte))) { | |
500 | if (!pte_file(pte)) { | |
0697212a CL |
501 | swp_entry_t entry = pte_to_swp_entry(pte); |
502 | ||
503 | swap_duplicate(entry); | |
1da177e4 LT |
504 | /* make sure dst_mm is on swapoff's mmlist. */ |
505 | if (unlikely(list_empty(&dst_mm->mmlist))) { | |
506 | spin_lock(&mmlist_lock); | |
f412ac08 HD |
507 | if (list_empty(&dst_mm->mmlist)) |
508 | list_add(&dst_mm->mmlist, | |
509 | &src_mm->mmlist); | |
1da177e4 LT |
510 | spin_unlock(&mmlist_lock); |
511 | } | |
0697212a CL |
512 | if (is_write_migration_entry(entry) && |
513 | is_cow_mapping(vm_flags)) { | |
514 | /* | |
515 | * COW mappings require pages in both parent | |
516 | * and child to be set to read. | |
517 | */ | |
518 | make_migration_entry_read(&entry); | |
519 | pte = swp_entry_to_pte(entry); | |
520 | set_pte_at(src_mm, addr, src_pte, pte); | |
521 | } | |
1da177e4 | 522 | } |
ae859762 | 523 | goto out_set_pte; |
1da177e4 LT |
524 | } |
525 | ||
1da177e4 LT |
526 | /* |
527 | * If it's a COW mapping, write protect it both | |
528 | * in the parent and the child | |
529 | */ | |
67121172 | 530 | if (is_cow_mapping(vm_flags)) { |
1da177e4 | 531 | ptep_set_wrprotect(src_mm, addr, src_pte); |
3dc90795 | 532 | pte = pte_wrprotect(pte); |
1da177e4 LT |
533 | } |
534 | ||
535 | /* | |
536 | * If it's a shared mapping, mark it clean in | |
537 | * the child | |
538 | */ | |
539 | if (vm_flags & VM_SHARED) | |
540 | pte = pte_mkclean(pte); | |
541 | pte = pte_mkold(pte); | |
6aab341e LT |
542 | |
543 | page = vm_normal_page(vma, addr, pte); | |
544 | if (page) { | |
545 | get_page(page); | |
c97a9e10 | 546 | page_dup_rmap(page, vma, addr); |
6aab341e LT |
547 | rss[!!PageAnon(page)]++; |
548 | } | |
ae859762 HD |
549 | |
550 | out_set_pte: | |
551 | set_pte_at(dst_mm, addr, dst_pte, pte); | |
1da177e4 LT |
552 | } |
553 | ||
554 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
555 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, | |
556 | unsigned long addr, unsigned long end) | |
557 | { | |
558 | pte_t *src_pte, *dst_pte; | |
c74df32c | 559 | spinlock_t *src_ptl, *dst_ptl; |
e040f218 | 560 | int progress = 0; |
8c103762 | 561 | int rss[2]; |
1da177e4 LT |
562 | |
563 | again: | |
ae859762 | 564 | rss[1] = rss[0] = 0; |
c74df32c | 565 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); |
1da177e4 LT |
566 | if (!dst_pte) |
567 | return -ENOMEM; | |
568 | src_pte = pte_offset_map_nested(src_pmd, addr); | |
4c21e2f2 | 569 | src_ptl = pte_lockptr(src_mm, src_pmd); |
f20dc5f7 | 570 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
6606c3e0 | 571 | arch_enter_lazy_mmu_mode(); |
1da177e4 | 572 | |
1da177e4 LT |
573 | do { |
574 | /* | |
575 | * We are holding two locks at this point - either of them | |
576 | * could generate latencies in another task on another CPU. | |
577 | */ | |
e040f218 HD |
578 | if (progress >= 32) { |
579 | progress = 0; | |
580 | if (need_resched() || | |
95c354fe | 581 | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) |
e040f218 HD |
582 | break; |
583 | } | |
1da177e4 LT |
584 | if (pte_none(*src_pte)) { |
585 | progress++; | |
586 | continue; | |
587 | } | |
8c103762 | 588 | copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); |
1da177e4 LT |
589 | progress += 8; |
590 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | |
1da177e4 | 591 | |
6606c3e0 | 592 | arch_leave_lazy_mmu_mode(); |
c74df32c | 593 | spin_unlock(src_ptl); |
1da177e4 | 594 | pte_unmap_nested(src_pte - 1); |
ae859762 | 595 | add_mm_rss(dst_mm, rss[0], rss[1]); |
c74df32c HD |
596 | pte_unmap_unlock(dst_pte - 1, dst_ptl); |
597 | cond_resched(); | |
1da177e4 LT |
598 | if (addr != end) |
599 | goto again; | |
600 | return 0; | |
601 | } | |
602 | ||
603 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
604 | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | |
605 | unsigned long addr, unsigned long end) | |
606 | { | |
607 | pmd_t *src_pmd, *dst_pmd; | |
608 | unsigned long next; | |
609 | ||
610 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | |
611 | if (!dst_pmd) | |
612 | return -ENOMEM; | |
613 | src_pmd = pmd_offset(src_pud, addr); | |
614 | do { | |
615 | next = pmd_addr_end(addr, end); | |
616 | if (pmd_none_or_clear_bad(src_pmd)) | |
617 | continue; | |
618 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | |
619 | vma, addr, next)) | |
620 | return -ENOMEM; | |
621 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | |
622 | return 0; | |
623 | } | |
624 | ||
625 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
626 | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | |
627 | unsigned long addr, unsigned long end) | |
628 | { | |
629 | pud_t *src_pud, *dst_pud; | |
630 | unsigned long next; | |
631 | ||
632 | dst_pud = pud_alloc(dst_mm, dst_pgd, addr); | |
633 | if (!dst_pud) | |
634 | return -ENOMEM; | |
635 | src_pud = pud_offset(src_pgd, addr); | |
636 | do { | |
637 | next = pud_addr_end(addr, end); | |
638 | if (pud_none_or_clear_bad(src_pud)) | |
639 | continue; | |
640 | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | |
641 | vma, addr, next)) | |
642 | return -ENOMEM; | |
643 | } while (dst_pud++, src_pud++, addr = next, addr != end); | |
644 | return 0; | |
645 | } | |
646 | ||
647 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
648 | struct vm_area_struct *vma) | |
649 | { | |
650 | pgd_t *src_pgd, *dst_pgd; | |
651 | unsigned long next; | |
652 | unsigned long addr = vma->vm_start; | |
653 | unsigned long end = vma->vm_end; | |
654 | ||
d992895b NP |
655 | /* |
656 | * Don't copy ptes where a page fault will fill them correctly. | |
657 | * Fork becomes much lighter when there are big shared or private | |
658 | * readonly mappings. The tradeoff is that copy_page_range is more | |
659 | * efficient than faulting. | |
660 | */ | |
4d7672b4 | 661 | if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { |
d992895b NP |
662 | if (!vma->anon_vma) |
663 | return 0; | |
664 | } | |
665 | ||
1da177e4 LT |
666 | if (is_vm_hugetlb_page(vma)) |
667 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); | |
668 | ||
669 | dst_pgd = pgd_offset(dst_mm, addr); | |
670 | src_pgd = pgd_offset(src_mm, addr); | |
671 | do { | |
672 | next = pgd_addr_end(addr, end); | |
673 | if (pgd_none_or_clear_bad(src_pgd)) | |
674 | continue; | |
675 | if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, | |
676 | vma, addr, next)) | |
677 | return -ENOMEM; | |
678 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); | |
679 | return 0; | |
680 | } | |
681 | ||
51c6f666 | 682 | static unsigned long zap_pte_range(struct mmu_gather *tlb, |
b5810039 | 683 | struct vm_area_struct *vma, pmd_t *pmd, |
1da177e4 | 684 | unsigned long addr, unsigned long end, |
51c6f666 | 685 | long *zap_work, struct zap_details *details) |
1da177e4 | 686 | { |
b5810039 | 687 | struct mm_struct *mm = tlb->mm; |
1da177e4 | 688 | pte_t *pte; |
508034a3 | 689 | spinlock_t *ptl; |
ae859762 HD |
690 | int file_rss = 0; |
691 | int anon_rss = 0; | |
1da177e4 | 692 | |
508034a3 | 693 | pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
6606c3e0 | 694 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
695 | do { |
696 | pte_t ptent = *pte; | |
51c6f666 RH |
697 | if (pte_none(ptent)) { |
698 | (*zap_work)--; | |
1da177e4 | 699 | continue; |
51c6f666 | 700 | } |
6f5e6b9e HD |
701 | |
702 | (*zap_work) -= PAGE_SIZE; | |
703 | ||
1da177e4 | 704 | if (pte_present(ptent)) { |
ee498ed7 | 705 | struct page *page; |
51c6f666 | 706 | |
6aab341e | 707 | page = vm_normal_page(vma, addr, ptent); |
1da177e4 LT |
708 | if (unlikely(details) && page) { |
709 | /* | |
710 | * unmap_shared_mapping_pages() wants to | |
711 | * invalidate cache without truncating: | |
712 | * unmap shared but keep private pages. | |
713 | */ | |
714 | if (details->check_mapping && | |
715 | details->check_mapping != page->mapping) | |
716 | continue; | |
717 | /* | |
718 | * Each page->index must be checked when | |
719 | * invalidating or truncating nonlinear. | |
720 | */ | |
721 | if (details->nonlinear_vma && | |
722 | (page->index < details->first_index || | |
723 | page->index > details->last_index)) | |
724 | continue; | |
725 | } | |
b5810039 | 726 | ptent = ptep_get_and_clear_full(mm, addr, pte, |
a600388d | 727 | tlb->fullmm); |
1da177e4 LT |
728 | tlb_remove_tlb_entry(tlb, pte, addr); |
729 | if (unlikely(!page)) | |
730 | continue; | |
731 | if (unlikely(details) && details->nonlinear_vma | |
732 | && linear_page_index(details->nonlinear_vma, | |
733 | addr) != page->index) | |
b5810039 | 734 | set_pte_at(mm, addr, pte, |
1da177e4 | 735 | pgoff_to_pte(page->index)); |
1da177e4 | 736 | if (PageAnon(page)) |
86d912f4 | 737 | anon_rss--; |
6237bcd9 HD |
738 | else { |
739 | if (pte_dirty(ptent)) | |
740 | set_page_dirty(page); | |
741 | if (pte_young(ptent)) | |
daa88c8d | 742 | SetPageReferenced(page); |
86d912f4 | 743 | file_rss--; |
6237bcd9 | 744 | } |
7de6b805 | 745 | page_remove_rmap(page, vma); |
1da177e4 LT |
746 | tlb_remove_page(tlb, page); |
747 | continue; | |
748 | } | |
749 | /* | |
750 | * If details->check_mapping, we leave swap entries; | |
751 | * if details->nonlinear_vma, we leave file entries. | |
752 | */ | |
753 | if (unlikely(details)) | |
754 | continue; | |
755 | if (!pte_file(ptent)) | |
756 | free_swap_and_cache(pte_to_swp_entry(ptent)); | |
9888a1ca | 757 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); |
51c6f666 | 758 | } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); |
ae859762 | 759 | |
86d912f4 | 760 | add_mm_rss(mm, file_rss, anon_rss); |
6606c3e0 | 761 | arch_leave_lazy_mmu_mode(); |
508034a3 | 762 | pte_unmap_unlock(pte - 1, ptl); |
51c6f666 RH |
763 | |
764 | return addr; | |
1da177e4 LT |
765 | } |
766 | ||
51c6f666 | 767 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, |
b5810039 | 768 | struct vm_area_struct *vma, pud_t *pud, |
1da177e4 | 769 | unsigned long addr, unsigned long end, |
51c6f666 | 770 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
771 | { |
772 | pmd_t *pmd; | |
773 | unsigned long next; | |
774 | ||
775 | pmd = pmd_offset(pud, addr); | |
776 | do { | |
777 | next = pmd_addr_end(addr, end); | |
51c6f666 RH |
778 | if (pmd_none_or_clear_bad(pmd)) { |
779 | (*zap_work)--; | |
1da177e4 | 780 | continue; |
51c6f666 RH |
781 | } |
782 | next = zap_pte_range(tlb, vma, pmd, addr, next, | |
783 | zap_work, details); | |
784 | } while (pmd++, addr = next, (addr != end && *zap_work > 0)); | |
785 | ||
786 | return addr; | |
1da177e4 LT |
787 | } |
788 | ||
51c6f666 | 789 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, |
b5810039 | 790 | struct vm_area_struct *vma, pgd_t *pgd, |
1da177e4 | 791 | unsigned long addr, unsigned long end, |
51c6f666 | 792 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
793 | { |
794 | pud_t *pud; | |
795 | unsigned long next; | |
796 | ||
797 | pud = pud_offset(pgd, addr); | |
798 | do { | |
799 | next = pud_addr_end(addr, end); | |
51c6f666 RH |
800 | if (pud_none_or_clear_bad(pud)) { |
801 | (*zap_work)--; | |
1da177e4 | 802 | continue; |
51c6f666 RH |
803 | } |
804 | next = zap_pmd_range(tlb, vma, pud, addr, next, | |
805 | zap_work, details); | |
806 | } while (pud++, addr = next, (addr != end && *zap_work > 0)); | |
807 | ||
808 | return addr; | |
1da177e4 LT |
809 | } |
810 | ||
51c6f666 RH |
811 | static unsigned long unmap_page_range(struct mmu_gather *tlb, |
812 | struct vm_area_struct *vma, | |
1da177e4 | 813 | unsigned long addr, unsigned long end, |
51c6f666 | 814 | long *zap_work, struct zap_details *details) |
1da177e4 LT |
815 | { |
816 | pgd_t *pgd; | |
817 | unsigned long next; | |
818 | ||
819 | if (details && !details->check_mapping && !details->nonlinear_vma) | |
820 | details = NULL; | |
821 | ||
822 | BUG_ON(addr >= end); | |
823 | tlb_start_vma(tlb, vma); | |
824 | pgd = pgd_offset(vma->vm_mm, addr); | |
825 | do { | |
826 | next = pgd_addr_end(addr, end); | |
51c6f666 RH |
827 | if (pgd_none_or_clear_bad(pgd)) { |
828 | (*zap_work)--; | |
1da177e4 | 829 | continue; |
51c6f666 RH |
830 | } |
831 | next = zap_pud_range(tlb, vma, pgd, addr, next, | |
832 | zap_work, details); | |
833 | } while (pgd++, addr = next, (addr != end && *zap_work > 0)); | |
1da177e4 | 834 | tlb_end_vma(tlb, vma); |
51c6f666 RH |
835 | |
836 | return addr; | |
1da177e4 LT |
837 | } |
838 | ||
839 | #ifdef CONFIG_PREEMPT | |
840 | # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) | |
841 | #else | |
842 | /* No preempt: go for improved straight-line efficiency */ | |
843 | # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) | |
844 | #endif | |
845 | ||
846 | /** | |
847 | * unmap_vmas - unmap a range of memory covered by a list of vma's | |
848 | * @tlbp: address of the caller's struct mmu_gather | |
1da177e4 LT |
849 | * @vma: the starting vma |
850 | * @start_addr: virtual address at which to start unmapping | |
851 | * @end_addr: virtual address at which to end unmapping | |
852 | * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here | |
853 | * @details: details of nonlinear truncation or shared cache invalidation | |
854 | * | |
ee39b37b | 855 | * Returns the end address of the unmapping (restart addr if interrupted). |
1da177e4 | 856 | * |
508034a3 | 857 | * Unmap all pages in the vma list. |
1da177e4 | 858 | * |
508034a3 HD |
859 | * We aim to not hold locks for too long (for scheduling latency reasons). |
860 | * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to | |
1da177e4 LT |
861 | * return the ending mmu_gather to the caller. |
862 | * | |
863 | * Only addresses between `start' and `end' will be unmapped. | |
864 | * | |
865 | * The VMA list must be sorted in ascending virtual address order. | |
866 | * | |
867 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | |
868 | * range after unmap_vmas() returns. So the only responsibility here is to | |
869 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | |
870 | * drops the lock and schedules. | |
871 | */ | |
508034a3 | 872 | unsigned long unmap_vmas(struct mmu_gather **tlbp, |
1da177e4 LT |
873 | struct vm_area_struct *vma, unsigned long start_addr, |
874 | unsigned long end_addr, unsigned long *nr_accounted, | |
875 | struct zap_details *details) | |
876 | { | |
51c6f666 | 877 | long zap_work = ZAP_BLOCK_SIZE; |
1da177e4 LT |
878 | unsigned long tlb_start = 0; /* For tlb_finish_mmu */ |
879 | int tlb_start_valid = 0; | |
ee39b37b | 880 | unsigned long start = start_addr; |
1da177e4 | 881 | spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; |
4d6ddfa9 | 882 | int fullmm = (*tlbp)->fullmm; |
1da177e4 LT |
883 | |
884 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { | |
1da177e4 LT |
885 | unsigned long end; |
886 | ||
887 | start = max(vma->vm_start, start_addr); | |
888 | if (start >= vma->vm_end) | |
889 | continue; | |
890 | end = min(vma->vm_end, end_addr); | |
891 | if (end <= vma->vm_start) | |
892 | continue; | |
893 | ||
894 | if (vma->vm_flags & VM_ACCOUNT) | |
895 | *nr_accounted += (end - start) >> PAGE_SHIFT; | |
896 | ||
1da177e4 | 897 | while (start != end) { |
1da177e4 LT |
898 | if (!tlb_start_valid) { |
899 | tlb_start = start; | |
900 | tlb_start_valid = 1; | |
901 | } | |
902 | ||
51c6f666 | 903 | if (unlikely(is_vm_hugetlb_page(vma))) { |
a137e1cc AK |
904 | /* |
905 | * It is undesirable to test vma->vm_file as it | |
906 | * should be non-null for valid hugetlb area. | |
907 | * However, vm_file will be NULL in the error | |
908 | * cleanup path of do_mmap_pgoff. When | |
909 | * hugetlbfs ->mmap method fails, | |
910 | * do_mmap_pgoff() nullifies vma->vm_file | |
911 | * before calling this function to clean up. | |
912 | * Since no pte has actually been setup, it is | |
913 | * safe to do nothing in this case. | |
914 | */ | |
915 | if (vma->vm_file) { | |
916 | unmap_hugepage_range(vma, start, end, NULL); | |
917 | zap_work -= (end - start) / | |
a5516438 | 918 | pages_per_huge_page(hstate_vma(vma)); |
a137e1cc AK |
919 | } |
920 | ||
51c6f666 RH |
921 | start = end; |
922 | } else | |
923 | start = unmap_page_range(*tlbp, vma, | |
924 | start, end, &zap_work, details); | |
925 | ||
926 | if (zap_work > 0) { | |
927 | BUG_ON(start != end); | |
928 | break; | |
1da177e4 LT |
929 | } |
930 | ||
1da177e4 LT |
931 | tlb_finish_mmu(*tlbp, tlb_start, start); |
932 | ||
933 | if (need_resched() || | |
95c354fe | 934 | (i_mmap_lock && spin_needbreak(i_mmap_lock))) { |
1da177e4 | 935 | if (i_mmap_lock) { |
508034a3 | 936 | *tlbp = NULL; |
1da177e4 LT |
937 | goto out; |
938 | } | |
1da177e4 | 939 | cond_resched(); |
1da177e4 LT |
940 | } |
941 | ||
508034a3 | 942 | *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); |
1da177e4 | 943 | tlb_start_valid = 0; |
51c6f666 | 944 | zap_work = ZAP_BLOCK_SIZE; |
1da177e4 LT |
945 | } |
946 | } | |
947 | out: | |
ee39b37b | 948 | return start; /* which is now the end (or restart) address */ |
1da177e4 LT |
949 | } |
950 | ||
951 | /** | |
952 | * zap_page_range - remove user pages in a given range | |
953 | * @vma: vm_area_struct holding the applicable pages | |
954 | * @address: starting address of pages to zap | |
955 | * @size: number of bytes to zap | |
956 | * @details: details of nonlinear truncation or shared cache invalidation | |
957 | */ | |
ee39b37b | 958 | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, |
1da177e4 LT |
959 | unsigned long size, struct zap_details *details) |
960 | { | |
961 | struct mm_struct *mm = vma->vm_mm; | |
962 | struct mmu_gather *tlb; | |
963 | unsigned long end = address + size; | |
964 | unsigned long nr_accounted = 0; | |
965 | ||
1da177e4 | 966 | lru_add_drain(); |
1da177e4 | 967 | tlb = tlb_gather_mmu(mm, 0); |
365e9c87 | 968 | update_hiwater_rss(mm); |
508034a3 HD |
969 | end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); |
970 | if (tlb) | |
971 | tlb_finish_mmu(tlb, address, end); | |
ee39b37b | 972 | return end; |
1da177e4 LT |
973 | } |
974 | ||
975 | /* | |
976 | * Do a quick page-table lookup for a single page. | |
1da177e4 | 977 | */ |
6aab341e | 978 | struct page *follow_page(struct vm_area_struct *vma, unsigned long address, |
deceb6cd | 979 | unsigned int flags) |
1da177e4 LT |
980 | { |
981 | pgd_t *pgd; | |
982 | pud_t *pud; | |
983 | pmd_t *pmd; | |
984 | pte_t *ptep, pte; | |
deceb6cd | 985 | spinlock_t *ptl; |
1da177e4 | 986 | struct page *page; |
6aab341e | 987 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 988 | |
deceb6cd HD |
989 | page = follow_huge_addr(mm, address, flags & FOLL_WRITE); |
990 | if (!IS_ERR(page)) { | |
991 | BUG_ON(flags & FOLL_GET); | |
992 | goto out; | |
993 | } | |
1da177e4 | 994 | |
deceb6cd | 995 | page = NULL; |
1da177e4 LT |
996 | pgd = pgd_offset(mm, address); |
997 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
deceb6cd | 998 | goto no_page_table; |
1da177e4 LT |
999 | |
1000 | pud = pud_offset(pgd, address); | |
ceb86879 | 1001 | if (pud_none(*pud)) |
deceb6cd | 1002 | goto no_page_table; |
ceb86879 AK |
1003 | if (pud_huge(*pud)) { |
1004 | BUG_ON(flags & FOLL_GET); | |
1005 | page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); | |
1006 | goto out; | |
1007 | } | |
1008 | if (unlikely(pud_bad(*pud))) | |
1009 | goto no_page_table; | |
1010 | ||
1da177e4 | 1011 | pmd = pmd_offset(pud, address); |
aeed5fce | 1012 | if (pmd_none(*pmd)) |
deceb6cd | 1013 | goto no_page_table; |
deceb6cd HD |
1014 | if (pmd_huge(*pmd)) { |
1015 | BUG_ON(flags & FOLL_GET); | |
1016 | page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); | |
1da177e4 | 1017 | goto out; |
deceb6cd | 1018 | } |
aeed5fce HD |
1019 | if (unlikely(pmd_bad(*pmd))) |
1020 | goto no_page_table; | |
1021 | ||
deceb6cd | 1022 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
1023 | |
1024 | pte = *ptep; | |
deceb6cd | 1025 | if (!pte_present(pte)) |
89f5b7da | 1026 | goto no_page; |
deceb6cd HD |
1027 | if ((flags & FOLL_WRITE) && !pte_write(pte)) |
1028 | goto unlock; | |
6aab341e LT |
1029 | page = vm_normal_page(vma, address, pte); |
1030 | if (unlikely(!page)) | |
89f5b7da | 1031 | goto bad_page; |
1da177e4 | 1032 | |
deceb6cd HD |
1033 | if (flags & FOLL_GET) |
1034 | get_page(page); | |
1035 | if (flags & FOLL_TOUCH) { | |
1036 | if ((flags & FOLL_WRITE) && | |
1037 | !pte_dirty(pte) && !PageDirty(page)) | |
1038 | set_page_dirty(page); | |
1039 | mark_page_accessed(page); | |
1040 | } | |
1041 | unlock: | |
1042 | pte_unmap_unlock(ptep, ptl); | |
1da177e4 | 1043 | out: |
deceb6cd | 1044 | return page; |
1da177e4 | 1045 | |
89f5b7da LT |
1046 | bad_page: |
1047 | pte_unmap_unlock(ptep, ptl); | |
1048 | return ERR_PTR(-EFAULT); | |
1049 | ||
1050 | no_page: | |
1051 | pte_unmap_unlock(ptep, ptl); | |
1052 | if (!pte_none(pte)) | |
1053 | return page; | |
1054 | /* Fall through to ZERO_PAGE handling */ | |
deceb6cd HD |
1055 | no_page_table: |
1056 | /* | |
1057 | * When core dumping an enormous anonymous area that nobody | |
1058 | * has touched so far, we don't want to allocate page tables. | |
1059 | */ | |
1060 | if (flags & FOLL_ANON) { | |
557ed1fa | 1061 | page = ZERO_PAGE(0); |
deceb6cd HD |
1062 | if (flags & FOLL_GET) |
1063 | get_page(page); | |
1064 | BUG_ON(flags & FOLL_WRITE); | |
1065 | } | |
1066 | return page; | |
1da177e4 LT |
1067 | } |
1068 | ||
672ca28e LT |
1069 | /* Can we do the FOLL_ANON optimization? */ |
1070 | static inline int use_zero_page(struct vm_area_struct *vma) | |
1071 | { | |
1072 | /* | |
1073 | * We don't want to optimize FOLL_ANON for make_pages_present() | |
1074 | * when it tries to page in a VM_LOCKED region. As to VM_SHARED, | |
1075 | * we want to get the page from the page tables to make sure | |
1076 | * that we serialize and update with any other user of that | |
1077 | * mapping. | |
1078 | */ | |
1079 | if (vma->vm_flags & (VM_LOCKED | VM_SHARED)) | |
1080 | return 0; | |
1081 | /* | |
0d71d10a | 1082 | * And if we have a fault routine, it's not an anonymous region. |
672ca28e | 1083 | */ |
0d71d10a | 1084 | return !vma->vm_ops || !vma->vm_ops->fault; |
672ca28e LT |
1085 | } |
1086 | ||
1da177e4 LT |
1087 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, |
1088 | unsigned long start, int len, int write, int force, | |
1089 | struct page **pages, struct vm_area_struct **vmas) | |
1090 | { | |
1091 | int i; | |
deceb6cd | 1092 | unsigned int vm_flags; |
1da177e4 | 1093 | |
900cf086 JC |
1094 | if (len <= 0) |
1095 | return 0; | |
1da177e4 LT |
1096 | /* |
1097 | * Require read or write permissions. | |
1098 | * If 'force' is set, we only require the "MAY" flags. | |
1099 | */ | |
deceb6cd HD |
1100 | vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); |
1101 | vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | |
1da177e4 LT |
1102 | i = 0; |
1103 | ||
1104 | do { | |
deceb6cd HD |
1105 | struct vm_area_struct *vma; |
1106 | unsigned int foll_flags; | |
1da177e4 LT |
1107 | |
1108 | vma = find_extend_vma(mm, start); | |
1109 | if (!vma && in_gate_area(tsk, start)) { | |
1110 | unsigned long pg = start & PAGE_MASK; | |
1111 | struct vm_area_struct *gate_vma = get_gate_vma(tsk); | |
1112 | pgd_t *pgd; | |
1113 | pud_t *pud; | |
1114 | pmd_t *pmd; | |
1115 | pte_t *pte; | |
1116 | if (write) /* user gate pages are read-only */ | |
1117 | return i ? : -EFAULT; | |
1118 | if (pg > TASK_SIZE) | |
1119 | pgd = pgd_offset_k(pg); | |
1120 | else | |
1121 | pgd = pgd_offset_gate(mm, pg); | |
1122 | BUG_ON(pgd_none(*pgd)); | |
1123 | pud = pud_offset(pgd, pg); | |
1124 | BUG_ON(pud_none(*pud)); | |
1125 | pmd = pmd_offset(pud, pg); | |
690dbe1c HD |
1126 | if (pmd_none(*pmd)) |
1127 | return i ? : -EFAULT; | |
1da177e4 | 1128 | pte = pte_offset_map(pmd, pg); |
690dbe1c HD |
1129 | if (pte_none(*pte)) { |
1130 | pte_unmap(pte); | |
1131 | return i ? : -EFAULT; | |
1132 | } | |
1da177e4 | 1133 | if (pages) { |
fa2a455b | 1134 | struct page *page = vm_normal_page(gate_vma, start, *pte); |
6aab341e LT |
1135 | pages[i] = page; |
1136 | if (page) | |
1137 | get_page(page); | |
1da177e4 LT |
1138 | } |
1139 | pte_unmap(pte); | |
1140 | if (vmas) | |
1141 | vmas[i] = gate_vma; | |
1142 | i++; | |
1143 | start += PAGE_SIZE; | |
1144 | len--; | |
1145 | continue; | |
1146 | } | |
1147 | ||
1ff80389 | 1148 | if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP)) |
deceb6cd | 1149 | || !(vm_flags & vma->vm_flags)) |
1da177e4 LT |
1150 | return i ? : -EFAULT; |
1151 | ||
1152 | if (is_vm_hugetlb_page(vma)) { | |
1153 | i = follow_hugetlb_page(mm, vma, pages, vmas, | |
5b23dbe8 | 1154 | &start, &len, i, write); |
1da177e4 LT |
1155 | continue; |
1156 | } | |
deceb6cd HD |
1157 | |
1158 | foll_flags = FOLL_TOUCH; | |
1159 | if (pages) | |
1160 | foll_flags |= FOLL_GET; | |
672ca28e | 1161 | if (!write && use_zero_page(vma)) |
deceb6cd HD |
1162 | foll_flags |= FOLL_ANON; |
1163 | ||
1da177e4 | 1164 | do { |
08ef4729 | 1165 | struct page *page; |
1da177e4 | 1166 | |
462e00cc ES |
1167 | /* |
1168 | * If tsk is ooming, cut off its access to large memory | |
1169 | * allocations. It has a pending SIGKILL, but it can't | |
1170 | * be processed until returning to user space. | |
1171 | */ | |
1172 | if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE))) | |
7a36a752 | 1173 | return i ? i : -ENOMEM; |
462e00cc | 1174 | |
deceb6cd HD |
1175 | if (write) |
1176 | foll_flags |= FOLL_WRITE; | |
a68d2ebc | 1177 | |
deceb6cd | 1178 | cond_resched(); |
6aab341e | 1179 | while (!(page = follow_page(vma, start, foll_flags))) { |
deceb6cd | 1180 | int ret; |
83c54070 | 1181 | ret = handle_mm_fault(mm, vma, start, |
deceb6cd | 1182 | foll_flags & FOLL_WRITE); |
83c54070 NP |
1183 | if (ret & VM_FAULT_ERROR) { |
1184 | if (ret & VM_FAULT_OOM) | |
1185 | return i ? i : -ENOMEM; | |
1186 | else if (ret & VM_FAULT_SIGBUS) | |
1187 | return i ? i : -EFAULT; | |
1188 | BUG(); | |
1189 | } | |
1190 | if (ret & VM_FAULT_MAJOR) | |
1191 | tsk->maj_flt++; | |
1192 | else | |
1193 | tsk->min_flt++; | |
1194 | ||
a68d2ebc | 1195 | /* |
83c54070 NP |
1196 | * The VM_FAULT_WRITE bit tells us that |
1197 | * do_wp_page has broken COW when necessary, | |
1198 | * even if maybe_mkwrite decided not to set | |
1199 | * pte_write. We can thus safely do subsequent | |
1200 | * page lookups as if they were reads. | |
a68d2ebc LT |
1201 | */ |
1202 | if (ret & VM_FAULT_WRITE) | |
deceb6cd | 1203 | foll_flags &= ~FOLL_WRITE; |
83c54070 | 1204 | |
7f7bbbe5 | 1205 | cond_resched(); |
1da177e4 | 1206 | } |
89f5b7da LT |
1207 | if (IS_ERR(page)) |
1208 | return i ? i : PTR_ERR(page); | |
1da177e4 | 1209 | if (pages) { |
08ef4729 | 1210 | pages[i] = page; |
03beb076 | 1211 | |
a6f36be3 | 1212 | flush_anon_page(vma, page, start); |
08ef4729 | 1213 | flush_dcache_page(page); |
1da177e4 LT |
1214 | } |
1215 | if (vmas) | |
1216 | vmas[i] = vma; | |
1217 | i++; | |
1218 | start += PAGE_SIZE; | |
1219 | len--; | |
08ef4729 | 1220 | } while (len && start < vma->vm_end); |
08ef4729 | 1221 | } while (len); |
1da177e4 LT |
1222 | return i; |
1223 | } | |
1da177e4 LT |
1224 | EXPORT_SYMBOL(get_user_pages); |
1225 | ||
920c7a5d HH |
1226 | pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, |
1227 | spinlock_t **ptl) | |
c9cfcddf LT |
1228 | { |
1229 | pgd_t * pgd = pgd_offset(mm, addr); | |
1230 | pud_t * pud = pud_alloc(mm, pgd, addr); | |
1231 | if (pud) { | |
49c91fb0 | 1232 | pmd_t * pmd = pmd_alloc(mm, pud, addr); |
c9cfcddf LT |
1233 | if (pmd) |
1234 | return pte_alloc_map_lock(mm, pmd, addr, ptl); | |
1235 | } | |
1236 | return NULL; | |
1237 | } | |
1238 | ||
238f58d8 LT |
1239 | /* |
1240 | * This is the old fallback for page remapping. | |
1241 | * | |
1242 | * For historical reasons, it only allows reserved pages. Only | |
1243 | * old drivers should use this, and they needed to mark their | |
1244 | * pages reserved for the old functions anyway. | |
1245 | */ | |
423bad60 NP |
1246 | static int insert_page(struct vm_area_struct *vma, unsigned long addr, |
1247 | struct page *page, pgprot_t prot) | |
238f58d8 | 1248 | { |
423bad60 | 1249 | struct mm_struct *mm = vma->vm_mm; |
238f58d8 | 1250 | int retval; |
c9cfcddf | 1251 | pte_t *pte; |
8a9f3ccd BS |
1252 | spinlock_t *ptl; |
1253 | ||
e1a1cd59 | 1254 | retval = mem_cgroup_charge(page, mm, GFP_KERNEL); |
8a9f3ccd BS |
1255 | if (retval) |
1256 | goto out; | |
238f58d8 LT |
1257 | |
1258 | retval = -EINVAL; | |
a145dd41 | 1259 | if (PageAnon(page)) |
8a9f3ccd | 1260 | goto out_uncharge; |
238f58d8 LT |
1261 | retval = -ENOMEM; |
1262 | flush_dcache_page(page); | |
c9cfcddf | 1263 | pte = get_locked_pte(mm, addr, &ptl); |
238f58d8 | 1264 | if (!pte) |
8a9f3ccd | 1265 | goto out_uncharge; |
238f58d8 LT |
1266 | retval = -EBUSY; |
1267 | if (!pte_none(*pte)) | |
1268 | goto out_unlock; | |
1269 | ||
1270 | /* Ok, finally just insert the thing.. */ | |
1271 | get_page(page); | |
1272 | inc_mm_counter(mm, file_rss); | |
1273 | page_add_file_rmap(page); | |
1274 | set_pte_at(mm, addr, pte, mk_pte(page, prot)); | |
1275 | ||
1276 | retval = 0; | |
8a9f3ccd BS |
1277 | pte_unmap_unlock(pte, ptl); |
1278 | return retval; | |
238f58d8 LT |
1279 | out_unlock: |
1280 | pte_unmap_unlock(pte, ptl); | |
8a9f3ccd BS |
1281 | out_uncharge: |
1282 | mem_cgroup_uncharge_page(page); | |
238f58d8 LT |
1283 | out: |
1284 | return retval; | |
1285 | } | |
1286 | ||
bfa5bf6d REB |
1287 | /** |
1288 | * vm_insert_page - insert single page into user vma | |
1289 | * @vma: user vma to map to | |
1290 | * @addr: target user address of this page | |
1291 | * @page: source kernel page | |
1292 | * | |
a145dd41 LT |
1293 | * This allows drivers to insert individual pages they've allocated |
1294 | * into a user vma. | |
1295 | * | |
1296 | * The page has to be a nice clean _individual_ kernel allocation. | |
1297 | * If you allocate a compound page, you need to have marked it as | |
1298 | * such (__GFP_COMP), or manually just split the page up yourself | |
8dfcc9ba | 1299 | * (see split_page()). |
a145dd41 LT |
1300 | * |
1301 | * NOTE! Traditionally this was done with "remap_pfn_range()" which | |
1302 | * took an arbitrary page protection parameter. This doesn't allow | |
1303 | * that. Your vma protection will have to be set up correctly, which | |
1304 | * means that if you want a shared writable mapping, you'd better | |
1305 | * ask for a shared writable mapping! | |
1306 | * | |
1307 | * The page does not need to be reserved. | |
1308 | */ | |
423bad60 NP |
1309 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, |
1310 | struct page *page) | |
a145dd41 LT |
1311 | { |
1312 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
1313 | return -EFAULT; | |
1314 | if (!page_count(page)) | |
1315 | return -EINVAL; | |
4d7672b4 | 1316 | vma->vm_flags |= VM_INSERTPAGE; |
423bad60 | 1317 | return insert_page(vma, addr, page, vma->vm_page_prot); |
a145dd41 | 1318 | } |
e3c3374f | 1319 | EXPORT_SYMBOL(vm_insert_page); |
a145dd41 | 1320 | |
423bad60 NP |
1321 | static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
1322 | unsigned long pfn, pgprot_t prot) | |
1323 | { | |
1324 | struct mm_struct *mm = vma->vm_mm; | |
1325 | int retval; | |
1326 | pte_t *pte, entry; | |
1327 | spinlock_t *ptl; | |
1328 | ||
1329 | retval = -ENOMEM; | |
1330 | pte = get_locked_pte(mm, addr, &ptl); | |
1331 | if (!pte) | |
1332 | goto out; | |
1333 | retval = -EBUSY; | |
1334 | if (!pte_none(*pte)) | |
1335 | goto out_unlock; | |
1336 | ||
1337 | /* Ok, finally just insert the thing.. */ | |
1338 | entry = pte_mkspecial(pfn_pte(pfn, prot)); | |
1339 | set_pte_at(mm, addr, pte, entry); | |
1340 | update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */ | |
1341 | ||
1342 | retval = 0; | |
1343 | out_unlock: | |
1344 | pte_unmap_unlock(pte, ptl); | |
1345 | out: | |
1346 | return retval; | |
1347 | } | |
1348 | ||
e0dc0d8f NP |
1349 | /** |
1350 | * vm_insert_pfn - insert single pfn into user vma | |
1351 | * @vma: user vma to map to | |
1352 | * @addr: target user address of this page | |
1353 | * @pfn: source kernel pfn | |
1354 | * | |
1355 | * Similar to vm_inert_page, this allows drivers to insert individual pages | |
1356 | * they've allocated into a user vma. Same comments apply. | |
1357 | * | |
1358 | * This function should only be called from a vm_ops->fault handler, and | |
1359 | * in that case the handler should return NULL. | |
0d71d10a NP |
1360 | * |
1361 | * vma cannot be a COW mapping. | |
1362 | * | |
1363 | * As this is called only for pages that do not currently exist, we | |
1364 | * do not need to flush old virtual caches or the TLB. | |
e0dc0d8f NP |
1365 | */ |
1366 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | |
423bad60 | 1367 | unsigned long pfn) |
e0dc0d8f | 1368 | { |
7e675137 NP |
1369 | /* |
1370 | * Technically, architectures with pte_special can avoid all these | |
1371 | * restrictions (same for remap_pfn_range). However we would like | |
1372 | * consistency in testing and feature parity among all, so we should | |
1373 | * try to keep these invariants in place for everybody. | |
1374 | */ | |
b379d790 JH |
1375 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); |
1376 | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | |
1377 | (VM_PFNMAP|VM_MIXEDMAP)); | |
1378 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | |
1379 | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | |
e0dc0d8f | 1380 | |
423bad60 NP |
1381 | if (addr < vma->vm_start || addr >= vma->vm_end) |
1382 | return -EFAULT; | |
1383 | return insert_pfn(vma, addr, pfn, vma->vm_page_prot); | |
1384 | } | |
1385 | EXPORT_SYMBOL(vm_insert_pfn); | |
e0dc0d8f | 1386 | |
423bad60 NP |
1387 | int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, |
1388 | unsigned long pfn) | |
1389 | { | |
1390 | BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); | |
e0dc0d8f | 1391 | |
423bad60 NP |
1392 | if (addr < vma->vm_start || addr >= vma->vm_end) |
1393 | return -EFAULT; | |
e0dc0d8f | 1394 | |
423bad60 NP |
1395 | /* |
1396 | * If we don't have pte special, then we have to use the pfn_valid() | |
1397 | * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* | |
1398 | * refcount the page if pfn_valid is true (hence insert_page rather | |
1399 | * than insert_pfn). | |
1400 | */ | |
1401 | if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { | |
1402 | struct page *page; | |
1403 | ||
1404 | page = pfn_to_page(pfn); | |
1405 | return insert_page(vma, addr, page, vma->vm_page_prot); | |
1406 | } | |
1407 | return insert_pfn(vma, addr, pfn, vma->vm_page_prot); | |
e0dc0d8f | 1408 | } |
423bad60 | 1409 | EXPORT_SYMBOL(vm_insert_mixed); |
e0dc0d8f | 1410 | |
1da177e4 LT |
1411 | /* |
1412 | * maps a range of physical memory into the requested pages. the old | |
1413 | * mappings are removed. any references to nonexistent pages results | |
1414 | * in null mappings (currently treated as "copy-on-access") | |
1415 | */ | |
1416 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
1417 | unsigned long addr, unsigned long end, | |
1418 | unsigned long pfn, pgprot_t prot) | |
1419 | { | |
1420 | pte_t *pte; | |
c74df32c | 1421 | spinlock_t *ptl; |
1da177e4 | 1422 | |
c74df32c | 1423 | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1da177e4 LT |
1424 | if (!pte) |
1425 | return -ENOMEM; | |
6606c3e0 | 1426 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
1427 | do { |
1428 | BUG_ON(!pte_none(*pte)); | |
7e675137 | 1429 | set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); |
1da177e4 LT |
1430 | pfn++; |
1431 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
6606c3e0 | 1432 | arch_leave_lazy_mmu_mode(); |
c74df32c | 1433 | pte_unmap_unlock(pte - 1, ptl); |
1da177e4 LT |
1434 | return 0; |
1435 | } | |
1436 | ||
1437 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1438 | unsigned long addr, unsigned long end, | |
1439 | unsigned long pfn, pgprot_t prot) | |
1440 | { | |
1441 | pmd_t *pmd; | |
1442 | unsigned long next; | |
1443 | ||
1444 | pfn -= addr >> PAGE_SHIFT; | |
1445 | pmd = pmd_alloc(mm, pud, addr); | |
1446 | if (!pmd) | |
1447 | return -ENOMEM; | |
1448 | do { | |
1449 | next = pmd_addr_end(addr, end); | |
1450 | if (remap_pte_range(mm, pmd, addr, next, | |
1451 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1452 | return -ENOMEM; | |
1453 | } while (pmd++, addr = next, addr != end); | |
1454 | return 0; | |
1455 | } | |
1456 | ||
1457 | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1458 | unsigned long addr, unsigned long end, | |
1459 | unsigned long pfn, pgprot_t prot) | |
1460 | { | |
1461 | pud_t *pud; | |
1462 | unsigned long next; | |
1463 | ||
1464 | pfn -= addr >> PAGE_SHIFT; | |
1465 | pud = pud_alloc(mm, pgd, addr); | |
1466 | if (!pud) | |
1467 | return -ENOMEM; | |
1468 | do { | |
1469 | next = pud_addr_end(addr, end); | |
1470 | if (remap_pmd_range(mm, pud, addr, next, | |
1471 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1472 | return -ENOMEM; | |
1473 | } while (pud++, addr = next, addr != end); | |
1474 | return 0; | |
1475 | } | |
1476 | ||
bfa5bf6d REB |
1477 | /** |
1478 | * remap_pfn_range - remap kernel memory to userspace | |
1479 | * @vma: user vma to map to | |
1480 | * @addr: target user address to start at | |
1481 | * @pfn: physical address of kernel memory | |
1482 | * @size: size of map area | |
1483 | * @prot: page protection flags for this mapping | |
1484 | * | |
1485 | * Note: this is only safe if the mm semaphore is held when called. | |
1486 | */ | |
1da177e4 LT |
1487 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, |
1488 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
1489 | { | |
1490 | pgd_t *pgd; | |
1491 | unsigned long next; | |
2d15cab8 | 1492 | unsigned long end = addr + PAGE_ALIGN(size); |
1da177e4 LT |
1493 | struct mm_struct *mm = vma->vm_mm; |
1494 | int err; | |
1495 | ||
1496 | /* | |
1497 | * Physically remapped pages are special. Tell the | |
1498 | * rest of the world about it: | |
1499 | * VM_IO tells people not to look at these pages | |
1500 | * (accesses can have side effects). | |
0b14c179 HD |
1501 | * VM_RESERVED is specified all over the place, because |
1502 | * in 2.4 it kept swapout's vma scan off this vma; but | |
1503 | * in 2.6 the LRU scan won't even find its pages, so this | |
1504 | * flag means no more than count its pages in reserved_vm, | |
1505 | * and omit it from core dump, even when VM_IO turned off. | |
6aab341e LT |
1506 | * VM_PFNMAP tells the core MM that the base pages are just |
1507 | * raw PFN mappings, and do not have a "struct page" associated | |
1508 | * with them. | |
fb155c16 LT |
1509 | * |
1510 | * There's a horrible special case to handle copy-on-write | |
1511 | * behaviour that some programs depend on. We mark the "original" | |
1512 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | |
1da177e4 | 1513 | */ |
67121172 | 1514 | if (is_cow_mapping(vma->vm_flags)) { |
fb155c16 | 1515 | if (addr != vma->vm_start || end != vma->vm_end) |
7fc7e2ee | 1516 | return -EINVAL; |
fb155c16 LT |
1517 | vma->vm_pgoff = pfn; |
1518 | } | |
1519 | ||
6aab341e | 1520 | vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; |
1da177e4 LT |
1521 | |
1522 | BUG_ON(addr >= end); | |
1523 | pfn -= addr >> PAGE_SHIFT; | |
1524 | pgd = pgd_offset(mm, addr); | |
1525 | flush_cache_range(vma, addr, end); | |
1da177e4 LT |
1526 | do { |
1527 | next = pgd_addr_end(addr, end); | |
1528 | err = remap_pud_range(mm, pgd, addr, next, | |
1529 | pfn + (addr >> PAGE_SHIFT), prot); | |
1530 | if (err) | |
1531 | break; | |
1532 | } while (pgd++, addr = next, addr != end); | |
1da177e4 LT |
1533 | return err; |
1534 | } | |
1535 | EXPORT_SYMBOL(remap_pfn_range); | |
1536 | ||
aee16b3c JF |
1537 | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, |
1538 | unsigned long addr, unsigned long end, | |
1539 | pte_fn_t fn, void *data) | |
1540 | { | |
1541 | pte_t *pte; | |
1542 | int err; | |
2f569afd | 1543 | pgtable_t token; |
94909914 | 1544 | spinlock_t *uninitialized_var(ptl); |
aee16b3c JF |
1545 | |
1546 | pte = (mm == &init_mm) ? | |
1547 | pte_alloc_kernel(pmd, addr) : | |
1548 | pte_alloc_map_lock(mm, pmd, addr, &ptl); | |
1549 | if (!pte) | |
1550 | return -ENOMEM; | |
1551 | ||
1552 | BUG_ON(pmd_huge(*pmd)); | |
1553 | ||
2f569afd | 1554 | token = pmd_pgtable(*pmd); |
aee16b3c JF |
1555 | |
1556 | do { | |
2f569afd | 1557 | err = fn(pte, token, addr, data); |
aee16b3c JF |
1558 | if (err) |
1559 | break; | |
1560 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
1561 | ||
1562 | if (mm != &init_mm) | |
1563 | pte_unmap_unlock(pte-1, ptl); | |
1564 | return err; | |
1565 | } | |
1566 | ||
1567 | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1568 | unsigned long addr, unsigned long end, | |
1569 | pte_fn_t fn, void *data) | |
1570 | { | |
1571 | pmd_t *pmd; | |
1572 | unsigned long next; | |
1573 | int err; | |
1574 | ||
ceb86879 AK |
1575 | BUG_ON(pud_huge(*pud)); |
1576 | ||
aee16b3c JF |
1577 | pmd = pmd_alloc(mm, pud, addr); |
1578 | if (!pmd) | |
1579 | return -ENOMEM; | |
1580 | do { | |
1581 | next = pmd_addr_end(addr, end); | |
1582 | err = apply_to_pte_range(mm, pmd, addr, next, fn, data); | |
1583 | if (err) | |
1584 | break; | |
1585 | } while (pmd++, addr = next, addr != end); | |
1586 | return err; | |
1587 | } | |
1588 | ||
1589 | static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1590 | unsigned long addr, unsigned long end, | |
1591 | pte_fn_t fn, void *data) | |
1592 | { | |
1593 | pud_t *pud; | |
1594 | unsigned long next; | |
1595 | int err; | |
1596 | ||
1597 | pud = pud_alloc(mm, pgd, addr); | |
1598 | if (!pud) | |
1599 | return -ENOMEM; | |
1600 | do { | |
1601 | next = pud_addr_end(addr, end); | |
1602 | err = apply_to_pmd_range(mm, pud, addr, next, fn, data); | |
1603 | if (err) | |
1604 | break; | |
1605 | } while (pud++, addr = next, addr != end); | |
1606 | return err; | |
1607 | } | |
1608 | ||
1609 | /* | |
1610 | * Scan a region of virtual memory, filling in page tables as necessary | |
1611 | * and calling a provided function on each leaf page table. | |
1612 | */ | |
1613 | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |
1614 | unsigned long size, pte_fn_t fn, void *data) | |
1615 | { | |
1616 | pgd_t *pgd; | |
1617 | unsigned long next; | |
1618 | unsigned long end = addr + size; | |
1619 | int err; | |
1620 | ||
1621 | BUG_ON(addr >= end); | |
1622 | pgd = pgd_offset(mm, addr); | |
1623 | do { | |
1624 | next = pgd_addr_end(addr, end); | |
1625 | err = apply_to_pud_range(mm, pgd, addr, next, fn, data); | |
1626 | if (err) | |
1627 | break; | |
1628 | } while (pgd++, addr = next, addr != end); | |
1629 | return err; | |
1630 | } | |
1631 | EXPORT_SYMBOL_GPL(apply_to_page_range); | |
1632 | ||
8f4e2101 HD |
1633 | /* |
1634 | * handle_pte_fault chooses page fault handler according to an entry | |
1635 | * which was read non-atomically. Before making any commitment, on | |
1636 | * those architectures or configurations (e.g. i386 with PAE) which | |
1637 | * might give a mix of unmatched parts, do_swap_page and do_file_page | |
1638 | * must check under lock before unmapping the pte and proceeding | |
1639 | * (but do_wp_page is only called after already making such a check; | |
1640 | * and do_anonymous_page and do_no_page can safely check later on). | |
1641 | */ | |
4c21e2f2 | 1642 | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, |
8f4e2101 HD |
1643 | pte_t *page_table, pte_t orig_pte) |
1644 | { | |
1645 | int same = 1; | |
1646 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | |
1647 | if (sizeof(pte_t) > sizeof(unsigned long)) { | |
4c21e2f2 HD |
1648 | spinlock_t *ptl = pte_lockptr(mm, pmd); |
1649 | spin_lock(ptl); | |
8f4e2101 | 1650 | same = pte_same(*page_table, orig_pte); |
4c21e2f2 | 1651 | spin_unlock(ptl); |
8f4e2101 HD |
1652 | } |
1653 | #endif | |
1654 | pte_unmap(page_table); | |
1655 | return same; | |
1656 | } | |
1657 | ||
1da177e4 LT |
1658 | /* |
1659 | * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when | |
1660 | * servicing faults for write access. In the normal case, do always want | |
1661 | * pte_mkwrite. But get_user_pages can cause write faults for mappings | |
1662 | * that do not have writing enabled, when used by access_process_vm. | |
1663 | */ | |
1664 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) | |
1665 | { | |
1666 | if (likely(vma->vm_flags & VM_WRITE)) | |
1667 | pte = pte_mkwrite(pte); | |
1668 | return pte; | |
1669 | } | |
1670 | ||
9de455b2 | 1671 | static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) |
6aab341e LT |
1672 | { |
1673 | /* | |
1674 | * If the source page was a PFN mapping, we don't have | |
1675 | * a "struct page" for it. We do a best-effort copy by | |
1676 | * just copying from the original user address. If that | |
1677 | * fails, we just zero-fill it. Live with it. | |
1678 | */ | |
1679 | if (unlikely(!src)) { | |
1680 | void *kaddr = kmap_atomic(dst, KM_USER0); | |
5d2a2dbb LT |
1681 | void __user *uaddr = (void __user *)(va & PAGE_MASK); |
1682 | ||
1683 | /* | |
1684 | * This really shouldn't fail, because the page is there | |
1685 | * in the page tables. But it might just be unreadable, | |
1686 | * in which case we just give up and fill the result with | |
1687 | * zeroes. | |
1688 | */ | |
1689 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) | |
6aab341e LT |
1690 | memset(kaddr, 0, PAGE_SIZE); |
1691 | kunmap_atomic(kaddr, KM_USER0); | |
c4ec7b0d | 1692 | flush_dcache_page(dst); |
0ed361de NP |
1693 | } else |
1694 | copy_user_highpage(dst, src, va, vma); | |
6aab341e LT |
1695 | } |
1696 | ||
1da177e4 LT |
1697 | /* |
1698 | * This routine handles present pages, when users try to write | |
1699 | * to a shared page. It is done by copying the page to a new address | |
1700 | * and decrementing the shared-page counter for the old page. | |
1701 | * | |
1da177e4 LT |
1702 | * Note that this routine assumes that the protection checks have been |
1703 | * done by the caller (the low-level page fault routine in most cases). | |
1704 | * Thus we can safely just mark it writable once we've done any necessary | |
1705 | * COW. | |
1706 | * | |
1707 | * We also mark the page dirty at this point even though the page will | |
1708 | * change only once the write actually happens. This avoids a few races, | |
1709 | * and potentially makes it more efficient. | |
1710 | * | |
8f4e2101 HD |
1711 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
1712 | * but allow concurrent faults), with pte both mapped and locked. | |
1713 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 1714 | */ |
65500d23 HD |
1715 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, |
1716 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
8f4e2101 | 1717 | spinlock_t *ptl, pte_t orig_pte) |
1da177e4 | 1718 | { |
e5bbe4df | 1719 | struct page *old_page, *new_page; |
1da177e4 | 1720 | pte_t entry; |
83c54070 | 1721 | int reuse = 0, ret = 0; |
a200ee18 | 1722 | int page_mkwrite = 0; |
d08b3851 | 1723 | struct page *dirty_page = NULL; |
1da177e4 | 1724 | |
6aab341e | 1725 | old_page = vm_normal_page(vma, address, orig_pte); |
251b97f5 PZ |
1726 | if (!old_page) { |
1727 | /* | |
1728 | * VM_MIXEDMAP !pfn_valid() case | |
1729 | * | |
1730 | * We should not cow pages in a shared writeable mapping. | |
1731 | * Just mark the pages writable as we can't do any dirty | |
1732 | * accounting on raw pfn maps. | |
1733 | */ | |
1734 | if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | |
1735 | (VM_WRITE|VM_SHARED)) | |
1736 | goto reuse; | |
6aab341e | 1737 | goto gotten; |
251b97f5 | 1738 | } |
1da177e4 | 1739 | |
d08b3851 | 1740 | /* |
ee6a6457 PZ |
1741 | * Take out anonymous pages first, anonymous shared vmas are |
1742 | * not dirty accountable. | |
d08b3851 | 1743 | */ |
ee6a6457 PZ |
1744 | if (PageAnon(old_page)) { |
1745 | if (!TestSetPageLocked(old_page)) { | |
1746 | reuse = can_share_swap_page(old_page); | |
1747 | unlock_page(old_page); | |
1748 | } | |
1749 | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | |
d08b3851 | 1750 | (VM_WRITE|VM_SHARED))) { |
ee6a6457 PZ |
1751 | /* |
1752 | * Only catch write-faults on shared writable pages, | |
1753 | * read-only shared pages can get COWed by | |
1754 | * get_user_pages(.write=1, .force=1). | |
1755 | */ | |
9637a5ef DH |
1756 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { |
1757 | /* | |
1758 | * Notify the address space that the page is about to | |
1759 | * become writable so that it can prohibit this or wait | |
1760 | * for the page to get into an appropriate state. | |
1761 | * | |
1762 | * We do this without the lock held, so that it can | |
1763 | * sleep if it needs to. | |
1764 | */ | |
1765 | page_cache_get(old_page); | |
1766 | pte_unmap_unlock(page_table, ptl); | |
1767 | ||
1768 | if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) | |
1769 | goto unwritable_page; | |
1770 | ||
9637a5ef DH |
1771 | /* |
1772 | * Since we dropped the lock we need to revalidate | |
1773 | * the PTE as someone else may have changed it. If | |
1774 | * they did, we just return, as we can count on the | |
1775 | * MMU to tell us if they didn't also make it writable. | |
1776 | */ | |
1777 | page_table = pte_offset_map_lock(mm, pmd, address, | |
1778 | &ptl); | |
c3704ceb | 1779 | page_cache_release(old_page); |
9637a5ef DH |
1780 | if (!pte_same(*page_table, orig_pte)) |
1781 | goto unlock; | |
a200ee18 PZ |
1782 | |
1783 | page_mkwrite = 1; | |
1da177e4 | 1784 | } |
d08b3851 PZ |
1785 | dirty_page = old_page; |
1786 | get_page(dirty_page); | |
9637a5ef | 1787 | reuse = 1; |
9637a5ef DH |
1788 | } |
1789 | ||
1790 | if (reuse) { | |
251b97f5 | 1791 | reuse: |
9637a5ef DH |
1792 | flush_cache_page(vma, address, pte_pfn(orig_pte)); |
1793 | entry = pte_mkyoung(orig_pte); | |
1794 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
954ffcb3 | 1795 | if (ptep_set_access_flags(vma, address, page_table, entry,1)) |
8dab5241 | 1796 | update_mmu_cache(vma, address, entry); |
9637a5ef DH |
1797 | ret |= VM_FAULT_WRITE; |
1798 | goto unlock; | |
1da177e4 | 1799 | } |
1da177e4 LT |
1800 | |
1801 | /* | |
1802 | * Ok, we need to copy. Oh, well.. | |
1803 | */ | |
b5810039 | 1804 | page_cache_get(old_page); |
920fc356 | 1805 | gotten: |
8f4e2101 | 1806 | pte_unmap_unlock(page_table, ptl); |
1da177e4 LT |
1807 | |
1808 | if (unlikely(anon_vma_prepare(vma))) | |
65500d23 | 1809 | goto oom; |
557ed1fa NP |
1810 | VM_BUG_ON(old_page == ZERO_PAGE(0)); |
1811 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); | |
1812 | if (!new_page) | |
1813 | goto oom; | |
1814 | cow_user_page(new_page, old_page, address, vma); | |
0ed361de | 1815 | __SetPageUptodate(new_page); |
65500d23 | 1816 | |
e1a1cd59 | 1817 | if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) |
8a9f3ccd BS |
1818 | goto oom_free_new; |
1819 | ||
1da177e4 LT |
1820 | /* |
1821 | * Re-check the pte - we dropped the lock | |
1822 | */ | |
8f4e2101 | 1823 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
65500d23 | 1824 | if (likely(pte_same(*page_table, orig_pte))) { |
920fc356 | 1825 | if (old_page) { |
920fc356 HD |
1826 | if (!PageAnon(old_page)) { |
1827 | dec_mm_counter(mm, file_rss); | |
1828 | inc_mm_counter(mm, anon_rss); | |
1829 | } | |
1830 | } else | |
4294621f | 1831 | inc_mm_counter(mm, anon_rss); |
eca35133 | 1832 | flush_cache_page(vma, address, pte_pfn(orig_pte)); |
65500d23 HD |
1833 | entry = mk_pte(new_page, vma->vm_page_prot); |
1834 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
4ce072f1 SS |
1835 | /* |
1836 | * Clear the pte entry and flush it first, before updating the | |
1837 | * pte with the new entry. This will avoid a race condition | |
1838 | * seen in the presence of one thread doing SMC and another | |
1839 | * thread doing COW. | |
1840 | */ | |
1841 | ptep_clear_flush(vma, address, page_table); | |
1842 | set_pte_at(mm, address, page_table, entry); | |
65500d23 | 1843 | update_mmu_cache(vma, address, entry); |
1da177e4 | 1844 | lru_cache_add_active(new_page); |
9617d95e | 1845 | page_add_new_anon_rmap(new_page, vma, address); |
1da177e4 | 1846 | |
945754a1 NP |
1847 | if (old_page) { |
1848 | /* | |
1849 | * Only after switching the pte to the new page may | |
1850 | * we remove the mapcount here. Otherwise another | |
1851 | * process may come and find the rmap count decremented | |
1852 | * before the pte is switched to the new page, and | |
1853 | * "reuse" the old page writing into it while our pte | |
1854 | * here still points into it and can be read by other | |
1855 | * threads. | |
1856 | * | |
1857 | * The critical issue is to order this | |
1858 | * page_remove_rmap with the ptp_clear_flush above. | |
1859 | * Those stores are ordered by (if nothing else,) | |
1860 | * the barrier present in the atomic_add_negative | |
1861 | * in page_remove_rmap. | |
1862 | * | |
1863 | * Then the TLB flush in ptep_clear_flush ensures that | |
1864 | * no process can access the old page before the | |
1865 | * decremented mapcount is visible. And the old page | |
1866 | * cannot be reused until after the decremented | |
1867 | * mapcount is visible. So transitively, TLBs to | |
1868 | * old page will be flushed before it can be reused. | |
1869 | */ | |
1870 | page_remove_rmap(old_page, vma); | |
1871 | } | |
1872 | ||
1da177e4 LT |
1873 | /* Free the old page.. */ |
1874 | new_page = old_page; | |
f33ea7f4 | 1875 | ret |= VM_FAULT_WRITE; |
8a9f3ccd BS |
1876 | } else |
1877 | mem_cgroup_uncharge_page(new_page); | |
1878 | ||
920fc356 HD |
1879 | if (new_page) |
1880 | page_cache_release(new_page); | |
1881 | if (old_page) | |
1882 | page_cache_release(old_page); | |
65500d23 | 1883 | unlock: |
8f4e2101 | 1884 | pte_unmap_unlock(page_table, ptl); |
d08b3851 | 1885 | if (dirty_page) { |
8f7b3d15 AS |
1886 | if (vma->vm_file) |
1887 | file_update_time(vma->vm_file); | |
1888 | ||
79352894 NP |
1889 | /* |
1890 | * Yes, Virginia, this is actually required to prevent a race | |
1891 | * with clear_page_dirty_for_io() from clearing the page dirty | |
1892 | * bit after it clear all dirty ptes, but before a racing | |
1893 | * do_wp_page installs a dirty pte. | |
1894 | * | |
1895 | * do_no_page is protected similarly. | |
1896 | */ | |
1897 | wait_on_page_locked(dirty_page); | |
a200ee18 | 1898 | set_page_dirty_balance(dirty_page, page_mkwrite); |
d08b3851 PZ |
1899 | put_page(dirty_page); |
1900 | } | |
f33ea7f4 | 1901 | return ret; |
8a9f3ccd | 1902 | oom_free_new: |
6dbf6d3b | 1903 | page_cache_release(new_page); |
65500d23 | 1904 | oom: |
920fc356 HD |
1905 | if (old_page) |
1906 | page_cache_release(old_page); | |
1da177e4 | 1907 | return VM_FAULT_OOM; |
9637a5ef DH |
1908 | |
1909 | unwritable_page: | |
1910 | page_cache_release(old_page); | |
1911 | return VM_FAULT_SIGBUS; | |
1da177e4 LT |
1912 | } |
1913 | ||
1914 | /* | |
1915 | * Helper functions for unmap_mapping_range(). | |
1916 | * | |
1917 | * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ | |
1918 | * | |
1919 | * We have to restart searching the prio_tree whenever we drop the lock, | |
1920 | * since the iterator is only valid while the lock is held, and anyway | |
1921 | * a later vma might be split and reinserted earlier while lock dropped. | |
1922 | * | |
1923 | * The list of nonlinear vmas could be handled more efficiently, using | |
1924 | * a placeholder, but handle it in the same way until a need is shown. | |
1925 | * It is important to search the prio_tree before nonlinear list: a vma | |
1926 | * may become nonlinear and be shifted from prio_tree to nonlinear list | |
1927 | * while the lock is dropped; but never shifted from list to prio_tree. | |
1928 | * | |
1929 | * In order to make forward progress despite restarting the search, | |
1930 | * vm_truncate_count is used to mark a vma as now dealt with, so we can | |
1931 | * quickly skip it next time around. Since the prio_tree search only | |
1932 | * shows us those vmas affected by unmapping the range in question, we | |
1933 | * can't efficiently keep all vmas in step with mapping->truncate_count: | |
1934 | * so instead reset them all whenever it wraps back to 0 (then go to 1). | |
1935 | * mapping->truncate_count and vma->vm_truncate_count are protected by | |
1936 | * i_mmap_lock. | |
1937 | * | |
1938 | * In order to make forward progress despite repeatedly restarting some | |
ee39b37b | 1939 | * large vma, note the restart_addr from unmap_vmas when it breaks out: |
1da177e4 LT |
1940 | * and restart from that address when we reach that vma again. It might |
1941 | * have been split or merged, shrunk or extended, but never shifted: so | |
1942 | * restart_addr remains valid so long as it remains in the vma's range. | |
1943 | * unmap_mapping_range forces truncate_count to leap over page-aligned | |
1944 | * values so we can save vma's restart_addr in its truncate_count field. | |
1945 | */ | |
1946 | #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) | |
1947 | ||
1948 | static void reset_vma_truncate_counts(struct address_space *mapping) | |
1949 | { | |
1950 | struct vm_area_struct *vma; | |
1951 | struct prio_tree_iter iter; | |
1952 | ||
1953 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) | |
1954 | vma->vm_truncate_count = 0; | |
1955 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) | |
1956 | vma->vm_truncate_count = 0; | |
1957 | } | |
1958 | ||
1959 | static int unmap_mapping_range_vma(struct vm_area_struct *vma, | |
1960 | unsigned long start_addr, unsigned long end_addr, | |
1961 | struct zap_details *details) | |
1962 | { | |
1963 | unsigned long restart_addr; | |
1964 | int need_break; | |
1965 | ||
d00806b1 NP |
1966 | /* |
1967 | * files that support invalidating or truncating portions of the | |
d0217ac0 | 1968 | * file from under mmaped areas must have their ->fault function |
83c54070 NP |
1969 | * return a locked page (and set VM_FAULT_LOCKED in the return). |
1970 | * This provides synchronisation against concurrent unmapping here. | |
d00806b1 | 1971 | */ |
d00806b1 | 1972 | |
1da177e4 LT |
1973 | again: |
1974 | restart_addr = vma->vm_truncate_count; | |
1975 | if (is_restart_addr(restart_addr) && start_addr < restart_addr) { | |
1976 | start_addr = restart_addr; | |
1977 | if (start_addr >= end_addr) { | |
1978 | /* Top of vma has been split off since last time */ | |
1979 | vma->vm_truncate_count = details->truncate_count; | |
1980 | return 0; | |
1981 | } | |
1982 | } | |
1983 | ||
ee39b37b HD |
1984 | restart_addr = zap_page_range(vma, start_addr, |
1985 | end_addr - start_addr, details); | |
95c354fe | 1986 | need_break = need_resched() || spin_needbreak(details->i_mmap_lock); |
1da177e4 | 1987 | |
ee39b37b | 1988 | if (restart_addr >= end_addr) { |
1da177e4 LT |
1989 | /* We have now completed this vma: mark it so */ |
1990 | vma->vm_truncate_count = details->truncate_count; | |
1991 | if (!need_break) | |
1992 | return 0; | |
1993 | } else { | |
1994 | /* Note restart_addr in vma's truncate_count field */ | |
ee39b37b | 1995 | vma->vm_truncate_count = restart_addr; |
1da177e4 LT |
1996 | if (!need_break) |
1997 | goto again; | |
1998 | } | |
1999 | ||
2000 | spin_unlock(details->i_mmap_lock); | |
2001 | cond_resched(); | |
2002 | spin_lock(details->i_mmap_lock); | |
2003 | return -EINTR; | |
2004 | } | |
2005 | ||
2006 | static inline void unmap_mapping_range_tree(struct prio_tree_root *root, | |
2007 | struct zap_details *details) | |
2008 | { | |
2009 | struct vm_area_struct *vma; | |
2010 | struct prio_tree_iter iter; | |
2011 | pgoff_t vba, vea, zba, zea; | |
2012 | ||
2013 | restart: | |
2014 | vma_prio_tree_foreach(vma, &iter, root, | |
2015 | details->first_index, details->last_index) { | |
2016 | /* Skip quickly over those we have already dealt with */ | |
2017 | if (vma->vm_truncate_count == details->truncate_count) | |
2018 | continue; | |
2019 | ||
2020 | vba = vma->vm_pgoff; | |
2021 | vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; | |
2022 | /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ | |
2023 | zba = details->first_index; | |
2024 | if (zba < vba) | |
2025 | zba = vba; | |
2026 | zea = details->last_index; | |
2027 | if (zea > vea) | |
2028 | zea = vea; | |
2029 | ||
2030 | if (unmap_mapping_range_vma(vma, | |
2031 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, | |
2032 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | |
2033 | details) < 0) | |
2034 | goto restart; | |
2035 | } | |
2036 | } | |
2037 | ||
2038 | static inline void unmap_mapping_range_list(struct list_head *head, | |
2039 | struct zap_details *details) | |
2040 | { | |
2041 | struct vm_area_struct *vma; | |
2042 | ||
2043 | /* | |
2044 | * In nonlinear VMAs there is no correspondence between virtual address | |
2045 | * offset and file offset. So we must perform an exhaustive search | |
2046 | * across *all* the pages in each nonlinear VMA, not just the pages | |
2047 | * whose virtual address lies outside the file truncation point. | |
2048 | */ | |
2049 | restart: | |
2050 | list_for_each_entry(vma, head, shared.vm_set.list) { | |
2051 | /* Skip quickly over those we have already dealt with */ | |
2052 | if (vma->vm_truncate_count == details->truncate_count) | |
2053 | continue; | |
2054 | details->nonlinear_vma = vma; | |
2055 | if (unmap_mapping_range_vma(vma, vma->vm_start, | |
2056 | vma->vm_end, details) < 0) | |
2057 | goto restart; | |
2058 | } | |
2059 | } | |
2060 | ||
2061 | /** | |
72fd4a35 | 2062 | * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. |
3d41088f | 2063 | * @mapping: the address space containing mmaps to be unmapped. |
1da177e4 LT |
2064 | * @holebegin: byte in first page to unmap, relative to the start of |
2065 | * the underlying file. This will be rounded down to a PAGE_SIZE | |
2066 | * boundary. Note that this is different from vmtruncate(), which | |
2067 | * must keep the partial page. In contrast, we must get rid of | |
2068 | * partial pages. | |
2069 | * @holelen: size of prospective hole in bytes. This will be rounded | |
2070 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | |
2071 | * end of the file. | |
2072 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | |
2073 | * but 0 when invalidating pagecache, don't throw away private data. | |
2074 | */ | |
2075 | void unmap_mapping_range(struct address_space *mapping, | |
2076 | loff_t const holebegin, loff_t const holelen, int even_cows) | |
2077 | { | |
2078 | struct zap_details details; | |
2079 | pgoff_t hba = holebegin >> PAGE_SHIFT; | |
2080 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
2081 | ||
2082 | /* Check for overflow. */ | |
2083 | if (sizeof(holelen) > sizeof(hlen)) { | |
2084 | long long holeend = | |
2085 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
2086 | if (holeend & ~(long long)ULONG_MAX) | |
2087 | hlen = ULONG_MAX - hba + 1; | |
2088 | } | |
2089 | ||
2090 | details.check_mapping = even_cows? NULL: mapping; | |
2091 | details.nonlinear_vma = NULL; | |
2092 | details.first_index = hba; | |
2093 | details.last_index = hba + hlen - 1; | |
2094 | if (details.last_index < details.first_index) | |
2095 | details.last_index = ULONG_MAX; | |
2096 | details.i_mmap_lock = &mapping->i_mmap_lock; | |
2097 | ||
2098 | spin_lock(&mapping->i_mmap_lock); | |
2099 | ||
d00806b1 | 2100 | /* Protect against endless unmapping loops */ |
1da177e4 | 2101 | mapping->truncate_count++; |
1da177e4 LT |
2102 | if (unlikely(is_restart_addr(mapping->truncate_count))) { |
2103 | if (mapping->truncate_count == 0) | |
2104 | reset_vma_truncate_counts(mapping); | |
2105 | mapping->truncate_count++; | |
2106 | } | |
2107 | details.truncate_count = mapping->truncate_count; | |
2108 | ||
2109 | if (unlikely(!prio_tree_empty(&mapping->i_mmap))) | |
2110 | unmap_mapping_range_tree(&mapping->i_mmap, &details); | |
2111 | if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) | |
2112 | unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); | |
2113 | spin_unlock(&mapping->i_mmap_lock); | |
2114 | } | |
2115 | EXPORT_SYMBOL(unmap_mapping_range); | |
2116 | ||
bfa5bf6d REB |
2117 | /** |
2118 | * vmtruncate - unmap mappings "freed" by truncate() syscall | |
2119 | * @inode: inode of the file used | |
2120 | * @offset: file offset to start truncating | |
1da177e4 LT |
2121 | * |
2122 | * NOTE! We have to be ready to update the memory sharing | |
2123 | * between the file and the memory map for a potential last | |
2124 | * incomplete page. Ugly, but necessary. | |
2125 | */ | |
2126 | int vmtruncate(struct inode * inode, loff_t offset) | |
2127 | { | |
61d5048f CH |
2128 | if (inode->i_size < offset) { |
2129 | unsigned long limit; | |
2130 | ||
2131 | limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; | |
2132 | if (limit != RLIM_INFINITY && offset > limit) | |
2133 | goto out_sig; | |
2134 | if (offset > inode->i_sb->s_maxbytes) | |
2135 | goto out_big; | |
2136 | i_size_write(inode, offset); | |
2137 | } else { | |
2138 | struct address_space *mapping = inode->i_mapping; | |
1da177e4 | 2139 | |
61d5048f CH |
2140 | /* |
2141 | * truncation of in-use swapfiles is disallowed - it would | |
2142 | * cause subsequent swapout to scribble on the now-freed | |
2143 | * blocks. | |
2144 | */ | |
2145 | if (IS_SWAPFILE(inode)) | |
2146 | return -ETXTBSY; | |
2147 | i_size_write(inode, offset); | |
2148 | ||
2149 | /* | |
2150 | * unmap_mapping_range is called twice, first simply for | |
2151 | * efficiency so that truncate_inode_pages does fewer | |
2152 | * single-page unmaps. However after this first call, and | |
2153 | * before truncate_inode_pages finishes, it is possible for | |
2154 | * private pages to be COWed, which remain after | |
2155 | * truncate_inode_pages finishes, hence the second | |
2156 | * unmap_mapping_range call must be made for correctness. | |
2157 | */ | |
2158 | unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); | |
2159 | truncate_inode_pages(mapping, offset); | |
2160 | unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); | |
2161 | } | |
d00806b1 | 2162 | |
1da177e4 LT |
2163 | if (inode->i_op && inode->i_op->truncate) |
2164 | inode->i_op->truncate(inode); | |
2165 | return 0; | |
61d5048f | 2166 | |
1da177e4 LT |
2167 | out_sig: |
2168 | send_sig(SIGXFSZ, current, 0); | |
2169 | out_big: | |
2170 | return -EFBIG; | |
1da177e4 | 2171 | } |
1da177e4 LT |
2172 | EXPORT_SYMBOL(vmtruncate); |
2173 | ||
f6b3ec23 BP |
2174 | int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) |
2175 | { | |
2176 | struct address_space *mapping = inode->i_mapping; | |
2177 | ||
2178 | /* | |
2179 | * If the underlying filesystem is not going to provide | |
2180 | * a way to truncate a range of blocks (punch a hole) - | |
2181 | * we should return failure right now. | |
2182 | */ | |
2183 | if (!inode->i_op || !inode->i_op->truncate_range) | |
2184 | return -ENOSYS; | |
2185 | ||
1b1dcc1b | 2186 | mutex_lock(&inode->i_mutex); |
f6b3ec23 BP |
2187 | down_write(&inode->i_alloc_sem); |
2188 | unmap_mapping_range(mapping, offset, (end - offset), 1); | |
2189 | truncate_inode_pages_range(mapping, offset, end); | |
d00806b1 | 2190 | unmap_mapping_range(mapping, offset, (end - offset), 1); |
f6b3ec23 BP |
2191 | inode->i_op->truncate_range(inode, offset, end); |
2192 | up_write(&inode->i_alloc_sem); | |
1b1dcc1b | 2193 | mutex_unlock(&inode->i_mutex); |
f6b3ec23 BP |
2194 | |
2195 | return 0; | |
2196 | } | |
f6b3ec23 | 2197 | |
1da177e4 | 2198 | /* |
8f4e2101 HD |
2199 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2200 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2201 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2202 | */ |
65500d23 HD |
2203 | static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2204 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
2205 | int write_access, pte_t orig_pte) | |
1da177e4 | 2206 | { |
8f4e2101 | 2207 | spinlock_t *ptl; |
1da177e4 | 2208 | struct page *page; |
65500d23 | 2209 | swp_entry_t entry; |
1da177e4 | 2210 | pte_t pte; |
83c54070 | 2211 | int ret = 0; |
1da177e4 | 2212 | |
4c21e2f2 | 2213 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
8f4e2101 | 2214 | goto out; |
65500d23 HD |
2215 | |
2216 | entry = pte_to_swp_entry(orig_pte); | |
0697212a CL |
2217 | if (is_migration_entry(entry)) { |
2218 | migration_entry_wait(mm, pmd, address); | |
2219 | goto out; | |
2220 | } | |
0ff92245 | 2221 | delayacct_set_flag(DELAYACCT_PF_SWAPIN); |
1da177e4 LT |
2222 | page = lookup_swap_cache(entry); |
2223 | if (!page) { | |
098fe651 | 2224 | grab_swap_token(); /* Contend for token _before_ read-in */ |
02098fea HD |
2225 | page = swapin_readahead(entry, |
2226 | GFP_HIGHUSER_MOVABLE, vma, address); | |
1da177e4 LT |
2227 | if (!page) { |
2228 | /* | |
8f4e2101 HD |
2229 | * Back out if somebody else faulted in this pte |
2230 | * while we released the pte lock. | |
1da177e4 | 2231 | */ |
8f4e2101 | 2232 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
2233 | if (likely(pte_same(*page_table, orig_pte))) |
2234 | ret = VM_FAULT_OOM; | |
0ff92245 | 2235 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
65500d23 | 2236 | goto unlock; |
1da177e4 LT |
2237 | } |
2238 | ||
2239 | /* Had to read the page from swap area: Major fault */ | |
2240 | ret = VM_FAULT_MAJOR; | |
f8891e5e | 2241 | count_vm_event(PGMAJFAULT); |
1da177e4 LT |
2242 | } |
2243 | ||
e1a1cd59 | 2244 | if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { |
8a9f3ccd BS |
2245 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
2246 | ret = VM_FAULT_OOM; | |
2247 | goto out; | |
2248 | } | |
2249 | ||
1da177e4 LT |
2250 | mark_page_accessed(page); |
2251 | lock_page(page); | |
20a1022d | 2252 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
1da177e4 LT |
2253 | |
2254 | /* | |
8f4e2101 | 2255 | * Back out if somebody else already faulted in this pte. |
1da177e4 | 2256 | */ |
8f4e2101 | 2257 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
9e9bef07 | 2258 | if (unlikely(!pte_same(*page_table, orig_pte))) |
b8107480 | 2259 | goto out_nomap; |
b8107480 KK |
2260 | |
2261 | if (unlikely(!PageUptodate(page))) { | |
2262 | ret = VM_FAULT_SIGBUS; | |
2263 | goto out_nomap; | |
1da177e4 LT |
2264 | } |
2265 | ||
2266 | /* The page isn't present yet, go ahead with the fault. */ | |
1da177e4 | 2267 | |
4294621f | 2268 | inc_mm_counter(mm, anon_rss); |
1da177e4 LT |
2269 | pte = mk_pte(page, vma->vm_page_prot); |
2270 | if (write_access && can_share_swap_page(page)) { | |
2271 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); | |
2272 | write_access = 0; | |
2273 | } | |
1da177e4 LT |
2274 | |
2275 | flush_icache_page(vma, page); | |
2276 | set_pte_at(mm, address, page_table, pte); | |
2277 | page_add_anon_rmap(page, vma, address); | |
2278 | ||
c475a8ab HD |
2279 | swap_free(entry); |
2280 | if (vm_swap_full()) | |
2281 | remove_exclusive_swap_page(page); | |
2282 | unlock_page(page); | |
2283 | ||
1da177e4 | 2284 | if (write_access) { |
61469f1d HD |
2285 | ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); |
2286 | if (ret & VM_FAULT_ERROR) | |
2287 | ret &= VM_FAULT_ERROR; | |
1da177e4 LT |
2288 | goto out; |
2289 | } | |
2290 | ||
2291 | /* No need to invalidate - it was non-present before */ | |
2292 | update_mmu_cache(vma, address, pte); | |
65500d23 | 2293 | unlock: |
8f4e2101 | 2294 | pte_unmap_unlock(page_table, ptl); |
1da177e4 LT |
2295 | out: |
2296 | return ret; | |
b8107480 | 2297 | out_nomap: |
8a9f3ccd | 2298 | mem_cgroup_uncharge_page(page); |
8f4e2101 | 2299 | pte_unmap_unlock(page_table, ptl); |
b8107480 KK |
2300 | unlock_page(page); |
2301 | page_cache_release(page); | |
65500d23 | 2302 | return ret; |
1da177e4 LT |
2303 | } |
2304 | ||
2305 | /* | |
8f4e2101 HD |
2306 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2307 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2308 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2309 | */ |
65500d23 HD |
2310 | static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2311 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
2312 | int write_access) | |
1da177e4 | 2313 | { |
8f4e2101 HD |
2314 | struct page *page; |
2315 | spinlock_t *ptl; | |
1da177e4 | 2316 | pte_t entry; |
1da177e4 | 2317 | |
557ed1fa NP |
2318 | /* Allocate our own private page. */ |
2319 | pte_unmap(page_table); | |
8f4e2101 | 2320 | |
557ed1fa NP |
2321 | if (unlikely(anon_vma_prepare(vma))) |
2322 | goto oom; | |
2323 | page = alloc_zeroed_user_highpage_movable(vma, address); | |
2324 | if (!page) | |
2325 | goto oom; | |
0ed361de | 2326 | __SetPageUptodate(page); |
8f4e2101 | 2327 | |
e1a1cd59 | 2328 | if (mem_cgroup_charge(page, mm, GFP_KERNEL)) |
8a9f3ccd BS |
2329 | goto oom_free_page; |
2330 | ||
557ed1fa NP |
2331 | entry = mk_pte(page, vma->vm_page_prot); |
2332 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
1da177e4 | 2333 | |
557ed1fa NP |
2334 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
2335 | if (!pte_none(*page_table)) | |
2336 | goto release; | |
2337 | inc_mm_counter(mm, anon_rss); | |
2338 | lru_cache_add_active(page); | |
2339 | page_add_new_anon_rmap(page, vma, address); | |
65500d23 | 2340 | set_pte_at(mm, address, page_table, entry); |
1da177e4 LT |
2341 | |
2342 | /* No need to invalidate - it was non-present before */ | |
65500d23 | 2343 | update_mmu_cache(vma, address, entry); |
65500d23 | 2344 | unlock: |
8f4e2101 | 2345 | pte_unmap_unlock(page_table, ptl); |
83c54070 | 2346 | return 0; |
8f4e2101 | 2347 | release: |
8a9f3ccd | 2348 | mem_cgroup_uncharge_page(page); |
8f4e2101 HD |
2349 | page_cache_release(page); |
2350 | goto unlock; | |
8a9f3ccd | 2351 | oom_free_page: |
6dbf6d3b | 2352 | page_cache_release(page); |
65500d23 | 2353 | oom: |
1da177e4 LT |
2354 | return VM_FAULT_OOM; |
2355 | } | |
2356 | ||
2357 | /* | |
54cb8821 | 2358 | * __do_fault() tries to create a new page mapping. It aggressively |
1da177e4 | 2359 | * tries to share with existing pages, but makes a separate copy if |
54cb8821 NP |
2360 | * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid |
2361 | * the next page fault. | |
1da177e4 LT |
2362 | * |
2363 | * As this is called only for pages that do not currently exist, we | |
2364 | * do not need to flush old virtual caches or the TLB. | |
2365 | * | |
8f4e2101 | 2366 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
16abfa08 | 2367 | * but allow concurrent faults), and pte neither mapped nor locked. |
8f4e2101 | 2368 | * We return with mmap_sem still held, but pte unmapped and unlocked. |
1da177e4 | 2369 | */ |
54cb8821 | 2370 | static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
16abfa08 | 2371 | unsigned long address, pmd_t *pmd, |
54cb8821 | 2372 | pgoff_t pgoff, unsigned int flags, pte_t orig_pte) |
1da177e4 | 2373 | { |
16abfa08 | 2374 | pte_t *page_table; |
8f4e2101 | 2375 | spinlock_t *ptl; |
d0217ac0 | 2376 | struct page *page; |
1da177e4 | 2377 | pte_t entry; |
1da177e4 | 2378 | int anon = 0; |
d08b3851 | 2379 | struct page *dirty_page = NULL; |
d0217ac0 NP |
2380 | struct vm_fault vmf; |
2381 | int ret; | |
a200ee18 | 2382 | int page_mkwrite = 0; |
54cb8821 | 2383 | |
d0217ac0 NP |
2384 | vmf.virtual_address = (void __user *)(address & PAGE_MASK); |
2385 | vmf.pgoff = pgoff; | |
2386 | vmf.flags = flags; | |
2387 | vmf.page = NULL; | |
1da177e4 | 2388 | |
3c18ddd1 NP |
2389 | ret = vma->vm_ops->fault(vma, &vmf); |
2390 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) | |
2391 | return ret; | |
1da177e4 | 2392 | |
d00806b1 | 2393 | /* |
d0217ac0 | 2394 | * For consistency in subsequent calls, make the faulted page always |
d00806b1 NP |
2395 | * locked. |
2396 | */ | |
83c54070 | 2397 | if (unlikely(!(ret & VM_FAULT_LOCKED))) |
d0217ac0 | 2398 | lock_page(vmf.page); |
54cb8821 | 2399 | else |
d0217ac0 | 2400 | VM_BUG_ON(!PageLocked(vmf.page)); |
d00806b1 | 2401 | |
1da177e4 LT |
2402 | /* |
2403 | * Should we do an early C-O-W break? | |
2404 | */ | |
d0217ac0 | 2405 | page = vmf.page; |
54cb8821 | 2406 | if (flags & FAULT_FLAG_WRITE) { |
9637a5ef | 2407 | if (!(vma->vm_flags & VM_SHARED)) { |
54cb8821 | 2408 | anon = 1; |
d00806b1 | 2409 | if (unlikely(anon_vma_prepare(vma))) { |
d0217ac0 | 2410 | ret = VM_FAULT_OOM; |
54cb8821 | 2411 | goto out; |
d00806b1 | 2412 | } |
83c54070 NP |
2413 | page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, |
2414 | vma, address); | |
d00806b1 | 2415 | if (!page) { |
d0217ac0 | 2416 | ret = VM_FAULT_OOM; |
54cb8821 | 2417 | goto out; |
d00806b1 | 2418 | } |
d0217ac0 | 2419 | copy_user_highpage(page, vmf.page, address, vma); |
0ed361de | 2420 | __SetPageUptodate(page); |
9637a5ef | 2421 | } else { |
54cb8821 NP |
2422 | /* |
2423 | * If the page will be shareable, see if the backing | |
9637a5ef | 2424 | * address space wants to know that the page is about |
54cb8821 NP |
2425 | * to become writable |
2426 | */ | |
69676147 MF |
2427 | if (vma->vm_ops->page_mkwrite) { |
2428 | unlock_page(page); | |
2429 | if (vma->vm_ops->page_mkwrite(vma, page) < 0) { | |
d0217ac0 NP |
2430 | ret = VM_FAULT_SIGBUS; |
2431 | anon = 1; /* no anon but release vmf.page */ | |
69676147 MF |
2432 | goto out_unlocked; |
2433 | } | |
2434 | lock_page(page); | |
d0217ac0 NP |
2435 | /* |
2436 | * XXX: this is not quite right (racy vs | |
2437 | * invalidate) to unlock and relock the page | |
2438 | * like this, however a better fix requires | |
2439 | * reworking page_mkwrite locking API, which | |
2440 | * is better done later. | |
2441 | */ | |
2442 | if (!page->mapping) { | |
83c54070 | 2443 | ret = 0; |
d0217ac0 NP |
2444 | anon = 1; /* no anon but release vmf.page */ |
2445 | goto out; | |
2446 | } | |
a200ee18 | 2447 | page_mkwrite = 1; |
9637a5ef DH |
2448 | } |
2449 | } | |
54cb8821 | 2450 | |
1da177e4 LT |
2451 | } |
2452 | ||
e1a1cd59 | 2453 | if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { |
8a9f3ccd BS |
2454 | ret = VM_FAULT_OOM; |
2455 | goto out; | |
2456 | } | |
2457 | ||
8f4e2101 | 2458 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
2459 | |
2460 | /* | |
2461 | * This silly early PAGE_DIRTY setting removes a race | |
2462 | * due to the bad i386 page protection. But it's valid | |
2463 | * for other architectures too. | |
2464 | * | |
2465 | * Note that if write_access is true, we either now have | |
2466 | * an exclusive copy of the page, or this is a shared mapping, | |
2467 | * so we can make it writable and dirty to avoid having to | |
2468 | * handle that later. | |
2469 | */ | |
2470 | /* Only go through if we didn't race with anybody else... */ | |
54cb8821 | 2471 | if (likely(pte_same(*page_table, orig_pte))) { |
d00806b1 NP |
2472 | flush_icache_page(vma, page); |
2473 | entry = mk_pte(page, vma->vm_page_prot); | |
54cb8821 | 2474 | if (flags & FAULT_FLAG_WRITE) |
1da177e4 LT |
2475 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); |
2476 | set_pte_at(mm, address, page_table, entry); | |
2477 | if (anon) { | |
d00806b1 NP |
2478 | inc_mm_counter(mm, anon_rss); |
2479 | lru_cache_add_active(page); | |
2480 | page_add_new_anon_rmap(page, vma, address); | |
f57e88a8 | 2481 | } else { |
4294621f | 2482 | inc_mm_counter(mm, file_rss); |
d00806b1 | 2483 | page_add_file_rmap(page); |
54cb8821 | 2484 | if (flags & FAULT_FLAG_WRITE) { |
d00806b1 | 2485 | dirty_page = page; |
d08b3851 PZ |
2486 | get_page(dirty_page); |
2487 | } | |
4294621f | 2488 | } |
d00806b1 NP |
2489 | |
2490 | /* no need to invalidate: a not-present page won't be cached */ | |
2491 | update_mmu_cache(vma, address, entry); | |
1da177e4 | 2492 | } else { |
8a9f3ccd | 2493 | mem_cgroup_uncharge_page(page); |
d00806b1 NP |
2494 | if (anon) |
2495 | page_cache_release(page); | |
2496 | else | |
54cb8821 | 2497 | anon = 1; /* no anon but release faulted_page */ |
1da177e4 LT |
2498 | } |
2499 | ||
8f4e2101 | 2500 | pte_unmap_unlock(page_table, ptl); |
d00806b1 NP |
2501 | |
2502 | out: | |
d0217ac0 | 2503 | unlock_page(vmf.page); |
69676147 | 2504 | out_unlocked: |
d00806b1 | 2505 | if (anon) |
d0217ac0 | 2506 | page_cache_release(vmf.page); |
d00806b1 | 2507 | else if (dirty_page) { |
8f7b3d15 AS |
2508 | if (vma->vm_file) |
2509 | file_update_time(vma->vm_file); | |
2510 | ||
a200ee18 | 2511 | set_page_dirty_balance(dirty_page, page_mkwrite); |
d08b3851 PZ |
2512 | put_page(dirty_page); |
2513 | } | |
d00806b1 | 2514 | |
83c54070 | 2515 | return ret; |
54cb8821 | 2516 | } |
d00806b1 | 2517 | |
54cb8821 NP |
2518 | static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
2519 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
2520 | int write_access, pte_t orig_pte) | |
2521 | { | |
2522 | pgoff_t pgoff = (((address & PAGE_MASK) | |
0da7e01f | 2523 | - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; |
54cb8821 NP |
2524 | unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0); |
2525 | ||
16abfa08 HD |
2526 | pte_unmap(page_table); |
2527 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); | |
54cb8821 NP |
2528 | } |
2529 | ||
1da177e4 LT |
2530 | /* |
2531 | * Fault of a previously existing named mapping. Repopulate the pte | |
2532 | * from the encoded file_pte if possible. This enables swappable | |
2533 | * nonlinear vmas. | |
8f4e2101 HD |
2534 | * |
2535 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | |
2536 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2537 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2538 | */ |
d0217ac0 | 2539 | static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
65500d23 HD |
2540 | unsigned long address, pte_t *page_table, pmd_t *pmd, |
2541 | int write_access, pte_t orig_pte) | |
1da177e4 | 2542 | { |
d0217ac0 NP |
2543 | unsigned int flags = FAULT_FLAG_NONLINEAR | |
2544 | (write_access ? FAULT_FLAG_WRITE : 0); | |
65500d23 | 2545 | pgoff_t pgoff; |
1da177e4 | 2546 | |
4c21e2f2 | 2547 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
83c54070 | 2548 | return 0; |
1da177e4 | 2549 | |
d0217ac0 NP |
2550 | if (unlikely(!(vma->vm_flags & VM_NONLINEAR) || |
2551 | !(vma->vm_flags & VM_CAN_NONLINEAR))) { | |
65500d23 HD |
2552 | /* |
2553 | * Page table corrupted: show pte and kill process. | |
2554 | */ | |
b5810039 | 2555 | print_bad_pte(vma, orig_pte, address); |
65500d23 HD |
2556 | return VM_FAULT_OOM; |
2557 | } | |
65500d23 HD |
2558 | |
2559 | pgoff = pte_to_pgoff(orig_pte); | |
16abfa08 | 2560 | return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); |
1da177e4 LT |
2561 | } |
2562 | ||
2563 | /* | |
2564 | * These routines also need to handle stuff like marking pages dirty | |
2565 | * and/or accessed for architectures that don't do it in hardware (most | |
2566 | * RISC architectures). The early dirtying is also good on the i386. | |
2567 | * | |
2568 | * There is also a hook called "update_mmu_cache()" that architectures | |
2569 | * with external mmu caches can use to update those (ie the Sparc or | |
2570 | * PowerPC hashed page tables that act as extended TLBs). | |
2571 | * | |
c74df32c HD |
2572 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2573 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2574 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 LT |
2575 | */ |
2576 | static inline int handle_pte_fault(struct mm_struct *mm, | |
65500d23 HD |
2577 | struct vm_area_struct *vma, unsigned long address, |
2578 | pte_t *pte, pmd_t *pmd, int write_access) | |
1da177e4 LT |
2579 | { |
2580 | pte_t entry; | |
8f4e2101 | 2581 | spinlock_t *ptl; |
1da177e4 | 2582 | |
8dab5241 | 2583 | entry = *pte; |
1da177e4 | 2584 | if (!pte_present(entry)) { |
65500d23 | 2585 | if (pte_none(entry)) { |
f4b81804 | 2586 | if (vma->vm_ops) { |
3c18ddd1 | 2587 | if (likely(vma->vm_ops->fault)) |
54cb8821 NP |
2588 | return do_linear_fault(mm, vma, address, |
2589 | pte, pmd, write_access, entry); | |
f4b81804 JS |
2590 | } |
2591 | return do_anonymous_page(mm, vma, address, | |
2592 | pte, pmd, write_access); | |
65500d23 | 2593 | } |
1da177e4 | 2594 | if (pte_file(entry)) |
d0217ac0 | 2595 | return do_nonlinear_fault(mm, vma, address, |
65500d23 HD |
2596 | pte, pmd, write_access, entry); |
2597 | return do_swap_page(mm, vma, address, | |
2598 | pte, pmd, write_access, entry); | |
1da177e4 LT |
2599 | } |
2600 | ||
4c21e2f2 | 2601 | ptl = pte_lockptr(mm, pmd); |
8f4e2101 HD |
2602 | spin_lock(ptl); |
2603 | if (unlikely(!pte_same(*pte, entry))) | |
2604 | goto unlock; | |
1da177e4 LT |
2605 | if (write_access) { |
2606 | if (!pte_write(entry)) | |
8f4e2101 HD |
2607 | return do_wp_page(mm, vma, address, |
2608 | pte, pmd, ptl, entry); | |
1da177e4 LT |
2609 | entry = pte_mkdirty(entry); |
2610 | } | |
2611 | entry = pte_mkyoung(entry); | |
8dab5241 | 2612 | if (ptep_set_access_flags(vma, address, pte, entry, write_access)) { |
1a44e149 | 2613 | update_mmu_cache(vma, address, entry); |
1a44e149 AA |
2614 | } else { |
2615 | /* | |
2616 | * This is needed only for protection faults but the arch code | |
2617 | * is not yet telling us if this is a protection fault or not. | |
2618 | * This still avoids useless tlb flushes for .text page faults | |
2619 | * with threads. | |
2620 | */ | |
2621 | if (write_access) | |
2622 | flush_tlb_page(vma, address); | |
2623 | } | |
8f4e2101 HD |
2624 | unlock: |
2625 | pte_unmap_unlock(pte, ptl); | |
83c54070 | 2626 | return 0; |
1da177e4 LT |
2627 | } |
2628 | ||
2629 | /* | |
2630 | * By the time we get here, we already hold the mm semaphore | |
2631 | */ | |
83c54070 | 2632 | int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
1da177e4 LT |
2633 | unsigned long address, int write_access) |
2634 | { | |
2635 | pgd_t *pgd; | |
2636 | pud_t *pud; | |
2637 | pmd_t *pmd; | |
2638 | pte_t *pte; | |
2639 | ||
2640 | __set_current_state(TASK_RUNNING); | |
2641 | ||
f8891e5e | 2642 | count_vm_event(PGFAULT); |
1da177e4 | 2643 | |
ac9b9c66 HD |
2644 | if (unlikely(is_vm_hugetlb_page(vma))) |
2645 | return hugetlb_fault(mm, vma, address, write_access); | |
1da177e4 | 2646 | |
1da177e4 | 2647 | pgd = pgd_offset(mm, address); |
1da177e4 LT |
2648 | pud = pud_alloc(mm, pgd, address); |
2649 | if (!pud) | |
c74df32c | 2650 | return VM_FAULT_OOM; |
1da177e4 LT |
2651 | pmd = pmd_alloc(mm, pud, address); |
2652 | if (!pmd) | |
c74df32c | 2653 | return VM_FAULT_OOM; |
1da177e4 LT |
2654 | pte = pte_alloc_map(mm, pmd, address); |
2655 | if (!pte) | |
c74df32c | 2656 | return VM_FAULT_OOM; |
1da177e4 | 2657 | |
c74df32c | 2658 | return handle_pte_fault(mm, vma, address, pte, pmd, write_access); |
1da177e4 LT |
2659 | } |
2660 | ||
2661 | #ifndef __PAGETABLE_PUD_FOLDED | |
2662 | /* | |
2663 | * Allocate page upper directory. | |
872fec16 | 2664 | * We've already handled the fast-path in-line. |
1da177e4 | 2665 | */ |
1bb3630e | 2666 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) |
1da177e4 | 2667 | { |
c74df32c HD |
2668 | pud_t *new = pud_alloc_one(mm, address); |
2669 | if (!new) | |
1bb3630e | 2670 | return -ENOMEM; |
1da177e4 | 2671 | |
362a61ad NP |
2672 | smp_wmb(); /* See comment in __pte_alloc */ |
2673 | ||
872fec16 | 2674 | spin_lock(&mm->page_table_lock); |
1bb3630e | 2675 | if (pgd_present(*pgd)) /* Another has populated it */ |
5e541973 | 2676 | pud_free(mm, new); |
1bb3630e HD |
2677 | else |
2678 | pgd_populate(mm, pgd, new); | |
c74df32c | 2679 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 2680 | return 0; |
1da177e4 LT |
2681 | } |
2682 | #endif /* __PAGETABLE_PUD_FOLDED */ | |
2683 | ||
2684 | #ifndef __PAGETABLE_PMD_FOLDED | |
2685 | /* | |
2686 | * Allocate page middle directory. | |
872fec16 | 2687 | * We've already handled the fast-path in-line. |
1da177e4 | 2688 | */ |
1bb3630e | 2689 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
1da177e4 | 2690 | { |
c74df32c HD |
2691 | pmd_t *new = pmd_alloc_one(mm, address); |
2692 | if (!new) | |
1bb3630e | 2693 | return -ENOMEM; |
1da177e4 | 2694 | |
362a61ad NP |
2695 | smp_wmb(); /* See comment in __pte_alloc */ |
2696 | ||
872fec16 | 2697 | spin_lock(&mm->page_table_lock); |
1da177e4 | 2698 | #ifndef __ARCH_HAS_4LEVEL_HACK |
1bb3630e | 2699 | if (pud_present(*pud)) /* Another has populated it */ |
5e541973 | 2700 | pmd_free(mm, new); |
1bb3630e HD |
2701 | else |
2702 | pud_populate(mm, pud, new); | |
1da177e4 | 2703 | #else |
1bb3630e | 2704 | if (pgd_present(*pud)) /* Another has populated it */ |
5e541973 | 2705 | pmd_free(mm, new); |
1bb3630e HD |
2706 | else |
2707 | pgd_populate(mm, pud, new); | |
1da177e4 | 2708 | #endif /* __ARCH_HAS_4LEVEL_HACK */ |
c74df32c | 2709 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 2710 | return 0; |
e0f39591 | 2711 | } |
1da177e4 LT |
2712 | #endif /* __PAGETABLE_PMD_FOLDED */ |
2713 | ||
2714 | int make_pages_present(unsigned long addr, unsigned long end) | |
2715 | { | |
2716 | int ret, len, write; | |
2717 | struct vm_area_struct * vma; | |
2718 | ||
2719 | vma = find_vma(current->mm, addr); | |
2720 | if (!vma) | |
2721 | return -1; | |
2722 | write = (vma->vm_flags & VM_WRITE) != 0; | |
5bcb28b1 ES |
2723 | BUG_ON(addr >= end); |
2724 | BUG_ON(end > vma->vm_end); | |
68e116a3 | 2725 | len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; |
1da177e4 LT |
2726 | ret = get_user_pages(current, current->mm, addr, |
2727 | len, write, 0, NULL, NULL); | |
2728 | if (ret < 0) | |
2729 | return ret; | |
2730 | return ret == len ? 0 : -1; | |
2731 | } | |
2732 | ||
1da177e4 LT |
2733 | #if !defined(__HAVE_ARCH_GATE_AREA) |
2734 | ||
2735 | #if defined(AT_SYSINFO_EHDR) | |
5ce7852c | 2736 | static struct vm_area_struct gate_vma; |
1da177e4 LT |
2737 | |
2738 | static int __init gate_vma_init(void) | |
2739 | { | |
2740 | gate_vma.vm_mm = NULL; | |
2741 | gate_vma.vm_start = FIXADDR_USER_START; | |
2742 | gate_vma.vm_end = FIXADDR_USER_END; | |
b6558c4a RM |
2743 | gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; |
2744 | gate_vma.vm_page_prot = __P101; | |
f47aef55 RM |
2745 | /* |
2746 | * Make sure the vDSO gets into every core dump. | |
2747 | * Dumping its contents makes post-mortem fully interpretable later | |
2748 | * without matching up the same kernel and hardware config to see | |
2749 | * what PC values meant. | |
2750 | */ | |
2751 | gate_vma.vm_flags |= VM_ALWAYSDUMP; | |
1da177e4 LT |
2752 | return 0; |
2753 | } | |
2754 | __initcall(gate_vma_init); | |
2755 | #endif | |
2756 | ||
2757 | struct vm_area_struct *get_gate_vma(struct task_struct *tsk) | |
2758 | { | |
2759 | #ifdef AT_SYSINFO_EHDR | |
2760 | return &gate_vma; | |
2761 | #else | |
2762 | return NULL; | |
2763 | #endif | |
2764 | } | |
2765 | ||
2766 | int in_gate_area_no_task(unsigned long addr) | |
2767 | { | |
2768 | #ifdef AT_SYSINFO_EHDR | |
2769 | if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) | |
2770 | return 1; | |
2771 | #endif | |
2772 | return 0; | |
2773 | } | |
2774 | ||
2775 | #endif /* __HAVE_ARCH_GATE_AREA */ | |
0ec76a11 | 2776 | |
28b2ee20 RR |
2777 | #ifdef CONFIG_HAVE_IOREMAP_PROT |
2778 | static resource_size_t follow_phys(struct vm_area_struct *vma, | |
2779 | unsigned long address, unsigned int flags, | |
2780 | unsigned long *prot) | |
2781 | { | |
2782 | pgd_t *pgd; | |
2783 | pud_t *pud; | |
2784 | pmd_t *pmd; | |
2785 | pte_t *ptep, pte; | |
2786 | spinlock_t *ptl; | |
2787 | resource_size_t phys_addr = 0; | |
2788 | struct mm_struct *mm = vma->vm_mm; | |
2789 | ||
2790 | VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP))); | |
2791 | ||
2792 | pgd = pgd_offset(mm, address); | |
2793 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
2794 | goto no_page_table; | |
2795 | ||
2796 | pud = pud_offset(pgd, address); | |
2797 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | |
2798 | goto no_page_table; | |
2799 | ||
2800 | pmd = pmd_offset(pud, address); | |
2801 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | |
2802 | goto no_page_table; | |
2803 | ||
2804 | /* We cannot handle huge page PFN maps. Luckily they don't exist. */ | |
2805 | if (pmd_huge(*pmd)) | |
2806 | goto no_page_table; | |
2807 | ||
2808 | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | |
2809 | if (!ptep) | |
2810 | goto out; | |
2811 | ||
2812 | pte = *ptep; | |
2813 | if (!pte_present(pte)) | |
2814 | goto unlock; | |
2815 | if ((flags & FOLL_WRITE) && !pte_write(pte)) | |
2816 | goto unlock; | |
2817 | phys_addr = pte_pfn(pte); | |
2818 | phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */ | |
2819 | ||
2820 | *prot = pgprot_val(pte_pgprot(pte)); | |
2821 | ||
2822 | unlock: | |
2823 | pte_unmap_unlock(ptep, ptl); | |
2824 | out: | |
2825 | return phys_addr; | |
2826 | no_page_table: | |
2827 | return 0; | |
2828 | } | |
2829 | ||
2830 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, | |
2831 | void *buf, int len, int write) | |
2832 | { | |
2833 | resource_size_t phys_addr; | |
2834 | unsigned long prot = 0; | |
2835 | void *maddr; | |
2836 | int offset = addr & (PAGE_SIZE-1); | |
2837 | ||
2838 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | |
2839 | return -EINVAL; | |
2840 | ||
2841 | phys_addr = follow_phys(vma, addr, write, &prot); | |
2842 | ||
2843 | if (!phys_addr) | |
2844 | return -EINVAL; | |
2845 | ||
2846 | maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); | |
2847 | if (write) | |
2848 | memcpy_toio(maddr + offset, buf, len); | |
2849 | else | |
2850 | memcpy_fromio(buf, maddr + offset, len); | |
2851 | iounmap(maddr); | |
2852 | ||
2853 | return len; | |
2854 | } | |
2855 | #endif | |
2856 | ||
0ec76a11 DH |
2857 | /* |
2858 | * Access another process' address space. | |
2859 | * Source/target buffer must be kernel space, | |
2860 | * Do not walk the page table directly, use get_user_pages | |
2861 | */ | |
2862 | int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) | |
2863 | { | |
2864 | struct mm_struct *mm; | |
2865 | struct vm_area_struct *vma; | |
0ec76a11 DH |
2866 | void *old_buf = buf; |
2867 | ||
2868 | mm = get_task_mm(tsk); | |
2869 | if (!mm) | |
2870 | return 0; | |
2871 | ||
2872 | down_read(&mm->mmap_sem); | |
183ff22b | 2873 | /* ignore errors, just check how much was successfully transferred */ |
0ec76a11 DH |
2874 | while (len) { |
2875 | int bytes, ret, offset; | |
2876 | void *maddr; | |
28b2ee20 | 2877 | struct page *page = NULL; |
0ec76a11 DH |
2878 | |
2879 | ret = get_user_pages(tsk, mm, addr, 1, | |
2880 | write, 1, &page, &vma); | |
28b2ee20 RR |
2881 | if (ret <= 0) { |
2882 | /* | |
2883 | * Check if this is a VM_IO | VM_PFNMAP VMA, which | |
2884 | * we can access using slightly different code. | |
2885 | */ | |
2886 | #ifdef CONFIG_HAVE_IOREMAP_PROT | |
2887 | vma = find_vma(mm, addr); | |
2888 | if (!vma) | |
2889 | break; | |
2890 | if (vma->vm_ops && vma->vm_ops->access) | |
2891 | ret = vma->vm_ops->access(vma, addr, buf, | |
2892 | len, write); | |
2893 | if (ret <= 0) | |
2894 | #endif | |
2895 | break; | |
2896 | bytes = ret; | |
0ec76a11 | 2897 | } else { |
28b2ee20 RR |
2898 | bytes = len; |
2899 | offset = addr & (PAGE_SIZE-1); | |
2900 | if (bytes > PAGE_SIZE-offset) | |
2901 | bytes = PAGE_SIZE-offset; | |
2902 | ||
2903 | maddr = kmap(page); | |
2904 | if (write) { | |
2905 | copy_to_user_page(vma, page, addr, | |
2906 | maddr + offset, buf, bytes); | |
2907 | set_page_dirty_lock(page); | |
2908 | } else { | |
2909 | copy_from_user_page(vma, page, addr, | |
2910 | buf, maddr + offset, bytes); | |
2911 | } | |
2912 | kunmap(page); | |
2913 | page_cache_release(page); | |
0ec76a11 | 2914 | } |
0ec76a11 DH |
2915 | len -= bytes; |
2916 | buf += bytes; | |
2917 | addr += bytes; | |
2918 | } | |
2919 | up_read(&mm->mmap_sem); | |
2920 | mmput(mm); | |
2921 | ||
2922 | return buf - old_buf; | |
2923 | } | |
03252919 AK |
2924 | |
2925 | /* | |
2926 | * Print the name of a VMA. | |
2927 | */ | |
2928 | void print_vma_addr(char *prefix, unsigned long ip) | |
2929 | { | |
2930 | struct mm_struct *mm = current->mm; | |
2931 | struct vm_area_struct *vma; | |
2932 | ||
e8bff74a IM |
2933 | /* |
2934 | * Do not print if we are in atomic | |
2935 | * contexts (in exception stacks, etc.): | |
2936 | */ | |
2937 | if (preempt_count()) | |
2938 | return; | |
2939 | ||
03252919 AK |
2940 | down_read(&mm->mmap_sem); |
2941 | vma = find_vma(mm, ip); | |
2942 | if (vma && vma->vm_file) { | |
2943 | struct file *f = vma->vm_file; | |
2944 | char *buf = (char *)__get_free_page(GFP_KERNEL); | |
2945 | if (buf) { | |
2946 | char *p, *s; | |
2947 | ||
cf28b486 | 2948 | p = d_path(&f->f_path, buf, PAGE_SIZE); |
03252919 AK |
2949 | if (IS_ERR(p)) |
2950 | p = "?"; | |
2951 | s = strrchr(p, '/'); | |
2952 | if (s) | |
2953 | p = s+1; | |
2954 | printk("%s%s[%lx+%lx]", prefix, p, | |
2955 | vma->vm_start, | |
2956 | vma->vm_end - vma->vm_start); | |
2957 | free_page((unsigned long)buf); | |
2958 | } | |
2959 | } | |
2960 | up_read(¤t->mm->mmap_sem); | |
2961 | } |