]> Git Repo - linux.git/blame - mm/hugetlb.c
mm/hugetlb_vmemmap: fix race with speculative PFN walkers
[linux.git] / mm / hugetlb.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * Generic hugetlb support.
6d49e352 4 * (C) Nadia Yvette Chambers, April 2004
1da177e4 5 */
1da177e4
LT
6#include <linux/list.h>
7#include <linux/init.h>
1da177e4 8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
97ad1087 19#include <linux/memblock.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
bbe88753 22#include <linux/sched/mm.h>
63489f8e 23#include <linux/mmdebug.h>
174cd4b1 24#include <linux/sched/signal.h>
0fe6e20b 25#include <linux/rmap.h>
c6247f72 26#include <linux/string_helpers.h>
fd6a03ed
NH
27#include <linux/swap.h>
28#include <linux/swapops.h>
8382d914 29#include <linux/jhash.h>
98fa15f3 30#include <linux/numa.h>
c77c0a8a 31#include <linux/llist.h>
cf11e85f 32#include <linux/cma.h>
8cc5fcbb 33#include <linux/migrate.h>
f9317f77 34#include <linux/nospec.h>
662ce1dc 35#include <linux/delayacct.h>
b958d4d0 36#include <linux/memory.h>
af19487f 37#include <linux/mm_inline.h>
c6c21c31 38#include <linux/padata.h>
d6606683 39
63551ae0 40#include <asm/page.h>
ca15ca40 41#include <asm/pgalloc.h>
24669e58 42#include <asm/tlb.h>
63551ae0 43
24669e58 44#include <linux/io.h>
63551ae0 45#include <linux/hugetlb.h>
9dd540e2 46#include <linux/hugetlb_cgroup.h>
9a305230 47#include <linux/node.h>
ab5ac90a 48#include <linux/page_owner.h>
7835e98b 49#include "internal.h"
f41f2ed4 50#include "hugetlb_vmemmap.h"
1da177e4 51
c3f38a38 52int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
53unsigned int default_hstate_idx;
54struct hstate hstates[HUGE_MAX_HSTATE];
cf11e85f 55
dbda8fea 56#ifdef CONFIG_CMA
cf11e85f 57static struct cma *hugetlb_cma[MAX_NUMNODES];
38e719ab 58static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
2f6c57d6 59static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
a01f4390 60{
2f6c57d6 61 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
a01f4390
MK
62 1 << order);
63}
64#else
2f6c57d6 65static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
a01f4390
MK
66{
67 return false;
68}
dbda8fea
BS
69#endif
70static unsigned long hugetlb_cma_size __initdata;
cf11e85f 71
b78b27d0 72__initdata struct list_head huge_boot_pages[MAX_NUMNODES];
53ba51d2 73
e5ff2159
AK
74/* for command line parsing */
75static struct hstate * __initdata parsed_hstate;
76static unsigned long __initdata default_hstate_max_huge_pages;
9fee021d 77static bool __initdata parsed_valid_hugepagesz = true;
282f4214 78static bool __initdata parsed_default_hugepagesz;
b5389086 79static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
e5ff2159 80
3935baa9 81/*
31caf665
NH
82 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
83 * free_huge_pages, and surplus_huge_pages.
3935baa9 84 */
c3f38a38 85DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 86
8382d914
DB
87/*
88 * Serializes faults on the same logical page. This is used to
89 * prevent spurious OOMs when the hugepage pool is fully utilized.
90 */
91static int num_fault_mutexes;
c672c7f2 92struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 93
7ca02d0a
MK
94/* Forward declaration */
95static int hugetlb_acct_memory(struct hstate *h, long delta);
8d9bfb26
MK
96static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
97static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
ecfbd733 98static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
b30c14cd
JH
99static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
100 unsigned long start, unsigned long end);
bf491692 101static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
7ca02d0a 102
1d88433b 103static inline bool subpool_is_free(struct hugepage_subpool *spool)
90481622 104{
1d88433b
ML
105 if (spool->count)
106 return false;
107 if (spool->max_hpages != -1)
108 return spool->used_hpages == 0;
109 if (spool->min_hpages != -1)
110 return spool->rsv_hpages == spool->min_hpages;
111
112 return true;
113}
90481622 114
db71ef79
MK
115static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
116 unsigned long irq_flags)
1d88433b 117{
db71ef79 118 spin_unlock_irqrestore(&spool->lock, irq_flags);
90481622
DG
119
120 /* If no pages are used, and no other handles to the subpool
7c8de358 121 * remain, give up any reservations based on minimum size and
7ca02d0a 122 * free the subpool */
1d88433b 123 if (subpool_is_free(spool)) {
7ca02d0a
MK
124 if (spool->min_hpages != -1)
125 hugetlb_acct_memory(spool->hstate,
126 -spool->min_hpages);
90481622 127 kfree(spool);
7ca02d0a 128 }
90481622
DG
129}
130
7ca02d0a
MK
131struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
132 long min_hpages)
90481622
DG
133{
134 struct hugepage_subpool *spool;
135
c6a91820 136 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
137 if (!spool)
138 return NULL;
139
140 spin_lock_init(&spool->lock);
141 spool->count = 1;
7ca02d0a
MK
142 spool->max_hpages = max_hpages;
143 spool->hstate = h;
144 spool->min_hpages = min_hpages;
145
146 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
147 kfree(spool);
148 return NULL;
149 }
150 spool->rsv_hpages = min_hpages;
90481622
DG
151
152 return spool;
153}
154
155void hugepage_put_subpool(struct hugepage_subpool *spool)
156{
db71ef79
MK
157 unsigned long flags;
158
159 spin_lock_irqsave(&spool->lock, flags);
90481622
DG
160 BUG_ON(!spool->count);
161 spool->count--;
db71ef79 162 unlock_or_release_subpool(spool, flags);
90481622
DG
163}
164
1c5ecae3
MK
165/*
166 * Subpool accounting for allocating and reserving pages.
167 * Return -ENOMEM if there are not enough resources to satisfy the
9e7ee400 168 * request. Otherwise, return the number of pages by which the
1c5ecae3
MK
169 * global pools must be adjusted (upward). The returned value may
170 * only be different than the passed value (delta) in the case where
7c8de358 171 * a subpool minimum size must be maintained.
1c5ecae3
MK
172 */
173static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
174 long delta)
175{
1c5ecae3 176 long ret = delta;
90481622
DG
177
178 if (!spool)
1c5ecae3 179 return ret;
90481622 180
db71ef79 181 spin_lock_irq(&spool->lock);
1c5ecae3
MK
182
183 if (spool->max_hpages != -1) { /* maximum size accounting */
184 if ((spool->used_hpages + delta) <= spool->max_hpages)
185 spool->used_hpages += delta;
186 else {
187 ret = -ENOMEM;
188 goto unlock_ret;
189 }
90481622 190 }
90481622 191
09a95e29
MK
192 /* minimum size accounting */
193 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
194 if (delta > spool->rsv_hpages) {
195 /*
196 * Asking for more reserves than those already taken on
197 * behalf of subpool. Return difference.
198 */
199 ret = delta - spool->rsv_hpages;
200 spool->rsv_hpages = 0;
201 } else {
202 ret = 0; /* reserves already accounted for */
203 spool->rsv_hpages -= delta;
204 }
205 }
206
207unlock_ret:
db71ef79 208 spin_unlock_irq(&spool->lock);
90481622
DG
209 return ret;
210}
211
1c5ecae3
MK
212/*
213 * Subpool accounting for freeing and unreserving pages.
214 * Return the number of global page reservations that must be dropped.
215 * The return value may only be different than the passed value (delta)
216 * in the case where a subpool minimum size must be maintained.
217 */
218static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
219 long delta)
220{
1c5ecae3 221 long ret = delta;
db71ef79 222 unsigned long flags;
1c5ecae3 223
90481622 224 if (!spool)
1c5ecae3 225 return delta;
90481622 226
db71ef79 227 spin_lock_irqsave(&spool->lock, flags);
1c5ecae3
MK
228
229 if (spool->max_hpages != -1) /* maximum size accounting */
230 spool->used_hpages -= delta;
231
09a95e29
MK
232 /* minimum size accounting */
233 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
234 if (spool->rsv_hpages + delta <= spool->min_hpages)
235 ret = 0;
236 else
237 ret = spool->rsv_hpages + delta - spool->min_hpages;
238
239 spool->rsv_hpages += delta;
240 if (spool->rsv_hpages > spool->min_hpages)
241 spool->rsv_hpages = spool->min_hpages;
242 }
243
244 /*
245 * If hugetlbfs_put_super couldn't free spool due to an outstanding
246 * quota reference, free it now.
247 */
db71ef79 248 unlock_or_release_subpool(spool, flags);
1c5ecae3
MK
249
250 return ret;
90481622
DG
251}
252
253static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
254{
255 return HUGETLBFS_SB(inode->i_sb)->spool;
256}
257
258static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
259{
496ad9aa 260 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
261}
262
e700898f
MK
263/*
264 * hugetlb vma_lock helper routines
265 */
e700898f
MK
266void hugetlb_vma_lock_read(struct vm_area_struct *vma)
267{
268 if (__vma_shareable_lock(vma)) {
269 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
270
271 down_read(&vma_lock->rw_sema);
bf491692
RR
272 } else if (__vma_private_lock(vma)) {
273 struct resv_map *resv_map = vma_resv_map(vma);
274
275 down_read(&resv_map->rw_sema);
e700898f
MK
276 }
277}
278
279void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
280{
281 if (__vma_shareable_lock(vma)) {
282 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
283
284 up_read(&vma_lock->rw_sema);
bf491692
RR
285 } else if (__vma_private_lock(vma)) {
286 struct resv_map *resv_map = vma_resv_map(vma);
287
288 up_read(&resv_map->rw_sema);
e700898f
MK
289 }
290}
291
292void hugetlb_vma_lock_write(struct vm_area_struct *vma)
293{
294 if (__vma_shareable_lock(vma)) {
295 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
296
297 down_write(&vma_lock->rw_sema);
bf491692
RR
298 } else if (__vma_private_lock(vma)) {
299 struct resv_map *resv_map = vma_resv_map(vma);
300
301 down_write(&resv_map->rw_sema);
e700898f
MK
302 }
303}
304
305void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
306{
307 if (__vma_shareable_lock(vma)) {
308 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
309
310 up_write(&vma_lock->rw_sema);
bf491692
RR
311 } else if (__vma_private_lock(vma)) {
312 struct resv_map *resv_map = vma_resv_map(vma);
313
314 up_write(&resv_map->rw_sema);
e700898f
MK
315 }
316}
317
318int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
319{
e700898f 320
bf491692
RR
321 if (__vma_shareable_lock(vma)) {
322 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
e700898f 323
bf491692
RR
324 return down_write_trylock(&vma_lock->rw_sema);
325 } else if (__vma_private_lock(vma)) {
326 struct resv_map *resv_map = vma_resv_map(vma);
327
328 return down_write_trylock(&resv_map->rw_sema);
329 }
330
331 return 1;
e700898f
MK
332}
333
334void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
335{
336 if (__vma_shareable_lock(vma)) {
337 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
338
339 lockdep_assert_held(&vma_lock->rw_sema);
bf491692
RR
340 } else if (__vma_private_lock(vma)) {
341 struct resv_map *resv_map = vma_resv_map(vma);
342
343 lockdep_assert_held(&resv_map->rw_sema);
e700898f
MK
344 }
345}
346
347void hugetlb_vma_lock_release(struct kref *kref)
348{
349 struct hugetlb_vma_lock *vma_lock = container_of(kref,
350 struct hugetlb_vma_lock, refs);
351
352 kfree(vma_lock);
353}
354
355static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
356{
357 struct vm_area_struct *vma = vma_lock->vma;
358
359 /*
360 * vma_lock structure may or not be released as a result of put,
361 * it certainly will no longer be attached to vma so clear pointer.
362 * Semaphore synchronizes access to vma_lock->vma field.
363 */
364 vma_lock->vma = NULL;
365 vma->vm_private_data = NULL;
366 up_write(&vma_lock->rw_sema);
367 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
368}
369
370static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
371{
372 if (__vma_shareable_lock(vma)) {
373 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
374
375 __hugetlb_vma_unlock_write_put(vma_lock);
bf491692
RR
376 } else if (__vma_private_lock(vma)) {
377 struct resv_map *resv_map = vma_resv_map(vma);
378
379 /* no free for anon vmas, but still need to unlock */
380 up_write(&resv_map->rw_sema);
e700898f
MK
381 }
382}
383
384static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
385{
386 /*
387 * Only present in sharable vmas.
388 */
389 if (!vma || !__vma_shareable_lock(vma))
390 return;
391
392 if (vma->vm_private_data) {
393 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
394
395 down_write(&vma_lock->rw_sema);
396 __hugetlb_vma_unlock_write_put(vma_lock);
397 }
398}
399
400static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
401{
402 struct hugetlb_vma_lock *vma_lock;
403
404 /* Only establish in (flags) sharable vmas */
405 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
406 return;
407
408 /* Should never get here with non-NULL vm_private_data */
409 if (vma->vm_private_data)
410 return;
411
412 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
413 if (!vma_lock) {
414 /*
415 * If we can not allocate structure, then vma can not
416 * participate in pmd sharing. This is only a possible
417 * performance enhancement and memory saving issue.
418 * However, the lock is also used to synchronize page
419 * faults with truncation. If the lock is not present,
420 * unlikely races could leave pages in a file past i_size
421 * until the file is removed. Warn in the unlikely case of
422 * allocation failure.
423 */
424 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
425 return;
426 }
427
428 kref_init(&vma_lock->refs);
429 init_rwsem(&vma_lock->rw_sema);
430 vma_lock->vma = vma;
431 vma->vm_private_data = vma_lock;
432}
433
0db9d74e
MA
434/* Helper that removes a struct file_region from the resv_map cache and returns
435 * it for use.
436 */
437static struct file_region *
438get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
439{
3259914f 440 struct file_region *nrg;
0db9d74e
MA
441
442 VM_BUG_ON(resv->region_cache_count <= 0);
443
444 resv->region_cache_count--;
445 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
0db9d74e
MA
446 list_del(&nrg->link);
447
448 nrg->from = from;
449 nrg->to = to;
450
451 return nrg;
452}
453
075a61d0
MA
454static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
455 struct file_region *rg)
456{
457#ifdef CONFIG_CGROUP_HUGETLB
458 nrg->reservation_counter = rg->reservation_counter;
459 nrg->css = rg->css;
460 if (rg->css)
461 css_get(rg->css);
462#endif
463}
464
465/* Helper that records hugetlb_cgroup uncharge info. */
466static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
467 struct hstate *h,
468 struct resv_map *resv,
469 struct file_region *nrg)
470{
471#ifdef CONFIG_CGROUP_HUGETLB
472 if (h_cg) {
473 nrg->reservation_counter =
474 &h_cg->rsvd_hugepage[hstate_index(h)];
475 nrg->css = &h_cg->css;
d85aecf2
ML
476 /*
477 * The caller will hold exactly one h_cg->css reference for the
478 * whole contiguous reservation region. But this area might be
479 * scattered when there are already some file_regions reside in
480 * it. As a result, many file_regions may share only one css
481 * reference. In order to ensure that one file_region must hold
482 * exactly one h_cg->css reference, we should do css_get for
483 * each file_region and leave the reference held by caller
484 * untouched.
485 */
486 css_get(&h_cg->css);
075a61d0
MA
487 if (!resv->pages_per_hpage)
488 resv->pages_per_hpage = pages_per_huge_page(h);
489 /* pages_per_hpage should be the same for all entries in
490 * a resv_map.
491 */
492 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
493 } else {
494 nrg->reservation_counter = NULL;
495 nrg->css = NULL;
496 }
497#endif
498}
499
d85aecf2
ML
500static void put_uncharge_info(struct file_region *rg)
501{
502#ifdef CONFIG_CGROUP_HUGETLB
503 if (rg->css)
504 css_put(rg->css);
505#endif
506}
507
a9b3f867
MA
508static bool has_same_uncharge_info(struct file_region *rg,
509 struct file_region *org)
510{
511#ifdef CONFIG_CGROUP_HUGETLB
0739eb43 512 return rg->reservation_counter == org->reservation_counter &&
a9b3f867
MA
513 rg->css == org->css;
514
515#else
516 return true;
517#endif
518}
519
520static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
521{
3259914f 522 struct file_region *nrg, *prg;
a9b3f867
MA
523
524 prg = list_prev_entry(rg, link);
525 if (&prg->link != &resv->regions && prg->to == rg->from &&
526 has_same_uncharge_info(prg, rg)) {
527 prg->to = rg->to;
528
529 list_del(&rg->link);
d85aecf2 530 put_uncharge_info(rg);
a9b3f867
MA
531 kfree(rg);
532
7db5e7b6 533 rg = prg;
a9b3f867
MA
534 }
535
536 nrg = list_next_entry(rg, link);
537 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
538 has_same_uncharge_info(nrg, rg)) {
539 nrg->from = rg->from;
540
541 list_del(&rg->link);
d85aecf2 542 put_uncharge_info(rg);
a9b3f867 543 kfree(rg);
a9b3f867
MA
544 }
545}
546
2103cf9c 547static inline long
84448c8e 548hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
2103cf9c
PX
549 long to, struct hstate *h, struct hugetlb_cgroup *cg,
550 long *regions_needed)
551{
552 struct file_region *nrg;
553
554 if (!regions_needed) {
555 nrg = get_file_region_entry_from_cache(map, from, to);
556 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
84448c8e 557 list_add(&nrg->link, rg);
2103cf9c
PX
558 coalesce_file_region(map, nrg);
559 } else
560 *regions_needed += 1;
561
562 return to - from;
563}
564
972a3da3
WY
565/*
566 * Must be called with resv->lock held.
567 *
568 * Calling this with regions_needed != NULL will count the number of pages
569 * to be added but will not modify the linked list. And regions_needed will
570 * indicate the number of file_regions needed in the cache to carry out to add
571 * the regions for this range.
d75c6af9
MA
572 */
573static long add_reservation_in_range(struct resv_map *resv, long f, long t,
075a61d0 574 struct hugetlb_cgroup *h_cg,
972a3da3 575 struct hstate *h, long *regions_needed)
d75c6af9 576{
0db9d74e 577 long add = 0;
d75c6af9 578 struct list_head *head = &resv->regions;
0db9d74e 579 long last_accounted_offset = f;
84448c8e
JK
580 struct file_region *iter, *trg = NULL;
581 struct list_head *rg = NULL;
d75c6af9 582
0db9d74e
MA
583 if (regions_needed)
584 *regions_needed = 0;
d75c6af9 585
0db9d74e 586 /* In this loop, we essentially handle an entry for the range
84448c8e 587 * [last_accounted_offset, iter->from), at every iteration, with some
0db9d74e
MA
588 * bounds checking.
589 */
84448c8e 590 list_for_each_entry_safe(iter, trg, head, link) {
0db9d74e 591 /* Skip irrelevant regions that start before our range. */
84448c8e 592 if (iter->from < f) {
0db9d74e
MA
593 /* If this region ends after the last accounted offset,
594 * then we need to update last_accounted_offset.
595 */
84448c8e
JK
596 if (iter->to > last_accounted_offset)
597 last_accounted_offset = iter->to;
0db9d74e
MA
598 continue;
599 }
d75c6af9 600
0db9d74e
MA
601 /* When we find a region that starts beyond our range, we've
602 * finished.
603 */
84448c8e
JK
604 if (iter->from >= t) {
605 rg = iter->link.prev;
d75c6af9 606 break;
84448c8e 607 }
d75c6af9 608
84448c8e 609 /* Add an entry for last_accounted_offset -> iter->from, and
0db9d74e
MA
610 * update last_accounted_offset.
611 */
84448c8e
JK
612 if (iter->from > last_accounted_offset)
613 add += hugetlb_resv_map_add(resv, iter->link.prev,
2103cf9c 614 last_accounted_offset,
84448c8e 615 iter->from, h, h_cg,
2103cf9c 616 regions_needed);
0db9d74e 617
84448c8e 618 last_accounted_offset = iter->to;
0db9d74e
MA
619 }
620
621 /* Handle the case where our range extends beyond
622 * last_accounted_offset.
623 */
84448c8e
JK
624 if (!rg)
625 rg = head->prev;
2103cf9c
PX
626 if (last_accounted_offset < t)
627 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
628 t, h, h_cg, regions_needed);
0db9d74e 629
0db9d74e
MA
630 return add;
631}
632
633/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
634 */
635static int allocate_file_region_entries(struct resv_map *resv,
636 int regions_needed)
637 __must_hold(&resv->lock)
638{
34665341 639 LIST_HEAD(allocated_regions);
0db9d74e
MA
640 int to_allocate = 0, i = 0;
641 struct file_region *trg = NULL, *rg = NULL;
642
643 VM_BUG_ON(regions_needed < 0);
644
0db9d74e
MA
645 /*
646 * Check for sufficient descriptors in the cache to accommodate
647 * the number of in progress add operations plus regions_needed.
648 *
649 * This is a while loop because when we drop the lock, some other call
650 * to region_add or region_del may have consumed some region_entries,
651 * so we keep looping here until we finally have enough entries for
652 * (adds_in_progress + regions_needed).
653 */
654 while (resv->region_cache_count <
655 (resv->adds_in_progress + regions_needed)) {
656 to_allocate = resv->adds_in_progress + regions_needed -
657 resv->region_cache_count;
658
659 /* At this point, we should have enough entries in the cache
f0953a1b 660 * for all the existing adds_in_progress. We should only be
0db9d74e 661 * needing to allocate for regions_needed.
d75c6af9 662 */
0db9d74e
MA
663 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
664
665 spin_unlock(&resv->lock);
666 for (i = 0; i < to_allocate; i++) {
667 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
668 if (!trg)
669 goto out_of_memory;
670 list_add(&trg->link, &allocated_regions);
d75c6af9 671 }
d75c6af9 672
0db9d74e
MA
673 spin_lock(&resv->lock);
674
d3ec7b6e
WY
675 list_splice(&allocated_regions, &resv->region_cache);
676 resv->region_cache_count += to_allocate;
d75c6af9
MA
677 }
678
0db9d74e 679 return 0;
d75c6af9 680
0db9d74e
MA
681out_of_memory:
682 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
683 list_del(&rg->link);
684 kfree(rg);
685 }
686 return -ENOMEM;
d75c6af9
MA
687}
688
1dd308a7
MK
689/*
690 * Add the huge page range represented by [f, t) to the reserve
0db9d74e
MA
691 * map. Regions will be taken from the cache to fill in this range.
692 * Sufficient regions should exist in the cache due to the previous
693 * call to region_chg with the same range, but in some cases the cache will not
694 * have sufficient entries due to races with other code doing region_add or
695 * region_del. The extra needed entries will be allocated.
cf3ad20b 696 *
0db9d74e
MA
697 * regions_needed is the out value provided by a previous call to region_chg.
698 *
699 * Return the number of new huge pages added to the map. This number is greater
700 * than or equal to zero. If file_region entries needed to be allocated for
7c8de358 701 * this operation and we were not able to allocate, it returns -ENOMEM.
0db9d74e
MA
702 * region_add of regions of length 1 never allocate file_regions and cannot
703 * fail; region_chg will always allocate at least 1 entry and a region_add for
704 * 1 page will only require at most 1 entry.
1dd308a7 705 */
0db9d74e 706static long region_add(struct resv_map *resv, long f, long t,
075a61d0
MA
707 long in_regions_needed, struct hstate *h,
708 struct hugetlb_cgroup *h_cg)
96822904 709{
0db9d74e 710 long add = 0, actual_regions_needed = 0;
96822904 711
7b24d861 712 spin_lock(&resv->lock);
0db9d74e
MA
713retry:
714
715 /* Count how many regions are actually needed to execute this add. */
972a3da3
WY
716 add_reservation_in_range(resv, f, t, NULL, NULL,
717 &actual_regions_needed);
96822904 718
5e911373 719 /*
0db9d74e
MA
720 * Check for sufficient descriptors in the cache to accommodate
721 * this add operation. Note that actual_regions_needed may be greater
722 * than in_regions_needed, as the resv_map may have been modified since
723 * the region_chg call. In this case, we need to make sure that we
724 * allocate extra entries, such that we have enough for all the
725 * existing adds_in_progress, plus the excess needed for this
726 * operation.
5e911373 727 */
0db9d74e
MA
728 if (actual_regions_needed > in_regions_needed &&
729 resv->region_cache_count <
730 resv->adds_in_progress +
731 (actual_regions_needed - in_regions_needed)) {
732 /* region_add operation of range 1 should never need to
733 * allocate file_region entries.
734 */
735 VM_BUG_ON(t - f <= 1);
5e911373 736
0db9d74e
MA
737 if (allocate_file_region_entries(
738 resv, actual_regions_needed - in_regions_needed)) {
739 return -ENOMEM;
740 }
5e911373 741
0db9d74e 742 goto retry;
5e911373
MK
743 }
744
972a3da3 745 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
0db9d74e
MA
746
747 resv->adds_in_progress -= in_regions_needed;
cf3ad20b 748
7b24d861 749 spin_unlock(&resv->lock);
cf3ad20b 750 return add;
96822904
AW
751}
752
1dd308a7
MK
753/*
754 * Examine the existing reserve map and determine how many
755 * huge pages in the specified range [f, t) are NOT currently
756 * represented. This routine is called before a subsequent
757 * call to region_add that will actually modify the reserve
758 * map to add the specified range [f, t). region_chg does
759 * not change the number of huge pages represented by the
0db9d74e
MA
760 * map. A number of new file_region structures is added to the cache as a
761 * placeholder, for the subsequent region_add call to use. At least 1
762 * file_region structure is added.
763 *
764 * out_regions_needed is the number of regions added to the
765 * resv->adds_in_progress. This value needs to be provided to a follow up call
766 * to region_add or region_abort for proper accounting.
5e911373
MK
767 *
768 * Returns the number of huge pages that need to be added to the existing
769 * reservation map for the range [f, t). This number is greater or equal to
770 * zero. -ENOMEM is returned if a new file_region structure or cache entry
771 * is needed and can not be allocated.
1dd308a7 772 */
0db9d74e
MA
773static long region_chg(struct resv_map *resv, long f, long t,
774 long *out_regions_needed)
96822904 775{
96822904
AW
776 long chg = 0;
777
7b24d861 778 spin_lock(&resv->lock);
5e911373 779
972a3da3 780 /* Count how many hugepages in this range are NOT represented. */
075a61d0 781 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
972a3da3 782 out_regions_needed);
5e911373 783
0db9d74e
MA
784 if (*out_regions_needed == 0)
785 *out_regions_needed = 1;
5e911373 786
0db9d74e
MA
787 if (allocate_file_region_entries(resv, *out_regions_needed))
788 return -ENOMEM;
5e911373 789
0db9d74e 790 resv->adds_in_progress += *out_regions_needed;
7b24d861 791
7b24d861 792 spin_unlock(&resv->lock);
96822904
AW
793 return chg;
794}
795
5e911373
MK
796/*
797 * Abort the in progress add operation. The adds_in_progress field
798 * of the resv_map keeps track of the operations in progress between
799 * calls to region_chg and region_add. Operations are sometimes
800 * aborted after the call to region_chg. In such cases, region_abort
0db9d74e
MA
801 * is called to decrement the adds_in_progress counter. regions_needed
802 * is the value returned by the region_chg call, it is used to decrement
803 * the adds_in_progress counter.
5e911373
MK
804 *
805 * NOTE: The range arguments [f, t) are not needed or used in this
806 * routine. They are kept to make reading the calling code easier as
807 * arguments will match the associated region_chg call.
808 */
0db9d74e
MA
809static void region_abort(struct resv_map *resv, long f, long t,
810 long regions_needed)
5e911373
MK
811{
812 spin_lock(&resv->lock);
813 VM_BUG_ON(!resv->region_cache_count);
0db9d74e 814 resv->adds_in_progress -= regions_needed;
5e911373
MK
815 spin_unlock(&resv->lock);
816}
817
1dd308a7 818/*
feba16e2
MK
819 * Delete the specified range [f, t) from the reserve map. If the
820 * t parameter is LONG_MAX, this indicates that ALL regions after f
821 * should be deleted. Locate the regions which intersect [f, t)
822 * and either trim, delete or split the existing regions.
823 *
824 * Returns the number of huge pages deleted from the reserve map.
825 * In the normal case, the return value is zero or more. In the
826 * case where a region must be split, a new region descriptor must
827 * be allocated. If the allocation fails, -ENOMEM will be returned.
828 * NOTE: If the parameter t == LONG_MAX, then we will never split
829 * a region and possibly return -ENOMEM. Callers specifying
830 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 831 */
feba16e2 832static long region_del(struct resv_map *resv, long f, long t)
96822904 833{
1406ec9b 834 struct list_head *head = &resv->regions;
96822904 835 struct file_region *rg, *trg;
feba16e2
MK
836 struct file_region *nrg = NULL;
837 long del = 0;
96822904 838
feba16e2 839retry:
7b24d861 840 spin_lock(&resv->lock);
feba16e2 841 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
842 /*
843 * Skip regions before the range to be deleted. file_region
844 * ranges are normally of the form [from, to). However, there
845 * may be a "placeholder" entry in the map which is of the form
846 * (from, to) with from == to. Check for placeholder entries
847 * at the beginning of the range to be deleted.
848 */
849 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 850 continue;
dbe409e4 851
feba16e2 852 if (rg->from >= t)
96822904 853 break;
96822904 854
feba16e2
MK
855 if (f > rg->from && t < rg->to) { /* Must split region */
856 /*
857 * Check for an entry in the cache before dropping
858 * lock and attempting allocation.
859 */
860 if (!nrg &&
861 resv->region_cache_count > resv->adds_in_progress) {
862 nrg = list_first_entry(&resv->region_cache,
863 struct file_region,
864 link);
865 list_del(&nrg->link);
866 resv->region_cache_count--;
867 }
96822904 868
feba16e2
MK
869 if (!nrg) {
870 spin_unlock(&resv->lock);
871 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
872 if (!nrg)
873 return -ENOMEM;
874 goto retry;
875 }
876
877 del += t - f;
79aa925b 878 hugetlb_cgroup_uncharge_file_region(
d85aecf2 879 resv, rg, t - f, false);
feba16e2
MK
880
881 /* New entry for end of split region */
882 nrg->from = t;
883 nrg->to = rg->to;
075a61d0
MA
884
885 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
886
feba16e2
MK
887 INIT_LIST_HEAD(&nrg->link);
888
889 /* Original entry is trimmed */
890 rg->to = f;
891
892 list_add(&nrg->link, &rg->link);
893 nrg = NULL;
96822904 894 break;
feba16e2
MK
895 }
896
897 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
898 del += rg->to - rg->from;
075a61d0 899 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 900 rg->to - rg->from, true);
feba16e2
MK
901 list_del(&rg->link);
902 kfree(rg);
903 continue;
904 }
905
906 if (f <= rg->from) { /* Trim beginning of region */
075a61d0 907 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 908 t - rg->from, false);
075a61d0 909
79aa925b
MK
910 del += t - rg->from;
911 rg->from = t;
912 } else { /* Trim end of region */
075a61d0 913 hugetlb_cgroup_uncharge_file_region(resv, rg,
d85aecf2 914 rg->to - f, false);
79aa925b
MK
915
916 del += rg->to - f;
917 rg->to = f;
feba16e2 918 }
96822904 919 }
7b24d861 920
7b24d861 921 spin_unlock(&resv->lock);
feba16e2
MK
922 kfree(nrg);
923 return del;
96822904
AW
924}
925
b5cec28d
MK
926/*
927 * A rare out of memory error was encountered which prevented removal of
928 * the reserve map region for a page. The huge page itself was free'ed
929 * and removed from the page cache. This routine will adjust the subpool
930 * usage count, and the global reserve count if needed. By incrementing
931 * these counts, the reserve map entry which could not be deleted will
932 * appear as a "reserved" entry instead of simply dangling with incorrect
933 * counts.
934 */
72e2936c 935void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
936{
937 struct hugepage_subpool *spool = subpool_inode(inode);
938 long rsv_adjust;
da56388c 939 bool reserved = false;
b5cec28d
MK
940
941 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
da56388c 942 if (rsv_adjust > 0) {
b5cec28d
MK
943 struct hstate *h = hstate_inode(inode);
944
da56388c
ML
945 if (!hugetlb_acct_memory(h, 1))
946 reserved = true;
947 } else if (!rsv_adjust) {
948 reserved = true;
b5cec28d 949 }
da56388c
ML
950
951 if (!reserved)
952 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
b5cec28d
MK
953}
954
1dd308a7
MK
955/*
956 * Count and return the number of huge pages in the reserve map
957 * that intersect with the range [f, t).
958 */
1406ec9b 959static long region_count(struct resv_map *resv, long f, long t)
84afd99b 960{
1406ec9b 961 struct list_head *head = &resv->regions;
84afd99b
AW
962 struct file_region *rg;
963 long chg = 0;
964
7b24d861 965 spin_lock(&resv->lock);
84afd99b
AW
966 /* Locate each segment we overlap with, and count that overlap. */
967 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
968 long seg_from;
969 long seg_to;
84afd99b
AW
970
971 if (rg->to <= f)
972 continue;
973 if (rg->from >= t)
974 break;
975
976 seg_from = max(rg->from, f);
977 seg_to = min(rg->to, t);
978
979 chg += seg_to - seg_from;
980 }
7b24d861 981 spin_unlock(&resv->lock);
84afd99b
AW
982
983 return chg;
984}
985
e7c4b0bf
AW
986/*
987 * Convert the address within this vma to the page offset within
a08c7193 988 * the mapping, huge page units here.
e7c4b0bf 989 */
a5516438
AK
990static pgoff_t vma_hugecache_offset(struct hstate *h,
991 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 992{
a5516438
AK
993 return ((address - vma->vm_start) >> huge_page_shift(h)) +
994 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
995}
996
8cfd014e
MWO
997/**
998 * vma_kernel_pagesize - Page size granularity for this VMA.
999 * @vma: The user mapping.
1000 *
1001 * Folios in this VMA will be aligned to, and at least the size of the
1002 * number of bytes returned by this function.
1003 *
1004 * Return: The default size of the folios allocated when backing a VMA.
08fba699
MG
1005 */
1006unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1007{
05ea8860
DW
1008 if (vma->vm_ops && vma->vm_ops->pagesize)
1009 return vma->vm_ops->pagesize(vma);
1010 return PAGE_SIZE;
08fba699 1011}
f340ca0f 1012EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 1013
3340289d
MG
1014/*
1015 * Return the page size being used by the MMU to back a VMA. In the majority
1016 * of cases, the page size used by the kernel matches the MMU size. On
09135cc5
DW
1017 * architectures where it differs, an architecture-specific 'strong'
1018 * version of this symbol is required.
3340289d 1019 */
09135cc5 1020__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
3340289d
MG
1021{
1022 return vma_kernel_pagesize(vma);
1023}
3340289d 1024
84afd99b
AW
1025/*
1026 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1027 * bits of the reservation map pointer, which are always clear due to
1028 * alignment.
1029 */
1030#define HPAGE_RESV_OWNER (1UL << 0)
1031#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 1032#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 1033
a1e78772
MG
1034/*
1035 * These helpers are used to track how many pages are reserved for
1036 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1037 * is guaranteed to have their future faults succeed.
1038 *
8d9bfb26 1039 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
a1e78772
MG
1040 * the reserve counters are updated with the hugetlb_lock held. It is safe
1041 * to reset the VMA at fork() time as it is not in use yet and there is no
1042 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
1043 *
1044 * The private mapping reservation is represented in a subtly different
1045 * manner to a shared mapping. A shared mapping has a region map associated
1046 * with the underlying file, this region map represents the backing file
1047 * pages which have ever had a reservation assigned which this persists even
1048 * after the page is instantiated. A private mapping has a region map
1049 * associated with the original mmap which is attached to all VMAs which
1050 * reference it, this region map represents those offsets which have consumed
1051 * reservation ie. where pages have been instantiated.
a1e78772 1052 */
e7c4b0bf
AW
1053static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1054{
1055 return (unsigned long)vma->vm_private_data;
1056}
1057
1058static void set_vma_private_data(struct vm_area_struct *vma,
1059 unsigned long value)
1060{
1061 vma->vm_private_data = (void *)value;
1062}
1063
e9fe92ae
MA
1064static void
1065resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1066 struct hugetlb_cgroup *h_cg,
1067 struct hstate *h)
1068{
1069#ifdef CONFIG_CGROUP_HUGETLB
1070 if (!h_cg || !h) {
1071 resv_map->reservation_counter = NULL;
1072 resv_map->pages_per_hpage = 0;
1073 resv_map->css = NULL;
1074 } else {
1075 resv_map->reservation_counter =
1076 &h_cg->rsvd_hugepage[hstate_index(h)];
1077 resv_map->pages_per_hpage = pages_per_huge_page(h);
1078 resv_map->css = &h_cg->css;
1079 }
1080#endif
1081}
1082
9119a41e 1083struct resv_map *resv_map_alloc(void)
84afd99b
AW
1084{
1085 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
1086 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1087
1088 if (!resv_map || !rg) {
1089 kfree(resv_map);
1090 kfree(rg);
84afd99b 1091 return NULL;
5e911373 1092 }
84afd99b
AW
1093
1094 kref_init(&resv_map->refs);
7b24d861 1095 spin_lock_init(&resv_map->lock);
84afd99b 1096 INIT_LIST_HEAD(&resv_map->regions);
bf491692 1097 init_rwsem(&resv_map->rw_sema);
84afd99b 1098
5e911373 1099 resv_map->adds_in_progress = 0;
e9fe92ae
MA
1100 /*
1101 * Initialize these to 0. On shared mappings, 0's here indicate these
1102 * fields don't do cgroup accounting. On private mappings, these will be
1103 * re-initialized to the proper values, to indicate that hugetlb cgroup
1104 * reservations are to be un-charged from here.
1105 */
1106 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
5e911373
MK
1107
1108 INIT_LIST_HEAD(&resv_map->region_cache);
1109 list_add(&rg->link, &resv_map->region_cache);
1110 resv_map->region_cache_count = 1;
1111
84afd99b
AW
1112 return resv_map;
1113}
1114
9119a41e 1115void resv_map_release(struct kref *ref)
84afd99b
AW
1116{
1117 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
1118 struct list_head *head = &resv_map->region_cache;
1119 struct file_region *rg, *trg;
84afd99b
AW
1120
1121 /* Clear out any active regions before we release the map. */
feba16e2 1122 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
1123
1124 /* ... and any entries left in the cache */
1125 list_for_each_entry_safe(rg, trg, head, link) {
1126 list_del(&rg->link);
1127 kfree(rg);
1128 }
1129
1130 VM_BUG_ON(resv_map->adds_in_progress);
1131
84afd99b
AW
1132 kfree(resv_map);
1133}
1134
4e35f483
JK
1135static inline struct resv_map *inode_resv_map(struct inode *inode)
1136{
f27a5136
MK
1137 /*
1138 * At inode evict time, i_mapping may not point to the original
1139 * address space within the inode. This original address space
1140 * contains the pointer to the resv_map. So, always use the
1141 * address space embedded within the inode.
1142 * The VERY common case is inode->mapping == &inode->i_data but,
1143 * this may not be true for device special inodes.
1144 */
600f111e 1145 return (struct resv_map *)(&inode->i_data)->i_private_data;
4e35f483
JK
1146}
1147
84afd99b 1148static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 1149{
81d1b09c 1150 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
1151 if (vma->vm_flags & VM_MAYSHARE) {
1152 struct address_space *mapping = vma->vm_file->f_mapping;
1153 struct inode *inode = mapping->host;
1154
1155 return inode_resv_map(inode);
1156
1157 } else {
84afd99b
AW
1158 return (struct resv_map *)(get_vma_private_data(vma) &
1159 ~HPAGE_RESV_MASK);
4e35f483 1160 }
a1e78772
MG
1161}
1162
84afd99b 1163static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 1164{
81d1b09c
SL
1165 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1166 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 1167
92fe9dcb 1168 set_vma_private_data(vma, (unsigned long)map);
04f2cbe3
MG
1169}
1170
1171static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1172{
81d1b09c
SL
1173 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1174 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
1175
1176 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
1177}
1178
1179static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1180{
81d1b09c 1181 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
1182
1183 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
1184}
1185
187da0f8
MK
1186bool __vma_private_lock(struct vm_area_struct *vma)
1187{
1188 return !(vma->vm_flags & VM_MAYSHARE) &&
1189 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1190 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1191}
1192
8d9bfb26 1193void hugetlb_dup_vma_private(struct vm_area_struct *vma)
a1e78772 1194{
81d1b09c 1195 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
8d9bfb26
MK
1196 /*
1197 * Clear vm_private_data
612b8a31
MK
1198 * - For shared mappings this is a per-vma semaphore that may be
1199 * allocated in a subsequent call to hugetlb_vm_op_open.
1200 * Before clearing, make sure pointer is not associated with vma
1201 * as this will leak the structure. This is the case when called
1202 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1203 * been called to allocate a new structure.
8d9bfb26
MK
1204 * - For MAP_PRIVATE mappings, this is the reserve map which does
1205 * not apply to children. Faults generated by the children are
1206 * not guaranteed to succeed, even if read-only.
8d9bfb26 1207 */
612b8a31
MK
1208 if (vma->vm_flags & VM_MAYSHARE) {
1209 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1210
1211 if (vma_lock && vma_lock->vma != vma)
1212 vma->vm_private_data = NULL;
1213 } else
1214 vma->vm_private_data = NULL;
a1e78772
MG
1215}
1216
550a7d60
MA
1217/*
1218 * Reset and decrement one ref on hugepage private reservation.
8651a137 1219 * Called with mm->mmap_lock writer semaphore held.
550a7d60
MA
1220 * This function should be only used by move_vma() and operate on
1221 * same sized vma. It should never come here with last ref on the
1222 * reservation.
1223 */
1224void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1225{
1226 /*
1227 * Clear the old hugetlb private page reservation.
1228 * It has already been transferred to new_vma.
1229 *
1230 * During a mremap() operation of a hugetlb vma we call move_vma()
1231 * which copies vma into new_vma and unmaps vma. After the copy
1232 * operation both new_vma and vma share a reference to the resv_map
1233 * struct, and at that point vma is about to be unmapped. We don't
1234 * want to return the reservation to the pool at unmap of vma because
1235 * the reservation still lives on in new_vma, so simply decrement the
1236 * ref here and remove the resv_map reference from this vma.
1237 */
1238 struct resv_map *reservations = vma_resv_map(vma);
1239
afe041c2
BQM
1240 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1241 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
550a7d60 1242 kref_put(&reservations->refs, resv_map_release);
afe041c2 1243 }
550a7d60 1244
8d9bfb26 1245 hugetlb_dup_vma_private(vma);
550a7d60
MA
1246}
1247
a1e78772 1248/* Returns true if the VMA has associated reserve pages */
559ec2f8 1249static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 1250{
af0ed73e
JK
1251 if (vma->vm_flags & VM_NORESERVE) {
1252 /*
1253 * This address is already reserved by other process(chg == 0),
1254 * so, we should decrement reserved count. Without decrementing,
1255 * reserve count remains after releasing inode, because this
1256 * allocated page will go into page cache and is regarded as
1257 * coming from reserved pool in releasing step. Currently, we
1258 * don't have any other solution to deal with this situation
1259 * properly, so add work-around here.
1260 */
1261 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 1262 return true;
af0ed73e 1263 else
559ec2f8 1264 return false;
af0ed73e 1265 }
a63884e9
JK
1266
1267 /* Shared mappings always use reserves */
1fb1b0e9
MK
1268 if (vma->vm_flags & VM_MAYSHARE) {
1269 /*
1270 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1271 * be a region map for all pages. The only situation where
1272 * there is no region map is if a hole was punched via
7c8de358 1273 * fallocate. In this case, there really are no reserves to
1fb1b0e9
MK
1274 * use. This situation is indicated if chg != 0.
1275 */
1276 if (chg)
1277 return false;
1278 else
1279 return true;
1280 }
a63884e9
JK
1281
1282 /*
1283 * Only the process that called mmap() has reserves for
1284 * private mappings.
1285 */
67961f9d
MK
1286 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1287 /*
1288 * Like the shared case above, a hole punch or truncate
1289 * could have been performed on the private mapping.
1290 * Examine the value of chg to determine if reserves
1291 * actually exist or were previously consumed.
1292 * Very Subtle - The value of chg comes from a previous
1293 * call to vma_needs_reserves(). The reserve map for
1294 * private mappings has different (opposite) semantics
1295 * than that of shared mappings. vma_needs_reserves()
1296 * has already taken this difference in semantics into
1297 * account. Therefore, the meaning of chg is the same
1298 * as in the shared case above. Code could easily be
1299 * combined, but keeping it separate draws attention to
1300 * subtle differences.
1301 */
1302 if (chg)
1303 return false;
1304 else
1305 return true;
1306 }
a63884e9 1307
559ec2f8 1308 return false;
a1e78772
MG
1309}
1310
240d67a8 1311static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1da177e4 1312{
240d67a8 1313 int nid = folio_nid(folio);
9487ca60
MK
1314
1315 lockdep_assert_held(&hugetlb_lock);
240d67a8 1316 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
b65a4eda 1317
240d67a8 1318 list_move(&folio->lru, &h->hugepage_freelists[nid]);
a5516438
AK
1319 h->free_huge_pages++;
1320 h->free_huge_pages_node[nid]++;
240d67a8 1321 folio_set_hugetlb_freed(folio);
1da177e4
LT
1322}
1323
a36f1e90
SK
1324static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1325 int nid)
bf50bab2 1326{
a36f1e90 1327 struct folio *folio;
1a08ae36 1328 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
bbe88753 1329
9487ca60 1330 lockdep_assert_held(&hugetlb_lock);
a36f1e90
SK
1331 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1332 if (pin && !folio_is_longterm_pinnable(folio))
bbe88753 1333 continue;
bf50bab2 1334
a36f1e90 1335 if (folio_test_hwpoison(folio))
6664bfc8
WY
1336 continue;
1337
a36f1e90
SK
1338 list_move(&folio->lru, &h->hugepage_activelist);
1339 folio_ref_unfreeze(folio, 1);
1340 folio_clear_hugetlb_freed(folio);
6664bfc8
WY
1341 h->free_huge_pages--;
1342 h->free_huge_pages_node[nid]--;
a36f1e90 1343 return folio;
bbe88753
JK
1344 }
1345
6664bfc8 1346 return NULL;
bf50bab2
NH
1347}
1348
a36f1e90
SK
1349static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1350 int nid, nodemask_t *nmask)
94310cbc 1351{
3e59fcb0
MH
1352 unsigned int cpuset_mems_cookie;
1353 struct zonelist *zonelist;
1354 struct zone *zone;
1355 struct zoneref *z;
98fa15f3 1356 int node = NUMA_NO_NODE;
94310cbc 1357
3e59fcb0
MH
1358 zonelist = node_zonelist(nid, gfp_mask);
1359
1360retry_cpuset:
1361 cpuset_mems_cookie = read_mems_allowed_begin();
1362 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
a36f1e90 1363 struct folio *folio;
3e59fcb0
MH
1364
1365 if (!cpuset_zone_allowed(zone, gfp_mask))
1366 continue;
1367 /*
1368 * no need to ask again on the same node. Pool is node rather than
1369 * zone aware
1370 */
1371 if (zone_to_nid(zone) == node)
1372 continue;
1373 node = zone_to_nid(zone);
94310cbc 1374
a36f1e90
SK
1375 folio = dequeue_hugetlb_folio_node_exact(h, node);
1376 if (folio)
1377 return folio;
94310cbc 1378 }
3e59fcb0
MH
1379 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1380 goto retry_cpuset;
1381
94310cbc
AK
1382 return NULL;
1383}
1384
8346d69d
XH
1385static unsigned long available_huge_pages(struct hstate *h)
1386{
1387 return h->free_huge_pages - h->resv_huge_pages;
1388}
1389
ff7d853b 1390static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
a5516438 1391 struct vm_area_struct *vma,
af0ed73e
JK
1392 unsigned long address, int avoid_reserve,
1393 long chg)
1da177e4 1394{
a36f1e90 1395 struct folio *folio = NULL;
480eccf9 1396 struct mempolicy *mpol;
04ec6264 1397 gfp_t gfp_mask;
3e59fcb0 1398 nodemask_t *nodemask;
04ec6264 1399 int nid;
1da177e4 1400
a1e78772
MG
1401 /*
1402 * A child process with MAP_PRIVATE mappings created by their parent
1403 * have no page reserves. This check ensures that reservations are
1404 * not "stolen". The child may still get SIGKILLed
1405 */
8346d69d 1406 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
c0ff7453 1407 goto err;
a1e78772 1408
04f2cbe3 1409 /* If reserves cannot be used, ensure enough pages are in the pool */
8346d69d 1410 if (avoid_reserve && !available_huge_pages(h))
6eab04a8 1411 goto err;
04f2cbe3 1412
04ec6264
VB
1413 gfp_mask = htlb_alloc_mask(h);
1414 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
cfcaa66f
BW
1415
1416 if (mpol_is_preferred_many(mpol)) {
a36f1e90
SK
1417 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1418 nid, nodemask);
cfcaa66f
BW
1419
1420 /* Fallback to all nodes if page==NULL */
1421 nodemask = NULL;
1422 }
1423
a36f1e90
SK
1424 if (!folio)
1425 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1426 nid, nodemask);
cfcaa66f 1427
a36f1e90
SK
1428 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1429 folio_set_hugetlb_restore_reserve(folio);
3e59fcb0 1430 h->resv_huge_pages--;
1da177e4 1431 }
cc9a6c87 1432
52cd3b07 1433 mpol_cond_put(mpol);
ff7d853b 1434 return folio;
cc9a6c87
MG
1435
1436err:
cc9a6c87 1437 return NULL;
1da177e4
LT
1438}
1439
1cac6f2c
LC
1440/*
1441 * common helper functions for hstate_next_node_to_{alloc|free}.
1442 * We may have allocated or freed a huge page based on a different
1443 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1444 * be outside of *nodes_allowed. Ensure that we use an allowed
1445 * node for alloc or free.
1446 */
1447static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1448{
0edaf86c 1449 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
1450 VM_BUG_ON(nid >= MAX_NUMNODES);
1451
1452 return nid;
1453}
1454
1455static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1456{
1457 if (!node_isset(nid, *nodes_allowed))
1458 nid = next_node_allowed(nid, nodes_allowed);
1459 return nid;
1460}
1461
1462/*
1463 * returns the previously saved node ["this node"] from which to
1464 * allocate a persistent huge page for the pool and advance the
1465 * next node from which to allocate, handling wrap at end of node
1466 * mask.
1467 */
2e73ff23 1468static int hstate_next_node_to_alloc(int *next_node,
1cac6f2c
LC
1469 nodemask_t *nodes_allowed)
1470{
1471 int nid;
1472
1473 VM_BUG_ON(!nodes_allowed);
1474
2e73ff23
GL
1475 nid = get_valid_node_allowed(*next_node, nodes_allowed);
1476 *next_node = next_node_allowed(nid, nodes_allowed);
1cac6f2c
LC
1477
1478 return nid;
1479}
1480
1481/*
d5b43e96 1482 * helper for remove_pool_hugetlb_folio() - return the previously saved
1cac6f2c
LC
1483 * node ["this node"] from which to free a huge page. Advance the
1484 * next node id whether or not we find a free huge page to free so
1485 * that the next attempt to free addresses the next node.
1486 */
1487static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1488{
1489 int nid;
1490
1491 VM_BUG_ON(!nodes_allowed);
1492
1493 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1494 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1495
1496 return nid;
1497}
1498
2e73ff23 1499#define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \
1cac6f2c
LC
1500 for (nr_nodes = nodes_weight(*mask); \
1501 nr_nodes > 0 && \
2e73ff23 1502 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \
1cac6f2c
LC
1503 nr_nodes--)
1504
1505#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1506 for (nr_nodes = nodes_weight(*mask); \
1507 nr_nodes > 0 && \
1508 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1509 nr_nodes--)
1510
8531fc6f 1511/* used to demote non-gigantic_huge pages as well */
911565b8 1512static void __destroy_compound_gigantic_folio(struct folio *folio,
34d9e35b 1513 unsigned int order, bool demote)
944d9fec
LC
1514{
1515 int i;
1516 int nr_pages = 1 << order;
14455eab 1517 struct page *p;
944d9fec 1518
46f27228 1519 atomic_set(&folio->_entire_mapcount, 0);
05c5323b 1520 atomic_set(&folio->_large_mapcount, 0);
94688e8e 1521 atomic_set(&folio->_pincount, 0);
47e29d32 1522
14455eab 1523 for (i = 1; i < nr_pages; i++) {
911565b8 1524 p = folio_page(folio, i);
6c141973 1525 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
a01f4390 1526 p->mapping = NULL;
1d798ca3 1527 clear_compound_head(p);
34d9e35b
MK
1528 if (!demote)
1529 set_page_refcounted(p);
944d9fec
LC
1530 }
1531
911565b8 1532 __folio_clear_head(folio);
944d9fec
LC
1533}
1534
911565b8 1535static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
8531fc6f
MK
1536 unsigned int order)
1537{
911565b8 1538 __destroy_compound_gigantic_folio(folio, order, true);
8531fc6f
MK
1539}
1540
1541#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
911565b8 1542static void destroy_compound_gigantic_folio(struct folio *folio,
34d9e35b
MK
1543 unsigned int order)
1544{
911565b8 1545 __destroy_compound_gigantic_folio(folio, order, false);
34d9e35b
MK
1546}
1547
7f325a8d 1548static void free_gigantic_folio(struct folio *folio, unsigned int order)
944d9fec 1549{
cf11e85f
RG
1550 /*
1551 * If the page isn't allocated using the cma allocator,
1552 * cma_release() returns false.
1553 */
dbda8fea 1554#ifdef CONFIG_CMA
7f325a8d
SK
1555 int nid = folio_nid(folio);
1556
1557 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
cf11e85f 1558 return;
dbda8fea 1559#endif
cf11e85f 1560
7f325a8d 1561 free_contig_range(folio_pfn(folio), 1 << order);
944d9fec
LC
1562}
1563
4eb0716e 1564#ifdef CONFIG_CONTIG_ALLOC
19fc1a7e 1565static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
d9cc948f 1566 int nid, nodemask_t *nodemask)
944d9fec 1567{
19fc1a7e 1568 struct page *page;
04adbc3f 1569 unsigned long nr_pages = pages_per_huge_page(h);
953f064a
LX
1570 if (nid == NUMA_NO_NODE)
1571 nid = numa_mem_id();
944d9fec 1572
dbda8fea
BS
1573#ifdef CONFIG_CMA
1574 {
cf11e85f
RG
1575 int node;
1576
953f064a
LX
1577 if (hugetlb_cma[nid]) {
1578 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1579 huge_page_order(h), true);
cf11e85f 1580 if (page)
19fc1a7e 1581 return page_folio(page);
cf11e85f 1582 }
953f064a
LX
1583
1584 if (!(gfp_mask & __GFP_THISNODE)) {
1585 for_each_node_mask(node, *nodemask) {
1586 if (node == nid || !hugetlb_cma[node])
1587 continue;
1588
1589 page = cma_alloc(hugetlb_cma[node], nr_pages,
1590 huge_page_order(h), true);
1591 if (page)
19fc1a7e 1592 return page_folio(page);
953f064a
LX
1593 }
1594 }
cf11e85f 1595 }
dbda8fea 1596#endif
cf11e85f 1597
19fc1a7e
SK
1598 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1599 return page ? page_folio(page) : NULL;
944d9fec
LC
1600}
1601
4eb0716e 1602#else /* !CONFIG_CONTIG_ALLOC */
19fc1a7e 1603static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1604 int nid, nodemask_t *nodemask)
1605{
1606 return NULL;
1607}
1608#endif /* CONFIG_CONTIG_ALLOC */
944d9fec 1609
e1073d1e 1610#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
19fc1a7e 1611static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
4eb0716e
AG
1612 int nid, nodemask_t *nodemask)
1613{
1614 return NULL;
1615}
7f325a8d
SK
1616static inline void free_gigantic_folio(struct folio *folio,
1617 unsigned int order) { }
911565b8 1618static inline void destroy_compound_gigantic_folio(struct folio *folio,
d00181b9 1619 unsigned int order) { }
944d9fec
LC
1620#endif
1621
6eb4e88a 1622/*
32c87719 1623 * Remove hugetlb folio from lists.
42a346b4
MWO
1624 * If vmemmap exists for the folio, clear the hugetlb flag so that the
1625 * folio appears as just a compound page. Otherwise, wait until after
1626 * allocating vmemmap to clear the flag.
34d9e35b 1627 *
6eb4e88a
MK
1628 * Must be called with hugetlb lock held.
1629 */
bd225530
YZ
1630static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1631 bool adjust_surplus)
6eb4e88a 1632{
cfd5082b 1633 int nid = folio_nid(folio);
6eb4e88a 1634
f074732d
SK
1635 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1636 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
6eb4e88a 1637
9487ca60 1638 lockdep_assert_held(&hugetlb_lock);
6eb4e88a
MK
1639 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1640 return;
1641
cfd5082b 1642 list_del(&folio->lru);
6eb4e88a 1643
cfd5082b 1644 if (folio_test_hugetlb_freed(folio)) {
bd225530 1645 folio_clear_hugetlb_freed(folio);
6eb4e88a
MK
1646 h->free_huge_pages--;
1647 h->free_huge_pages_node[nid]--;
1648 }
1649 if (adjust_surplus) {
1650 h->surplus_huge_pages--;
1651 h->surplus_huge_pages_node[nid]--;
1652 }
1653
e32d20c0 1654 /*
42a346b4 1655 * We can only clear the hugetlb flag after allocating vmemmap
32c87719
MK
1656 * pages. Otherwise, someone (memory error handling) may try to write
1657 * to tail struct pages.
1658 */
1659 if (!folio_test_hugetlb_vmemmap_optimized(folio))
42a346b4 1660 __folio_clear_hugetlb(folio);
32c87719 1661
6eb4e88a
MK
1662 h->nr_huge_pages--;
1663 h->nr_huge_pages_node[nid]--;
1664}
1665
2f6c57d6 1666static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
ad2fa371
MS
1667 bool adjust_surplus)
1668{
2f6c57d6 1669 int nid = folio_nid(folio);
ad2fa371 1670
2f6c57d6 1671 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
ad2fa371
MS
1672
1673 lockdep_assert_held(&hugetlb_lock);
1674
2f6c57d6 1675 INIT_LIST_HEAD(&folio->lru);
ad2fa371
MS
1676 h->nr_huge_pages++;
1677 h->nr_huge_pages_node[nid]++;
1678
1679 if (adjust_surplus) {
1680 h->surplus_huge_pages++;
1681 h->surplus_huge_pages_node[nid]++;
1682 }
1683
d99e3140 1684 __folio_set_hugetlb(folio);
2f6c57d6 1685 folio_change_private(folio, NULL);
a9e1eab2 1686 /*
2f6c57d6
SK
1687 * We have to set hugetlb_vmemmap_optimized again as above
1688 * folio_change_private(folio, NULL) cleared it.
a9e1eab2 1689 */
2f6c57d6 1690 folio_set_hugetlb_vmemmap_optimized(folio);
ad2fa371 1691
51718e25 1692 arch_clear_hugetlb_flags(folio);
240d67a8 1693 enqueue_hugetlb_folio(h, folio);
ad2fa371
MS
1694}
1695
6f6956cf
SK
1696static void __update_and_free_hugetlb_folio(struct hstate *h,
1697 struct folio *folio)
6af2acb6 1698{
42a346b4 1699 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
a5516438 1700
4eb0716e 1701 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
944d9fec 1702 return;
18229df5 1703
161df60e
NH
1704 /*
1705 * If we don't know which subpages are hwpoisoned, we can't free
1706 * the hugepage, so it's leaked intentionally.
1707 */
7f325a8d 1708 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
161df60e
NH
1709 return;
1710
d8f5f7e4 1711 /*
42a346b4 1712 * If folio is not vmemmap optimized (!clear_flag), then the folio
c5ad3233 1713 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
d8f5f7e4
MK
1714 * can only be passed hugetlb pages and will BUG otherwise.
1715 */
42a346b4 1716 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
ad2fa371
MS
1717 spin_lock_irq(&hugetlb_lock);
1718 /*
1719 * If we cannot allocate vmemmap pages, just refuse to free the
1720 * page and put the page back on the hugetlb free list and treat
1721 * as a surplus page.
1722 */
7f325a8d 1723 add_hugetlb_folio(h, folio, true);
ad2fa371
MS
1724 spin_unlock_irq(&hugetlb_lock);
1725 return;
1726 }
1727
161df60e
NH
1728 /*
1729 * Move PageHWPoison flag from head page to the raw error pages,
1730 * which makes any healthy subpages reusable.
1731 */
911565b8 1732 if (unlikely(folio_test_hwpoison(folio)))
2ff6cece 1733 folio_clear_hugetlb_hwpoison(folio);
161df60e 1734
32c87719
MK
1735 /*
1736 * If vmemmap pages were allocated above, then we need to clear the
42a346b4 1737 * hugetlb flag under the hugetlb lock.
32c87719 1738 */
52ccdde1 1739 if (folio_test_hugetlb(folio)) {
32c87719 1740 spin_lock_irq(&hugetlb_lock);
42a346b4 1741 __folio_clear_hugetlb(folio);
32c87719
MK
1742 spin_unlock_irq(&hugetlb_lock);
1743 }
1744
bd225530
YZ
1745 folio_ref_unfreeze(folio, 1);
1746
a01f4390
MK
1747 /*
1748 * Non-gigantic pages demoted from CMA allocated gigantic pages
7f325a8d 1749 * need to be given back to CMA in free_gigantic_folio.
a01f4390
MK
1750 */
1751 if (hstate_is_gigantic(h) ||
2f6c57d6 1752 hugetlb_cma_folio(folio, huge_page_order(h))) {
911565b8 1753 destroy_compound_gigantic_folio(folio, huge_page_order(h));
7f325a8d 1754 free_gigantic_folio(folio, huge_page_order(h));
944d9fec 1755 } else {
b7b098cf
MWO
1756 INIT_LIST_HEAD(&folio->_deferred_list);
1757 folio_put(folio);
944d9fec 1758 }
6af2acb6
AL
1759}
1760
b65d4adb 1761/*
d6ef19e2 1762 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
b65d4adb
MS
1763 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1764 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1765 * the vmemmap pages.
1766 *
1767 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1768 * freed and frees them one-by-one. As the page->mapping pointer is going
1769 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1770 * structure of a lockless linked list of huge pages to be freed.
1771 */
1772static LLIST_HEAD(hpage_freelist);
1773
1774static void free_hpage_workfn(struct work_struct *work)
1775{
1776 struct llist_node *node;
1777
1778 node = llist_del_all(&hpage_freelist);
1779
1780 while (node) {
3ec145f9 1781 struct folio *folio;
b65d4adb
MS
1782 struct hstate *h;
1783
3ec145f9
MWO
1784 folio = container_of((struct address_space **)node,
1785 struct folio, mapping);
b65d4adb 1786 node = node->next;
3ec145f9 1787 folio->mapping = NULL;
b65d4adb 1788 /*
affd26b1
SK
1789 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1790 * folio_hstate() is going to trigger because a previous call to
9c5ccf2d
MWO
1791 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1792 * not use folio_hstate() directly.
b65d4adb 1793 */
3ec145f9 1794 h = size_to_hstate(folio_size(folio));
b65d4adb 1795
3ec145f9 1796 __update_and_free_hugetlb_folio(h, folio);
b65d4adb
MS
1797
1798 cond_resched();
1799 }
1800}
1801static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1802
1803static inline void flush_free_hpage_work(struct hstate *h)
1804{
6213834c 1805 if (hugetlb_vmemmap_optimizable(h))
b65d4adb
MS
1806 flush_work(&free_hpage_work);
1807}
1808
d6ef19e2 1809static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
b65d4adb
MS
1810 bool atomic)
1811{
d6ef19e2 1812 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
6f6956cf 1813 __update_and_free_hugetlb_folio(h, folio);
b65d4adb
MS
1814 return;
1815 }
1816
1817 /*
1818 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1819 *
1820 * Only call schedule_work() if hpage_freelist is previously
1821 * empty. Otherwise, schedule_work() had been called but the workfn
1822 * hasn't retrieved the list yet.
1823 */
d6ef19e2 1824 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
b65d4adb
MS
1825 schedule_work(&free_hpage_work);
1826}
1827
cfb8c750
MK
1828static void bulk_vmemmap_restore_error(struct hstate *h,
1829 struct list_head *folio_list,
1830 struct list_head *non_hvo_folios)
10c6ec49 1831{
04bbfd84 1832 struct folio *folio, *t_folio;
10c6ec49 1833
cfb8c750
MK
1834 if (!list_empty(non_hvo_folios)) {
1835 /*
1836 * Free any restored hugetlb pages so that restore of the
1837 * entire list can be retried.
1838 * The idea is that in the common case of ENOMEM errors freeing
1839 * hugetlb pages with vmemmap we will free up memory so that we
1840 * can allocate vmemmap for more hugetlb pages.
1841 */
1842 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1843 list_del(&folio->lru);
1844 spin_lock_irq(&hugetlb_lock);
42a346b4 1845 __folio_clear_hugetlb(folio);
cfb8c750
MK
1846 spin_unlock_irq(&hugetlb_lock);
1847 update_and_free_hugetlb_folio(h, folio, false);
1848 cond_resched();
1849 }
1850 } else {
1851 /*
1852 * In the case where there are no folios which can be
1853 * immediately freed, we loop through the list trying to restore
1854 * vmemmap individually in the hope that someone elsewhere may
1855 * have done something to cause success (such as freeing some
1856 * memory). If unable to restore a hugetlb page, the hugetlb
1857 * page is made a surplus page and removed from the list.
1858 * If are able to restore vmemmap and free one hugetlb page, we
1859 * quit processing the list to retry the bulk operation.
1860 */
1861 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
c5ad3233 1862 if (hugetlb_vmemmap_restore_folio(h, folio)) {
cfb8c750 1863 list_del(&folio->lru);
d2cf88c2
MK
1864 spin_lock_irq(&hugetlb_lock);
1865 add_hugetlb_folio(h, folio, true);
1866 spin_unlock_irq(&hugetlb_lock);
cfb8c750
MK
1867 } else {
1868 list_del(&folio->lru);
1869 spin_lock_irq(&hugetlb_lock);
42a346b4 1870 __folio_clear_hugetlb(folio);
cfb8c750
MK
1871 spin_unlock_irq(&hugetlb_lock);
1872 update_and_free_hugetlb_folio(h, folio, false);
1873 cond_resched();
1874 break;
1875 }
d2cf88c2 1876 }
cfb8c750
MK
1877}
1878
1879static void update_and_free_pages_bulk(struct hstate *h,
1880 struct list_head *folio_list)
1881{
1882 long ret;
1883 struct folio *folio, *t_folio;
1884 LIST_HEAD(non_hvo_folios);
d2cf88c2
MK
1885
1886 /*
cfb8c750
MK
1887 * First allocate required vmemmmap (if necessary) for all folios.
1888 * Carefully handle errors and free up any available hugetlb pages
1889 * in an effort to make forward progress.
d2cf88c2 1890 */
cfb8c750
MK
1891retry:
1892 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1893 if (ret < 0) {
1894 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1895 goto retry;
1896 }
1897
1898 /*
1899 * At this point, list should be empty, ret should be >= 0 and there
1900 * should only be pages on the non_hvo_folios list.
1901 * Do note that the non_hvo_folios list could be empty.
1902 * Without HVO enabled, ret will be 0 and there is no need to call
42a346b4 1903 * __folio_clear_hugetlb as this was done previously.
cfb8c750
MK
1904 */
1905 VM_WARN_ON(!list_empty(folio_list));
1906 VM_WARN_ON(ret < 0);
1907 if (!list_empty(&non_hvo_folios) && ret) {
d2cf88c2 1908 spin_lock_irq(&hugetlb_lock);
cfb8c750 1909 list_for_each_entry(folio, &non_hvo_folios, lru)
42a346b4 1910 __folio_clear_hugetlb(folio);
d2cf88c2
MK
1911 spin_unlock_irq(&hugetlb_lock);
1912 }
1913
cfb8c750 1914 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
d6ef19e2 1915 update_and_free_hugetlb_folio(h, folio, false);
10c6ec49
MK
1916 cond_resched();
1917 }
1918}
1919
e5ff2159
AK
1920struct hstate *size_to_hstate(unsigned long size)
1921{
1922 struct hstate *h;
1923
1924 for_each_hstate(h) {
1925 if (huge_page_size(h) == size)
1926 return h;
1927 }
1928 return NULL;
1929}
1930
454a00c4 1931void free_huge_folio(struct folio *folio)
27a85ef1 1932{
a5516438
AK
1933 /*
1934 * Can't pass hstate in here because it is called from the
42a346b4 1935 * generic mm code.
a5516438 1936 */
0356c4b9
SK
1937 struct hstate *h = folio_hstate(folio);
1938 int nid = folio_nid(folio);
1939 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
07443a85 1940 bool restore_reserve;
db71ef79 1941 unsigned long flags;
27a85ef1 1942
0356c4b9
SK
1943 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1944 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
8ace22bc 1945
0356c4b9
SK
1946 hugetlb_set_folio_subpool(folio, NULL);
1947 if (folio_test_anon(folio))
1948 __ClearPageAnonExclusive(&folio->page);
1949 folio->mapping = NULL;
1950 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1951 folio_clear_hugetlb_restore_reserve(folio);
27a85ef1 1952
1c5ecae3 1953 /*
d6995da3 1954 * If HPageRestoreReserve was set on page, page allocation consumed a
0919e1b6
MK
1955 * reservation. If the page was associated with a subpool, there
1956 * would have been a page reserved in the subpool before allocation
1957 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
6c26d310 1958 * reservation, do not call hugepage_subpool_put_pages() as this will
0919e1b6 1959 * remove the reserved page from the subpool.
1c5ecae3 1960 */
0919e1b6
MK
1961 if (!restore_reserve) {
1962 /*
1963 * A return code of zero implies that the subpool will be
1964 * under its minimum size if the reservation is not restored
1965 * after page is free. Therefore, force restore_reserve
1966 * operation.
1967 */
1968 if (hugepage_subpool_put_pages(spool, 1) == 0)
1969 restore_reserve = true;
1970 }
1c5ecae3 1971
db71ef79 1972 spin_lock_irqsave(&hugetlb_lock, flags);
0356c4b9 1973 folio_clear_hugetlb_migratable(folio);
d4ab0316
SK
1974 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1975 pages_per_huge_page(h), folio);
1976 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1977 pages_per_huge_page(h), folio);
8cba9576 1978 mem_cgroup_uncharge(folio);
07443a85
JK
1979 if (restore_reserve)
1980 h->resv_huge_pages++;
1981
0356c4b9 1982 if (folio_test_hugetlb_temporary(folio)) {
cfd5082b 1983 remove_hugetlb_folio(h, folio, false);
db71ef79 1984 spin_unlock_irqrestore(&hugetlb_lock, flags);
d6ef19e2 1985 update_and_free_hugetlb_folio(h, folio, true);
ab5ac90a 1986 } else if (h->surplus_huge_pages_node[nid]) {
0edaecfa 1987 /* remove the page from active list */
cfd5082b 1988 remove_hugetlb_folio(h, folio, true);
db71ef79 1989 spin_unlock_irqrestore(&hugetlb_lock, flags);
d6ef19e2 1990 update_and_free_hugetlb_folio(h, folio, true);
7893d1d5 1991 } else {
51718e25 1992 arch_clear_hugetlb_flags(folio);
240d67a8 1993 enqueue_hugetlb_folio(h, folio);
db71ef79 1994 spin_unlock_irqrestore(&hugetlb_lock, flags);
c77c0a8a 1995 }
c77c0a8a
WL
1996}
1997
d3d99fcc
OS
1998/*
1999 * Must be called with the hugetlb lock held
2000 */
2001static void __prep_account_new_huge_page(struct hstate *h, int nid)
2002{
2003 lockdep_assert_held(&hugetlb_lock);
2004 h->nr_huge_pages++;
2005 h->nr_huge_pages_node[nid]++;
2006}
2007
d67e32f2 2008static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
b7ba30c6 2009{
d99e3140 2010 __folio_set_hugetlb(folio);
de656ed3 2011 INIT_LIST_HEAD(&folio->lru);
de656ed3
SK
2012 hugetlb_set_folio_subpool(folio, NULL);
2013 set_hugetlb_cgroup(folio, NULL);
2014 set_hugetlb_cgroup_rsvd(folio, NULL);
d3d99fcc
OS
2015}
2016
d67e32f2
MK
2017static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
2018{
2019 init_new_hugetlb_folio(h, folio);
c5ad3233 2020 hugetlb_vmemmap_optimize_folio(h, folio);
d67e32f2
MK
2021}
2022
d1c60955 2023static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
d3d99fcc 2024{
de656ed3 2025 __prep_new_hugetlb_folio(h, folio);
db71ef79 2026 spin_lock_irq(&hugetlb_lock);
d3d99fcc 2027 __prep_account_new_huge_page(h, nid);
db71ef79 2028 spin_unlock_irq(&hugetlb_lock);
b7ba30c6
AK
2029}
2030
d1c60955
SK
2031static bool __prep_compound_gigantic_folio(struct folio *folio,
2032 unsigned int order, bool demote)
20a0307c 2033{
7118fc29 2034 int i, j;
20a0307c 2035 int nr_pages = 1 << order;
14455eab 2036 struct page *p;
20a0307c 2037
d1c60955 2038 __folio_clear_reserved(folio);
2b21624f 2039 for (i = 0; i < nr_pages; i++) {
d1c60955 2040 p = folio_page(folio, i);
14455eab 2041
ef5a22be
AA
2042 /*
2043 * For gigantic hugepages allocated through bootmem at
2044 * boot, it's safer to be consistent with the not-gigantic
2045 * hugepages and clear the PG_reserved bit from all tail pages
7c8de358 2046 * too. Otherwise drivers using get_user_pages() to access tail
ef5a22be
AA
2047 * pages may get the reference counting wrong if they see
2048 * PG_reserved set on a tail page (despite the head page not
2049 * having PG_reserved set). Enforcing this consistency between
2050 * head and tail pages allows drivers to optimize away a check
2051 * on the head page when they need know if put_page() is needed
2052 * after get_user_pages().
2053 */
7fb0728a
MK
2054 if (i != 0) /* head page cleared above */
2055 __ClearPageReserved(p);
7118fc29
MK
2056 /*
2057 * Subtle and very unlikely
2058 *
2059 * Gigantic 'page allocators' such as memblock or cma will
2060 * return a set of pages with each page ref counted. We need
2061 * to turn this set of pages into a compound page with tail
2062 * page ref counts set to zero. Code such as speculative page
2063 * cache adding could take a ref on a 'to be' tail page.
2064 * We need to respect any increased ref count, and only set
2065 * the ref count to zero if count is currently 1. If count
416d85ed
MK
2066 * is not 1, we return an error. An error return indicates
2067 * the set of pages can not be converted to a gigantic page.
2068 * The caller who allocated the pages should then discard the
2069 * pages using the appropriate free interface.
34d9e35b
MK
2070 *
2071 * In the case of demote, the ref count will be zero.
7118fc29 2072 */
34d9e35b
MK
2073 if (!demote) {
2074 if (!page_ref_freeze(p, 1)) {
2075 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2076 goto out_error;
2077 }
2078 } else {
2079 VM_BUG_ON_PAGE(page_count(p), p);
7118fc29 2080 }
2b21624f 2081 if (i != 0)
d1c60955 2082 set_compound_head(p, &folio->page);
20a0307c 2083 }
e3b7bf97 2084 __folio_set_head(folio);
42a346b4 2085 /* we rely on prep_new_hugetlb_folio to set the hugetlb flag */
e3b7bf97 2086 folio_set_order(folio, order);
46f27228 2087 atomic_set(&folio->_entire_mapcount, -1);
05c5323b 2088 atomic_set(&folio->_large_mapcount, -1);
94688e8e 2089 atomic_set(&folio->_pincount, 0);
7118fc29
MK
2090 return true;
2091
2092out_error:
2b21624f
MK
2093 /* undo page modifications made above */
2094 for (j = 0; j < i; j++) {
d1c60955 2095 p = folio_page(folio, j);
2b21624f
MK
2096 if (j != 0)
2097 clear_compound_head(p);
7118fc29
MK
2098 set_page_refcounted(p);
2099 }
2100 /* need to clear PG_reserved on remaining tail pages */
14455eab 2101 for (; j < nr_pages; j++) {
d1c60955 2102 p = folio_page(folio, j);
7118fc29 2103 __ClearPageReserved(p);
14455eab 2104 }
7118fc29 2105 return false;
20a0307c
WF
2106}
2107
d1c60955
SK
2108static bool prep_compound_gigantic_folio(struct folio *folio,
2109 unsigned int order)
34d9e35b 2110{
d1c60955 2111 return __prep_compound_gigantic_folio(folio, order, false);
34d9e35b
MK
2112}
2113
d1c60955 2114static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
8531fc6f
MK
2115 unsigned int order)
2116{
d1c60955 2117 return __prep_compound_gigantic_folio(folio, order, true);
8531fc6f
MK
2118}
2119
c0d0381a
MK
2120/*
2121 * Find and lock address space (mapping) in write mode.
2122 *
6e8cda4c 2123 * Upon entry, the folio is locked which means that folio_mapping() is
336bf30e
MK
2124 * stable. Due to locking order, we can only trylock_write. If we can
2125 * not get the lock, simply return NULL to caller.
c0d0381a 2126 */
6e8cda4c 2127struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
c0d0381a 2128{
6e8cda4c 2129 struct address_space *mapping = folio_mapping(folio);
c0d0381a 2130
c0d0381a
MK
2131 if (!mapping)
2132 return mapping;
2133
c0d0381a
MK
2134 if (i_mmap_trylock_write(mapping))
2135 return mapping;
2136
336bf30e 2137 return NULL;
c0d0381a
MK
2138}
2139
19fc1a7e 2140static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
f60858f9
MK
2141 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2142 nodemask_t *node_alloc_noretry)
1da177e4 2143{
af0fb9df 2144 int order = huge_page_order(h);
f6a8dd98 2145 struct folio *folio;
f60858f9 2146 bool alloc_try_hard = true;
2b21624f 2147 bool retry = true;
f96efd58 2148
f60858f9 2149 /*
f6a8dd98
MWO
2150 * By default we always try hard to allocate the folio with
2151 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in
f60858f9
MK
2152 * a loop (to adjust global huge page counts) and previous allocation
2153 * failed, do not continue to try hard on the same node. Use the
2154 * node_alloc_noretry bitmap to manage this state information.
2155 */
2156 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2157 alloc_try_hard = false;
2158 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2159 if (alloc_try_hard)
2160 gfp_mask |= __GFP_RETRY_MAYFAIL;
af0fb9df
MH
2161 if (nid == NUMA_NO_NODE)
2162 nid = numa_mem_id();
2b21624f 2163retry:
f6a8dd98 2164 folio = __folio_alloc(gfp_mask, order, nid, nmask);
2b21624f 2165
f6a8dd98
MWO
2166 if (folio && !folio_ref_freeze(folio, 1)) {
2167 folio_put(folio);
2b21624f
MK
2168 if (retry) { /* retry once */
2169 retry = false;
2170 goto retry;
2171 }
2172 /* WOW! twice in a row. */
f6a8dd98
MWO
2173 pr_warn("HugeTLB unexpected inflated folio ref count\n");
2174 folio = NULL;
2b21624f
MK
2175 }
2176
f60858f9 2177 /*
f6a8dd98
MWO
2178 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
2179 * folio this indicates an overall state change. Clear bit so
2180 * that we resume normal 'try hard' allocations.
f60858f9 2181 */
f6a8dd98 2182 if (node_alloc_noretry && folio && !alloc_try_hard)
f60858f9
MK
2183 node_clear(nid, *node_alloc_noretry);
2184
2185 /*
f6a8dd98 2186 * If we tried hard to get a folio but failed, set bit so that
f60858f9
MK
2187 * subsequent attempts will not try as hard until there is an
2188 * overall state change.
2189 */
f6a8dd98 2190 if (node_alloc_noretry && !folio && alloc_try_hard)
f60858f9
MK
2191 node_set(nid, *node_alloc_noretry);
2192
f6a8dd98 2193 if (!folio) {
19fc1a7e
SK
2194 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2195 return NULL;
2196 }
2197
2198 __count_vm_event(HTLB_BUDDY_PGALLOC);
f6a8dd98 2199 return folio;
63b4613c
NA
2200}
2201
d67e32f2
MK
2202static struct folio *__alloc_fresh_hugetlb_folio(struct hstate *h,
2203 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2204 nodemask_t *node_alloc_noretry)
0c397dae 2205{
7f325a8d 2206 struct folio *folio;
7118fc29 2207 bool retry = false;
0c397dae 2208
7118fc29 2209retry:
0c397dae 2210 if (hstate_is_gigantic(h))
19fc1a7e 2211 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
0c397dae 2212 else
19fc1a7e 2213 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
f60858f9 2214 nid, nmask, node_alloc_noretry);
19fc1a7e 2215 if (!folio)
0c397dae 2216 return NULL;
d67e32f2 2217
7118fc29 2218 if (hstate_is_gigantic(h)) {
d1c60955 2219 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
7118fc29
MK
2220 /*
2221 * Rare failure to convert pages to compound page.
2222 * Free pages and try again - ONCE!
2223 */
7f325a8d 2224 free_gigantic_folio(folio, huge_page_order(h));
7118fc29
MK
2225 if (!retry) {
2226 retry = true;
2227 goto retry;
2228 }
7118fc29
MK
2229 return NULL;
2230 }
2231 }
0c397dae 2232
19fc1a7e 2233 return folio;
0c397dae
MH
2234}
2235
d67e32f2
MK
2236static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2237 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2238 nodemask_t *node_alloc_noretry)
2239{
2240 struct folio *folio;
2241
2242 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2243 node_alloc_noretry);
2244 if (folio)
2245 init_new_hugetlb_folio(h, folio);
2246 return folio;
2247}
2248
af0fb9df 2249/*
d67e32f2
MK
2250 * Common helper to allocate a fresh hugetlb page. All specific allocators
2251 * should use this function to get new hugetlb pages
2252 *
2253 * Note that returned page is 'frozen': ref count of head page and all tail
2254 * pages is zero.
af0fb9df 2255 */
d67e32f2
MK
2256static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2257 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2258 nodemask_t *node_alloc_noretry)
b2261026 2259{
19fc1a7e 2260 struct folio *folio;
d67e32f2
MK
2261
2262 folio = __alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask,
2263 node_alloc_noretry);
2264 if (!folio)
2265 return NULL;
2266
2267 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2268 return folio;
2269}
2270
2271static void prep_and_add_allocated_folios(struct hstate *h,
2272 struct list_head *folio_list)
2273{
2274 unsigned long flags;
2275 struct folio *folio, *tmp_f;
2276
79359d6d
MK
2277 /* Send list for bulk vmemmap optimization processing */
2278 hugetlb_vmemmap_optimize_folios(h, folio_list);
2279
d67e32f2
MK
2280 /* Add all new pool pages to free lists in one lock cycle */
2281 spin_lock_irqsave(&hugetlb_lock, flags);
2282 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2283 __prep_account_new_huge_page(h, folio_nid(folio));
2284 enqueue_hugetlb_folio(h, folio);
2285 }
2286 spin_unlock_irqrestore(&hugetlb_lock, flags);
2287}
2288
2289/*
2290 * Allocates a fresh hugetlb page in a node interleaved manner. The page
2291 * will later be added to the appropriate hugetlb pool.
2292 */
2293static struct folio *alloc_pool_huge_folio(struct hstate *h,
2294 nodemask_t *nodes_allowed,
2e73ff23
GL
2295 nodemask_t *node_alloc_noretry,
2296 int *next_node)
d67e32f2 2297{
af0fb9df 2298 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
d67e32f2 2299 int nr_nodes, node;
b2261026 2300
2e73ff23 2301 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
d67e32f2
MK
2302 struct folio *folio;
2303
2304 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
19fc1a7e 2305 nodes_allowed, node_alloc_noretry);
d67e32f2
MK
2306 if (folio)
2307 return folio;
b2261026
JK
2308 }
2309
d67e32f2 2310 return NULL;
b2261026
JK
2311}
2312
e8c5c824 2313/*
10c6ec49
MK
2314 * Remove huge page from pool from next node to free. Attempt to keep
2315 * persistent huge pages more or less balanced over allowed nodes.
2316 * This routine only 'removes' the hugetlb page. The caller must make
2317 * an additional call to free the page to low level allocators.
e8c5c824
LS
2318 * Called with hugetlb_lock locked.
2319 */
d5b43e96
MWO
2320static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2321 nodemask_t *nodes_allowed, bool acct_surplus)
e8c5c824 2322{
b2261026 2323 int nr_nodes, node;
04bbfd84 2324 struct folio *folio = NULL;
e8c5c824 2325
9487ca60 2326 lockdep_assert_held(&hugetlb_lock);
b2261026 2327 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
2328 /*
2329 * If we're returning unused surplus pages, only examine
2330 * nodes with surplus pages.
2331 */
b2261026
JK
2332 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2333 !list_empty(&h->hugepage_freelists[node])) {
04bbfd84
MWO
2334 folio = list_entry(h->hugepage_freelists[node].next,
2335 struct folio, lru);
cfd5082b 2336 remove_hugetlb_folio(h, folio, acct_surplus);
9a76db09 2337 break;
e8c5c824 2338 }
b2261026 2339 }
e8c5c824 2340
d5b43e96 2341 return folio;
e8c5c824
LS
2342}
2343
c8721bbb 2344/*
54fa49b2
SK
2345 * Dissolve a given free hugetlb folio into free buddy pages. This function
2346 * does nothing for in-use hugetlb folios and non-hugetlb folios.
faf53def
NH
2347 * This function returns values like below:
2348 *
ad2fa371
MS
2349 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2350 * when the system is under memory pressure and the feature of
2351 * freeing unused vmemmap pages associated with each hugetlb page
2352 * is enabled.
2353 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2354 * (allocated or reserved.)
2355 * 0: successfully dissolved free hugepages or the page is not a
2356 * hugepage (considered as already dissolved)
c8721bbb 2357 */
54fa49b2 2358int dissolve_free_hugetlb_folio(struct folio *folio)
c8721bbb 2359{
6bc9b564 2360 int rc = -EBUSY;
082d5b6b 2361
7ffddd49 2362retry:
faf53def 2363 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1a7cdab5 2364 if (!folio_test_hugetlb(folio))
faf53def
NH
2365 return 0;
2366
db71ef79 2367 spin_lock_irq(&hugetlb_lock);
1a7cdab5 2368 if (!folio_test_hugetlb(folio)) {
faf53def
NH
2369 rc = 0;
2370 goto out;
2371 }
2372
1a7cdab5
SK
2373 if (!folio_ref_count(folio)) {
2374 struct hstate *h = folio_hstate(folio);
8346d69d 2375 if (!available_huge_pages(h))
082d5b6b 2376 goto out;
7ffddd49
MS
2377
2378 /*
2379 * We should make sure that the page is already on the free list
2380 * when it is dissolved.
2381 */
1a7cdab5 2382 if (unlikely(!folio_test_hugetlb_freed(folio))) {
db71ef79 2383 spin_unlock_irq(&hugetlb_lock);
7ffddd49
MS
2384 cond_resched();
2385
2386 /*
2387 * Theoretically, we should return -EBUSY when we
2388 * encounter this race. In fact, we have a chance
2389 * to successfully dissolve the page if we do a
2390 * retry. Because the race window is quite small.
2391 * If we seize this opportunity, it is an optimization
2392 * for increasing the success rate of dissolving page.
2393 */
2394 goto retry;
2395 }
2396
cfd5082b 2397 remove_hugetlb_folio(h, folio, false);
c1470b33 2398 h->max_huge_pages--;
db71ef79 2399 spin_unlock_irq(&hugetlb_lock);
ad2fa371
MS
2400
2401 /*
d6ef19e2
SK
2402 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2403 * before freeing the page. update_and_free_hugtlb_folio will fail to
ad2fa371
MS
2404 * free the page if it can not allocate required vmemmap. We
2405 * need to adjust max_huge_pages if the page is not freed.
2406 * Attempt to allocate vmemmmap here so that we can take
2407 * appropriate action on failure.
30a89adf
MK
2408 *
2409 * The folio_test_hugetlb check here is because
2410 * remove_hugetlb_folio will clear hugetlb folio flag for
2411 * non-vmemmap optimized hugetlb folios.
ad2fa371 2412 */
30a89adf 2413 if (folio_test_hugetlb(folio)) {
c5ad3233 2414 rc = hugetlb_vmemmap_restore_folio(h, folio);
30a89adf
MK
2415 if (rc) {
2416 spin_lock_irq(&hugetlb_lock);
2417 add_hugetlb_folio(h, folio, false);
2418 h->max_huge_pages++;
2419 goto out;
2420 }
2421 } else
2422 rc = 0;
ad2fa371 2423
30a89adf 2424 update_and_free_hugetlb_folio(h, folio, false);
ad2fa371 2425 return rc;
c8721bbb 2426 }
082d5b6b 2427out:
db71ef79 2428 spin_unlock_irq(&hugetlb_lock);
082d5b6b 2429 return rc;
c8721bbb
NH
2430}
2431
2432/*
2433 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2434 * make specified memory blocks removable from the system.
2247bb33
GS
2435 * Note that this will dissolve a free gigantic hugepage completely, if any
2436 * part of it lies within the given range.
54fa49b2
SK
2437 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2438 * free hugetlb folios that were dissolved before that error are lost.
c8721bbb 2439 */
d199483c 2440int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 2441{
c8721bbb 2442 unsigned long pfn;
54fa49b2 2443 struct folio *folio;
082d5b6b 2444 int rc = 0;
dc2628f3
MS
2445 unsigned int order;
2446 struct hstate *h;
c8721bbb 2447
d0177639 2448 if (!hugepages_supported())
082d5b6b 2449 return rc;
d0177639 2450
dc2628f3
MS
2451 order = huge_page_order(&default_hstate);
2452 for_each_hstate(h)
2453 order = min(order, huge_page_order(h));
2454
2455 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
54fa49b2
SK
2456 folio = pfn_folio(pfn);
2457 rc = dissolve_free_hugetlb_folio(folio);
faf53def
NH
2458 if (rc)
2459 break;
eb03aa00 2460 }
082d5b6b
GS
2461
2462 return rc;
c8721bbb
NH
2463}
2464
ab5ac90a
MH
2465/*
2466 * Allocates a fresh surplus page from the page allocator.
2467 */
3a740e8b
SK
2468static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2469 gfp_t gfp_mask, int nid, nodemask_t *nmask)
7893d1d5 2470{
19fc1a7e 2471 struct folio *folio = NULL;
7893d1d5 2472
bae7f4ae 2473 if (hstate_is_gigantic(h))
aa888a74
AK
2474 return NULL;
2475
db71ef79 2476 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2477 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2478 goto out_unlock;
db71ef79 2479 spin_unlock_irq(&hugetlb_lock);
d1c3fb1f 2480
19fc1a7e
SK
2481 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2482 if (!folio)
0c397dae 2483 return NULL;
d1c3fb1f 2484
db71ef79 2485 spin_lock_irq(&hugetlb_lock);
9980d744
MH
2486 /*
2487 * We could have raced with the pool size change.
2488 * Double check that and simply deallocate the new page
2489 * if we would end up overcommiting the surpluses. Abuse
454a00c4 2490 * temporary page to workaround the nasty free_huge_folio
9980d744
MH
2491 * codeflow
2492 */
2493 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
19fc1a7e 2494 folio_set_hugetlb_temporary(folio);
db71ef79 2495 spin_unlock_irq(&hugetlb_lock);
454a00c4 2496 free_huge_folio(folio);
2bf753e6 2497 return NULL;
7893d1d5 2498 }
9980d744 2499
b65a4eda 2500 h->surplus_huge_pages++;
19fc1a7e 2501 h->surplus_huge_pages_node[folio_nid(folio)]++;
b65a4eda 2502
9980d744 2503out_unlock:
db71ef79 2504 spin_unlock_irq(&hugetlb_lock);
7893d1d5 2505
3a740e8b 2506 return folio;
7893d1d5
AL
2507}
2508
e37d3e83 2509static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
9a4e9f3b 2510 int nid, nodemask_t *nmask)
ab5ac90a 2511{
19fc1a7e 2512 struct folio *folio;
ab5ac90a
MH
2513
2514 if (hstate_is_gigantic(h))
2515 return NULL;
2516
19fc1a7e
SK
2517 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2518 if (!folio)
ab5ac90a
MH
2519 return NULL;
2520
2b21624f 2521 /* fresh huge pages are frozen */
19fc1a7e 2522 folio_ref_unfreeze(folio, 1);
ab5ac90a
MH
2523 /*
2524 * We do not account these pages as surplus because they are only
2525 * temporary and will be released properly on the last reference
2526 */
19fc1a7e 2527 folio_set_hugetlb_temporary(folio);
ab5ac90a 2528
e37d3e83 2529 return folio;
ab5ac90a
MH
2530}
2531
099730d6
DH
2532/*
2533 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2534 */
e0ec90ee 2535static
ff7d853b 2536struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
099730d6
DH
2537 struct vm_area_struct *vma, unsigned long addr)
2538{
3a740e8b 2539 struct folio *folio = NULL;
aaf14e40
MH
2540 struct mempolicy *mpol;
2541 gfp_t gfp_mask = htlb_alloc_mask(h);
2542 int nid;
2543 nodemask_t *nodemask;
2544
2545 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
cfcaa66f
BW
2546 if (mpol_is_preferred_many(mpol)) {
2547 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2548
2549 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
3a740e8b 2550 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
aaf14e40 2551
cfcaa66f
BW
2552 /* Fallback to all nodes if page==NULL */
2553 nodemask = NULL;
2554 }
2555
3a740e8b
SK
2556 if (!folio)
2557 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
cfcaa66f 2558 mpol_cond_put(mpol);
ff7d853b 2559 return folio;
099730d6
DH
2560}
2561
e37d3e83
SK
2562/* folio migration callback function */
2563struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
42d0c3fb 2564 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
4db9b2ef 2565{
db71ef79 2566 spin_lock_irq(&hugetlb_lock);
8346d69d 2567 if (available_huge_pages(h)) {
a36f1e90 2568 struct folio *folio;
3e59fcb0 2569
a36f1e90
SK
2570 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2571 preferred_nid, nmask);
2572 if (folio) {
db71ef79 2573 spin_unlock_irq(&hugetlb_lock);
e37d3e83 2574 return folio;
4db9b2ef
MH
2575 }
2576 }
db71ef79 2577 spin_unlock_irq(&hugetlb_lock);
4db9b2ef 2578
42d0c3fb
BW
2579 /* We cannot fallback to other nodes, as we could break the per-node pool. */
2580 if (!allow_alloc_fallback)
2581 gfp_mask |= __GFP_THISNODE;
2582
e37d3e83 2583 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
2584}
2585
e4e574b7 2586/*
25985edc 2587 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
2588 * of size 'delta'.
2589 */
0a4f3d1b 2590static int gather_surplus_pages(struct hstate *h, long delta)
1b2a1e7b 2591 __must_hold(&hugetlb_lock)
e4e574b7 2592{
34665341 2593 LIST_HEAD(surplus_list);
454a00c4 2594 struct folio *folio, *tmp;
0a4f3d1b
LX
2595 int ret;
2596 long i;
2597 long needed, allocated;
28073b02 2598 bool alloc_ok = true;
e4e574b7 2599
9487ca60 2600 lockdep_assert_held(&hugetlb_lock);
a5516438 2601 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 2602 if (needed <= 0) {
a5516438 2603 h->resv_huge_pages += delta;
e4e574b7 2604 return 0;
ac09b3a1 2605 }
e4e574b7
AL
2606
2607 allocated = 0;
e4e574b7
AL
2608
2609 ret = -ENOMEM;
2610retry:
db71ef79 2611 spin_unlock_irq(&hugetlb_lock);
e4e574b7 2612 for (i = 0; i < needed; i++) {
3a740e8b 2613 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2b21624f 2614 NUMA_NO_NODE, NULL);
3a740e8b 2615 if (!folio) {
28073b02
HD
2616 alloc_ok = false;
2617 break;
2618 }
3a740e8b 2619 list_add(&folio->lru, &surplus_list);
69ed779a 2620 cond_resched();
e4e574b7 2621 }
28073b02 2622 allocated += i;
e4e574b7
AL
2623
2624 /*
2625 * After retaking hugetlb_lock, we need to recalculate 'needed'
2626 * because either resv_huge_pages or free_huge_pages may have changed.
2627 */
db71ef79 2628 spin_lock_irq(&hugetlb_lock);
a5516438
AK
2629 needed = (h->resv_huge_pages + delta) -
2630 (h->free_huge_pages + allocated);
28073b02
HD
2631 if (needed > 0) {
2632 if (alloc_ok)
2633 goto retry;
2634 /*
2635 * We were not able to allocate enough pages to
2636 * satisfy the entire reservation so we free what
2637 * we've allocated so far.
2638 */
2639 goto free;
2640 }
e4e574b7
AL
2641 /*
2642 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 2643 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 2644 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
2645 * allocator. Commit the entire reservation here to prevent another
2646 * process from stealing the pages as they are added to the pool but
2647 * before they are reserved.
e4e574b7
AL
2648 */
2649 needed += allocated;
a5516438 2650 h->resv_huge_pages += delta;
e4e574b7 2651 ret = 0;
a9869b83 2652
19fc3f0a 2653 /* Free the needed pages to the hugetlb pool */
454a00c4 2654 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
19fc3f0a
AL
2655 if ((--needed) < 0)
2656 break;
b65a4eda 2657 /* Add the page to the hugetlb allocator */
454a00c4 2658 enqueue_hugetlb_folio(h, folio);
19fc3f0a 2659 }
28073b02 2660free:
db71ef79 2661 spin_unlock_irq(&hugetlb_lock);
19fc3f0a 2662
b65a4eda
MK
2663 /*
2664 * Free unnecessary surplus pages to the buddy allocator.
454a00c4 2665 * Pages have no ref count, call free_huge_folio directly.
b65a4eda 2666 */
454a00c4
MWO
2667 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2668 free_huge_folio(folio);
db71ef79 2669 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2670
2671 return ret;
2672}
2673
2674/*
e5bbc8a6
MK
2675 * This routine has two main purposes:
2676 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2677 * in unused_resv_pages. This corresponds to the prior adjustments made
2678 * to the associated reservation map.
2679 * 2) Free any unused surplus pages that may have been allocated to satisfy
2680 * the reservation. As many as unused_resv_pages may be freed.
e4e574b7 2681 */
a5516438
AK
2682static void return_unused_surplus_pages(struct hstate *h,
2683 unsigned long unused_resv_pages)
e4e574b7 2684{
e4e574b7 2685 unsigned long nr_pages;
10c6ec49
MK
2686 LIST_HEAD(page_list);
2687
9487ca60 2688 lockdep_assert_held(&hugetlb_lock);
10c6ec49
MK
2689 /* Uncommit the reservation */
2690 h->resv_huge_pages -= unused_resv_pages;
e4e574b7 2691
c0531714 2692 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
e5bbc8a6 2693 goto out;
aa888a74 2694
e5bbc8a6
MK
2695 /*
2696 * Part (or even all) of the reservation could have been backed
2697 * by pre-allocated pages. Only free surplus pages.
2698 */
a5516438 2699 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 2700
685f3457
LS
2701 /*
2702 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
2703 * evenly across all nodes with memory. Iterate across these nodes
2704 * until we can no longer free unreserved surplus pages. This occurs
2705 * when the nodes with surplus pages have no free pages.
d5b43e96 2706 * remove_pool_hugetlb_folio() will balance the freed pages across the
9b5e5d0f 2707 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
2708 */
2709 while (nr_pages--) {
d5b43e96
MWO
2710 struct folio *folio;
2711
2712 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2713 if (!folio)
e5bbc8a6 2714 goto out;
10c6ec49 2715
d5b43e96 2716 list_add(&folio->lru, &page_list);
e4e574b7 2717 }
e5bbc8a6
MK
2718
2719out:
db71ef79 2720 spin_unlock_irq(&hugetlb_lock);
10c6ec49 2721 update_and_free_pages_bulk(h, &page_list);
db71ef79 2722 spin_lock_irq(&hugetlb_lock);
e4e574b7
AL
2723}
2724
5e911373 2725
c37f9fb1 2726/*
feba16e2 2727 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 2728 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
2729 *
2730 * vma_needs_reservation is called to determine if the huge page at addr
2731 * within the vma has an associated reservation. If a reservation is
2732 * needed, the value 1 is returned. The caller is then responsible for
2733 * managing the global reservation and subpool usage counts. After
2734 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
2735 * to add the page to the reservation map. If the page allocation fails,
2736 * the reservation must be ended instead of committed. vma_end_reservation
2737 * is called in such cases.
cf3ad20b
MK
2738 *
2739 * In the normal case, vma_commit_reservation returns the same value
2740 * as the preceding vma_needs_reservation call. The only time this
2741 * is not the case is if a reserve map was changed between calls. It
2742 * is the responsibility of the caller to notice the difference and
2743 * take appropriate action.
96b96a96
MK
2744 *
2745 * vma_add_reservation is used in error paths where a reservation must
2746 * be restored when a newly allocated huge page must be freed. It is
2747 * to be called after calling vma_needs_reservation to determine if a
2748 * reservation exists.
846be085
MK
2749 *
2750 * vma_del_reservation is used in error paths where an entry in the reserve
2751 * map was created during huge page allocation and must be removed. It is to
2752 * be called after calling vma_needs_reservation to determine if a reservation
2753 * exists.
c37f9fb1 2754 */
5e911373
MK
2755enum vma_resv_mode {
2756 VMA_NEEDS_RESV,
2757 VMA_COMMIT_RESV,
feba16e2 2758 VMA_END_RESV,
96b96a96 2759 VMA_ADD_RESV,
846be085 2760 VMA_DEL_RESV,
5e911373 2761};
cf3ad20b
MK
2762static long __vma_reservation_common(struct hstate *h,
2763 struct vm_area_struct *vma, unsigned long addr,
5e911373 2764 enum vma_resv_mode mode)
c37f9fb1 2765{
4e35f483
JK
2766 struct resv_map *resv;
2767 pgoff_t idx;
cf3ad20b 2768 long ret;
0db9d74e 2769 long dummy_out_regions_needed;
c37f9fb1 2770
4e35f483
JK
2771 resv = vma_resv_map(vma);
2772 if (!resv)
84afd99b 2773 return 1;
c37f9fb1 2774
4e35f483 2775 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
2776 switch (mode) {
2777 case VMA_NEEDS_RESV:
0db9d74e
MA
2778 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2779 /* We assume that vma_reservation_* routines always operate on
2780 * 1 page, and that adding to resv map a 1 page entry can only
2781 * ever require 1 region.
2782 */
2783 VM_BUG_ON(dummy_out_regions_needed != 1);
5e911373
MK
2784 break;
2785 case VMA_COMMIT_RESV:
075a61d0 2786 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2787 /* region_add calls of range 1 should never fail. */
2788 VM_BUG_ON(ret < 0);
5e911373 2789 break;
feba16e2 2790 case VMA_END_RESV:
0db9d74e 2791 region_abort(resv, idx, idx + 1, 1);
5e911373
MK
2792 ret = 0;
2793 break;
96b96a96 2794 case VMA_ADD_RESV:
0db9d74e 2795 if (vma->vm_flags & VM_MAYSHARE) {
075a61d0 2796 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
0db9d74e
MA
2797 /* region_add calls of range 1 should never fail. */
2798 VM_BUG_ON(ret < 0);
2799 } else {
2800 region_abort(resv, idx, idx + 1, 1);
96b96a96
MK
2801 ret = region_del(resv, idx, idx + 1);
2802 }
2803 break;
846be085
MK
2804 case VMA_DEL_RESV:
2805 if (vma->vm_flags & VM_MAYSHARE) {
2806 region_abort(resv, idx, idx + 1, 1);
2807 ret = region_del(resv, idx, idx + 1);
2808 } else {
2809 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2810 /* region_add calls of range 1 should never fail. */
2811 VM_BUG_ON(ret < 0);
2812 }
2813 break;
5e911373
MK
2814 default:
2815 BUG();
2816 }
84afd99b 2817
846be085 2818 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
cf3ad20b 2819 return ret;
bf3d12b9
ML
2820 /*
2821 * We know private mapping must have HPAGE_RESV_OWNER set.
2822 *
2823 * In most cases, reserves always exist for private mappings.
2824 * However, a file associated with mapping could have been
2825 * hole punched or truncated after reserves were consumed.
2826 * As subsequent fault on such a range will not use reserves.
2827 * Subtle - The reserve map for private mappings has the
2828 * opposite meaning than that of shared mappings. If NO
2829 * entry is in the reserve map, it means a reservation exists.
2830 * If an entry exists in the reserve map, it means the
2831 * reservation has already been consumed. As a result, the
2832 * return value of this routine is the opposite of the
2833 * value returned from reserve map manipulation routines above.
2834 */
2835 if (ret > 0)
2836 return 0;
2837 if (ret == 0)
2838 return 1;
2839 return ret;
c37f9fb1 2840}
cf3ad20b
MK
2841
2842static long vma_needs_reservation(struct hstate *h,
a5516438 2843 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 2844{
5e911373 2845 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 2846}
84afd99b 2847
cf3ad20b
MK
2848static long vma_commit_reservation(struct hstate *h,
2849 struct vm_area_struct *vma, unsigned long addr)
2850{
5e911373
MK
2851 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2852}
2853
feba16e2 2854static void vma_end_reservation(struct hstate *h,
5e911373
MK
2855 struct vm_area_struct *vma, unsigned long addr)
2856{
feba16e2 2857 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
2858}
2859
96b96a96
MK
2860static long vma_add_reservation(struct hstate *h,
2861 struct vm_area_struct *vma, unsigned long addr)
2862{
2863 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2864}
2865
846be085
MK
2866static long vma_del_reservation(struct hstate *h,
2867 struct vm_area_struct *vma, unsigned long addr)
2868{
2869 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2870}
2871
96b96a96 2872/*
846be085 2873 * This routine is called to restore reservation information on error paths.
d0ce0e47
SK
2874 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2875 * and the hugetlb mutex should remain held when calling this routine.
846be085
MK
2876 *
2877 * It handles two specific cases:
d2d7bb44
SK
2878 * 1) A reservation was in place and the folio consumed the reservation.
2879 * hugetlb_restore_reserve is set in the folio.
2880 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
d0ce0e47 2881 * not set. However, alloc_hugetlb_folio always updates the reserve map.
846be085 2882 *
454a00c4
MWO
2883 * In case 1, free_huge_folio later in the error path will increment the
2884 * global reserve count. But, free_huge_folio does not have enough context
846be085
MK
2885 * to adjust the reservation map. This case deals primarily with private
2886 * mappings. Adjust the reserve map here to be consistent with global
454a00c4 2887 * reserve count adjustments to be made by free_huge_folio. Make sure the
846be085
MK
2888 * reserve map indicates there is a reservation present.
2889 *
d0ce0e47 2890 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
96b96a96 2891 */
846be085 2892void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
d2d7bb44 2893 unsigned long address, struct folio *folio)
96b96a96 2894{
846be085 2895 long rc = vma_needs_reservation(h, vma, address);
96b96a96 2896
0ffdc38e 2897 if (folio_test_hugetlb_restore_reserve(folio)) {
846be085 2898 if (unlikely(rc < 0))
96b96a96
MK
2899 /*
2900 * Rare out of memory condition in reserve map
0ffdc38e
SK
2901 * manipulation. Clear hugetlb_restore_reserve so
2902 * that global reserve count will not be incremented
454a00c4 2903 * by free_huge_folio. This will make it appear
0ffdc38e 2904 * as though the reservation for this folio was
96b96a96 2905 * consumed. This may prevent the task from
0ffdc38e 2906 * faulting in the folio at a later time. This
96b96a96
MK
2907 * is better than inconsistent global huge page
2908 * accounting of reserve counts.
2909 */
0ffdc38e 2910 folio_clear_hugetlb_restore_reserve(folio);
846be085
MK
2911 else if (rc)
2912 (void)vma_add_reservation(h, vma, address);
2913 else
2914 vma_end_reservation(h, vma, address);
2915 } else {
2916 if (!rc) {
2917 /*
2918 * This indicates there is an entry in the reserve map
d0ce0e47
SK
2919 * not added by alloc_hugetlb_folio. We know it was added
2920 * before the alloc_hugetlb_folio call, otherwise
0ffdc38e 2921 * hugetlb_restore_reserve would be set on the folio.
846be085
MK
2922 * Remove the entry so that a subsequent allocation
2923 * does not consume a reservation.
2924 */
2925 rc = vma_del_reservation(h, vma, address);
2926 if (rc < 0)
96b96a96 2927 /*
846be085
MK
2928 * VERY rare out of memory condition. Since
2929 * we can not delete the entry, set
0ffdc38e
SK
2930 * hugetlb_restore_reserve so that the reserve
2931 * count will be incremented when the folio
846be085
MK
2932 * is freed. This reserve will be consumed
2933 * on a subsequent allocation.
96b96a96 2934 */
0ffdc38e 2935 folio_set_hugetlb_restore_reserve(folio);
846be085
MK
2936 } else if (rc < 0) {
2937 /*
2938 * Rare out of memory condition from
2939 * vma_needs_reservation call. Memory allocation is
2940 * only attempted if a new entry is needed. Therefore,
2941 * this implies there is not an entry in the
2942 * reserve map.
2943 *
2944 * For shared mappings, no entry in the map indicates
2945 * no reservation. We are done.
2946 */
2947 if (!(vma->vm_flags & VM_MAYSHARE))
2948 /*
2949 * For private mappings, no entry indicates
2950 * a reservation is present. Since we can
0ffdc38e
SK
2951 * not add an entry, set hugetlb_restore_reserve
2952 * on the folio so reserve count will be
846be085
MK
2953 * incremented when freed. This reserve will
2954 * be consumed on a subsequent allocation.
2955 */
0ffdc38e 2956 folio_set_hugetlb_restore_reserve(folio);
96b96a96 2957 } else
846be085
MK
2958 /*
2959 * No reservation present, do nothing
2960 */
2961 vma_end_reservation(h, vma, address);
96b96a96
MK
2962 }
2963}
2964
369fa227 2965/*
19fc1a7e
SK
2966 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2967 * the old one
369fa227 2968 * @h: struct hstate old page belongs to
19fc1a7e 2969 * @old_folio: Old folio to dissolve
ae37c7ff 2970 * @list: List to isolate the page in case we need to
369fa227
OS
2971 * Returns 0 on success, otherwise negated error.
2972 */
19fc1a7e
SK
2973static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2974 struct folio *old_folio, struct list_head *list)
369fa227
OS
2975{
2976 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
de656ed3 2977 int nid = folio_nid(old_folio);
831bc31a 2978 struct folio *new_folio = NULL;
369fa227
OS
2979 int ret = 0;
2980
369fa227
OS
2981retry:
2982 spin_lock_irq(&hugetlb_lock);
de656ed3 2983 if (!folio_test_hugetlb(old_folio)) {
369fa227 2984 /*
19fc1a7e 2985 * Freed from under us. Drop new_folio too.
369fa227
OS
2986 */
2987 goto free_new;
de656ed3 2988 } else if (folio_ref_count(old_folio)) {
9747b9e9
BW
2989 bool isolated;
2990
369fa227 2991 /*
19fc1a7e 2992 * Someone has grabbed the folio, try to isolate it here.
ae37c7ff 2993 * Fail with -EBUSY if not possible.
369fa227 2994 */
ae37c7ff 2995 spin_unlock_irq(&hugetlb_lock);
9747b9e9
BW
2996 isolated = isolate_hugetlb(old_folio, list);
2997 ret = isolated ? 0 : -EBUSY;
ae37c7ff 2998 spin_lock_irq(&hugetlb_lock);
369fa227 2999 goto free_new;
de656ed3 3000 } else if (!folio_test_hugetlb_freed(old_folio)) {
369fa227 3001 /*
19fc1a7e 3002 * Folio's refcount is 0 but it has not been enqueued in the
369fa227
OS
3003 * freelist yet. Race window is small, so we can succeed here if
3004 * we retry.
3005 */
3006 spin_unlock_irq(&hugetlb_lock);
3007 cond_resched();
3008 goto retry;
3009 } else {
831bc31a
BW
3010 if (!new_folio) {
3011 spin_unlock_irq(&hugetlb_lock);
3012 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
3013 NULL, NULL);
3014 if (!new_folio)
3015 return -ENOMEM;
3016 __prep_new_hugetlb_folio(h, new_folio);
3017 goto retry;
3018 }
3019
369fa227 3020 /*
19fc1a7e 3021 * Ok, old_folio is still a genuine free hugepage. Remove it from
369fa227
OS
3022 * the freelist and decrease the counters. These will be
3023 * incremented again when calling __prep_account_new_huge_page()
240d67a8
SK
3024 * and enqueue_hugetlb_folio() for new_folio. The counters will
3025 * remain stable since this happens under the lock.
369fa227 3026 */
cfd5082b 3027 remove_hugetlb_folio(h, old_folio, false);
369fa227
OS
3028
3029 /*
19fc1a7e 3030 * Ref count on new_folio is already zero as it was dropped
b65a4eda 3031 * earlier. It can be directly added to the pool free list.
369fa227 3032 */
369fa227 3033 __prep_account_new_huge_page(h, nid);
240d67a8 3034 enqueue_hugetlb_folio(h, new_folio);
369fa227
OS
3035
3036 /*
19fc1a7e 3037 * Folio has been replaced, we can safely free the old one.
369fa227
OS
3038 */
3039 spin_unlock_irq(&hugetlb_lock);
d6ef19e2 3040 update_and_free_hugetlb_folio(h, old_folio, false);
369fa227
OS
3041 }
3042
3043 return ret;
3044
3045free_new:
3046 spin_unlock_irq(&hugetlb_lock);
bd225530 3047 if (new_folio)
831bc31a 3048 update_and_free_hugetlb_folio(h, new_folio, false);
369fa227
OS
3049
3050 return ret;
3051}
3052
ae37c7ff 3053int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
369fa227
OS
3054{
3055 struct hstate *h;
d5e33bd8 3056 struct folio *folio = page_folio(page);
ae37c7ff 3057 int ret = -EBUSY;
369fa227
OS
3058
3059 /*
3060 * The page might have been dissolved from under our feet, so make sure
3061 * to carefully check the state under the lock.
3062 * Return success when racing as if we dissolved the page ourselves.
3063 */
3064 spin_lock_irq(&hugetlb_lock);
d5e33bd8
SK
3065 if (folio_test_hugetlb(folio)) {
3066 h = folio_hstate(folio);
369fa227
OS
3067 } else {
3068 spin_unlock_irq(&hugetlb_lock);
3069 return 0;
3070 }
3071 spin_unlock_irq(&hugetlb_lock);
3072
3073 /*
3074 * Fence off gigantic pages as there is a cyclic dependency between
3075 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3076 * of bailing out right away without further retrying.
3077 */
3078 if (hstate_is_gigantic(h))
3079 return -ENOMEM;
3080
9747b9e9 3081 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
ae37c7ff 3082 ret = 0;
d5e33bd8 3083 else if (!folio_ref_count(folio))
19fc1a7e 3084 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
ae37c7ff
OS
3085
3086 return ret;
369fa227
OS
3087}
3088
d0ce0e47 3089struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
04f2cbe3 3090 unsigned long addr, int avoid_reserve)
1da177e4 3091{
90481622 3092 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 3093 struct hstate *h = hstate_vma(vma);
d4ab0316 3094 struct folio *folio;
8cba9576 3095 long map_chg, map_commit, nr_pages = pages_per_huge_page(h);
d85f69b0 3096 long gbl_chg;
8cba9576 3097 int memcg_charge_ret, ret, idx;
d0ce0e47 3098 struct hugetlb_cgroup *h_cg = NULL;
8cba9576 3099 struct mem_cgroup *memcg;
08cf9faf 3100 bool deferred_reserve;
8cba9576
NP
3101 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3102
3103 memcg = get_mem_cgroup_from_current();
3104 memcg_charge_ret = mem_cgroup_hugetlb_try_charge(memcg, gfp, nr_pages);
3105 if (memcg_charge_ret == -ENOMEM) {
3106 mem_cgroup_put(memcg);
3107 return ERR_PTR(-ENOMEM);
3108 }
a1e78772 3109
6d76dcf4 3110 idx = hstate_index(h);
a1e78772 3111 /*
d85f69b0
MK
3112 * Examine the region/reserve map to determine if the process
3113 * has a reservation for the page to be allocated. A return
3114 * code of zero indicates a reservation exists (no change).
a1e78772 3115 */
d85f69b0 3116 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
8cba9576
NP
3117 if (map_chg < 0) {
3118 if (!memcg_charge_ret)
3119 mem_cgroup_cancel_charge(memcg, nr_pages);
3120 mem_cgroup_put(memcg);
76dcee75 3121 return ERR_PTR(-ENOMEM);
8cba9576 3122 }
d85f69b0
MK
3123
3124 /*
3125 * Processes that did not create the mapping will have no
3126 * reserves as indicated by the region/reserve map. Check
3127 * that the allocation will not exceed the subpool limit.
3128 * Allocations for MAP_NORESERVE mappings also need to be
3129 * checked against any subpool limit.
3130 */
3131 if (map_chg || avoid_reserve) {
3132 gbl_chg = hugepage_subpool_get_pages(spool, 1);
8cba9576
NP
3133 if (gbl_chg < 0)
3134 goto out_end_reservation;
1da177e4 3135
d85f69b0
MK
3136 /*
3137 * Even though there was no reservation in the region/reserve
3138 * map, there could be reservations associated with the
3139 * subpool that can be used. This would be indicated if the
3140 * return value of hugepage_subpool_get_pages() is zero.
3141 * However, if avoid_reserve is specified we still avoid even
3142 * the subpool reservations.
3143 */
3144 if (avoid_reserve)
3145 gbl_chg = 1;
3146 }
3147
08cf9faf
MA
3148 /* If this allocation is not consuming a reservation, charge it now.
3149 */
6501fe5f 3150 deferred_reserve = map_chg || avoid_reserve;
08cf9faf
MA
3151 if (deferred_reserve) {
3152 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3153 idx, pages_per_huge_page(h), &h_cg);
3154 if (ret)
3155 goto out_subpool_put;
3156 }
3157
6d76dcf4 3158 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f 3159 if (ret)
08cf9faf 3160 goto out_uncharge_cgroup_reservation;
8f34af6f 3161
db71ef79 3162 spin_lock_irq(&hugetlb_lock);
d85f69b0
MK
3163 /*
3164 * glb_chg is passed to indicate whether or not a page must be taken
3165 * from the global free pool (global change). gbl_chg == 0 indicates
3166 * a reservation exists for the allocation.
3167 */
ff7d853b
SK
3168 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3169 if (!folio) {
db71ef79 3170 spin_unlock_irq(&hugetlb_lock);
ff7d853b
SK
3171 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3172 if (!folio)
8f34af6f 3173 goto out_uncharge_cgroup;
12df140f 3174 spin_lock_irq(&hugetlb_lock);
a88c7695 3175 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
ff7d853b 3176 folio_set_hugetlb_restore_reserve(folio);
a88c7695
NH
3177 h->resv_huge_pages--;
3178 }
ff7d853b
SK
3179 list_add(&folio->lru, &h->hugepage_activelist);
3180 folio_ref_unfreeze(folio, 1);
81a6fcae 3181 /* Fall through */
68842c9b 3182 }
ff7d853b
SK
3183
3184 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
08cf9faf
MA
3185 /* If allocation is not consuming a reservation, also store the
3186 * hugetlb_cgroup pointer on the page.
3187 */
3188 if (deferred_reserve) {
3189 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
ff7d853b 3190 h_cg, folio);
08cf9faf
MA
3191 }
3192
db71ef79 3193 spin_unlock_irq(&hugetlb_lock);
348ea204 3194
ff7d853b 3195 hugetlb_set_folio_subpool(folio, spool);
90d8b7e6 3196
d85f69b0
MK
3197 map_commit = vma_commit_reservation(h, vma, addr);
3198 if (unlikely(map_chg > map_commit)) {
33039678
MK
3199 /*
3200 * The page was added to the reservation map between
3201 * vma_needs_reservation and vma_commit_reservation.
3202 * This indicates a race with hugetlb_reserve_pages.
3203 * Adjust for the subpool count incremented above AND
3204 * in hugetlb_reserve_pages for the same page. Also,
3205 * the reservation count added in hugetlb_reserve_pages
3206 * no longer applies.
3207 */
3208 long rsv_adjust;
3209
3210 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3211 hugetlb_acct_memory(h, -rsv_adjust);
b76b4690
PX
3212 if (deferred_reserve) {
3213 spin_lock_irq(&hugetlb_lock);
d4ab0316
SK
3214 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3215 pages_per_huge_page(h), folio);
b76b4690
PX
3216 spin_unlock_irq(&hugetlb_lock);
3217 }
33039678 3218 }
8cba9576
NP
3219
3220 if (!memcg_charge_ret)
3221 mem_cgroup_commit_charge(folio, memcg);
3222 mem_cgroup_put(memcg);
3223
d0ce0e47 3224 return folio;
8f34af6f
JZ
3225
3226out_uncharge_cgroup:
3227 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
08cf9faf
MA
3228out_uncharge_cgroup_reservation:
3229 if (deferred_reserve)
3230 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3231 h_cg);
8f34af6f 3232out_subpool_put:
d85f69b0 3233 if (map_chg || avoid_reserve)
8f34af6f 3234 hugepage_subpool_put_pages(spool, 1);
8cba9576 3235out_end_reservation:
feba16e2 3236 vma_end_reservation(h, vma, addr);
8cba9576
NP
3237 if (!memcg_charge_ret)
3238 mem_cgroup_cancel_charge(memcg, nr_pages);
3239 mem_cgroup_put(memcg);
8f34af6f 3240 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
3241}
3242
b5389086 3243int alloc_bootmem_huge_page(struct hstate *h, int nid)
e24a1307 3244 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
b5389086 3245int __alloc_bootmem_huge_page(struct hstate *h, int nid)
aa888a74 3246{
b5389086 3247 struct huge_bootmem_page *m = NULL; /* initialize for clang */
b78b27d0 3248 int nr_nodes, node = nid;
aa888a74 3249
b5389086
ZY
3250 /* do node specific alloc */
3251 if (nid != NUMA_NO_NODE) {
3252 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3253 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3254 if (!m)
3255 return 0;
3256 goto found;
3257 }
3258 /* allocate from next node when distributing huge pages */
2e73ff23 3259 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
b5389086 3260 m = memblock_alloc_try_nid_raw(
8b89a116 3261 huge_page_size(h), huge_page_size(h),
97ad1087 3262 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
b5389086
ZY
3263 /*
3264 * Use the beginning of the huge page to store the
3265 * huge_bootmem_page struct (until gather_bootmem
3266 * puts them into the mem_map).
3267 */
3268 if (!m)
3269 return 0;
3270 goto found;
aa888a74 3271 }
aa888a74
AK
3272
3273found:
fde1c4ec
UA
3274
3275 /*
3276 * Only initialize the head struct page in memmap_init_reserved_pages,
3277 * rest of the struct pages will be initialized by the HugeTLB
3278 * subsystem itself.
3279 * The head struct page is used to get folio information by the HugeTLB
3280 * subsystem like zone id and node id.
3281 */
3282 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3283 huge_page_size(h) - PAGE_SIZE);
aa888a74 3284 /* Put them into a private list first because mem_map is not up yet */
330d6e48 3285 INIT_LIST_HEAD(&m->list);
b78b27d0 3286 list_add(&m->list, &huge_boot_pages[node]);
aa888a74
AK
3287 m->hstate = h;
3288 return 1;
3289}
3290
fde1c4ec
UA
3291/* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
3292static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3293 unsigned long start_page_number,
3294 unsigned long end_page_number)
3295{
3296 enum zone_type zone = zone_idx(folio_zone(folio));
3297 int nid = folio_nid(folio);
3298 unsigned long head_pfn = folio_pfn(folio);
3299 unsigned long pfn, end_pfn = head_pfn + end_page_number;
3300 int ret;
3301
3302 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3303 struct page *page = pfn_to_page(pfn);
3304
3305 __init_single_page(page, pfn, zone, nid);
3306 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3307 ret = page_ref_freeze(page, 1);
3308 VM_BUG_ON(!ret);
3309 }
3310}
3311
3312static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3313 struct hstate *h,
3314 unsigned long nr_pages)
3315{
3316 int ret;
3317
3318 /* Prepare folio head */
3319 __folio_clear_reserved(folio);
3320 __folio_set_head(folio);
a48bf7b4 3321 ret = folio_ref_freeze(folio, 1);
fde1c4ec
UA
3322 VM_BUG_ON(!ret);
3323 /* Initialize the necessary tail struct pages */
3324 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3325 prep_compound_head((struct page *)folio, huge_page_order(h));
3326}
3327
79359d6d
MK
3328static void __init prep_and_add_bootmem_folios(struct hstate *h,
3329 struct list_head *folio_list)
3330{
3331 unsigned long flags;
3332 struct folio *folio, *tmp_f;
3333
3334 /* Send list for bulk vmemmap optimization processing */
3335 hugetlb_vmemmap_optimize_folios(h, folio_list);
3336
79359d6d
MK
3337 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3338 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3339 /*
3340 * If HVO fails, initialize all tail struct pages
3341 * We do not worry about potential long lock hold
3342 * time as this is early in boot and there should
3343 * be no contention.
3344 */
3345 hugetlb_folio_init_tail_vmemmap(folio,
3346 HUGETLB_VMEMMAP_RESERVE_PAGES,
3347 pages_per_huge_page(h));
3348 }
b78b27d0
GL
3349 /* Subdivide locks to achieve better parallel performance */
3350 spin_lock_irqsave(&hugetlb_lock, flags);
79359d6d
MK
3351 __prep_account_new_huge_page(h, folio_nid(folio));
3352 enqueue_hugetlb_folio(h, folio);
b78b27d0 3353 spin_unlock_irqrestore(&hugetlb_lock, flags);
79359d6d 3354 }
79359d6d
MK
3355}
3356
48b8d744
MK
3357/*
3358 * Put bootmem huge pages into the standard lists after mem_map is up.
5e0a760b 3359 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
48b8d744 3360 */
b78b27d0 3361static void __init gather_bootmem_prealloc_node(unsigned long nid)
aa888a74 3362{
d67e32f2 3363 LIST_HEAD(folio_list);
aa888a74 3364 struct huge_bootmem_page *m;
d67e32f2 3365 struct hstate *h = NULL, *prev_h = NULL;
aa888a74 3366
b78b27d0 3367 list_for_each_entry(m, &huge_boot_pages[nid], list) {
40d18ebf 3368 struct page *page = virt_to_page(m);
fde1c4ec 3369 struct folio *folio = (void *)page;
d67e32f2
MK
3370
3371 h = m->hstate;
3372 /*
3373 * It is possible to have multiple huge page sizes (hstates)
3374 * in this list. If so, process each size separately.
3375 */
3376 if (h != prev_h && prev_h != NULL)
79359d6d 3377 prep_and_add_bootmem_folios(prev_h, &folio_list);
d67e32f2 3378 prev_h = h;
ee8f248d 3379
48b8d744 3380 VM_BUG_ON(!hstate_is_gigantic(h));
d1c60955 3381 WARN_ON(folio_ref_count(folio) != 1);
fde1c4ec
UA
3382
3383 hugetlb_folio_init_vmemmap(folio, h,
3384 HUGETLB_VMEMMAP_RESERVE_PAGES);
79359d6d 3385 init_new_hugetlb_folio(h, folio);
d67e32f2 3386 list_add(&folio->lru, &folio_list);
af0fb9df 3387
b0320c7b 3388 /*
48b8d744
MK
3389 * We need to restore the 'stolen' pages to totalram_pages
3390 * in order to fix confusing memory reports from free(1) and
3391 * other side-effects, like CommitLimit going negative.
b0320c7b 3392 */
48b8d744 3393 adjust_managed_page_count(page, pages_per_huge_page(h));
520495fe 3394 cond_resched();
aa888a74 3395 }
d67e32f2 3396
79359d6d 3397 prep_and_add_bootmem_folios(h, &folio_list);
aa888a74 3398}
fde1c4ec 3399
b78b27d0
GL
3400static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3401 unsigned long end, void *arg)
3402{
3403 int nid;
3404
3405 for (nid = start; nid < end; nid++)
3406 gather_bootmem_prealloc_node(nid);
3407}
3408
3409static void __init gather_bootmem_prealloc(void)
3410{
3411 struct padata_mt_job job = {
3412 .thread_fn = gather_bootmem_prealloc_parallel,
3413 .fn_arg = NULL,
3414 .start = 0,
3415 .size = num_node_state(N_MEMORY),
3416 .align = 1,
3417 .min_chunk = 1,
3418 .max_threads = num_node_state(N_MEMORY),
3419 .numa_aware = true,
3420 };
3421
3422 padata_do_multithreaded(&job);
3423}
3424
b5389086
ZY
3425static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3426{
3427 unsigned long i;
3428 char buf[32];
3429
3430 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3431 if (hstate_is_gigantic(h)) {
3432 if (!alloc_bootmem_huge_page(h, nid))
3433 break;
3434 } else {
19fc1a7e 3435 struct folio *folio;
b5389086
ZY
3436 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3437
19fc1a7e 3438 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
b5389086 3439 &node_states[N_MEMORY], NULL);
19fc1a7e 3440 if (!folio)
b5389086 3441 break;
454a00c4 3442 free_huge_folio(folio); /* free it into the hugepage allocator */
b5389086
ZY
3443 }
3444 cond_resched();
3445 }
3446 if (i == h->max_huge_pages_node[nid])
3447 return;
3448
3449 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3450 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3451 h->max_huge_pages_node[nid], buf, nid, i);
3452 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3453 h->max_huge_pages_node[nid] = i;
3454}
aa888a74 3455
fc37bbb3
GL
3456static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3457{
3458 int i;
3459 bool node_specific_alloc = false;
3460
3461 for_each_online_node(i) {
3462 if (h->max_huge_pages_node[i] > 0) {
3463 hugetlb_hstate_alloc_pages_onenode(h, i);
3464 node_specific_alloc = true;
3465 }
3466 }
3467
3468 return node_specific_alloc;
3469}
3470
3471static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3472{
3473 if (allocated < h->max_huge_pages) {
3474 char buf[32];
3475
3476 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3477 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3478 h->max_huge_pages, buf, allocated);
3479 h->max_huge_pages = allocated;
3480 }
3481}
3482
c6c21c31
GL
3483static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3484{
3485 struct hstate *h = (struct hstate *)arg;
3486 int i, num = end - start;
3487 nodemask_t node_alloc_noretry;
3488 LIST_HEAD(folio_list);
3489 int next_node = first_online_node;
3490
3491 /* Bit mask controlling how hard we retry per-node allocations.*/
3492 nodes_clear(node_alloc_noretry);
3493
3494 for (i = 0; i < num; ++i) {
3495 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3496 &node_alloc_noretry, &next_node);
3497 if (!folio)
3498 break;
3499
3500 list_move(&folio->lru, &folio_list);
3501 cond_resched();
3502 }
3503
3504 prep_and_add_allocated_folios(h, &folio_list);
3505}
3506
d5c3eb3f
GL
3507static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3508{
3509 unsigned long i;
3510
3511 for (i = 0; i < h->max_huge_pages; ++i) {
3512 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3513 break;
3514 cond_resched();
3515 }
3516
3517 return i;
3518}
3519
3520static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3521{
c6c21c31
GL
3522 struct padata_mt_job job = {
3523 .fn_arg = h,
3524 .align = 1,
3525 .numa_aware = true
3526 };
d5c3eb3f 3527
c6c21c31
GL
3528 job.thread_fn = hugetlb_pages_alloc_boot_node;
3529 job.start = 0;
3530 job.size = h->max_huge_pages;
d5c3eb3f 3531
c6c21c31
GL
3532 /*
3533 * job.max_threads is twice the num_node_state(N_MEMORY),
3534 *
3535 * Tests below indicate that a multiplier of 2 significantly improves
3536 * performance, and although larger values also provide improvements,
3537 * the gains are marginal.
3538 *
3539 * Therefore, choosing 2 as the multiplier strikes a good balance between
3540 * enhancing parallel processing capabilities and maintaining efficient
3541 * resource management.
3542 *
3543 * +------------+-------+-------+-------+-------+-------+
3544 * | multiplier | 1 | 2 | 3 | 4 | 5 |
3545 * +------------+-------+-------+-------+-------+-------+
3546 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3547 * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3548 * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms |
3549 * +------------+-------+-------+-------+-------+-------+
3550 */
3551 job.max_threads = num_node_state(N_MEMORY) * 2;
3552 job.min_chunk = h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3553 padata_do_multithreaded(&job);
d5c3eb3f 3554
c6c21c31 3555 return h->nr_huge_pages;
d5c3eb3f
GL
3556}
3557
d67e32f2
MK
3558/*
3559 * NOTE: this routine is called in different contexts for gigantic and
3560 * non-gigantic pages.
3561 * - For gigantic pages, this is called early in the boot process and
3562 * pages are allocated from memblock allocated or something similar.
3563 * Gigantic pages are actually added to pools later with the routine
3564 * gather_bootmem_prealloc.
3565 * - For non-gigantic pages, this is called later in the boot process after
3566 * all of mm is up and functional. Pages are allocated from buddy and
3567 * then added to hugetlb pools.
3568 */
8faa8b07 3569static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4 3570{
d5c3eb3f 3571 unsigned long allocated;
b78b27d0 3572 static bool initialized __initdata;
b5389086
ZY
3573
3574 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3575 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3576 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3577 return;
3578 }
3579
b78b27d0
GL
3580 /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3581 if (!initialized) {
3582 int i = 0;
3583
3584 for (i = 0; i < MAX_NUMNODES; i++)
3585 INIT_LIST_HEAD(&huge_boot_pages[i]);
3586 initialized = true;
3587 }
3588
b5389086 3589 /* do node specific alloc */
fc37bbb3 3590 if (hugetlb_hstate_alloc_pages_specific_nodes(h))
b5389086
ZY
3591 return;
3592
3593 /* below will do all node balanced alloc */
d5c3eb3f
GL
3594 if (hstate_is_gigantic(h))
3595 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3596 else
3597 allocated = hugetlb_pages_alloc_boot(h);
d67e32f2 3598
d5c3eb3f 3599 hugetlb_hstate_alloc_pages_errcheck(allocated, h);
e5ff2159
AK
3600}
3601
3602static void __init hugetlb_init_hstates(void)
3603{
79dfc695 3604 struct hstate *h, *h2;
e5ff2159
AK
3605
3606 for_each_hstate(h) {
8faa8b07 3607 /* oversize hugepages were init'ed in early boot */
bae7f4ae 3608 if (!hstate_is_gigantic(h))
8faa8b07 3609 hugetlb_hstate_alloc_pages(h);
79dfc695
MK
3610
3611 /*
3612 * Set demote order for each hstate. Note that
3613 * h->demote_order is initially 0.
3614 * - We can not demote gigantic pages if runtime freeing
3615 * is not supported, so skip this.
a01f4390
MK
3616 * - If CMA allocation is possible, we can not demote
3617 * HUGETLB_PAGE_ORDER or smaller size pages.
79dfc695
MK
3618 */
3619 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3620 continue;
a01f4390
MK
3621 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3622 continue;
79dfc695
MK
3623 for_each_hstate(h2) {
3624 if (h2 == h)
3625 continue;
3626 if (h2->order < h->order &&
3627 h2->order > h->demote_order)
3628 h->demote_order = h2->order;
3629 }
e5ff2159
AK
3630 }
3631}
3632
3633static void __init report_hugepages(void)
3634{
3635 struct hstate *h;
3636
3637 for_each_hstate(h) {
4abd32db 3638 char buf[32];
c6247f72
MW
3639
3640 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
6213834c 3641 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
c6247f72 3642 buf, h->free_huge_pages);
6213834c
MS
3643 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3644 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
e5ff2159
AK
3645 }
3646}
3647
1da177e4 3648#ifdef CONFIG_HIGHMEM
6ae11b27
LS
3649static void try_to_free_low(struct hstate *h, unsigned long count,
3650 nodemask_t *nodes_allowed)
1da177e4 3651{
4415cc8d 3652 int i;
1121828a 3653 LIST_HEAD(page_list);
4415cc8d 3654
9487ca60 3655 lockdep_assert_held(&hugetlb_lock);
bae7f4ae 3656 if (hstate_is_gigantic(h))
aa888a74
AK
3657 return;
3658
1121828a
MK
3659 /*
3660 * Collect pages to be freed on a list, and free after dropping lock
3661 */
6ae11b27 3662 for_each_node_mask(i, *nodes_allowed) {
04bbfd84 3663 struct folio *folio, *next;
a5516438 3664 struct list_head *freel = &h->hugepage_freelists[i];
04bbfd84 3665 list_for_each_entry_safe(folio, next, freel, lru) {
a5516438 3666 if (count >= h->nr_huge_pages)
1121828a 3667 goto out;
04bbfd84 3668 if (folio_test_highmem(folio))
1da177e4 3669 continue;
04bbfd84
MWO
3670 remove_hugetlb_folio(h, folio, false);
3671 list_add(&folio->lru, &page_list);
1da177e4
LT
3672 }
3673 }
1121828a
MK
3674
3675out:
db71ef79 3676 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3677 update_and_free_pages_bulk(h, &page_list);
db71ef79 3678 spin_lock_irq(&hugetlb_lock);
1da177e4
LT
3679}
3680#else
6ae11b27
LS
3681static inline void try_to_free_low(struct hstate *h, unsigned long count,
3682 nodemask_t *nodes_allowed)
1da177e4
LT
3683{
3684}
3685#endif
3686
20a0307c
WF
3687/*
3688 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3689 * balanced by operating on them in a round-robin fashion.
3690 * Returns 1 if an adjustment was made.
3691 */
6ae11b27
LS
3692static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3693 int delta)
20a0307c 3694{
b2261026 3695 int nr_nodes, node;
20a0307c 3696
9487ca60 3697 lockdep_assert_held(&hugetlb_lock);
20a0307c 3698 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 3699
b2261026 3700 if (delta < 0) {
2e73ff23 3701 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
b2261026
JK
3702 if (h->surplus_huge_pages_node[node])
3703 goto found;
e8c5c824 3704 }
b2261026
JK
3705 } else {
3706 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3707 if (h->surplus_huge_pages_node[node] <
3708 h->nr_huge_pages_node[node])
3709 goto found;
e8c5c824 3710 }
b2261026
JK
3711 }
3712 return 0;
20a0307c 3713
b2261026
JK
3714found:
3715 h->surplus_huge_pages += delta;
3716 h->surplus_huge_pages_node[node] += delta;
3717 return 1;
20a0307c
WF
3718}
3719
a5516438 3720#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
fd875dca 3721static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
4eb0716e 3722 nodemask_t *nodes_allowed)
1da177e4 3723{
d67e32f2
MK
3724 unsigned long min_count;
3725 unsigned long allocated;
3726 struct folio *folio;
10c6ec49 3727 LIST_HEAD(page_list);
f60858f9
MK
3728 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3729
3730 /*
3731 * Bit mask controlling how hard we retry per-node allocations.
3732 * If we can not allocate the bit mask, do not attempt to allocate
3733 * the requested huge pages.
3734 */
3735 if (node_alloc_noretry)
3736 nodes_clear(*node_alloc_noretry);
3737 else
3738 return -ENOMEM;
1da177e4 3739
29383967
MK
3740 /*
3741 * resize_lock mutex prevents concurrent adjustments to number of
3742 * pages in hstate via the proc/sysfs interfaces.
3743 */
3744 mutex_lock(&h->resize_lock);
b65d4adb 3745 flush_free_hpage_work(h);
db71ef79 3746 spin_lock_irq(&hugetlb_lock);
4eb0716e 3747
fd875dca
MK
3748 /*
3749 * Check for a node specific request.
3750 * Changing node specific huge page count may require a corresponding
3751 * change to the global count. In any case, the passed node mask
3752 * (nodes_allowed) will restrict alloc/free to the specified node.
3753 */
3754 if (nid != NUMA_NO_NODE) {
3755 unsigned long old_count = count;
3756
b72b3c9c
XH
3757 count += persistent_huge_pages(h) -
3758 (h->nr_huge_pages_node[nid] -
3759 h->surplus_huge_pages_node[nid]);
fd875dca
MK
3760 /*
3761 * User may have specified a large count value which caused the
3762 * above calculation to overflow. In this case, they wanted
3763 * to allocate as many huge pages as possible. Set count to
3764 * largest possible value to align with their intention.
3765 */
3766 if (count < old_count)
3767 count = ULONG_MAX;
3768 }
3769
4eb0716e
AG
3770 /*
3771 * Gigantic pages runtime allocation depend on the capability for large
3772 * page range allocation.
3773 * If the system does not provide this feature, return an error when
3774 * the user tries to allocate gigantic pages but let the user free the
3775 * boottime allocated gigantic pages.
3776 */
3777 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3778 if (count > persistent_huge_pages(h)) {
db71ef79 3779 spin_unlock_irq(&hugetlb_lock);
29383967 3780 mutex_unlock(&h->resize_lock);
f60858f9 3781 NODEMASK_FREE(node_alloc_noretry);
4eb0716e
AG
3782 return -EINVAL;
3783 }
3784 /* Fall through to decrease pool */
3785 }
aa888a74 3786
7893d1d5
AL
3787 /*
3788 * Increase the pool size
3789 * First take pages out of surplus state. Then make up the
3790 * remaining difference by allocating fresh huge pages.
d1c3fb1f 3791 *
3a740e8b 3792 * We might race with alloc_surplus_hugetlb_folio() here and be unable
d1c3fb1f
NA
3793 * to convert a surplus huge page to a normal huge page. That is
3794 * not critical, though, it just means the overall size of the
3795 * pool might be one hugepage larger than it needs to be, but
3796 * within all the constraints specified by the sysctls.
7893d1d5 3797 */
a5516438 3798 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 3799 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
3800 break;
3801 }
3802
d67e32f2
MK
3803 allocated = 0;
3804 while (count > (persistent_huge_pages(h) + allocated)) {
7893d1d5
AL
3805 /*
3806 * If this allocation races such that we no longer need the
454a00c4 3807 * page, free_huge_folio will handle it by freeing the page
7893d1d5
AL
3808 * and reducing the surplus.
3809 */
db71ef79 3810 spin_unlock_irq(&hugetlb_lock);
649920c6
JH
3811
3812 /* yield cpu to avoid soft lockup */
3813 cond_resched();
3814
d67e32f2 3815 folio = alloc_pool_huge_folio(h, nodes_allowed,
2e73ff23
GL
3816 node_alloc_noretry,
3817 &h->next_nid_to_alloc);
d67e32f2
MK
3818 if (!folio) {
3819 prep_and_add_allocated_folios(h, &page_list);
3820 spin_lock_irq(&hugetlb_lock);
7893d1d5 3821 goto out;
d67e32f2
MK
3822 }
3823
3824 list_add(&folio->lru, &page_list);
3825 allocated++;
7893d1d5 3826
536240f2 3827 /* Bail for signals. Probably ctrl-c from user */
d67e32f2
MK
3828 if (signal_pending(current)) {
3829 prep_and_add_allocated_folios(h, &page_list);
3830 spin_lock_irq(&hugetlb_lock);
536240f2 3831 goto out;
d67e32f2
MK
3832 }
3833
3834 spin_lock_irq(&hugetlb_lock);
3835 }
3836
3837 /* Add allocated pages to the pool */
3838 if (!list_empty(&page_list)) {
3839 spin_unlock_irq(&hugetlb_lock);
3840 prep_and_add_allocated_folios(h, &page_list);
3841 spin_lock_irq(&hugetlb_lock);
7893d1d5 3842 }
7893d1d5
AL
3843
3844 /*
3845 * Decrease the pool size
3846 * First return free pages to the buddy allocator (being careful
3847 * to keep enough around to satisfy reservations). Then place
3848 * pages into surplus state as needed so the pool will shrink
3849 * to the desired size as pages become free.
d1c3fb1f
NA
3850 *
3851 * By placing pages into the surplus state independent of the
3852 * overcommit value, we are allowing the surplus pool size to
3853 * exceed overcommit. There are few sane options here. Since
3a740e8b 3854 * alloc_surplus_hugetlb_folio() is checking the global counter,
d1c3fb1f
NA
3855 * though, we'll note that we're not allowed to exceed surplus
3856 * and won't grow the pool anywhere else. Not until one of the
3857 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 3858 */
a5516438 3859 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 3860 min_count = max(count, min_count);
6ae11b27 3861 try_to_free_low(h, min_count, nodes_allowed);
10c6ec49
MK
3862
3863 /*
3864 * Collect pages to be removed on list without dropping lock
3865 */
a5516438 3866 while (min_count < persistent_huge_pages(h)) {
d5b43e96
MWO
3867 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3868 if (!folio)
1da177e4 3869 break;
10c6ec49 3870
d5b43e96 3871 list_add(&folio->lru, &page_list);
1da177e4 3872 }
10c6ec49 3873 /* free the pages after dropping lock */
db71ef79 3874 spin_unlock_irq(&hugetlb_lock);
10c6ec49 3875 update_and_free_pages_bulk(h, &page_list);
b65d4adb 3876 flush_free_hpage_work(h);
db71ef79 3877 spin_lock_irq(&hugetlb_lock);
10c6ec49 3878
a5516438 3879 while (count < persistent_huge_pages(h)) {
6ae11b27 3880 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
3881 break;
3882 }
3883out:
4eb0716e 3884 h->max_huge_pages = persistent_huge_pages(h);
db71ef79 3885 spin_unlock_irq(&hugetlb_lock);
29383967 3886 mutex_unlock(&h->resize_lock);
4eb0716e 3887
f60858f9
MK
3888 NODEMASK_FREE(node_alloc_noretry);
3889
4eb0716e 3890 return 0;
1da177e4
LT
3891}
3892
bdd7be07 3893static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
8531fc6f 3894{
bdd7be07 3895 int i, nid = folio_nid(folio);
8531fc6f 3896 struct hstate *target_hstate;
31731452 3897 struct page *subpage;
bdd7be07 3898 struct folio *inner_folio;
8531fc6f
MK
3899 int rc = 0;
3900
3901 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3902
bd225530 3903 remove_hugetlb_folio(h, folio, false);
8531fc6f
MK
3904 spin_unlock_irq(&hugetlb_lock);
3905
d8f5f7e4
MK
3906 /*
3907 * If vmemmap already existed for folio, the remove routine above would
3908 * have cleared the hugetlb folio flag. Hence the folio is technically
c5ad3233 3909 * no longer a hugetlb folio. hugetlb_vmemmap_restore_folio can only be
d8f5f7e4
MK
3910 * passed hugetlb folios and will BUG otherwise.
3911 */
3912 if (folio_test_hugetlb(folio)) {
c5ad3233 3913 rc = hugetlb_vmemmap_restore_folio(h, folio);
d8f5f7e4
MK
3914 if (rc) {
3915 /* Allocation of vmemmmap failed, we can not demote folio */
3916 spin_lock_irq(&hugetlb_lock);
d8f5f7e4
MK
3917 add_hugetlb_folio(h, folio, false);
3918 return rc;
3919 }
8531fc6f
MK
3920 }
3921
3922 /*
911565b8 3923 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
bdd7be07 3924 * sizes as it will not ref count folios.
8531fc6f 3925 */
911565b8 3926 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
8531fc6f
MK
3927
3928 /*
3929 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3930 * Without the mutex, pages added to target hstate could be marked
3931 * as surplus.
3932 *
3933 * Note that we already hold h->resize_lock. To prevent deadlock,
3934 * use the convention of always taking larger size hstate mutex first.
3935 */
3936 mutex_lock(&target_hstate->resize_lock);
3937 for (i = 0; i < pages_per_huge_page(h);
3938 i += pages_per_huge_page(target_hstate)) {
bdd7be07
SK
3939 subpage = folio_page(folio, i);
3940 inner_folio = page_folio(subpage);
8531fc6f 3941 if (hstate_is_gigantic(target_hstate))
bdd7be07 3942 prep_compound_gigantic_folio_for_demote(inner_folio,
8531fc6f
MK
3943 target_hstate->order);
3944 else
31731452 3945 prep_compound_page(subpage, target_hstate->order);
bdd7be07
SK
3946 folio_change_private(inner_folio, NULL);
3947 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
454a00c4 3948 free_huge_folio(inner_folio);
8531fc6f
MK
3949 }
3950 mutex_unlock(&target_hstate->resize_lock);
3951
3952 spin_lock_irq(&hugetlb_lock);
3953
3954 /*
3955 * Not absolutely necessary, but for consistency update max_huge_pages
3956 * based on pool changes for the demoted page.
3957 */
3958 h->max_huge_pages--;
a43a83c7
ML
3959 target_hstate->max_huge_pages +=
3960 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
8531fc6f
MK
3961
3962 return rc;
3963}
3964
79dfc695
MK
3965static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3966 __must_hold(&hugetlb_lock)
3967{
8531fc6f 3968 int nr_nodes, node;
bdd7be07 3969 struct folio *folio;
79dfc695
MK
3970
3971 lockdep_assert_held(&hugetlb_lock);
3972
3973 /* We should never get here if no demote order */
3974 if (!h->demote_order) {
3975 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3976 return -EINVAL; /* internal error */
3977 }
3978
8531fc6f 3979 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
bdd7be07
SK
3980 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3981 if (folio_test_hwpoison(folio))
5a317412 3982 continue;
bdd7be07 3983 return demote_free_hugetlb_folio(h, folio);
8531fc6f
MK
3984 }
3985 }
3986
5a317412
MK
3987 /*
3988 * Only way to get here is if all pages on free lists are poisoned.
3989 * Return -EBUSY so that caller will not retry.
3990 */
3991 return -EBUSY;
79dfc695
MK
3992}
3993
a3437870
NA
3994#define HSTATE_ATTR_RO(_name) \
3995 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3996
79dfc695
MK
3997#define HSTATE_ATTR_WO(_name) \
3998 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3999
a3437870 4000#define HSTATE_ATTR(_name) \
98bc26ac 4001 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
a3437870
NA
4002
4003static struct kobject *hugepages_kobj;
4004static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4005
9a305230
LS
4006static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4007
4008static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
4009{
4010 int i;
9a305230 4011
a3437870 4012 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
4013 if (hstate_kobjs[i] == kobj) {
4014 if (nidp)
4015 *nidp = NUMA_NO_NODE;
a3437870 4016 return &hstates[i];
9a305230
LS
4017 }
4018
4019 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
4020}
4021
06808b08 4022static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
4023 struct kobj_attribute *attr, char *buf)
4024{
9a305230
LS
4025 struct hstate *h;
4026 unsigned long nr_huge_pages;
4027 int nid;
4028
4029 h = kobj_to_hstate(kobj, &nid);
4030 if (nid == NUMA_NO_NODE)
4031 nr_huge_pages = h->nr_huge_pages;
4032 else
4033 nr_huge_pages = h->nr_huge_pages_node[nid];
4034
ae7a927d 4035 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
a3437870 4036}
adbe8726 4037
238d3c13
DR
4038static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4039 struct hstate *h, int nid,
4040 unsigned long count, size_t len)
a3437870
NA
4041{
4042 int err;
2d0adf7e 4043 nodemask_t nodes_allowed, *n_mask;
a3437870 4044
2d0adf7e
OS
4045 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4046 return -EINVAL;
adbe8726 4047
9a305230
LS
4048 if (nid == NUMA_NO_NODE) {
4049 /*
4050 * global hstate attribute
4051 */
4052 if (!(obey_mempolicy &&
2d0adf7e
OS
4053 init_nodemask_of_mempolicy(&nodes_allowed)))
4054 n_mask = &node_states[N_MEMORY];
4055 else
4056 n_mask = &nodes_allowed;
4057 } else {
9a305230 4058 /*
fd875dca
MK
4059 * Node specific request. count adjustment happens in
4060 * set_max_huge_pages() after acquiring hugetlb_lock.
9a305230 4061 */
2d0adf7e
OS
4062 init_nodemask_of_node(&nodes_allowed, nid);
4063 n_mask = &nodes_allowed;
fd875dca 4064 }
9a305230 4065
2d0adf7e 4066 err = set_max_huge_pages(h, count, nid, n_mask);
06808b08 4067
4eb0716e 4068 return err ? err : len;
06808b08
LS
4069}
4070
238d3c13
DR
4071static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4072 struct kobject *kobj, const char *buf,
4073 size_t len)
4074{
4075 struct hstate *h;
4076 unsigned long count;
4077 int nid;
4078 int err;
4079
4080 err = kstrtoul(buf, 10, &count);
4081 if (err)
4082 return err;
4083
4084 h = kobj_to_hstate(kobj, &nid);
4085 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4086}
4087
06808b08
LS
4088static ssize_t nr_hugepages_show(struct kobject *kobj,
4089 struct kobj_attribute *attr, char *buf)
4090{
4091 return nr_hugepages_show_common(kobj, attr, buf);
4092}
4093
4094static ssize_t nr_hugepages_store(struct kobject *kobj,
4095 struct kobj_attribute *attr, const char *buf, size_t len)
4096{
238d3c13 4097 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
4098}
4099HSTATE_ATTR(nr_hugepages);
4100
06808b08
LS
4101#ifdef CONFIG_NUMA
4102
4103/*
4104 * hstate attribute for optionally mempolicy-based constraint on persistent
4105 * huge page alloc/free.
4106 */
4107static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
ae7a927d
JP
4108 struct kobj_attribute *attr,
4109 char *buf)
06808b08
LS
4110{
4111 return nr_hugepages_show_common(kobj, attr, buf);
4112}
4113
4114static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4115 struct kobj_attribute *attr, const char *buf, size_t len)
4116{
238d3c13 4117 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
4118}
4119HSTATE_ATTR(nr_hugepages_mempolicy);
4120#endif
4121
4122
a3437870
NA
4123static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4124 struct kobj_attribute *attr, char *buf)
4125{
9a305230 4126 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 4127 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
a3437870 4128}
adbe8726 4129
a3437870
NA
4130static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4131 struct kobj_attribute *attr, const char *buf, size_t count)
4132{
4133 int err;
4134 unsigned long input;
9a305230 4135 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 4136
bae7f4ae 4137 if (hstate_is_gigantic(h))
adbe8726
EM
4138 return -EINVAL;
4139
3dbb95f7 4140 err = kstrtoul(buf, 10, &input);
a3437870 4141 if (err)
73ae31e5 4142 return err;
a3437870 4143
db71ef79 4144 spin_lock_irq(&hugetlb_lock);
a3437870 4145 h->nr_overcommit_huge_pages = input;
db71ef79 4146 spin_unlock_irq(&hugetlb_lock);
a3437870
NA
4147
4148 return count;
4149}
4150HSTATE_ATTR(nr_overcommit_hugepages);
4151
4152static ssize_t free_hugepages_show(struct kobject *kobj,
4153 struct kobj_attribute *attr, char *buf)
4154{
9a305230
LS
4155 struct hstate *h;
4156 unsigned long free_huge_pages;
4157 int nid;
4158
4159 h = kobj_to_hstate(kobj, &nid);
4160 if (nid == NUMA_NO_NODE)
4161 free_huge_pages = h->free_huge_pages;
4162 else
4163 free_huge_pages = h->free_huge_pages_node[nid];
4164
ae7a927d 4165 return sysfs_emit(buf, "%lu\n", free_huge_pages);
a3437870
NA
4166}
4167HSTATE_ATTR_RO(free_hugepages);
4168
4169static ssize_t resv_hugepages_show(struct kobject *kobj,
4170 struct kobj_attribute *attr, char *buf)
4171{
9a305230 4172 struct hstate *h = kobj_to_hstate(kobj, NULL);
ae7a927d 4173 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
a3437870
NA
4174}
4175HSTATE_ATTR_RO(resv_hugepages);
4176
4177static ssize_t surplus_hugepages_show(struct kobject *kobj,
4178 struct kobj_attribute *attr, char *buf)
4179{
9a305230
LS
4180 struct hstate *h;
4181 unsigned long surplus_huge_pages;
4182 int nid;
4183
4184 h = kobj_to_hstate(kobj, &nid);
4185 if (nid == NUMA_NO_NODE)
4186 surplus_huge_pages = h->surplus_huge_pages;
4187 else
4188 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4189
ae7a927d 4190 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
4191}
4192HSTATE_ATTR_RO(surplus_hugepages);
4193
79dfc695
MK
4194static ssize_t demote_store(struct kobject *kobj,
4195 struct kobj_attribute *attr, const char *buf, size_t len)
4196{
4197 unsigned long nr_demote;
4198 unsigned long nr_available;
4199 nodemask_t nodes_allowed, *n_mask;
4200 struct hstate *h;
8eeda55f 4201 int err;
79dfc695
MK
4202 int nid;
4203
4204 err = kstrtoul(buf, 10, &nr_demote);
4205 if (err)
4206 return err;
4207 h = kobj_to_hstate(kobj, &nid);
4208
4209 if (nid != NUMA_NO_NODE) {
4210 init_nodemask_of_node(&nodes_allowed, nid);
4211 n_mask = &nodes_allowed;
4212 } else {
4213 n_mask = &node_states[N_MEMORY];
4214 }
4215
4216 /* Synchronize with other sysfs operations modifying huge pages */
4217 mutex_lock(&h->resize_lock);
4218 spin_lock_irq(&hugetlb_lock);
4219
4220 while (nr_demote) {
4221 /*
4222 * Check for available pages to demote each time thorough the
4223 * loop as demote_pool_huge_page will drop hugetlb_lock.
79dfc695
MK
4224 */
4225 if (nid != NUMA_NO_NODE)
4226 nr_available = h->free_huge_pages_node[nid];
4227 else
4228 nr_available = h->free_huge_pages;
4229 nr_available -= h->resv_huge_pages;
4230 if (!nr_available)
4231 break;
4232
4233 err = demote_pool_huge_page(h, n_mask);
4234 if (err)
4235 break;
4236
4237 nr_demote--;
4238 }
4239
4240 spin_unlock_irq(&hugetlb_lock);
4241 mutex_unlock(&h->resize_lock);
4242
4243 if (err)
4244 return err;
4245 return len;
4246}
4247HSTATE_ATTR_WO(demote);
4248
4249static ssize_t demote_size_show(struct kobject *kobj,
4250 struct kobj_attribute *attr, char *buf)
4251{
12658abf 4252 struct hstate *h = kobj_to_hstate(kobj, NULL);
79dfc695
MK
4253 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4254
4255 return sysfs_emit(buf, "%lukB\n", demote_size);
4256}
4257
4258static ssize_t demote_size_store(struct kobject *kobj,
4259 struct kobj_attribute *attr,
4260 const char *buf, size_t count)
4261{
4262 struct hstate *h, *demote_hstate;
4263 unsigned long demote_size;
4264 unsigned int demote_order;
79dfc695
MK
4265
4266 demote_size = (unsigned long)memparse(buf, NULL);
4267
4268 demote_hstate = size_to_hstate(demote_size);
4269 if (!demote_hstate)
4270 return -EINVAL;
4271 demote_order = demote_hstate->order;
a01f4390
MK
4272 if (demote_order < HUGETLB_PAGE_ORDER)
4273 return -EINVAL;
79dfc695
MK
4274
4275 /* demote order must be smaller than hstate order */
12658abf 4276 h = kobj_to_hstate(kobj, NULL);
79dfc695
MK
4277 if (demote_order >= h->order)
4278 return -EINVAL;
4279
4280 /* resize_lock synchronizes access to demote size and writes */
4281 mutex_lock(&h->resize_lock);
4282 h->demote_order = demote_order;
4283 mutex_unlock(&h->resize_lock);
4284
4285 return count;
4286}
4287HSTATE_ATTR(demote_size);
4288
a3437870
NA
4289static struct attribute *hstate_attrs[] = {
4290 &nr_hugepages_attr.attr,
4291 &nr_overcommit_hugepages_attr.attr,
4292 &free_hugepages_attr.attr,
4293 &resv_hugepages_attr.attr,
4294 &surplus_hugepages_attr.attr,
06808b08
LS
4295#ifdef CONFIG_NUMA
4296 &nr_hugepages_mempolicy_attr.attr,
4297#endif
a3437870
NA
4298 NULL,
4299};
4300
67e5ed96 4301static const struct attribute_group hstate_attr_group = {
a3437870
NA
4302 .attrs = hstate_attrs,
4303};
4304
79dfc695
MK
4305static struct attribute *hstate_demote_attrs[] = {
4306 &demote_size_attr.attr,
4307 &demote_attr.attr,
4308 NULL,
4309};
4310
4311static const struct attribute_group hstate_demote_attr_group = {
4312 .attrs = hstate_demote_attrs,
4313};
4314
094e9539
JM
4315static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4316 struct kobject **hstate_kobjs,
67e5ed96 4317 const struct attribute_group *hstate_attr_group)
a3437870
NA
4318{
4319 int retval;
972dc4de 4320 int hi = hstate_index(h);
a3437870 4321
9a305230
LS
4322 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4323 if (!hstate_kobjs[hi])
a3437870
NA
4324 return -ENOMEM;
4325
9a305230 4326 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
cc2205a6 4327 if (retval) {
9a305230 4328 kobject_put(hstate_kobjs[hi]);
cc2205a6 4329 hstate_kobjs[hi] = NULL;
3a6bdda0 4330 return retval;
cc2205a6 4331 }
a3437870 4332
79dfc695 4333 if (h->demote_order) {
01088a60
ML
4334 retval = sysfs_create_group(hstate_kobjs[hi],
4335 &hstate_demote_attr_group);
4336 if (retval) {
79dfc695 4337 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
01088a60
ML
4338 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4339 kobject_put(hstate_kobjs[hi]);
4340 hstate_kobjs[hi] = NULL;
4341 return retval;
4342 }
79dfc695
MK
4343 }
4344
01088a60 4345 return 0;
a3437870
NA
4346}
4347
9a305230 4348#ifdef CONFIG_NUMA
a4a00b45 4349static bool hugetlb_sysfs_initialized __ro_after_init;
9a305230
LS
4350
4351/*
4352 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
4353 * with node devices in node_devices[] using a parallel array. The array
4354 * index of a node device or _hstate == node id.
4355 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
4356 * the base kernel, on the hugetlb module.
4357 */
4358struct node_hstate {
4359 struct kobject *hugepages_kobj;
4360 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4361};
b4e289a6 4362static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
4363
4364/*
10fbcf4c 4365 * A subset of global hstate attributes for node devices
9a305230
LS
4366 */
4367static struct attribute *per_node_hstate_attrs[] = {
4368 &nr_hugepages_attr.attr,
4369 &free_hugepages_attr.attr,
4370 &surplus_hugepages_attr.attr,
4371 NULL,
4372};
4373
67e5ed96 4374static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
4375 .attrs = per_node_hstate_attrs,
4376};
4377
4378/*
10fbcf4c 4379 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
4380 * Returns node id via non-NULL nidp.
4381 */
4382static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4383{
4384 int nid;
4385
4386 for (nid = 0; nid < nr_node_ids; nid++) {
4387 struct node_hstate *nhs = &node_hstates[nid];
4388 int i;
4389 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4390 if (nhs->hstate_kobjs[i] == kobj) {
4391 if (nidp)
4392 *nidp = nid;
4393 return &hstates[i];
4394 }
4395 }
4396
4397 BUG();
4398 return NULL;
4399}
4400
4401/*
10fbcf4c 4402 * Unregister hstate attributes from a single node device.
9a305230
LS
4403 * No-op if no hstate attributes attached.
4404 */
a4a00b45 4405void hugetlb_unregister_node(struct node *node)
9a305230
LS
4406{
4407 struct hstate *h;
10fbcf4c 4408 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
4409
4410 if (!nhs->hugepages_kobj)
9b5e5d0f 4411 return; /* no hstate attributes */
9a305230 4412
972dc4de
AK
4413 for_each_hstate(h) {
4414 int idx = hstate_index(h);
01088a60
ML
4415 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4416
4417 if (!hstate_kobj)
4418 continue;
4419 if (h->demote_order)
4420 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4421 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4422 kobject_put(hstate_kobj);
4423 nhs->hstate_kobjs[idx] = NULL;
972dc4de 4424 }
9a305230
LS
4425
4426 kobject_put(nhs->hugepages_kobj);
4427 nhs->hugepages_kobj = NULL;
4428}
4429
9a305230
LS
4430
4431/*
10fbcf4c 4432 * Register hstate attributes for a single node device.
9a305230
LS
4433 * No-op if attributes already registered.
4434 */
a4a00b45 4435void hugetlb_register_node(struct node *node)
9a305230
LS
4436{
4437 struct hstate *h;
10fbcf4c 4438 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
4439 int err;
4440
a4a00b45
MS
4441 if (!hugetlb_sysfs_initialized)
4442 return;
4443
9a305230
LS
4444 if (nhs->hugepages_kobj)
4445 return; /* already allocated */
4446
4447 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 4448 &node->dev.kobj);
9a305230
LS
4449 if (!nhs->hugepages_kobj)
4450 return;
4451
4452 for_each_hstate(h) {
4453 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4454 nhs->hstate_kobjs,
4455 &per_node_hstate_attr_group);
4456 if (err) {
282f4214 4457 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
ffb22af5 4458 h->name, node->dev.id);
9a305230
LS
4459 hugetlb_unregister_node(node);
4460 break;
4461 }
4462 }
4463}
4464
4465/*
9b5e5d0f 4466 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
4467 * devices of nodes that have memory. All on-line nodes should have
4468 * registered their associated device by this time.
9a305230 4469 */
7d9ca000 4470static void __init hugetlb_register_all_nodes(void)
9a305230
LS
4471{
4472 int nid;
4473
a4a00b45 4474 for_each_online_node(nid)
b958d4d0 4475 hugetlb_register_node(node_devices[nid]);
9a305230
LS
4476}
4477#else /* !CONFIG_NUMA */
4478
4479static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4480{
4481 BUG();
4482 if (nidp)
4483 *nidp = -1;
4484 return NULL;
4485}
4486
9a305230
LS
4487static void hugetlb_register_all_nodes(void) { }
4488
4489#endif
4490
263b8998
ML
4491#ifdef CONFIG_CMA
4492static void __init hugetlb_cma_check(void);
4493#else
4494static inline __init void hugetlb_cma_check(void)
4495{
4496}
4497#endif
4498
a4a00b45
MS
4499static void __init hugetlb_sysfs_init(void)
4500{
4501 struct hstate *h;
4502 int err;
4503
4504 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4505 if (!hugepages_kobj)
4506 return;
4507
4508 for_each_hstate(h) {
4509 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4510 hstate_kobjs, &hstate_attr_group);
4511 if (err)
4512 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4513 }
4514
4515#ifdef CONFIG_NUMA
4516 hugetlb_sysfs_initialized = true;
4517#endif
4518 hugetlb_register_all_nodes();
4519}
4520
962de548
KW
4521#ifdef CONFIG_SYSCTL
4522static void hugetlb_sysctl_init(void);
4523#else
4524static inline void hugetlb_sysctl_init(void) { }
4525#endif
4526
a3437870
NA
4527static int __init hugetlb_init(void)
4528{
8382d914
DB
4529 int i;
4530
d6995da3
MK
4531 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4532 __NR_HPAGEFLAGS);
4533
c2833a5b
MK
4534 if (!hugepages_supported()) {
4535 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4536 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
0ef89d25 4537 return 0;
c2833a5b 4538 }
a3437870 4539
282f4214
MK
4540 /*
4541 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4542 * architectures depend on setup being done here.
4543 */
4544 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4545 if (!parsed_default_hugepagesz) {
4546 /*
4547 * If we did not parse a default huge page size, set
4548 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4549 * number of huge pages for this default size was implicitly
4550 * specified, set that here as well.
4551 * Note that the implicit setting will overwrite an explicit
4552 * setting. A warning will be printed in this case.
4553 */
4554 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4555 if (default_hstate_max_huge_pages) {
4556 if (default_hstate.max_huge_pages) {
4557 char buf[32];
4558
4559 string_get_size(huge_page_size(&default_hstate),
4560 1, STRING_UNITS_2, buf, 32);
4561 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4562 default_hstate.max_huge_pages, buf);
4563 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4564 default_hstate_max_huge_pages);
4565 }
4566 default_hstate.max_huge_pages =
4567 default_hstate_max_huge_pages;
b5389086 4568
0a7a0f6f 4569 for_each_online_node(i)
b5389086
ZY
4570 default_hstate.max_huge_pages_node[i] =
4571 default_hugepages_in_node[i];
d715cf80 4572 }
f8b74815 4573 }
a3437870 4574
cf11e85f 4575 hugetlb_cma_check();
a3437870 4576 hugetlb_init_hstates();
aa888a74 4577 gather_bootmem_prealloc();
a3437870
NA
4578 report_hugepages();
4579
4580 hugetlb_sysfs_init();
7179e7bf 4581 hugetlb_cgroup_file_init();
962de548 4582 hugetlb_sysctl_init();
9a305230 4583
8382d914
DB
4584#ifdef CONFIG_SMP
4585 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4586#else
4587 num_fault_mutexes = 1;
4588#endif
c672c7f2 4589 hugetlb_fault_mutex_table =
6da2ec56
KC
4590 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4591 GFP_KERNEL);
c672c7f2 4592 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
4593
4594 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 4595 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
4596 return 0;
4597}
3e89e1c5 4598subsys_initcall(hugetlb_init);
a3437870 4599
ae94da89
MK
4600/* Overwritten by architectures with more huge page sizes */
4601bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
9fee021d 4602{
ae94da89 4603 return size == HPAGE_SIZE;
9fee021d
VT
4604}
4605
d00181b9 4606void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
4607{
4608 struct hstate *h;
8faa8b07
AK
4609 unsigned long i;
4610
a3437870 4611 if (size_to_hstate(PAGE_SIZE << order)) {
a3437870
NA
4612 return;
4613 }
47d38344 4614 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
59838b25 4615 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
47d38344 4616 h = &hstates[hugetlb_max_hstate++];
29383967 4617 mutex_init(&h->resize_lock);
a3437870 4618 h->order = order;
aca78307 4619 h->mask = ~(huge_page_size(h) - 1);
8faa8b07
AK
4620 for (i = 0; i < MAX_NUMNODES; ++i)
4621 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 4622 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
4623 h->next_nid_to_alloc = first_memory_node;
4624 h->next_nid_to_free = first_memory_node;
a3437870 4625 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
c2c3a60a 4626 huge_page_size(h)/SZ_1K);
8faa8b07 4627
a3437870
NA
4628 parsed_hstate = h;
4629}
4630
b5389086
ZY
4631bool __init __weak hugetlb_node_alloc_supported(void)
4632{
4633 return true;
4634}
f87442f4
PL
4635
4636static void __init hugepages_clear_pages_in_node(void)
4637{
4638 if (!hugetlb_max_hstate) {
4639 default_hstate_max_huge_pages = 0;
4640 memset(default_hugepages_in_node, 0,
10395680 4641 sizeof(default_hugepages_in_node));
f87442f4
PL
4642 } else {
4643 parsed_hstate->max_huge_pages = 0;
4644 memset(parsed_hstate->max_huge_pages_node, 0,
10395680 4645 sizeof(parsed_hstate->max_huge_pages_node));
f87442f4
PL
4646 }
4647}
4648
282f4214
MK
4649/*
4650 * hugepages command line processing
4651 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4652 * specification. If not, ignore the hugepages value. hugepages can also
4653 * be the first huge page command line option in which case it implicitly
4654 * specifies the number of huge pages for the default size.
4655 */
4656static int __init hugepages_setup(char *s)
a3437870
NA
4657{
4658 unsigned long *mhp;
8faa8b07 4659 static unsigned long *last_mhp;
b5389086
ZY
4660 int node = NUMA_NO_NODE;
4661 int count;
4662 unsigned long tmp;
4663 char *p = s;
a3437870 4664
9fee021d 4665 if (!parsed_valid_hugepagesz) {
282f4214 4666 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
9fee021d 4667 parsed_valid_hugepagesz = true;
f81f6e4b 4668 return 1;
9fee021d 4669 }
282f4214 4670
a3437870 4671 /*
282f4214
MK
4672 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4673 * yet, so this hugepages= parameter goes to the "default hstate".
4674 * Otherwise, it goes with the previously parsed hugepagesz or
4675 * default_hugepagesz.
a3437870 4676 */
9fee021d 4677 else if (!hugetlb_max_hstate)
a3437870
NA
4678 mhp = &default_hstate_max_huge_pages;
4679 else
4680 mhp = &parsed_hstate->max_huge_pages;
4681
8faa8b07 4682 if (mhp == last_mhp) {
282f4214 4683 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
f81f6e4b 4684 return 1;
8faa8b07
AK
4685 }
4686
b5389086
ZY
4687 while (*p) {
4688 count = 0;
4689 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4690 goto invalid;
4691 /* Parameter is node format */
4692 if (p[count] == ':') {
4693 if (!hugetlb_node_alloc_supported()) {
4694 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
f81f6e4b 4695 return 1;
b5389086 4696 }
0a7a0f6f 4697 if (tmp >= MAX_NUMNODES || !node_online(tmp))
e79ce983 4698 goto invalid;
0a7a0f6f 4699 node = array_index_nospec(tmp, MAX_NUMNODES);
b5389086 4700 p += count + 1;
b5389086
ZY
4701 /* Parse hugepages */
4702 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4703 goto invalid;
4704 if (!hugetlb_max_hstate)
4705 default_hugepages_in_node[node] = tmp;
4706 else
4707 parsed_hstate->max_huge_pages_node[node] = tmp;
4708 *mhp += tmp;
4709 /* Go to parse next node*/
4710 if (p[count] == ',')
4711 p += count + 1;
4712 else
4713 break;
4714 } else {
4715 if (p != s)
4716 goto invalid;
4717 *mhp = tmp;
4718 break;
4719 }
4720 }
a3437870 4721
8faa8b07
AK
4722 /*
4723 * Global state is always initialized later in hugetlb_init.
04adbc3f 4724 * But we need to allocate gigantic hstates here early to still
8faa8b07
AK
4725 * use the bootmem allocator.
4726 */
04adbc3f 4727 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
8faa8b07
AK
4728 hugetlb_hstate_alloc_pages(parsed_hstate);
4729
4730 last_mhp = mhp;
4731
a3437870 4732 return 1;
b5389086
ZY
4733
4734invalid:
4735 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
f87442f4 4736 hugepages_clear_pages_in_node();
f81f6e4b 4737 return 1;
a3437870 4738}
282f4214 4739__setup("hugepages=", hugepages_setup);
e11bfbfc 4740
282f4214
MK
4741/*
4742 * hugepagesz command line processing
4743 * A specific huge page size can only be specified once with hugepagesz.
4744 * hugepagesz is followed by hugepages on the command line. The global
4745 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4746 * hugepagesz argument was valid.
4747 */
359f2544 4748static int __init hugepagesz_setup(char *s)
e11bfbfc 4749{
359f2544 4750 unsigned long size;
282f4214
MK
4751 struct hstate *h;
4752
4753 parsed_valid_hugepagesz = false;
359f2544
MK
4754 size = (unsigned long)memparse(s, NULL);
4755
4756 if (!arch_hugetlb_valid_size(size)) {
282f4214 4757 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
f81f6e4b 4758 return 1;
359f2544
MK
4759 }
4760
282f4214
MK
4761 h = size_to_hstate(size);
4762 if (h) {
4763 /*
4764 * hstate for this size already exists. This is normally
4765 * an error, but is allowed if the existing hstate is the
4766 * default hstate. More specifically, it is only allowed if
4767 * the number of huge pages for the default hstate was not
4768 * previously specified.
4769 */
4770 if (!parsed_default_hugepagesz || h != &default_hstate ||
4771 default_hstate.max_huge_pages) {
4772 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
f81f6e4b 4773 return 1;
282f4214
MK
4774 }
4775
4776 /*
4777 * No need to call hugetlb_add_hstate() as hstate already
4778 * exists. But, do set parsed_hstate so that a following
4779 * hugepages= parameter will be applied to this hstate.
4780 */
4781 parsed_hstate = h;
4782 parsed_valid_hugepagesz = true;
4783 return 1;
38237830
MK
4784 }
4785
359f2544 4786 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
282f4214 4787 parsed_valid_hugepagesz = true;
e11bfbfc
NP
4788 return 1;
4789}
359f2544
MK
4790__setup("hugepagesz=", hugepagesz_setup);
4791
282f4214
MK
4792/*
4793 * default_hugepagesz command line input
4794 * Only one instance of default_hugepagesz allowed on command line.
4795 */
ae94da89 4796static int __init default_hugepagesz_setup(char *s)
e11bfbfc 4797{
ae94da89 4798 unsigned long size;
b5389086 4799 int i;
ae94da89 4800
282f4214 4801 parsed_valid_hugepagesz = false;
282f4214
MK
4802 if (parsed_default_hugepagesz) {
4803 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
f81f6e4b 4804 return 1;
282f4214
MK
4805 }
4806
ae94da89
MK
4807 size = (unsigned long)memparse(s, NULL);
4808
4809 if (!arch_hugetlb_valid_size(size)) {
282f4214 4810 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
f81f6e4b 4811 return 1;
ae94da89
MK
4812 }
4813
282f4214
MK
4814 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4815 parsed_valid_hugepagesz = true;
4816 parsed_default_hugepagesz = true;
4817 default_hstate_idx = hstate_index(size_to_hstate(size));
4818
4819 /*
4820 * The number of default huge pages (for this size) could have been
4821 * specified as the first hugetlb parameter: hugepages=X. If so,
4822 * then default_hstate_max_huge_pages is set. If the default huge
5e0a760b 4823 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
282f4214
MK
4824 * allocated here from bootmem allocator.
4825 */
4826 if (default_hstate_max_huge_pages) {
4827 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
0a7a0f6f 4828 for_each_online_node(i)
b5389086
ZY
4829 default_hstate.max_huge_pages_node[i] =
4830 default_hugepages_in_node[i];
282f4214
MK
4831 if (hstate_is_gigantic(&default_hstate))
4832 hugetlb_hstate_alloc_pages(&default_hstate);
4833 default_hstate_max_huge_pages = 0;
4834 }
4835
e11bfbfc
NP
4836 return 1;
4837}
ae94da89 4838__setup("default_hugepagesz=", default_hugepagesz_setup);
a3437870 4839
d2226ebd
FT
4840static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4841{
4842#ifdef CONFIG_NUMA
4843 struct mempolicy *mpol = get_task_policy(current);
4844
4845 /*
4846 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4847 * (from policy_nodemask) specifically for hugetlb case
4848 */
4849 if (mpol->mode == MPOL_BIND &&
4850 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4851 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4852 return &mpol->nodes;
4853#endif
4854 return NULL;
4855}
4856
8ca39e68 4857static unsigned int allowed_mems_nr(struct hstate *h)
8a213460
NA
4858{
4859 int node;
4860 unsigned int nr = 0;
d2226ebd 4861 nodemask_t *mbind_nodemask;
8ca39e68
MS
4862 unsigned int *array = h->free_huge_pages_node;
4863 gfp_t gfp_mask = htlb_alloc_mask(h);
4864
d2226ebd 4865 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
8ca39e68 4866 for_each_node_mask(node, cpuset_current_mems_allowed) {
d2226ebd 4867 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
8ca39e68
MS
4868 nr += array[node];
4869 }
8a213460
NA
4870
4871 return nr;
4872}
4873
4874#ifdef CONFIG_SYSCTL
17743798
MS
4875static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4876 void *buffer, size_t *length,
4877 loff_t *ppos, unsigned long *out)
4878{
4879 struct ctl_table dup_table;
4880
4881 /*
4882 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4883 * can duplicate the @table and alter the duplicate of it.
4884 */
4885 dup_table = *table;
4886 dup_table.data = out;
4887
4888 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4889}
4890
06808b08
LS
4891static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4892 struct ctl_table *table, int write,
32927393 4893 void *buffer, size_t *length, loff_t *ppos)
1da177e4 4894{
e5ff2159 4895 struct hstate *h = &default_hstate;
238d3c13 4896 unsigned long tmp = h->max_huge_pages;
08d4a246 4897 int ret;
e5ff2159 4898
457c1b27 4899 if (!hugepages_supported())
86613628 4900 return -EOPNOTSUPP;
457c1b27 4901
17743798
MS
4902 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4903 &tmp);
08d4a246
MH
4904 if (ret)
4905 goto out;
e5ff2159 4906
238d3c13
DR
4907 if (write)
4908 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4909 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
4910out:
4911 return ret;
1da177e4 4912}
396faf03 4913
962de548 4914static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
32927393 4915 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
4916{
4917
4918 return hugetlb_sysctl_handler_common(false, table, write,
4919 buffer, length, ppos);
4920}
4921
4922#ifdef CONFIG_NUMA
962de548 4923static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
32927393 4924 void *buffer, size_t *length, loff_t *ppos)
06808b08
LS
4925{
4926 return hugetlb_sysctl_handler_common(true, table, write,
4927 buffer, length, ppos);
4928}
4929#endif /* CONFIG_NUMA */
4930
962de548 4931static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
32927393 4932 void *buffer, size_t *length, loff_t *ppos)
a3d0c6aa 4933{
a5516438 4934 struct hstate *h = &default_hstate;
e5ff2159 4935 unsigned long tmp;
08d4a246 4936 int ret;
e5ff2159 4937
457c1b27 4938 if (!hugepages_supported())
86613628 4939 return -EOPNOTSUPP;
457c1b27 4940
c033a93c 4941 tmp = h->nr_overcommit_huge_pages;
e5ff2159 4942
bae7f4ae 4943 if (write && hstate_is_gigantic(h))
adbe8726
EM
4944 return -EINVAL;
4945
17743798
MS
4946 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4947 &tmp);
08d4a246
MH
4948 if (ret)
4949 goto out;
e5ff2159
AK
4950
4951 if (write) {
db71ef79 4952 spin_lock_irq(&hugetlb_lock);
e5ff2159 4953 h->nr_overcommit_huge_pages = tmp;
db71ef79 4954 spin_unlock_irq(&hugetlb_lock);
e5ff2159 4955 }
08d4a246
MH
4956out:
4957 return ret;
a3d0c6aa
NA
4958}
4959
962de548
KW
4960static struct ctl_table hugetlb_table[] = {
4961 {
4962 .procname = "nr_hugepages",
4963 .data = NULL,
4964 .maxlen = sizeof(unsigned long),
4965 .mode = 0644,
4966 .proc_handler = hugetlb_sysctl_handler,
4967 },
4968#ifdef CONFIG_NUMA
4969 {
4970 .procname = "nr_hugepages_mempolicy",
4971 .data = NULL,
4972 .maxlen = sizeof(unsigned long),
4973 .mode = 0644,
4974 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
4975 },
4976#endif
4977 {
4978 .procname = "hugetlb_shm_group",
4979 .data = &sysctl_hugetlb_shm_group,
4980 .maxlen = sizeof(gid_t),
4981 .mode = 0644,
4982 .proc_handler = proc_dointvec,
4983 },
4984 {
4985 .procname = "nr_overcommit_hugepages",
4986 .data = NULL,
4987 .maxlen = sizeof(unsigned long),
4988 .mode = 0644,
4989 .proc_handler = hugetlb_overcommit_handler,
4990 },
962de548
KW
4991};
4992
4993static void hugetlb_sysctl_init(void)
4994{
4995 register_sysctl_init("vm", hugetlb_table);
4996}
1da177e4
LT
4997#endif /* CONFIG_SYSCTL */
4998
e1759c21 4999void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 5000{
fcb2b0c5
RG
5001 struct hstate *h;
5002 unsigned long total = 0;
5003
457c1b27
NA
5004 if (!hugepages_supported())
5005 return;
fcb2b0c5
RG
5006
5007 for_each_hstate(h) {
5008 unsigned long count = h->nr_huge_pages;
5009
aca78307 5010 total += huge_page_size(h) * count;
fcb2b0c5
RG
5011
5012 if (h == &default_hstate)
5013 seq_printf(m,
5014 "HugePages_Total: %5lu\n"
5015 "HugePages_Free: %5lu\n"
5016 "HugePages_Rsvd: %5lu\n"
5017 "HugePages_Surp: %5lu\n"
5018 "Hugepagesize: %8lu kB\n",
5019 count,
5020 h->free_huge_pages,
5021 h->resv_huge_pages,
5022 h->surplus_huge_pages,
aca78307 5023 huge_page_size(h) / SZ_1K);
fcb2b0c5
RG
5024 }
5025
aca78307 5026 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
1da177e4
LT
5027}
5028
7981593b 5029int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1da177e4 5030{
a5516438 5031 struct hstate *h = &default_hstate;
7981593b 5032
457c1b27
NA
5033 if (!hugepages_supported())
5034 return 0;
7981593b
JP
5035
5036 return sysfs_emit_at(buf, len,
5037 "Node %d HugePages_Total: %5u\n"
5038 "Node %d HugePages_Free: %5u\n"
5039 "Node %d HugePages_Surp: %5u\n",
5040 nid, h->nr_huge_pages_node[nid],
5041 nid, h->free_huge_pages_node[nid],
5042 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
5043}
5044
dcadcf1c 5045void hugetlb_show_meminfo_node(int nid)
949f7ec5
DR
5046{
5047 struct hstate *h;
949f7ec5 5048
457c1b27
NA
5049 if (!hugepages_supported())
5050 return;
5051
dcadcf1c
GL
5052 for_each_hstate(h)
5053 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5054 nid,
5055 h->nr_huge_pages_node[nid],
5056 h->free_huge_pages_node[nid],
5057 h->surplus_huge_pages_node[nid],
5058 huge_page_size(h) / SZ_1K);
949f7ec5
DR
5059}
5060
5d317b2b
NH
5061void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5062{
5063 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
6c1aa2d3 5064 K(atomic_long_read(&mm->hugetlb_usage)));
5d317b2b
NH
5065}
5066
1da177e4
LT
5067/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
5068unsigned long hugetlb_total_pages(void)
5069{
d0028588
WL
5070 struct hstate *h;
5071 unsigned long nr_total_pages = 0;
5072
5073 for_each_hstate(h)
5074 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5075 return nr_total_pages;
1da177e4 5076}
1da177e4 5077
a5516438 5078static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
5079{
5080 int ret = -ENOMEM;
5081
0aa7f354
ML
5082 if (!delta)
5083 return 0;
5084
db71ef79 5085 spin_lock_irq(&hugetlb_lock);
fc1b8a73
MG
5086 /*
5087 * When cpuset is configured, it breaks the strict hugetlb page
5088 * reservation as the accounting is done on a global variable. Such
5089 * reservation is completely rubbish in the presence of cpuset because
5090 * the reservation is not checked against page availability for the
5091 * current cpuset. Application can still potentially OOM'ed by kernel
5092 * with lack of free htlb page in cpuset that the task is in.
5093 * Attempt to enforce strict accounting with cpuset is almost
5094 * impossible (or too ugly) because cpuset is too fluid that
5095 * task or memory node can be dynamically moved between cpusets.
5096 *
5097 * The change of semantics for shared hugetlb mapping with cpuset is
5098 * undesirable. However, in order to preserve some of the semantics,
5099 * we fall back to check against current free page availability as
5100 * a best attempt and hopefully to minimize the impact of changing
5101 * semantics that cpuset has.
8ca39e68
MS
5102 *
5103 * Apart from cpuset, we also have memory policy mechanism that
5104 * also determines from which node the kernel will allocate memory
5105 * in a NUMA system. So similar to cpuset, we also should consider
5106 * the memory policy of the current task. Similar to the description
5107 * above.
fc1b8a73
MG
5108 */
5109 if (delta > 0) {
a5516438 5110 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
5111 goto out;
5112
8ca39e68 5113 if (delta > allowed_mems_nr(h)) {
a5516438 5114 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
5115 goto out;
5116 }
5117 }
5118
5119 ret = 0;
5120 if (delta < 0)
a5516438 5121 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
5122
5123out:
db71ef79 5124 spin_unlock_irq(&hugetlb_lock);
fc1b8a73
MG
5125 return ret;
5126}
5127
84afd99b
AW
5128static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5129{
f522c3ac 5130 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
5131
5132 /*
612b8a31 5133 * HPAGE_RESV_OWNER indicates a private mapping.
84afd99b
AW
5134 * This new VMA should share its siblings reservation map if present.
5135 * The VMA will only ever have a valid reservation map pointer where
5136 * it is being copied for another still existing VMA. As that VMA
25985edc 5137 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
5138 * after this open call completes. It is therefore safe to take a
5139 * new reference here without additional locking.
5140 */
09a26e83
MK
5141 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5142 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
f522c3ac 5143 kref_get(&resv->refs);
09a26e83 5144 }
8d9bfb26 5145
131a79b4
MK
5146 /*
5147 * vma_lock structure for sharable mappings is vma specific.
612b8a31
MK
5148 * Clear old pointer (if copied via vm_area_dup) and allocate
5149 * new structure. Before clearing, make sure vma_lock is not
5150 * for this vma.
131a79b4
MK
5151 */
5152 if (vma->vm_flags & VM_MAYSHARE) {
612b8a31
MK
5153 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5154
5155 if (vma_lock) {
5156 if (vma_lock->vma != vma) {
5157 vma->vm_private_data = NULL;
5158 hugetlb_vma_lock_alloc(vma);
5159 } else
5160 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5161 } else
5162 hugetlb_vma_lock_alloc(vma);
131a79b4 5163 }
84afd99b
AW
5164}
5165
a1e78772
MG
5166static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5167{
a5516438 5168 struct hstate *h = hstate_vma(vma);
8d9bfb26 5169 struct resv_map *resv;
90481622 5170 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 5171 unsigned long reserve, start, end;
1c5ecae3 5172 long gbl_reserve;
84afd99b 5173
8d9bfb26
MK
5174 hugetlb_vma_lock_free(vma);
5175
5176 resv = vma_resv_map(vma);
4e35f483
JK
5177 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5178 return;
84afd99b 5179
4e35f483
JK
5180 start = vma_hugecache_offset(h, vma, vma->vm_start);
5181 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 5182
4e35f483 5183 reserve = (end - start) - region_count(resv, start, end);
e9fe92ae 5184 hugetlb_cgroup_uncharge_counter(resv, start, end);
4e35f483 5185 if (reserve) {
1c5ecae3
MK
5186 /*
5187 * Decrement reserve counts. The global reserve count may be
5188 * adjusted if the subpool has a minimum size.
5189 */
5190 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5191 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 5192 }
e9fe92ae
MA
5193
5194 kref_put(&resv->refs, resv_map_release);
a1e78772
MG
5195}
5196
31383c68
DW
5197static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5198{
5199 if (addr & ~(huge_page_mask(hstate_vma(vma))))
5200 return -EINVAL;
b30c14cd
JH
5201
5202 /*
5203 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5204 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5205 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5206 */
5207 if (addr & ~PUD_MASK) {
5208 /*
5209 * hugetlb_vm_op_split is called right before we attempt to
5210 * split the VMA. We will need to unshare PMDs in the old and
5211 * new VMAs, so let's unshare before we split.
5212 */
5213 unsigned long floor = addr & PUD_MASK;
5214 unsigned long ceil = floor + PUD_SIZE;
5215
5216 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5217 hugetlb_unshare_pmds(vma, floor, ceil);
5218 }
5219
31383c68
DW
5220 return 0;
5221}
5222
05ea8860
DW
5223static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5224{
aca78307 5225 return huge_page_size(hstate_vma(vma));
05ea8860
DW
5226}
5227
1da177e4
LT
5228/*
5229 * We cannot handle pagefaults against hugetlb pages at all. They cause
5230 * handle_mm_fault() to try to instantiate regular-sized pages in the
6c26d310 5231 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
1da177e4
LT
5232 * this far.
5233 */
b3ec9f33 5234static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
5235{
5236 BUG();
d0217ac0 5237 return 0;
1da177e4
LT
5238}
5239
eec3636a
JC
5240/*
5241 * When a new function is introduced to vm_operations_struct and added
5242 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5243 * This is because under System V memory model, mappings created via
5244 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5245 * their original vm_ops are overwritten with shm_vm_ops.
5246 */
f0f37e2f 5247const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 5248 .fault = hugetlb_vm_op_fault,
84afd99b 5249 .open = hugetlb_vm_op_open,
a1e78772 5250 .close = hugetlb_vm_op_close,
dd3b614f 5251 .may_split = hugetlb_vm_op_split,
05ea8860 5252 .pagesize = hugetlb_vm_op_pagesize,
1da177e4
LT
5253};
5254
1e8f889b
DG
5255static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5256 int writable)
63551ae0
DG
5257{
5258 pte_t entry;
79c1c594 5259 unsigned int shift = huge_page_shift(hstate_vma(vma));
63551ae0 5260
1e8f889b 5261 if (writable) {
106c992a
GS
5262 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5263 vma->vm_page_prot)));
63551ae0 5264 } else {
106c992a
GS
5265 entry = huge_pte_wrprotect(mk_huge_pte(page,
5266 vma->vm_page_prot));
63551ae0
DG
5267 }
5268 entry = pte_mkyoung(entry);
79c1c594 5269 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
63551ae0
DG
5270
5271 return entry;
5272}
5273
1e8f889b
DG
5274static void set_huge_ptep_writable(struct vm_area_struct *vma,
5275 unsigned long address, pte_t *ptep)
5276{
5277 pte_t entry;
5278
106c992a 5279 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 5280 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 5281 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
5282}
5283
d5ed7444 5284bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
5285{
5286 swp_entry_t swp;
5287
5288 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 5289 return false;
4a705fef 5290 swp = pte_to_swp_entry(pte);
d79d176a 5291 if (is_migration_entry(swp))
d5ed7444 5292 return true;
4a705fef 5293 else
d5ed7444 5294 return false;
4a705fef
NH
5295}
5296
52526ca7 5297bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4a705fef
NH
5298{
5299 swp_entry_t swp;
5300
5301 if (huge_pte_none(pte) || pte_present(pte))
3e5c3600 5302 return false;
4a705fef 5303 swp = pte_to_swp_entry(pte);
d79d176a 5304 if (is_hwpoison_entry(swp))
3e5c3600 5305 return true;
4a705fef 5306 else
3e5c3600 5307 return false;
4a705fef 5308}
1e8f889b 5309
4eae4efa 5310static void
ea4c353d 5311hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
935d4f0c 5312 struct folio *new_folio, pte_t old, unsigned long sz)
4eae4efa 5313{
5a2f8d22
PX
5314 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5315
ea4c353d 5316 __folio_mark_uptodate(new_folio);
9d5fafd5 5317 hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5a2f8d22
PX
5318 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5319 newpte = huge_pte_mkuffd_wp(newpte);
935d4f0c 5320 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
4eae4efa 5321 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
ea4c353d 5322 folio_set_hugetlb_migratable(new_folio);
4eae4efa
PX
5323}
5324
63551ae0 5325int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
bc70fbf2
PX
5326 struct vm_area_struct *dst_vma,
5327 struct vm_area_struct *src_vma)
63551ae0 5328{
3aa4ed80 5329 pte_t *src_pte, *dst_pte, entry;
ad27ce20 5330 struct folio *pte_folio;
1c59827d 5331 unsigned long addr;
bc70fbf2
PX
5332 bool cow = is_cow_mapping(src_vma->vm_flags);
5333 struct hstate *h = hstate_vma(src_vma);
a5516438 5334 unsigned long sz = huge_page_size(h);
4eae4efa 5335 unsigned long npages = pages_per_huge_page(h);
ac46d4f3 5336 struct mmu_notifier_range range;
e95a9851 5337 unsigned long last_addr_mask;
e8569dd2 5338 int ret = 0;
1e8f889b 5339
ac46d4f3 5340 if (cow) {
7d4a8be0 5341 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
bc70fbf2
PX
5342 src_vma->vm_start,
5343 src_vma->vm_end);
ac46d4f3 5344 mmu_notifier_invalidate_range_start(&range);
e727bfd5 5345 vma_assert_write_locked(src_vma);
623a1ddf 5346 raw_write_seqcount_begin(&src->write_protect_seq);
40549ba8
MK
5347 } else {
5348 /*
5349 * For shared mappings the vma lock must be held before
9c67a207 5350 * calling hugetlb_walk() in the src vma. Otherwise, the
40549ba8
MK
5351 * returned ptep could go away if part of a shared pmd and
5352 * another thread calls huge_pmd_unshare.
5353 */
5354 hugetlb_vma_lock_read(src_vma);
ac46d4f3 5355 }
e8569dd2 5356
e95a9851 5357 last_addr_mask = hugetlb_mask_last_page(h);
bc70fbf2 5358 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
cb900f41 5359 spinlock_t *src_ptl, *dst_ptl;
9c67a207 5360 src_pte = hugetlb_walk(src_vma, addr, sz);
e95a9851
MK
5361 if (!src_pte) {
5362 addr |= last_addr_mask;
c74df32c 5363 continue;
e95a9851 5364 }
bc70fbf2 5365 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
e8569dd2
AS
5366 if (!dst_pte) {
5367 ret = -ENOMEM;
5368 break;
5369 }
c5c99429 5370
5e41540c
MK
5371 /*
5372 * If the pagetables are shared don't copy or take references.
5e41540c 5373 *
3aa4ed80 5374 * dst_pte == src_pte is the common case of src/dest sharing.
5e41540c 5375 * However, src could have 'unshared' and dst shares with
3aa4ed80
ML
5376 * another vma. So page_count of ptep page is checked instead
5377 * to reliably determine whether pte is shared.
5e41540c 5378 */
3aa4ed80 5379 if (page_count(virt_to_page(dst_pte)) > 1) {
e95a9851 5380 addr |= last_addr_mask;
c5c99429 5381 continue;
e95a9851 5382 }
c5c99429 5383
cb900f41
KS
5384 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5385 src_ptl = huge_pte_lockptr(h, src, src_pte);
5386 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 5387 entry = huge_ptep_get(src_pte);
4eae4efa 5388again:
3aa4ed80 5389 if (huge_pte_none(entry)) {
5e41540c 5390 /*
3aa4ed80 5391 * Skip if src entry none.
5e41540c 5392 */
4a705fef 5393 ;
c2cb0dcc 5394 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5a2f8d22 5395 if (!userfaultfd_wp(dst_vma))
c2cb0dcc 5396 entry = huge_pte_clear_uffd_wp(entry);
935d4f0c 5397 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
c2cb0dcc 5398 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
4a705fef 5399 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5a2f8d22 5400 bool uffd_wp = pte_swp_uffd_wp(entry);
4a705fef 5401
6c287605 5402 if (!is_readable_migration_entry(swp_entry) && cow) {
4a705fef
NH
5403 /*
5404 * COW mappings require pages in both
5405 * parent and child to be set to read.
5406 */
4dd845b5
AP
5407 swp_entry = make_readable_migration_entry(
5408 swp_offset(swp_entry));
4a705fef 5409 entry = swp_entry_to_pte(swp_entry);
bc70fbf2 5410 if (userfaultfd_wp(src_vma) && uffd_wp)
5a2f8d22 5411 entry = pte_swp_mkuffd_wp(entry);
935d4f0c 5412 set_huge_pte_at(src, addr, src_pte, entry, sz);
4a705fef 5413 }
5a2f8d22 5414 if (!userfaultfd_wp(dst_vma))
bc70fbf2 5415 entry = huge_pte_clear_uffd_wp(entry);
935d4f0c 5416 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
bc70fbf2 5417 } else if (unlikely(is_pte_marker(entry))) {
af19487f
AR
5418 pte_marker marker = copy_pte_marker(
5419 pte_to_swp_entry(entry), dst_vma);
5420
5421 if (marker)
5422 set_huge_pte_at(dst, addr, dst_pte,
935d4f0c 5423 make_pte_marker(marker), sz);
4a705fef 5424 } else {
4eae4efa 5425 entry = huge_ptep_get(src_pte);
ad27ce20
Z
5426 pte_folio = page_folio(pte_page(entry));
5427 folio_get(pte_folio);
4eae4efa
PX
5428
5429 /*
fb3d824d
DH
5430 * Failing to duplicate the anon rmap is a rare case
5431 * where we see pinned hugetlb pages while they're
5432 * prone to COW. We need to do the COW earlier during
5433 * fork.
4eae4efa
PX
5434 *
5435 * When pre-allocating the page or copying data, we
5436 * need to be without the pgtable locks since we could
5437 * sleep during the process.
5438 */
ad27ce20 5439 if (!folio_test_anon(pte_folio)) {
44887f39 5440 hugetlb_add_file_rmap(pte_folio);
ebe2e35e 5441 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
4eae4efa 5442 pte_t src_pte_old = entry;
d0ce0e47 5443 struct folio *new_folio;
4eae4efa
PX
5444
5445 spin_unlock(src_ptl);
5446 spin_unlock(dst_ptl);
5447 /* Do not use reserve as it's private owned */
d0ce0e47
SK
5448 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5449 if (IS_ERR(new_folio)) {
ad27ce20 5450 folio_put(pte_folio);
d0ce0e47 5451 ret = PTR_ERR(new_folio);
4eae4efa
PX
5452 break;
5453 }
1cb9dc4b 5454 ret = copy_user_large_folio(new_folio,
ad27ce20
Z
5455 pte_folio,
5456 addr, dst_vma);
5457 folio_put(pte_folio);
1cb9dc4b
LS
5458 if (ret) {
5459 folio_put(new_folio);
5460 break;
5461 }
4eae4efa 5462
d0ce0e47 5463 /* Install the new hugetlb folio if src pte stable */
4eae4efa
PX
5464 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5465 src_ptl = huge_pte_lockptr(h, src, src_pte);
5466 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5467 entry = huge_ptep_get(src_pte);
5468 if (!pte_same(src_pte_old, entry)) {
bc70fbf2 5469 restore_reserve_on_error(h, dst_vma, addr,
d2d7bb44 5470 new_folio);
d0ce0e47 5471 folio_put(new_folio);
3aa4ed80 5472 /* huge_ptep of dst_pte won't change as in child */
4eae4efa
PX
5473 goto again;
5474 }
5a2f8d22 5475 hugetlb_install_folio(dst_vma, dst_pte, addr,
935d4f0c 5476 new_folio, src_pte_old, sz);
4eae4efa
PX
5477 spin_unlock(src_ptl);
5478 spin_unlock(dst_ptl);
5479 continue;
5480 }
5481
34ee645e 5482 if (cow) {
0f10851e
JG
5483 /*
5484 * No need to notify as we are downgrading page
5485 * table protection not changing it to point
5486 * to a new page.
5487 *
ee65728e 5488 * See Documentation/mm/mmu_notifier.rst
0f10851e 5489 */
7f2e9525 5490 huge_ptep_set_wrprotect(src, addr, src_pte);
84894e1c 5491 entry = huge_pte_wrprotect(entry);
34ee645e 5492 }
4eae4efa 5493
5a2f8d22
PX
5494 if (!userfaultfd_wp(dst_vma))
5495 entry = huge_pte_clear_uffd_wp(entry);
5496
935d4f0c 5497 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
4eae4efa 5498 hugetlb_count_add(npages, dst);
1c59827d 5499 }
cb900f41
KS
5500 spin_unlock(src_ptl);
5501 spin_unlock(dst_ptl);
63551ae0 5502 }
63551ae0 5503
623a1ddf
DH
5504 if (cow) {
5505 raw_write_seqcount_end(&src->write_protect_seq);
ac46d4f3 5506 mmu_notifier_invalidate_range_end(&range);
40549ba8
MK
5507 } else {
5508 hugetlb_vma_unlock_read(src_vma);
623a1ddf 5509 }
e8569dd2
AS
5510
5511 return ret;
63551ae0
DG
5512}
5513
550a7d60 5514static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
935d4f0c
RR
5515 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5516 unsigned long sz)
550a7d60
MA
5517{
5518 struct hstate *h = hstate_vma(vma);
5519 struct mm_struct *mm = vma->vm_mm;
550a7d60 5520 spinlock_t *src_ptl, *dst_ptl;
db110a99 5521 pte_t pte;
550a7d60 5522
550a7d60
MA
5523 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5524 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5525
5526 /*
5527 * We don't have to worry about the ordering of src and dst ptlocks
8651a137 5528 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
550a7d60
MA
5529 */
5530 if (src_ptl != dst_ptl)
5531 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5532
5533 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
935d4f0c 5534 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
550a7d60
MA
5535
5536 if (src_ptl != dst_ptl)
5537 spin_unlock(src_ptl);
5538 spin_unlock(dst_ptl);
5539}
5540
5541int move_hugetlb_page_tables(struct vm_area_struct *vma,
5542 struct vm_area_struct *new_vma,
5543 unsigned long old_addr, unsigned long new_addr,
5544 unsigned long len)
5545{
5546 struct hstate *h = hstate_vma(vma);
5547 struct address_space *mapping = vma->vm_file->f_mapping;
5548 unsigned long sz = huge_page_size(h);
5549 struct mm_struct *mm = vma->vm_mm;
5550 unsigned long old_end = old_addr + len;
e95a9851 5551 unsigned long last_addr_mask;
550a7d60
MA
5552 pte_t *src_pte, *dst_pte;
5553 struct mmu_notifier_range range;
3d0b95cd 5554 bool shared_pmd = false;
550a7d60 5555
7d4a8be0 5556 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
550a7d60
MA
5557 old_end);
5558 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3d0b95cd
BW
5559 /*
5560 * In case of shared PMDs, we should cover the maximum possible
5561 * range.
5562 */
5563 flush_cache_range(vma, range.start, range.end);
5564
550a7d60 5565 mmu_notifier_invalidate_range_start(&range);
e95a9851 5566 last_addr_mask = hugetlb_mask_last_page(h);
550a7d60 5567 /* Prevent race with file truncation */
40549ba8 5568 hugetlb_vma_lock_write(vma);
550a7d60
MA
5569 i_mmap_lock_write(mapping);
5570 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
9c67a207 5571 src_pte = hugetlb_walk(vma, old_addr, sz);
e95a9851
MK
5572 if (!src_pte) {
5573 old_addr |= last_addr_mask;
5574 new_addr |= last_addr_mask;
550a7d60 5575 continue;
e95a9851 5576 }
550a7d60
MA
5577 if (huge_pte_none(huge_ptep_get(src_pte)))
5578 continue;
5579
4ddb4d91 5580 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
3d0b95cd 5581 shared_pmd = true;
4ddb4d91
MK
5582 old_addr |= last_addr_mask;
5583 new_addr |= last_addr_mask;
550a7d60 5584 continue;
3d0b95cd 5585 }
550a7d60
MA
5586
5587 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5588 if (!dst_pte)
5589 break;
5590
935d4f0c 5591 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
550a7d60 5592 }
3d0b95cd
BW
5593
5594 if (shared_pmd)
f720b471 5595 flush_hugetlb_tlb_range(vma, range.start, range.end);
3d0b95cd 5596 else
f720b471 5597 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
550a7d60 5598 mmu_notifier_invalidate_range_end(&range);
13e4ad2c 5599 i_mmap_unlock_write(mapping);
40549ba8 5600 hugetlb_vma_unlock_write(vma);
550a7d60
MA
5601
5602 return len + old_addr - old_end;
5603}
5604
2820b0f0
RR
5605void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5606 unsigned long start, unsigned long end,
5607 struct page *ref_page, zap_flags_t zap_flags)
63551ae0
DG
5608{
5609 struct mm_struct *mm = vma->vm_mm;
5610 unsigned long address;
c7546f8f 5611 pte_t *ptep;
63551ae0 5612 pte_t pte;
cb900f41 5613 spinlock_t *ptl;
63551ae0 5614 struct page *page;
a5516438
AK
5615 struct hstate *h = hstate_vma(vma);
5616 unsigned long sz = huge_page_size(h);
df7a6d1f 5617 bool adjust_reservation = false;
e95a9851 5618 unsigned long last_addr_mask;
a4a118f2 5619 bool force_flush = false;
a5516438 5620
63551ae0 5621 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
5622 BUG_ON(start & ~huge_page_mask(h));
5623 BUG_ON(end & ~huge_page_mask(h));
63551ae0 5624
07e32661
AK
5625 /*
5626 * This is a hugetlb vma, all the pte entries should point
5627 * to huge page.
5628 */
ed6a7935 5629 tlb_change_page_size(tlb, sz);
24669e58 5630 tlb_start_vma(tlb, vma);
dff11abe 5631
e95a9851 5632 last_addr_mask = hugetlb_mask_last_page(h);
569f48b8 5633 address = start;
569f48b8 5634 for (; address < end; address += sz) {
9c67a207 5635 ptep = hugetlb_walk(vma, address, sz);
e95a9851
MK
5636 if (!ptep) {
5637 address |= last_addr_mask;
c7546f8f 5638 continue;
e95a9851 5639 }
c7546f8f 5640
cb900f41 5641 ptl = huge_pte_lock(h, mm, ptep);
4ddb4d91 5642 if (huge_pmd_unshare(mm, vma, address, ptep)) {
31d49da5 5643 spin_unlock(ptl);
a4a118f2
NA
5644 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5645 force_flush = true;
4ddb4d91 5646 address |= last_addr_mask;
31d49da5
AK
5647 continue;
5648 }
39dde65c 5649
6629326b 5650 pte = huge_ptep_get(ptep);
31d49da5
AK
5651 if (huge_pte_none(pte)) {
5652 spin_unlock(ptl);
5653 continue;
5654 }
6629326b
HD
5655
5656 /*
9fbc1f63
NH
5657 * Migrating hugepage or HWPoisoned hugepage is already
5658 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 5659 */
9fbc1f63 5660 if (unlikely(!pte_present(pte))) {
05e90bd0
PX
5661 /*
5662 * If the pte was wr-protected by uffd-wp in any of the
5663 * swap forms, meanwhile the caller does not want to
5664 * drop the uffd-wp bit in this zap, then replace the
5665 * pte with a marker.
5666 */
5667 if (pte_swp_uffd_wp_any(pte) &&
5668 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5669 set_huge_pte_at(mm, address, ptep,
935d4f0c
RR
5670 make_pte_marker(PTE_MARKER_UFFD_WP),
5671 sz);
05e90bd0
PX
5672 else
5673 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
5674 spin_unlock(ptl);
5675 continue;
8c4894c6 5676 }
6629326b
HD
5677
5678 page = pte_page(pte);
04f2cbe3
MG
5679 /*
5680 * If a reference page is supplied, it is because a specific
5681 * page is being unmapped, not a range. Ensure the page we
5682 * are about to unmap is the actual page of interest.
5683 */
5684 if (ref_page) {
31d49da5
AK
5685 if (page != ref_page) {
5686 spin_unlock(ptl);
5687 continue;
5688 }
04f2cbe3
MG
5689 /*
5690 * Mark the VMA as having unmapped its page so that
5691 * future faults in this VMA will fail rather than
5692 * looking like data was lost
5693 */
5694 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5695 }
5696
c7546f8f 5697 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 5698 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 5699 if (huge_pte_dirty(pte))
6649a386 5700 set_page_dirty(page);
05e90bd0
PX
5701 /* Leave a uffd-wp pte marker if needed */
5702 if (huge_pte_uffd_wp(pte) &&
5703 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5704 set_huge_pte_at(mm, address, ptep,
935d4f0c
RR
5705 make_pte_marker(PTE_MARKER_UFFD_WP),
5706 sz);
5d317b2b 5707 hugetlb_count_sub(pages_per_huge_page(h), mm);
e135826b 5708 hugetlb_remove_rmap(page_folio(page));
31d49da5 5709
df7a6d1f
BL
5710 /*
5711 * Restore the reservation for anonymous page, otherwise the
5712 * backing page could be stolen by someone.
5713 * If there we are freeing a surplus, do not set the restore
5714 * reservation bit.
5715 */
5716 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5717 folio_test_anon(page_folio(page))) {
5718 folio_set_hugetlb_restore_reserve(page_folio(page));
5719 /* Reservation to be adjusted after the spin lock */
5720 adjust_reservation = true;
5721 }
5722
cb900f41 5723 spin_unlock(ptl);
df7a6d1f
BL
5724
5725 /*
5726 * Adjust the reservation for the region that will have the
5727 * reserve restored. Keep in mind that vma_needs_reservation() changes
5728 * resv->adds_in_progress if it succeeds. If this is not done,
5729 * do_exit() will not see it, and will keep the reservation
5730 * forever.
5731 */
8daf9c70
OS
5732 if (adjust_reservation) {
5733 int rc = vma_needs_reservation(h, vma, address);
5734
5735 if (rc < 0)
5736 /* Pressumably allocate_file_region_entries failed
5737 * to allocate a file_region struct. Clear
5738 * hugetlb_restore_reserve so that global reserve
5739 * count will not be incremented by free_huge_folio.
5740 * Act as if we consumed the reservation.
5741 */
5742 folio_clear_hugetlb_restore_reserve(page_folio(page));
5743 else if (rc)
5744 vma_add_reservation(h, vma, address);
5745 }
df7a6d1f 5746
e77b0852 5747 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
5748 /*
5749 * Bail out after unmapping reference page if supplied
5750 */
5751 if (ref_page)
5752 break;
fe1668ae 5753 }
24669e58 5754 tlb_end_vma(tlb, vma);
a4a118f2
NA
5755
5756 /*
5757 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5758 * could defer the flush until now, since by holding i_mmap_rwsem we
5759 * guaranteed that the last refernece would not be dropped. But we must
5760 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5761 * dropped and the last reference to the shared PMDs page might be
5762 * dropped as well.
5763 *
5764 * In theory we could defer the freeing of the PMD pages as well, but
5765 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5766 * detect sharing, so we cannot defer the release of the page either.
5767 * Instead, do flush now.
5768 */
5769 if (force_flush)
5770 tlb_flush_mmu_tlbonly(tlb);
1da177e4 5771}
63551ae0 5772
2820b0f0
RR
5773void __hugetlb_zap_begin(struct vm_area_struct *vma,
5774 unsigned long *start, unsigned long *end)
d833352a 5775{
2820b0f0
RR
5776 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5777 return;
5778
5779 adjust_range_if_pmd_sharing_possible(vma, start, end);
131a79b4 5780 hugetlb_vma_lock_write(vma);
2820b0f0
RR
5781 if (vma->vm_file)
5782 i_mmap_lock_write(vma->vm_file->f_mapping);
5783}
131a79b4 5784
2820b0f0
RR
5785void __hugetlb_zap_end(struct vm_area_struct *vma,
5786 struct zap_details *details)
5787{
5788 zap_flags_t zap_flags = details ? details->zap_flags : 0;
131a79b4 5789
2820b0f0
RR
5790 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5791 return;
d833352a 5792
04ada095
MK
5793 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5794 /*
5795 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5796 * When the vma_lock is freed, this makes the vma ineligible
5797 * for pmd sharing. And, i_mmap_rwsem is required to set up
5798 * pmd sharing. This is important as page tables for this
5799 * unmapped range will be asynchrously deleted. If the page
5800 * tables are shared, there will be issues when accessed by
5801 * someone else.
5802 */
5803 __hugetlb_vma_unlock_write_free(vma);
04ada095 5804 } else {
04ada095
MK
5805 hugetlb_vma_unlock_write(vma);
5806 }
2820b0f0
RR
5807
5808 if (vma->vm_file)
5809 i_mmap_unlock_write(vma->vm_file->f_mapping);
d833352a
MG
5810}
5811
502717f4 5812void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
05e90bd0
PX
5813 unsigned long end, struct page *ref_page,
5814 zap_flags_t zap_flags)
502717f4 5815{
369258ce 5816 struct mmu_notifier_range range;
24669e58 5817 struct mmu_gather tlb;
dff11abe 5818
7d4a8be0 5819 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
369258ce
MK
5820 start, end);
5821 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5822 mmu_notifier_invalidate_range_start(&range);
a72afd87 5823 tlb_gather_mmu(&tlb, vma->vm_mm);
369258ce 5824
05e90bd0 5825 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
369258ce
MK
5826
5827 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 5828 tlb_finish_mmu(&tlb);
502717f4
KC
5829}
5830
04f2cbe3
MG
5831/*
5832 * This is called when the original mapper is failing to COW a MAP_PRIVATE
578b7725 5833 * mapping it owns the reserve page for. The intention is to unmap the page
04f2cbe3
MG
5834 * from other VMAs and let the children be SIGKILLed if they are faulting the
5835 * same region.
5836 */
2f4612af
DB
5837static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5838 struct page *page, unsigned long address)
04f2cbe3 5839{
7526674d 5840 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
5841 struct vm_area_struct *iter_vma;
5842 struct address_space *mapping;
04f2cbe3
MG
5843 pgoff_t pgoff;
5844
5845 /*
5846 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5847 * from page cache lookup which is in HPAGE_SIZE units.
5848 */
7526674d 5849 address = address & huge_page_mask(h);
36e4f20a
MH
5850 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5851 vma->vm_pgoff;
93c76a3d 5852 mapping = vma->vm_file->f_mapping;
04f2cbe3 5853
4eb2b1dc
MG
5854 /*
5855 * Take the mapping lock for the duration of the table walk. As
5856 * this mapping should be shared between all the VMAs,
5857 * __unmap_hugepage_range() is called as the lock is already held
5858 */
83cde9e8 5859 i_mmap_lock_write(mapping);
6b2dbba8 5860 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
5861 /* Do not unmap the current VMA */
5862 if (iter_vma == vma)
5863 continue;
5864
2f84a899
MG
5865 /*
5866 * Shared VMAs have their own reserves and do not affect
5867 * MAP_PRIVATE accounting but it is possible that a shared
5868 * VMA is using the same page so check and skip such VMAs.
5869 */
5870 if (iter_vma->vm_flags & VM_MAYSHARE)
5871 continue;
5872
04f2cbe3
MG
5873 /*
5874 * Unmap the page from other VMAs without their own reserves.
5875 * They get marked to be SIGKILLed if they fault in these
5876 * areas. This is because a future no-page fault on this VMA
5877 * could insert a zeroed page instead of the data existing
5878 * from the time of fork. This would look like data corruption
5879 */
5880 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58 5881 unmap_hugepage_range(iter_vma, address,
05e90bd0 5882 address + huge_page_size(h), page, 0);
04f2cbe3 5883 }
83cde9e8 5884 i_mmap_unlock_write(mapping);
04f2cbe3
MG
5885}
5886
0fe6e20b 5887/*
c89357e2 5888 * hugetlb_wp() should be called with page lock of the original hugepage held.
aa6d2e8c 5889 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
ef009b25
MH
5890 * cannot race with other handlers or page migration.
5891 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 5892 */
bd722058 5893static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
9acad7ba 5894 struct vm_fault *vmf)
1e8f889b 5895{
bd722058
VMO
5896 struct vm_area_struct *vma = vmf->vma;
5897 struct mm_struct *mm = vma->vm_mm;
5898 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5899 pte_t pte = huge_ptep_get(vmf->pte);
a5516438 5900 struct hstate *h = hstate_vma(vma);
959a78b6 5901 struct folio *old_folio;
d0ce0e47 5902 struct folio *new_folio;
2b740303
SJ
5903 int outside_reserve = 0;
5904 vm_fault_t ret = 0;
ac46d4f3 5905 struct mmu_notifier_range range;
1e8f889b 5906
60d5b473
PX
5907 /*
5908 * Never handle CoW for uffd-wp protected pages. It should be only
5909 * handled when the uffd-wp protection is removed.
5910 *
5911 * Note that only the CoW optimization path (in hugetlb_no_page())
5912 * can trigger this, because hugetlb_fault() will always resolve
5913 * uffd-wp bit first.
5914 */
5915 if (!unshare && huge_pte_uffd_wp(pte))
5916 return 0;
5917
1d8d1464
DH
5918 /*
5919 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5920 * PTE mapped R/O such as maybe_mkwrite() would do.
5921 */
5922 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5923 return VM_FAULT_SIGSEGV;
5924
5925 /* Let's take out MAP_SHARED mappings first. */
5926 if (vma->vm_flags & VM_MAYSHARE) {
bd722058 5927 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
1d8d1464
DH
5928 return 0;
5929 }
5930
959a78b6 5931 old_folio = page_folio(pte_page(pte));
1e8f889b 5932
662ce1dc
YY
5933 delayacct_wpcopy_start();
5934
04f2cbe3 5935retry_avoidcopy:
c89357e2
DH
5936 /*
5937 * If no-one else is actually using this page, we're the exclusive
5938 * owner and can reuse this page.
b8a25288
DH
5939 *
5940 * Note that we don't rely on the (safer) folio refcount here, because
5941 * copying the hugetlb folio when there are unexpected (temporary)
5942 * folio references could harm simple fork()+exit() users when
5943 * we run out of free hugetlb folios: we would have to kill processes
5944 * in scenarios that used to work. As a side effect, there can still
5945 * be leaks between processes, for example, with FOLL_GET users.
c89357e2 5946 */
959a78b6 5947 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5ca43289 5948 if (!PageAnonExclusive(&old_folio->page)) {
06968625 5949 folio_move_anon_rmap(old_folio, vma);
5ca43289
DH
5950 SetPageAnonExclusive(&old_folio->page);
5951 }
c89357e2 5952 if (likely(!unshare))
bd722058 5953 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
662ce1dc
YY
5954
5955 delayacct_wpcopy_end();
83c54070 5956 return 0;
1e8f889b 5957 }
959a78b6
Z
5958 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5959 PageAnonExclusive(&old_folio->page), &old_folio->page);
1e8f889b 5960
04f2cbe3
MG
5961 /*
5962 * If the process that created a MAP_PRIVATE mapping is about to
5963 * perform a COW due to a shared page count, attempt to satisfy
5964 * the allocation without using the existing reserves. The pagecache
5965 * page is used to determine if the reserve at this address was
5966 * consumed or not. If reserves were used, a partial faulted mapping
5967 * at the time of fork() could consume its reserves on COW instead
5968 * of the full address range.
5969 */
5944d011 5970 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
959a78b6 5971 old_folio != pagecache_folio)
04f2cbe3
MG
5972 outside_reserve = 1;
5973
959a78b6 5974 folio_get(old_folio);
b76c8cfb 5975
ad4404a2
DB
5976 /*
5977 * Drop page table lock as buddy allocator may be called. It will
5978 * be acquired again before returning to the caller, as expected.
5979 */
bd722058
VMO
5980 spin_unlock(vmf->ptl);
5981 new_folio = alloc_hugetlb_folio(vma, vmf->address, outside_reserve);
1e8f889b 5982
d0ce0e47 5983 if (IS_ERR(new_folio)) {
04f2cbe3
MG
5984 /*
5985 * If a process owning a MAP_PRIVATE mapping fails to COW,
5986 * it is due to references held by a child and an insufficient
5987 * huge page pool. To guarantee the original mappers
5988 * reliability, unmap the page from child processes. The child
5989 * may get SIGKILLed if it later faults.
5990 */
5991 if (outside_reserve) {
40549ba8
MK
5992 struct address_space *mapping = vma->vm_file->f_mapping;
5993 pgoff_t idx;
5994 u32 hash;
5995
959a78b6 5996 folio_put(old_folio);
40549ba8
MK
5997 /*
5998 * Drop hugetlb_fault_mutex and vma_lock before
5999 * unmapping. unmapping needs to hold vma_lock
6000 * in write mode. Dropping vma_lock in read mode
6001 * here is OK as COW mappings do not interact with
6002 * PMD sharing.
6003 *
6004 * Reacquire both after unmap operation.
6005 */
bd722058 6006 idx = vma_hugecache_offset(h, vma, vmf->address);
40549ba8
MK
6007 hash = hugetlb_fault_mutex_hash(mapping, idx);
6008 hugetlb_vma_unlock_read(vma);
6009 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6010
bd722058
VMO
6011 unmap_ref_private(mm, vma, &old_folio->page,
6012 vmf->address);
40549ba8
MK
6013
6014 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6015 hugetlb_vma_lock_read(vma);
bd722058
VMO
6016 spin_lock(vmf->ptl);
6017 vmf->pte = hugetlb_walk(vma, vmf->address,
6018 huge_page_size(h));
6019 if (likely(vmf->pte &&
6020 pte_same(huge_ptep_get(vmf->pte), pte)))
2f4612af
DB
6021 goto retry_avoidcopy;
6022 /*
6023 * race occurs while re-acquiring page table
6024 * lock, and our job is done.
6025 */
662ce1dc 6026 delayacct_wpcopy_end();
2f4612af 6027 return 0;
04f2cbe3
MG
6028 }
6029
d0ce0e47 6030 ret = vmf_error(PTR_ERR(new_folio));
ad4404a2 6031 goto out_release_old;
1e8f889b
DG
6032 }
6033
0fe6e20b
NH
6034 /*
6035 * When the original hugepage is shared one, it does not have
6036 * anon_vma prepared.
6037 */
9acad7ba
VMO
6038 ret = vmf_anon_prepare(vmf);
6039 if (unlikely(ret))
ad4404a2 6040 goto out_release_all;
0fe6e20b 6041
bd722058 6042 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
88e4f525 6043 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
1cb9dc4b
LS
6044 goto out_release_all;
6045 }
d0ce0e47 6046 __folio_mark_uptodate(new_folio);
1e8f889b 6047
bd722058
VMO
6048 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
6049 vmf->address + huge_page_size(h));
ac46d4f3 6050 mmu_notifier_invalidate_range_start(&range);
ad4404a2 6051
b76c8cfb 6052 /*
cb900f41 6053 * Retake the page table lock to check for racing updates
b76c8cfb
LW
6054 * before the page tables are altered
6055 */
bd722058
VMO
6056 spin_lock(vmf->ptl);
6057 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
6058 if (likely(vmf->pte && pte_same(huge_ptep_get(vmf->pte), pte))) {
0f230bc2
PX
6059 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
6060
c89357e2 6061 /* Break COW or unshare */
bd722058 6062 huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
e135826b 6063 hugetlb_remove_rmap(old_folio);
bd722058 6064 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
0f230bc2
PX
6065 if (huge_pte_uffd_wp(pte))
6066 newpte = huge_pte_mkuffd_wp(newpte);
bd722058
VMO
6067 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
6068 huge_page_size(h));
d0ce0e47 6069 folio_set_hugetlb_migratable(new_folio);
1e8f889b 6070 /* Make the old page be freed below */
959a78b6 6071 new_folio = old_folio;
1e8f889b 6072 }
bd722058 6073 spin_unlock(vmf->ptl);
ac46d4f3 6074 mmu_notifier_invalidate_range_end(&range);
ad4404a2 6075out_release_all:
c89357e2
DH
6076 /*
6077 * No restore in case of successful pagetable update (Break COW or
6078 * unshare)
6079 */
959a78b6 6080 if (new_folio != old_folio)
bd722058 6081 restore_reserve_on_error(h, vma, vmf->address, new_folio);
d0ce0e47 6082 folio_put(new_folio);
ad4404a2 6083out_release_old:
959a78b6 6084 folio_put(old_folio);
8312034f 6085
bd722058 6086 spin_lock(vmf->ptl); /* Caller expects lock to be held */
662ce1dc
YY
6087
6088 delayacct_wpcopy_end();
ad4404a2 6089 return ret;
1e8f889b
DG
6090}
6091
3ae77f43
HD
6092/*
6093 * Return whether there is a pagecache page to back given address within VMA.
3ae77f43 6094 */
24334e78
PX
6095bool hugetlbfs_pagecache_present(struct hstate *h,
6096 struct vm_area_struct *vma, unsigned long address)
2a15efc9 6097{
91a2fb95 6098 struct address_space *mapping = vma->vm_file->f_mapping;
a08c7193 6099 pgoff_t idx = linear_page_index(vma, address);
fd4aed8d 6100 struct folio *folio;
2a15efc9 6101
fd4aed8d
MK
6102 folio = filemap_get_folio(mapping, idx);
6103 if (IS_ERR(folio))
6104 return false;
6105 folio_put(folio);
6106 return true;
2a15efc9
HD
6107}
6108
9b91c0e2 6109int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
ab76ad54
MK
6110 pgoff_t idx)
6111{
6112 struct inode *inode = mapping->host;
6113 struct hstate *h = hstate_inode(inode);
d9ef44de 6114 int err;
ab76ad54 6115
a08c7193 6116 idx <<= huge_page_order(h);
d9ef44de
MWO
6117 __folio_set_locked(folio);
6118 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6119
6120 if (unlikely(err)) {
6121 __folio_clear_locked(folio);
ab76ad54 6122 return err;
d9ef44de 6123 }
9b91c0e2 6124 folio_clear_hugetlb_restore_reserve(folio);
ab76ad54 6125
22146c3c 6126 /*
d9ef44de 6127 * mark folio dirty so that it will not be removed from cache/file
22146c3c
MK
6128 * by non-hugetlbfs specific code paths.
6129 */
d9ef44de 6130 folio_mark_dirty(folio);
22146c3c 6131
ab76ad54
MK
6132 spin_lock(&inode->i_lock);
6133 inode->i_blocks += blocks_per_huge_page(h);
6134 spin_unlock(&inode->i_lock);
6135 return 0;
6136}
6137
7dac0ec8 6138static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
7677f7fd 6139 struct address_space *mapping,
7677f7fd
AR
6140 unsigned long reason)
6141{
7677f7fd 6142 u32 hash;
7677f7fd
AR
6143
6144 /*
958f32ce
LS
6145 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6146 * userfault. Also mmap_lock could be dropped due to handling
6147 * userfault, any vma operation should be careful from here.
7677f7fd 6148 */
7dac0ec8
VMO
6149 hugetlb_vma_unlock_read(vmf->vma);
6150 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
7677f7fd 6151 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
7dac0ec8 6152 return handle_userfault(vmf, reason);
7677f7fd
AR
6153}
6154
2ea7ff1e
PX
6155/*
6156 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
6157 * false if pte changed or is changing.
6158 */
6159static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
6160 pte_t *ptep, pte_t old_pte)
6161{
6162 spinlock_t *ptl;
6163 bool same;
6164
6165 ptl = huge_pte_lock(h, mm, ptep);
6166 same = pte_same(huge_ptep_get(ptep), old_pte);
6167 spin_unlock(ptl);
6168
6169 return same;
6170}
6171
7b6ec181 6172static vm_fault_t hugetlb_no_page(struct address_space *mapping,
7dac0ec8 6173 struct vm_fault *vmf)
ac9b9c66 6174{
7b6ec181
VMO
6175 struct vm_area_struct *vma = vmf->vma;
6176 struct mm_struct *mm = vma->vm_mm;
a5516438 6177 struct hstate *h = hstate_vma(vma);
2b740303 6178 vm_fault_t ret = VM_FAULT_SIGBUS;
409eb8c2 6179 int anon_rmap = 0;
4c887265 6180 unsigned long size;
d0ce0e47 6181 struct folio *folio;
1e8f889b 6182 pte_t new_pte;
d0ce0e47 6183 bool new_folio, new_pagecache_folio = false;
7b6ec181 6184 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
4c887265 6185
04f2cbe3
MG
6186 /*
6187 * Currently, we are forced to kill the process in the event the
6188 * original mapper has unmapped pages from the child due to a failed
c89357e2
DH
6189 * COW/unsharing. Warn that such a situation has occurred as it may not
6190 * be obvious.
04f2cbe3
MG
6191 */
6192 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 6193 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 6194 current->pid);
958f32ce 6195 goto out;
04f2cbe3
MG
6196 }
6197
4c887265 6198 /*
188a3972
MK
6199 * Use page lock to guard against racing truncation
6200 * before we get page_table_lock.
4c887265 6201 */
d0ce0e47 6202 new_folio = false;
7b6ec181 6203 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
66dabbb6 6204 if (IS_ERR(folio)) {
188a3972 6205 size = i_size_read(mapping->host) >> huge_page_shift(h);
7b6ec181 6206 if (vmf->pgoff >= size)
188a3972 6207 goto out;
7677f7fd 6208 /* Check for page in userfault range */
2ea7ff1e
PX
6209 if (userfaultfd_missing(vma)) {
6210 /*
6211 * Since hugetlb_no_page() was examining pte
6212 * without pgtable lock, we need to re-test under
6213 * lock because the pte may not be stable and could
6214 * have changed from under us. Try to detect
6215 * either changed or during-changing ptes and retry
6216 * properly when needed.
6217 *
6218 * Note that userfaultfd is actually fine with
6219 * false positives (e.g. caused by pte changed),
6220 * but not wrong logical events (e.g. caused by
6221 * reading a pte during changing). The latter can
6222 * confuse the userspace, so the strictness is very
6223 * much preferred. E.g., MISSING event should
6224 * never happen on the page after UFFDIO_COPY has
6225 * correctly installed the page and returned.
6226 */
7b6ec181 6227 if (!hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte)) {
2ea7ff1e
PX
6228 ret = 0;
6229 goto out;
6230 }
6231
7dac0ec8 6232 return hugetlb_handle_userfault(vmf, mapping,
2ea7ff1e
PX
6233 VM_UFFD_MISSING);
6234 }
1a1aad8a 6235
37641efa
VMO
6236 if (!(vma->vm_flags & VM_MAYSHARE)) {
6237 ret = vmf_anon_prepare(vmf);
6238 if (unlikely(ret))
6239 goto out;
6240 }
6241
7b6ec181 6242 folio = alloc_hugetlb_folio(vma, vmf->address, 0);
d0ce0e47 6243 if (IS_ERR(folio)) {
4643d67e
MK
6244 /*
6245 * Returning error will result in faulting task being
6246 * sent SIGBUS. The hugetlb fault mutex prevents two
6247 * tasks from racing to fault in the same page which
6248 * could result in false unable to allocate errors.
6249 * Page migration does not take the fault mutex, but
6250 * does a clear then write of pte's under page table
6251 * lock. Page fault code could race with migration,
6252 * notice the clear pte and try to allocate a page
6253 * here. Before returning error, get ptl and make
6254 * sure there really is no pte entry.
6255 */
7b6ec181 6256 if (hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte))
d0ce0e47 6257 ret = vmf_error(PTR_ERR(folio));
f9bf6c03
PX
6258 else
6259 ret = 0;
6bda666a
CL
6260 goto out;
6261 }
7b6ec181
VMO
6262 clear_huge_page(&folio->page, vmf->real_address,
6263 pages_per_huge_page(h));
d0ce0e47
SK
6264 __folio_mark_uptodate(folio);
6265 new_folio = true;
ac9b9c66 6266
f83a275d 6267 if (vma->vm_flags & VM_MAYSHARE) {
7b6ec181
VMO
6268 int err = hugetlb_add_to_page_cache(folio, mapping,
6269 vmf->pgoff);
6bda666a 6270 if (err) {
3a5497a2
ML
6271 /*
6272 * err can't be -EEXIST which implies someone
6273 * else consumed the reservation since hugetlb
6274 * fault mutex is held when add a hugetlb page
6275 * to the page cache. So it's safe to call
6276 * restore_reserve_on_error() here.
6277 */
7b6ec181
VMO
6278 restore_reserve_on_error(h, vma, vmf->address,
6279 folio);
d0ce0e47 6280 folio_put(folio);
37641efa 6281 ret = VM_FAULT_SIGBUS;
6bda666a
CL
6282 goto out;
6283 }
d0ce0e47 6284 new_pagecache_folio = true;
23be7468 6285 } else {
d0ce0e47 6286 folio_lock(folio);
409eb8c2 6287 anon_rmap = 1;
23be7468 6288 }
0fe6e20b 6289 } else {
998b4382
NH
6290 /*
6291 * If memory error occurs between mmap() and fault, some process
6292 * don't have hwpoisoned swap entry for errored virtual address.
6293 * So we need to block hugepage fault by PG_hwpoison bit check.
6294 */
d0ce0e47 6295 if (unlikely(folio_test_hwpoison(folio))) {
0eb98f15 6296 ret = VM_FAULT_HWPOISON_LARGE |
972dc4de 6297 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
6298 goto backout_unlocked;
6299 }
7677f7fd
AR
6300
6301 /* Check for page in userfault range. */
6302 if (userfaultfd_minor(vma)) {
d0ce0e47
SK
6303 folio_unlock(folio);
6304 folio_put(folio);
2ea7ff1e 6305 /* See comment in userfaultfd_missing() block above */
7b6ec181 6306 if (!hugetlb_pte_stable(h, mm, vmf->pte, vmf->orig_pte)) {
2ea7ff1e
PX
6307 ret = 0;
6308 goto out;
6309 }
7dac0ec8 6310 return hugetlb_handle_userfault(vmf, mapping,
2ea7ff1e 6311 VM_UFFD_MINOR);
7677f7fd 6312 }
6bda666a 6313 }
1e8f889b 6314
57303d80
AW
6315 /*
6316 * If we are going to COW a private mapping later, we examine the
6317 * pending reservations for this page now. This will ensure that
6318 * any allocations necessary to record that reservation occur outside
6319 * the spinlock.
6320 */
7b6ec181
VMO
6321 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6322 if (vma_needs_reservation(h, vma, vmf->address) < 0) {
2b26736c
AW
6323 ret = VM_FAULT_OOM;
6324 goto backout_unlocked;
6325 }
5e911373 6326 /* Just decrements count, does not deallocate */
7b6ec181 6327 vma_end_reservation(h, vma, vmf->address);
5e911373 6328 }
57303d80 6329
7b6ec181 6330 vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
83c54070 6331 ret = 0;
c64e912c 6332 /* If pte changed from under us, retry */
7b6ec181 6333 if (!pte_same(huge_ptep_get(vmf->pte), vmf->orig_pte))
4c887265
AL
6334 goto backout;
6335
4781593d 6336 if (anon_rmap)
7b6ec181 6337 hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
4781593d 6338 else
44887f39 6339 hugetlb_add_file_rmap(folio);
d0ce0e47 6340 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
1e8f889b 6341 && (vma->vm_flags & VM_SHARED)));
c64e912c
PX
6342 /*
6343 * If this pte was previously wr-protected, keep it wr-protected even
6344 * if populated.
6345 */
7b6ec181 6346 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
f1eb1bac 6347 new_pte = huge_pte_mkuffd_wp(new_pte);
7b6ec181 6348 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
1e8f889b 6349
5d317b2b 6350 hugetlb_count_add(pages_per_huge_page(h), mm);
7b6ec181 6351 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 6352 /* Optimization, do the COW without a second fault */
bd722058 6353 ret = hugetlb_wp(folio, vmf);
1e8f889b
DG
6354 }
6355
7b6ec181 6356 spin_unlock(vmf->ptl);
cb6acd01
MK
6357
6358 /*
d0ce0e47
SK
6359 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6360 * found in the pagecache may not have hugetlb_migratable if they have
8f251a3d 6361 * been isolated for migration.
cb6acd01 6362 */
d0ce0e47
SK
6363 if (new_folio)
6364 folio_set_hugetlb_migratable(folio);
cb6acd01 6365
d0ce0e47 6366 folio_unlock(folio);
4c887265 6367out:
958f32ce
LS
6368 hugetlb_vma_unlock_read(vma);
6369 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
ac9b9c66 6370 return ret;
4c887265
AL
6371
6372backout:
7b6ec181 6373 spin_unlock(vmf->ptl);
2b26736c 6374backout_unlocked:
d0ce0e47 6375 if (new_folio && !new_pagecache_folio)
7b6ec181 6376 restore_reserve_on_error(h, vma, vmf->address, folio);
fa27759a 6377
d0ce0e47
SK
6378 folio_unlock(folio);
6379 folio_put(folio);
4c887265 6380 goto out;
ac9b9c66
HD
6381}
6382
8382d914 6383#ifdef CONFIG_SMP
188b04a7 6384u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
6385{
6386 unsigned long key[2];
6387 u32 hash;
6388
1b426bac
MK
6389 key[0] = (unsigned long) mapping;
6390 key[1] = idx;
8382d914 6391
55254636 6392 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
8382d914
DB
6393
6394 return hash & (num_fault_mutexes - 1);
6395}
6396#else
6397/*
6c26d310 6398 * For uniprocessor systems we always use a single mutex, so just
8382d914
DB
6399 * return 0 and avoid the hashing overhead.
6400 */
188b04a7 6401u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
8382d914
DB
6402{
6403 return 0;
6404}
6405#endif
6406
2b740303 6407vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 6408 unsigned long address, unsigned int flags)
86e5216f 6409{
2b740303 6410 vm_fault_t ret;
8382d914 6411 u32 hash;
061e62e8 6412 struct folio *folio = NULL;
371607a3 6413 struct folio *pagecache_folio = NULL;
a5516438 6414 struct hstate *h = hstate_vma(vma);
8382d914 6415 struct address_space *mapping;
0f792cf9 6416 int need_wait_lock = 0;
0ca22723
VMO
6417 struct vm_fault vmf = {
6418 .vma = vma,
9b42fa16 6419 .address = address & huge_page_mask(h),
0ca22723
VMO
6420 .real_address = address,
6421 .flags = flags,
9b42fa16
VMO
6422 .pgoff = vma_hugecache_offset(h, vma,
6423 address & huge_page_mask(h)),
0ca22723
VMO
6424 /* TODO: Track hugetlb faults using vm_fault */
6425
6426 /*
6427 * Some fields may not be initialized, be careful as it may
6428 * be hard to debug if called functions make assumptions
6429 */
6430 };
86e5216f 6431
3935baa9
DG
6432 /*
6433 * Serialize hugepage allocation and instantiation, so that we don't
6434 * get spurious allocation failures if two CPUs race to instantiate
6435 * the same page in the page cache.
6436 */
40549ba8 6437 mapping = vma->vm_file->f_mapping;
0ca22723 6438 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
c672c7f2 6439 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 6440
40549ba8
MK
6441 /*
6442 * Acquire vma lock before calling huge_pte_alloc and hold
9b42fa16
VMO
6443 * until finished with vmf.pte. This prevents huge_pmd_unshare from
6444 * being called elsewhere and making the vmf.pte no longer valid.
40549ba8
MK
6445 */
6446 hugetlb_vma_lock_read(vma);
9b42fa16
VMO
6447 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6448 if (!vmf.pte) {
40549ba8
MK
6449 hugetlb_vma_unlock_read(vma);
6450 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6451 return VM_FAULT_OOM;
6452 }
6453
9b42fa16
VMO
6454 vmf.orig_pte = huge_ptep_get(vmf.pte);
6455 if (huge_pte_none_mostly(vmf.orig_pte)) {
6456 if (is_pte_marker(vmf.orig_pte)) {
af19487f 6457 pte_marker marker =
9b42fa16 6458 pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
af19487f
AR
6459
6460 if (marker & PTE_MARKER_POISONED) {
8e34419f
OS
6461 ret = VM_FAULT_HWPOISON_LARGE |
6462 VM_FAULT_SET_HINDEX(hstate_index(h));
af19487f
AR
6463 goto out_mutex;
6464 }
6465 }
6466
958f32ce 6467 /*
af19487f
AR
6468 * Other PTE markers should be handled the same way as none PTE.
6469 *
958f32ce
LS
6470 * hugetlb_no_page will drop vma lock and hugetlb fault
6471 * mutex internally, which make us return immediately.
6472 */
7b6ec181 6473 return hugetlb_no_page(mapping, &vmf);
af19487f 6474 }
86e5216f 6475
83c54070 6476 ret = 0;
1e8f889b 6477
0f792cf9 6478 /*
9b42fa16
VMO
6479 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6480 * point, so this check prevents the kernel from going below assuming
6481 * that we have an active hugepage in pagecache. This goto expects
6482 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6483 * check will properly handle it.
0f792cf9 6484 */
9b42fa16
VMO
6485 if (!pte_present(vmf.orig_pte)) {
6486 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
fcd48540
PX
6487 /*
6488 * Release the hugetlb fault lock now, but retain
6489 * the vma lock, because it is needed to guard the
6490 * huge_pte_lockptr() later in
6491 * migration_entry_wait_huge(). The vma lock will
6492 * be released there.
6493 */
6494 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
9b42fa16 6495 migration_entry_wait_huge(vma, vmf.pte);
fcd48540 6496 return 0;
9b42fa16 6497 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
fcd48540
PX
6498 ret = VM_FAULT_HWPOISON_LARGE |
6499 VM_FAULT_SET_HINDEX(hstate_index(h));
0f792cf9 6500 goto out_mutex;
fcd48540 6501 }
0f792cf9 6502
57303d80 6503 /*
c89357e2
DH
6504 * If we are going to COW/unshare the mapping later, we examine the
6505 * pending reservations for this page now. This will ensure that any
57303d80 6506 * allocations necessary to record that reservation occur outside the
1d8d1464
DH
6507 * spinlock. Also lookup the pagecache page now as it is used to
6508 * determine if a reservation has been consumed.
57303d80 6509 */
c89357e2 6510 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
9b42fa16
VMO
6511 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6512 if (vma_needs_reservation(h, vma, vmf.address) < 0) {
2b26736c 6513 ret = VM_FAULT_OOM;
b4d1d99f 6514 goto out_mutex;
2b26736c 6515 }
5e911373 6516 /* Just decrements count, does not deallocate */
9b42fa16 6517 vma_end_reservation(h, vma, vmf.address);
57303d80 6518
0ca22723
VMO
6519 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6520 vmf.pgoff);
66dabbb6
CH
6521 if (IS_ERR(pagecache_folio))
6522 pagecache_folio = NULL;
57303d80
AW
6523 }
6524
9b42fa16 6525 vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
0f792cf9 6526
c89357e2 6527 /* Check for a racing update before calling hugetlb_wp() */
9b42fa16 6528 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(vmf.pte))))
0f792cf9
NH
6529 goto out_ptl;
6530
166f3ecc 6531 /* Handle userfault-wp first, before trying to lock more pages */
9b42fa16
VMO
6532 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(vmf.pte)) &&
6533 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
d61ea1cb 6534 if (!userfaultfd_wp_async(vma)) {
9b42fa16 6535 spin_unlock(vmf.ptl);
d61ea1cb
PX
6536 if (pagecache_folio) {
6537 folio_unlock(pagecache_folio);
6538 folio_put(pagecache_folio);
6539 }
6540 hugetlb_vma_unlock_read(vma);
6541 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6542 return handle_userfault(&vmf, VM_UFFD_WP);
166f3ecc 6543 }
d61ea1cb 6544
9b42fa16
VMO
6545 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6546 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
52526ca7 6547 huge_page_size(hstate_vma(vma)));
d61ea1cb 6548 /* Fallthrough to CoW */
166f3ecc
PX
6549 }
6550
56c9cfb1 6551 /*
9b42fa16 6552 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
371607a3 6553 * pagecache_folio, so here we need take the former one
061e62e8 6554 * when folio != pagecache_folio or !pagecache_folio.
56c9cfb1 6555 */
9b42fa16 6556 folio = page_folio(pte_page(vmf.orig_pte));
061e62e8
Z
6557 if (folio != pagecache_folio)
6558 if (!folio_trylock(folio)) {
0f792cf9
NH
6559 need_wait_lock = 1;
6560 goto out_ptl;
6561 }
b4d1d99f 6562
061e62e8 6563 folio_get(folio);
b4d1d99f 6564
c89357e2 6565 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
9b42fa16 6566 if (!huge_pte_write(vmf.orig_pte)) {
bd722058 6567 ret = hugetlb_wp(pagecache_folio, &vmf);
0f792cf9 6568 goto out_put_page;
c89357e2 6569 } else if (likely(flags & FAULT_FLAG_WRITE)) {
9b42fa16 6570 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
b4d1d99f 6571 }
b4d1d99f 6572 }
9b42fa16
VMO
6573 vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6574 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
788c7df4 6575 flags & FAULT_FLAG_WRITE))
9b42fa16 6576 update_mmu_cache(vma, vmf.address, vmf.pte);
0f792cf9 6577out_put_page:
061e62e8
Z
6578 if (folio != pagecache_folio)
6579 folio_unlock(folio);
6580 folio_put(folio);
cb900f41 6581out_ptl:
9b42fa16 6582 spin_unlock(vmf.ptl);
57303d80 6583
371607a3
SK
6584 if (pagecache_folio) {
6585 folio_unlock(pagecache_folio);
6586 folio_put(pagecache_folio);
57303d80 6587 }
b4d1d99f 6588out_mutex:
40549ba8 6589 hugetlb_vma_unlock_read(vma);
c672c7f2 6590 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
6591 /*
6592 * Generally it's safe to hold refcount during waiting page lock. But
6593 * here we just wait to defer the next page fault to avoid busy loop and
6594 * the page is not used after unlocked before returning from the current
6595 * page fault. So we are safe from accessing freed page, even if we wait
6596 * here without taking refcount.
6597 */
6598 if (need_wait_lock)
061e62e8 6599 folio_wait_locked(folio);
1e8f889b 6600 return ret;
86e5216f
AL
6601}
6602
714c1891 6603#ifdef CONFIG_USERFAULTFD
72e315f7
HD
6604/*
6605 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6606 */
6607static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6608 struct vm_area_struct *vma, unsigned long address)
6609{
6610 struct mempolicy *mpol;
6611 nodemask_t *nodemask;
6612 struct folio *folio;
6613 gfp_t gfp_mask;
6614 int node;
6615
6616 gfp_mask = htlb_alloc_mask(h);
6617 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
42d0c3fb
BW
6618 /*
6619 * This is used to allocate a temporary hugetlb to hold the copied
6620 * content, which will then be copied again to the final hugetlb
6621 * consuming a reservation. Set the alloc_fallback to false to indicate
6622 * that breaking the per-node hugetlb pool is not allowed in this case.
6623 */
6624 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
72e315f7
HD
6625 mpol_cond_put(mpol);
6626
6627 return folio;
6628}
6629
8fb5debc 6630/*
a734991c
AR
6631 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6632 * with modifications for hugetlb pages.
8fb5debc 6633 */
61c50040 6634int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
a734991c
AR
6635 struct vm_area_struct *dst_vma,
6636 unsigned long dst_addr,
6637 unsigned long src_addr,
d9712937 6638 uffd_flags_t flags,
0169fd51 6639 struct folio **foliop)
8fb5debc 6640{
61c50040 6641 struct mm_struct *dst_mm = dst_vma->vm_mm;
d9712937
AR
6642 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6643 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
8cc5fcbb
MA
6644 struct hstate *h = hstate_vma(dst_vma);
6645 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6646 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
1e392147 6647 unsigned long size;
1c9e8def 6648 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
6649 pte_t _dst_pte;
6650 spinlock_t *ptl;
8cc5fcbb 6651 int ret = -ENOMEM;
d0ce0e47 6652 struct folio *folio;
f6191471 6653 int writable;
d0ce0e47 6654 bool folio_in_pagecache = false;
8fb5debc 6655
8a13897f
AR
6656 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6657 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6658
6659 /* Don't overwrite any existing PTEs (even markers) */
6660 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6661 spin_unlock(ptl);
6662 return -EEXIST;
6663 }
6664
6665 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
935d4f0c
RR
6666 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6667 huge_page_size(h));
8a13897f
AR
6668
6669 /* No need to invalidate - it was non-present before */
6670 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6671
6672 spin_unlock(ptl);
6673 return 0;
6674 }
6675
f6191471
AR
6676 if (is_continue) {
6677 ret = -EFAULT;
a08c7193 6678 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
66dabbb6 6679 if (IS_ERR(folio))
f6191471 6680 goto out;
d0ce0e47 6681 folio_in_pagecache = true;
0169fd51
Z
6682 } else if (!*foliop) {
6683 /* If a folio already exists, then it's UFFDIO_COPY for
d84cf06e
MA
6684 * a non-missing case. Return -EEXIST.
6685 */
6686 if (vm_shared &&
6687 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6688 ret = -EEXIST;
6689 goto out;
6690 }
6691
d0ce0e47
SK
6692 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6693 if (IS_ERR(folio)) {
d84cf06e 6694 ret = -ENOMEM;
8fb5debc 6695 goto out;
d84cf06e 6696 }
8fb5debc 6697
e87340ca
Z
6698 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6699 false);
8fb5debc 6700
c1e8d7c6 6701 /* fallback to copy_from_user outside mmap_lock */
8fb5debc 6702 if (unlikely(ret)) {
9e368259 6703 ret = -ENOENT;
d0ce0e47 6704 /* Free the allocated folio which may have
8cc5fcbb
MA
6705 * consumed a reservation.
6706 */
d2d7bb44 6707 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
d0ce0e47 6708 folio_put(folio);
8cc5fcbb 6709
d0ce0e47 6710 /* Allocate a temporary folio to hold the copied
8cc5fcbb
MA
6711 * contents.
6712 */
d0ce0e47
SK
6713 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6714 if (!folio) {
8cc5fcbb
MA
6715 ret = -ENOMEM;
6716 goto out;
6717 }
0169fd51
Z
6718 *foliop = folio;
6719 /* Set the outparam foliop and return to the caller to
8cc5fcbb 6720 * copy the contents outside the lock. Don't free the
0169fd51 6721 * folio.
8cc5fcbb 6722 */
8fb5debc
MK
6723 goto out;
6724 }
6725 } else {
8cc5fcbb
MA
6726 if (vm_shared &&
6727 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
0169fd51 6728 folio_put(*foliop);
8cc5fcbb 6729 ret = -EEXIST;
0169fd51 6730 *foliop = NULL;
8cc5fcbb
MA
6731 goto out;
6732 }
6733
d0ce0e47
SK
6734 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6735 if (IS_ERR(folio)) {
0169fd51 6736 folio_put(*foliop);
8cc5fcbb 6737 ret = -ENOMEM;
0169fd51 6738 *foliop = NULL;
8cc5fcbb
MA
6739 goto out;
6740 }
1cb9dc4b 6741 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
0169fd51
Z
6742 folio_put(*foliop);
6743 *foliop = NULL;
1cb9dc4b
LS
6744 if (ret) {
6745 folio_put(folio);
8cc5fcbb
MA
6746 goto out;
6747 }
8fb5debc
MK
6748 }
6749
6750 /*
b14d1671
JH
6751 * If we just allocated a new page, we need a memory barrier to ensure
6752 * that preceding stores to the page become visible before the
6753 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6754 * is what we need.
6755 *
6756 * In the case where we have not allocated a new page (is_continue),
6757 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6758 * an earlier smp_wmb() to ensure that prior stores will be visible
6759 * before the set_pte_at() write.
8fb5debc 6760 */
b14d1671
JH
6761 if (!is_continue)
6762 __folio_mark_uptodate(folio);
6763 else
6764 WARN_ON_ONCE(!folio_test_uptodate(folio));
8fb5debc 6765
f6191471
AR
6766 /* Add shared, newly allocated pages to the page cache. */
6767 if (vm_shared && !is_continue) {
1e392147
AA
6768 size = i_size_read(mapping->host) >> huge_page_shift(h);
6769 ret = -EFAULT;
6770 if (idx >= size)
6771 goto out_release_nounlock;
1c9e8def 6772
1e392147
AA
6773 /*
6774 * Serialization between remove_inode_hugepages() and
7e1813d4 6775 * hugetlb_add_to_page_cache() below happens through the
1e392147
AA
6776 * hugetlb_fault_mutex_table that here must be hold by
6777 * the caller.
6778 */
9b91c0e2 6779 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
1c9e8def
MK
6780 if (ret)
6781 goto out_release_nounlock;
d0ce0e47 6782 folio_in_pagecache = true;
1c9e8def
MK
6783 }
6784
bcc66543 6785 ptl = huge_pte_lock(h, dst_mm, dst_pte);
8fb5debc 6786
8625147c 6787 ret = -EIO;
d0ce0e47 6788 if (folio_test_hwpoison(folio))
8625147c
JH
6789 goto out_release_unlock;
6790
6041c691
PX
6791 /*
6792 * We allow to overwrite a pte marker: consider when both MISSING|WP
6793 * registered, we firstly wr-protect a none pte which has no page cache
6794 * page backing it, then access the page.
6795 */
fa27759a 6796 ret = -EEXIST;
6041c691 6797 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
8fb5debc
MK
6798 goto out_release_unlock;
6799
d0ce0e47 6800 if (folio_in_pagecache)
44887f39 6801 hugetlb_add_file_rmap(folio);
4781593d 6802 else
9d5fafd5 6803 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
8fb5debc 6804
6041c691
PX
6805 /*
6806 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6807 * with wp flag set, don't set pte write bit.
6808 */
d9712937 6809 if (wp_enabled || (is_continue && !vm_shared))
f6191471
AR
6810 writable = 0;
6811 else
6812 writable = dst_vma->vm_flags & VM_WRITE;
6813
d0ce0e47 6814 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6041c691
PX
6815 /*
6816 * Always mark UFFDIO_COPY page dirty; note that this may not be
6817 * extremely important for hugetlbfs for now since swapping is not
6818 * supported, but we should still be clear in that this page cannot be
6819 * thrown away at will, even if write bit not set.
6820 */
6821 _dst_pte = huge_pte_mkdirty(_dst_pte);
8fb5debc
MK
6822 _dst_pte = pte_mkyoung(_dst_pte);
6823
d9712937 6824 if (wp_enabled)
6041c691
PX
6825 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6826
935d4f0c 6827 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
8fb5debc 6828
8fb5debc
MK
6829 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6830
6831 /* No need to invalidate - it was non-present before */
6832 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6833
6834 spin_unlock(ptl);
f6191471 6835 if (!is_continue)
d0ce0e47 6836 folio_set_hugetlb_migratable(folio);
f6191471 6837 if (vm_shared || is_continue)
d0ce0e47 6838 folio_unlock(folio);
8fb5debc
MK
6839 ret = 0;
6840out:
6841 return ret;
6842out_release_unlock:
6843 spin_unlock(ptl);
f6191471 6844 if (vm_shared || is_continue)
d0ce0e47 6845 folio_unlock(folio);
5af10dfd 6846out_release_nounlock:
d0ce0e47 6847 if (!folio_in_pagecache)
d2d7bb44 6848 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
d0ce0e47 6849 folio_put(folio);
8fb5debc
MK
6850 goto out;
6851}
714c1891 6852#endif /* CONFIG_USERFAULTFD */
8fb5debc 6853
a79390f5 6854long hugetlb_change_protection(struct vm_area_struct *vma,
5a90d5a1
PX
6855 unsigned long address, unsigned long end,
6856 pgprot_t newprot, unsigned long cp_flags)
8f860591
ZY
6857{
6858 struct mm_struct *mm = vma->vm_mm;
6859 unsigned long start = address;
6860 pte_t *ptep;
6861 pte_t pte;
a5516438 6862 struct hstate *h = hstate_vma(vma);
a79390f5 6863 long pages = 0, psize = huge_page_size(h);
dff11abe 6864 bool shared_pmd = false;
ac46d4f3 6865 struct mmu_notifier_range range;
e95a9851 6866 unsigned long last_addr_mask;
5a90d5a1
PX
6867 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6868 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
dff11abe
MK
6869
6870 /*
6871 * In the case of shared PMDs, the area to flush could be beyond
ac46d4f3 6872 * start/end. Set range.start/range.end to cover the maximum possible
dff11abe
MK
6873 * range if PMD sharing is possible.
6874 */
7269f999 6875 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
7d4a8be0 6876 0, mm, start, end);
ac46d4f3 6877 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
8f860591
ZY
6878
6879 BUG_ON(address >= end);
ac46d4f3 6880 flush_cache_range(vma, range.start, range.end);
8f860591 6881
ac46d4f3 6882 mmu_notifier_invalidate_range_start(&range);
40549ba8 6883 hugetlb_vma_lock_write(vma);
83cde9e8 6884 i_mmap_lock_write(vma->vm_file->f_mapping);
40549ba8 6885 last_addr_mask = hugetlb_mask_last_page(h);
60dfaad6 6886 for (; address < end; address += psize) {
cb900f41 6887 spinlock_t *ptl;
9c67a207 6888 ptep = hugetlb_walk(vma, address, psize);
e95a9851 6889 if (!ptep) {
fed15f13
PX
6890 if (!uffd_wp) {
6891 address |= last_addr_mask;
6892 continue;
6893 }
6894 /*
6895 * Userfaultfd wr-protect requires pgtable
6896 * pre-allocations to install pte markers.
6897 */
6898 ptep = huge_pte_alloc(mm, vma, address, psize);
d1751118
PX
6899 if (!ptep) {
6900 pages = -ENOMEM;
fed15f13 6901 break;
d1751118 6902 }
e95a9851 6903 }
cb900f41 6904 ptl = huge_pte_lock(h, mm, ptep);
4ddb4d91 6905 if (huge_pmd_unshare(mm, vma, address, ptep)) {
60dfaad6
PX
6906 /*
6907 * When uffd-wp is enabled on the vma, unshare
6908 * shouldn't happen at all. Warn about it if it
6909 * happened due to some reason.
6910 */
6911 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7da4d641 6912 pages++;
cb900f41 6913 spin_unlock(ptl);
dff11abe 6914 shared_pmd = true;
4ddb4d91 6915 address |= last_addr_mask;
39dde65c 6916 continue;
7da4d641 6917 }
a8bda28d
NH
6918 pte = huge_ptep_get(ptep);
6919 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
0e678153
DH
6920 /* Nothing to do. */
6921 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
a8bda28d 6922 swp_entry_t entry = pte_to_swp_entry(pte);
6c287605 6923 struct page *page = pfn_swap_entry_to_page(entry);
44f86392 6924 pte_t newpte = pte;
a8bda28d 6925
44f86392 6926 if (is_writable_migration_entry(entry)) {
6c287605
DH
6927 if (PageAnon(page))
6928 entry = make_readable_exclusive_migration_entry(
6929 swp_offset(entry));
6930 else
6931 entry = make_readable_migration_entry(
6932 swp_offset(entry));
a8bda28d 6933 newpte = swp_entry_to_pte(entry);
a8bda28d
NH
6934 pages++;
6935 }
44f86392
DH
6936
6937 if (uffd_wp)
6938 newpte = pte_swp_mkuffd_wp(newpte);
6939 else if (uffd_wp_resolve)
6940 newpte = pte_swp_clear_uffd_wp(newpte);
6941 if (!pte_same(pte, newpte))
935d4f0c 6942 set_huge_pte_at(mm, address, ptep, newpte, psize);
0e678153 6943 } else if (unlikely(is_pte_marker(pte))) {
c5977c95
PX
6944 /*
6945 * Do nothing on a poison marker; page is
6946 * corrupted, permissons do not apply. Here
6947 * pte_marker_uffd_wp()==true implies !poison
6948 * because they're mutual exclusive.
6949 */
6950 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
0e678153 6951 /* Safe to modify directly (non-present->none). */
60dfaad6 6952 huge_pte_clear(mm, address, ptep, psize);
0e678153 6953 } else if (!huge_pte_none(pte)) {
023bdd00 6954 pte_t old_pte;
79c1c594 6955 unsigned int shift = huge_page_shift(hstate_vma(vma));
023bdd00
AK
6956
6957 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
16785bd7 6958 pte = huge_pte_modify(old_pte, newprot);
79c1c594 6959 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5a90d5a1 6960 if (uffd_wp)
f1eb1bac 6961 pte = huge_pte_mkuffd_wp(pte);
5a90d5a1
PX
6962 else if (uffd_wp_resolve)
6963 pte = huge_pte_clear_uffd_wp(pte);
023bdd00 6964 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7da4d641 6965 pages++;
60dfaad6
PX
6966 } else {
6967 /* None pte */
6968 if (unlikely(uffd_wp))
6969 /* Safe to modify directly (none->non-present). */
6970 set_huge_pte_at(mm, address, ptep,
935d4f0c
RR
6971 make_pte_marker(PTE_MARKER_UFFD_WP),
6972 psize);
8f860591 6973 }
cb900f41 6974 spin_unlock(ptl);
8f860591 6975 }
d833352a 6976 /*
c8c06efa 6977 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 6978 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 6979 * once we release i_mmap_rwsem, another task can do the final put_page
dff11abe
MK
6980 * and that page table be reused and filled with junk. If we actually
6981 * did unshare a page of pmds, flush the range corresponding to the pud.
d833352a 6982 */
dff11abe 6983 if (shared_pmd)
ac46d4f3 6984 flush_hugetlb_tlb_range(vma, range.start, range.end);
dff11abe
MK
6985 else
6986 flush_hugetlb_tlb_range(vma, start, end);
0f10851e 6987 /*
1af5a810
AP
6988 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6989 * downgrading page table protection not changing it to point to a new
6990 * page.
0f10851e 6991 *
ee65728e 6992 * See Documentation/mm/mmu_notifier.rst
0f10851e 6993 */
83cde9e8 6994 i_mmap_unlock_write(vma->vm_file->f_mapping);
40549ba8 6995 hugetlb_vma_unlock_write(vma);
ac46d4f3 6996 mmu_notifier_invalidate_range_end(&range);
7da4d641 6997
d1751118 6998 return pages > 0 ? (pages << h->order) : pages;
8f860591
ZY
6999}
7000
33b8f84a
MK
7001/* Return true if reservation was successful, false otherwise. */
7002bool hugetlb_reserve_pages(struct inode *inode,
a1e78772 7003 long from, long to,
5a6fe125 7004 struct vm_area_struct *vma,
ca16d140 7005 vm_flags_t vm_flags)
e4e574b7 7006{
c5094ec7 7007 long chg = -1, add = -1;
a5516438 7008 struct hstate *h = hstate_inode(inode);
90481622 7009 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 7010 struct resv_map *resv_map;
075a61d0 7011 struct hugetlb_cgroup *h_cg = NULL;
0db9d74e 7012 long gbl_reserve, regions_needed = 0;
e4e574b7 7013
63489f8e
MK
7014 /* This should never happen */
7015 if (from > to) {
7016 VM_WARN(1, "%s called with a negative range\n", __func__);
33b8f84a 7017 return false;
63489f8e
MK
7018 }
7019
8d9bfb26 7020 /*
e700898f
MK
7021 * vma specific semaphore used for pmd sharing and fault/truncation
7022 * synchronization
8d9bfb26
MK
7023 */
7024 hugetlb_vma_lock_alloc(vma);
7025
17c9d12e
MG
7026 /*
7027 * Only apply hugepage reservation if asked. At fault time, an
7028 * attempt will be made for VM_NORESERVE to allocate a page
90481622 7029 * without using reserves
17c9d12e 7030 */
ca16d140 7031 if (vm_flags & VM_NORESERVE)
33b8f84a 7032 return true;
17c9d12e 7033
a1e78772
MG
7034 /*
7035 * Shared mappings base their reservation on the number of pages that
7036 * are already allocated on behalf of the file. Private mappings need
7037 * to reserve the full area even if read-only as mprotect() may be
7038 * called to make the mapping read-write. Assume !vma is a shm mapping
7039 */
9119a41e 7040 if (!vma || vma->vm_flags & VM_MAYSHARE) {
f27a5136
MK
7041 /*
7042 * resv_map can not be NULL as hugetlb_reserve_pages is only
7043 * called for inodes for which resv_maps were created (see
7044 * hugetlbfs_get_inode).
7045 */
4e35f483 7046 resv_map = inode_resv_map(inode);
9119a41e 7047
0db9d74e 7048 chg = region_chg(resv_map, from, to, &regions_needed);
9119a41e 7049 } else {
e9fe92ae 7050 /* Private mapping. */
9119a41e 7051 resv_map = resv_map_alloc();
17c9d12e 7052 if (!resv_map)
8d9bfb26 7053 goto out_err;
17c9d12e 7054
a1e78772 7055 chg = to - from;
84afd99b 7056
17c9d12e
MG
7057 set_vma_resv_map(vma, resv_map);
7058 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7059 }
7060
33b8f84a 7061 if (chg < 0)
c50ac050 7062 goto out_err;
8a630112 7063
33b8f84a
MK
7064 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7065 chg * pages_per_huge_page(h), &h_cg) < 0)
075a61d0 7066 goto out_err;
075a61d0
MA
7067
7068 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7069 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7070 * of the resv_map.
7071 */
7072 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7073 }
7074
1c5ecae3
MK
7075 /*
7076 * There must be enough pages in the subpool for the mapping. If
7077 * the subpool has a minimum size, there may be some global
7078 * reservations already in place (gbl_reserve).
7079 */
7080 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
33b8f84a 7081 if (gbl_reserve < 0)
075a61d0 7082 goto out_uncharge_cgroup;
5a6fe125
MG
7083
7084 /*
17c9d12e 7085 * Check enough hugepages are available for the reservation.
90481622 7086 * Hand the pages back to the subpool if there are not
5a6fe125 7087 */
33b8f84a 7088 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
075a61d0 7089 goto out_put_pages;
17c9d12e
MG
7090
7091 /*
7092 * Account for the reservations made. Shared mappings record regions
7093 * that have reservations as they are shared by multiple VMAs.
7094 * When the last VMA disappears, the region map says how much
7095 * the reservation was and the page cache tells how much of
7096 * the reservation was consumed. Private mappings are per-VMA and
7097 * only the consumed reservations are tracked. When the VMA
7098 * disappears, the original reservation is the VMA size and the
7099 * consumed reservations are stored in the map. Hence, nothing
7100 * else has to be done for private mappings here
7101 */
33039678 7102 if (!vma || vma->vm_flags & VM_MAYSHARE) {
075a61d0 7103 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
0db9d74e
MA
7104
7105 if (unlikely(add < 0)) {
7106 hugetlb_acct_memory(h, -gbl_reserve);
075a61d0 7107 goto out_put_pages;
0db9d74e 7108 } else if (unlikely(chg > add)) {
33039678
MK
7109 /*
7110 * pages in this range were added to the reserve
7111 * map between region_chg and region_add. This
d0ce0e47 7112 * indicates a race with alloc_hugetlb_folio. Adjust
33039678
MK
7113 * the subpool and reserve counts modified above
7114 * based on the difference.
7115 */
7116 long rsv_adjust;
7117
d85aecf2
ML
7118 /*
7119 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7120 * reference to h_cg->css. See comment below for detail.
7121 */
075a61d0
MA
7122 hugetlb_cgroup_uncharge_cgroup_rsvd(
7123 hstate_index(h),
7124 (chg - add) * pages_per_huge_page(h), h_cg);
7125
33039678
MK
7126 rsv_adjust = hugepage_subpool_put_pages(spool,
7127 chg - add);
7128 hugetlb_acct_memory(h, -rsv_adjust);
d85aecf2
ML
7129 } else if (h_cg) {
7130 /*
7131 * The file_regions will hold their own reference to
7132 * h_cg->css. So we should release the reference held
7133 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7134 * done.
7135 */
7136 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
33039678
MK
7137 }
7138 }
33b8f84a
MK
7139 return true;
7140
075a61d0
MA
7141out_put_pages:
7142 /* put back original number of pages, chg */
7143 (void)hugepage_subpool_put_pages(spool, chg);
7144out_uncharge_cgroup:
7145 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7146 chg * pages_per_huge_page(h), h_cg);
c50ac050 7147out_err:
8d9bfb26 7148 hugetlb_vma_lock_free(vma);
5e911373 7149 if (!vma || vma->vm_flags & VM_MAYSHARE)
0db9d74e
MA
7150 /* Only call region_abort if the region_chg succeeded but the
7151 * region_add failed or didn't run.
7152 */
7153 if (chg >= 0 && add < 0)
7154 region_abort(resv_map, from, to, regions_needed);
92fe9dcb 7155 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
f031dd27 7156 kref_put(&resv_map->refs, resv_map_release);
92fe9dcb
RR
7157 set_vma_resv_map(vma, NULL);
7158 }
33b8f84a 7159 return false;
a43a8c39
KC
7160}
7161
b5cec28d
MK
7162long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7163 long freed)
a43a8c39 7164{
a5516438 7165 struct hstate *h = hstate_inode(inode);
4e35f483 7166 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 7167 long chg = 0;
90481622 7168 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 7169 long gbl_reserve;
45c682a6 7170
f27a5136
MK
7171 /*
7172 * Since this routine can be called in the evict inode path for all
7173 * hugetlbfs inodes, resv_map could be NULL.
7174 */
b5cec28d
MK
7175 if (resv_map) {
7176 chg = region_del(resv_map, start, end);
7177 /*
7178 * region_del() can fail in the rare case where a region
7179 * must be split and another region descriptor can not be
7180 * allocated. If end == LONG_MAX, it will not fail.
7181 */
7182 if (chg < 0)
7183 return chg;
7184 }
7185
45c682a6 7186 spin_lock(&inode->i_lock);
e4c6f8be 7187 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
7188 spin_unlock(&inode->i_lock);
7189
1c5ecae3
MK
7190 /*
7191 * If the subpool has a minimum size, the number of global
7192 * reservations to be released may be adjusted.
dddf31a4
ML
7193 *
7194 * Note that !resv_map implies freed == 0. So (chg - freed)
7195 * won't go negative.
1c5ecae3
MK
7196 */
7197 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7198 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
7199
7200 return 0;
a43a8c39 7201}
93f70f90 7202
3212b535
SC
7203#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7204static unsigned long page_table_shareable(struct vm_area_struct *svma,
7205 struct vm_area_struct *vma,
7206 unsigned long addr, pgoff_t idx)
7207{
7208 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7209 svma->vm_start;
7210 unsigned long sbase = saddr & PUD_MASK;
7211 unsigned long s_end = sbase + PUD_SIZE;
7212
7213 /* Allow segments to share if only one is marked locked */
e430a95a
SB
7214 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7215 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
3212b535
SC
7216
7217 /*
7218 * match the virtual addresses, permission and the alignment of the
7219 * page table page.
131a79b4
MK
7220 *
7221 * Also, vma_lock (vm_private_data) is required for sharing.
3212b535
SC
7222 */
7223 if (pmd_index(addr) != pmd_index(saddr) ||
7224 vm_flags != svm_flags ||
131a79b4
MK
7225 !range_in_vma(svma, sbase, s_end) ||
7226 !svma->vm_private_data)
3212b535
SC
7227 return 0;
7228
7229 return saddr;
7230}
7231
bbff39cc 7232bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
3212b535 7233{
bbff39cc
MK
7234 unsigned long start = addr & PUD_MASK;
7235 unsigned long end = start + PUD_SIZE;
7236
8d9bfb26
MK
7237#ifdef CONFIG_USERFAULTFD
7238 if (uffd_disable_huge_pmd_share(vma))
7239 return false;
7240#endif
3212b535
SC
7241 /*
7242 * check on proper vm_flags and page table alignment
7243 */
8d9bfb26
MK
7244 if (!(vma->vm_flags & VM_MAYSHARE))
7245 return false;
bbff39cc 7246 if (!vma->vm_private_data) /* vma lock required for sharing */
8d9bfb26
MK
7247 return false;
7248 if (!range_in_vma(vma, start, end))
7249 return false;
7250 return true;
7251}
7252
017b1660
MK
7253/*
7254 * Determine if start,end range within vma could be mapped by shared pmd.
7255 * If yes, adjust start and end to cover range associated with possible
7256 * shared pmd mappings.
7257 */
7258void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7259 unsigned long *start, unsigned long *end)
7260{
a1ba9da8
LX
7261 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7262 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
017b1660 7263
a1ba9da8 7264 /*
f0953a1b
IM
7265 * vma needs to span at least one aligned PUD size, and the range
7266 * must be at least partially within in.
a1ba9da8
LX
7267 */
7268 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7269 (*end <= v_start) || (*start >= v_end))
017b1660
MK
7270 return;
7271
75802ca6 7272 /* Extend the range to be PUD aligned for a worst case scenario */
a1ba9da8
LX
7273 if (*start > v_start)
7274 *start = ALIGN_DOWN(*start, PUD_SIZE);
017b1660 7275
a1ba9da8
LX
7276 if (*end < v_end)
7277 *end = ALIGN(*end, PUD_SIZE);
017b1660
MK
7278}
7279
3212b535
SC
7280/*
7281 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7282 * and returns the corresponding pte. While this is not necessary for the
7283 * !shared pmd case because we can allocate the pmd later as well, it makes the
3a47c54f
MK
7284 * code much cleaner. pmd allocation is essential for the shared case because
7285 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7286 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7287 * bad pmd for sharing.
3212b535 7288 */
aec44e0f
PX
7289pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7290 unsigned long addr, pud_t *pud)
3212b535 7291{
3212b535
SC
7292 struct address_space *mapping = vma->vm_file->f_mapping;
7293 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7294 vma->vm_pgoff;
7295 struct vm_area_struct *svma;
7296 unsigned long saddr;
7297 pte_t *spte = NULL;
7298 pte_t *pte;
7299
3a47c54f 7300 i_mmap_lock_read(mapping);
3212b535
SC
7301 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7302 if (svma == vma)
7303 continue;
7304
7305 saddr = page_table_shareable(svma, vma, addr, idx);
7306 if (saddr) {
9c67a207
PX
7307 spte = hugetlb_walk(svma, saddr,
7308 vma_mmu_pagesize(svma));
3212b535
SC
7309 if (spte) {
7310 get_page(virt_to_page(spte));
7311 break;
7312 }
7313 }
7314 }
7315
7316 if (!spte)
7317 goto out;
7318
349d1670 7319 spin_lock(&mm->page_table_lock);
dc6c9a35 7320 if (pud_none(*pud)) {
3212b535
SC
7321 pud_populate(mm, pud,
7322 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 7323 mm_inc_nr_pmds(mm);
dc6c9a35 7324 } else {
3212b535 7325 put_page(virt_to_page(spte));
dc6c9a35 7326 }
349d1670 7327 spin_unlock(&mm->page_table_lock);
3212b535
SC
7328out:
7329 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3a47c54f 7330 i_mmap_unlock_read(mapping);
3212b535
SC
7331 return pte;
7332}
7333
7334/*
7335 * unmap huge page backed by shared pte.
7336 *
7337 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7338 * indicated by page_count > 1, unmap is achieved by clearing pud and
7339 * decrementing the ref count. If count == 1, the pte page is not shared.
7340 *
3a47c54f 7341 * Called with page table lock held.
3212b535
SC
7342 *
7343 * returns: 1 successfully unmapped a shared pte page
7344 * 0 the underlying pte page is not shared, or it is the last user
7345 */
34ae204f 7346int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
4ddb4d91 7347 unsigned long addr, pte_t *ptep)
3212b535 7348{
4ddb4d91
MK
7349 pgd_t *pgd = pgd_offset(mm, addr);
7350 p4d_t *p4d = p4d_offset(pgd, addr);
7351 pud_t *pud = pud_offset(p4d, addr);
3212b535 7352
34ae204f 7353 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
40549ba8 7354 hugetlb_vma_assert_locked(vma);
3212b535
SC
7355 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7356 if (page_count(virt_to_page(ptep)) == 1)
7357 return 0;
7358
7359 pud_clear(pud);
7360 put_page(virt_to_page(ptep));
dc6c9a35 7361 mm_dec_nr_pmds(mm);
3212b535
SC
7362 return 1;
7363}
c1991e07 7364
9e5fc74c 7365#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
8d9bfb26 7366
aec44e0f
PX
7367pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7368 unsigned long addr, pud_t *pud)
9e5fc74c
SC
7369{
7370 return NULL;
7371}
e81f2d22 7372
34ae204f 7373int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
4ddb4d91 7374 unsigned long addr, pte_t *ptep)
e81f2d22
ZZ
7375{
7376 return 0;
7377}
017b1660
MK
7378
7379void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7380 unsigned long *start, unsigned long *end)
7381{
7382}
c1991e07
PX
7383
7384bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7385{
7386 return false;
7387}
3212b535
SC
7388#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7389
9e5fc74c 7390#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
aec44e0f 7391pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
9e5fc74c
SC
7392 unsigned long addr, unsigned long sz)
7393{
7394 pgd_t *pgd;
c2febafc 7395 p4d_t *p4d;
9e5fc74c
SC
7396 pud_t *pud;
7397 pte_t *pte = NULL;
7398
7399 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
7400 p4d = p4d_alloc(mm, pgd, addr);
7401 if (!p4d)
7402 return NULL;
c2febafc 7403 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
7404 if (pud) {
7405 if (sz == PUD_SIZE) {
7406 pte = (pte_t *)pud;
7407 } else {
7408 BUG_ON(sz != PMD_SIZE);
c1991e07 7409 if (want_pmd_share(vma, addr) && pud_none(*pud))
aec44e0f 7410 pte = huge_pmd_share(mm, vma, addr, pud);
9e5fc74c
SC
7411 else
7412 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7413 }
7414 }
191fcdb6
JH
7415
7416 if (pte) {
7417 pte_t pteval = ptep_get_lockless(pte);
7418
7419 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7420 }
9e5fc74c
SC
7421
7422 return pte;
7423}
7424
9b19df29
PA
7425/*
7426 * huge_pte_offset() - Walk the page table to resolve the hugepage
7427 * entry at address @addr
7428 *
8ac0b81a
LX
7429 * Return: Pointer to page table entry (PUD or PMD) for
7430 * address @addr, or NULL if a !p*d_present() entry is encountered and the
9b19df29
PA
7431 * size @sz doesn't match the hugepage size at this level of the page
7432 * table.
7433 */
7868a208
PA
7434pte_t *huge_pte_offset(struct mm_struct *mm,
7435 unsigned long addr, unsigned long sz)
9e5fc74c
SC
7436{
7437 pgd_t *pgd;
c2febafc 7438 p4d_t *p4d;
8ac0b81a
LX
7439 pud_t *pud;
7440 pmd_t *pmd;
9e5fc74c
SC
7441
7442 pgd = pgd_offset(mm, addr);
c2febafc
KS
7443 if (!pgd_present(*pgd))
7444 return NULL;
7445 p4d = p4d_offset(pgd, addr);
7446 if (!p4d_present(*p4d))
7447 return NULL;
9b19df29 7448
c2febafc 7449 pud = pud_offset(p4d, addr);
8ac0b81a
LX
7450 if (sz == PUD_SIZE)
7451 /* must be pud huge, non-present or none */
c2febafc 7452 return (pte_t *)pud;
8ac0b81a 7453 if (!pud_present(*pud))
9b19df29 7454 return NULL;
8ac0b81a 7455 /* must have a valid entry and size to go further */
9b19df29 7456
8ac0b81a
LX
7457 pmd = pmd_offset(pud, addr);
7458 /* must be pmd huge, non-present or none */
7459 return (pte_t *)pmd;
9e5fc74c
SC
7460}
7461
e95a9851
MK
7462/*
7463 * Return a mask that can be used to update an address to the last huge
7464 * page in a page table page mapping size. Used to skip non-present
7465 * page table entries when linearly scanning address ranges. Architectures
7466 * with unique huge page to page table relationships can define their own
7467 * version of this routine.
7468 */
7469unsigned long hugetlb_mask_last_page(struct hstate *h)
7470{
7471 unsigned long hp_size = huge_page_size(h);
7472
7473 if (hp_size == PUD_SIZE)
7474 return P4D_SIZE - PUD_SIZE;
7475 else if (hp_size == PMD_SIZE)
7476 return PUD_SIZE - PMD_SIZE;
7477 else
7478 return 0UL;
7479}
7480
7481#else
7482
7483/* See description above. Architectures can provide their own version. */
7484__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7485{
4ddb4d91
MK
7486#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7487 if (huge_page_size(h) == PMD_SIZE)
7488 return PUD_SIZE - PMD_SIZE;
7489#endif
e95a9851
MK
7490 return 0UL;
7491}
7492
61f77eda
NH
7493#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7494
7495/*
7496 * These functions are overwritable if your architecture needs its own
7497 * behavior.
7498 */
9747b9e9 7499bool isolate_hugetlb(struct folio *folio, struct list_head *list)
31caf665 7500{
9747b9e9 7501 bool ret = true;
bcc54222 7502
db71ef79 7503 spin_lock_irq(&hugetlb_lock);
6aa3a920
SK
7504 if (!folio_test_hugetlb(folio) ||
7505 !folio_test_hugetlb_migratable(folio) ||
7506 !folio_try_get(folio)) {
9747b9e9 7507 ret = false;
bcc54222
NH
7508 goto unlock;
7509 }
6aa3a920
SK
7510 folio_clear_hugetlb_migratable(folio);
7511 list_move_tail(&folio->lru, list);
bcc54222 7512unlock:
db71ef79 7513 spin_unlock_irq(&hugetlb_lock);
bcc54222 7514 return ret;
31caf665
NH
7515}
7516
04bac040 7517int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
25182f05
NH
7518{
7519 int ret = 0;
7520
7521 *hugetlb = false;
7522 spin_lock_irq(&hugetlb_lock);
04bac040 7523 if (folio_test_hugetlb(folio)) {
25182f05 7524 *hugetlb = true;
04bac040 7525 if (folio_test_hugetlb_freed(folio))
b283d983 7526 ret = 0;
04bac040
SK
7527 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7528 ret = folio_try_get(folio);
0ed950d1
NH
7529 else
7530 ret = -EBUSY;
25182f05
NH
7531 }
7532 spin_unlock_irq(&hugetlb_lock);
7533 return ret;
7534}
7535
e591ef7d
NH
7536int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7537 bool *migratable_cleared)
405ce051
NH
7538{
7539 int ret;
7540
7541 spin_lock_irq(&hugetlb_lock);
e591ef7d 7542 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
405ce051
NH
7543 spin_unlock_irq(&hugetlb_lock);
7544 return ret;
7545}
7546
ea8e72f4 7547void folio_putback_active_hugetlb(struct folio *folio)
31caf665 7548{
db71ef79 7549 spin_lock_irq(&hugetlb_lock);
ea8e72f4
SK
7550 folio_set_hugetlb_migratable(folio);
7551 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
db71ef79 7552 spin_unlock_irq(&hugetlb_lock);
ea8e72f4 7553 folio_put(folio);
31caf665 7554}
ab5ac90a 7555
345c62d1 7556void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
ab5ac90a 7557{
345c62d1 7558 struct hstate *h = folio_hstate(old_folio);
ab5ac90a 7559
345c62d1
SK
7560 hugetlb_cgroup_migrate(old_folio, new_folio);
7561 set_page_owner_migrate_reason(&new_folio->page, reason);
ab5ac90a
MH
7562
7563 /*
345c62d1 7564 * transfer temporary state of the new hugetlb folio. This is
ab5ac90a
MH
7565 * reverse to other transitions because the newpage is going to
7566 * be final while the old one will be freed so it takes over
7567 * the temporary status.
7568 *
7569 * Also note that we have to transfer the per-node surplus state
7570 * here as well otherwise the global surplus count will not match
7571 * the per-node's.
7572 */
345c62d1
SK
7573 if (folio_test_hugetlb_temporary(new_folio)) {
7574 int old_nid = folio_nid(old_folio);
7575 int new_nid = folio_nid(new_folio);
7576
345c62d1
SK
7577 folio_set_hugetlb_temporary(old_folio);
7578 folio_clear_hugetlb_temporary(new_folio);
ab5ac90a 7579
ab5ac90a 7580
5af1ab1d
ML
7581 /*
7582 * There is no need to transfer the per-node surplus state
7583 * when we do not cross the node.
7584 */
7585 if (new_nid == old_nid)
7586 return;
db71ef79 7587 spin_lock_irq(&hugetlb_lock);
ab5ac90a
MH
7588 if (h->surplus_huge_pages_node[old_nid]) {
7589 h->surplus_huge_pages_node[old_nid]--;
7590 h->surplus_huge_pages_node[new_nid]++;
7591 }
db71ef79 7592 spin_unlock_irq(&hugetlb_lock);
ab5ac90a
MH
7593 }
7594}
cf11e85f 7595
b30c14cd
JH
7596static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7597 unsigned long start,
7598 unsigned long end)
6dfeaff9
PX
7599{
7600 struct hstate *h = hstate_vma(vma);
7601 unsigned long sz = huge_page_size(h);
7602 struct mm_struct *mm = vma->vm_mm;
7603 struct mmu_notifier_range range;
b30c14cd 7604 unsigned long address;
6dfeaff9
PX
7605 spinlock_t *ptl;
7606 pte_t *ptep;
7607
7608 if (!(vma->vm_flags & VM_MAYSHARE))
7609 return;
7610
6dfeaff9
PX
7611 if (start >= end)
7612 return;
7613
9c8bbfac 7614 flush_cache_range(vma, start, end);
6dfeaff9
PX
7615 /*
7616 * No need to call adjust_range_if_pmd_sharing_possible(), because
7617 * we have already done the PUD_SIZE alignment.
7618 */
7d4a8be0 7619 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
6dfeaff9
PX
7620 start, end);
7621 mmu_notifier_invalidate_range_start(&range);
40549ba8 7622 hugetlb_vma_lock_write(vma);
6dfeaff9
PX
7623 i_mmap_lock_write(vma->vm_file->f_mapping);
7624 for (address = start; address < end; address += PUD_SIZE) {
9c67a207 7625 ptep = hugetlb_walk(vma, address, sz);
6dfeaff9
PX
7626 if (!ptep)
7627 continue;
7628 ptl = huge_pte_lock(h, mm, ptep);
4ddb4d91 7629 huge_pmd_unshare(mm, vma, address, ptep);
6dfeaff9
PX
7630 spin_unlock(ptl);
7631 }
7632 flush_hugetlb_tlb_range(vma, start, end);
7633 i_mmap_unlock_write(vma->vm_file->f_mapping);
40549ba8 7634 hugetlb_vma_unlock_write(vma);
6dfeaff9 7635 /*
1af5a810 7636 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
ee65728e 7637 * Documentation/mm/mmu_notifier.rst.
6dfeaff9
PX
7638 */
7639 mmu_notifier_invalidate_range_end(&range);
7640}
7641
b30c14cd
JH
7642/*
7643 * This function will unconditionally remove all the shared pmd pgtable entries
7644 * within the specific vma for a hugetlbfs memory range.
7645 */
7646void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7647{
7648 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7649 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7650}
7651
cf11e85f 7652#ifdef CONFIG_CMA
cf11e85f
RG
7653static bool cma_reserve_called __initdata;
7654
7655static int __init cmdline_parse_hugetlb_cma(char *p)
7656{
38e719ab
BW
7657 int nid, count = 0;
7658 unsigned long tmp;
7659 char *s = p;
7660
7661 while (*s) {
7662 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7663 break;
7664
7665 if (s[count] == ':') {
f9317f77 7666 if (tmp >= MAX_NUMNODES)
38e719ab 7667 break;
f9317f77 7668 nid = array_index_nospec(tmp, MAX_NUMNODES);
38e719ab
BW
7669
7670 s += count + 1;
7671 tmp = memparse(s, &s);
7672 hugetlb_cma_size_in_node[nid] = tmp;
7673 hugetlb_cma_size += tmp;
7674
7675 /*
7676 * Skip the separator if have one, otherwise
7677 * break the parsing.
7678 */
7679 if (*s == ',')
7680 s++;
7681 else
7682 break;
7683 } else {
7684 hugetlb_cma_size = memparse(p, &p);
7685 break;
7686 }
7687 }
7688
cf11e85f
RG
7689 return 0;
7690}
7691
7692early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7693
7694void __init hugetlb_cma_reserve(int order)
7695{
7696 unsigned long size, reserved, per_node;
38e719ab 7697 bool node_specific_cma_alloc = false;
cf11e85f
RG
7698 int nid;
7699
ce70cfb1
AK
7700 /*
7701 * HugeTLB CMA reservation is required for gigantic
7702 * huge pages which could not be allocated via the
7703 * page allocator. Just warn if there is any change
7704 * breaking this assumption.
7705 */
7706 VM_WARN_ON(order <= MAX_PAGE_ORDER);
cf11e85f
RG
7707 cma_reserve_called = true;
7708
38e719ab
BW
7709 if (!hugetlb_cma_size)
7710 return;
7711
7712 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7713 if (hugetlb_cma_size_in_node[nid] == 0)
7714 continue;
7715
30a51400 7716 if (!node_online(nid)) {
38e719ab
BW
7717 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7718 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7719 hugetlb_cma_size_in_node[nid] = 0;
7720 continue;
7721 }
7722
7723 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7724 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7725 nid, (PAGE_SIZE << order) / SZ_1M);
7726 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7727 hugetlb_cma_size_in_node[nid] = 0;
7728 } else {
7729 node_specific_cma_alloc = true;
7730 }
7731 }
7732
7733 /* Validate the CMA size again in case some invalid nodes specified. */
cf11e85f
RG
7734 if (!hugetlb_cma_size)
7735 return;
7736
7737 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7738 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7739 (PAGE_SIZE << order) / SZ_1M);
a01f4390 7740 hugetlb_cma_size = 0;
cf11e85f
RG
7741 return;
7742 }
7743
38e719ab
BW
7744 if (!node_specific_cma_alloc) {
7745 /*
7746 * If 3 GB area is requested on a machine with 4 numa nodes,
7747 * let's allocate 1 GB on first three nodes and ignore the last one.
7748 */
7749 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7750 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7751 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7752 }
cf11e85f
RG
7753
7754 reserved = 0;
30a51400 7755 for_each_online_node(nid) {
cf11e85f 7756 int res;
2281f797 7757 char name[CMA_MAX_NAME];
cf11e85f 7758
38e719ab
BW
7759 if (node_specific_cma_alloc) {
7760 if (hugetlb_cma_size_in_node[nid] == 0)
7761 continue;
7762
7763 size = hugetlb_cma_size_in_node[nid];
7764 } else {
7765 size = min(per_node, hugetlb_cma_size - reserved);
7766 }
7767
cf11e85f
RG
7768 size = round_up(size, PAGE_SIZE << order);
7769
2281f797 7770 snprintf(name, sizeof(name), "hugetlb%d", nid);
a01f4390
MK
7771 /*
7772 * Note that 'order per bit' is based on smallest size that
7773 * may be returned to CMA allocator in the case of
7774 * huge page demotion.
7775 */
7776 res = cma_declare_contiguous_nid(0, size, 0,
cc48be37 7777 PAGE_SIZE << order,
55d134a7
FL
7778 HUGETLB_PAGE_ORDER, false, name,
7779 &hugetlb_cma[nid], nid);
cf11e85f
RG
7780 if (res) {
7781 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7782 res, nid);
7783 continue;
7784 }
7785
7786 reserved += size;
7787 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7788 size / SZ_1M, nid);
7789
7790 if (reserved >= hugetlb_cma_size)
7791 break;
7792 }
a01f4390
MK
7793
7794 if (!reserved)
7795 /*
7796 * hugetlb_cma_size is used to determine if allocations from
7797 * cma are possible. Set to zero if no cma regions are set up.
7798 */
7799 hugetlb_cma_size = 0;
cf11e85f
RG
7800}
7801
263b8998 7802static void __init hugetlb_cma_check(void)
cf11e85f
RG
7803{
7804 if (!hugetlb_cma_size || cma_reserve_called)
7805 return;
7806
7807 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7808}
7809
7810#endif /* CONFIG_CMA */
This page took 3.382778 seconds and 4 git commands to generate.