]> Git Repo - linux.git/blame - mm/rmap.c
d_path: make 'prepend()' fill up the buffer exactly on overflow
[linux.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <[email protected]>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <[email protected]> 2001
15 * File methods by Dave McCracken <[email protected]> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <[email protected]> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
9608703e 23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
c1e8d7c6 24 * mm->mmap_lock
730633f0
JK
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page) * (see hugetlbfs below)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28 * mapping->i_mmap_rwsem
29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in __set_page_dirty_buffers)
35 * lock_page_memcg move_lock (in __set_page_dirty_buffers)
36 * i_pages lock (widely used)
37 * lruvec->lru_lock (in lock_page_lruvec_irq)
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 44 *
9608703e 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
9b679320 46 * ->tasklist_lock
6a46079c 47 * pte map lock
c0d0381a
MK
48 *
49 * * hugetlbfs PageHuge() pages take locks in this order:
50 * mapping->i_mmap_rwsem
51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52 * page->flags PG_locked (lock_page)
1da177e4
LT
53 */
54
55#include <linux/mm.h>
6e84f315 56#include <linux/sched/mm.h>
29930025 57#include <linux/sched/task.h>
1da177e4
LT
58#include <linux/pagemap.h>
59#include <linux/swap.h>
60#include <linux/swapops.h>
61#include <linux/slab.h>
62#include <linux/init.h>
5ad64688 63#include <linux/ksm.h>
1da177e4
LT
64#include <linux/rmap.h>
65#include <linux/rcupdate.h>
b95f1b31 66#include <linux/export.h>
8a9f3ccd 67#include <linux/memcontrol.h>
cddb8a5c 68#include <linux/mmu_notifier.h>
64cdd548 69#include <linux/migrate.h>
0fe6e20b 70#include <linux/hugetlb.h>
444f84fd 71#include <linux/huge_mm.h>
ef5d437f 72#include <linux/backing-dev.h>
33c3fc71 73#include <linux/page_idle.h>
a5430dda 74#include <linux/memremap.h>
bce73e48 75#include <linux/userfaultfd_k.h>
1da177e4
LT
76
77#include <asm/tlbflush.h>
78
72b252ae
MG
79#include <trace/events/tlb.h>
80
b291f000
NP
81#include "internal.h"
82
fdd2e5f8 83static struct kmem_cache *anon_vma_cachep;
5beb4930 84static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
85
86static inline struct anon_vma *anon_vma_alloc(void)
87{
01d8b20d
PZ
88 struct anon_vma *anon_vma;
89
90 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
91 if (anon_vma) {
92 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
93 anon_vma->degree = 1; /* Reference for first vma */
94 anon_vma->parent = anon_vma;
01d8b20d
PZ
95 /*
96 * Initialise the anon_vma root to point to itself. If called
97 * from fork, the root will be reset to the parents anon_vma.
98 */
99 anon_vma->root = anon_vma;
100 }
101
102 return anon_vma;
fdd2e5f8
AB
103}
104
01d8b20d 105static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 106{
01d8b20d 107 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
108
109 /*
4fc3f1d6 110 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
111 * we can safely hold the lock without the anon_vma getting
112 * freed.
113 *
114 * Relies on the full mb implied by the atomic_dec_and_test() from
115 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 116 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 117 *
4fc3f1d6
IM
118 * page_lock_anon_vma_read() VS put_anon_vma()
119 * down_read_trylock() atomic_dec_and_test()
88c22088 120 * LOCK MB
4fc3f1d6 121 * atomic_read() rwsem_is_locked()
88c22088
PZ
122 *
123 * LOCK should suffice since the actual taking of the lock must
124 * happen _before_ what follows.
125 */
7f39dda9 126 might_sleep();
5a505085 127 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 128 anon_vma_lock_write(anon_vma);
08b52706 129 anon_vma_unlock_write(anon_vma);
88c22088
PZ
130 }
131
fdd2e5f8
AB
132 kmem_cache_free(anon_vma_cachep, anon_vma);
133}
1da177e4 134
dd34739c 135static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 136{
dd34739c 137 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
138}
139
e574b5fd 140static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
141{
142 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
143}
144
6583a843
KC
145static void anon_vma_chain_link(struct vm_area_struct *vma,
146 struct anon_vma_chain *avc,
147 struct anon_vma *anon_vma)
148{
149 avc->vma = vma;
150 avc->anon_vma = anon_vma;
151 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 152 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
153}
154
d9d332e0 155/**
d5a187da 156 * __anon_vma_prepare - attach an anon_vma to a memory region
d9d332e0
LT
157 * @vma: the memory region in question
158 *
159 * This makes sure the memory mapping described by 'vma' has
160 * an 'anon_vma' attached to it, so that we can associate the
161 * anonymous pages mapped into it with that anon_vma.
162 *
d5a187da
VB
163 * The common case will be that we already have one, which
164 * is handled inline by anon_vma_prepare(). But if
23a0790a 165 * not we either need to find an adjacent mapping that we
d9d332e0
LT
166 * can re-use the anon_vma from (very common when the only
167 * reason for splitting a vma has been mprotect()), or we
168 * allocate a new one.
169 *
170 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 171 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
aaf1f990 172 * and that may actually touch the rwsem even in the newly
d9d332e0
LT
173 * allocated vma (it depends on RCU to make sure that the
174 * anon_vma isn't actually destroyed).
175 *
176 * As a result, we need to do proper anon_vma locking even
177 * for the new allocation. At the same time, we do not want
178 * to do any locking for the common case of already having
179 * an anon_vma.
180 *
c1e8d7c6 181 * This must be called with the mmap_lock held for reading.
d9d332e0 182 */
d5a187da 183int __anon_vma_prepare(struct vm_area_struct *vma)
1da177e4 184{
d5a187da
VB
185 struct mm_struct *mm = vma->vm_mm;
186 struct anon_vma *anon_vma, *allocated;
5beb4930 187 struct anon_vma_chain *avc;
1da177e4
LT
188
189 might_sleep();
1da177e4 190
d5a187da
VB
191 avc = anon_vma_chain_alloc(GFP_KERNEL);
192 if (!avc)
193 goto out_enomem;
194
195 anon_vma = find_mergeable_anon_vma(vma);
196 allocated = NULL;
197 if (!anon_vma) {
198 anon_vma = anon_vma_alloc();
199 if (unlikely(!anon_vma))
200 goto out_enomem_free_avc;
201 allocated = anon_vma;
202 }
5beb4930 203
d5a187da
VB
204 anon_vma_lock_write(anon_vma);
205 /* page_table_lock to protect against threads */
206 spin_lock(&mm->page_table_lock);
207 if (likely(!vma->anon_vma)) {
208 vma->anon_vma = anon_vma;
209 anon_vma_chain_link(vma, avc, anon_vma);
210 /* vma reference or self-parent link for new root */
211 anon_vma->degree++;
d9d332e0 212 allocated = NULL;
d5a187da
VB
213 avc = NULL;
214 }
215 spin_unlock(&mm->page_table_lock);
216 anon_vma_unlock_write(anon_vma);
1da177e4 217
d5a187da
VB
218 if (unlikely(allocated))
219 put_anon_vma(allocated);
220 if (unlikely(avc))
221 anon_vma_chain_free(avc);
31f2b0eb 222
1da177e4 223 return 0;
5beb4930
RR
224
225 out_enomem_free_avc:
226 anon_vma_chain_free(avc);
227 out_enomem:
228 return -ENOMEM;
1da177e4
LT
229}
230
bb4aa396
LT
231/*
232 * This is a useful helper function for locking the anon_vma root as
233 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
234 * have the same vma.
235 *
236 * Such anon_vma's should have the same root, so you'd expect to see
237 * just a single mutex_lock for the whole traversal.
238 */
239static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
240{
241 struct anon_vma *new_root = anon_vma->root;
242 if (new_root != root) {
243 if (WARN_ON_ONCE(root))
5a505085 244 up_write(&root->rwsem);
bb4aa396 245 root = new_root;
5a505085 246 down_write(&root->rwsem);
bb4aa396
LT
247 }
248 return root;
249}
250
251static inline void unlock_anon_vma_root(struct anon_vma *root)
252{
253 if (root)
5a505085 254 up_write(&root->rwsem);
bb4aa396
LT
255}
256
5beb4930
RR
257/*
258 * Attach the anon_vmas from src to dst.
259 * Returns 0 on success, -ENOMEM on failure.
7a3ef208 260 *
cb152a1a 261 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
47b390d2
WY
262 * anon_vma_fork(). The first three want an exact copy of src, while the last
263 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
264 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
265 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
266 *
267 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
268 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
269 * This prevents degradation of anon_vma hierarchy to endless linear chain in
270 * case of constantly forking task. On the other hand, an anon_vma with more
271 * than one child isn't reused even if there was no alive vma, thus rmap
272 * walker has a good chance of avoiding scanning the whole hierarchy when it
273 * searches where page is mapped.
5beb4930
RR
274 */
275int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 276{
5beb4930 277 struct anon_vma_chain *avc, *pavc;
bb4aa396 278 struct anon_vma *root = NULL;
5beb4930 279
646d87b4 280 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
281 struct anon_vma *anon_vma;
282
dd34739c
LT
283 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
284 if (unlikely(!avc)) {
285 unlock_anon_vma_root(root);
286 root = NULL;
287 avc = anon_vma_chain_alloc(GFP_KERNEL);
288 if (!avc)
289 goto enomem_failure;
290 }
bb4aa396
LT
291 anon_vma = pavc->anon_vma;
292 root = lock_anon_vma_root(root, anon_vma);
293 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
294
295 /*
296 * Reuse existing anon_vma if its degree lower than two,
297 * that means it has no vma and only one anon_vma child.
298 *
299 * Do not chose parent anon_vma, otherwise first child
300 * will always reuse it. Root anon_vma is never reused:
301 * it has self-parent reference and at least one child.
302 */
47b390d2
WY
303 if (!dst->anon_vma && src->anon_vma &&
304 anon_vma != src->anon_vma && anon_vma->degree < 2)
7a3ef208 305 dst->anon_vma = anon_vma;
5beb4930 306 }
7a3ef208
KK
307 if (dst->anon_vma)
308 dst->anon_vma->degree++;
bb4aa396 309 unlock_anon_vma_root(root);
5beb4930 310 return 0;
1da177e4 311
5beb4930 312 enomem_failure:
3fe89b3e
LY
313 /*
314 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
315 * decremented in unlink_anon_vmas().
316 * We can safely do this because callers of anon_vma_clone() don't care
317 * about dst->anon_vma if anon_vma_clone() failed.
318 */
319 dst->anon_vma = NULL;
5beb4930
RR
320 unlink_anon_vmas(dst);
321 return -ENOMEM;
1da177e4
LT
322}
323
5beb4930
RR
324/*
325 * Attach vma to its own anon_vma, as well as to the anon_vmas that
326 * the corresponding VMA in the parent process is attached to.
327 * Returns 0 on success, non-zero on failure.
328 */
329int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 330{
5beb4930
RR
331 struct anon_vma_chain *avc;
332 struct anon_vma *anon_vma;
c4ea95d7 333 int error;
1da177e4 334
5beb4930
RR
335 /* Don't bother if the parent process has no anon_vma here. */
336 if (!pvma->anon_vma)
337 return 0;
338
7a3ef208
KK
339 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
340 vma->anon_vma = NULL;
341
5beb4930
RR
342 /*
343 * First, attach the new VMA to the parent VMA's anon_vmas,
344 * so rmap can find non-COWed pages in child processes.
345 */
c4ea95d7
DF
346 error = anon_vma_clone(vma, pvma);
347 if (error)
348 return error;
5beb4930 349
7a3ef208
KK
350 /* An existing anon_vma has been reused, all done then. */
351 if (vma->anon_vma)
352 return 0;
353
5beb4930
RR
354 /* Then add our own anon_vma. */
355 anon_vma = anon_vma_alloc();
356 if (!anon_vma)
357 goto out_error;
dd34739c 358 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
359 if (!avc)
360 goto out_error_free_anon_vma;
5c341ee1
RR
361
362 /*
aaf1f990 363 * The root anon_vma's rwsem is the lock actually used when we
5c341ee1
RR
364 * lock any of the anon_vmas in this anon_vma tree.
365 */
366 anon_vma->root = pvma->anon_vma->root;
7a3ef208 367 anon_vma->parent = pvma->anon_vma;
76545066 368 /*
01d8b20d
PZ
369 * With refcounts, an anon_vma can stay around longer than the
370 * process it belongs to. The root anon_vma needs to be pinned until
371 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
372 */
373 get_anon_vma(anon_vma->root);
5beb4930
RR
374 /* Mark this anon_vma as the one where our new (COWed) pages go. */
375 vma->anon_vma = anon_vma;
4fc3f1d6 376 anon_vma_lock_write(anon_vma);
5c341ee1 377 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 378 anon_vma->parent->degree++;
08b52706 379 anon_vma_unlock_write(anon_vma);
5beb4930
RR
380
381 return 0;
382
383 out_error_free_anon_vma:
01d8b20d 384 put_anon_vma(anon_vma);
5beb4930 385 out_error:
4946d54c 386 unlink_anon_vmas(vma);
5beb4930 387 return -ENOMEM;
1da177e4
LT
388}
389
5beb4930
RR
390void unlink_anon_vmas(struct vm_area_struct *vma)
391{
392 struct anon_vma_chain *avc, *next;
eee2acba 393 struct anon_vma *root = NULL;
5beb4930 394
5c341ee1
RR
395 /*
396 * Unlink each anon_vma chained to the VMA. This list is ordered
397 * from newest to oldest, ensuring the root anon_vma gets freed last.
398 */
5beb4930 399 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
400 struct anon_vma *anon_vma = avc->anon_vma;
401
402 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 403 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
404
405 /*
406 * Leave empty anon_vmas on the list - we'll need
407 * to free them outside the lock.
408 */
f808c13f 409 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
7a3ef208 410 anon_vma->parent->degree--;
eee2acba 411 continue;
7a3ef208 412 }
eee2acba
PZ
413
414 list_del(&avc->same_vma);
415 anon_vma_chain_free(avc);
416 }
ee8ab190 417 if (vma->anon_vma) {
7a3ef208 418 vma->anon_vma->degree--;
ee8ab190
LX
419
420 /*
421 * vma would still be needed after unlink, and anon_vma will be prepared
422 * when handle fault.
423 */
424 vma->anon_vma = NULL;
425 }
eee2acba
PZ
426 unlock_anon_vma_root(root);
427
428 /*
429 * Iterate the list once more, it now only contains empty and unlinked
430 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 431 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
432 */
433 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
434 struct anon_vma *anon_vma = avc->anon_vma;
435
e4c5800a 436 VM_WARN_ON(anon_vma->degree);
eee2acba
PZ
437 put_anon_vma(anon_vma);
438
5beb4930
RR
439 list_del(&avc->same_vma);
440 anon_vma_chain_free(avc);
441 }
442}
443
51cc5068 444static void anon_vma_ctor(void *data)
1da177e4 445{
a35afb83 446 struct anon_vma *anon_vma = data;
1da177e4 447
5a505085 448 init_rwsem(&anon_vma->rwsem);
83813267 449 atomic_set(&anon_vma->refcount, 0);
f808c13f 450 anon_vma->rb_root = RB_ROOT_CACHED;
1da177e4
LT
451}
452
453void __init anon_vma_init(void)
454{
455 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5f0d5a3a 456 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
5d097056
VD
457 anon_vma_ctor);
458 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
459 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
460}
461
462/*
6111e4ca
PZ
463 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
464 *
465 * Since there is no serialization what so ever against page_remove_rmap()
ad8a20cf
ML
466 * the best this function can do is return a refcount increased anon_vma
467 * that might have been relevant to this page.
6111e4ca
PZ
468 *
469 * The page might have been remapped to a different anon_vma or the anon_vma
470 * returned may already be freed (and even reused).
471 *
bc658c96
PZ
472 * In case it was remapped to a different anon_vma, the new anon_vma will be a
473 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
474 * ensure that any anon_vma obtained from the page will still be valid for as
475 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
476 *
6111e4ca
PZ
477 * All users of this function must be very careful when walking the anon_vma
478 * chain and verify that the page in question is indeed mapped in it
479 * [ something equivalent to page_mapped_in_vma() ].
480 *
091e4299
MC
481 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
482 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
483 * if there is a mapcount, we can dereference the anon_vma after observing
484 * those.
1da177e4 485 */
746b18d4 486struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 487{
746b18d4 488 struct anon_vma *anon_vma = NULL;
1da177e4
LT
489 unsigned long anon_mapping;
490
491 rcu_read_lock();
4db0c3c2 492 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 493 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
494 goto out;
495 if (!page_mapped(page))
496 goto out;
497
498 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
499 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
500 anon_vma = NULL;
501 goto out;
502 }
f1819427
HD
503
504 /*
505 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
506 * freed. But if it has been unmapped, we have no security against the
507 * anon_vma structure being freed and reused (for another anon_vma:
5f0d5a3a 508 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
746b18d4 509 * above cannot corrupt).
f1819427 510 */
746b18d4 511 if (!page_mapped(page)) {
7f39dda9 512 rcu_read_unlock();
746b18d4 513 put_anon_vma(anon_vma);
7f39dda9 514 return NULL;
746b18d4 515 }
1da177e4
LT
516out:
517 rcu_read_unlock();
746b18d4
PZ
518
519 return anon_vma;
520}
521
88c22088
PZ
522/*
523 * Similar to page_get_anon_vma() except it locks the anon_vma.
524 *
525 * Its a little more complex as it tries to keep the fast path to a single
526 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
527 * reference like with page_get_anon_vma() and then block on the mutex.
528 */
4fc3f1d6 529struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 530{
88c22088 531 struct anon_vma *anon_vma = NULL;
eee0f252 532 struct anon_vma *root_anon_vma;
88c22088 533 unsigned long anon_mapping;
746b18d4 534
88c22088 535 rcu_read_lock();
4db0c3c2 536 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
537 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
538 goto out;
539 if (!page_mapped(page))
540 goto out;
541
542 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 543 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 544 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 545 /*
eee0f252
HD
546 * If the page is still mapped, then this anon_vma is still
547 * its anon_vma, and holding the mutex ensures that it will
bc658c96 548 * not go away, see anon_vma_free().
88c22088 549 */
eee0f252 550 if (!page_mapped(page)) {
4fc3f1d6 551 up_read(&root_anon_vma->rwsem);
88c22088
PZ
552 anon_vma = NULL;
553 }
554 goto out;
555 }
746b18d4 556
88c22088
PZ
557 /* trylock failed, we got to sleep */
558 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
559 anon_vma = NULL;
560 goto out;
561 }
562
563 if (!page_mapped(page)) {
7f39dda9 564 rcu_read_unlock();
88c22088 565 put_anon_vma(anon_vma);
7f39dda9 566 return NULL;
88c22088
PZ
567 }
568
569 /* we pinned the anon_vma, its safe to sleep */
570 rcu_read_unlock();
4fc3f1d6 571 anon_vma_lock_read(anon_vma);
88c22088
PZ
572
573 if (atomic_dec_and_test(&anon_vma->refcount)) {
574 /*
575 * Oops, we held the last refcount, release the lock
576 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 577 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 578 */
4fc3f1d6 579 anon_vma_unlock_read(anon_vma);
88c22088
PZ
580 __put_anon_vma(anon_vma);
581 anon_vma = NULL;
582 }
583
584 return anon_vma;
585
586out:
587 rcu_read_unlock();
746b18d4 588 return anon_vma;
34bbd704
ON
589}
590
4fc3f1d6 591void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 592{
4fc3f1d6 593 anon_vma_unlock_read(anon_vma);
1da177e4
LT
594}
595
72b252ae 596#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
72b252ae
MG
597/*
598 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
599 * important if a PTE was dirty when it was unmapped that it's flushed
600 * before any IO is initiated on the page to prevent lost writes. Similarly,
601 * it must be flushed before freeing to prevent data leakage.
602 */
603void try_to_unmap_flush(void)
604{
605 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
72b252ae
MG
606
607 if (!tlb_ubc->flush_required)
608 return;
609
e73ad5ff 610 arch_tlbbatch_flush(&tlb_ubc->arch);
72b252ae 611 tlb_ubc->flush_required = false;
d950c947 612 tlb_ubc->writable = false;
72b252ae
MG
613}
614
d950c947
MG
615/* Flush iff there are potentially writable TLB entries that can race with IO */
616void try_to_unmap_flush_dirty(void)
617{
618 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
619
620 if (tlb_ubc->writable)
621 try_to_unmap_flush();
622}
623
c7ab0d2f 624static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
625{
626 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
627
e73ad5ff 628 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
72b252ae 629 tlb_ubc->flush_required = true;
d950c947 630
3ea27719
MG
631 /*
632 * Ensure compiler does not re-order the setting of tlb_flush_batched
633 * before the PTE is cleared.
634 */
635 barrier();
636 mm->tlb_flush_batched = true;
637
d950c947
MG
638 /*
639 * If the PTE was dirty then it's best to assume it's writable. The
640 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
641 * before the page is queued for IO.
642 */
643 if (writable)
644 tlb_ubc->writable = true;
72b252ae
MG
645}
646
647/*
648 * Returns true if the TLB flush should be deferred to the end of a batch of
649 * unmap operations to reduce IPIs.
650 */
651static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
652{
653 bool should_defer = false;
654
655 if (!(flags & TTU_BATCH_FLUSH))
656 return false;
657
658 /* If remote CPUs need to be flushed then defer batch the flush */
659 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
660 should_defer = true;
661 put_cpu();
662
663 return should_defer;
664}
3ea27719
MG
665
666/*
667 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
668 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
669 * operation such as mprotect or munmap to race between reclaim unmapping
670 * the page and flushing the page. If this race occurs, it potentially allows
671 * access to data via a stale TLB entry. Tracking all mm's that have TLB
672 * batching in flight would be expensive during reclaim so instead track
673 * whether TLB batching occurred in the past and if so then do a flush here
674 * if required. This will cost one additional flush per reclaim cycle paid
675 * by the first operation at risk such as mprotect and mumap.
676 *
677 * This must be called under the PTL so that an access to tlb_flush_batched
678 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
679 * via the PTL.
680 */
681void flush_tlb_batched_pending(struct mm_struct *mm)
682{
9c1177b6 683 if (data_race(mm->tlb_flush_batched)) {
3ea27719
MG
684 flush_tlb_mm(mm);
685
686 /*
687 * Do not allow the compiler to re-order the clearing of
688 * tlb_flush_batched before the tlb is flushed.
689 */
690 barrier();
691 mm->tlb_flush_batched = false;
692 }
693}
72b252ae 694#else
c7ab0d2f 695static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
696{
697}
698
699static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
700{
701 return false;
702}
703#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
704
1da177e4 705/*
bf89c8c8 706 * At what user virtual address is page expected in vma?
ab941e0f 707 * Caller should check the page is actually part of the vma.
1da177e4
LT
708 */
709unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
710{
21d0d443 711 if (PageAnon(page)) {
4829b906
HD
712 struct anon_vma *page__anon_vma = page_anon_vma(page);
713 /*
714 * Note: swapoff's unuse_vma() is more efficient with this
715 * check, and needs it to match anon_vma when KSM is active.
716 */
717 if (!vma->anon_vma || !page__anon_vma ||
718 vma->anon_vma->root != page__anon_vma->root)
21d0d443 719 return -EFAULT;
31657170
JW
720 } else if (!vma->vm_file) {
721 return -EFAULT;
722 } else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
1da177e4 723 return -EFAULT;
31657170 724 }
494334e4
HD
725
726 return vma_address(page, vma);
1da177e4
LT
727}
728
6219049a
BL
729pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
730{
731 pgd_t *pgd;
c2febafc 732 p4d_t *p4d;
6219049a
BL
733 pud_t *pud;
734 pmd_t *pmd = NULL;
f72e7dcd 735 pmd_t pmde;
6219049a
BL
736
737 pgd = pgd_offset(mm, address);
738 if (!pgd_present(*pgd))
739 goto out;
740
c2febafc
KS
741 p4d = p4d_offset(pgd, address);
742 if (!p4d_present(*p4d))
743 goto out;
744
745 pud = pud_offset(p4d, address);
6219049a
BL
746 if (!pud_present(*pud))
747 goto out;
748
749 pmd = pmd_offset(pud, address);
f72e7dcd 750 /*
8809aa2d 751 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
752 * without holding anon_vma lock for write. So when looking for a
753 * genuine pmde (in which to find pte), test present and !THP together.
754 */
e37c6982
CB
755 pmde = *pmd;
756 barrier();
f72e7dcd 757 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
758 pmd = NULL;
759out:
760 return pmd;
761}
762
8749cfea
VD
763struct page_referenced_arg {
764 int mapcount;
765 int referenced;
766 unsigned long vm_flags;
767 struct mem_cgroup *memcg;
768};
769/*
770 * arg: page_referenced_arg will be passed
771 */
e4b82222 772static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
8749cfea
VD
773 unsigned long address, void *arg)
774{
8749cfea 775 struct page_referenced_arg *pra = arg;
8eaedede
KS
776 struct page_vma_mapped_walk pvmw = {
777 .page = page,
778 .vma = vma,
779 .address = address,
780 };
8749cfea
VD
781 int referenced = 0;
782
8eaedede
KS
783 while (page_vma_mapped_walk(&pvmw)) {
784 address = pvmw.address;
b20ce5e0 785
8eaedede
KS
786 if (vma->vm_flags & VM_LOCKED) {
787 page_vma_mapped_walk_done(&pvmw);
788 pra->vm_flags |= VM_LOCKED;
e4b82222 789 return false; /* To break the loop */
8eaedede 790 }
71e3aac0 791
8eaedede
KS
792 if (pvmw.pte) {
793 if (ptep_clear_flush_young_notify(vma, address,
794 pvmw.pte)) {
795 /*
796 * Don't treat a reference through
797 * a sequentially read mapping as such.
798 * If the page has been used in another mapping,
799 * we will catch it; if this other mapping is
800 * already gone, the unmap path will have set
801 * PG_referenced or activated the page.
802 */
803 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
804 referenced++;
805 }
806 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
807 if (pmdp_clear_flush_young_notify(vma, address,
808 pvmw.pmd))
8749cfea 809 referenced++;
8eaedede
KS
810 } else {
811 /* unexpected pmd-mapped page? */
812 WARN_ON_ONCE(1);
8749cfea 813 }
8eaedede
KS
814
815 pra->mapcount--;
b20ce5e0 816 }
b20ce5e0 817
33c3fc71
VD
818 if (referenced)
819 clear_page_idle(page);
820 if (test_and_clear_page_young(page))
821 referenced++;
822
9f32624b
JK
823 if (referenced) {
824 pra->referenced++;
825 pra->vm_flags |= vma->vm_flags;
1da177e4 826 }
34bbd704 827
9f32624b 828 if (!pra->mapcount)
e4b82222 829 return false; /* To break the loop */
9f32624b 830
e4b82222 831 return true;
1da177e4
LT
832}
833
9f32624b 834static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 835{
9f32624b
JK
836 struct page_referenced_arg *pra = arg;
837 struct mem_cgroup *memcg = pra->memcg;
1da177e4 838
9f32624b
JK
839 if (!mm_match_cgroup(vma->vm_mm, memcg))
840 return true;
1da177e4 841
9f32624b 842 return false;
1da177e4
LT
843}
844
845/**
846 * page_referenced - test if the page was referenced
847 * @page: the page to test
848 * @is_locked: caller holds lock on the page
72835c86 849 * @memcg: target memory cgroup
6fe6b7e3 850 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
851 *
852 * Quick test_and_clear_referenced for all mappings to a page,
853 * returns the number of ptes which referenced the page.
854 */
6fe6b7e3
WF
855int page_referenced(struct page *page,
856 int is_locked,
72835c86 857 struct mem_cgroup *memcg,
6fe6b7e3 858 unsigned long *vm_flags)
1da177e4 859{
5ad64688 860 int we_locked = 0;
9f32624b 861 struct page_referenced_arg pra = {
b20ce5e0 862 .mapcount = total_mapcount(page),
9f32624b
JK
863 .memcg = memcg,
864 };
865 struct rmap_walk_control rwc = {
866 .rmap_one = page_referenced_one,
867 .arg = (void *)&pra,
868 .anon_lock = page_lock_anon_vma_read,
869 };
1da177e4 870
6fe6b7e3 871 *vm_flags = 0;
059d8442 872 if (!pra.mapcount)
9f32624b
JK
873 return 0;
874
875 if (!page_rmapping(page))
876 return 0;
877
878 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
879 we_locked = trylock_page(page);
880 if (!we_locked)
881 return 1;
1da177e4 882 }
9f32624b
JK
883
884 /*
885 * If we are reclaiming on behalf of a cgroup, skip
886 * counting on behalf of references from different
887 * cgroups
888 */
889 if (memcg) {
890 rwc.invalid_vma = invalid_page_referenced_vma;
891 }
892
c24f386c 893 rmap_walk(page, &rwc);
9f32624b
JK
894 *vm_flags = pra.vm_flags;
895
896 if (we_locked)
897 unlock_page(page);
898
899 return pra.referenced;
1da177e4
LT
900}
901
e4b82222 902static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 903 unsigned long address, void *arg)
d08b3851 904{
f27176cf
KS
905 struct page_vma_mapped_walk pvmw = {
906 .page = page,
907 .vma = vma,
908 .address = address,
909 .flags = PVMW_SYNC,
910 };
ac46d4f3 911 struct mmu_notifier_range range;
9853a407 912 int *cleaned = arg;
d08b3851 913
369ea824
JG
914 /*
915 * We have to assume the worse case ie pmd for invalidation. Note that
916 * the page can not be free from this function.
917 */
7269f999
JG
918 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
919 0, vma, vma->vm_mm, address,
494334e4 920 vma_address_end(page, vma));
ac46d4f3 921 mmu_notifier_invalidate_range_start(&range);
369ea824 922
f27176cf
KS
923 while (page_vma_mapped_walk(&pvmw)) {
924 int ret = 0;
369ea824 925
1f18b296 926 address = pvmw.address;
f27176cf
KS
927 if (pvmw.pte) {
928 pte_t entry;
929 pte_t *pte = pvmw.pte;
930
931 if (!pte_dirty(*pte) && !pte_write(*pte))
932 continue;
933
785373b4
LT
934 flush_cache_page(vma, address, pte_pfn(*pte));
935 entry = ptep_clear_flush(vma, address, pte);
f27176cf
KS
936 entry = pte_wrprotect(entry);
937 entry = pte_mkclean(entry);
785373b4 938 set_pte_at(vma->vm_mm, address, pte, entry);
f27176cf
KS
939 ret = 1;
940 } else {
396bcc52 941#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f27176cf
KS
942 pmd_t *pmd = pvmw.pmd;
943 pmd_t entry;
944
945 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
946 continue;
947
785373b4 948 flush_cache_page(vma, address, page_to_pfn(page));
024eee0e 949 entry = pmdp_invalidate(vma, address, pmd);
f27176cf
KS
950 entry = pmd_wrprotect(entry);
951 entry = pmd_mkclean(entry);
785373b4 952 set_pmd_at(vma->vm_mm, address, pmd, entry);
f27176cf
KS
953 ret = 1;
954#else
955 /* unexpected pmd-mapped page? */
956 WARN_ON_ONCE(1);
957#endif
958 }
d08b3851 959
0f10851e
JG
960 /*
961 * No need to call mmu_notifier_invalidate_range() as we are
962 * downgrading page table protection not changing it to point
963 * to a new page.
964 *
ad56b738 965 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
966 */
967 if (ret)
f27176cf 968 (*cleaned)++;
c2fda5fe 969 }
d08b3851 970
ac46d4f3 971 mmu_notifier_invalidate_range_end(&range);
369ea824 972
e4b82222 973 return true;
d08b3851
PZ
974}
975
9853a407 976static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 977{
9853a407 978 if (vma->vm_flags & VM_SHARED)
871beb8c 979 return false;
d08b3851 980
871beb8c 981 return true;
d08b3851
PZ
982}
983
984int page_mkclean(struct page *page)
985{
9853a407
JK
986 int cleaned = 0;
987 struct address_space *mapping;
988 struct rmap_walk_control rwc = {
989 .arg = (void *)&cleaned,
990 .rmap_one = page_mkclean_one,
991 .invalid_vma = invalid_mkclean_vma,
992 };
d08b3851
PZ
993
994 BUG_ON(!PageLocked(page));
995
9853a407
JK
996 if (!page_mapped(page))
997 return 0;
998
999 mapping = page_mapping(page);
1000 if (!mapping)
1001 return 0;
1002
1003 rmap_walk(page, &rwc);
d08b3851 1004
9853a407 1005 return cleaned;
d08b3851 1006}
60b59bea 1007EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 1008
c44b6743
RR
1009/**
1010 * page_move_anon_rmap - move a page to our anon_vma
1011 * @page: the page to move to our anon_vma
1012 * @vma: the vma the page belongs to
c44b6743
RR
1013 *
1014 * When a page belongs exclusively to one process after a COW event,
1015 * that page can be moved into the anon_vma that belongs to just that
1016 * process, so the rmap code will not search the parent or sibling
1017 * processes.
1018 */
5a49973d 1019void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
c44b6743
RR
1020{
1021 struct anon_vma *anon_vma = vma->anon_vma;
1022
5a49973d
HD
1023 page = compound_head(page);
1024
309381fe 1025 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1026 VM_BUG_ON_VMA(!anon_vma, vma);
c44b6743
RR
1027
1028 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1029 /*
1030 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1031 * simultaneously, so a concurrent reader (eg page_referenced()'s
1032 * PageAnon()) will not see one without the other.
1033 */
1034 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
1035}
1036
9617d95e 1037/**
4e1c1975 1038 * __page_set_anon_rmap - set up new anonymous rmap
451b9514 1039 * @page: Page or Hugepage to add to rmap
4e1c1975
AK
1040 * @vma: VM area to add page to.
1041 * @address: User virtual address of the mapping
e8a03feb 1042 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1043 */
1044static void __page_set_anon_rmap(struct page *page,
e8a03feb 1045 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1046{
e8a03feb 1047 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1048
e8a03feb 1049 BUG_ON(!anon_vma);
ea90002b 1050
4e1c1975
AK
1051 if (PageAnon(page))
1052 return;
1053
ea90002b 1054 /*
e8a03feb
RR
1055 * If the page isn't exclusively mapped into this vma,
1056 * we must use the _oldest_ possible anon_vma for the
1057 * page mapping!
ea90002b 1058 */
4e1c1975 1059 if (!exclusive)
288468c3 1060 anon_vma = anon_vma->root;
9617d95e 1061
16f5e707
AS
1062 /*
1063 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1064 * Make sure the compiler doesn't split the stores of anon_vma and
1065 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1066 * could mistake the mapping for a struct address_space and crash.
1067 */
9617d95e 1068 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
16f5e707 1069 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
9617d95e 1070 page->index = linear_page_index(vma, address);
9617d95e
NP
1071}
1072
c97a9e10 1073/**
43d8eac4 1074 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1075 * @page: the page to add the mapping to
1076 * @vma: the vm area in which the mapping is added
1077 * @address: the user virtual address mapped
1078 */
1079static void __page_check_anon_rmap(struct page *page,
1080 struct vm_area_struct *vma, unsigned long address)
1081{
c97a9e10
NP
1082 /*
1083 * The page's anon-rmap details (mapping and index) are guaranteed to
1084 * be set up correctly at this point.
1085 *
1086 * We have exclusion against page_add_anon_rmap because the caller
90aaca85 1087 * always holds the page locked.
c97a9e10
NP
1088 *
1089 * We have exclusion against page_add_new_anon_rmap because those pages
1090 * are initially only visible via the pagetables, and the pte is locked
1091 * over the call to page_add_new_anon_rmap.
1092 */
30c46382
YS
1093 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1094 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1095 page);
c97a9e10
NP
1096}
1097
1da177e4
LT
1098/**
1099 * page_add_anon_rmap - add pte mapping to an anonymous page
1100 * @page: the page to add the mapping to
1101 * @vma: the vm area in which the mapping is added
1102 * @address: the user virtual address mapped
d281ee61 1103 * @compound: charge the page as compound or small page
1da177e4 1104 *
5ad64688 1105 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1106 * the anon_vma case: to serialize mapping,index checking after setting,
1107 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1108 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1109 */
1110void page_add_anon_rmap(struct page *page,
d281ee61 1111 struct vm_area_struct *vma, unsigned long address, bool compound)
ad8c2ee8 1112{
d281ee61 1113 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
ad8c2ee8
RR
1114}
1115
1116/*
1117 * Special version of the above for do_swap_page, which often runs
1118 * into pages that are exclusively owned by the current process.
1119 * Everybody else should continue to use page_add_anon_rmap above.
1120 */
1121void do_page_add_anon_rmap(struct page *page,
d281ee61 1122 struct vm_area_struct *vma, unsigned long address, int flags)
1da177e4 1123{
53f9263b
KS
1124 bool compound = flags & RMAP_COMPOUND;
1125 bool first;
1126
be5d0a74
JW
1127 if (unlikely(PageKsm(page)))
1128 lock_page_memcg(page);
1129 else
1130 VM_BUG_ON_PAGE(!PageLocked(page), page);
1131
e9b61f19
KS
1132 if (compound) {
1133 atomic_t *mapcount;
53f9263b 1134 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
1135 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1136 mapcount = compound_mapcount_ptr(page);
1137 first = atomic_inc_and_test(mapcount);
53f9263b
KS
1138 } else {
1139 first = atomic_inc_and_test(&page->_mapcount);
1140 }
1141
79134171 1142 if (first) {
6c357848 1143 int nr = compound ? thp_nr_pages(page) : 1;
bea04b07
JZ
1144 /*
1145 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1146 * these counters are not modified in interrupt context, and
1147 * pte lock(a spinlock) is held, which implies preemption
1148 * disabled.
1149 */
65c45377 1150 if (compound)
69473e5d 1151 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
be5d0a74 1152 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
79134171 1153 }
5ad64688 1154
be5d0a74
JW
1155 if (unlikely(PageKsm(page))) {
1156 unlock_page_memcg(page);
1157 return;
1158 }
53f9263b 1159
5dbe0af4 1160 /* address might be in next vma when migration races vma_adjust */
5ad64688 1161 if (first)
d281ee61
KS
1162 __page_set_anon_rmap(page, vma, address,
1163 flags & RMAP_EXCLUSIVE);
69029cd5 1164 else
c97a9e10 1165 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
1166}
1167
43d8eac4 1168/**
9617d95e
NP
1169 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1170 * @page: the page to add the mapping to
1171 * @vma: the vm area in which the mapping is added
1172 * @address: the user virtual address mapped
d281ee61 1173 * @compound: charge the page as compound or small page
9617d95e
NP
1174 *
1175 * Same as page_add_anon_rmap but must only be called on *new* pages.
1176 * This means the inc-and-test can be bypassed.
c97a9e10 1177 * Page does not have to be locked.
9617d95e
NP
1178 */
1179void page_add_new_anon_rmap(struct page *page,
d281ee61 1180 struct vm_area_struct *vma, unsigned long address, bool compound)
9617d95e 1181{
6c357848 1182 int nr = compound ? thp_nr_pages(page) : 1;
d281ee61 1183
81d1b09c 1184 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
fa9949da 1185 __SetPageSwapBacked(page);
d281ee61
KS
1186 if (compound) {
1187 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1188 /* increment count (starts at -1) */
1189 atomic_set(compound_mapcount_ptr(page), 0);
47e29d32
JH
1190 if (hpage_pincount_available(page))
1191 atomic_set(compound_pincount_ptr(page), 0);
1192
69473e5d 1193 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
53f9263b
KS
1194 } else {
1195 /* Anon THP always mapped first with PMD */
1196 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1197 /* increment count (starts at -1) */
1198 atomic_set(&page->_mapcount, 0);
d281ee61 1199 }
be5d0a74 1200 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
e8a03feb 1201 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1202}
1203
1da177e4
LT
1204/**
1205 * page_add_file_rmap - add pte mapping to a file page
1206 * @page: the page to add the mapping to
e8b098fc 1207 * @compound: charge the page as compound or small page
1da177e4 1208 *
b8072f09 1209 * The caller needs to hold the pte lock.
1da177e4 1210 */
dd78fedd 1211void page_add_file_rmap(struct page *page, bool compound)
1da177e4 1212{
dd78fedd
KS
1213 int i, nr = 1;
1214
1215 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
62cccb8c 1216 lock_page_memcg(page);
dd78fedd 1217 if (compound && PageTransHuge(page)) {
a1528e21
MS
1218 int nr_pages = thp_nr_pages(page);
1219
1220 for (i = 0, nr = 0; i < nr_pages; i++) {
dd78fedd
KS
1221 if (atomic_inc_and_test(&page[i]._mapcount))
1222 nr++;
1223 }
1224 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1225 goto out;
99cb0dbd 1226 if (PageSwapBacked(page))
a1528e21
MS
1227 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1228 nr_pages);
99cb0dbd 1229 else
380780e7
MS
1230 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1231 nr_pages);
dd78fedd 1232 } else {
c8efc390
KS
1233 if (PageTransCompound(page) && page_mapping(page)) {
1234 VM_WARN_ON_ONCE(!PageLocked(page));
1235
9a73f61b
KS
1236 SetPageDoubleMap(compound_head(page));
1237 if (PageMlocked(page))
1238 clear_page_mlock(compound_head(page));
1239 }
dd78fedd
KS
1240 if (!atomic_inc_and_test(&page->_mapcount))
1241 goto out;
d69b042f 1242 }
00f3ca2c 1243 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
dd78fedd 1244out:
62cccb8c 1245 unlock_page_memcg(page);
1da177e4
LT
1246}
1247
dd78fedd 1248static void page_remove_file_rmap(struct page *page, bool compound)
8186eb6a 1249{
dd78fedd
KS
1250 int i, nr = 1;
1251
57dea93a 1252 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
8186eb6a 1253
53f9263b
KS
1254 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1255 if (unlikely(PageHuge(page))) {
1256 /* hugetlb pages are always mapped with pmds */
1257 atomic_dec(compound_mapcount_ptr(page));
be5d0a74 1258 return;
53f9263b 1259 }
8186eb6a 1260
53f9263b 1261 /* page still mapped by someone else? */
dd78fedd 1262 if (compound && PageTransHuge(page)) {
a1528e21
MS
1263 int nr_pages = thp_nr_pages(page);
1264
1265 for (i = 0, nr = 0; i < nr_pages; i++) {
dd78fedd
KS
1266 if (atomic_add_negative(-1, &page[i]._mapcount))
1267 nr++;
1268 }
1269 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
be5d0a74 1270 return;
99cb0dbd 1271 if (PageSwapBacked(page))
a1528e21
MS
1272 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1273 -nr_pages);
99cb0dbd 1274 else
380780e7
MS
1275 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1276 -nr_pages);
dd78fedd
KS
1277 } else {
1278 if (!atomic_add_negative(-1, &page->_mapcount))
be5d0a74 1279 return;
dd78fedd 1280 }
8186eb6a
JW
1281
1282 /*
00f3ca2c 1283 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
8186eb6a
JW
1284 * these counters are not modified in interrupt context, and
1285 * pte lock(a spinlock) is held, which implies preemption disabled.
1286 */
00f3ca2c 1287 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
8186eb6a
JW
1288
1289 if (unlikely(PageMlocked(page)))
1290 clear_page_mlock(page);
8186eb6a
JW
1291}
1292
53f9263b
KS
1293static void page_remove_anon_compound_rmap(struct page *page)
1294{
1295 int i, nr;
1296
1297 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1298 return;
1299
1300 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1301 if (unlikely(PageHuge(page)))
1302 return;
1303
1304 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1305 return;
1306
69473e5d 1307 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
53f9263b
KS
1308
1309 if (TestClearPageDoubleMap(page)) {
1310 /*
1311 * Subpages can be mapped with PTEs too. Check how many of
f1fe80d4 1312 * them are still mapped.
53f9263b 1313 */
5eaf35ab 1314 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
53f9263b
KS
1315 if (atomic_add_negative(-1, &page[i]._mapcount))
1316 nr++;
1317 }
f1fe80d4
KS
1318
1319 /*
1320 * Queue the page for deferred split if at least one small
1321 * page of the compound page is unmapped, but at least one
1322 * small page is still mapped.
1323 */
5eaf35ab 1324 if (nr && nr < thp_nr_pages(page))
f1fe80d4 1325 deferred_split_huge_page(page);
53f9263b 1326 } else {
5eaf35ab 1327 nr = thp_nr_pages(page);
53f9263b
KS
1328 }
1329
e90309c9
KS
1330 if (unlikely(PageMlocked(page)))
1331 clear_page_mlock(page);
1332
f1fe80d4 1333 if (nr)
be5d0a74 1334 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
53f9263b
KS
1335}
1336
1da177e4
LT
1337/**
1338 * page_remove_rmap - take down pte mapping from a page
d281ee61
KS
1339 * @page: page to remove mapping from
1340 * @compound: uncharge the page as compound or small page
1da177e4 1341 *
b8072f09 1342 * The caller needs to hold the pte lock.
1da177e4 1343 */
d281ee61 1344void page_remove_rmap(struct page *page, bool compound)
1da177e4 1345{
be5d0a74 1346 lock_page_memcg(page);
89c06bd5 1347
be5d0a74
JW
1348 if (!PageAnon(page)) {
1349 page_remove_file_rmap(page, compound);
1350 goto out;
1351 }
1352
1353 if (compound) {
1354 page_remove_anon_compound_rmap(page);
1355 goto out;
1356 }
53f9263b 1357
b904dcfe
KM
1358 /* page still mapped by someone else? */
1359 if (!atomic_add_negative(-1, &page->_mapcount))
be5d0a74 1360 goto out;
8186eb6a 1361
0fe6e20b 1362 /*
bea04b07
JZ
1363 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1364 * these counters are not modified in interrupt context, and
bea04b07 1365 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1366 */
be5d0a74 1367 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
8186eb6a 1368
e6c509f8
HD
1369 if (unlikely(PageMlocked(page)))
1370 clear_page_mlock(page);
8186eb6a 1371
9a982250
KS
1372 if (PageTransCompound(page))
1373 deferred_split_huge_page(compound_head(page));
1374
b904dcfe
KM
1375 /*
1376 * It would be tidy to reset the PageAnon mapping here,
1377 * but that might overwrite a racing page_add_anon_rmap
1378 * which increments mapcount after us but sets mapping
2d4894b5 1379 * before us: so leave the reset to free_unref_page,
b904dcfe
KM
1380 * and remember that it's only reliable while mapped.
1381 * Leaving it set also helps swapoff to reinstate ptes
1382 * faster for those pages still in swapcache.
1383 */
be5d0a74
JW
1384out:
1385 unlock_page_memcg(page);
1da177e4
LT
1386}
1387
1388/*
52629506 1389 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1390 */
e4b82222 1391static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1392 unsigned long address, void *arg)
1da177e4
LT
1393{
1394 struct mm_struct *mm = vma->vm_mm;
c7ab0d2f
KS
1395 struct page_vma_mapped_walk pvmw = {
1396 .page = page,
1397 .vma = vma,
1398 .address = address,
1399 };
1da177e4 1400 pte_t pteval;
c7ab0d2f 1401 struct page *subpage;
785373b4 1402 bool ret = true;
ac46d4f3 1403 struct mmu_notifier_range range;
4708f318 1404 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1da177e4 1405
732ed558
HD
1406 /*
1407 * When racing against e.g. zap_pte_range() on another cpu,
1408 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1fb08ac6 1409 * try_to_unmap() may return before page_mapped() has become false,
732ed558
HD
1410 * if page table locking is skipped: use TTU_SYNC to wait for that.
1411 */
1412 if (flags & TTU_SYNC)
1413 pvmw.flags = PVMW_SYNC;
1414
a98a2f0c
AP
1415 if (flags & TTU_SPLIT_HUGE_PMD)
1416 split_huge_pmd_address(vma, address, false, page);
fec89c10 1417
369ea824 1418 /*
017b1660
MK
1419 * For THP, we have to assume the worse case ie pmd for invalidation.
1420 * For hugetlb, it could be much worse if we need to do pud
1421 * invalidation in the case of pmd sharing.
1422 *
1423 * Note that the page can not be free in this function as call of
1424 * try_to_unmap() must hold a reference on the page.
369ea824 1425 */
494334e4
HD
1426 range.end = PageKsm(page) ?
1427 address + PAGE_SIZE : vma_address_end(page, vma);
7269f999 1428 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
494334e4 1429 address, range.end);
017b1660
MK
1430 if (PageHuge(page)) {
1431 /*
1432 * If sharing is possible, start and end will be adjusted
1433 * accordingly.
1434 */
ac46d4f3
JG
1435 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1436 &range.end);
017b1660 1437 }
ac46d4f3 1438 mmu_notifier_invalidate_range_start(&range);
369ea824 1439
c7ab0d2f 1440 while (page_vma_mapped_walk(&pvmw)) {
c7ab0d2f
KS
1441 /*
1442 * If the page is mlock()d, we cannot swap it out.
c7ab0d2f 1443 */
efdb6720
HD
1444 if (!(flags & TTU_IGNORE_MLOCK) &&
1445 (vma->vm_flags & VM_LOCKED)) {
1446 /*
1447 * PTE-mapped THP are never marked as mlocked: so do
1448 * not set it on a DoubleMap THP, nor on an Anon THP
1449 * (which may still be PTE-mapped after DoubleMap was
1450 * cleared). But stop unmapping even in those cases.
1451 */
1452 if (!PageTransCompound(page) || (PageHead(page) &&
1453 !PageDoubleMap(page) && !PageAnon(page)))
1454 mlock_vma_page(page);
1455 page_vma_mapped_walk_done(&pvmw);
1456 ret = false;
1457 break;
b87537d9 1458 }
c7ab0d2f 1459
8346242a
KS
1460 /* Unexpected PMD-mapped THP? */
1461 VM_BUG_ON_PAGE(!pvmw.pte, page);
1462
1463 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
785373b4
LT
1464 address = pvmw.address;
1465
336bf30e 1466 if (PageHuge(page) && !PageAnon(page)) {
c0d0381a
MK
1467 /*
1468 * To call huge_pmd_unshare, i_mmap_rwsem must be
1469 * held in write mode. Caller needs to explicitly
1470 * do this outside rmap routines.
1471 */
1472 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
34ae204f 1473 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
017b1660
MK
1474 /*
1475 * huge_pmd_unshare unmapped an entire PMD
1476 * page. There is no way of knowing exactly
1477 * which PMDs may be cached for this mm, so
1478 * we must flush them all. start/end were
1479 * already adjusted above to cover this range.
1480 */
ac46d4f3
JG
1481 flush_cache_range(vma, range.start, range.end);
1482 flush_tlb_range(vma, range.start, range.end);
1483 mmu_notifier_invalidate_range(mm, range.start,
1484 range.end);
017b1660
MK
1485
1486 /*
1487 * The ref count of the PMD page was dropped
1488 * which is part of the way map counting
1489 * is done for shared PMDs. Return 'true'
1490 * here. When there is no other sharing,
1491 * huge_pmd_unshare returns false and we will
1492 * unmap the actual page and drop map count
1493 * to zero.
1494 */
1495 page_vma_mapped_walk_done(&pvmw);
1496 break;
1497 }
1498 }
8346242a 1499
c7ab0d2f 1500 /* Nuke the page table entry. */
785373b4 1501 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
c7ab0d2f
KS
1502 if (should_defer_flush(mm, flags)) {
1503 /*
1504 * We clear the PTE but do not flush so potentially
1505 * a remote CPU could still be writing to the page.
1506 * If the entry was previously clean then the
1507 * architecture must guarantee that a clear->dirty
1508 * transition on a cached TLB entry is written through
1509 * and traps if the PTE is unmapped.
1510 */
785373b4 1511 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
c7ab0d2f
KS
1512
1513 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1514 } else {
785373b4 1515 pteval = ptep_clear_flush(vma, address, pvmw.pte);
c7ab0d2f 1516 }
72b252ae 1517
c7ab0d2f
KS
1518 /* Move the dirty bit to the page. Now the pte is gone. */
1519 if (pte_dirty(pteval))
1520 set_page_dirty(page);
1da177e4 1521
c7ab0d2f
KS
1522 /* Update high watermark before we lower rss */
1523 update_hiwater_rss(mm);
1da177e4 1524
c7ab0d2f 1525 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5fd27b8e 1526 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
c7ab0d2f 1527 if (PageHuge(page)) {
d8c6546b 1528 hugetlb_count_sub(compound_nr(page), mm);
785373b4 1529 set_huge_swap_pte_at(mm, address,
5fd27b8e
PA
1530 pvmw.pte, pteval,
1531 vma_mmu_pagesize(vma));
c7ab0d2f
KS
1532 } else {
1533 dec_mm_counter(mm, mm_counter(page));
785373b4 1534 set_pte_at(mm, address, pvmw.pte, pteval);
c7ab0d2f 1535 }
365e9c87 1536
bce73e48 1537 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
c7ab0d2f
KS
1538 /*
1539 * The guest indicated that the page content is of no
1540 * interest anymore. Simply discard the pte, vmscan
1541 * will take care of the rest.
bce73e48
CB
1542 * A future reference will then fault in a new zero
1543 * page. When userfaultfd is active, we must not drop
1544 * this page though, as its main user (postcopy
1545 * migration) will not expect userfaults on already
1546 * copied pages.
c7ab0d2f 1547 */
eca56ff9 1548 dec_mm_counter(mm, mm_counter(page));
0f10851e
JG
1549 /* We have to invalidate as we cleared the pte */
1550 mmu_notifier_invalidate_range(mm, address,
1551 address + PAGE_SIZE);
c7ab0d2f
KS
1552 } else if (PageAnon(page)) {
1553 swp_entry_t entry = { .val = page_private(subpage) };
1554 pte_t swp_pte;
1555 /*
1556 * Store the swap location in the pte.
1557 * See handle_pte_fault() ...
1558 */
eb94a878
MK
1559 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1560 WARN_ON_ONCE(1);
83612a94 1561 ret = false;
369ea824 1562 /* We have to invalidate as we cleared the pte */
0f10851e
JG
1563 mmu_notifier_invalidate_range(mm, address,
1564 address + PAGE_SIZE);
eb94a878
MK
1565 page_vma_mapped_walk_done(&pvmw);
1566 break;
1567 }
c7ab0d2f 1568
802a3a92
SL
1569 /* MADV_FREE page check */
1570 if (!PageSwapBacked(page)) {
1571 if (!PageDirty(page)) {
0f10851e
JG
1572 /* Invalidate as we cleared the pte */
1573 mmu_notifier_invalidate_range(mm,
1574 address, address + PAGE_SIZE);
802a3a92
SL
1575 dec_mm_counter(mm, MM_ANONPAGES);
1576 goto discard;
1577 }
1578
1579 /*
1580 * If the page was redirtied, it cannot be
1581 * discarded. Remap the page to page table.
1582 */
785373b4 1583 set_pte_at(mm, address, pvmw.pte, pteval);
18863d3a 1584 SetPageSwapBacked(page);
e4b82222 1585 ret = false;
802a3a92
SL
1586 page_vma_mapped_walk_done(&pvmw);
1587 break;
c7ab0d2f 1588 }
854e9ed0 1589
c7ab0d2f 1590 if (swap_duplicate(entry) < 0) {
785373b4 1591 set_pte_at(mm, address, pvmw.pte, pteval);
e4b82222 1592 ret = false;
c7ab0d2f
KS
1593 page_vma_mapped_walk_done(&pvmw);
1594 break;
1595 }
ca827d55
KA
1596 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1597 set_pte_at(mm, address, pvmw.pte, pteval);
1598 ret = false;
1599 page_vma_mapped_walk_done(&pvmw);
1600 break;
1601 }
c7ab0d2f
KS
1602 if (list_empty(&mm->mmlist)) {
1603 spin_lock(&mmlist_lock);
1604 if (list_empty(&mm->mmlist))
1605 list_add(&mm->mmlist, &init_mm.mmlist);
1606 spin_unlock(&mmlist_lock);
1607 }
854e9ed0 1608 dec_mm_counter(mm, MM_ANONPAGES);
c7ab0d2f
KS
1609 inc_mm_counter(mm, MM_SWAPENTS);
1610 swp_pte = swp_entry_to_pte(entry);
1611 if (pte_soft_dirty(pteval))
1612 swp_pte = pte_swp_mksoft_dirty(swp_pte);
f45ec5ff
PX
1613 if (pte_uffd_wp(pteval))
1614 swp_pte = pte_swp_mkuffd_wp(swp_pte);
785373b4 1615 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1616 /* Invalidate as we cleared the pte */
1617 mmu_notifier_invalidate_range(mm, address,
1618 address + PAGE_SIZE);
1619 } else {
1620 /*
906f9cdf
HD
1621 * This is a locked file-backed page, thus it cannot
1622 * be removed from the page cache and replaced by a new
1623 * page before mmu_notifier_invalidate_range_end, so no
0f10851e
JG
1624 * concurrent thread might update its page table to
1625 * point at new page while a device still is using this
1626 * page.
1627 *
ad56b738 1628 * See Documentation/vm/mmu_notifier.rst
0f10851e 1629 */
c7ab0d2f 1630 dec_mm_counter(mm, mm_counter_file(page));
0f10851e 1631 }
854e9ed0 1632discard:
0f10851e
JG
1633 /*
1634 * No need to call mmu_notifier_invalidate_range() it has be
1635 * done above for all cases requiring it to happen under page
1636 * table lock before mmu_notifier_invalidate_range_end()
1637 *
ad56b738 1638 * See Documentation/vm/mmu_notifier.rst
0f10851e 1639 */
c7ab0d2f
KS
1640 page_remove_rmap(subpage, PageHuge(page));
1641 put_page(page);
c7ab0d2f 1642 }
369ea824 1643
ac46d4f3 1644 mmu_notifier_invalidate_range_end(&range);
369ea824 1645
caed0f48 1646 return ret;
1da177e4
LT
1647}
1648
52629506
JK
1649static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1650{
222100ee 1651 return vma_is_temporary_stack(vma);
52629506
JK
1652}
1653
b7e188ec 1654static int page_not_mapped(struct page *page)
52629506 1655{
b7e188ec 1656 return !page_mapped(page);
2a52bcbc 1657}
52629506 1658
1da177e4
LT
1659/**
1660 * try_to_unmap - try to remove all page table mappings to a page
1661 * @page: the page to get unmapped
14fa31b8 1662 * @flags: action and flags
1da177e4
LT
1663 *
1664 * Tries to remove all the page table entries which are mapping this
1665 * page, used in the pageout path. Caller must hold the page lock.
1da177e4 1666 *
1fb08ac6
YS
1667 * It is the caller's responsibility to check if the page is still
1668 * mapped when needed (use TTU_SYNC to prevent accounting races).
1da177e4 1669 */
1fb08ac6 1670void try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4 1671{
52629506
JK
1672 struct rmap_walk_control rwc = {
1673 .rmap_one = try_to_unmap_one,
802a3a92 1674 .arg = (void *)flags,
b7e188ec 1675 .done = page_not_mapped,
52629506
JK
1676 .anon_lock = page_lock_anon_vma_read,
1677 };
1da177e4 1678
a98a2f0c
AP
1679 if (flags & TTU_RMAP_LOCKED)
1680 rmap_walk_locked(page, &rwc);
1681 else
1682 rmap_walk(page, &rwc);
1683}
1684
1685/*
1686 * @arg: enum ttu_flags will be passed to this argument.
1687 *
1688 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
64b586d1 1689 * containing migration entries.
a98a2f0c
AP
1690 */
1691static bool try_to_migrate_one(struct page *page, struct vm_area_struct *vma,
1692 unsigned long address, void *arg)
1693{
1694 struct mm_struct *mm = vma->vm_mm;
1695 struct page_vma_mapped_walk pvmw = {
1696 .page = page,
1697 .vma = vma,
1698 .address = address,
1699 };
1700 pte_t pteval;
1701 struct page *subpage;
1702 bool ret = true;
1703 struct mmu_notifier_range range;
1704 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1705
a98a2f0c
AP
1706 /*
1707 * When racing against e.g. zap_pte_range() on another cpu,
1708 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1709 * try_to_migrate() may return before page_mapped() has become false,
1710 * if page table locking is skipped: use TTU_SYNC to wait for that.
1711 */
1712 if (flags & TTU_SYNC)
1713 pvmw.flags = PVMW_SYNC;
1714
1715 /*
1716 * unmap_page() in mm/huge_memory.c is the only user of migration with
1717 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1718 */
1719 if (flags & TTU_SPLIT_HUGE_PMD)
1720 split_huge_pmd_address(vma, address, true, page);
1721
1722 /*
1723 * For THP, we have to assume the worse case ie pmd for invalidation.
1724 * For hugetlb, it could be much worse if we need to do pud
1725 * invalidation in the case of pmd sharing.
1726 *
1727 * Note that the page can not be free in this function as call of
1728 * try_to_unmap() must hold a reference on the page.
1729 */
1730 range.end = PageKsm(page) ?
1731 address + PAGE_SIZE : vma_address_end(page, vma);
1732 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1733 address, range.end);
1734 if (PageHuge(page)) {
1735 /*
1736 * If sharing is possible, start and end will be adjusted
1737 * accordingly.
1738 */
1739 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1740 &range.end);
1741 }
1742 mmu_notifier_invalidate_range_start(&range);
1743
1744 while (page_vma_mapped_walk(&pvmw)) {
1745#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1746 /* PMD-mapped THP migration entry */
1747 if (!pvmw.pte) {
1748 VM_BUG_ON_PAGE(PageHuge(page) ||
1749 !PageTransCompound(page), page);
1750
1751 set_pmd_migration_entry(&pvmw, page);
1752 continue;
1753 }
1754#endif
1755
1756 /* Unexpected PMD-mapped THP? */
1757 VM_BUG_ON_PAGE(!pvmw.pte, page);
1758
1759 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1760 address = pvmw.address;
1761
1762 if (PageHuge(page) && !PageAnon(page)) {
1763 /*
1764 * To call huge_pmd_unshare, i_mmap_rwsem must be
1765 * held in write mode. Caller needs to explicitly
1766 * do this outside rmap routines.
1767 */
1768 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1769 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1770 /*
1771 * huge_pmd_unshare unmapped an entire PMD
1772 * page. There is no way of knowing exactly
1773 * which PMDs may be cached for this mm, so
1774 * we must flush them all. start/end were
1775 * already adjusted above to cover this range.
1776 */
1777 flush_cache_range(vma, range.start, range.end);
1778 flush_tlb_range(vma, range.start, range.end);
1779 mmu_notifier_invalidate_range(mm, range.start,
1780 range.end);
1781
1782 /*
1783 * The ref count of the PMD page was dropped
1784 * which is part of the way map counting
1785 * is done for shared PMDs. Return 'true'
1786 * here. When there is no other sharing,
1787 * huge_pmd_unshare returns false and we will
1788 * unmap the actual page and drop map count
1789 * to zero.
1790 */
1791 page_vma_mapped_walk_done(&pvmw);
1792 break;
1793 }
1794 }
1795
1796 /* Nuke the page table entry. */
1797 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1798 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1799
1800 /* Move the dirty bit to the page. Now the pte is gone. */
1801 if (pte_dirty(pteval))
1802 set_page_dirty(page);
1803
1804 /* Update high watermark before we lower rss */
1805 update_hiwater_rss(mm);
1806
1807 if (is_zone_device_page(page)) {
1808 swp_entry_t entry;
1809 pte_t swp_pte;
1810
1811 /*
1812 * Store the pfn of the page in a special migration
1813 * pte. do_swap_page() will wait until the migration
1814 * pte is removed and then restart fault handling.
1815 */
1816 entry = make_readable_migration_entry(
1817 page_to_pfn(page));
1818 swp_pte = swp_entry_to_pte(entry);
1819
1820 /*
1821 * pteval maps a zone device page and is therefore
1822 * a swap pte.
1823 */
1824 if (pte_swp_soft_dirty(pteval))
1825 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1826 if (pte_swp_uffd_wp(pteval))
1827 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1828 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1829 /*
1830 * No need to invalidate here it will synchronize on
1831 * against the special swap migration pte.
1832 *
1833 * The assignment to subpage above was computed from a
1834 * swap PTE which results in an invalid pointer.
1835 * Since only PAGE_SIZE pages can currently be
1836 * migrated, just set it to page. This will need to be
1837 * changed when hugepage migrations to device private
1838 * memory are supported.
1839 */
1840 subpage = page;
1841 } else if (PageHWPoison(page)) {
1842 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1843 if (PageHuge(page)) {
1844 hugetlb_count_sub(compound_nr(page), mm);
1845 set_huge_swap_pte_at(mm, address,
1846 pvmw.pte, pteval,
1847 vma_mmu_pagesize(vma));
1848 } else {
1849 dec_mm_counter(mm, mm_counter(page));
1850 set_pte_at(mm, address, pvmw.pte, pteval);
1851 }
1852
1853 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1854 /*
1855 * The guest indicated that the page content is of no
1856 * interest anymore. Simply discard the pte, vmscan
1857 * will take care of the rest.
1858 * A future reference will then fault in a new zero
1859 * page. When userfaultfd is active, we must not drop
1860 * this page though, as its main user (postcopy
1861 * migration) will not expect userfaults on already
1862 * copied pages.
1863 */
1864 dec_mm_counter(mm, mm_counter(page));
1865 /* We have to invalidate as we cleared the pte */
1866 mmu_notifier_invalidate_range(mm, address,
1867 address + PAGE_SIZE);
1868 } else {
1869 swp_entry_t entry;
1870 pte_t swp_pte;
1871
1872 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1873 set_pte_at(mm, address, pvmw.pte, pteval);
1874 ret = false;
1875 page_vma_mapped_walk_done(&pvmw);
1876 break;
1877 }
1878
1879 /*
1880 * Store the pfn of the page in a special migration
1881 * pte. do_swap_page() will wait until the migration
1882 * pte is removed and then restart fault handling.
1883 */
1884 if (pte_write(pteval))
1885 entry = make_writable_migration_entry(
1886 page_to_pfn(subpage));
1887 else
1888 entry = make_readable_migration_entry(
1889 page_to_pfn(subpage));
1890
1891 swp_pte = swp_entry_to_pte(entry);
1892 if (pte_soft_dirty(pteval))
1893 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1894 if (pte_uffd_wp(pteval))
1895 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1896 set_pte_at(mm, address, pvmw.pte, swp_pte);
1897 /*
1898 * No need to invalidate here it will synchronize on
1899 * against the special swap migration pte.
1900 */
1901 }
1902
1903 /*
1904 * No need to call mmu_notifier_invalidate_range() it has be
1905 * done above for all cases requiring it to happen under page
1906 * table lock before mmu_notifier_invalidate_range_end()
1907 *
1908 * See Documentation/vm/mmu_notifier.rst
1909 */
1910 page_remove_rmap(subpage, PageHuge(page));
1911 put_page(page);
1912 }
1913
1914 mmu_notifier_invalidate_range_end(&range);
1915
1916 return ret;
1917}
1918
1919/**
1920 * try_to_migrate - try to replace all page table mappings with swap entries
1921 * @page: the page to replace page table entries for
1922 * @flags: action and flags
1923 *
1924 * Tries to remove all the page table entries which are mapping this page and
1925 * replace them with special swap entries. Caller must hold the page lock.
a98a2f0c
AP
1926 */
1927void try_to_migrate(struct page *page, enum ttu_flags flags)
1928{
1929 struct rmap_walk_control rwc = {
1930 .rmap_one = try_to_migrate_one,
1931 .arg = (void *)flags,
1932 .done = page_not_mapped,
1933 .anon_lock = page_lock_anon_vma_read,
1934 };
1935
1936 /*
1937 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
1938 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
1939 */
1940 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
1941 TTU_SYNC)))
1942 return;
1943
6c855fce
HD
1944 if (is_zone_device_page(page) && !is_device_private_page(page))
1945 return;
1946
52629506
JK
1947 /*
1948 * During exec, a temporary VMA is setup and later moved.
1949 * The VMA is moved under the anon_vma lock but not the
1950 * page tables leading to a race where migration cannot
1951 * find the migration ptes. Rather than increasing the
1952 * locking requirements of exec(), migration skips
1953 * temporary VMAs until after exec() completes.
1954 */
a98a2f0c 1955 if (!PageKsm(page) && PageAnon(page))
52629506
JK
1956 rwc.invalid_vma = invalid_migration_vma;
1957
2a52bcbc 1958 if (flags & TTU_RMAP_LOCKED)
33fc80e2 1959 rmap_walk_locked(page, &rwc);
2a52bcbc 1960 else
33fc80e2 1961 rmap_walk(page, &rwc);
1da177e4 1962}
81b4082d 1963
cd62734c
AP
1964/*
1965 * Walks the vma's mapping a page and mlocks the page if any locked vma's are
1966 * found. Once one is found the page is locked and the scan can be terminated.
1967 */
1968static bool page_mlock_one(struct page *page, struct vm_area_struct *vma,
1969 unsigned long address, void *unused)
1970{
1971 struct page_vma_mapped_walk pvmw = {
1972 .page = page,
1973 .vma = vma,
1974 .address = address,
1975 };
1976
1977 /* An un-locked vma doesn't have any pages to lock, continue the scan */
1978 if (!(vma->vm_flags & VM_LOCKED))
1979 return true;
1980
1981 while (page_vma_mapped_walk(&pvmw)) {
1982 /*
1983 * Need to recheck under the ptl to serialise with
1984 * __munlock_pagevec_fill() after VM_LOCKED is cleared in
1985 * munlock_vma_pages_range().
1986 */
1987 if (vma->vm_flags & VM_LOCKED) {
d9770fcc 1988 /*
efdb6720
HD
1989 * PTE-mapped THP are never marked as mlocked; but
1990 * this function is never called on a DoubleMap THP,
1991 * nor on an Anon THP (which may still be PTE-mapped
1992 * after DoubleMap was cleared).
d9770fcc
HD
1993 */
1994 mlock_vma_page(page);
023e1a8d
HD
1995 /*
1996 * No need to scan further once the page is marked
1997 * as mlocked.
1998 */
cd62734c 1999 page_vma_mapped_walk_done(&pvmw);
023e1a8d 2000 return false;
cd62734c 2001 }
cd62734c
AP
2002 }
2003
2004 return true;
2005}
2006
b291f000 2007/**
cd62734c
AP
2008 * page_mlock - try to mlock a page
2009 * @page: the page to be mlocked
b291f000 2010 *
cd62734c
AP
2011 * Called from munlock code. Checks all of the VMAs mapping the page and mlocks
2012 * the page if any are found. The page will be returned with PG_mlocked cleared
2013 * if it is not mapped by any locked vmas.
b291f000 2014 */
cd62734c 2015void page_mlock(struct page *page)
192d7232 2016{
e8351ac9 2017 struct rmap_walk_control rwc = {
cd62734c 2018 .rmap_one = page_mlock_one,
e8351ac9 2019 .done = page_not_mapped,
e8351ac9
JK
2020 .anon_lock = page_lock_anon_vma_read,
2021
2022 };
2023
309381fe 2024 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
192d7232 2025 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
b291f000 2026
efdb6720
HD
2027 /* Anon THP are only marked as mlocked when singly mapped */
2028 if (PageTransCompound(page) && PageAnon(page))
2029 return;
2030
192d7232 2031 rmap_walk(page, &rwc);
b291f000 2032}
e9995ef9 2033
b756a3b5
AP
2034#ifdef CONFIG_DEVICE_PRIVATE
2035struct make_exclusive_args {
2036 struct mm_struct *mm;
2037 unsigned long address;
2038 void *owner;
2039 bool valid;
2040};
2041
2042static bool page_make_device_exclusive_one(struct page *page,
2043 struct vm_area_struct *vma, unsigned long address, void *priv)
2044{
2045 struct mm_struct *mm = vma->vm_mm;
2046 struct page_vma_mapped_walk pvmw = {
2047 .page = page,
2048 .vma = vma,
2049 .address = address,
2050 };
2051 struct make_exclusive_args *args = priv;
2052 pte_t pteval;
2053 struct page *subpage;
2054 bool ret = true;
2055 struct mmu_notifier_range range;
2056 swp_entry_t entry;
2057 pte_t swp_pte;
2058
2059 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2060 vma->vm_mm, address, min(vma->vm_end,
2061 address + page_size(page)), args->owner);
2062 mmu_notifier_invalidate_range_start(&range);
2063
2064 while (page_vma_mapped_walk(&pvmw)) {
2065 /* Unexpected PMD-mapped THP? */
2066 VM_BUG_ON_PAGE(!pvmw.pte, page);
2067
2068 if (!pte_present(*pvmw.pte)) {
2069 ret = false;
2070 page_vma_mapped_walk_done(&pvmw);
2071 break;
2072 }
2073
2074 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
2075 address = pvmw.address;
2076
2077 /* Nuke the page table entry. */
2078 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2079 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2080
2081 /* Move the dirty bit to the page. Now the pte is gone. */
2082 if (pte_dirty(pteval))
2083 set_page_dirty(page);
2084
2085 /*
2086 * Check that our target page is still mapped at the expected
2087 * address.
2088 */
2089 if (args->mm == mm && args->address == address &&
2090 pte_write(pteval))
2091 args->valid = true;
2092
2093 /*
2094 * Store the pfn of the page in a special migration
2095 * pte. do_swap_page() will wait until the migration
2096 * pte is removed and then restart fault handling.
2097 */
2098 if (pte_write(pteval))
2099 entry = make_writable_device_exclusive_entry(
2100 page_to_pfn(subpage));
2101 else
2102 entry = make_readable_device_exclusive_entry(
2103 page_to_pfn(subpage));
2104 swp_pte = swp_entry_to_pte(entry);
2105 if (pte_soft_dirty(pteval))
2106 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2107 if (pte_uffd_wp(pteval))
2108 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2109
2110 set_pte_at(mm, address, pvmw.pte, swp_pte);
2111
2112 /*
2113 * There is a reference on the page for the swap entry which has
2114 * been removed, so shouldn't take another.
2115 */
2116 page_remove_rmap(subpage, false);
2117 }
2118
2119 mmu_notifier_invalidate_range_end(&range);
2120
2121 return ret;
2122}
2123
2124/**
2125 * page_make_device_exclusive - mark the page exclusively owned by a device
2126 * @page: the page to replace page table entries for
2127 * @mm: the mm_struct where the page is expected to be mapped
2128 * @address: address where the page is expected to be mapped
2129 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2130 *
2131 * Tries to remove all the page table entries which are mapping this page and
2132 * replace them with special device exclusive swap entries to grant a device
2133 * exclusive access to the page. Caller must hold the page lock.
2134 *
2135 * Returns false if the page is still mapped, or if it could not be unmapped
2136 * from the expected address. Otherwise returns true (success).
2137 */
2138static bool page_make_device_exclusive(struct page *page, struct mm_struct *mm,
2139 unsigned long address, void *owner)
2140{
2141 struct make_exclusive_args args = {
2142 .mm = mm,
2143 .address = address,
2144 .owner = owner,
2145 .valid = false,
2146 };
2147 struct rmap_walk_control rwc = {
2148 .rmap_one = page_make_device_exclusive_one,
2149 .done = page_not_mapped,
2150 .anon_lock = page_lock_anon_vma_read,
2151 .arg = &args,
2152 };
2153
2154 /*
2155 * Restrict to anonymous pages for now to avoid potential writeback
2156 * issues. Also tail pages shouldn't be passed to rmap_walk so skip
2157 * those.
2158 */
2159 if (!PageAnon(page) || PageTail(page))
2160 return false;
2161
2162 rmap_walk(page, &rwc);
2163
2164 return args.valid && !page_mapcount(page);
2165}
2166
2167/**
2168 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2169 * @mm: mm_struct of assoicated target process
2170 * @start: start of the region to mark for exclusive device access
2171 * @end: end address of region
2172 * @pages: returns the pages which were successfully marked for exclusive access
2173 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2174 *
2175 * Returns: number of pages found in the range by GUP. A page is marked for
2176 * exclusive access only if the page pointer is non-NULL.
2177 *
2178 * This function finds ptes mapping page(s) to the given address range, locks
2179 * them and replaces mappings with special swap entries preventing userspace CPU
2180 * access. On fault these entries are replaced with the original mapping after
2181 * calling MMU notifiers.
2182 *
2183 * A driver using this to program access from a device must use a mmu notifier
2184 * critical section to hold a device specific lock during programming. Once
2185 * programming is complete it should drop the page lock and reference after
2186 * which point CPU access to the page will revoke the exclusive access.
2187 */
2188int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2189 unsigned long end, struct page **pages,
2190 void *owner)
2191{
2192 long npages = (end - start) >> PAGE_SHIFT;
2193 long i;
2194
2195 npages = get_user_pages_remote(mm, start, npages,
2196 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2197 pages, NULL, NULL);
2198 if (npages < 0)
2199 return npages;
2200
2201 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2202 if (!trylock_page(pages[i])) {
2203 put_page(pages[i]);
2204 pages[i] = NULL;
2205 continue;
2206 }
2207
2208 if (!page_make_device_exclusive(pages[i], mm, start, owner)) {
2209 unlock_page(pages[i]);
2210 put_page(pages[i]);
2211 pages[i] = NULL;
2212 }
2213 }
2214
2215 return npages;
2216}
2217EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2218#endif
2219
01d8b20d 2220void __put_anon_vma(struct anon_vma *anon_vma)
76545066 2221{
01d8b20d 2222 struct anon_vma *root = anon_vma->root;
76545066 2223
624483f3 2224 anon_vma_free(anon_vma);
01d8b20d
PZ
2225 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2226 anon_vma_free(root);
76545066 2227}
76545066 2228
0dd1c7bb
JK
2229static struct anon_vma *rmap_walk_anon_lock(struct page *page,
2230 struct rmap_walk_control *rwc)
faecd8dd
JK
2231{
2232 struct anon_vma *anon_vma;
2233
0dd1c7bb
JK
2234 if (rwc->anon_lock)
2235 return rwc->anon_lock(page);
2236
faecd8dd
JK
2237 /*
2238 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
2239 * because that depends on page_mapped(); but not all its usages
c1e8d7c6 2240 * are holding mmap_lock. Users without mmap_lock are required to
faecd8dd
JK
2241 * take a reference count to prevent the anon_vma disappearing
2242 */
2243 anon_vma = page_anon_vma(page);
2244 if (!anon_vma)
2245 return NULL;
2246
2247 anon_vma_lock_read(anon_vma);
2248 return anon_vma;
2249}
2250
e9995ef9 2251/*
e8351ac9
JK
2252 * rmap_walk_anon - do something to anonymous page using the object-based
2253 * rmap method
2254 * @page: the page to be handled
2255 * @rwc: control variable according to each walk type
2256 *
2257 * Find all the mappings of a page using the mapping pointer and the vma chains
2258 * contained in the anon_vma struct it points to.
2259 *
cd62734c 2260 * When called from page_mlock(), the mmap_lock of the mm containing the vma
e8351ac9
JK
2261 * where the page was found will be held for write. So, we won't recheck
2262 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
2263 * LOCKED.
e9995ef9 2264 */
1df631ae 2265static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
b9773199 2266 bool locked)
e9995ef9
HD
2267{
2268 struct anon_vma *anon_vma;
a8fa41ad 2269 pgoff_t pgoff_start, pgoff_end;
5beb4930 2270 struct anon_vma_chain *avc;
e9995ef9 2271
b9773199
KS
2272 if (locked) {
2273 anon_vma = page_anon_vma(page);
2274 /* anon_vma disappear under us? */
2275 VM_BUG_ON_PAGE(!anon_vma, page);
2276 } else {
2277 anon_vma = rmap_walk_anon_lock(page, rwc);
2278 }
e9995ef9 2279 if (!anon_vma)
1df631ae 2280 return;
faecd8dd 2281
a8fa41ad 2282 pgoff_start = page_to_pgoff(page);
6c357848 2283 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
a8fa41ad
KS
2284 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2285 pgoff_start, pgoff_end) {
5beb4930 2286 struct vm_area_struct *vma = avc->vma;
e9995ef9 2287 unsigned long address = vma_address(page, vma);
0dd1c7bb 2288
494334e4 2289 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
2290 cond_resched();
2291
0dd1c7bb
JK
2292 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2293 continue;
2294
e4b82222 2295 if (!rwc->rmap_one(page, vma, address, rwc->arg))
e9995ef9 2296 break;
0dd1c7bb
JK
2297 if (rwc->done && rwc->done(page))
2298 break;
e9995ef9 2299 }
b9773199
KS
2300
2301 if (!locked)
2302 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2303}
2304
e8351ac9
JK
2305/*
2306 * rmap_walk_file - do something to file page using the object-based rmap method
2307 * @page: the page to be handled
2308 * @rwc: control variable according to each walk type
2309 *
2310 * Find all the mappings of a page using the mapping pointer and the vma chains
2311 * contained in the address_space struct it points to.
2312 *
cd62734c 2313 * When called from page_mlock(), the mmap_lock of the mm containing the vma
e8351ac9
JK
2314 * where the page was found will be held for write. So, we won't recheck
2315 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
2316 * LOCKED.
2317 */
1df631ae 2318static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
b9773199 2319 bool locked)
e9995ef9 2320{
b9773199 2321 struct address_space *mapping = page_mapping(page);
a8fa41ad 2322 pgoff_t pgoff_start, pgoff_end;
e9995ef9 2323 struct vm_area_struct *vma;
e9995ef9 2324
9f32624b
JK
2325 /*
2326 * The page lock not only makes sure that page->mapping cannot
2327 * suddenly be NULLified by truncation, it makes sure that the
2328 * structure at mapping cannot be freed and reused yet,
c8c06efa 2329 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 2330 */
81d1b09c 2331 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 2332
e9995ef9 2333 if (!mapping)
1df631ae 2334 return;
3dec0ba0 2335
a8fa41ad 2336 pgoff_start = page_to_pgoff(page);
6c357848 2337 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
b9773199
KS
2338 if (!locked)
2339 i_mmap_lock_read(mapping);
a8fa41ad
KS
2340 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2341 pgoff_start, pgoff_end) {
e9995ef9 2342 unsigned long address = vma_address(page, vma);
0dd1c7bb 2343
494334e4 2344 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
2345 cond_resched();
2346
0dd1c7bb
JK
2347 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2348 continue;
2349
e4b82222 2350 if (!rwc->rmap_one(page, vma, address, rwc->arg))
0dd1c7bb
JK
2351 goto done;
2352 if (rwc->done && rwc->done(page))
2353 goto done;
e9995ef9 2354 }
0dd1c7bb 2355
0dd1c7bb 2356done:
b9773199
KS
2357 if (!locked)
2358 i_mmap_unlock_read(mapping);
e9995ef9
HD
2359}
2360
1df631ae 2361void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 2362{
e9995ef9 2363 if (unlikely(PageKsm(page)))
1df631ae 2364 rmap_walk_ksm(page, rwc);
e9995ef9 2365 else if (PageAnon(page))
1df631ae 2366 rmap_walk_anon(page, rwc, false);
b9773199 2367 else
1df631ae 2368 rmap_walk_file(page, rwc, false);
b9773199
KS
2369}
2370
2371/* Like rmap_walk, but caller holds relevant rmap lock */
1df631ae 2372void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
b9773199
KS
2373{
2374 /* no ksm support for now */
2375 VM_BUG_ON_PAGE(PageKsm(page), page);
2376 if (PageAnon(page))
1df631ae 2377 rmap_walk_anon(page, rwc, true);
e9995ef9 2378 else
1df631ae 2379 rmap_walk_file(page, rwc, true);
e9995ef9 2380}
0fe6e20b 2381
e3390f67 2382#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b 2383/*
451b9514 2384 * The following two functions are for anonymous (private mapped) hugepages.
0fe6e20b
NH
2385 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2386 * and no lru code, because we handle hugepages differently from common pages.
2387 */
0fe6e20b
NH
2388void hugepage_add_anon_rmap(struct page *page,
2389 struct vm_area_struct *vma, unsigned long address)
2390{
2391 struct anon_vma *anon_vma = vma->anon_vma;
2392 int first;
a850ea30
NH
2393
2394 BUG_ON(!PageLocked(page));
0fe6e20b 2395 BUG_ON(!anon_vma);
5dbe0af4 2396 /* address might be in next vma when migration races vma_adjust */
53f9263b 2397 first = atomic_inc_and_test(compound_mapcount_ptr(page));
0fe6e20b 2398 if (first)
451b9514 2399 __page_set_anon_rmap(page, vma, address, 0);
0fe6e20b
NH
2400}
2401
2402void hugepage_add_new_anon_rmap(struct page *page,
2403 struct vm_area_struct *vma, unsigned long address)
2404{
2405 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
53f9263b 2406 atomic_set(compound_mapcount_ptr(page), 0);
47e29d32
JH
2407 if (hpage_pincount_available(page))
2408 atomic_set(compound_pincount_ptr(page), 0);
2409
451b9514 2410 __page_set_anon_rmap(page, vma, address, 1);
0fe6e20b 2411}
e3390f67 2412#endif /* CONFIG_HUGETLB_PAGE */
This page took 1.57649 seconds and 4 git commands to generate.