]>
Commit | Line | Data |
---|---|---|
81819f0f CL |
1 | /* |
2 | * SLUB: A slab allocator that limits cache line use instead of queuing | |
3 | * objects in per cpu and per node lists. | |
4 | * | |
5 | * The allocator synchronizes using per slab locks and only | |
6 | * uses a centralized lock to manage a pool of partial slabs. | |
7 | * | |
cde53535 | 8 | * (C) 2007 SGI, Christoph Lameter |
81819f0f CL |
9 | */ |
10 | ||
11 | #include <linux/mm.h> | |
12 | #include <linux/module.h> | |
13 | #include <linux/bit_spinlock.h> | |
14 | #include <linux/interrupt.h> | |
15 | #include <linux/bitops.h> | |
16 | #include <linux/slab.h> | |
17 | #include <linux/seq_file.h> | |
18 | #include <linux/cpu.h> | |
19 | #include <linux/cpuset.h> | |
20 | #include <linux/mempolicy.h> | |
21 | #include <linux/ctype.h> | |
3ac7fe5a | 22 | #include <linux/debugobjects.h> |
81819f0f | 23 | #include <linux/kallsyms.h> |
b9049e23 | 24 | #include <linux/memory.h> |
f8bd2258 | 25 | #include <linux/math64.h> |
81819f0f CL |
26 | |
27 | /* | |
28 | * Lock order: | |
29 | * 1. slab_lock(page) | |
30 | * 2. slab->list_lock | |
31 | * | |
32 | * The slab_lock protects operations on the object of a particular | |
33 | * slab and its metadata in the page struct. If the slab lock | |
34 | * has been taken then no allocations nor frees can be performed | |
35 | * on the objects in the slab nor can the slab be added or removed | |
36 | * from the partial or full lists since this would mean modifying | |
37 | * the page_struct of the slab. | |
38 | * | |
39 | * The list_lock protects the partial and full list on each node and | |
40 | * the partial slab counter. If taken then no new slabs may be added or | |
41 | * removed from the lists nor make the number of partial slabs be modified. | |
42 | * (Note that the total number of slabs is an atomic value that may be | |
43 | * modified without taking the list lock). | |
44 | * | |
45 | * The list_lock is a centralized lock and thus we avoid taking it as | |
46 | * much as possible. As long as SLUB does not have to handle partial | |
47 | * slabs, operations can continue without any centralized lock. F.e. | |
48 | * allocating a long series of objects that fill up slabs does not require | |
49 | * the list lock. | |
50 | * | |
51 | * The lock order is sometimes inverted when we are trying to get a slab | |
52 | * off a list. We take the list_lock and then look for a page on the list | |
53 | * to use. While we do that objects in the slabs may be freed. We can | |
54 | * only operate on the slab if we have also taken the slab_lock. So we use | |
55 | * a slab_trylock() on the slab. If trylock was successful then no frees | |
56 | * can occur anymore and we can use the slab for allocations etc. If the | |
57 | * slab_trylock() does not succeed then frees are in progress in the slab and | |
58 | * we must stay away from it for a while since we may cause a bouncing | |
59 | * cacheline if we try to acquire the lock. So go onto the next slab. | |
60 | * If all pages are busy then we may allocate a new slab instead of reusing | |
61 | * a partial slab. A new slab has noone operating on it and thus there is | |
62 | * no danger of cacheline contention. | |
63 | * | |
64 | * Interrupts are disabled during allocation and deallocation in order to | |
65 | * make the slab allocator safe to use in the context of an irq. In addition | |
66 | * interrupts are disabled to ensure that the processor does not change | |
67 | * while handling per_cpu slabs, due to kernel preemption. | |
68 | * | |
69 | * SLUB assigns one slab for allocation to each processor. | |
70 | * Allocations only occur from these slabs called cpu slabs. | |
71 | * | |
672bba3a CL |
72 | * Slabs with free elements are kept on a partial list and during regular |
73 | * operations no list for full slabs is used. If an object in a full slab is | |
81819f0f | 74 | * freed then the slab will show up again on the partial lists. |
672bba3a CL |
75 | * We track full slabs for debugging purposes though because otherwise we |
76 | * cannot scan all objects. | |
81819f0f CL |
77 | * |
78 | * Slabs are freed when they become empty. Teardown and setup is | |
79 | * minimal so we rely on the page allocators per cpu caches for | |
80 | * fast frees and allocs. | |
81 | * | |
82 | * Overloading of page flags that are otherwise used for LRU management. | |
83 | * | |
4b6f0750 CL |
84 | * PageActive The slab is frozen and exempt from list processing. |
85 | * This means that the slab is dedicated to a purpose | |
86 | * such as satisfying allocations for a specific | |
87 | * processor. Objects may be freed in the slab while | |
88 | * it is frozen but slab_free will then skip the usual | |
89 | * list operations. It is up to the processor holding | |
90 | * the slab to integrate the slab into the slab lists | |
91 | * when the slab is no longer needed. | |
92 | * | |
93 | * One use of this flag is to mark slabs that are | |
94 | * used for allocations. Then such a slab becomes a cpu | |
95 | * slab. The cpu slab may be equipped with an additional | |
dfb4f096 | 96 | * freelist that allows lockless access to |
894b8788 CL |
97 | * free objects in addition to the regular freelist |
98 | * that requires the slab lock. | |
81819f0f CL |
99 | * |
100 | * PageError Slab requires special handling due to debug | |
101 | * options set. This moves slab handling out of | |
894b8788 | 102 | * the fast path and disables lockless freelists. |
81819f0f CL |
103 | */ |
104 | ||
5577bd8a | 105 | #ifdef CONFIG_SLUB_DEBUG |
8a38082d | 106 | #define SLABDEBUG 1 |
5577bd8a CL |
107 | #else |
108 | #define SLABDEBUG 0 | |
109 | #endif | |
110 | ||
81819f0f CL |
111 | /* |
112 | * Issues still to be resolved: | |
113 | * | |
81819f0f CL |
114 | * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
115 | * | |
81819f0f CL |
116 | * - Variable sizing of the per node arrays |
117 | */ | |
118 | ||
119 | /* Enable to test recovery from slab corruption on boot */ | |
120 | #undef SLUB_RESILIENCY_TEST | |
121 | ||
2086d26a CL |
122 | /* |
123 | * Mininum number of partial slabs. These will be left on the partial | |
124 | * lists even if they are empty. kmem_cache_shrink may reclaim them. | |
125 | */ | |
76be8950 | 126 | #define MIN_PARTIAL 5 |
e95eed57 | 127 | |
2086d26a CL |
128 | /* |
129 | * Maximum number of desirable partial slabs. | |
130 | * The existence of more partial slabs makes kmem_cache_shrink | |
131 | * sort the partial list by the number of objects in the. | |
132 | */ | |
133 | #define MAX_PARTIAL 10 | |
134 | ||
81819f0f CL |
135 | #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ |
136 | SLAB_POISON | SLAB_STORE_USER) | |
672bba3a | 137 | |
81819f0f CL |
138 | /* |
139 | * Set of flags that will prevent slab merging | |
140 | */ | |
141 | #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | |
142 | SLAB_TRACE | SLAB_DESTROY_BY_RCU) | |
143 | ||
144 | #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ | |
145 | SLAB_CACHE_DMA) | |
146 | ||
147 | #ifndef ARCH_KMALLOC_MINALIGN | |
47bfdc0d | 148 | #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) |
81819f0f CL |
149 | #endif |
150 | ||
151 | #ifndef ARCH_SLAB_MINALIGN | |
47bfdc0d | 152 | #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) |
81819f0f CL |
153 | #endif |
154 | ||
155 | /* Internal SLUB flags */ | |
1ceef402 CL |
156 | #define __OBJECT_POISON 0x80000000 /* Poison object */ |
157 | #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */ | |
81819f0f CL |
158 | |
159 | static int kmem_size = sizeof(struct kmem_cache); | |
160 | ||
161 | #ifdef CONFIG_SMP | |
162 | static struct notifier_block slab_notifier; | |
163 | #endif | |
164 | ||
165 | static enum { | |
166 | DOWN, /* No slab functionality available */ | |
167 | PARTIAL, /* kmem_cache_open() works but kmalloc does not */ | |
672bba3a | 168 | UP, /* Everything works but does not show up in sysfs */ |
81819f0f CL |
169 | SYSFS /* Sysfs up */ |
170 | } slab_state = DOWN; | |
171 | ||
172 | /* A list of all slab caches on the system */ | |
173 | static DECLARE_RWSEM(slub_lock); | |
5af328a5 | 174 | static LIST_HEAD(slab_caches); |
81819f0f | 175 | |
02cbc874 CL |
176 | /* |
177 | * Tracking user of a slab. | |
178 | */ | |
179 | struct track { | |
180 | void *addr; /* Called from address */ | |
181 | int cpu; /* Was running on cpu */ | |
182 | int pid; /* Pid context */ | |
183 | unsigned long when; /* When did the operation occur */ | |
184 | }; | |
185 | ||
186 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | |
187 | ||
f6acb635 | 188 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
189 | static int sysfs_slab_add(struct kmem_cache *); |
190 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | |
191 | static void sysfs_slab_remove(struct kmem_cache *); | |
8ff12cfc | 192 | |
81819f0f | 193 | #else |
0c710013 CL |
194 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
195 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | |
196 | { return 0; } | |
151c602f CL |
197 | static inline void sysfs_slab_remove(struct kmem_cache *s) |
198 | { | |
199 | kfree(s); | |
200 | } | |
8ff12cfc | 201 | |
81819f0f CL |
202 | #endif |
203 | ||
8ff12cfc CL |
204 | static inline void stat(struct kmem_cache_cpu *c, enum stat_item si) |
205 | { | |
206 | #ifdef CONFIG_SLUB_STATS | |
207 | c->stat[si]++; | |
208 | #endif | |
209 | } | |
210 | ||
81819f0f CL |
211 | /******************************************************************** |
212 | * Core slab cache functions | |
213 | *******************************************************************/ | |
214 | ||
215 | int slab_is_available(void) | |
216 | { | |
217 | return slab_state >= UP; | |
218 | } | |
219 | ||
220 | static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) | |
221 | { | |
222 | #ifdef CONFIG_NUMA | |
223 | return s->node[node]; | |
224 | #else | |
225 | return &s->local_node; | |
226 | #endif | |
227 | } | |
228 | ||
dfb4f096 CL |
229 | static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu) |
230 | { | |
4c93c355 CL |
231 | #ifdef CONFIG_SMP |
232 | return s->cpu_slab[cpu]; | |
233 | #else | |
234 | return &s->cpu_slab; | |
235 | #endif | |
dfb4f096 CL |
236 | } |
237 | ||
6446faa2 | 238 | /* Verify that a pointer has an address that is valid within a slab page */ |
02cbc874 CL |
239 | static inline int check_valid_pointer(struct kmem_cache *s, |
240 | struct page *page, const void *object) | |
241 | { | |
242 | void *base; | |
243 | ||
a973e9dd | 244 | if (!object) |
02cbc874 CL |
245 | return 1; |
246 | ||
a973e9dd | 247 | base = page_address(page); |
39b26464 | 248 | if (object < base || object >= base + page->objects * s->size || |
02cbc874 CL |
249 | (object - base) % s->size) { |
250 | return 0; | |
251 | } | |
252 | ||
253 | return 1; | |
254 | } | |
255 | ||
7656c72b CL |
256 | /* |
257 | * Slow version of get and set free pointer. | |
258 | * | |
259 | * This version requires touching the cache lines of kmem_cache which | |
260 | * we avoid to do in the fast alloc free paths. There we obtain the offset | |
261 | * from the page struct. | |
262 | */ | |
263 | static inline void *get_freepointer(struct kmem_cache *s, void *object) | |
264 | { | |
265 | return *(void **)(object + s->offset); | |
266 | } | |
267 | ||
268 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) | |
269 | { | |
270 | *(void **)(object + s->offset) = fp; | |
271 | } | |
272 | ||
273 | /* Loop over all objects in a slab */ | |
224a88be CL |
274 | #define for_each_object(__p, __s, __addr, __objects) \ |
275 | for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ | |
7656c72b CL |
276 | __p += (__s)->size) |
277 | ||
278 | /* Scan freelist */ | |
279 | #define for_each_free_object(__p, __s, __free) \ | |
a973e9dd | 280 | for (__p = (__free); __p; __p = get_freepointer((__s), __p)) |
7656c72b CL |
281 | |
282 | /* Determine object index from a given position */ | |
283 | static inline int slab_index(void *p, struct kmem_cache *s, void *addr) | |
284 | { | |
285 | return (p - addr) / s->size; | |
286 | } | |
287 | ||
834f3d11 CL |
288 | static inline struct kmem_cache_order_objects oo_make(int order, |
289 | unsigned long size) | |
290 | { | |
291 | struct kmem_cache_order_objects x = { | |
292 | (order << 16) + (PAGE_SIZE << order) / size | |
293 | }; | |
294 | ||
295 | return x; | |
296 | } | |
297 | ||
298 | static inline int oo_order(struct kmem_cache_order_objects x) | |
299 | { | |
300 | return x.x >> 16; | |
301 | } | |
302 | ||
303 | static inline int oo_objects(struct kmem_cache_order_objects x) | |
304 | { | |
305 | return x.x & ((1 << 16) - 1); | |
306 | } | |
307 | ||
41ecc55b CL |
308 | #ifdef CONFIG_SLUB_DEBUG |
309 | /* | |
310 | * Debug settings: | |
311 | */ | |
f0630fff CL |
312 | #ifdef CONFIG_SLUB_DEBUG_ON |
313 | static int slub_debug = DEBUG_DEFAULT_FLAGS; | |
314 | #else | |
41ecc55b | 315 | static int slub_debug; |
f0630fff | 316 | #endif |
41ecc55b CL |
317 | |
318 | static char *slub_debug_slabs; | |
319 | ||
81819f0f CL |
320 | /* |
321 | * Object debugging | |
322 | */ | |
323 | static void print_section(char *text, u8 *addr, unsigned int length) | |
324 | { | |
325 | int i, offset; | |
326 | int newline = 1; | |
327 | char ascii[17]; | |
328 | ||
329 | ascii[16] = 0; | |
330 | ||
331 | for (i = 0; i < length; i++) { | |
332 | if (newline) { | |
24922684 | 333 | printk(KERN_ERR "%8s 0x%p: ", text, addr + i); |
81819f0f CL |
334 | newline = 0; |
335 | } | |
06428780 | 336 | printk(KERN_CONT " %02x", addr[i]); |
81819f0f CL |
337 | offset = i % 16; |
338 | ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; | |
339 | if (offset == 15) { | |
06428780 | 340 | printk(KERN_CONT " %s\n", ascii); |
81819f0f CL |
341 | newline = 1; |
342 | } | |
343 | } | |
344 | if (!newline) { | |
345 | i %= 16; | |
346 | while (i < 16) { | |
06428780 | 347 | printk(KERN_CONT " "); |
81819f0f CL |
348 | ascii[i] = ' '; |
349 | i++; | |
350 | } | |
06428780 | 351 | printk(KERN_CONT " %s\n", ascii); |
81819f0f CL |
352 | } |
353 | } | |
354 | ||
81819f0f CL |
355 | static struct track *get_track(struct kmem_cache *s, void *object, |
356 | enum track_item alloc) | |
357 | { | |
358 | struct track *p; | |
359 | ||
360 | if (s->offset) | |
361 | p = object + s->offset + sizeof(void *); | |
362 | else | |
363 | p = object + s->inuse; | |
364 | ||
365 | return p + alloc; | |
366 | } | |
367 | ||
368 | static void set_track(struct kmem_cache *s, void *object, | |
369 | enum track_item alloc, void *addr) | |
370 | { | |
371 | struct track *p; | |
372 | ||
373 | if (s->offset) | |
374 | p = object + s->offset + sizeof(void *); | |
375 | else | |
376 | p = object + s->inuse; | |
377 | ||
378 | p += alloc; | |
379 | if (addr) { | |
380 | p->addr = addr; | |
381 | p->cpu = smp_processor_id(); | |
88e4ccf2 | 382 | p->pid = current->pid; |
81819f0f CL |
383 | p->when = jiffies; |
384 | } else | |
385 | memset(p, 0, sizeof(struct track)); | |
386 | } | |
387 | ||
81819f0f CL |
388 | static void init_tracking(struct kmem_cache *s, void *object) |
389 | { | |
24922684 CL |
390 | if (!(s->flags & SLAB_STORE_USER)) |
391 | return; | |
392 | ||
393 | set_track(s, object, TRACK_FREE, NULL); | |
394 | set_track(s, object, TRACK_ALLOC, NULL); | |
81819f0f CL |
395 | } |
396 | ||
397 | static void print_track(const char *s, struct track *t) | |
398 | { | |
399 | if (!t->addr) | |
400 | return; | |
401 | ||
7daf705f LT |
402 | printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", |
403 | s, t->addr, jiffies - t->when, t->cpu, t->pid); | |
24922684 CL |
404 | } |
405 | ||
406 | static void print_tracking(struct kmem_cache *s, void *object) | |
407 | { | |
408 | if (!(s->flags & SLAB_STORE_USER)) | |
409 | return; | |
410 | ||
411 | print_track("Allocated", get_track(s, object, TRACK_ALLOC)); | |
412 | print_track("Freed", get_track(s, object, TRACK_FREE)); | |
413 | } | |
414 | ||
415 | static void print_page_info(struct page *page) | |
416 | { | |
39b26464 CL |
417 | printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", |
418 | page, page->objects, page->inuse, page->freelist, page->flags); | |
24922684 CL |
419 | |
420 | } | |
421 | ||
422 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | |
423 | { | |
424 | va_list args; | |
425 | char buf[100]; | |
426 | ||
427 | va_start(args, fmt); | |
428 | vsnprintf(buf, sizeof(buf), fmt, args); | |
429 | va_end(args); | |
430 | printk(KERN_ERR "========================================" | |
431 | "=====================================\n"); | |
432 | printk(KERN_ERR "BUG %s: %s\n", s->name, buf); | |
433 | printk(KERN_ERR "----------------------------------------" | |
434 | "-------------------------------------\n\n"); | |
81819f0f CL |
435 | } |
436 | ||
24922684 CL |
437 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
438 | { | |
439 | va_list args; | |
440 | char buf[100]; | |
441 | ||
442 | va_start(args, fmt); | |
443 | vsnprintf(buf, sizeof(buf), fmt, args); | |
444 | va_end(args); | |
445 | printk(KERN_ERR "FIX %s: %s\n", s->name, buf); | |
446 | } | |
447 | ||
448 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | |
81819f0f CL |
449 | { |
450 | unsigned int off; /* Offset of last byte */ | |
a973e9dd | 451 | u8 *addr = page_address(page); |
24922684 CL |
452 | |
453 | print_tracking(s, p); | |
454 | ||
455 | print_page_info(page); | |
456 | ||
457 | printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", | |
458 | p, p - addr, get_freepointer(s, p)); | |
459 | ||
460 | if (p > addr + 16) | |
461 | print_section("Bytes b4", p - 16, 16); | |
462 | ||
0ebd652b | 463 | print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); |
81819f0f CL |
464 | |
465 | if (s->flags & SLAB_RED_ZONE) | |
466 | print_section("Redzone", p + s->objsize, | |
467 | s->inuse - s->objsize); | |
468 | ||
81819f0f CL |
469 | if (s->offset) |
470 | off = s->offset + sizeof(void *); | |
471 | else | |
472 | off = s->inuse; | |
473 | ||
24922684 | 474 | if (s->flags & SLAB_STORE_USER) |
81819f0f | 475 | off += 2 * sizeof(struct track); |
81819f0f CL |
476 | |
477 | if (off != s->size) | |
478 | /* Beginning of the filler is the free pointer */ | |
24922684 CL |
479 | print_section("Padding", p + off, s->size - off); |
480 | ||
481 | dump_stack(); | |
81819f0f CL |
482 | } |
483 | ||
484 | static void object_err(struct kmem_cache *s, struct page *page, | |
485 | u8 *object, char *reason) | |
486 | { | |
3dc50637 | 487 | slab_bug(s, "%s", reason); |
24922684 | 488 | print_trailer(s, page, object); |
81819f0f CL |
489 | } |
490 | ||
24922684 | 491 | static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) |
81819f0f CL |
492 | { |
493 | va_list args; | |
494 | char buf[100]; | |
495 | ||
24922684 CL |
496 | va_start(args, fmt); |
497 | vsnprintf(buf, sizeof(buf), fmt, args); | |
81819f0f | 498 | va_end(args); |
3dc50637 | 499 | slab_bug(s, "%s", buf); |
24922684 | 500 | print_page_info(page); |
81819f0f CL |
501 | dump_stack(); |
502 | } | |
503 | ||
504 | static void init_object(struct kmem_cache *s, void *object, int active) | |
505 | { | |
506 | u8 *p = object; | |
507 | ||
508 | if (s->flags & __OBJECT_POISON) { | |
509 | memset(p, POISON_FREE, s->objsize - 1); | |
06428780 | 510 | p[s->objsize - 1] = POISON_END; |
81819f0f CL |
511 | } |
512 | ||
513 | if (s->flags & SLAB_RED_ZONE) | |
514 | memset(p + s->objsize, | |
515 | active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, | |
516 | s->inuse - s->objsize); | |
517 | } | |
518 | ||
24922684 | 519 | static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) |
81819f0f CL |
520 | { |
521 | while (bytes) { | |
522 | if (*start != (u8)value) | |
24922684 | 523 | return start; |
81819f0f CL |
524 | start++; |
525 | bytes--; | |
526 | } | |
24922684 CL |
527 | return NULL; |
528 | } | |
529 | ||
530 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, | |
531 | void *from, void *to) | |
532 | { | |
533 | slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | |
534 | memset(from, data, to - from); | |
535 | } | |
536 | ||
537 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | |
538 | u8 *object, char *what, | |
06428780 | 539 | u8 *start, unsigned int value, unsigned int bytes) |
24922684 CL |
540 | { |
541 | u8 *fault; | |
542 | u8 *end; | |
543 | ||
544 | fault = check_bytes(start, value, bytes); | |
545 | if (!fault) | |
546 | return 1; | |
547 | ||
548 | end = start + bytes; | |
549 | while (end > fault && end[-1] == value) | |
550 | end--; | |
551 | ||
552 | slab_bug(s, "%s overwritten", what); | |
553 | printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", | |
554 | fault, end - 1, fault[0], value); | |
555 | print_trailer(s, page, object); | |
556 | ||
557 | restore_bytes(s, what, value, fault, end); | |
558 | return 0; | |
81819f0f CL |
559 | } |
560 | ||
81819f0f CL |
561 | /* |
562 | * Object layout: | |
563 | * | |
564 | * object address | |
565 | * Bytes of the object to be managed. | |
566 | * If the freepointer may overlay the object then the free | |
567 | * pointer is the first word of the object. | |
672bba3a | 568 | * |
81819f0f CL |
569 | * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
570 | * 0xa5 (POISON_END) | |
571 | * | |
572 | * object + s->objsize | |
573 | * Padding to reach word boundary. This is also used for Redzoning. | |
672bba3a CL |
574 | * Padding is extended by another word if Redzoning is enabled and |
575 | * objsize == inuse. | |
576 | * | |
81819f0f CL |
577 | * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
578 | * 0xcc (RED_ACTIVE) for objects in use. | |
579 | * | |
580 | * object + s->inuse | |
672bba3a CL |
581 | * Meta data starts here. |
582 | * | |
81819f0f CL |
583 | * A. Free pointer (if we cannot overwrite object on free) |
584 | * B. Tracking data for SLAB_STORE_USER | |
672bba3a | 585 | * C. Padding to reach required alignment boundary or at mininum |
6446faa2 | 586 | * one word if debugging is on to be able to detect writes |
672bba3a CL |
587 | * before the word boundary. |
588 | * | |
589 | * Padding is done using 0x5a (POISON_INUSE) | |
81819f0f CL |
590 | * |
591 | * object + s->size | |
672bba3a | 592 | * Nothing is used beyond s->size. |
81819f0f | 593 | * |
672bba3a CL |
594 | * If slabcaches are merged then the objsize and inuse boundaries are mostly |
595 | * ignored. And therefore no slab options that rely on these boundaries | |
81819f0f CL |
596 | * may be used with merged slabcaches. |
597 | */ | |
598 | ||
81819f0f CL |
599 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) |
600 | { | |
601 | unsigned long off = s->inuse; /* The end of info */ | |
602 | ||
603 | if (s->offset) | |
604 | /* Freepointer is placed after the object. */ | |
605 | off += sizeof(void *); | |
606 | ||
607 | if (s->flags & SLAB_STORE_USER) | |
608 | /* We also have user information there */ | |
609 | off += 2 * sizeof(struct track); | |
610 | ||
611 | if (s->size == off) | |
612 | return 1; | |
613 | ||
24922684 CL |
614 | return check_bytes_and_report(s, page, p, "Object padding", |
615 | p + off, POISON_INUSE, s->size - off); | |
81819f0f CL |
616 | } |
617 | ||
39b26464 | 618 | /* Check the pad bytes at the end of a slab page */ |
81819f0f CL |
619 | static int slab_pad_check(struct kmem_cache *s, struct page *page) |
620 | { | |
24922684 CL |
621 | u8 *start; |
622 | u8 *fault; | |
623 | u8 *end; | |
624 | int length; | |
625 | int remainder; | |
81819f0f CL |
626 | |
627 | if (!(s->flags & SLAB_POISON)) | |
628 | return 1; | |
629 | ||
a973e9dd | 630 | start = page_address(page); |
834f3d11 | 631 | length = (PAGE_SIZE << compound_order(page)); |
39b26464 CL |
632 | end = start + length; |
633 | remainder = length % s->size; | |
81819f0f CL |
634 | if (!remainder) |
635 | return 1; | |
636 | ||
39b26464 | 637 | fault = check_bytes(end - remainder, POISON_INUSE, remainder); |
24922684 CL |
638 | if (!fault) |
639 | return 1; | |
640 | while (end > fault && end[-1] == POISON_INUSE) | |
641 | end--; | |
642 | ||
643 | slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); | |
39b26464 | 644 | print_section("Padding", end - remainder, remainder); |
24922684 CL |
645 | |
646 | restore_bytes(s, "slab padding", POISON_INUSE, start, end); | |
647 | return 0; | |
81819f0f CL |
648 | } |
649 | ||
650 | static int check_object(struct kmem_cache *s, struct page *page, | |
651 | void *object, int active) | |
652 | { | |
653 | u8 *p = object; | |
654 | u8 *endobject = object + s->objsize; | |
655 | ||
656 | if (s->flags & SLAB_RED_ZONE) { | |
657 | unsigned int red = | |
658 | active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; | |
659 | ||
24922684 CL |
660 | if (!check_bytes_and_report(s, page, object, "Redzone", |
661 | endobject, red, s->inuse - s->objsize)) | |
81819f0f | 662 | return 0; |
81819f0f | 663 | } else { |
3adbefee IM |
664 | if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { |
665 | check_bytes_and_report(s, page, p, "Alignment padding", | |
666 | endobject, POISON_INUSE, s->inuse - s->objsize); | |
667 | } | |
81819f0f CL |
668 | } |
669 | ||
670 | if (s->flags & SLAB_POISON) { | |
671 | if (!active && (s->flags & __OBJECT_POISON) && | |
24922684 CL |
672 | (!check_bytes_and_report(s, page, p, "Poison", p, |
673 | POISON_FREE, s->objsize - 1) || | |
674 | !check_bytes_and_report(s, page, p, "Poison", | |
06428780 | 675 | p + s->objsize - 1, POISON_END, 1))) |
81819f0f | 676 | return 0; |
81819f0f CL |
677 | /* |
678 | * check_pad_bytes cleans up on its own. | |
679 | */ | |
680 | check_pad_bytes(s, page, p); | |
681 | } | |
682 | ||
683 | if (!s->offset && active) | |
684 | /* | |
685 | * Object and freepointer overlap. Cannot check | |
686 | * freepointer while object is allocated. | |
687 | */ | |
688 | return 1; | |
689 | ||
690 | /* Check free pointer validity */ | |
691 | if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | |
692 | object_err(s, page, p, "Freepointer corrupt"); | |
693 | /* | |
694 | * No choice but to zap it and thus loose the remainder | |
695 | * of the free objects in this slab. May cause | |
672bba3a | 696 | * another error because the object count is now wrong. |
81819f0f | 697 | */ |
a973e9dd | 698 | set_freepointer(s, p, NULL); |
81819f0f CL |
699 | return 0; |
700 | } | |
701 | return 1; | |
702 | } | |
703 | ||
704 | static int check_slab(struct kmem_cache *s, struct page *page) | |
705 | { | |
39b26464 CL |
706 | int maxobj; |
707 | ||
81819f0f CL |
708 | VM_BUG_ON(!irqs_disabled()); |
709 | ||
710 | if (!PageSlab(page)) { | |
24922684 | 711 | slab_err(s, page, "Not a valid slab page"); |
81819f0f CL |
712 | return 0; |
713 | } | |
39b26464 CL |
714 | |
715 | maxobj = (PAGE_SIZE << compound_order(page)) / s->size; | |
716 | if (page->objects > maxobj) { | |
717 | slab_err(s, page, "objects %u > max %u", | |
718 | s->name, page->objects, maxobj); | |
719 | return 0; | |
720 | } | |
721 | if (page->inuse > page->objects) { | |
24922684 | 722 | slab_err(s, page, "inuse %u > max %u", |
39b26464 | 723 | s->name, page->inuse, page->objects); |
81819f0f CL |
724 | return 0; |
725 | } | |
726 | /* Slab_pad_check fixes things up after itself */ | |
727 | slab_pad_check(s, page); | |
728 | return 1; | |
729 | } | |
730 | ||
731 | /* | |
672bba3a CL |
732 | * Determine if a certain object on a page is on the freelist. Must hold the |
733 | * slab lock to guarantee that the chains are in a consistent state. | |
81819f0f CL |
734 | */ |
735 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | |
736 | { | |
737 | int nr = 0; | |
738 | void *fp = page->freelist; | |
739 | void *object = NULL; | |
224a88be | 740 | unsigned long max_objects; |
81819f0f | 741 | |
39b26464 | 742 | while (fp && nr <= page->objects) { |
81819f0f CL |
743 | if (fp == search) |
744 | return 1; | |
745 | if (!check_valid_pointer(s, page, fp)) { | |
746 | if (object) { | |
747 | object_err(s, page, object, | |
748 | "Freechain corrupt"); | |
a973e9dd | 749 | set_freepointer(s, object, NULL); |
81819f0f CL |
750 | break; |
751 | } else { | |
24922684 | 752 | slab_err(s, page, "Freepointer corrupt"); |
a973e9dd | 753 | page->freelist = NULL; |
39b26464 | 754 | page->inuse = page->objects; |
24922684 | 755 | slab_fix(s, "Freelist cleared"); |
81819f0f CL |
756 | return 0; |
757 | } | |
758 | break; | |
759 | } | |
760 | object = fp; | |
761 | fp = get_freepointer(s, object); | |
762 | nr++; | |
763 | } | |
764 | ||
224a88be CL |
765 | max_objects = (PAGE_SIZE << compound_order(page)) / s->size; |
766 | if (max_objects > 65535) | |
767 | max_objects = 65535; | |
768 | ||
769 | if (page->objects != max_objects) { | |
770 | slab_err(s, page, "Wrong number of objects. Found %d but " | |
771 | "should be %d", page->objects, max_objects); | |
772 | page->objects = max_objects; | |
773 | slab_fix(s, "Number of objects adjusted."); | |
774 | } | |
39b26464 | 775 | if (page->inuse != page->objects - nr) { |
70d71228 | 776 | slab_err(s, page, "Wrong object count. Counter is %d but " |
39b26464 CL |
777 | "counted were %d", page->inuse, page->objects - nr); |
778 | page->inuse = page->objects - nr; | |
24922684 | 779 | slab_fix(s, "Object count adjusted."); |
81819f0f CL |
780 | } |
781 | return search == NULL; | |
782 | } | |
783 | ||
0121c619 CL |
784 | static void trace(struct kmem_cache *s, struct page *page, void *object, |
785 | int alloc) | |
3ec09742 CL |
786 | { |
787 | if (s->flags & SLAB_TRACE) { | |
788 | printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", | |
789 | s->name, | |
790 | alloc ? "alloc" : "free", | |
791 | object, page->inuse, | |
792 | page->freelist); | |
793 | ||
794 | if (!alloc) | |
795 | print_section("Object", (void *)object, s->objsize); | |
796 | ||
797 | dump_stack(); | |
798 | } | |
799 | } | |
800 | ||
643b1138 | 801 | /* |
672bba3a | 802 | * Tracking of fully allocated slabs for debugging purposes. |
643b1138 | 803 | */ |
e95eed57 | 804 | static void add_full(struct kmem_cache_node *n, struct page *page) |
643b1138 | 805 | { |
643b1138 CL |
806 | spin_lock(&n->list_lock); |
807 | list_add(&page->lru, &n->full); | |
808 | spin_unlock(&n->list_lock); | |
809 | } | |
810 | ||
811 | static void remove_full(struct kmem_cache *s, struct page *page) | |
812 | { | |
813 | struct kmem_cache_node *n; | |
814 | ||
815 | if (!(s->flags & SLAB_STORE_USER)) | |
816 | return; | |
817 | ||
818 | n = get_node(s, page_to_nid(page)); | |
819 | ||
820 | spin_lock(&n->list_lock); | |
821 | list_del(&page->lru); | |
822 | spin_unlock(&n->list_lock); | |
823 | } | |
824 | ||
0f389ec6 CL |
825 | /* Tracking of the number of slabs for debugging purposes */ |
826 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | |
827 | { | |
828 | struct kmem_cache_node *n = get_node(s, node); | |
829 | ||
830 | return atomic_long_read(&n->nr_slabs); | |
831 | } | |
832 | ||
205ab99d | 833 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
834 | { |
835 | struct kmem_cache_node *n = get_node(s, node); | |
836 | ||
837 | /* | |
838 | * May be called early in order to allocate a slab for the | |
839 | * kmem_cache_node structure. Solve the chicken-egg | |
840 | * dilemma by deferring the increment of the count during | |
841 | * bootstrap (see early_kmem_cache_node_alloc). | |
842 | */ | |
205ab99d | 843 | if (!NUMA_BUILD || n) { |
0f389ec6 | 844 | atomic_long_inc(&n->nr_slabs); |
205ab99d CL |
845 | atomic_long_add(objects, &n->total_objects); |
846 | } | |
0f389ec6 | 847 | } |
205ab99d | 848 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
0f389ec6 CL |
849 | { |
850 | struct kmem_cache_node *n = get_node(s, node); | |
851 | ||
852 | atomic_long_dec(&n->nr_slabs); | |
205ab99d | 853 | atomic_long_sub(objects, &n->total_objects); |
0f389ec6 CL |
854 | } |
855 | ||
856 | /* Object debug checks for alloc/free paths */ | |
3ec09742 CL |
857 | static void setup_object_debug(struct kmem_cache *s, struct page *page, |
858 | void *object) | |
859 | { | |
860 | if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | |
861 | return; | |
862 | ||
863 | init_object(s, object, 0); | |
864 | init_tracking(s, object); | |
865 | } | |
866 | ||
867 | static int alloc_debug_processing(struct kmem_cache *s, struct page *page, | |
868 | void *object, void *addr) | |
81819f0f CL |
869 | { |
870 | if (!check_slab(s, page)) | |
871 | goto bad; | |
872 | ||
d692ef6d | 873 | if (!on_freelist(s, page, object)) { |
24922684 | 874 | object_err(s, page, object, "Object already allocated"); |
70d71228 | 875 | goto bad; |
81819f0f CL |
876 | } |
877 | ||
878 | if (!check_valid_pointer(s, page, object)) { | |
879 | object_err(s, page, object, "Freelist Pointer check fails"); | |
70d71228 | 880 | goto bad; |
81819f0f CL |
881 | } |
882 | ||
d692ef6d | 883 | if (!check_object(s, page, object, 0)) |
81819f0f | 884 | goto bad; |
81819f0f | 885 | |
3ec09742 CL |
886 | /* Success perform special debug activities for allocs */ |
887 | if (s->flags & SLAB_STORE_USER) | |
888 | set_track(s, object, TRACK_ALLOC, addr); | |
889 | trace(s, page, object, 1); | |
890 | init_object(s, object, 1); | |
81819f0f | 891 | return 1; |
3ec09742 | 892 | |
81819f0f CL |
893 | bad: |
894 | if (PageSlab(page)) { | |
895 | /* | |
896 | * If this is a slab page then lets do the best we can | |
897 | * to avoid issues in the future. Marking all objects | |
672bba3a | 898 | * as used avoids touching the remaining objects. |
81819f0f | 899 | */ |
24922684 | 900 | slab_fix(s, "Marking all objects used"); |
39b26464 | 901 | page->inuse = page->objects; |
a973e9dd | 902 | page->freelist = NULL; |
81819f0f CL |
903 | } |
904 | return 0; | |
905 | } | |
906 | ||
3ec09742 CL |
907 | static int free_debug_processing(struct kmem_cache *s, struct page *page, |
908 | void *object, void *addr) | |
81819f0f CL |
909 | { |
910 | if (!check_slab(s, page)) | |
911 | goto fail; | |
912 | ||
913 | if (!check_valid_pointer(s, page, object)) { | |
70d71228 | 914 | slab_err(s, page, "Invalid object pointer 0x%p", object); |
81819f0f CL |
915 | goto fail; |
916 | } | |
917 | ||
918 | if (on_freelist(s, page, object)) { | |
24922684 | 919 | object_err(s, page, object, "Object already free"); |
81819f0f CL |
920 | goto fail; |
921 | } | |
922 | ||
923 | if (!check_object(s, page, object, 1)) | |
924 | return 0; | |
925 | ||
926 | if (unlikely(s != page->slab)) { | |
3adbefee | 927 | if (!PageSlab(page)) { |
70d71228 CL |
928 | slab_err(s, page, "Attempt to free object(0x%p) " |
929 | "outside of slab", object); | |
3adbefee | 930 | } else if (!page->slab) { |
81819f0f | 931 | printk(KERN_ERR |
70d71228 | 932 | "SLUB <none>: no slab for object 0x%p.\n", |
81819f0f | 933 | object); |
70d71228 | 934 | dump_stack(); |
06428780 | 935 | } else |
24922684 CL |
936 | object_err(s, page, object, |
937 | "page slab pointer corrupt."); | |
81819f0f CL |
938 | goto fail; |
939 | } | |
3ec09742 CL |
940 | |
941 | /* Special debug activities for freeing objects */ | |
8a38082d | 942 | if (!PageSlubFrozen(page) && !page->freelist) |
3ec09742 CL |
943 | remove_full(s, page); |
944 | if (s->flags & SLAB_STORE_USER) | |
945 | set_track(s, object, TRACK_FREE, addr); | |
946 | trace(s, page, object, 0); | |
947 | init_object(s, object, 0); | |
81819f0f | 948 | return 1; |
3ec09742 | 949 | |
81819f0f | 950 | fail: |
24922684 | 951 | slab_fix(s, "Object at 0x%p not freed", object); |
81819f0f CL |
952 | return 0; |
953 | } | |
954 | ||
41ecc55b CL |
955 | static int __init setup_slub_debug(char *str) |
956 | { | |
f0630fff CL |
957 | slub_debug = DEBUG_DEFAULT_FLAGS; |
958 | if (*str++ != '=' || !*str) | |
959 | /* | |
960 | * No options specified. Switch on full debugging. | |
961 | */ | |
962 | goto out; | |
963 | ||
964 | if (*str == ',') | |
965 | /* | |
966 | * No options but restriction on slabs. This means full | |
967 | * debugging for slabs matching a pattern. | |
968 | */ | |
969 | goto check_slabs; | |
970 | ||
971 | slub_debug = 0; | |
972 | if (*str == '-') | |
973 | /* | |
974 | * Switch off all debugging measures. | |
975 | */ | |
976 | goto out; | |
977 | ||
978 | /* | |
979 | * Determine which debug features should be switched on | |
980 | */ | |
06428780 | 981 | for (; *str && *str != ','; str++) { |
f0630fff CL |
982 | switch (tolower(*str)) { |
983 | case 'f': | |
984 | slub_debug |= SLAB_DEBUG_FREE; | |
985 | break; | |
986 | case 'z': | |
987 | slub_debug |= SLAB_RED_ZONE; | |
988 | break; | |
989 | case 'p': | |
990 | slub_debug |= SLAB_POISON; | |
991 | break; | |
992 | case 'u': | |
993 | slub_debug |= SLAB_STORE_USER; | |
994 | break; | |
995 | case 't': | |
996 | slub_debug |= SLAB_TRACE; | |
997 | break; | |
998 | default: | |
999 | printk(KERN_ERR "slub_debug option '%c' " | |
06428780 | 1000 | "unknown. skipped\n", *str); |
f0630fff | 1001 | } |
41ecc55b CL |
1002 | } |
1003 | ||
f0630fff | 1004 | check_slabs: |
41ecc55b CL |
1005 | if (*str == ',') |
1006 | slub_debug_slabs = str + 1; | |
f0630fff | 1007 | out: |
41ecc55b CL |
1008 | return 1; |
1009 | } | |
1010 | ||
1011 | __setup("slub_debug", setup_slub_debug); | |
1012 | ||
ba0268a8 CL |
1013 | static unsigned long kmem_cache_flags(unsigned long objsize, |
1014 | unsigned long flags, const char *name, | |
51cc5068 | 1015 | void (*ctor)(void *)) |
41ecc55b CL |
1016 | { |
1017 | /* | |
e153362a | 1018 | * Enable debugging if selected on the kernel commandline. |
41ecc55b | 1019 | */ |
e153362a CL |
1020 | if (slub_debug && (!slub_debug_slabs || |
1021 | strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0)) | |
1022 | flags |= slub_debug; | |
ba0268a8 CL |
1023 | |
1024 | return flags; | |
41ecc55b CL |
1025 | } |
1026 | #else | |
3ec09742 CL |
1027 | static inline void setup_object_debug(struct kmem_cache *s, |
1028 | struct page *page, void *object) {} | |
41ecc55b | 1029 | |
3ec09742 CL |
1030 | static inline int alloc_debug_processing(struct kmem_cache *s, |
1031 | struct page *page, void *object, void *addr) { return 0; } | |
41ecc55b | 1032 | |
3ec09742 CL |
1033 | static inline int free_debug_processing(struct kmem_cache *s, |
1034 | struct page *page, void *object, void *addr) { return 0; } | |
41ecc55b | 1035 | |
41ecc55b CL |
1036 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) |
1037 | { return 1; } | |
1038 | static inline int check_object(struct kmem_cache *s, struct page *page, | |
1039 | void *object, int active) { return 1; } | |
3ec09742 | 1040 | static inline void add_full(struct kmem_cache_node *n, struct page *page) {} |
ba0268a8 CL |
1041 | static inline unsigned long kmem_cache_flags(unsigned long objsize, |
1042 | unsigned long flags, const char *name, | |
51cc5068 | 1043 | void (*ctor)(void *)) |
ba0268a8 CL |
1044 | { |
1045 | return flags; | |
1046 | } | |
41ecc55b | 1047 | #define slub_debug 0 |
0f389ec6 CL |
1048 | |
1049 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | |
1050 | { return 0; } | |
205ab99d CL |
1051 | static inline void inc_slabs_node(struct kmem_cache *s, int node, |
1052 | int objects) {} | |
1053 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | |
1054 | int objects) {} | |
41ecc55b | 1055 | #endif |
205ab99d | 1056 | |
81819f0f CL |
1057 | /* |
1058 | * Slab allocation and freeing | |
1059 | */ | |
65c3376a CL |
1060 | static inline struct page *alloc_slab_page(gfp_t flags, int node, |
1061 | struct kmem_cache_order_objects oo) | |
1062 | { | |
1063 | int order = oo_order(oo); | |
1064 | ||
1065 | if (node == -1) | |
1066 | return alloc_pages(flags, order); | |
1067 | else | |
1068 | return alloc_pages_node(node, flags, order); | |
1069 | } | |
1070 | ||
81819f0f CL |
1071 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
1072 | { | |
06428780 | 1073 | struct page *page; |
834f3d11 | 1074 | struct kmem_cache_order_objects oo = s->oo; |
81819f0f | 1075 | |
b7a49f0d | 1076 | flags |= s->allocflags; |
e12ba74d | 1077 | |
65c3376a CL |
1078 | page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node, |
1079 | oo); | |
1080 | if (unlikely(!page)) { | |
1081 | oo = s->min; | |
1082 | /* | |
1083 | * Allocation may have failed due to fragmentation. | |
1084 | * Try a lower order alloc if possible | |
1085 | */ | |
1086 | page = alloc_slab_page(flags, node, oo); | |
1087 | if (!page) | |
1088 | return NULL; | |
81819f0f | 1089 | |
65c3376a CL |
1090 | stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK); |
1091 | } | |
834f3d11 | 1092 | page->objects = oo_objects(oo); |
81819f0f CL |
1093 | mod_zone_page_state(page_zone(page), |
1094 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | |
1095 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
65c3376a | 1096 | 1 << oo_order(oo)); |
81819f0f CL |
1097 | |
1098 | return page; | |
1099 | } | |
1100 | ||
1101 | static void setup_object(struct kmem_cache *s, struct page *page, | |
1102 | void *object) | |
1103 | { | |
3ec09742 | 1104 | setup_object_debug(s, page, object); |
4f104934 | 1105 | if (unlikely(s->ctor)) |
51cc5068 | 1106 | s->ctor(object); |
81819f0f CL |
1107 | } |
1108 | ||
1109 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | |
1110 | { | |
1111 | struct page *page; | |
81819f0f | 1112 | void *start; |
81819f0f CL |
1113 | void *last; |
1114 | void *p; | |
1115 | ||
6cb06229 | 1116 | BUG_ON(flags & GFP_SLAB_BUG_MASK); |
81819f0f | 1117 | |
6cb06229 CL |
1118 | page = allocate_slab(s, |
1119 | flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | |
81819f0f CL |
1120 | if (!page) |
1121 | goto out; | |
1122 | ||
205ab99d | 1123 | inc_slabs_node(s, page_to_nid(page), page->objects); |
81819f0f CL |
1124 | page->slab = s; |
1125 | page->flags |= 1 << PG_slab; | |
1126 | if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | | |
1127 | SLAB_STORE_USER | SLAB_TRACE)) | |
8a38082d | 1128 | __SetPageSlubDebug(page); |
81819f0f CL |
1129 | |
1130 | start = page_address(page); | |
81819f0f CL |
1131 | |
1132 | if (unlikely(s->flags & SLAB_POISON)) | |
834f3d11 | 1133 | memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); |
81819f0f CL |
1134 | |
1135 | last = start; | |
224a88be | 1136 | for_each_object(p, s, start, page->objects) { |
81819f0f CL |
1137 | setup_object(s, page, last); |
1138 | set_freepointer(s, last, p); | |
1139 | last = p; | |
1140 | } | |
1141 | setup_object(s, page, last); | |
a973e9dd | 1142 | set_freepointer(s, last, NULL); |
81819f0f CL |
1143 | |
1144 | page->freelist = start; | |
1145 | page->inuse = 0; | |
1146 | out: | |
81819f0f CL |
1147 | return page; |
1148 | } | |
1149 | ||
1150 | static void __free_slab(struct kmem_cache *s, struct page *page) | |
1151 | { | |
834f3d11 CL |
1152 | int order = compound_order(page); |
1153 | int pages = 1 << order; | |
81819f0f | 1154 | |
8a38082d | 1155 | if (unlikely(SLABDEBUG && PageSlubDebug(page))) { |
81819f0f CL |
1156 | void *p; |
1157 | ||
1158 | slab_pad_check(s, page); | |
224a88be CL |
1159 | for_each_object(p, s, page_address(page), |
1160 | page->objects) | |
81819f0f | 1161 | check_object(s, page, p, 0); |
8a38082d | 1162 | __ClearPageSlubDebug(page); |
81819f0f CL |
1163 | } |
1164 | ||
1165 | mod_zone_page_state(page_zone(page), | |
1166 | (s->flags & SLAB_RECLAIM_ACCOUNT) ? | |
1167 | NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | |
06428780 | 1168 | -pages); |
81819f0f | 1169 | |
49bd5221 CL |
1170 | __ClearPageSlab(page); |
1171 | reset_page_mapcount(page); | |
834f3d11 | 1172 | __free_pages(page, order); |
81819f0f CL |
1173 | } |
1174 | ||
1175 | static void rcu_free_slab(struct rcu_head *h) | |
1176 | { | |
1177 | struct page *page; | |
1178 | ||
1179 | page = container_of((struct list_head *)h, struct page, lru); | |
1180 | __free_slab(page->slab, page); | |
1181 | } | |
1182 | ||
1183 | static void free_slab(struct kmem_cache *s, struct page *page) | |
1184 | { | |
1185 | if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { | |
1186 | /* | |
1187 | * RCU free overloads the RCU head over the LRU | |
1188 | */ | |
1189 | struct rcu_head *head = (void *)&page->lru; | |
1190 | ||
1191 | call_rcu(head, rcu_free_slab); | |
1192 | } else | |
1193 | __free_slab(s, page); | |
1194 | } | |
1195 | ||
1196 | static void discard_slab(struct kmem_cache *s, struct page *page) | |
1197 | { | |
205ab99d | 1198 | dec_slabs_node(s, page_to_nid(page), page->objects); |
81819f0f CL |
1199 | free_slab(s, page); |
1200 | } | |
1201 | ||
1202 | /* | |
1203 | * Per slab locking using the pagelock | |
1204 | */ | |
1205 | static __always_inline void slab_lock(struct page *page) | |
1206 | { | |
1207 | bit_spin_lock(PG_locked, &page->flags); | |
1208 | } | |
1209 | ||
1210 | static __always_inline void slab_unlock(struct page *page) | |
1211 | { | |
a76d3546 | 1212 | __bit_spin_unlock(PG_locked, &page->flags); |
81819f0f CL |
1213 | } |
1214 | ||
1215 | static __always_inline int slab_trylock(struct page *page) | |
1216 | { | |
1217 | int rc = 1; | |
1218 | ||
1219 | rc = bit_spin_trylock(PG_locked, &page->flags); | |
1220 | return rc; | |
1221 | } | |
1222 | ||
1223 | /* | |
1224 | * Management of partially allocated slabs | |
1225 | */ | |
7c2e132c CL |
1226 | static void add_partial(struct kmem_cache_node *n, |
1227 | struct page *page, int tail) | |
81819f0f | 1228 | { |
e95eed57 CL |
1229 | spin_lock(&n->list_lock); |
1230 | n->nr_partial++; | |
7c2e132c CL |
1231 | if (tail) |
1232 | list_add_tail(&page->lru, &n->partial); | |
1233 | else | |
1234 | list_add(&page->lru, &n->partial); | |
81819f0f CL |
1235 | spin_unlock(&n->list_lock); |
1236 | } | |
1237 | ||
0121c619 | 1238 | static void remove_partial(struct kmem_cache *s, struct page *page) |
81819f0f CL |
1239 | { |
1240 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | |
1241 | ||
1242 | spin_lock(&n->list_lock); | |
1243 | list_del(&page->lru); | |
1244 | n->nr_partial--; | |
1245 | spin_unlock(&n->list_lock); | |
1246 | } | |
1247 | ||
1248 | /* | |
672bba3a | 1249 | * Lock slab and remove from the partial list. |
81819f0f | 1250 | * |
672bba3a | 1251 | * Must hold list_lock. |
81819f0f | 1252 | */ |
0121c619 CL |
1253 | static inline int lock_and_freeze_slab(struct kmem_cache_node *n, |
1254 | struct page *page) | |
81819f0f CL |
1255 | { |
1256 | if (slab_trylock(page)) { | |
1257 | list_del(&page->lru); | |
1258 | n->nr_partial--; | |
8a38082d | 1259 | __SetPageSlubFrozen(page); |
81819f0f CL |
1260 | return 1; |
1261 | } | |
1262 | return 0; | |
1263 | } | |
1264 | ||
1265 | /* | |
672bba3a | 1266 | * Try to allocate a partial slab from a specific node. |
81819f0f CL |
1267 | */ |
1268 | static struct page *get_partial_node(struct kmem_cache_node *n) | |
1269 | { | |
1270 | struct page *page; | |
1271 | ||
1272 | /* | |
1273 | * Racy check. If we mistakenly see no partial slabs then we | |
1274 | * just allocate an empty slab. If we mistakenly try to get a | |
672bba3a CL |
1275 | * partial slab and there is none available then get_partials() |
1276 | * will return NULL. | |
81819f0f CL |
1277 | */ |
1278 | if (!n || !n->nr_partial) | |
1279 | return NULL; | |
1280 | ||
1281 | spin_lock(&n->list_lock); | |
1282 | list_for_each_entry(page, &n->partial, lru) | |
4b6f0750 | 1283 | if (lock_and_freeze_slab(n, page)) |
81819f0f CL |
1284 | goto out; |
1285 | page = NULL; | |
1286 | out: | |
1287 | spin_unlock(&n->list_lock); | |
1288 | return page; | |
1289 | } | |
1290 | ||
1291 | /* | |
672bba3a | 1292 | * Get a page from somewhere. Search in increasing NUMA distances. |
81819f0f CL |
1293 | */ |
1294 | static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) | |
1295 | { | |
1296 | #ifdef CONFIG_NUMA | |
1297 | struct zonelist *zonelist; | |
dd1a239f | 1298 | struct zoneref *z; |
54a6eb5c MG |
1299 | struct zone *zone; |
1300 | enum zone_type high_zoneidx = gfp_zone(flags); | |
81819f0f CL |
1301 | struct page *page; |
1302 | ||
1303 | /* | |
672bba3a CL |
1304 | * The defrag ratio allows a configuration of the tradeoffs between |
1305 | * inter node defragmentation and node local allocations. A lower | |
1306 | * defrag_ratio increases the tendency to do local allocations | |
1307 | * instead of attempting to obtain partial slabs from other nodes. | |
81819f0f | 1308 | * |
672bba3a CL |
1309 | * If the defrag_ratio is set to 0 then kmalloc() always |
1310 | * returns node local objects. If the ratio is higher then kmalloc() | |
1311 | * may return off node objects because partial slabs are obtained | |
1312 | * from other nodes and filled up. | |
81819f0f | 1313 | * |
6446faa2 | 1314 | * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes |
672bba3a CL |
1315 | * defrag_ratio = 1000) then every (well almost) allocation will |
1316 | * first attempt to defrag slab caches on other nodes. This means | |
1317 | * scanning over all nodes to look for partial slabs which may be | |
1318 | * expensive if we do it every time we are trying to find a slab | |
1319 | * with available objects. | |
81819f0f | 1320 | */ |
9824601e CL |
1321 | if (!s->remote_node_defrag_ratio || |
1322 | get_cycles() % 1024 > s->remote_node_defrag_ratio) | |
81819f0f CL |
1323 | return NULL; |
1324 | ||
0e88460d | 1325 | zonelist = node_zonelist(slab_node(current->mempolicy), flags); |
54a6eb5c | 1326 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
81819f0f CL |
1327 | struct kmem_cache_node *n; |
1328 | ||
54a6eb5c | 1329 | n = get_node(s, zone_to_nid(zone)); |
81819f0f | 1330 | |
54a6eb5c | 1331 | if (n && cpuset_zone_allowed_hardwall(zone, flags) && |
5595cffc | 1332 | n->nr_partial > n->min_partial) { |
81819f0f CL |
1333 | page = get_partial_node(n); |
1334 | if (page) | |
1335 | return page; | |
1336 | } | |
1337 | } | |
1338 | #endif | |
1339 | return NULL; | |
1340 | } | |
1341 | ||
1342 | /* | |
1343 | * Get a partial page, lock it and return it. | |
1344 | */ | |
1345 | static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) | |
1346 | { | |
1347 | struct page *page; | |
1348 | int searchnode = (node == -1) ? numa_node_id() : node; | |
1349 | ||
1350 | page = get_partial_node(get_node(s, searchnode)); | |
1351 | if (page || (flags & __GFP_THISNODE)) | |
1352 | return page; | |
1353 | ||
1354 | return get_any_partial(s, flags); | |
1355 | } | |
1356 | ||
1357 | /* | |
1358 | * Move a page back to the lists. | |
1359 | * | |
1360 | * Must be called with the slab lock held. | |
1361 | * | |
1362 | * On exit the slab lock will have been dropped. | |
1363 | */ | |
7c2e132c | 1364 | static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) |
81819f0f | 1365 | { |
e95eed57 | 1366 | struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
8ff12cfc | 1367 | struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id()); |
e95eed57 | 1368 | |
8a38082d | 1369 | __ClearPageSlubFrozen(page); |
81819f0f | 1370 | if (page->inuse) { |
e95eed57 | 1371 | |
a973e9dd | 1372 | if (page->freelist) { |
7c2e132c | 1373 | add_partial(n, page, tail); |
8ff12cfc CL |
1374 | stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); |
1375 | } else { | |
1376 | stat(c, DEACTIVATE_FULL); | |
8a38082d AW |
1377 | if (SLABDEBUG && PageSlubDebug(page) && |
1378 | (s->flags & SLAB_STORE_USER)) | |
8ff12cfc CL |
1379 | add_full(n, page); |
1380 | } | |
81819f0f CL |
1381 | slab_unlock(page); |
1382 | } else { | |
8ff12cfc | 1383 | stat(c, DEACTIVATE_EMPTY); |
5595cffc | 1384 | if (n->nr_partial < n->min_partial) { |
e95eed57 | 1385 | /* |
672bba3a CL |
1386 | * Adding an empty slab to the partial slabs in order |
1387 | * to avoid page allocator overhead. This slab needs | |
1388 | * to come after the other slabs with objects in | |
6446faa2 CL |
1389 | * so that the others get filled first. That way the |
1390 | * size of the partial list stays small. | |
1391 | * | |
0121c619 CL |
1392 | * kmem_cache_shrink can reclaim any empty slabs from |
1393 | * the partial list. | |
e95eed57 | 1394 | */ |
7c2e132c | 1395 | add_partial(n, page, 1); |
e95eed57 CL |
1396 | slab_unlock(page); |
1397 | } else { | |
1398 | slab_unlock(page); | |
8ff12cfc | 1399 | stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB); |
e95eed57 CL |
1400 | discard_slab(s, page); |
1401 | } | |
81819f0f CL |
1402 | } |
1403 | } | |
1404 | ||
1405 | /* | |
1406 | * Remove the cpu slab | |
1407 | */ | |
dfb4f096 | 1408 | static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 1409 | { |
dfb4f096 | 1410 | struct page *page = c->page; |
7c2e132c | 1411 | int tail = 1; |
8ff12cfc | 1412 | |
b773ad73 | 1413 | if (page->freelist) |
8ff12cfc | 1414 | stat(c, DEACTIVATE_REMOTE_FREES); |
894b8788 | 1415 | /* |
6446faa2 | 1416 | * Merge cpu freelist into slab freelist. Typically we get here |
894b8788 CL |
1417 | * because both freelists are empty. So this is unlikely |
1418 | * to occur. | |
1419 | */ | |
a973e9dd | 1420 | while (unlikely(c->freelist)) { |
894b8788 CL |
1421 | void **object; |
1422 | ||
7c2e132c CL |
1423 | tail = 0; /* Hot objects. Put the slab first */ |
1424 | ||
894b8788 | 1425 | /* Retrieve object from cpu_freelist */ |
dfb4f096 | 1426 | object = c->freelist; |
b3fba8da | 1427 | c->freelist = c->freelist[c->offset]; |
894b8788 CL |
1428 | |
1429 | /* And put onto the regular freelist */ | |
b3fba8da | 1430 | object[c->offset] = page->freelist; |
894b8788 CL |
1431 | page->freelist = object; |
1432 | page->inuse--; | |
1433 | } | |
dfb4f096 | 1434 | c->page = NULL; |
7c2e132c | 1435 | unfreeze_slab(s, page, tail); |
81819f0f CL |
1436 | } |
1437 | ||
dfb4f096 | 1438 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
81819f0f | 1439 | { |
8ff12cfc | 1440 | stat(c, CPUSLAB_FLUSH); |
dfb4f096 CL |
1441 | slab_lock(c->page); |
1442 | deactivate_slab(s, c); | |
81819f0f CL |
1443 | } |
1444 | ||
1445 | /* | |
1446 | * Flush cpu slab. | |
6446faa2 | 1447 | * |
81819f0f CL |
1448 | * Called from IPI handler with interrupts disabled. |
1449 | */ | |
0c710013 | 1450 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
81819f0f | 1451 | { |
dfb4f096 | 1452 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); |
81819f0f | 1453 | |
dfb4f096 CL |
1454 | if (likely(c && c->page)) |
1455 | flush_slab(s, c); | |
81819f0f CL |
1456 | } |
1457 | ||
1458 | static void flush_cpu_slab(void *d) | |
1459 | { | |
1460 | struct kmem_cache *s = d; | |
81819f0f | 1461 | |
dfb4f096 | 1462 | __flush_cpu_slab(s, smp_processor_id()); |
81819f0f CL |
1463 | } |
1464 | ||
1465 | static void flush_all(struct kmem_cache *s) | |
1466 | { | |
15c8b6c1 | 1467 | on_each_cpu(flush_cpu_slab, s, 1); |
81819f0f CL |
1468 | } |
1469 | ||
dfb4f096 CL |
1470 | /* |
1471 | * Check if the objects in a per cpu structure fit numa | |
1472 | * locality expectations. | |
1473 | */ | |
1474 | static inline int node_match(struct kmem_cache_cpu *c, int node) | |
1475 | { | |
1476 | #ifdef CONFIG_NUMA | |
1477 | if (node != -1 && c->node != node) | |
1478 | return 0; | |
1479 | #endif | |
1480 | return 1; | |
1481 | } | |
1482 | ||
81819f0f | 1483 | /* |
894b8788 CL |
1484 | * Slow path. The lockless freelist is empty or we need to perform |
1485 | * debugging duties. | |
1486 | * | |
1487 | * Interrupts are disabled. | |
81819f0f | 1488 | * |
894b8788 CL |
1489 | * Processing is still very fast if new objects have been freed to the |
1490 | * regular freelist. In that case we simply take over the regular freelist | |
1491 | * as the lockless freelist and zap the regular freelist. | |
81819f0f | 1492 | * |
894b8788 CL |
1493 | * If that is not working then we fall back to the partial lists. We take the |
1494 | * first element of the freelist as the object to allocate now and move the | |
1495 | * rest of the freelist to the lockless freelist. | |
81819f0f | 1496 | * |
894b8788 | 1497 | * And if we were unable to get a new slab from the partial slab lists then |
6446faa2 CL |
1498 | * we need to allocate a new slab. This is the slowest path since it involves |
1499 | * a call to the page allocator and the setup of a new slab. | |
81819f0f | 1500 | */ |
894b8788 | 1501 | static void *__slab_alloc(struct kmem_cache *s, |
dfb4f096 | 1502 | gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c) |
81819f0f | 1503 | { |
81819f0f | 1504 | void **object; |
dfb4f096 | 1505 | struct page *new; |
81819f0f | 1506 | |
e72e9c23 LT |
1507 | /* We handle __GFP_ZERO in the caller */ |
1508 | gfpflags &= ~__GFP_ZERO; | |
1509 | ||
dfb4f096 | 1510 | if (!c->page) |
81819f0f CL |
1511 | goto new_slab; |
1512 | ||
dfb4f096 CL |
1513 | slab_lock(c->page); |
1514 | if (unlikely(!node_match(c, node))) | |
81819f0f | 1515 | goto another_slab; |
6446faa2 | 1516 | |
8ff12cfc | 1517 | stat(c, ALLOC_REFILL); |
6446faa2 | 1518 | |
894b8788 | 1519 | load_freelist: |
dfb4f096 | 1520 | object = c->page->freelist; |
a973e9dd | 1521 | if (unlikely(!object)) |
81819f0f | 1522 | goto another_slab; |
8a38082d | 1523 | if (unlikely(SLABDEBUG && PageSlubDebug(c->page))) |
81819f0f CL |
1524 | goto debug; |
1525 | ||
b3fba8da | 1526 | c->freelist = object[c->offset]; |
39b26464 | 1527 | c->page->inuse = c->page->objects; |
a973e9dd | 1528 | c->page->freelist = NULL; |
dfb4f096 | 1529 | c->node = page_to_nid(c->page); |
1f84260c | 1530 | unlock_out: |
dfb4f096 | 1531 | slab_unlock(c->page); |
8ff12cfc | 1532 | stat(c, ALLOC_SLOWPATH); |
81819f0f CL |
1533 | return object; |
1534 | ||
1535 | another_slab: | |
dfb4f096 | 1536 | deactivate_slab(s, c); |
81819f0f CL |
1537 | |
1538 | new_slab: | |
dfb4f096 CL |
1539 | new = get_partial(s, gfpflags, node); |
1540 | if (new) { | |
1541 | c->page = new; | |
8ff12cfc | 1542 | stat(c, ALLOC_FROM_PARTIAL); |
894b8788 | 1543 | goto load_freelist; |
81819f0f CL |
1544 | } |
1545 | ||
b811c202 CL |
1546 | if (gfpflags & __GFP_WAIT) |
1547 | local_irq_enable(); | |
1548 | ||
dfb4f096 | 1549 | new = new_slab(s, gfpflags, node); |
b811c202 CL |
1550 | |
1551 | if (gfpflags & __GFP_WAIT) | |
1552 | local_irq_disable(); | |
1553 | ||
dfb4f096 CL |
1554 | if (new) { |
1555 | c = get_cpu_slab(s, smp_processor_id()); | |
8ff12cfc | 1556 | stat(c, ALLOC_SLAB); |
05aa3450 | 1557 | if (c->page) |
dfb4f096 | 1558 | flush_slab(s, c); |
dfb4f096 | 1559 | slab_lock(new); |
8a38082d | 1560 | __SetPageSlubFrozen(new); |
dfb4f096 | 1561 | c->page = new; |
4b6f0750 | 1562 | goto load_freelist; |
81819f0f | 1563 | } |
71c7a06f | 1564 | return NULL; |
81819f0f | 1565 | debug: |
dfb4f096 | 1566 | if (!alloc_debug_processing(s, c->page, object, addr)) |
81819f0f | 1567 | goto another_slab; |
894b8788 | 1568 | |
dfb4f096 | 1569 | c->page->inuse++; |
b3fba8da | 1570 | c->page->freelist = object[c->offset]; |
ee3c72a1 | 1571 | c->node = -1; |
1f84260c | 1572 | goto unlock_out; |
894b8788 CL |
1573 | } |
1574 | ||
1575 | /* | |
1576 | * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | |
1577 | * have the fastpath folded into their functions. So no function call | |
1578 | * overhead for requests that can be satisfied on the fastpath. | |
1579 | * | |
1580 | * The fastpath works by first checking if the lockless freelist can be used. | |
1581 | * If not then __slab_alloc is called for slow processing. | |
1582 | * | |
1583 | * Otherwise we can simply pick the next object from the lockless free list. | |
1584 | */ | |
06428780 | 1585 | static __always_inline void *slab_alloc(struct kmem_cache *s, |
ce15fea8 | 1586 | gfp_t gfpflags, int node, void *addr) |
894b8788 | 1587 | { |
894b8788 | 1588 | void **object; |
dfb4f096 | 1589 | struct kmem_cache_cpu *c; |
1f84260c | 1590 | unsigned long flags; |
bdb21928 | 1591 | unsigned int objsize; |
1f84260c | 1592 | |
894b8788 | 1593 | local_irq_save(flags); |
dfb4f096 | 1594 | c = get_cpu_slab(s, smp_processor_id()); |
bdb21928 | 1595 | objsize = c->objsize; |
a973e9dd | 1596 | if (unlikely(!c->freelist || !node_match(c, node))) |
894b8788 | 1597 | |
dfb4f096 | 1598 | object = __slab_alloc(s, gfpflags, node, addr, c); |
894b8788 CL |
1599 | |
1600 | else { | |
dfb4f096 | 1601 | object = c->freelist; |
b3fba8da | 1602 | c->freelist = object[c->offset]; |
8ff12cfc | 1603 | stat(c, ALLOC_FASTPATH); |
894b8788 CL |
1604 | } |
1605 | local_irq_restore(flags); | |
d07dbea4 CL |
1606 | |
1607 | if (unlikely((gfpflags & __GFP_ZERO) && object)) | |
bdb21928 | 1608 | memset(object, 0, objsize); |
d07dbea4 | 1609 | |
894b8788 | 1610 | return object; |
81819f0f CL |
1611 | } |
1612 | ||
1613 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | |
1614 | { | |
ce15fea8 | 1615 | return slab_alloc(s, gfpflags, -1, __builtin_return_address(0)); |
81819f0f CL |
1616 | } |
1617 | EXPORT_SYMBOL(kmem_cache_alloc); | |
1618 | ||
1619 | #ifdef CONFIG_NUMA | |
1620 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | |
1621 | { | |
ce15fea8 | 1622 | return slab_alloc(s, gfpflags, node, __builtin_return_address(0)); |
81819f0f CL |
1623 | } |
1624 | EXPORT_SYMBOL(kmem_cache_alloc_node); | |
1625 | #endif | |
1626 | ||
1627 | /* | |
894b8788 CL |
1628 | * Slow patch handling. This may still be called frequently since objects |
1629 | * have a longer lifetime than the cpu slabs in most processing loads. | |
81819f0f | 1630 | * |
894b8788 CL |
1631 | * So we still attempt to reduce cache line usage. Just take the slab |
1632 | * lock and free the item. If there is no additional partial page | |
1633 | * handling required then we can return immediately. | |
81819f0f | 1634 | */ |
894b8788 | 1635 | static void __slab_free(struct kmem_cache *s, struct page *page, |
b3fba8da | 1636 | void *x, void *addr, unsigned int offset) |
81819f0f CL |
1637 | { |
1638 | void *prior; | |
1639 | void **object = (void *)x; | |
8ff12cfc | 1640 | struct kmem_cache_cpu *c; |
81819f0f | 1641 | |
8ff12cfc CL |
1642 | c = get_cpu_slab(s, raw_smp_processor_id()); |
1643 | stat(c, FREE_SLOWPATH); | |
81819f0f CL |
1644 | slab_lock(page); |
1645 | ||
8a38082d | 1646 | if (unlikely(SLABDEBUG && PageSlubDebug(page))) |
81819f0f | 1647 | goto debug; |
6446faa2 | 1648 | |
81819f0f | 1649 | checks_ok: |
b3fba8da | 1650 | prior = object[offset] = page->freelist; |
81819f0f CL |
1651 | page->freelist = object; |
1652 | page->inuse--; | |
1653 | ||
8a38082d | 1654 | if (unlikely(PageSlubFrozen(page))) { |
8ff12cfc | 1655 | stat(c, FREE_FROZEN); |
81819f0f | 1656 | goto out_unlock; |
8ff12cfc | 1657 | } |
81819f0f CL |
1658 | |
1659 | if (unlikely(!page->inuse)) | |
1660 | goto slab_empty; | |
1661 | ||
1662 | /* | |
6446faa2 | 1663 | * Objects left in the slab. If it was not on the partial list before |
81819f0f CL |
1664 | * then add it. |
1665 | */ | |
a973e9dd | 1666 | if (unlikely(!prior)) { |
7c2e132c | 1667 | add_partial(get_node(s, page_to_nid(page)), page, 1); |
8ff12cfc CL |
1668 | stat(c, FREE_ADD_PARTIAL); |
1669 | } | |
81819f0f CL |
1670 | |
1671 | out_unlock: | |
1672 | slab_unlock(page); | |
81819f0f CL |
1673 | return; |
1674 | ||
1675 | slab_empty: | |
a973e9dd | 1676 | if (prior) { |
81819f0f | 1677 | /* |
672bba3a | 1678 | * Slab still on the partial list. |
81819f0f CL |
1679 | */ |
1680 | remove_partial(s, page); | |
8ff12cfc CL |
1681 | stat(c, FREE_REMOVE_PARTIAL); |
1682 | } | |
81819f0f | 1683 | slab_unlock(page); |
8ff12cfc | 1684 | stat(c, FREE_SLAB); |
81819f0f | 1685 | discard_slab(s, page); |
81819f0f CL |
1686 | return; |
1687 | ||
1688 | debug: | |
3ec09742 | 1689 | if (!free_debug_processing(s, page, x, addr)) |
77c5e2d0 | 1690 | goto out_unlock; |
77c5e2d0 | 1691 | goto checks_ok; |
81819f0f CL |
1692 | } |
1693 | ||
894b8788 CL |
1694 | /* |
1695 | * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | |
1696 | * can perform fastpath freeing without additional function calls. | |
1697 | * | |
1698 | * The fastpath is only possible if we are freeing to the current cpu slab | |
1699 | * of this processor. This typically the case if we have just allocated | |
1700 | * the item before. | |
1701 | * | |
1702 | * If fastpath is not possible then fall back to __slab_free where we deal | |
1703 | * with all sorts of special processing. | |
1704 | */ | |
06428780 | 1705 | static __always_inline void slab_free(struct kmem_cache *s, |
894b8788 CL |
1706 | struct page *page, void *x, void *addr) |
1707 | { | |
1708 | void **object = (void *)x; | |
dfb4f096 | 1709 | struct kmem_cache_cpu *c; |
1f84260c CL |
1710 | unsigned long flags; |
1711 | ||
894b8788 | 1712 | local_irq_save(flags); |
dfb4f096 | 1713 | c = get_cpu_slab(s, smp_processor_id()); |
27d9e4e9 | 1714 | debug_check_no_locks_freed(object, c->objsize); |
3ac7fe5a TG |
1715 | if (!(s->flags & SLAB_DEBUG_OBJECTS)) |
1716 | debug_check_no_obj_freed(object, s->objsize); | |
ee3c72a1 | 1717 | if (likely(page == c->page && c->node >= 0)) { |
b3fba8da | 1718 | object[c->offset] = c->freelist; |
dfb4f096 | 1719 | c->freelist = object; |
8ff12cfc | 1720 | stat(c, FREE_FASTPATH); |
894b8788 | 1721 | } else |
b3fba8da | 1722 | __slab_free(s, page, x, addr, c->offset); |
894b8788 CL |
1723 | |
1724 | local_irq_restore(flags); | |
1725 | } | |
1726 | ||
81819f0f CL |
1727 | void kmem_cache_free(struct kmem_cache *s, void *x) |
1728 | { | |
77c5e2d0 | 1729 | struct page *page; |
81819f0f | 1730 | |
b49af68f | 1731 | page = virt_to_head_page(x); |
81819f0f | 1732 | |
77c5e2d0 | 1733 | slab_free(s, page, x, __builtin_return_address(0)); |
81819f0f CL |
1734 | } |
1735 | EXPORT_SYMBOL(kmem_cache_free); | |
1736 | ||
1737 | /* Figure out on which slab object the object resides */ | |
1738 | static struct page *get_object_page(const void *x) | |
1739 | { | |
b49af68f | 1740 | struct page *page = virt_to_head_page(x); |
81819f0f CL |
1741 | |
1742 | if (!PageSlab(page)) | |
1743 | return NULL; | |
1744 | ||
1745 | return page; | |
1746 | } | |
1747 | ||
1748 | /* | |
672bba3a CL |
1749 | * Object placement in a slab is made very easy because we always start at |
1750 | * offset 0. If we tune the size of the object to the alignment then we can | |
1751 | * get the required alignment by putting one properly sized object after | |
1752 | * another. | |
81819f0f CL |
1753 | * |
1754 | * Notice that the allocation order determines the sizes of the per cpu | |
1755 | * caches. Each processor has always one slab available for allocations. | |
1756 | * Increasing the allocation order reduces the number of times that slabs | |
672bba3a | 1757 | * must be moved on and off the partial lists and is therefore a factor in |
81819f0f | 1758 | * locking overhead. |
81819f0f CL |
1759 | */ |
1760 | ||
1761 | /* | |
1762 | * Mininum / Maximum order of slab pages. This influences locking overhead | |
1763 | * and slab fragmentation. A higher order reduces the number of partial slabs | |
1764 | * and increases the number of allocations possible without having to | |
1765 | * take the list_lock. | |
1766 | */ | |
1767 | static int slub_min_order; | |
114e9e89 | 1768 | static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; |
9b2cd506 | 1769 | static int slub_min_objects; |
81819f0f CL |
1770 | |
1771 | /* | |
1772 | * Merge control. If this is set then no merging of slab caches will occur. | |
672bba3a | 1773 | * (Could be removed. This was introduced to pacify the merge skeptics.) |
81819f0f CL |
1774 | */ |
1775 | static int slub_nomerge; | |
1776 | ||
81819f0f CL |
1777 | /* |
1778 | * Calculate the order of allocation given an slab object size. | |
1779 | * | |
672bba3a CL |
1780 | * The order of allocation has significant impact on performance and other |
1781 | * system components. Generally order 0 allocations should be preferred since | |
1782 | * order 0 does not cause fragmentation in the page allocator. Larger objects | |
1783 | * be problematic to put into order 0 slabs because there may be too much | |
c124f5b5 | 1784 | * unused space left. We go to a higher order if more than 1/16th of the slab |
672bba3a CL |
1785 | * would be wasted. |
1786 | * | |
1787 | * In order to reach satisfactory performance we must ensure that a minimum | |
1788 | * number of objects is in one slab. Otherwise we may generate too much | |
1789 | * activity on the partial lists which requires taking the list_lock. This is | |
1790 | * less a concern for large slabs though which are rarely used. | |
81819f0f | 1791 | * |
672bba3a CL |
1792 | * slub_max_order specifies the order where we begin to stop considering the |
1793 | * number of objects in a slab as critical. If we reach slub_max_order then | |
1794 | * we try to keep the page order as low as possible. So we accept more waste | |
1795 | * of space in favor of a small page order. | |
81819f0f | 1796 | * |
672bba3a CL |
1797 | * Higher order allocations also allow the placement of more objects in a |
1798 | * slab and thereby reduce object handling overhead. If the user has | |
1799 | * requested a higher mininum order then we start with that one instead of | |
1800 | * the smallest order which will fit the object. | |
81819f0f | 1801 | */ |
5e6d444e CL |
1802 | static inline int slab_order(int size, int min_objects, |
1803 | int max_order, int fract_leftover) | |
81819f0f CL |
1804 | { |
1805 | int order; | |
1806 | int rem; | |
6300ea75 | 1807 | int min_order = slub_min_order; |
81819f0f | 1808 | |
39b26464 CL |
1809 | if ((PAGE_SIZE << min_order) / size > 65535) |
1810 | return get_order(size * 65535) - 1; | |
1811 | ||
6300ea75 | 1812 | for (order = max(min_order, |
5e6d444e CL |
1813 | fls(min_objects * size - 1) - PAGE_SHIFT); |
1814 | order <= max_order; order++) { | |
81819f0f | 1815 | |
5e6d444e | 1816 | unsigned long slab_size = PAGE_SIZE << order; |
81819f0f | 1817 | |
5e6d444e | 1818 | if (slab_size < min_objects * size) |
81819f0f CL |
1819 | continue; |
1820 | ||
1821 | rem = slab_size % size; | |
1822 | ||
5e6d444e | 1823 | if (rem <= slab_size / fract_leftover) |
81819f0f CL |
1824 | break; |
1825 | ||
1826 | } | |
672bba3a | 1827 | |
81819f0f CL |
1828 | return order; |
1829 | } | |
1830 | ||
5e6d444e CL |
1831 | static inline int calculate_order(int size) |
1832 | { | |
1833 | int order; | |
1834 | int min_objects; | |
1835 | int fraction; | |
1836 | ||
1837 | /* | |
1838 | * Attempt to find best configuration for a slab. This | |
1839 | * works by first attempting to generate a layout with | |
1840 | * the best configuration and backing off gradually. | |
1841 | * | |
1842 | * First we reduce the acceptable waste in a slab. Then | |
1843 | * we reduce the minimum objects required in a slab. | |
1844 | */ | |
1845 | min_objects = slub_min_objects; | |
9b2cd506 CL |
1846 | if (!min_objects) |
1847 | min_objects = 4 * (fls(nr_cpu_ids) + 1); | |
5e6d444e | 1848 | while (min_objects > 1) { |
c124f5b5 | 1849 | fraction = 16; |
5e6d444e CL |
1850 | while (fraction >= 4) { |
1851 | order = slab_order(size, min_objects, | |
1852 | slub_max_order, fraction); | |
1853 | if (order <= slub_max_order) | |
1854 | return order; | |
1855 | fraction /= 2; | |
1856 | } | |
1857 | min_objects /= 2; | |
1858 | } | |
1859 | ||
1860 | /* | |
1861 | * We were unable to place multiple objects in a slab. Now | |
1862 | * lets see if we can place a single object there. | |
1863 | */ | |
1864 | order = slab_order(size, 1, slub_max_order, 1); | |
1865 | if (order <= slub_max_order) | |
1866 | return order; | |
1867 | ||
1868 | /* | |
1869 | * Doh this slab cannot be placed using slub_max_order. | |
1870 | */ | |
1871 | order = slab_order(size, 1, MAX_ORDER, 1); | |
1872 | if (order <= MAX_ORDER) | |
1873 | return order; | |
1874 | return -ENOSYS; | |
1875 | } | |
1876 | ||
81819f0f | 1877 | /* |
672bba3a | 1878 | * Figure out what the alignment of the objects will be. |
81819f0f CL |
1879 | */ |
1880 | static unsigned long calculate_alignment(unsigned long flags, | |
1881 | unsigned long align, unsigned long size) | |
1882 | { | |
1883 | /* | |
6446faa2 CL |
1884 | * If the user wants hardware cache aligned objects then follow that |
1885 | * suggestion if the object is sufficiently large. | |
81819f0f | 1886 | * |
6446faa2 CL |
1887 | * The hardware cache alignment cannot override the specified |
1888 | * alignment though. If that is greater then use it. | |
81819f0f | 1889 | */ |
b6210386 NP |
1890 | if (flags & SLAB_HWCACHE_ALIGN) { |
1891 | unsigned long ralign = cache_line_size(); | |
1892 | while (size <= ralign / 2) | |
1893 | ralign /= 2; | |
1894 | align = max(align, ralign); | |
1895 | } | |
81819f0f CL |
1896 | |
1897 | if (align < ARCH_SLAB_MINALIGN) | |
b6210386 | 1898 | align = ARCH_SLAB_MINALIGN; |
81819f0f CL |
1899 | |
1900 | return ALIGN(align, sizeof(void *)); | |
1901 | } | |
1902 | ||
dfb4f096 CL |
1903 | static void init_kmem_cache_cpu(struct kmem_cache *s, |
1904 | struct kmem_cache_cpu *c) | |
1905 | { | |
1906 | c->page = NULL; | |
a973e9dd | 1907 | c->freelist = NULL; |
dfb4f096 | 1908 | c->node = 0; |
42a9fdbb CL |
1909 | c->offset = s->offset / sizeof(void *); |
1910 | c->objsize = s->objsize; | |
62f75532 PE |
1911 | #ifdef CONFIG_SLUB_STATS |
1912 | memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned)); | |
1913 | #endif | |
dfb4f096 CL |
1914 | } |
1915 | ||
5595cffc PE |
1916 | static void |
1917 | init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) | |
81819f0f CL |
1918 | { |
1919 | n->nr_partial = 0; | |
5595cffc PE |
1920 | |
1921 | /* | |
1922 | * The larger the object size is, the more pages we want on the partial | |
1923 | * list to avoid pounding the page allocator excessively. | |
1924 | */ | |
1925 | n->min_partial = ilog2(s->size); | |
1926 | if (n->min_partial < MIN_PARTIAL) | |
1927 | n->min_partial = MIN_PARTIAL; | |
1928 | else if (n->min_partial > MAX_PARTIAL) | |
1929 | n->min_partial = MAX_PARTIAL; | |
1930 | ||
81819f0f CL |
1931 | spin_lock_init(&n->list_lock); |
1932 | INIT_LIST_HEAD(&n->partial); | |
8ab1372f | 1933 | #ifdef CONFIG_SLUB_DEBUG |
0f389ec6 | 1934 | atomic_long_set(&n->nr_slabs, 0); |
643b1138 | 1935 | INIT_LIST_HEAD(&n->full); |
8ab1372f | 1936 | #endif |
81819f0f CL |
1937 | } |
1938 | ||
4c93c355 CL |
1939 | #ifdef CONFIG_SMP |
1940 | /* | |
1941 | * Per cpu array for per cpu structures. | |
1942 | * | |
1943 | * The per cpu array places all kmem_cache_cpu structures from one processor | |
1944 | * close together meaning that it becomes possible that multiple per cpu | |
1945 | * structures are contained in one cacheline. This may be particularly | |
1946 | * beneficial for the kmalloc caches. | |
1947 | * | |
1948 | * A desktop system typically has around 60-80 slabs. With 100 here we are | |
1949 | * likely able to get per cpu structures for all caches from the array defined | |
1950 | * here. We must be able to cover all kmalloc caches during bootstrap. | |
1951 | * | |
1952 | * If the per cpu array is exhausted then fall back to kmalloc | |
1953 | * of individual cachelines. No sharing is possible then. | |
1954 | */ | |
1955 | #define NR_KMEM_CACHE_CPU 100 | |
1956 | ||
1957 | static DEFINE_PER_CPU(struct kmem_cache_cpu, | |
1958 | kmem_cache_cpu)[NR_KMEM_CACHE_CPU]; | |
1959 | ||
1960 | static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free); | |
1961 | static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE; | |
1962 | ||
1963 | static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s, | |
1964 | int cpu, gfp_t flags) | |
1965 | { | |
1966 | struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu); | |
1967 | ||
1968 | if (c) | |
1969 | per_cpu(kmem_cache_cpu_free, cpu) = | |
1970 | (void *)c->freelist; | |
1971 | else { | |
1972 | /* Table overflow: So allocate ourselves */ | |
1973 | c = kmalloc_node( | |
1974 | ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()), | |
1975 | flags, cpu_to_node(cpu)); | |
1976 | if (!c) | |
1977 | return NULL; | |
1978 | } | |
1979 | ||
1980 | init_kmem_cache_cpu(s, c); | |
1981 | return c; | |
1982 | } | |
1983 | ||
1984 | static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu) | |
1985 | { | |
1986 | if (c < per_cpu(kmem_cache_cpu, cpu) || | |
1987 | c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) { | |
1988 | kfree(c); | |
1989 | return; | |
1990 | } | |
1991 | c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu); | |
1992 | per_cpu(kmem_cache_cpu_free, cpu) = c; | |
1993 | } | |
1994 | ||
1995 | static void free_kmem_cache_cpus(struct kmem_cache *s) | |
1996 | { | |
1997 | int cpu; | |
1998 | ||
1999 | for_each_online_cpu(cpu) { | |
2000 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | |
2001 | ||
2002 | if (c) { | |
2003 | s->cpu_slab[cpu] = NULL; | |
2004 | free_kmem_cache_cpu(c, cpu); | |
2005 | } | |
2006 | } | |
2007 | } | |
2008 | ||
2009 | static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) | |
2010 | { | |
2011 | int cpu; | |
2012 | ||
2013 | for_each_online_cpu(cpu) { | |
2014 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | |
2015 | ||
2016 | if (c) | |
2017 | continue; | |
2018 | ||
2019 | c = alloc_kmem_cache_cpu(s, cpu, flags); | |
2020 | if (!c) { | |
2021 | free_kmem_cache_cpus(s); | |
2022 | return 0; | |
2023 | } | |
2024 | s->cpu_slab[cpu] = c; | |
2025 | } | |
2026 | return 1; | |
2027 | } | |
2028 | ||
2029 | /* | |
2030 | * Initialize the per cpu array. | |
2031 | */ | |
2032 | static void init_alloc_cpu_cpu(int cpu) | |
2033 | { | |
2034 | int i; | |
2035 | ||
2036 | if (cpu_isset(cpu, kmem_cach_cpu_free_init_once)) | |
2037 | return; | |
2038 | ||
2039 | for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--) | |
2040 | free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu); | |
2041 | ||
2042 | cpu_set(cpu, kmem_cach_cpu_free_init_once); | |
2043 | } | |
2044 | ||
2045 | static void __init init_alloc_cpu(void) | |
2046 | { | |
2047 | int cpu; | |
2048 | ||
2049 | for_each_online_cpu(cpu) | |
2050 | init_alloc_cpu_cpu(cpu); | |
2051 | } | |
2052 | ||
2053 | #else | |
2054 | static inline void free_kmem_cache_cpus(struct kmem_cache *s) {} | |
2055 | static inline void init_alloc_cpu(void) {} | |
2056 | ||
2057 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) | |
2058 | { | |
2059 | init_kmem_cache_cpu(s, &s->cpu_slab); | |
2060 | return 1; | |
2061 | } | |
2062 | #endif | |
2063 | ||
81819f0f CL |
2064 | #ifdef CONFIG_NUMA |
2065 | /* | |
2066 | * No kmalloc_node yet so do it by hand. We know that this is the first | |
2067 | * slab on the node for this slabcache. There are no concurrent accesses | |
2068 | * possible. | |
2069 | * | |
2070 | * Note that this function only works on the kmalloc_node_cache | |
4c93c355 CL |
2071 | * when allocating for the kmalloc_node_cache. This is used for bootstrapping |
2072 | * memory on a fresh node that has no slab structures yet. | |
81819f0f | 2073 | */ |
1cd7daa5 AB |
2074 | static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags, |
2075 | int node) | |
81819f0f CL |
2076 | { |
2077 | struct page *page; | |
2078 | struct kmem_cache_node *n; | |
ba84c73c | 2079 | unsigned long flags; |
81819f0f CL |
2080 | |
2081 | BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); | |
2082 | ||
a2f92ee7 | 2083 | page = new_slab(kmalloc_caches, gfpflags, node); |
81819f0f CL |
2084 | |
2085 | BUG_ON(!page); | |
a2f92ee7 CL |
2086 | if (page_to_nid(page) != node) { |
2087 | printk(KERN_ERR "SLUB: Unable to allocate memory from " | |
2088 | "node %d\n", node); | |
2089 | printk(KERN_ERR "SLUB: Allocating a useless per node structure " | |
2090 | "in order to be able to continue\n"); | |
2091 | } | |
2092 | ||
81819f0f CL |
2093 | n = page->freelist; |
2094 | BUG_ON(!n); | |
2095 | page->freelist = get_freepointer(kmalloc_caches, n); | |
2096 | page->inuse++; | |
2097 | kmalloc_caches->node[node] = n; | |
8ab1372f | 2098 | #ifdef CONFIG_SLUB_DEBUG |
d45f39cb CL |
2099 | init_object(kmalloc_caches, n, 1); |
2100 | init_tracking(kmalloc_caches, n); | |
8ab1372f | 2101 | #endif |
5595cffc | 2102 | init_kmem_cache_node(n, kmalloc_caches); |
205ab99d | 2103 | inc_slabs_node(kmalloc_caches, node, page->objects); |
6446faa2 | 2104 | |
ba84c73c | 2105 | /* |
2106 | * lockdep requires consistent irq usage for each lock | |
2107 | * so even though there cannot be a race this early in | |
2108 | * the boot sequence, we still disable irqs. | |
2109 | */ | |
2110 | local_irq_save(flags); | |
7c2e132c | 2111 | add_partial(n, page, 0); |
ba84c73c | 2112 | local_irq_restore(flags); |
81819f0f CL |
2113 | return n; |
2114 | } | |
2115 | ||
2116 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
2117 | { | |
2118 | int node; | |
2119 | ||
f64dc58c | 2120 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
2121 | struct kmem_cache_node *n = s->node[node]; |
2122 | if (n && n != &s->local_node) | |
2123 | kmem_cache_free(kmalloc_caches, n); | |
2124 | s->node[node] = NULL; | |
2125 | } | |
2126 | } | |
2127 | ||
2128 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | |
2129 | { | |
2130 | int node; | |
2131 | int local_node; | |
2132 | ||
2133 | if (slab_state >= UP) | |
2134 | local_node = page_to_nid(virt_to_page(s)); | |
2135 | else | |
2136 | local_node = 0; | |
2137 | ||
f64dc58c | 2138 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
2139 | struct kmem_cache_node *n; |
2140 | ||
2141 | if (local_node == node) | |
2142 | n = &s->local_node; | |
2143 | else { | |
2144 | if (slab_state == DOWN) { | |
2145 | n = early_kmem_cache_node_alloc(gfpflags, | |
2146 | node); | |
2147 | continue; | |
2148 | } | |
2149 | n = kmem_cache_alloc_node(kmalloc_caches, | |
2150 | gfpflags, node); | |
2151 | ||
2152 | if (!n) { | |
2153 | free_kmem_cache_nodes(s); | |
2154 | return 0; | |
2155 | } | |
2156 | ||
2157 | } | |
2158 | s->node[node] = n; | |
5595cffc | 2159 | init_kmem_cache_node(n, s); |
81819f0f CL |
2160 | } |
2161 | return 1; | |
2162 | } | |
2163 | #else | |
2164 | static void free_kmem_cache_nodes(struct kmem_cache *s) | |
2165 | { | |
2166 | } | |
2167 | ||
2168 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | |
2169 | { | |
5595cffc | 2170 | init_kmem_cache_node(&s->local_node, s); |
81819f0f CL |
2171 | return 1; |
2172 | } | |
2173 | #endif | |
2174 | ||
2175 | /* | |
2176 | * calculate_sizes() determines the order and the distribution of data within | |
2177 | * a slab object. | |
2178 | */ | |
06b285dc | 2179 | static int calculate_sizes(struct kmem_cache *s, int forced_order) |
81819f0f CL |
2180 | { |
2181 | unsigned long flags = s->flags; | |
2182 | unsigned long size = s->objsize; | |
2183 | unsigned long align = s->align; | |
834f3d11 | 2184 | int order; |
81819f0f | 2185 | |
d8b42bf5 CL |
2186 | /* |
2187 | * Round up object size to the next word boundary. We can only | |
2188 | * place the free pointer at word boundaries and this determines | |
2189 | * the possible location of the free pointer. | |
2190 | */ | |
2191 | size = ALIGN(size, sizeof(void *)); | |
2192 | ||
2193 | #ifdef CONFIG_SLUB_DEBUG | |
81819f0f CL |
2194 | /* |
2195 | * Determine if we can poison the object itself. If the user of | |
2196 | * the slab may touch the object after free or before allocation | |
2197 | * then we should never poison the object itself. | |
2198 | */ | |
2199 | if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && | |
c59def9f | 2200 | !s->ctor) |
81819f0f CL |
2201 | s->flags |= __OBJECT_POISON; |
2202 | else | |
2203 | s->flags &= ~__OBJECT_POISON; | |
2204 | ||
81819f0f CL |
2205 | |
2206 | /* | |
672bba3a | 2207 | * If we are Redzoning then check if there is some space between the |
81819f0f | 2208 | * end of the object and the free pointer. If not then add an |
672bba3a | 2209 | * additional word to have some bytes to store Redzone information. |
81819f0f CL |
2210 | */ |
2211 | if ((flags & SLAB_RED_ZONE) && size == s->objsize) | |
2212 | size += sizeof(void *); | |
41ecc55b | 2213 | #endif |
81819f0f CL |
2214 | |
2215 | /* | |
672bba3a CL |
2216 | * With that we have determined the number of bytes in actual use |
2217 | * by the object. This is the potential offset to the free pointer. | |
81819f0f CL |
2218 | */ |
2219 | s->inuse = size; | |
2220 | ||
2221 | if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || | |
c59def9f | 2222 | s->ctor)) { |
81819f0f CL |
2223 | /* |
2224 | * Relocate free pointer after the object if it is not | |
2225 | * permitted to overwrite the first word of the object on | |
2226 | * kmem_cache_free. | |
2227 | * | |
2228 | * This is the case if we do RCU, have a constructor or | |
2229 | * destructor or are poisoning the objects. | |
2230 | */ | |
2231 | s->offset = size; | |
2232 | size += sizeof(void *); | |
2233 | } | |
2234 | ||
c12b3c62 | 2235 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
2236 | if (flags & SLAB_STORE_USER) |
2237 | /* | |
2238 | * Need to store information about allocs and frees after | |
2239 | * the object. | |
2240 | */ | |
2241 | size += 2 * sizeof(struct track); | |
2242 | ||
be7b3fbc | 2243 | if (flags & SLAB_RED_ZONE) |
81819f0f CL |
2244 | /* |
2245 | * Add some empty padding so that we can catch | |
2246 | * overwrites from earlier objects rather than let | |
2247 | * tracking information or the free pointer be | |
2248 | * corrupted if an user writes before the start | |
2249 | * of the object. | |
2250 | */ | |
2251 | size += sizeof(void *); | |
41ecc55b | 2252 | #endif |
672bba3a | 2253 | |
81819f0f CL |
2254 | /* |
2255 | * Determine the alignment based on various parameters that the | |
65c02d4c CL |
2256 | * user specified and the dynamic determination of cache line size |
2257 | * on bootup. | |
81819f0f CL |
2258 | */ |
2259 | align = calculate_alignment(flags, align, s->objsize); | |
2260 | ||
2261 | /* | |
2262 | * SLUB stores one object immediately after another beginning from | |
2263 | * offset 0. In order to align the objects we have to simply size | |
2264 | * each object to conform to the alignment. | |
2265 | */ | |
2266 | size = ALIGN(size, align); | |
2267 | s->size = size; | |
06b285dc CL |
2268 | if (forced_order >= 0) |
2269 | order = forced_order; | |
2270 | else | |
2271 | order = calculate_order(size); | |
81819f0f | 2272 | |
834f3d11 | 2273 | if (order < 0) |
81819f0f CL |
2274 | return 0; |
2275 | ||
b7a49f0d | 2276 | s->allocflags = 0; |
834f3d11 | 2277 | if (order) |
b7a49f0d CL |
2278 | s->allocflags |= __GFP_COMP; |
2279 | ||
2280 | if (s->flags & SLAB_CACHE_DMA) | |
2281 | s->allocflags |= SLUB_DMA; | |
2282 | ||
2283 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
2284 | s->allocflags |= __GFP_RECLAIMABLE; | |
2285 | ||
81819f0f CL |
2286 | /* |
2287 | * Determine the number of objects per slab | |
2288 | */ | |
834f3d11 | 2289 | s->oo = oo_make(order, size); |
65c3376a | 2290 | s->min = oo_make(get_order(size), size); |
205ab99d CL |
2291 | if (oo_objects(s->oo) > oo_objects(s->max)) |
2292 | s->max = s->oo; | |
81819f0f | 2293 | |
834f3d11 | 2294 | return !!oo_objects(s->oo); |
81819f0f CL |
2295 | |
2296 | } | |
2297 | ||
81819f0f CL |
2298 | static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, |
2299 | const char *name, size_t size, | |
2300 | size_t align, unsigned long flags, | |
51cc5068 | 2301 | void (*ctor)(void *)) |
81819f0f CL |
2302 | { |
2303 | memset(s, 0, kmem_size); | |
2304 | s->name = name; | |
2305 | s->ctor = ctor; | |
81819f0f | 2306 | s->objsize = size; |
81819f0f | 2307 | s->align = align; |
ba0268a8 | 2308 | s->flags = kmem_cache_flags(size, flags, name, ctor); |
81819f0f | 2309 | |
06b285dc | 2310 | if (!calculate_sizes(s, -1)) |
81819f0f CL |
2311 | goto error; |
2312 | ||
2313 | s->refcount = 1; | |
2314 | #ifdef CONFIG_NUMA | |
9824601e | 2315 | s->remote_node_defrag_ratio = 100; |
81819f0f | 2316 | #endif |
dfb4f096 CL |
2317 | if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) |
2318 | goto error; | |
81819f0f | 2319 | |
dfb4f096 | 2320 | if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) |
81819f0f | 2321 | return 1; |
4c93c355 | 2322 | free_kmem_cache_nodes(s); |
81819f0f CL |
2323 | error: |
2324 | if (flags & SLAB_PANIC) | |
2325 | panic("Cannot create slab %s size=%lu realsize=%u " | |
2326 | "order=%u offset=%u flags=%lx\n", | |
834f3d11 | 2327 | s->name, (unsigned long)size, s->size, oo_order(s->oo), |
81819f0f CL |
2328 | s->offset, flags); |
2329 | return 0; | |
2330 | } | |
81819f0f CL |
2331 | |
2332 | /* | |
2333 | * Check if a given pointer is valid | |
2334 | */ | |
2335 | int kmem_ptr_validate(struct kmem_cache *s, const void *object) | |
2336 | { | |
06428780 | 2337 | struct page *page; |
81819f0f CL |
2338 | |
2339 | page = get_object_page(object); | |
2340 | ||
2341 | if (!page || s != page->slab) | |
2342 | /* No slab or wrong slab */ | |
2343 | return 0; | |
2344 | ||
abcd08a6 | 2345 | if (!check_valid_pointer(s, page, object)) |
81819f0f CL |
2346 | return 0; |
2347 | ||
2348 | /* | |
2349 | * We could also check if the object is on the slabs freelist. | |
2350 | * But this would be too expensive and it seems that the main | |
6446faa2 | 2351 | * purpose of kmem_ptr_valid() is to check if the object belongs |
81819f0f CL |
2352 | * to a certain slab. |
2353 | */ | |
2354 | return 1; | |
2355 | } | |
2356 | EXPORT_SYMBOL(kmem_ptr_validate); | |
2357 | ||
2358 | /* | |
2359 | * Determine the size of a slab object | |
2360 | */ | |
2361 | unsigned int kmem_cache_size(struct kmem_cache *s) | |
2362 | { | |
2363 | return s->objsize; | |
2364 | } | |
2365 | EXPORT_SYMBOL(kmem_cache_size); | |
2366 | ||
2367 | const char *kmem_cache_name(struct kmem_cache *s) | |
2368 | { | |
2369 | return s->name; | |
2370 | } | |
2371 | EXPORT_SYMBOL(kmem_cache_name); | |
2372 | ||
33b12c38 CL |
2373 | static void list_slab_objects(struct kmem_cache *s, struct page *page, |
2374 | const char *text) | |
2375 | { | |
2376 | #ifdef CONFIG_SLUB_DEBUG | |
2377 | void *addr = page_address(page); | |
2378 | void *p; | |
2379 | DECLARE_BITMAP(map, page->objects); | |
2380 | ||
2381 | bitmap_zero(map, page->objects); | |
2382 | slab_err(s, page, "%s", text); | |
2383 | slab_lock(page); | |
2384 | for_each_free_object(p, s, page->freelist) | |
2385 | set_bit(slab_index(p, s, addr), map); | |
2386 | ||
2387 | for_each_object(p, s, addr, page->objects) { | |
2388 | ||
2389 | if (!test_bit(slab_index(p, s, addr), map)) { | |
2390 | printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", | |
2391 | p, p - addr); | |
2392 | print_tracking(s, p); | |
2393 | } | |
2394 | } | |
2395 | slab_unlock(page); | |
2396 | #endif | |
2397 | } | |
2398 | ||
81819f0f | 2399 | /* |
599870b1 | 2400 | * Attempt to free all partial slabs on a node. |
81819f0f | 2401 | */ |
599870b1 | 2402 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
81819f0f | 2403 | { |
81819f0f CL |
2404 | unsigned long flags; |
2405 | struct page *page, *h; | |
2406 | ||
2407 | spin_lock_irqsave(&n->list_lock, flags); | |
33b12c38 | 2408 | list_for_each_entry_safe(page, h, &n->partial, lru) { |
81819f0f CL |
2409 | if (!page->inuse) { |
2410 | list_del(&page->lru); | |
2411 | discard_slab(s, page); | |
599870b1 | 2412 | n->nr_partial--; |
33b12c38 CL |
2413 | } else { |
2414 | list_slab_objects(s, page, | |
2415 | "Objects remaining on kmem_cache_close()"); | |
599870b1 | 2416 | } |
33b12c38 | 2417 | } |
81819f0f | 2418 | spin_unlock_irqrestore(&n->list_lock, flags); |
81819f0f CL |
2419 | } |
2420 | ||
2421 | /* | |
672bba3a | 2422 | * Release all resources used by a slab cache. |
81819f0f | 2423 | */ |
0c710013 | 2424 | static inline int kmem_cache_close(struct kmem_cache *s) |
81819f0f CL |
2425 | { |
2426 | int node; | |
2427 | ||
2428 | flush_all(s); | |
2429 | ||
2430 | /* Attempt to free all objects */ | |
4c93c355 | 2431 | free_kmem_cache_cpus(s); |
f64dc58c | 2432 | for_each_node_state(node, N_NORMAL_MEMORY) { |
81819f0f CL |
2433 | struct kmem_cache_node *n = get_node(s, node); |
2434 | ||
599870b1 CL |
2435 | free_partial(s, n); |
2436 | if (n->nr_partial || slabs_node(s, node)) | |
81819f0f CL |
2437 | return 1; |
2438 | } | |
2439 | free_kmem_cache_nodes(s); | |
2440 | return 0; | |
2441 | } | |
2442 | ||
2443 | /* | |
2444 | * Close a cache and release the kmem_cache structure | |
2445 | * (must be used for caches created using kmem_cache_create) | |
2446 | */ | |
2447 | void kmem_cache_destroy(struct kmem_cache *s) | |
2448 | { | |
2449 | down_write(&slub_lock); | |
2450 | s->refcount--; | |
2451 | if (!s->refcount) { | |
2452 | list_del(&s->list); | |
a0e1d1be | 2453 | up_write(&slub_lock); |
d629d819 PE |
2454 | if (kmem_cache_close(s)) { |
2455 | printk(KERN_ERR "SLUB %s: %s called for cache that " | |
2456 | "still has objects.\n", s->name, __func__); | |
2457 | dump_stack(); | |
2458 | } | |
81819f0f | 2459 | sysfs_slab_remove(s); |
a0e1d1be CL |
2460 | } else |
2461 | up_write(&slub_lock); | |
81819f0f CL |
2462 | } |
2463 | EXPORT_SYMBOL(kmem_cache_destroy); | |
2464 | ||
2465 | /******************************************************************** | |
2466 | * Kmalloc subsystem | |
2467 | *******************************************************************/ | |
2468 | ||
331dc558 | 2469 | struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned; |
81819f0f CL |
2470 | EXPORT_SYMBOL(kmalloc_caches); |
2471 | ||
81819f0f CL |
2472 | static int __init setup_slub_min_order(char *str) |
2473 | { | |
06428780 | 2474 | get_option(&str, &slub_min_order); |
81819f0f CL |
2475 | |
2476 | return 1; | |
2477 | } | |
2478 | ||
2479 | __setup("slub_min_order=", setup_slub_min_order); | |
2480 | ||
2481 | static int __init setup_slub_max_order(char *str) | |
2482 | { | |
06428780 | 2483 | get_option(&str, &slub_max_order); |
81819f0f CL |
2484 | |
2485 | return 1; | |
2486 | } | |
2487 | ||
2488 | __setup("slub_max_order=", setup_slub_max_order); | |
2489 | ||
2490 | static int __init setup_slub_min_objects(char *str) | |
2491 | { | |
06428780 | 2492 | get_option(&str, &slub_min_objects); |
81819f0f CL |
2493 | |
2494 | return 1; | |
2495 | } | |
2496 | ||
2497 | __setup("slub_min_objects=", setup_slub_min_objects); | |
2498 | ||
2499 | static int __init setup_slub_nomerge(char *str) | |
2500 | { | |
2501 | slub_nomerge = 1; | |
2502 | return 1; | |
2503 | } | |
2504 | ||
2505 | __setup("slub_nomerge", setup_slub_nomerge); | |
2506 | ||
81819f0f CL |
2507 | static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, |
2508 | const char *name, int size, gfp_t gfp_flags) | |
2509 | { | |
2510 | unsigned int flags = 0; | |
2511 | ||
2512 | if (gfp_flags & SLUB_DMA) | |
2513 | flags = SLAB_CACHE_DMA; | |
2514 | ||
2515 | down_write(&slub_lock); | |
2516 | if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, | |
319d1e24 | 2517 | flags, NULL)) |
81819f0f CL |
2518 | goto panic; |
2519 | ||
2520 | list_add(&s->list, &slab_caches); | |
2521 | up_write(&slub_lock); | |
2522 | if (sysfs_slab_add(s)) | |
2523 | goto panic; | |
2524 | return s; | |
2525 | ||
2526 | panic: | |
2527 | panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); | |
2528 | } | |
2529 | ||
2e443fd0 | 2530 | #ifdef CONFIG_ZONE_DMA |
4097d601 | 2531 | static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1]; |
1ceef402 CL |
2532 | |
2533 | static void sysfs_add_func(struct work_struct *w) | |
2534 | { | |
2535 | struct kmem_cache *s; | |
2536 | ||
2537 | down_write(&slub_lock); | |
2538 | list_for_each_entry(s, &slab_caches, list) { | |
2539 | if (s->flags & __SYSFS_ADD_DEFERRED) { | |
2540 | s->flags &= ~__SYSFS_ADD_DEFERRED; | |
2541 | sysfs_slab_add(s); | |
2542 | } | |
2543 | } | |
2544 | up_write(&slub_lock); | |
2545 | } | |
2546 | ||
2547 | static DECLARE_WORK(sysfs_add_work, sysfs_add_func); | |
2548 | ||
2e443fd0 CL |
2549 | static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) |
2550 | { | |
2551 | struct kmem_cache *s; | |
2e443fd0 CL |
2552 | char *text; |
2553 | size_t realsize; | |
2554 | ||
2555 | s = kmalloc_caches_dma[index]; | |
2556 | if (s) | |
2557 | return s; | |
2558 | ||
2559 | /* Dynamically create dma cache */ | |
1ceef402 CL |
2560 | if (flags & __GFP_WAIT) |
2561 | down_write(&slub_lock); | |
2562 | else { | |
2563 | if (!down_write_trylock(&slub_lock)) | |
2564 | goto out; | |
2565 | } | |
2566 | ||
2567 | if (kmalloc_caches_dma[index]) | |
2568 | goto unlock_out; | |
2e443fd0 | 2569 | |
7b55f620 | 2570 | realsize = kmalloc_caches[index].objsize; |
3adbefee IM |
2571 | text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", |
2572 | (unsigned int)realsize); | |
1ceef402 CL |
2573 | s = kmalloc(kmem_size, flags & ~SLUB_DMA); |
2574 | ||
2575 | if (!s || !text || !kmem_cache_open(s, flags, text, | |
2576 | realsize, ARCH_KMALLOC_MINALIGN, | |
2577 | SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) { | |
2578 | kfree(s); | |
2579 | kfree(text); | |
2580 | goto unlock_out; | |
dfce8648 | 2581 | } |
1ceef402 CL |
2582 | |
2583 | list_add(&s->list, &slab_caches); | |
2584 | kmalloc_caches_dma[index] = s; | |
2585 | ||
2586 | schedule_work(&sysfs_add_work); | |
2587 | ||
2588 | unlock_out: | |
dfce8648 | 2589 | up_write(&slub_lock); |
1ceef402 | 2590 | out: |
dfce8648 | 2591 | return kmalloc_caches_dma[index]; |
2e443fd0 CL |
2592 | } |
2593 | #endif | |
2594 | ||
f1b26339 CL |
2595 | /* |
2596 | * Conversion table for small slabs sizes / 8 to the index in the | |
2597 | * kmalloc array. This is necessary for slabs < 192 since we have non power | |
2598 | * of two cache sizes there. The size of larger slabs can be determined using | |
2599 | * fls. | |
2600 | */ | |
2601 | static s8 size_index[24] = { | |
2602 | 3, /* 8 */ | |
2603 | 4, /* 16 */ | |
2604 | 5, /* 24 */ | |
2605 | 5, /* 32 */ | |
2606 | 6, /* 40 */ | |
2607 | 6, /* 48 */ | |
2608 | 6, /* 56 */ | |
2609 | 6, /* 64 */ | |
2610 | 1, /* 72 */ | |
2611 | 1, /* 80 */ | |
2612 | 1, /* 88 */ | |
2613 | 1, /* 96 */ | |
2614 | 7, /* 104 */ | |
2615 | 7, /* 112 */ | |
2616 | 7, /* 120 */ | |
2617 | 7, /* 128 */ | |
2618 | 2, /* 136 */ | |
2619 | 2, /* 144 */ | |
2620 | 2, /* 152 */ | |
2621 | 2, /* 160 */ | |
2622 | 2, /* 168 */ | |
2623 | 2, /* 176 */ | |
2624 | 2, /* 184 */ | |
2625 | 2 /* 192 */ | |
2626 | }; | |
2627 | ||
81819f0f CL |
2628 | static struct kmem_cache *get_slab(size_t size, gfp_t flags) |
2629 | { | |
f1b26339 | 2630 | int index; |
81819f0f | 2631 | |
f1b26339 CL |
2632 | if (size <= 192) { |
2633 | if (!size) | |
2634 | return ZERO_SIZE_PTR; | |
81819f0f | 2635 | |
f1b26339 | 2636 | index = size_index[(size - 1) / 8]; |
aadb4bc4 | 2637 | } else |
f1b26339 | 2638 | index = fls(size - 1); |
81819f0f CL |
2639 | |
2640 | #ifdef CONFIG_ZONE_DMA | |
f1b26339 | 2641 | if (unlikely((flags & SLUB_DMA))) |
2e443fd0 | 2642 | return dma_kmalloc_cache(index, flags); |
f1b26339 | 2643 | |
81819f0f CL |
2644 | #endif |
2645 | return &kmalloc_caches[index]; | |
2646 | } | |
2647 | ||
2648 | void *__kmalloc(size_t size, gfp_t flags) | |
2649 | { | |
aadb4bc4 | 2650 | struct kmem_cache *s; |
81819f0f | 2651 | |
331dc558 | 2652 | if (unlikely(size > PAGE_SIZE)) |
eada35ef | 2653 | return kmalloc_large(size, flags); |
aadb4bc4 CL |
2654 | |
2655 | s = get_slab(size, flags); | |
2656 | ||
2657 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
2658 | return s; |
2659 | ||
ce15fea8 | 2660 | return slab_alloc(s, flags, -1, __builtin_return_address(0)); |
81819f0f CL |
2661 | } |
2662 | EXPORT_SYMBOL(__kmalloc); | |
2663 | ||
f619cfe1 CL |
2664 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) |
2665 | { | |
2666 | struct page *page = alloc_pages_node(node, flags | __GFP_COMP, | |
2667 | get_order(size)); | |
2668 | ||
2669 | if (page) | |
2670 | return page_address(page); | |
2671 | else | |
2672 | return NULL; | |
2673 | } | |
2674 | ||
81819f0f CL |
2675 | #ifdef CONFIG_NUMA |
2676 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | |
2677 | { | |
aadb4bc4 | 2678 | struct kmem_cache *s; |
81819f0f | 2679 | |
331dc558 | 2680 | if (unlikely(size > PAGE_SIZE)) |
f619cfe1 | 2681 | return kmalloc_large_node(size, flags, node); |
aadb4bc4 CL |
2682 | |
2683 | s = get_slab(size, flags); | |
2684 | ||
2685 | if (unlikely(ZERO_OR_NULL_PTR(s))) | |
6cb8f913 CL |
2686 | return s; |
2687 | ||
ce15fea8 | 2688 | return slab_alloc(s, flags, node, __builtin_return_address(0)); |
81819f0f CL |
2689 | } |
2690 | EXPORT_SYMBOL(__kmalloc_node); | |
2691 | #endif | |
2692 | ||
2693 | size_t ksize(const void *object) | |
2694 | { | |
272c1d21 | 2695 | struct page *page; |
81819f0f CL |
2696 | struct kmem_cache *s; |
2697 | ||
ef8b4520 | 2698 | if (unlikely(object == ZERO_SIZE_PTR)) |
272c1d21 CL |
2699 | return 0; |
2700 | ||
294a80a8 | 2701 | page = virt_to_head_page(object); |
294a80a8 | 2702 | |
76994412 PE |
2703 | if (unlikely(!PageSlab(page))) { |
2704 | WARN_ON(!PageCompound(page)); | |
294a80a8 | 2705 | return PAGE_SIZE << compound_order(page); |
76994412 | 2706 | } |
81819f0f | 2707 | s = page->slab; |
81819f0f | 2708 | |
ae20bfda | 2709 | #ifdef CONFIG_SLUB_DEBUG |
81819f0f CL |
2710 | /* |
2711 | * Debugging requires use of the padding between object | |
2712 | * and whatever may come after it. | |
2713 | */ | |
2714 | if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) | |
2715 | return s->objsize; | |
2716 | ||
ae20bfda | 2717 | #endif |
81819f0f CL |
2718 | /* |
2719 | * If we have the need to store the freelist pointer | |
2720 | * back there or track user information then we can | |
2721 | * only use the space before that information. | |
2722 | */ | |
2723 | if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) | |
2724 | return s->inuse; | |
81819f0f CL |
2725 | /* |
2726 | * Else we can use all the padding etc for the allocation | |
2727 | */ | |
2728 | return s->size; | |
2729 | } | |
81819f0f CL |
2730 | |
2731 | void kfree(const void *x) | |
2732 | { | |
81819f0f | 2733 | struct page *page; |
5bb983b0 | 2734 | void *object = (void *)x; |
81819f0f | 2735 | |
2408c550 | 2736 | if (unlikely(ZERO_OR_NULL_PTR(x))) |
81819f0f CL |
2737 | return; |
2738 | ||
b49af68f | 2739 | page = virt_to_head_page(x); |
aadb4bc4 | 2740 | if (unlikely(!PageSlab(page))) { |
0937502a | 2741 | BUG_ON(!PageCompound(page)); |
aadb4bc4 CL |
2742 | put_page(page); |
2743 | return; | |
2744 | } | |
5bb983b0 | 2745 | slab_free(page->slab, page, object, __builtin_return_address(0)); |
81819f0f CL |
2746 | } |
2747 | EXPORT_SYMBOL(kfree); | |
2748 | ||
2086d26a | 2749 | /* |
672bba3a CL |
2750 | * kmem_cache_shrink removes empty slabs from the partial lists and sorts |
2751 | * the remaining slabs by the number of items in use. The slabs with the | |
2752 | * most items in use come first. New allocations will then fill those up | |
2753 | * and thus they can be removed from the partial lists. | |
2754 | * | |
2755 | * The slabs with the least items are placed last. This results in them | |
2756 | * being allocated from last increasing the chance that the last objects | |
2757 | * are freed in them. | |
2086d26a CL |
2758 | */ |
2759 | int kmem_cache_shrink(struct kmem_cache *s) | |
2760 | { | |
2761 | int node; | |
2762 | int i; | |
2763 | struct kmem_cache_node *n; | |
2764 | struct page *page; | |
2765 | struct page *t; | |
205ab99d | 2766 | int objects = oo_objects(s->max); |
2086d26a | 2767 | struct list_head *slabs_by_inuse = |
834f3d11 | 2768 | kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); |
2086d26a CL |
2769 | unsigned long flags; |
2770 | ||
2771 | if (!slabs_by_inuse) | |
2772 | return -ENOMEM; | |
2773 | ||
2774 | flush_all(s); | |
f64dc58c | 2775 | for_each_node_state(node, N_NORMAL_MEMORY) { |
2086d26a CL |
2776 | n = get_node(s, node); |
2777 | ||
2778 | if (!n->nr_partial) | |
2779 | continue; | |
2780 | ||
834f3d11 | 2781 | for (i = 0; i < objects; i++) |
2086d26a CL |
2782 | INIT_LIST_HEAD(slabs_by_inuse + i); |
2783 | ||
2784 | spin_lock_irqsave(&n->list_lock, flags); | |
2785 | ||
2786 | /* | |
672bba3a | 2787 | * Build lists indexed by the items in use in each slab. |
2086d26a | 2788 | * |
672bba3a CL |
2789 | * Note that concurrent frees may occur while we hold the |
2790 | * list_lock. page->inuse here is the upper limit. | |
2086d26a CL |
2791 | */ |
2792 | list_for_each_entry_safe(page, t, &n->partial, lru) { | |
2793 | if (!page->inuse && slab_trylock(page)) { | |
2794 | /* | |
2795 | * Must hold slab lock here because slab_free | |
2796 | * may have freed the last object and be | |
2797 | * waiting to release the slab. | |
2798 | */ | |
2799 | list_del(&page->lru); | |
2800 | n->nr_partial--; | |
2801 | slab_unlock(page); | |
2802 | discard_slab(s, page); | |
2803 | } else { | |
fcda3d89 CL |
2804 | list_move(&page->lru, |
2805 | slabs_by_inuse + page->inuse); | |
2086d26a CL |
2806 | } |
2807 | } | |
2808 | ||
2086d26a | 2809 | /* |
672bba3a CL |
2810 | * Rebuild the partial list with the slabs filled up most |
2811 | * first and the least used slabs at the end. | |
2086d26a | 2812 | */ |
834f3d11 | 2813 | for (i = objects - 1; i >= 0; i--) |
2086d26a CL |
2814 | list_splice(slabs_by_inuse + i, n->partial.prev); |
2815 | ||
2086d26a CL |
2816 | spin_unlock_irqrestore(&n->list_lock, flags); |
2817 | } | |
2818 | ||
2819 | kfree(slabs_by_inuse); | |
2820 | return 0; | |
2821 | } | |
2822 | EXPORT_SYMBOL(kmem_cache_shrink); | |
2823 | ||
b9049e23 YG |
2824 | #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) |
2825 | static int slab_mem_going_offline_callback(void *arg) | |
2826 | { | |
2827 | struct kmem_cache *s; | |
2828 | ||
2829 | down_read(&slub_lock); | |
2830 | list_for_each_entry(s, &slab_caches, list) | |
2831 | kmem_cache_shrink(s); | |
2832 | up_read(&slub_lock); | |
2833 | ||
2834 | return 0; | |
2835 | } | |
2836 | ||
2837 | static void slab_mem_offline_callback(void *arg) | |
2838 | { | |
2839 | struct kmem_cache_node *n; | |
2840 | struct kmem_cache *s; | |
2841 | struct memory_notify *marg = arg; | |
2842 | int offline_node; | |
2843 | ||
2844 | offline_node = marg->status_change_nid; | |
2845 | ||
2846 | /* | |
2847 | * If the node still has available memory. we need kmem_cache_node | |
2848 | * for it yet. | |
2849 | */ | |
2850 | if (offline_node < 0) | |
2851 | return; | |
2852 | ||
2853 | down_read(&slub_lock); | |
2854 | list_for_each_entry(s, &slab_caches, list) { | |
2855 | n = get_node(s, offline_node); | |
2856 | if (n) { | |
2857 | /* | |
2858 | * if n->nr_slabs > 0, slabs still exist on the node | |
2859 | * that is going down. We were unable to free them, | |
2860 | * and offline_pages() function shoudn't call this | |
2861 | * callback. So, we must fail. | |
2862 | */ | |
0f389ec6 | 2863 | BUG_ON(slabs_node(s, offline_node)); |
b9049e23 YG |
2864 | |
2865 | s->node[offline_node] = NULL; | |
2866 | kmem_cache_free(kmalloc_caches, n); | |
2867 | } | |
2868 | } | |
2869 | up_read(&slub_lock); | |
2870 | } | |
2871 | ||
2872 | static int slab_mem_going_online_callback(void *arg) | |
2873 | { | |
2874 | struct kmem_cache_node *n; | |
2875 | struct kmem_cache *s; | |
2876 | struct memory_notify *marg = arg; | |
2877 | int nid = marg->status_change_nid; | |
2878 | int ret = 0; | |
2879 | ||
2880 | /* | |
2881 | * If the node's memory is already available, then kmem_cache_node is | |
2882 | * already created. Nothing to do. | |
2883 | */ | |
2884 | if (nid < 0) | |
2885 | return 0; | |
2886 | ||
2887 | /* | |
0121c619 | 2888 | * We are bringing a node online. No memory is available yet. We must |
b9049e23 YG |
2889 | * allocate a kmem_cache_node structure in order to bring the node |
2890 | * online. | |
2891 | */ | |
2892 | down_read(&slub_lock); | |
2893 | list_for_each_entry(s, &slab_caches, list) { | |
2894 | /* | |
2895 | * XXX: kmem_cache_alloc_node will fallback to other nodes | |
2896 | * since memory is not yet available from the node that | |
2897 | * is brought up. | |
2898 | */ | |
2899 | n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); | |
2900 | if (!n) { | |
2901 | ret = -ENOMEM; | |
2902 | goto out; | |
2903 | } | |
5595cffc | 2904 | init_kmem_cache_node(n, s); |
b9049e23 YG |
2905 | s->node[nid] = n; |
2906 | } | |
2907 | out: | |
2908 | up_read(&slub_lock); | |
2909 | return ret; | |
2910 | } | |
2911 | ||
2912 | static int slab_memory_callback(struct notifier_block *self, | |
2913 | unsigned long action, void *arg) | |
2914 | { | |
2915 | int ret = 0; | |
2916 | ||
2917 | switch (action) { | |
2918 | case MEM_GOING_ONLINE: | |
2919 | ret = slab_mem_going_online_callback(arg); | |
2920 | break; | |
2921 | case MEM_GOING_OFFLINE: | |
2922 | ret = slab_mem_going_offline_callback(arg); | |
2923 | break; | |
2924 | case MEM_OFFLINE: | |
2925 | case MEM_CANCEL_ONLINE: | |
2926 | slab_mem_offline_callback(arg); | |
2927 | break; | |
2928 | case MEM_ONLINE: | |
2929 | case MEM_CANCEL_OFFLINE: | |
2930 | break; | |
2931 | } | |
2932 | ||
2933 | ret = notifier_from_errno(ret); | |
2934 | return ret; | |
2935 | } | |
2936 | ||
2937 | #endif /* CONFIG_MEMORY_HOTPLUG */ | |
2938 | ||
81819f0f CL |
2939 | /******************************************************************** |
2940 | * Basic setup of slabs | |
2941 | *******************************************************************/ | |
2942 | ||
2943 | void __init kmem_cache_init(void) | |
2944 | { | |
2945 | int i; | |
4b356be0 | 2946 | int caches = 0; |
81819f0f | 2947 | |
4c93c355 CL |
2948 | init_alloc_cpu(); |
2949 | ||
81819f0f CL |
2950 | #ifdef CONFIG_NUMA |
2951 | /* | |
2952 | * Must first have the slab cache available for the allocations of the | |
672bba3a | 2953 | * struct kmem_cache_node's. There is special bootstrap code in |
81819f0f CL |
2954 | * kmem_cache_open for slab_state == DOWN. |
2955 | */ | |
2956 | create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", | |
2957 | sizeof(struct kmem_cache_node), GFP_KERNEL); | |
8ffa6875 | 2958 | kmalloc_caches[0].refcount = -1; |
4b356be0 | 2959 | caches++; |
b9049e23 | 2960 | |
0c40ba4f | 2961 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); |
81819f0f CL |
2962 | #endif |
2963 | ||
2964 | /* Able to allocate the per node structures */ | |
2965 | slab_state = PARTIAL; | |
2966 | ||
2967 | /* Caches that are not of the two-to-the-power-of size */ | |
4b356be0 CL |
2968 | if (KMALLOC_MIN_SIZE <= 64) { |
2969 | create_kmalloc_cache(&kmalloc_caches[1], | |
81819f0f | 2970 | "kmalloc-96", 96, GFP_KERNEL); |
4b356be0 | 2971 | caches++; |
4b356be0 | 2972 | create_kmalloc_cache(&kmalloc_caches[2], |
81819f0f | 2973 | "kmalloc-192", 192, GFP_KERNEL); |
4b356be0 CL |
2974 | caches++; |
2975 | } | |
81819f0f | 2976 | |
331dc558 | 2977 | for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) { |
81819f0f CL |
2978 | create_kmalloc_cache(&kmalloc_caches[i], |
2979 | "kmalloc", 1 << i, GFP_KERNEL); | |
4b356be0 CL |
2980 | caches++; |
2981 | } | |
81819f0f | 2982 | |
f1b26339 CL |
2983 | |
2984 | /* | |
2985 | * Patch up the size_index table if we have strange large alignment | |
2986 | * requirements for the kmalloc array. This is only the case for | |
6446faa2 | 2987 | * MIPS it seems. The standard arches will not generate any code here. |
f1b26339 CL |
2988 | * |
2989 | * Largest permitted alignment is 256 bytes due to the way we | |
2990 | * handle the index determination for the smaller caches. | |
2991 | * | |
2992 | * Make sure that nothing crazy happens if someone starts tinkering | |
2993 | * around with ARCH_KMALLOC_MINALIGN | |
2994 | */ | |
2995 | BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || | |
2996 | (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | |
2997 | ||
12ad6843 | 2998 | for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) |
f1b26339 CL |
2999 | size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW; |
3000 | ||
41d54d3b CL |
3001 | if (KMALLOC_MIN_SIZE == 128) { |
3002 | /* | |
3003 | * The 192 byte sized cache is not used if the alignment | |
3004 | * is 128 byte. Redirect kmalloc to use the 256 byte cache | |
3005 | * instead. | |
3006 | */ | |
3007 | for (i = 128 + 8; i <= 192; i += 8) | |
3008 | size_index[(i - 1) / 8] = 8; | |
3009 | } | |
3010 | ||
81819f0f CL |
3011 | slab_state = UP; |
3012 | ||
3013 | /* Provide the correct kmalloc names now that the caches are up */ | |
331dc558 | 3014 | for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) |
81819f0f CL |
3015 | kmalloc_caches[i]. name = |
3016 | kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); | |
3017 | ||
3018 | #ifdef CONFIG_SMP | |
3019 | register_cpu_notifier(&slab_notifier); | |
4c93c355 CL |
3020 | kmem_size = offsetof(struct kmem_cache, cpu_slab) + |
3021 | nr_cpu_ids * sizeof(struct kmem_cache_cpu *); | |
3022 | #else | |
3023 | kmem_size = sizeof(struct kmem_cache); | |
81819f0f CL |
3024 | #endif |
3025 | ||
3adbefee IM |
3026 | printk(KERN_INFO |
3027 | "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," | |
4b356be0 CL |
3028 | " CPUs=%d, Nodes=%d\n", |
3029 | caches, cache_line_size(), | |
81819f0f CL |
3030 | slub_min_order, slub_max_order, slub_min_objects, |
3031 | nr_cpu_ids, nr_node_ids); | |
3032 | } | |
3033 | ||
3034 | /* | |
3035 | * Find a mergeable slab cache | |
3036 | */ | |
3037 | static int slab_unmergeable(struct kmem_cache *s) | |
3038 | { | |
3039 | if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) | |
3040 | return 1; | |
3041 | ||
c59def9f | 3042 | if (s->ctor) |
81819f0f CL |
3043 | return 1; |
3044 | ||
8ffa6875 CL |
3045 | /* |
3046 | * We may have set a slab to be unmergeable during bootstrap. | |
3047 | */ | |
3048 | if (s->refcount < 0) | |
3049 | return 1; | |
3050 | ||
81819f0f CL |
3051 | return 0; |
3052 | } | |
3053 | ||
3054 | static struct kmem_cache *find_mergeable(size_t size, | |
ba0268a8 | 3055 | size_t align, unsigned long flags, const char *name, |
51cc5068 | 3056 | void (*ctor)(void *)) |
81819f0f | 3057 | { |
5b95a4ac | 3058 | struct kmem_cache *s; |
81819f0f CL |
3059 | |
3060 | if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) | |
3061 | return NULL; | |
3062 | ||
c59def9f | 3063 | if (ctor) |
81819f0f CL |
3064 | return NULL; |
3065 | ||
3066 | size = ALIGN(size, sizeof(void *)); | |
3067 | align = calculate_alignment(flags, align, size); | |
3068 | size = ALIGN(size, align); | |
ba0268a8 | 3069 | flags = kmem_cache_flags(size, flags, name, NULL); |
81819f0f | 3070 | |
5b95a4ac | 3071 | list_for_each_entry(s, &slab_caches, list) { |
81819f0f CL |
3072 | if (slab_unmergeable(s)) |
3073 | continue; | |
3074 | ||
3075 | if (size > s->size) | |
3076 | continue; | |
3077 | ||
ba0268a8 | 3078 | if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) |
81819f0f CL |
3079 | continue; |
3080 | /* | |
3081 | * Check if alignment is compatible. | |
3082 | * Courtesy of Adrian Drzewiecki | |
3083 | */ | |
06428780 | 3084 | if ((s->size & ~(align - 1)) != s->size) |
81819f0f CL |
3085 | continue; |
3086 | ||
3087 | if (s->size - size >= sizeof(void *)) | |
3088 | continue; | |
3089 | ||
3090 | return s; | |
3091 | } | |
3092 | return NULL; | |
3093 | } | |
3094 | ||
3095 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, | |
51cc5068 | 3096 | size_t align, unsigned long flags, void (*ctor)(void *)) |
81819f0f CL |
3097 | { |
3098 | struct kmem_cache *s; | |
3099 | ||
3100 | down_write(&slub_lock); | |
ba0268a8 | 3101 | s = find_mergeable(size, align, flags, name, ctor); |
81819f0f | 3102 | if (s) { |
42a9fdbb CL |
3103 | int cpu; |
3104 | ||
81819f0f CL |
3105 | s->refcount++; |
3106 | /* | |
3107 | * Adjust the object sizes so that we clear | |
3108 | * the complete object on kzalloc. | |
3109 | */ | |
3110 | s->objsize = max(s->objsize, (int)size); | |
42a9fdbb CL |
3111 | |
3112 | /* | |
3113 | * And then we need to update the object size in the | |
3114 | * per cpu structures | |
3115 | */ | |
3116 | for_each_online_cpu(cpu) | |
3117 | get_cpu_slab(s, cpu)->objsize = s->objsize; | |
6446faa2 | 3118 | |
81819f0f | 3119 | s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); |
a0e1d1be | 3120 | up_write(&slub_lock); |
6446faa2 | 3121 | |
81819f0f CL |
3122 | if (sysfs_slab_alias(s, name)) |
3123 | goto err; | |
a0e1d1be CL |
3124 | return s; |
3125 | } | |
6446faa2 | 3126 | |
a0e1d1be CL |
3127 | s = kmalloc(kmem_size, GFP_KERNEL); |
3128 | if (s) { | |
3129 | if (kmem_cache_open(s, GFP_KERNEL, name, | |
c59def9f | 3130 | size, align, flags, ctor)) { |
81819f0f | 3131 | list_add(&s->list, &slab_caches); |
a0e1d1be CL |
3132 | up_write(&slub_lock); |
3133 | if (sysfs_slab_add(s)) | |
3134 | goto err; | |
3135 | return s; | |
3136 | } | |
3137 | kfree(s); | |
81819f0f CL |
3138 | } |
3139 | up_write(&slub_lock); | |
81819f0f CL |
3140 | |
3141 | err: | |
81819f0f CL |
3142 | if (flags & SLAB_PANIC) |
3143 | panic("Cannot create slabcache %s\n", name); | |
3144 | else | |
3145 | s = NULL; | |
3146 | return s; | |
3147 | } | |
3148 | EXPORT_SYMBOL(kmem_cache_create); | |
3149 | ||
81819f0f | 3150 | #ifdef CONFIG_SMP |
81819f0f | 3151 | /* |
672bba3a CL |
3152 | * Use the cpu notifier to insure that the cpu slabs are flushed when |
3153 | * necessary. | |
81819f0f CL |
3154 | */ |
3155 | static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, | |
3156 | unsigned long action, void *hcpu) | |
3157 | { | |
3158 | long cpu = (long)hcpu; | |
5b95a4ac CL |
3159 | struct kmem_cache *s; |
3160 | unsigned long flags; | |
81819f0f CL |
3161 | |
3162 | switch (action) { | |
4c93c355 CL |
3163 | case CPU_UP_PREPARE: |
3164 | case CPU_UP_PREPARE_FROZEN: | |
3165 | init_alloc_cpu_cpu(cpu); | |
3166 | down_read(&slub_lock); | |
3167 | list_for_each_entry(s, &slab_caches, list) | |
3168 | s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu, | |
3169 | GFP_KERNEL); | |
3170 | up_read(&slub_lock); | |
3171 | break; | |
3172 | ||
81819f0f | 3173 | case CPU_UP_CANCELED: |
8bb78442 | 3174 | case CPU_UP_CANCELED_FROZEN: |
81819f0f | 3175 | case CPU_DEAD: |
8bb78442 | 3176 | case CPU_DEAD_FROZEN: |
5b95a4ac CL |
3177 | down_read(&slub_lock); |
3178 | list_for_each_entry(s, &slab_caches, list) { | |
4c93c355 CL |
3179 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); |
3180 | ||
5b95a4ac CL |
3181 | local_irq_save(flags); |
3182 | __flush_cpu_slab(s, cpu); | |
3183 | local_irq_restore(flags); | |
4c93c355 CL |
3184 | free_kmem_cache_cpu(c, cpu); |
3185 | s->cpu_slab[cpu] = NULL; | |
5b95a4ac CL |
3186 | } |
3187 | up_read(&slub_lock); | |
81819f0f CL |
3188 | break; |
3189 | default: | |
3190 | break; | |
3191 | } | |
3192 | return NOTIFY_OK; | |
3193 | } | |
3194 | ||
06428780 | 3195 | static struct notifier_block __cpuinitdata slab_notifier = { |
3adbefee | 3196 | .notifier_call = slab_cpuup_callback |
06428780 | 3197 | }; |
81819f0f CL |
3198 | |
3199 | #endif | |
3200 | ||
81819f0f CL |
3201 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller) |
3202 | { | |
aadb4bc4 CL |
3203 | struct kmem_cache *s; |
3204 | ||
331dc558 | 3205 | if (unlikely(size > PAGE_SIZE)) |
eada35ef PE |
3206 | return kmalloc_large(size, gfpflags); |
3207 | ||
aadb4bc4 | 3208 | s = get_slab(size, gfpflags); |
81819f0f | 3209 | |
2408c550 | 3210 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 3211 | return s; |
81819f0f | 3212 | |
ce15fea8 | 3213 | return slab_alloc(s, gfpflags, -1, caller); |
81819f0f CL |
3214 | } |
3215 | ||
3216 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | |
3217 | int node, void *caller) | |
3218 | { | |
aadb4bc4 CL |
3219 | struct kmem_cache *s; |
3220 | ||
331dc558 | 3221 | if (unlikely(size > PAGE_SIZE)) |
f619cfe1 | 3222 | return kmalloc_large_node(size, gfpflags, node); |
eada35ef | 3223 | |
aadb4bc4 | 3224 | s = get_slab(size, gfpflags); |
81819f0f | 3225 | |
2408c550 | 3226 | if (unlikely(ZERO_OR_NULL_PTR(s))) |
6cb8f913 | 3227 | return s; |
81819f0f | 3228 | |
ce15fea8 | 3229 | return slab_alloc(s, gfpflags, node, caller); |
81819f0f CL |
3230 | } |
3231 | ||
f6acb635 | 3232 | #ifdef CONFIG_SLUB_DEBUG |
205ab99d CL |
3233 | static unsigned long count_partial(struct kmem_cache_node *n, |
3234 | int (*get_count)(struct page *)) | |
5b06c853 CL |
3235 | { |
3236 | unsigned long flags; | |
3237 | unsigned long x = 0; | |
3238 | struct page *page; | |
3239 | ||
3240 | spin_lock_irqsave(&n->list_lock, flags); | |
3241 | list_for_each_entry(page, &n->partial, lru) | |
205ab99d | 3242 | x += get_count(page); |
5b06c853 CL |
3243 | spin_unlock_irqrestore(&n->list_lock, flags); |
3244 | return x; | |
3245 | } | |
205ab99d CL |
3246 | |
3247 | static int count_inuse(struct page *page) | |
3248 | { | |
3249 | return page->inuse; | |
3250 | } | |
3251 | ||
3252 | static int count_total(struct page *page) | |
3253 | { | |
3254 | return page->objects; | |
3255 | } | |
3256 | ||
3257 | static int count_free(struct page *page) | |
3258 | { | |
3259 | return page->objects - page->inuse; | |
3260 | } | |
5b06c853 | 3261 | |
434e245d CL |
3262 | static int validate_slab(struct kmem_cache *s, struct page *page, |
3263 | unsigned long *map) | |
53e15af0 CL |
3264 | { |
3265 | void *p; | |
a973e9dd | 3266 | void *addr = page_address(page); |
53e15af0 CL |
3267 | |
3268 | if (!check_slab(s, page) || | |
3269 | !on_freelist(s, page, NULL)) | |
3270 | return 0; | |
3271 | ||
3272 | /* Now we know that a valid freelist exists */ | |
39b26464 | 3273 | bitmap_zero(map, page->objects); |
53e15af0 | 3274 | |
7656c72b CL |
3275 | for_each_free_object(p, s, page->freelist) { |
3276 | set_bit(slab_index(p, s, addr), map); | |
53e15af0 CL |
3277 | if (!check_object(s, page, p, 0)) |
3278 | return 0; | |
3279 | } | |
3280 | ||
224a88be | 3281 | for_each_object(p, s, addr, page->objects) |
7656c72b | 3282 | if (!test_bit(slab_index(p, s, addr), map)) |
53e15af0 CL |
3283 | if (!check_object(s, page, p, 1)) |
3284 | return 0; | |
3285 | return 1; | |
3286 | } | |
3287 | ||
434e245d CL |
3288 | static void validate_slab_slab(struct kmem_cache *s, struct page *page, |
3289 | unsigned long *map) | |
53e15af0 CL |
3290 | { |
3291 | if (slab_trylock(page)) { | |
434e245d | 3292 | validate_slab(s, page, map); |
53e15af0 CL |
3293 | slab_unlock(page); |
3294 | } else | |
3295 | printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", | |
3296 | s->name, page); | |
3297 | ||
3298 | if (s->flags & DEBUG_DEFAULT_FLAGS) { | |
8a38082d AW |
3299 | if (!PageSlubDebug(page)) |
3300 | printk(KERN_ERR "SLUB %s: SlubDebug not set " | |
53e15af0 CL |
3301 | "on slab 0x%p\n", s->name, page); |
3302 | } else { | |
8a38082d AW |
3303 | if (PageSlubDebug(page)) |
3304 | printk(KERN_ERR "SLUB %s: SlubDebug set on " | |
53e15af0 CL |
3305 | "slab 0x%p\n", s->name, page); |
3306 | } | |
3307 | } | |
3308 | ||
434e245d CL |
3309 | static int validate_slab_node(struct kmem_cache *s, |
3310 | struct kmem_cache_node *n, unsigned long *map) | |
53e15af0 CL |
3311 | { |
3312 | unsigned long count = 0; | |
3313 | struct page *page; | |
3314 | unsigned long flags; | |
3315 | ||
3316 | spin_lock_irqsave(&n->list_lock, flags); | |
3317 | ||
3318 | list_for_each_entry(page, &n->partial, lru) { | |
434e245d | 3319 | validate_slab_slab(s, page, map); |
53e15af0 CL |
3320 | count++; |
3321 | } | |
3322 | if (count != n->nr_partial) | |
3323 | printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " | |
3324 | "counter=%ld\n", s->name, count, n->nr_partial); | |
3325 | ||
3326 | if (!(s->flags & SLAB_STORE_USER)) | |
3327 | goto out; | |
3328 | ||
3329 | list_for_each_entry(page, &n->full, lru) { | |
434e245d | 3330 | validate_slab_slab(s, page, map); |
53e15af0 CL |
3331 | count++; |
3332 | } | |
3333 | if (count != atomic_long_read(&n->nr_slabs)) | |
3334 | printk(KERN_ERR "SLUB: %s %ld slabs counted but " | |
3335 | "counter=%ld\n", s->name, count, | |
3336 | atomic_long_read(&n->nr_slabs)); | |
3337 | ||
3338 | out: | |
3339 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3340 | return count; | |
3341 | } | |
3342 | ||
434e245d | 3343 | static long validate_slab_cache(struct kmem_cache *s) |
53e15af0 CL |
3344 | { |
3345 | int node; | |
3346 | unsigned long count = 0; | |
205ab99d | 3347 | unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * |
434e245d CL |
3348 | sizeof(unsigned long), GFP_KERNEL); |
3349 | ||
3350 | if (!map) | |
3351 | return -ENOMEM; | |
53e15af0 CL |
3352 | |
3353 | flush_all(s); | |
f64dc58c | 3354 | for_each_node_state(node, N_NORMAL_MEMORY) { |
53e15af0 CL |
3355 | struct kmem_cache_node *n = get_node(s, node); |
3356 | ||
434e245d | 3357 | count += validate_slab_node(s, n, map); |
53e15af0 | 3358 | } |
434e245d | 3359 | kfree(map); |
53e15af0 CL |
3360 | return count; |
3361 | } | |
3362 | ||
b3459709 CL |
3363 | #ifdef SLUB_RESILIENCY_TEST |
3364 | static void resiliency_test(void) | |
3365 | { | |
3366 | u8 *p; | |
3367 | ||
3368 | printk(KERN_ERR "SLUB resiliency testing\n"); | |
3369 | printk(KERN_ERR "-----------------------\n"); | |
3370 | printk(KERN_ERR "A. Corruption after allocation\n"); | |
3371 | ||
3372 | p = kzalloc(16, GFP_KERNEL); | |
3373 | p[16] = 0x12; | |
3374 | printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" | |
3375 | " 0x12->0x%p\n\n", p + 16); | |
3376 | ||
3377 | validate_slab_cache(kmalloc_caches + 4); | |
3378 | ||
3379 | /* Hmmm... The next two are dangerous */ | |
3380 | p = kzalloc(32, GFP_KERNEL); | |
3381 | p[32 + sizeof(void *)] = 0x34; | |
3382 | printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" | |
3adbefee IM |
3383 | " 0x34 -> -0x%p\n", p); |
3384 | printk(KERN_ERR | |
3385 | "If allocated object is overwritten then not detectable\n\n"); | |
b3459709 CL |
3386 | |
3387 | validate_slab_cache(kmalloc_caches + 5); | |
3388 | p = kzalloc(64, GFP_KERNEL); | |
3389 | p += 64 + (get_cycles() & 0xff) * sizeof(void *); | |
3390 | *p = 0x56; | |
3391 | printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", | |
3392 | p); | |
3adbefee IM |
3393 | printk(KERN_ERR |
3394 | "If allocated object is overwritten then not detectable\n\n"); | |
b3459709 CL |
3395 | validate_slab_cache(kmalloc_caches + 6); |
3396 | ||
3397 | printk(KERN_ERR "\nB. Corruption after free\n"); | |
3398 | p = kzalloc(128, GFP_KERNEL); | |
3399 | kfree(p); | |
3400 | *p = 0x78; | |
3401 | printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); | |
3402 | validate_slab_cache(kmalloc_caches + 7); | |
3403 | ||
3404 | p = kzalloc(256, GFP_KERNEL); | |
3405 | kfree(p); | |
3406 | p[50] = 0x9a; | |
3adbefee IM |
3407 | printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", |
3408 | p); | |
b3459709 CL |
3409 | validate_slab_cache(kmalloc_caches + 8); |
3410 | ||
3411 | p = kzalloc(512, GFP_KERNEL); | |
3412 | kfree(p); | |
3413 | p[512] = 0xab; | |
3414 | printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); | |
3415 | validate_slab_cache(kmalloc_caches + 9); | |
3416 | } | |
3417 | #else | |
3418 | static void resiliency_test(void) {}; | |
3419 | #endif | |
3420 | ||
88a420e4 | 3421 | /* |
672bba3a | 3422 | * Generate lists of code addresses where slabcache objects are allocated |
88a420e4 CL |
3423 | * and freed. |
3424 | */ | |
3425 | ||
3426 | struct location { | |
3427 | unsigned long count; | |
3428 | void *addr; | |
45edfa58 CL |
3429 | long long sum_time; |
3430 | long min_time; | |
3431 | long max_time; | |
3432 | long min_pid; | |
3433 | long max_pid; | |
3434 | cpumask_t cpus; | |
3435 | nodemask_t nodes; | |
88a420e4 CL |
3436 | }; |
3437 | ||
3438 | struct loc_track { | |
3439 | unsigned long max; | |
3440 | unsigned long count; | |
3441 | struct location *loc; | |
3442 | }; | |
3443 | ||
3444 | static void free_loc_track(struct loc_track *t) | |
3445 | { | |
3446 | if (t->max) | |
3447 | free_pages((unsigned long)t->loc, | |
3448 | get_order(sizeof(struct location) * t->max)); | |
3449 | } | |
3450 | ||
68dff6a9 | 3451 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
88a420e4 CL |
3452 | { |
3453 | struct location *l; | |
3454 | int order; | |
3455 | ||
88a420e4 CL |
3456 | order = get_order(sizeof(struct location) * max); |
3457 | ||
68dff6a9 | 3458 | l = (void *)__get_free_pages(flags, order); |
88a420e4 CL |
3459 | if (!l) |
3460 | return 0; | |
3461 | ||
3462 | if (t->count) { | |
3463 | memcpy(l, t->loc, sizeof(struct location) * t->count); | |
3464 | free_loc_track(t); | |
3465 | } | |
3466 | t->max = max; | |
3467 | t->loc = l; | |
3468 | return 1; | |
3469 | } | |
3470 | ||
3471 | static int add_location(struct loc_track *t, struct kmem_cache *s, | |
45edfa58 | 3472 | const struct track *track) |
88a420e4 CL |
3473 | { |
3474 | long start, end, pos; | |
3475 | struct location *l; | |
3476 | void *caddr; | |
45edfa58 | 3477 | unsigned long age = jiffies - track->when; |
88a420e4 CL |
3478 | |
3479 | start = -1; | |
3480 | end = t->count; | |
3481 | ||
3482 | for ( ; ; ) { | |
3483 | pos = start + (end - start + 1) / 2; | |
3484 | ||
3485 | /* | |
3486 | * There is nothing at "end". If we end up there | |
3487 | * we need to add something to before end. | |
3488 | */ | |
3489 | if (pos == end) | |
3490 | break; | |
3491 | ||
3492 | caddr = t->loc[pos].addr; | |
45edfa58 CL |
3493 | if (track->addr == caddr) { |
3494 | ||
3495 | l = &t->loc[pos]; | |
3496 | l->count++; | |
3497 | if (track->when) { | |
3498 | l->sum_time += age; | |
3499 | if (age < l->min_time) | |
3500 | l->min_time = age; | |
3501 | if (age > l->max_time) | |
3502 | l->max_time = age; | |
3503 | ||
3504 | if (track->pid < l->min_pid) | |
3505 | l->min_pid = track->pid; | |
3506 | if (track->pid > l->max_pid) | |
3507 | l->max_pid = track->pid; | |
3508 | ||
3509 | cpu_set(track->cpu, l->cpus); | |
3510 | } | |
3511 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
3512 | return 1; |
3513 | } | |
3514 | ||
45edfa58 | 3515 | if (track->addr < caddr) |
88a420e4 CL |
3516 | end = pos; |
3517 | else | |
3518 | start = pos; | |
3519 | } | |
3520 | ||
3521 | /* | |
672bba3a | 3522 | * Not found. Insert new tracking element. |
88a420e4 | 3523 | */ |
68dff6a9 | 3524 | if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
88a420e4 CL |
3525 | return 0; |
3526 | ||
3527 | l = t->loc + pos; | |
3528 | if (pos < t->count) | |
3529 | memmove(l + 1, l, | |
3530 | (t->count - pos) * sizeof(struct location)); | |
3531 | t->count++; | |
3532 | l->count = 1; | |
45edfa58 CL |
3533 | l->addr = track->addr; |
3534 | l->sum_time = age; | |
3535 | l->min_time = age; | |
3536 | l->max_time = age; | |
3537 | l->min_pid = track->pid; | |
3538 | l->max_pid = track->pid; | |
3539 | cpus_clear(l->cpus); | |
3540 | cpu_set(track->cpu, l->cpus); | |
3541 | nodes_clear(l->nodes); | |
3542 | node_set(page_to_nid(virt_to_page(track)), l->nodes); | |
88a420e4 CL |
3543 | return 1; |
3544 | } | |
3545 | ||
3546 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | |
3547 | struct page *page, enum track_item alloc) | |
3548 | { | |
a973e9dd | 3549 | void *addr = page_address(page); |
39b26464 | 3550 | DECLARE_BITMAP(map, page->objects); |
88a420e4 CL |
3551 | void *p; |
3552 | ||
39b26464 | 3553 | bitmap_zero(map, page->objects); |
7656c72b CL |
3554 | for_each_free_object(p, s, page->freelist) |
3555 | set_bit(slab_index(p, s, addr), map); | |
88a420e4 | 3556 | |
224a88be | 3557 | for_each_object(p, s, addr, page->objects) |
45edfa58 CL |
3558 | if (!test_bit(slab_index(p, s, addr), map)) |
3559 | add_location(t, s, get_track(s, p, alloc)); | |
88a420e4 CL |
3560 | } |
3561 | ||
3562 | static int list_locations(struct kmem_cache *s, char *buf, | |
3563 | enum track_item alloc) | |
3564 | { | |
e374d483 | 3565 | int len = 0; |
88a420e4 | 3566 | unsigned long i; |
68dff6a9 | 3567 | struct loc_track t = { 0, 0, NULL }; |
88a420e4 CL |
3568 | int node; |
3569 | ||
68dff6a9 | 3570 | if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), |
ea3061d2 | 3571 | GFP_TEMPORARY)) |
68dff6a9 | 3572 | return sprintf(buf, "Out of memory\n"); |
88a420e4 CL |
3573 | |
3574 | /* Push back cpu slabs */ | |
3575 | flush_all(s); | |
3576 | ||
f64dc58c | 3577 | for_each_node_state(node, N_NORMAL_MEMORY) { |
88a420e4 CL |
3578 | struct kmem_cache_node *n = get_node(s, node); |
3579 | unsigned long flags; | |
3580 | struct page *page; | |
3581 | ||
9e86943b | 3582 | if (!atomic_long_read(&n->nr_slabs)) |
88a420e4 CL |
3583 | continue; |
3584 | ||
3585 | spin_lock_irqsave(&n->list_lock, flags); | |
3586 | list_for_each_entry(page, &n->partial, lru) | |
3587 | process_slab(&t, s, page, alloc); | |
3588 | list_for_each_entry(page, &n->full, lru) | |
3589 | process_slab(&t, s, page, alloc); | |
3590 | spin_unlock_irqrestore(&n->list_lock, flags); | |
3591 | } | |
3592 | ||
3593 | for (i = 0; i < t.count; i++) { | |
45edfa58 | 3594 | struct location *l = &t.loc[i]; |
88a420e4 | 3595 | |
e374d483 | 3596 | if (len > PAGE_SIZE - 100) |
88a420e4 | 3597 | break; |
e374d483 | 3598 | len += sprintf(buf + len, "%7ld ", l->count); |
45edfa58 CL |
3599 | |
3600 | if (l->addr) | |
e374d483 | 3601 | len += sprint_symbol(buf + len, (unsigned long)l->addr); |
88a420e4 | 3602 | else |
e374d483 | 3603 | len += sprintf(buf + len, "<not-available>"); |
45edfa58 CL |
3604 | |
3605 | if (l->sum_time != l->min_time) { | |
e374d483 | 3606 | len += sprintf(buf + len, " age=%ld/%ld/%ld", |
f8bd2258 RZ |
3607 | l->min_time, |
3608 | (long)div_u64(l->sum_time, l->count), | |
3609 | l->max_time); | |
45edfa58 | 3610 | } else |
e374d483 | 3611 | len += sprintf(buf + len, " age=%ld", |
45edfa58 CL |
3612 | l->min_time); |
3613 | ||
3614 | if (l->min_pid != l->max_pid) | |
e374d483 | 3615 | len += sprintf(buf + len, " pid=%ld-%ld", |
45edfa58 CL |
3616 | l->min_pid, l->max_pid); |
3617 | else | |
e374d483 | 3618 | len += sprintf(buf + len, " pid=%ld", |
45edfa58 CL |
3619 | l->min_pid); |
3620 | ||
84966343 | 3621 | if (num_online_cpus() > 1 && !cpus_empty(l->cpus) && |
e374d483 HH |
3622 | len < PAGE_SIZE - 60) { |
3623 | len += sprintf(buf + len, " cpus="); | |
3624 | len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, | |
45edfa58 CL |
3625 | l->cpus); |
3626 | } | |
3627 | ||
84966343 | 3628 | if (num_online_nodes() > 1 && !nodes_empty(l->nodes) && |
e374d483 HH |
3629 | len < PAGE_SIZE - 60) { |
3630 | len += sprintf(buf + len, " nodes="); | |
3631 | len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, | |
45edfa58 CL |
3632 | l->nodes); |
3633 | } | |
3634 | ||
e374d483 | 3635 | len += sprintf(buf + len, "\n"); |
88a420e4 CL |
3636 | } |
3637 | ||
3638 | free_loc_track(&t); | |
3639 | if (!t.count) | |
e374d483 HH |
3640 | len += sprintf(buf, "No data\n"); |
3641 | return len; | |
88a420e4 CL |
3642 | } |
3643 | ||
81819f0f | 3644 | enum slab_stat_type { |
205ab99d CL |
3645 | SL_ALL, /* All slabs */ |
3646 | SL_PARTIAL, /* Only partially allocated slabs */ | |
3647 | SL_CPU, /* Only slabs used for cpu caches */ | |
3648 | SL_OBJECTS, /* Determine allocated objects not slabs */ | |
3649 | SL_TOTAL /* Determine object capacity not slabs */ | |
81819f0f CL |
3650 | }; |
3651 | ||
205ab99d | 3652 | #define SO_ALL (1 << SL_ALL) |
81819f0f CL |
3653 | #define SO_PARTIAL (1 << SL_PARTIAL) |
3654 | #define SO_CPU (1 << SL_CPU) | |
3655 | #define SO_OBJECTS (1 << SL_OBJECTS) | |
205ab99d | 3656 | #define SO_TOTAL (1 << SL_TOTAL) |
81819f0f | 3657 | |
62e5c4b4 CG |
3658 | static ssize_t show_slab_objects(struct kmem_cache *s, |
3659 | char *buf, unsigned long flags) | |
81819f0f CL |
3660 | { |
3661 | unsigned long total = 0; | |
81819f0f CL |
3662 | int node; |
3663 | int x; | |
3664 | unsigned long *nodes; | |
3665 | unsigned long *per_cpu; | |
3666 | ||
3667 | nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); | |
62e5c4b4 CG |
3668 | if (!nodes) |
3669 | return -ENOMEM; | |
81819f0f CL |
3670 | per_cpu = nodes + nr_node_ids; |
3671 | ||
205ab99d CL |
3672 | if (flags & SO_CPU) { |
3673 | int cpu; | |
81819f0f | 3674 | |
205ab99d CL |
3675 | for_each_possible_cpu(cpu) { |
3676 | struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | |
dfb4f096 | 3677 | |
205ab99d CL |
3678 | if (!c || c->node < 0) |
3679 | continue; | |
3680 | ||
3681 | if (c->page) { | |
3682 | if (flags & SO_TOTAL) | |
3683 | x = c->page->objects; | |
3684 | else if (flags & SO_OBJECTS) | |
3685 | x = c->page->inuse; | |
81819f0f CL |
3686 | else |
3687 | x = 1; | |
205ab99d | 3688 | |
81819f0f | 3689 | total += x; |
205ab99d | 3690 | nodes[c->node] += x; |
81819f0f | 3691 | } |
205ab99d | 3692 | per_cpu[c->node]++; |
81819f0f CL |
3693 | } |
3694 | } | |
3695 | ||
205ab99d CL |
3696 | if (flags & SO_ALL) { |
3697 | for_each_node_state(node, N_NORMAL_MEMORY) { | |
3698 | struct kmem_cache_node *n = get_node(s, node); | |
3699 | ||
3700 | if (flags & SO_TOTAL) | |
3701 | x = atomic_long_read(&n->total_objects); | |
3702 | else if (flags & SO_OBJECTS) | |
3703 | x = atomic_long_read(&n->total_objects) - | |
3704 | count_partial(n, count_free); | |
81819f0f | 3705 | |
81819f0f | 3706 | else |
205ab99d | 3707 | x = atomic_long_read(&n->nr_slabs); |
81819f0f CL |
3708 | total += x; |
3709 | nodes[node] += x; | |
3710 | } | |
3711 | ||
205ab99d CL |
3712 | } else if (flags & SO_PARTIAL) { |
3713 | for_each_node_state(node, N_NORMAL_MEMORY) { | |
3714 | struct kmem_cache_node *n = get_node(s, node); | |
81819f0f | 3715 | |
205ab99d CL |
3716 | if (flags & SO_TOTAL) |
3717 | x = count_partial(n, count_total); | |
3718 | else if (flags & SO_OBJECTS) | |
3719 | x = count_partial(n, count_inuse); | |
81819f0f | 3720 | else |
205ab99d | 3721 | x = n->nr_partial; |
81819f0f CL |
3722 | total += x; |
3723 | nodes[node] += x; | |
3724 | } | |
3725 | } | |
81819f0f CL |
3726 | x = sprintf(buf, "%lu", total); |
3727 | #ifdef CONFIG_NUMA | |
f64dc58c | 3728 | for_each_node_state(node, N_NORMAL_MEMORY) |
81819f0f CL |
3729 | if (nodes[node]) |
3730 | x += sprintf(buf + x, " N%d=%lu", | |
3731 | node, nodes[node]); | |
3732 | #endif | |
3733 | kfree(nodes); | |
3734 | return x + sprintf(buf + x, "\n"); | |
3735 | } | |
3736 | ||
3737 | static int any_slab_objects(struct kmem_cache *s) | |
3738 | { | |
3739 | int node; | |
81819f0f | 3740 | |
dfb4f096 | 3741 | for_each_online_node(node) { |
81819f0f CL |
3742 | struct kmem_cache_node *n = get_node(s, node); |
3743 | ||
dfb4f096 CL |
3744 | if (!n) |
3745 | continue; | |
3746 | ||
4ea33e2d | 3747 | if (atomic_long_read(&n->total_objects)) |
81819f0f CL |
3748 | return 1; |
3749 | } | |
3750 | return 0; | |
3751 | } | |
3752 | ||
3753 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | |
3754 | #define to_slab(n) container_of(n, struct kmem_cache, kobj); | |
3755 | ||
3756 | struct slab_attribute { | |
3757 | struct attribute attr; | |
3758 | ssize_t (*show)(struct kmem_cache *s, char *buf); | |
3759 | ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | |
3760 | }; | |
3761 | ||
3762 | #define SLAB_ATTR_RO(_name) \ | |
3763 | static struct slab_attribute _name##_attr = __ATTR_RO(_name) | |
3764 | ||
3765 | #define SLAB_ATTR(_name) \ | |
3766 | static struct slab_attribute _name##_attr = \ | |
3767 | __ATTR(_name, 0644, _name##_show, _name##_store) | |
3768 | ||
81819f0f CL |
3769 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
3770 | { | |
3771 | return sprintf(buf, "%d\n", s->size); | |
3772 | } | |
3773 | SLAB_ATTR_RO(slab_size); | |
3774 | ||
3775 | static ssize_t align_show(struct kmem_cache *s, char *buf) | |
3776 | { | |
3777 | return sprintf(buf, "%d\n", s->align); | |
3778 | } | |
3779 | SLAB_ATTR_RO(align); | |
3780 | ||
3781 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | |
3782 | { | |
3783 | return sprintf(buf, "%d\n", s->objsize); | |
3784 | } | |
3785 | SLAB_ATTR_RO(object_size); | |
3786 | ||
3787 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | |
3788 | { | |
834f3d11 | 3789 | return sprintf(buf, "%d\n", oo_objects(s->oo)); |
81819f0f CL |
3790 | } |
3791 | SLAB_ATTR_RO(objs_per_slab); | |
3792 | ||
06b285dc CL |
3793 | static ssize_t order_store(struct kmem_cache *s, |
3794 | const char *buf, size_t length) | |
3795 | { | |
0121c619 CL |
3796 | unsigned long order; |
3797 | int err; | |
3798 | ||
3799 | err = strict_strtoul(buf, 10, &order); | |
3800 | if (err) | |
3801 | return err; | |
06b285dc CL |
3802 | |
3803 | if (order > slub_max_order || order < slub_min_order) | |
3804 | return -EINVAL; | |
3805 | ||
3806 | calculate_sizes(s, order); | |
3807 | return length; | |
3808 | } | |
3809 | ||
81819f0f CL |
3810 | static ssize_t order_show(struct kmem_cache *s, char *buf) |
3811 | { | |
834f3d11 | 3812 | return sprintf(buf, "%d\n", oo_order(s->oo)); |
81819f0f | 3813 | } |
06b285dc | 3814 | SLAB_ATTR(order); |
81819f0f CL |
3815 | |
3816 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) | |
3817 | { | |
3818 | if (s->ctor) { | |
3819 | int n = sprint_symbol(buf, (unsigned long)s->ctor); | |
3820 | ||
3821 | return n + sprintf(buf + n, "\n"); | |
3822 | } | |
3823 | return 0; | |
3824 | } | |
3825 | SLAB_ATTR_RO(ctor); | |
3826 | ||
81819f0f CL |
3827 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
3828 | { | |
3829 | return sprintf(buf, "%d\n", s->refcount - 1); | |
3830 | } | |
3831 | SLAB_ATTR_RO(aliases); | |
3832 | ||
3833 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) | |
3834 | { | |
205ab99d | 3835 | return show_slab_objects(s, buf, SO_ALL); |
81819f0f CL |
3836 | } |
3837 | SLAB_ATTR_RO(slabs); | |
3838 | ||
3839 | static ssize_t partial_show(struct kmem_cache *s, char *buf) | |
3840 | { | |
d9acf4b7 | 3841 | return show_slab_objects(s, buf, SO_PARTIAL); |
81819f0f CL |
3842 | } |
3843 | SLAB_ATTR_RO(partial); | |
3844 | ||
3845 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | |
3846 | { | |
d9acf4b7 | 3847 | return show_slab_objects(s, buf, SO_CPU); |
81819f0f CL |
3848 | } |
3849 | SLAB_ATTR_RO(cpu_slabs); | |
3850 | ||
3851 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | |
3852 | { | |
205ab99d | 3853 | return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); |
81819f0f CL |
3854 | } |
3855 | SLAB_ATTR_RO(objects); | |
3856 | ||
205ab99d CL |
3857 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
3858 | { | |
3859 | return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | |
3860 | } | |
3861 | SLAB_ATTR_RO(objects_partial); | |
3862 | ||
3863 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) | |
3864 | { | |
3865 | return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | |
3866 | } | |
3867 | SLAB_ATTR_RO(total_objects); | |
3868 | ||
81819f0f CL |
3869 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
3870 | { | |
3871 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); | |
3872 | } | |
3873 | ||
3874 | static ssize_t sanity_checks_store(struct kmem_cache *s, | |
3875 | const char *buf, size_t length) | |
3876 | { | |
3877 | s->flags &= ~SLAB_DEBUG_FREE; | |
3878 | if (buf[0] == '1') | |
3879 | s->flags |= SLAB_DEBUG_FREE; | |
3880 | return length; | |
3881 | } | |
3882 | SLAB_ATTR(sanity_checks); | |
3883 | ||
3884 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | |
3885 | { | |
3886 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | |
3887 | } | |
3888 | ||
3889 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | |
3890 | size_t length) | |
3891 | { | |
3892 | s->flags &= ~SLAB_TRACE; | |
3893 | if (buf[0] == '1') | |
3894 | s->flags |= SLAB_TRACE; | |
3895 | return length; | |
3896 | } | |
3897 | SLAB_ATTR(trace); | |
3898 | ||
3899 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) | |
3900 | { | |
3901 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | |
3902 | } | |
3903 | ||
3904 | static ssize_t reclaim_account_store(struct kmem_cache *s, | |
3905 | const char *buf, size_t length) | |
3906 | { | |
3907 | s->flags &= ~SLAB_RECLAIM_ACCOUNT; | |
3908 | if (buf[0] == '1') | |
3909 | s->flags |= SLAB_RECLAIM_ACCOUNT; | |
3910 | return length; | |
3911 | } | |
3912 | SLAB_ATTR(reclaim_account); | |
3913 | ||
3914 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | |
3915 | { | |
5af60839 | 3916 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); |
81819f0f CL |
3917 | } |
3918 | SLAB_ATTR_RO(hwcache_align); | |
3919 | ||
3920 | #ifdef CONFIG_ZONE_DMA | |
3921 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | |
3922 | { | |
3923 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | |
3924 | } | |
3925 | SLAB_ATTR_RO(cache_dma); | |
3926 | #endif | |
3927 | ||
3928 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) | |
3929 | { | |
3930 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); | |
3931 | } | |
3932 | SLAB_ATTR_RO(destroy_by_rcu); | |
3933 | ||
3934 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) | |
3935 | { | |
3936 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | |
3937 | } | |
3938 | ||
3939 | static ssize_t red_zone_store(struct kmem_cache *s, | |
3940 | const char *buf, size_t length) | |
3941 | { | |
3942 | if (any_slab_objects(s)) | |
3943 | return -EBUSY; | |
3944 | ||
3945 | s->flags &= ~SLAB_RED_ZONE; | |
3946 | if (buf[0] == '1') | |
3947 | s->flags |= SLAB_RED_ZONE; | |
06b285dc | 3948 | calculate_sizes(s, -1); |
81819f0f CL |
3949 | return length; |
3950 | } | |
3951 | SLAB_ATTR(red_zone); | |
3952 | ||
3953 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | |
3954 | { | |
3955 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | |
3956 | } | |
3957 | ||
3958 | static ssize_t poison_store(struct kmem_cache *s, | |
3959 | const char *buf, size_t length) | |
3960 | { | |
3961 | if (any_slab_objects(s)) | |
3962 | return -EBUSY; | |
3963 | ||
3964 | s->flags &= ~SLAB_POISON; | |
3965 | if (buf[0] == '1') | |
3966 | s->flags |= SLAB_POISON; | |
06b285dc | 3967 | calculate_sizes(s, -1); |
81819f0f CL |
3968 | return length; |
3969 | } | |
3970 | SLAB_ATTR(poison); | |
3971 | ||
3972 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | |
3973 | { | |
3974 | return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | |
3975 | } | |
3976 | ||
3977 | static ssize_t store_user_store(struct kmem_cache *s, | |
3978 | const char *buf, size_t length) | |
3979 | { | |
3980 | if (any_slab_objects(s)) | |
3981 | return -EBUSY; | |
3982 | ||
3983 | s->flags &= ~SLAB_STORE_USER; | |
3984 | if (buf[0] == '1') | |
3985 | s->flags |= SLAB_STORE_USER; | |
06b285dc | 3986 | calculate_sizes(s, -1); |
81819f0f CL |
3987 | return length; |
3988 | } | |
3989 | SLAB_ATTR(store_user); | |
3990 | ||
53e15af0 CL |
3991 | static ssize_t validate_show(struct kmem_cache *s, char *buf) |
3992 | { | |
3993 | return 0; | |
3994 | } | |
3995 | ||
3996 | static ssize_t validate_store(struct kmem_cache *s, | |
3997 | const char *buf, size_t length) | |
3998 | { | |
434e245d CL |
3999 | int ret = -EINVAL; |
4000 | ||
4001 | if (buf[0] == '1') { | |
4002 | ret = validate_slab_cache(s); | |
4003 | if (ret >= 0) | |
4004 | ret = length; | |
4005 | } | |
4006 | return ret; | |
53e15af0 CL |
4007 | } |
4008 | SLAB_ATTR(validate); | |
4009 | ||
2086d26a CL |
4010 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
4011 | { | |
4012 | return 0; | |
4013 | } | |
4014 | ||
4015 | static ssize_t shrink_store(struct kmem_cache *s, | |
4016 | const char *buf, size_t length) | |
4017 | { | |
4018 | if (buf[0] == '1') { | |
4019 | int rc = kmem_cache_shrink(s); | |
4020 | ||
4021 | if (rc) | |
4022 | return rc; | |
4023 | } else | |
4024 | return -EINVAL; | |
4025 | return length; | |
4026 | } | |
4027 | SLAB_ATTR(shrink); | |
4028 | ||
88a420e4 CL |
4029 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) |
4030 | { | |
4031 | if (!(s->flags & SLAB_STORE_USER)) | |
4032 | return -ENOSYS; | |
4033 | return list_locations(s, buf, TRACK_ALLOC); | |
4034 | } | |
4035 | SLAB_ATTR_RO(alloc_calls); | |
4036 | ||
4037 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | |
4038 | { | |
4039 | if (!(s->flags & SLAB_STORE_USER)) | |
4040 | return -ENOSYS; | |
4041 | return list_locations(s, buf, TRACK_FREE); | |
4042 | } | |
4043 | SLAB_ATTR_RO(free_calls); | |
4044 | ||
81819f0f | 4045 | #ifdef CONFIG_NUMA |
9824601e | 4046 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
81819f0f | 4047 | { |
9824601e | 4048 | return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); |
81819f0f CL |
4049 | } |
4050 | ||
9824601e | 4051 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
81819f0f CL |
4052 | const char *buf, size_t length) |
4053 | { | |
0121c619 CL |
4054 | unsigned long ratio; |
4055 | int err; | |
4056 | ||
4057 | err = strict_strtoul(buf, 10, &ratio); | |
4058 | if (err) | |
4059 | return err; | |
4060 | ||
4061 | if (ratio < 100) | |
4062 | s->remote_node_defrag_ratio = ratio * 10; | |
81819f0f | 4063 | |
81819f0f CL |
4064 | return length; |
4065 | } | |
9824601e | 4066 | SLAB_ATTR(remote_node_defrag_ratio); |
81819f0f CL |
4067 | #endif |
4068 | ||
8ff12cfc | 4069 | #ifdef CONFIG_SLUB_STATS |
8ff12cfc CL |
4070 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
4071 | { | |
4072 | unsigned long sum = 0; | |
4073 | int cpu; | |
4074 | int len; | |
4075 | int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); | |
4076 | ||
4077 | if (!data) | |
4078 | return -ENOMEM; | |
4079 | ||
4080 | for_each_online_cpu(cpu) { | |
4081 | unsigned x = get_cpu_slab(s, cpu)->stat[si]; | |
4082 | ||
4083 | data[cpu] = x; | |
4084 | sum += x; | |
4085 | } | |
4086 | ||
4087 | len = sprintf(buf, "%lu", sum); | |
4088 | ||
50ef37b9 | 4089 | #ifdef CONFIG_SMP |
8ff12cfc CL |
4090 | for_each_online_cpu(cpu) { |
4091 | if (data[cpu] && len < PAGE_SIZE - 20) | |
50ef37b9 | 4092 | len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); |
8ff12cfc | 4093 | } |
50ef37b9 | 4094 | #endif |
8ff12cfc CL |
4095 | kfree(data); |
4096 | return len + sprintf(buf + len, "\n"); | |
4097 | } | |
4098 | ||
4099 | #define STAT_ATTR(si, text) \ | |
4100 | static ssize_t text##_show(struct kmem_cache *s, char *buf) \ | |
4101 | { \ | |
4102 | return show_stat(s, buf, si); \ | |
4103 | } \ | |
4104 | SLAB_ATTR_RO(text); \ | |
4105 | ||
4106 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | |
4107 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | |
4108 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | |
4109 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | |
4110 | STAT_ATTR(FREE_FROZEN, free_frozen); | |
4111 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | |
4112 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | |
4113 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | |
4114 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | |
4115 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | |
4116 | STAT_ATTR(FREE_SLAB, free_slab); | |
4117 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | |
4118 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | |
4119 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | |
4120 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | |
4121 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | |
4122 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | |
65c3376a | 4123 | STAT_ATTR(ORDER_FALLBACK, order_fallback); |
8ff12cfc CL |
4124 | #endif |
4125 | ||
06428780 | 4126 | static struct attribute *slab_attrs[] = { |
81819f0f CL |
4127 | &slab_size_attr.attr, |
4128 | &object_size_attr.attr, | |
4129 | &objs_per_slab_attr.attr, | |
4130 | &order_attr.attr, | |
4131 | &objects_attr.attr, | |
205ab99d CL |
4132 | &objects_partial_attr.attr, |
4133 | &total_objects_attr.attr, | |
81819f0f CL |
4134 | &slabs_attr.attr, |
4135 | &partial_attr.attr, | |
4136 | &cpu_slabs_attr.attr, | |
4137 | &ctor_attr.attr, | |
81819f0f CL |
4138 | &aliases_attr.attr, |
4139 | &align_attr.attr, | |
4140 | &sanity_checks_attr.attr, | |
4141 | &trace_attr.attr, | |
4142 | &hwcache_align_attr.attr, | |
4143 | &reclaim_account_attr.attr, | |
4144 | &destroy_by_rcu_attr.attr, | |
4145 | &red_zone_attr.attr, | |
4146 | &poison_attr.attr, | |
4147 | &store_user_attr.attr, | |
53e15af0 | 4148 | &validate_attr.attr, |
2086d26a | 4149 | &shrink_attr.attr, |
88a420e4 CL |
4150 | &alloc_calls_attr.attr, |
4151 | &free_calls_attr.attr, | |
81819f0f CL |
4152 | #ifdef CONFIG_ZONE_DMA |
4153 | &cache_dma_attr.attr, | |
4154 | #endif | |
4155 | #ifdef CONFIG_NUMA | |
9824601e | 4156 | &remote_node_defrag_ratio_attr.attr, |
8ff12cfc CL |
4157 | #endif |
4158 | #ifdef CONFIG_SLUB_STATS | |
4159 | &alloc_fastpath_attr.attr, | |
4160 | &alloc_slowpath_attr.attr, | |
4161 | &free_fastpath_attr.attr, | |
4162 | &free_slowpath_attr.attr, | |
4163 | &free_frozen_attr.attr, | |
4164 | &free_add_partial_attr.attr, | |
4165 | &free_remove_partial_attr.attr, | |
4166 | &alloc_from_partial_attr.attr, | |
4167 | &alloc_slab_attr.attr, | |
4168 | &alloc_refill_attr.attr, | |
4169 | &free_slab_attr.attr, | |
4170 | &cpuslab_flush_attr.attr, | |
4171 | &deactivate_full_attr.attr, | |
4172 | &deactivate_empty_attr.attr, | |
4173 | &deactivate_to_head_attr.attr, | |
4174 | &deactivate_to_tail_attr.attr, | |
4175 | &deactivate_remote_frees_attr.attr, | |
65c3376a | 4176 | &order_fallback_attr.attr, |
81819f0f CL |
4177 | #endif |
4178 | NULL | |
4179 | }; | |
4180 | ||
4181 | static struct attribute_group slab_attr_group = { | |
4182 | .attrs = slab_attrs, | |
4183 | }; | |
4184 | ||
4185 | static ssize_t slab_attr_show(struct kobject *kobj, | |
4186 | struct attribute *attr, | |
4187 | char *buf) | |
4188 | { | |
4189 | struct slab_attribute *attribute; | |
4190 | struct kmem_cache *s; | |
4191 | int err; | |
4192 | ||
4193 | attribute = to_slab_attr(attr); | |
4194 | s = to_slab(kobj); | |
4195 | ||
4196 | if (!attribute->show) | |
4197 | return -EIO; | |
4198 | ||
4199 | err = attribute->show(s, buf); | |
4200 | ||
4201 | return err; | |
4202 | } | |
4203 | ||
4204 | static ssize_t slab_attr_store(struct kobject *kobj, | |
4205 | struct attribute *attr, | |
4206 | const char *buf, size_t len) | |
4207 | { | |
4208 | struct slab_attribute *attribute; | |
4209 | struct kmem_cache *s; | |
4210 | int err; | |
4211 | ||
4212 | attribute = to_slab_attr(attr); | |
4213 | s = to_slab(kobj); | |
4214 | ||
4215 | if (!attribute->store) | |
4216 | return -EIO; | |
4217 | ||
4218 | err = attribute->store(s, buf, len); | |
4219 | ||
4220 | return err; | |
4221 | } | |
4222 | ||
151c602f CL |
4223 | static void kmem_cache_release(struct kobject *kobj) |
4224 | { | |
4225 | struct kmem_cache *s = to_slab(kobj); | |
4226 | ||
4227 | kfree(s); | |
4228 | } | |
4229 | ||
81819f0f CL |
4230 | static struct sysfs_ops slab_sysfs_ops = { |
4231 | .show = slab_attr_show, | |
4232 | .store = slab_attr_store, | |
4233 | }; | |
4234 | ||
4235 | static struct kobj_type slab_ktype = { | |
4236 | .sysfs_ops = &slab_sysfs_ops, | |
151c602f | 4237 | .release = kmem_cache_release |
81819f0f CL |
4238 | }; |
4239 | ||
4240 | static int uevent_filter(struct kset *kset, struct kobject *kobj) | |
4241 | { | |
4242 | struct kobj_type *ktype = get_ktype(kobj); | |
4243 | ||
4244 | if (ktype == &slab_ktype) | |
4245 | return 1; | |
4246 | return 0; | |
4247 | } | |
4248 | ||
4249 | static struct kset_uevent_ops slab_uevent_ops = { | |
4250 | .filter = uevent_filter, | |
4251 | }; | |
4252 | ||
27c3a314 | 4253 | static struct kset *slab_kset; |
81819f0f CL |
4254 | |
4255 | #define ID_STR_LENGTH 64 | |
4256 | ||
4257 | /* Create a unique string id for a slab cache: | |
6446faa2 CL |
4258 | * |
4259 | * Format :[flags-]size | |
81819f0f CL |
4260 | */ |
4261 | static char *create_unique_id(struct kmem_cache *s) | |
4262 | { | |
4263 | char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | |
4264 | char *p = name; | |
4265 | ||
4266 | BUG_ON(!name); | |
4267 | ||
4268 | *p++ = ':'; | |
4269 | /* | |
4270 | * First flags affecting slabcache operations. We will only | |
4271 | * get here for aliasable slabs so we do not need to support | |
4272 | * too many flags. The flags here must cover all flags that | |
4273 | * are matched during merging to guarantee that the id is | |
4274 | * unique. | |
4275 | */ | |
4276 | if (s->flags & SLAB_CACHE_DMA) | |
4277 | *p++ = 'd'; | |
4278 | if (s->flags & SLAB_RECLAIM_ACCOUNT) | |
4279 | *p++ = 'a'; | |
4280 | if (s->flags & SLAB_DEBUG_FREE) | |
4281 | *p++ = 'F'; | |
4282 | if (p != name + 1) | |
4283 | *p++ = '-'; | |
4284 | p += sprintf(p, "%07d", s->size); | |
4285 | BUG_ON(p > name + ID_STR_LENGTH - 1); | |
4286 | return name; | |
4287 | } | |
4288 | ||
4289 | static int sysfs_slab_add(struct kmem_cache *s) | |
4290 | { | |
4291 | int err; | |
4292 | const char *name; | |
4293 | int unmergeable; | |
4294 | ||
4295 | if (slab_state < SYSFS) | |
4296 | /* Defer until later */ | |
4297 | return 0; | |
4298 | ||
4299 | unmergeable = slab_unmergeable(s); | |
4300 | if (unmergeable) { | |
4301 | /* | |
4302 | * Slabcache can never be merged so we can use the name proper. | |
4303 | * This is typically the case for debug situations. In that | |
4304 | * case we can catch duplicate names easily. | |
4305 | */ | |
27c3a314 | 4306 | sysfs_remove_link(&slab_kset->kobj, s->name); |
81819f0f CL |
4307 | name = s->name; |
4308 | } else { | |
4309 | /* | |
4310 | * Create a unique name for the slab as a target | |
4311 | * for the symlinks. | |
4312 | */ | |
4313 | name = create_unique_id(s); | |
4314 | } | |
4315 | ||
27c3a314 | 4316 | s->kobj.kset = slab_kset; |
1eada11c GKH |
4317 | err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); |
4318 | if (err) { | |
4319 | kobject_put(&s->kobj); | |
81819f0f | 4320 | return err; |
1eada11c | 4321 | } |
81819f0f CL |
4322 | |
4323 | err = sysfs_create_group(&s->kobj, &slab_attr_group); | |
4324 | if (err) | |
4325 | return err; | |
4326 | kobject_uevent(&s->kobj, KOBJ_ADD); | |
4327 | if (!unmergeable) { | |
4328 | /* Setup first alias */ | |
4329 | sysfs_slab_alias(s, s->name); | |
4330 | kfree(name); | |
4331 | } | |
4332 | return 0; | |
4333 | } | |
4334 | ||
4335 | static void sysfs_slab_remove(struct kmem_cache *s) | |
4336 | { | |
4337 | kobject_uevent(&s->kobj, KOBJ_REMOVE); | |
4338 | kobject_del(&s->kobj); | |
151c602f | 4339 | kobject_put(&s->kobj); |
81819f0f CL |
4340 | } |
4341 | ||
4342 | /* | |
4343 | * Need to buffer aliases during bootup until sysfs becomes | |
4344 | * available lest we loose that information. | |
4345 | */ | |
4346 | struct saved_alias { | |
4347 | struct kmem_cache *s; | |
4348 | const char *name; | |
4349 | struct saved_alias *next; | |
4350 | }; | |
4351 | ||
5af328a5 | 4352 | static struct saved_alias *alias_list; |
81819f0f CL |
4353 | |
4354 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | |
4355 | { | |
4356 | struct saved_alias *al; | |
4357 | ||
4358 | if (slab_state == SYSFS) { | |
4359 | /* | |
4360 | * If we have a leftover link then remove it. | |
4361 | */ | |
27c3a314 GKH |
4362 | sysfs_remove_link(&slab_kset->kobj, name); |
4363 | return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | |
81819f0f CL |
4364 | } |
4365 | ||
4366 | al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | |
4367 | if (!al) | |
4368 | return -ENOMEM; | |
4369 | ||
4370 | al->s = s; | |
4371 | al->name = name; | |
4372 | al->next = alias_list; | |
4373 | alias_list = al; | |
4374 | return 0; | |
4375 | } | |
4376 | ||
4377 | static int __init slab_sysfs_init(void) | |
4378 | { | |
5b95a4ac | 4379 | struct kmem_cache *s; |
81819f0f CL |
4380 | int err; |
4381 | ||
0ff21e46 | 4382 | slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); |
27c3a314 | 4383 | if (!slab_kset) { |
81819f0f CL |
4384 | printk(KERN_ERR "Cannot register slab subsystem.\n"); |
4385 | return -ENOSYS; | |
4386 | } | |
4387 | ||
26a7bd03 CL |
4388 | slab_state = SYSFS; |
4389 | ||
5b95a4ac | 4390 | list_for_each_entry(s, &slab_caches, list) { |
26a7bd03 | 4391 | err = sysfs_slab_add(s); |
5d540fb7 CL |
4392 | if (err) |
4393 | printk(KERN_ERR "SLUB: Unable to add boot slab %s" | |
4394 | " to sysfs\n", s->name); | |
26a7bd03 | 4395 | } |
81819f0f CL |
4396 | |
4397 | while (alias_list) { | |
4398 | struct saved_alias *al = alias_list; | |
4399 | ||
4400 | alias_list = alias_list->next; | |
4401 | err = sysfs_slab_alias(al->s, al->name); | |
5d540fb7 CL |
4402 | if (err) |
4403 | printk(KERN_ERR "SLUB: Unable to add boot slab alias" | |
4404 | " %s to sysfs\n", s->name); | |
81819f0f CL |
4405 | kfree(al); |
4406 | } | |
4407 | ||
4408 | resiliency_test(); | |
4409 | return 0; | |
4410 | } | |
4411 | ||
4412 | __initcall(slab_sysfs_init); | |
81819f0f | 4413 | #endif |
57ed3eda PE |
4414 | |
4415 | /* | |
4416 | * The /proc/slabinfo ABI | |
4417 | */ | |
158a9624 LT |
4418 | #ifdef CONFIG_SLABINFO |
4419 | ||
0121c619 CL |
4420 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
4421 | size_t count, loff_t *ppos) | |
158a9624 LT |
4422 | { |
4423 | return -EINVAL; | |
4424 | } | |
4425 | ||
57ed3eda PE |
4426 | |
4427 | static void print_slabinfo_header(struct seq_file *m) | |
4428 | { | |
4429 | seq_puts(m, "slabinfo - version: 2.1\n"); | |
4430 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> " | |
4431 | "<objperslab> <pagesperslab>"); | |
4432 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | |
4433 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
4434 | seq_putc(m, '\n'); | |
4435 | } | |
4436 | ||
4437 | static void *s_start(struct seq_file *m, loff_t *pos) | |
4438 | { | |
4439 | loff_t n = *pos; | |
4440 | ||
4441 | down_read(&slub_lock); | |
4442 | if (!n) | |
4443 | print_slabinfo_header(m); | |
4444 | ||
4445 | return seq_list_start(&slab_caches, *pos); | |
4446 | } | |
4447 | ||
4448 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
4449 | { | |
4450 | return seq_list_next(p, &slab_caches, pos); | |
4451 | } | |
4452 | ||
4453 | static void s_stop(struct seq_file *m, void *p) | |
4454 | { | |
4455 | up_read(&slub_lock); | |
4456 | } | |
4457 | ||
4458 | static int s_show(struct seq_file *m, void *p) | |
4459 | { | |
4460 | unsigned long nr_partials = 0; | |
4461 | unsigned long nr_slabs = 0; | |
4462 | unsigned long nr_inuse = 0; | |
205ab99d CL |
4463 | unsigned long nr_objs = 0; |
4464 | unsigned long nr_free = 0; | |
57ed3eda PE |
4465 | struct kmem_cache *s; |
4466 | int node; | |
4467 | ||
4468 | s = list_entry(p, struct kmem_cache, list); | |
4469 | ||
4470 | for_each_online_node(node) { | |
4471 | struct kmem_cache_node *n = get_node(s, node); | |
4472 | ||
4473 | if (!n) | |
4474 | continue; | |
4475 | ||
4476 | nr_partials += n->nr_partial; | |
4477 | nr_slabs += atomic_long_read(&n->nr_slabs); | |
205ab99d CL |
4478 | nr_objs += atomic_long_read(&n->total_objects); |
4479 | nr_free += count_partial(n, count_free); | |
57ed3eda PE |
4480 | } |
4481 | ||
205ab99d | 4482 | nr_inuse = nr_objs - nr_free; |
57ed3eda PE |
4483 | |
4484 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, | |
834f3d11 CL |
4485 | nr_objs, s->size, oo_objects(s->oo), |
4486 | (1 << oo_order(s->oo))); | |
57ed3eda PE |
4487 | seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); |
4488 | seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, | |
4489 | 0UL); | |
4490 | seq_putc(m, '\n'); | |
4491 | return 0; | |
4492 | } | |
4493 | ||
4494 | const struct seq_operations slabinfo_op = { | |
4495 | .start = s_start, | |
4496 | .next = s_next, | |
4497 | .stop = s_stop, | |
4498 | .show = s_show, | |
4499 | }; | |
4500 | ||
158a9624 | 4501 | #endif /* CONFIG_SLABINFO */ |