]>
Commit | Line | Data |
---|---|---|
55716d26 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
fbf59bc9 | 2 | /* |
88999a89 | 3 | * mm/percpu.c - percpu memory allocator |
fbf59bc9 TH |
4 | * |
5 | * Copyright (C) 2009 SUSE Linux Products GmbH | |
6 | * Copyright (C) 2009 Tejun Heo <[email protected]> | |
7 | * | |
5e81ee3e | 8 | * Copyright (C) 2017 Facebook Inc. |
bfacd38f | 9 | * Copyright (C) 2017 Dennis Zhou <[email protected]> |
5e81ee3e | 10 | * |
9c015162 DZF |
11 | * The percpu allocator handles both static and dynamic areas. Percpu |
12 | * areas are allocated in chunks which are divided into units. There is | |
13 | * a 1-to-1 mapping for units to possible cpus. These units are grouped | |
14 | * based on NUMA properties of the machine. | |
fbf59bc9 TH |
15 | * |
16 | * c0 c1 c2 | |
17 | * ------------------- ------------------- ------------ | |
18 | * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u | |
19 | * ------------------- ...... ------------------- .... ------------ | |
20 | * | |
9c015162 DZF |
21 | * Allocation is done by offsets into a unit's address space. Ie., an |
22 | * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0, | |
23 | * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear | |
24 | * and even sparse. Access is handled by configuring percpu base | |
25 | * registers according to the cpu to unit mappings and offsetting the | |
26 | * base address using pcpu_unit_size. | |
27 | * | |
28 | * There is special consideration for the first chunk which must handle | |
29 | * the static percpu variables in the kernel image as allocation services | |
5e81ee3e | 30 | * are not online yet. In short, the first chunk is structured like so: |
9c015162 DZF |
31 | * |
32 | * <Static | [Reserved] | Dynamic> | |
33 | * | |
34 | * The static data is copied from the original section managed by the | |
35 | * linker. The reserved section, if non-zero, primarily manages static | |
36 | * percpu variables from kernel modules. Finally, the dynamic section | |
37 | * takes care of normal allocations. | |
fbf59bc9 | 38 | * |
5e81ee3e | 39 | * The allocator organizes chunks into lists according to free size and |
3c7be18a RG |
40 | * memcg-awareness. To make a percpu allocation memcg-aware the __GFP_ACCOUNT |
41 | * flag should be passed. All memcg-aware allocations are sharing one set | |
42 | * of chunks and all unaccounted allocations and allocations performed | |
43 | * by processes belonging to the root memory cgroup are using the second set. | |
44 | * | |
45 | * The allocator tries to allocate from the fullest chunk first. Each chunk | |
46 | * is managed by a bitmap with metadata blocks. The allocation map is updated | |
47 | * on every allocation and free to reflect the current state while the boundary | |
5e81ee3e DZF |
48 | * map is only updated on allocation. Each metadata block contains |
49 | * information to help mitigate the need to iterate over large portions | |
50 | * of the bitmap. The reverse mapping from page to chunk is stored in | |
51 | * the page's index. Lastly, units are lazily backed and grow in unison. | |
52 | * | |
53 | * There is a unique conversion that goes on here between bytes and bits. | |
54 | * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk | |
55 | * tracks the number of pages it is responsible for in nr_pages. Helper | |
56 | * functions are used to convert from between the bytes, bits, and blocks. | |
57 | * All hints are managed in bits unless explicitly stated. | |
9c015162 | 58 | * |
4091fb95 | 59 | * To use this allocator, arch code should do the following: |
fbf59bc9 | 60 | * |
fbf59bc9 | 61 | * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate |
e0100983 TH |
62 | * regular address to percpu pointer and back if they need to be |
63 | * different from the default | |
fbf59bc9 | 64 | * |
8d408b4b TH |
65 | * - use pcpu_setup_first_chunk() during percpu area initialization to |
66 | * setup the first chunk containing the kernel static percpu area | |
fbf59bc9 TH |
67 | */ |
68 | ||
870d4b12 JP |
69 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
70 | ||
fbf59bc9 | 71 | #include <linux/bitmap.h> |
d7d29ac7 | 72 | #include <linux/cpumask.h> |
57c8a661 | 73 | #include <linux/memblock.h> |
fd1e8a1f | 74 | #include <linux/err.h> |
ca460b3c | 75 | #include <linux/lcm.h> |
fbf59bc9 | 76 | #include <linux/list.h> |
a530b795 | 77 | #include <linux/log2.h> |
fbf59bc9 TH |
78 | #include <linux/mm.h> |
79 | #include <linux/module.h> | |
80 | #include <linux/mutex.h> | |
81 | #include <linux/percpu.h> | |
82 | #include <linux/pfn.h> | |
fbf59bc9 | 83 | #include <linux/slab.h> |
ccea34b5 | 84 | #include <linux/spinlock.h> |
fbf59bc9 | 85 | #include <linux/vmalloc.h> |
a56dbddf | 86 | #include <linux/workqueue.h> |
f528f0b8 | 87 | #include <linux/kmemleak.h> |
71546d10 | 88 | #include <linux/sched.h> |
28307d93 | 89 | #include <linux/sched/mm.h> |
3c7be18a | 90 | #include <linux/memcontrol.h> |
fbf59bc9 TH |
91 | |
92 | #include <asm/cacheflush.h> | |
e0100983 | 93 | #include <asm/sections.h> |
fbf59bc9 | 94 | #include <asm/tlbflush.h> |
3b034b0d | 95 | #include <asm/io.h> |
fbf59bc9 | 96 | |
df95e795 DZ |
97 | #define CREATE_TRACE_POINTS |
98 | #include <trace/events/percpu.h> | |
99 | ||
8fa3ed80 DZ |
100 | #include "percpu-internal.h" |
101 | ||
ac9380f6 RG |
102 | /* |
103 | * The slots are sorted by the size of the biggest continuous free area. | |
104 | * 1-31 bytes share the same slot. | |
105 | */ | |
40064aec | 106 | #define PCPU_SLOT_BASE_SHIFT 5 |
8744d859 DZ |
107 | /* chunks in slots below this are subject to being sidelined on failed alloc */ |
108 | #define PCPU_SLOT_FAIL_THRESHOLD 3 | |
40064aec | 109 | |
1a4d7607 TH |
110 | #define PCPU_EMPTY_POP_PAGES_LOW 2 |
111 | #define PCPU_EMPTY_POP_PAGES_HIGH 4 | |
fbf59bc9 | 112 | |
bbddff05 | 113 | #ifdef CONFIG_SMP |
e0100983 TH |
114 | /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ |
115 | #ifndef __addr_to_pcpu_ptr | |
116 | #define __addr_to_pcpu_ptr(addr) \ | |
43cf38eb TH |
117 | (void __percpu *)((unsigned long)(addr) - \ |
118 | (unsigned long)pcpu_base_addr + \ | |
119 | (unsigned long)__per_cpu_start) | |
e0100983 TH |
120 | #endif |
121 | #ifndef __pcpu_ptr_to_addr | |
122 | #define __pcpu_ptr_to_addr(ptr) \ | |
43cf38eb TH |
123 | (void __force *)((unsigned long)(ptr) + \ |
124 | (unsigned long)pcpu_base_addr - \ | |
125 | (unsigned long)__per_cpu_start) | |
e0100983 | 126 | #endif |
bbddff05 TH |
127 | #else /* CONFIG_SMP */ |
128 | /* on UP, it's always identity mapped */ | |
129 | #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) | |
130 | #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) | |
131 | #endif /* CONFIG_SMP */ | |
e0100983 | 132 | |
1328710b DM |
133 | static int pcpu_unit_pages __ro_after_init; |
134 | static int pcpu_unit_size __ro_after_init; | |
135 | static int pcpu_nr_units __ro_after_init; | |
136 | static int pcpu_atom_size __ro_after_init; | |
8fa3ed80 | 137 | int pcpu_nr_slots __ro_after_init; |
8d55ba5d | 138 | static int pcpu_free_slot __ro_after_init; |
f1833241 RG |
139 | int pcpu_sidelined_slot __ro_after_init; |
140 | int pcpu_to_depopulate_slot __ro_after_init; | |
1328710b | 141 | static size_t pcpu_chunk_struct_size __ro_after_init; |
fbf59bc9 | 142 | |
a855b84c | 143 | /* cpus with the lowest and highest unit addresses */ |
1328710b DM |
144 | static unsigned int pcpu_low_unit_cpu __ro_after_init; |
145 | static unsigned int pcpu_high_unit_cpu __ro_after_init; | |
2f39e637 | 146 | |
fbf59bc9 | 147 | /* the address of the first chunk which starts with the kernel static area */ |
1328710b | 148 | void *pcpu_base_addr __ro_after_init; |
fbf59bc9 TH |
149 | EXPORT_SYMBOL_GPL(pcpu_base_addr); |
150 | ||
1328710b DM |
151 | static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */ |
152 | const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */ | |
2f39e637 | 153 | |
6563297c | 154 | /* group information, used for vm allocation */ |
1328710b DM |
155 | static int pcpu_nr_groups __ro_after_init; |
156 | static const unsigned long *pcpu_group_offsets __ro_after_init; | |
157 | static const size_t *pcpu_group_sizes __ro_after_init; | |
6563297c | 158 | |
ae9e6bc9 TH |
159 | /* |
160 | * The first chunk which always exists. Note that unlike other | |
161 | * chunks, this one can be allocated and mapped in several different | |
162 | * ways and thus often doesn't live in the vmalloc area. | |
163 | */ | |
8fa3ed80 | 164 | struct pcpu_chunk *pcpu_first_chunk __ro_after_init; |
ae9e6bc9 TH |
165 | |
166 | /* | |
167 | * Optional reserved chunk. This chunk reserves part of the first | |
e2266705 DZF |
168 | * chunk and serves it for reserved allocations. When the reserved |
169 | * region doesn't exist, the following variable is NULL. | |
ae9e6bc9 | 170 | */ |
8fa3ed80 | 171 | struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init; |
edcb4639 | 172 | |
8fa3ed80 | 173 | DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ |
6710e594 | 174 | static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */ |
fbf59bc9 | 175 | |
3c7be18a | 176 | struct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */ |
fbf59bc9 | 177 | |
4f996e23 TH |
178 | /* chunks which need their map areas extended, protected by pcpu_lock */ |
179 | static LIST_HEAD(pcpu_map_extend_chunks); | |
180 | ||
b539b87f | 181 | /* |
faf65dde | 182 | * The number of empty populated pages, protected by pcpu_lock. |
0760fa3d | 183 | * The reserved chunk doesn't contribute to the count. |
b539b87f | 184 | */ |
faf65dde | 185 | int pcpu_nr_empty_pop_pages; |
b539b87f | 186 | |
7e8a6304 DZF |
187 | /* |
188 | * The number of populated pages in use by the allocator, protected by | |
189 | * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets | |
190 | * allocated/deallocated, it is allocated/deallocated in all units of a chunk | |
191 | * and increments/decrements this count by 1). | |
192 | */ | |
193 | static unsigned long pcpu_nr_populated; | |
194 | ||
1a4d7607 TH |
195 | /* |
196 | * Balance work is used to populate or destroy chunks asynchronously. We | |
197 | * try to keep the number of populated free pages between | |
198 | * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one | |
199 | * empty chunk. | |
200 | */ | |
fe6bd8c3 TH |
201 | static void pcpu_balance_workfn(struct work_struct *work); |
202 | static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); | |
1a4d7607 TH |
203 | static bool pcpu_async_enabled __read_mostly; |
204 | static bool pcpu_atomic_alloc_failed; | |
205 | ||
206 | static void pcpu_schedule_balance_work(void) | |
207 | { | |
208 | if (pcpu_async_enabled) | |
209 | schedule_work(&pcpu_balance_work); | |
210 | } | |
a56dbddf | 211 | |
c0ebfdc3 | 212 | /** |
560f2c23 DZF |
213 | * pcpu_addr_in_chunk - check if the address is served from this chunk |
214 | * @chunk: chunk of interest | |
215 | * @addr: percpu address | |
c0ebfdc3 DZF |
216 | * |
217 | * RETURNS: | |
560f2c23 | 218 | * True if the address is served from this chunk. |
c0ebfdc3 | 219 | */ |
560f2c23 | 220 | static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr) |
020ec653 | 221 | { |
c0ebfdc3 DZF |
222 | void *start_addr, *end_addr; |
223 | ||
560f2c23 | 224 | if (!chunk) |
c0ebfdc3 | 225 | return false; |
020ec653 | 226 | |
560f2c23 DZF |
227 | start_addr = chunk->base_addr + chunk->start_offset; |
228 | end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE - | |
229 | chunk->end_offset; | |
c0ebfdc3 DZF |
230 | |
231 | return addr >= start_addr && addr < end_addr; | |
020ec653 TH |
232 | } |
233 | ||
d9b55eeb | 234 | static int __pcpu_size_to_slot(int size) |
fbf59bc9 | 235 | { |
cae3aeb8 | 236 | int highbit = fls(size); /* size is in bytes */ |
fbf59bc9 TH |
237 | return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); |
238 | } | |
239 | ||
d9b55eeb TH |
240 | static int pcpu_size_to_slot(int size) |
241 | { | |
242 | if (size == pcpu_unit_size) | |
1c29a3ce | 243 | return pcpu_free_slot; |
d9b55eeb TH |
244 | return __pcpu_size_to_slot(size); |
245 | } | |
246 | ||
fbf59bc9 TH |
247 | static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) |
248 | { | |
92c14cab DZ |
249 | const struct pcpu_block_md *chunk_md = &chunk->chunk_md; |
250 | ||
251 | if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || | |
252 | chunk_md->contig_hint == 0) | |
fbf59bc9 TH |
253 | return 0; |
254 | ||
92c14cab | 255 | return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE); |
fbf59bc9 TH |
256 | } |
257 | ||
88999a89 TH |
258 | /* set the pointer to a chunk in a page struct */ |
259 | static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) | |
260 | { | |
261 | page->index = (unsigned long)pcpu; | |
262 | } | |
263 | ||
264 | /* obtain pointer to a chunk from a page struct */ | |
265 | static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) | |
266 | { | |
267 | return (struct pcpu_chunk *)page->index; | |
268 | } | |
269 | ||
270 | static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) | |
fbf59bc9 | 271 | { |
2f39e637 | 272 | return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; |
fbf59bc9 TH |
273 | } |
274 | ||
c0ebfdc3 DZF |
275 | static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx) |
276 | { | |
277 | return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); | |
278 | } | |
279 | ||
9983b6f0 TH |
280 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, |
281 | unsigned int cpu, int page_idx) | |
fbf59bc9 | 282 | { |
c0ebfdc3 DZF |
283 | return (unsigned long)chunk->base_addr + |
284 | pcpu_unit_page_offset(cpu, page_idx); | |
fbf59bc9 TH |
285 | } |
286 | ||
ca460b3c DZF |
287 | /* |
288 | * The following are helper functions to help access bitmaps and convert | |
289 | * between bitmap offsets to address offsets. | |
290 | */ | |
291 | static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index) | |
292 | { | |
293 | return chunk->alloc_map + | |
294 | (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG); | |
295 | } | |
296 | ||
297 | static unsigned long pcpu_off_to_block_index(int off) | |
298 | { | |
299 | return off / PCPU_BITMAP_BLOCK_BITS; | |
300 | } | |
301 | ||
302 | static unsigned long pcpu_off_to_block_off(int off) | |
303 | { | |
304 | return off & (PCPU_BITMAP_BLOCK_BITS - 1); | |
305 | } | |
306 | ||
b185cd0d DZF |
307 | static unsigned long pcpu_block_off_to_off(int index, int off) |
308 | { | |
309 | return index * PCPU_BITMAP_BLOCK_BITS + off; | |
310 | } | |
311 | ||
8ea2e1e3 RG |
312 | /** |
313 | * pcpu_check_block_hint - check against the contig hint | |
314 | * @block: block of interest | |
315 | * @bits: size of allocation | |
316 | * @align: alignment of area (max PAGE_SIZE) | |
317 | * | |
318 | * Check to see if the allocation can fit in the block's contig hint. | |
319 | * Note, a chunk uses the same hints as a block so this can also check against | |
320 | * the chunk's contig hint. | |
321 | */ | |
322 | static bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits, | |
323 | size_t align) | |
324 | { | |
325 | int bit_off = ALIGN(block->contig_hint_start, align) - | |
326 | block->contig_hint_start; | |
327 | ||
328 | return bit_off + bits <= block->contig_hint; | |
329 | } | |
330 | ||
382b88e9 DZ |
331 | /* |
332 | * pcpu_next_hint - determine which hint to use | |
333 | * @block: block of interest | |
334 | * @alloc_bits: size of allocation | |
335 | * | |
336 | * This determines if we should scan based on the scan_hint or first_free. | |
337 | * In general, we want to scan from first_free to fulfill allocations by | |
338 | * first fit. However, if we know a scan_hint at position scan_hint_start | |
339 | * cannot fulfill an allocation, we can begin scanning from there knowing | |
340 | * the contig_hint will be our fallback. | |
341 | */ | |
342 | static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits) | |
343 | { | |
344 | /* | |
345 | * The three conditions below determine if we can skip past the | |
346 | * scan_hint. First, does the scan hint exist. Second, is the | |
347 | * contig_hint after the scan_hint (possibly not true iff | |
348 | * contig_hint == scan_hint). Third, is the allocation request | |
349 | * larger than the scan_hint. | |
350 | */ | |
351 | if (block->scan_hint && | |
352 | block->contig_hint_start > block->scan_hint_start && | |
353 | alloc_bits > block->scan_hint) | |
354 | return block->scan_hint_start + block->scan_hint; | |
355 | ||
356 | return block->first_free; | |
357 | } | |
358 | ||
525ca84d DZF |
359 | /** |
360 | * pcpu_next_md_free_region - finds the next hint free area | |
361 | * @chunk: chunk of interest | |
362 | * @bit_off: chunk offset | |
363 | * @bits: size of free area | |
364 | * | |
365 | * Helper function for pcpu_for_each_md_free_region. It checks | |
366 | * block->contig_hint and performs aggregation across blocks to find the | |
367 | * next hint. It modifies bit_off and bits in-place to be consumed in the | |
368 | * loop. | |
369 | */ | |
370 | static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off, | |
371 | int *bits) | |
372 | { | |
373 | int i = pcpu_off_to_block_index(*bit_off); | |
374 | int block_off = pcpu_off_to_block_off(*bit_off); | |
375 | struct pcpu_block_md *block; | |
376 | ||
377 | *bits = 0; | |
378 | for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); | |
379 | block++, i++) { | |
380 | /* handles contig area across blocks */ | |
381 | if (*bits) { | |
382 | *bits += block->left_free; | |
383 | if (block->left_free == PCPU_BITMAP_BLOCK_BITS) | |
384 | continue; | |
385 | return; | |
386 | } | |
387 | ||
388 | /* | |
389 | * This checks three things. First is there a contig_hint to | |
390 | * check. Second, have we checked this hint before by | |
391 | * comparing the block_off. Third, is this the same as the | |
392 | * right contig hint. In the last case, it spills over into | |
393 | * the next block and should be handled by the contig area | |
394 | * across blocks code. | |
395 | */ | |
396 | *bits = block->contig_hint; | |
397 | if (*bits && block->contig_hint_start >= block_off && | |
398 | *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) { | |
399 | *bit_off = pcpu_block_off_to_off(i, | |
400 | block->contig_hint_start); | |
401 | return; | |
402 | } | |
1fa4df3e DZ |
403 | /* reset to satisfy the second predicate above */ |
404 | block_off = 0; | |
525ca84d DZF |
405 | |
406 | *bits = block->right_free; | |
407 | *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free; | |
408 | } | |
409 | } | |
410 | ||
b4c2116c DZF |
411 | /** |
412 | * pcpu_next_fit_region - finds fit areas for a given allocation request | |
413 | * @chunk: chunk of interest | |
414 | * @alloc_bits: size of allocation | |
415 | * @align: alignment of area (max PAGE_SIZE) | |
416 | * @bit_off: chunk offset | |
417 | * @bits: size of free area | |
418 | * | |
419 | * Finds the next free region that is viable for use with a given size and | |
420 | * alignment. This only returns if there is a valid area to be used for this | |
421 | * allocation. block->first_free is returned if the allocation request fits | |
422 | * within the block to see if the request can be fulfilled prior to the contig | |
423 | * hint. | |
424 | */ | |
425 | static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits, | |
426 | int align, int *bit_off, int *bits) | |
427 | { | |
428 | int i = pcpu_off_to_block_index(*bit_off); | |
429 | int block_off = pcpu_off_to_block_off(*bit_off); | |
430 | struct pcpu_block_md *block; | |
431 | ||
432 | *bits = 0; | |
433 | for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); | |
434 | block++, i++) { | |
435 | /* handles contig area across blocks */ | |
436 | if (*bits) { | |
437 | *bits += block->left_free; | |
438 | if (*bits >= alloc_bits) | |
439 | return; | |
440 | if (block->left_free == PCPU_BITMAP_BLOCK_BITS) | |
441 | continue; | |
442 | } | |
443 | ||
444 | /* check block->contig_hint */ | |
445 | *bits = ALIGN(block->contig_hint_start, align) - | |
446 | block->contig_hint_start; | |
447 | /* | |
448 | * This uses the block offset to determine if this has been | |
449 | * checked in the prior iteration. | |
450 | */ | |
451 | if (block->contig_hint && | |
452 | block->contig_hint_start >= block_off && | |
453 | block->contig_hint >= *bits + alloc_bits) { | |
382b88e9 DZ |
454 | int start = pcpu_next_hint(block, alloc_bits); |
455 | ||
b4c2116c | 456 | *bits += alloc_bits + block->contig_hint_start - |
382b88e9 DZ |
457 | start; |
458 | *bit_off = pcpu_block_off_to_off(i, start); | |
b4c2116c DZF |
459 | return; |
460 | } | |
1fa4df3e DZ |
461 | /* reset to satisfy the second predicate above */ |
462 | block_off = 0; | |
b4c2116c DZF |
463 | |
464 | *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free, | |
465 | align); | |
466 | *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off; | |
467 | *bit_off = pcpu_block_off_to_off(i, *bit_off); | |
468 | if (*bits >= alloc_bits) | |
469 | return; | |
470 | } | |
471 | ||
472 | /* no valid offsets were found - fail condition */ | |
473 | *bit_off = pcpu_chunk_map_bits(chunk); | |
474 | } | |
475 | ||
525ca84d DZF |
476 | /* |
477 | * Metadata free area iterators. These perform aggregation of free areas | |
478 | * based on the metadata blocks and return the offset @bit_off and size in | |
b4c2116c DZF |
479 | * bits of the free area @bits. pcpu_for_each_fit_region only returns when |
480 | * a fit is found for the allocation request. | |
525ca84d DZF |
481 | */ |
482 | #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \ | |
483 | for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \ | |
484 | (bit_off) < pcpu_chunk_map_bits((chunk)); \ | |
485 | (bit_off) += (bits) + 1, \ | |
486 | pcpu_next_md_free_region((chunk), &(bit_off), &(bits))) | |
487 | ||
b4c2116c DZF |
488 | #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \ |
489 | for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ | |
490 | &(bits)); \ | |
491 | (bit_off) < pcpu_chunk_map_bits((chunk)); \ | |
492 | (bit_off) += (bits), \ | |
493 | pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ | |
494 | &(bits))) | |
495 | ||
fbf59bc9 | 496 | /** |
90459ce0 | 497 | * pcpu_mem_zalloc - allocate memory |
1880d93b | 498 | * @size: bytes to allocate |
47504ee0 | 499 | * @gfp: allocation flags |
fbf59bc9 | 500 | * |
1880d93b | 501 | * Allocate @size bytes. If @size is smaller than PAGE_SIZE, |
47504ee0 DZ |
502 | * kzalloc() is used; otherwise, the equivalent of vzalloc() is used. |
503 | * This is to facilitate passing through whitelisted flags. The | |
504 | * returned memory is always zeroed. | |
fbf59bc9 TH |
505 | * |
506 | * RETURNS: | |
1880d93b | 507 | * Pointer to the allocated area on success, NULL on failure. |
fbf59bc9 | 508 | */ |
47504ee0 | 509 | static void *pcpu_mem_zalloc(size_t size, gfp_t gfp) |
fbf59bc9 | 510 | { |
099a19d9 TH |
511 | if (WARN_ON_ONCE(!slab_is_available())) |
512 | return NULL; | |
513 | ||
1880d93b | 514 | if (size <= PAGE_SIZE) |
554fef1c | 515 | return kzalloc(size, gfp); |
7af4c093 | 516 | else |
88dca4ca | 517 | return __vmalloc(size, gfp | __GFP_ZERO); |
1880d93b | 518 | } |
fbf59bc9 | 519 | |
1880d93b TH |
520 | /** |
521 | * pcpu_mem_free - free memory | |
522 | * @ptr: memory to free | |
1880d93b | 523 | * |
90459ce0 | 524 | * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). |
1880d93b | 525 | */ |
1d5cfdb0 | 526 | static void pcpu_mem_free(void *ptr) |
1880d93b | 527 | { |
1d5cfdb0 | 528 | kvfree(ptr); |
fbf59bc9 TH |
529 | } |
530 | ||
8744d859 DZ |
531 | static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot, |
532 | bool move_front) | |
533 | { | |
534 | if (chunk != pcpu_reserved_chunk) { | |
535 | if (move_front) | |
faf65dde | 536 | list_move(&chunk->list, &pcpu_chunk_lists[slot]); |
8744d859 | 537 | else |
faf65dde | 538 | list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]); |
8744d859 DZ |
539 | } |
540 | } | |
541 | ||
542 | static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot) | |
543 | { | |
544 | __pcpu_chunk_move(chunk, slot, true); | |
545 | } | |
546 | ||
fbf59bc9 TH |
547 | /** |
548 | * pcpu_chunk_relocate - put chunk in the appropriate chunk slot | |
549 | * @chunk: chunk of interest | |
550 | * @oslot: the previous slot it was on | |
551 | * | |
552 | * This function is called after an allocation or free changed @chunk. | |
553 | * New slot according to the changed state is determined and @chunk is | |
edcb4639 TH |
554 | * moved to the slot. Note that the reserved chunk is never put on |
555 | * chunk slots. | |
ccea34b5 TH |
556 | * |
557 | * CONTEXT: | |
558 | * pcpu_lock. | |
fbf59bc9 TH |
559 | */ |
560 | static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | |
561 | { | |
562 | int nslot = pcpu_chunk_slot(chunk); | |
563 | ||
f1833241 RG |
564 | /* leave isolated chunks in-place */ |
565 | if (chunk->isolated) | |
566 | return; | |
567 | ||
8744d859 DZ |
568 | if (oslot != nslot) |
569 | __pcpu_chunk_move(chunk, nslot, oslot < nslot); | |
833af842 TH |
570 | } |
571 | ||
f1833241 RG |
572 | static void pcpu_isolate_chunk(struct pcpu_chunk *chunk) |
573 | { | |
f1833241 RG |
574 | lockdep_assert_held(&pcpu_lock); |
575 | ||
576 | if (!chunk->isolated) { | |
577 | chunk->isolated = true; | |
faf65dde | 578 | pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages; |
f1833241 | 579 | } |
faf65dde | 580 | list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]); |
f1833241 RG |
581 | } |
582 | ||
583 | static void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk) | |
584 | { | |
f1833241 RG |
585 | lockdep_assert_held(&pcpu_lock); |
586 | ||
587 | if (chunk->isolated) { | |
588 | chunk->isolated = false; | |
faf65dde | 589 | pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages; |
f1833241 RG |
590 | pcpu_chunk_relocate(chunk, -1); |
591 | } | |
592 | } | |
593 | ||
b239f7da DZ |
594 | /* |
595 | * pcpu_update_empty_pages - update empty page counters | |
833af842 | 596 | * @chunk: chunk of interest |
b239f7da | 597 | * @nr: nr of empty pages |
833af842 | 598 | * |
b239f7da DZ |
599 | * This is used to keep track of the empty pages now based on the premise |
600 | * a md_block covers a page. The hint update functions recognize if a block | |
601 | * is made full or broken to calculate deltas for keeping track of free pages. | |
40064aec | 602 | */ |
b239f7da | 603 | static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr) |
40064aec | 604 | { |
b239f7da | 605 | chunk->nr_empty_pop_pages += nr; |
f1833241 | 606 | if (chunk != pcpu_reserved_chunk && !chunk->isolated) |
faf65dde | 607 | pcpu_nr_empty_pop_pages += nr; |
40064aec DZF |
608 | } |
609 | ||
d9f3a01e DZ |
610 | /* |
611 | * pcpu_region_overlap - determines if two regions overlap | |
612 | * @a: start of first region, inclusive | |
613 | * @b: end of first region, exclusive | |
614 | * @x: start of second region, inclusive | |
615 | * @y: end of second region, exclusive | |
833af842 | 616 | * |
d9f3a01e DZ |
617 | * This is used to determine if the hint region [a, b) overlaps with the |
618 | * allocated region [x, y). | |
833af842 | 619 | */ |
d9f3a01e | 620 | static inline bool pcpu_region_overlap(int a, int b, int x, int y) |
833af842 | 621 | { |
d9f3a01e | 622 | return (a < y) && (x < b); |
40064aec | 623 | } |
9f7dcf22 | 624 | |
ca460b3c DZF |
625 | /** |
626 | * pcpu_block_update - updates a block given a free area | |
627 | * @block: block of interest | |
628 | * @start: start offset in block | |
629 | * @end: end offset in block | |
630 | * | |
631 | * Updates a block given a known free area. The region [start, end) is | |
268625a6 DZF |
632 | * expected to be the entirety of the free area within a block. Chooses |
633 | * the best starting offset if the contig hints are equal. | |
ca460b3c DZF |
634 | */ |
635 | static void pcpu_block_update(struct pcpu_block_md *block, int start, int end) | |
636 | { | |
637 | int contig = end - start; | |
638 | ||
639 | block->first_free = min(block->first_free, start); | |
640 | if (start == 0) | |
641 | block->left_free = contig; | |
642 | ||
047924c9 | 643 | if (end == block->nr_bits) |
ca460b3c DZF |
644 | block->right_free = contig; |
645 | ||
646 | if (contig > block->contig_hint) { | |
382b88e9 DZ |
647 | /* promote the old contig_hint to be the new scan_hint */ |
648 | if (start > block->contig_hint_start) { | |
649 | if (block->contig_hint > block->scan_hint) { | |
650 | block->scan_hint_start = | |
651 | block->contig_hint_start; | |
652 | block->scan_hint = block->contig_hint; | |
653 | } else if (start < block->scan_hint_start) { | |
654 | /* | |
655 | * The old contig_hint == scan_hint. But, the | |
656 | * new contig is larger so hold the invariant | |
657 | * scan_hint_start < contig_hint_start. | |
658 | */ | |
659 | block->scan_hint = 0; | |
660 | } | |
661 | } else { | |
662 | block->scan_hint = 0; | |
663 | } | |
ca460b3c DZF |
664 | block->contig_hint_start = start; |
665 | block->contig_hint = contig; | |
382b88e9 DZ |
666 | } else if (contig == block->contig_hint) { |
667 | if (block->contig_hint_start && | |
668 | (!start || | |
669 | __ffs(start) > __ffs(block->contig_hint_start))) { | |
670 | /* start has a better alignment so use it */ | |
671 | block->contig_hint_start = start; | |
672 | if (start < block->scan_hint_start && | |
673 | block->contig_hint > block->scan_hint) | |
674 | block->scan_hint = 0; | |
675 | } else if (start > block->scan_hint_start || | |
676 | block->contig_hint > block->scan_hint) { | |
677 | /* | |
678 | * Knowing contig == contig_hint, update the scan_hint | |
679 | * if it is farther than or larger than the current | |
680 | * scan_hint. | |
681 | */ | |
682 | block->scan_hint_start = start; | |
683 | block->scan_hint = contig; | |
684 | } | |
685 | } else { | |
686 | /* | |
687 | * The region is smaller than the contig_hint. So only update | |
688 | * the scan_hint if it is larger than or equal and farther than | |
689 | * the current scan_hint. | |
690 | */ | |
691 | if ((start < block->contig_hint_start && | |
692 | (contig > block->scan_hint || | |
693 | (contig == block->scan_hint && | |
694 | start > block->scan_hint_start)))) { | |
695 | block->scan_hint_start = start; | |
696 | block->scan_hint = contig; | |
697 | } | |
ca460b3c DZF |
698 | } |
699 | } | |
700 | ||
b89462a9 DZ |
701 | /* |
702 | * pcpu_block_update_scan - update a block given a free area from a scan | |
703 | * @chunk: chunk of interest | |
704 | * @bit_off: chunk offset | |
705 | * @bits: size of free area | |
706 | * | |
707 | * Finding the final allocation spot first goes through pcpu_find_block_fit() | |
708 | * to find a block that can hold the allocation and then pcpu_alloc_area() | |
709 | * where a scan is used. When allocations require specific alignments, | |
710 | * we can inadvertently create holes which will not be seen in the alloc | |
711 | * or free paths. | |
712 | * | |
713 | * This takes a given free area hole and updates a block as it may change the | |
714 | * scan_hint. We need to scan backwards to ensure we don't miss free bits | |
715 | * from alignment. | |
716 | */ | |
717 | static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off, | |
718 | int bits) | |
719 | { | |
720 | int s_off = pcpu_off_to_block_off(bit_off); | |
721 | int e_off = s_off + bits; | |
722 | int s_index, l_bit; | |
723 | struct pcpu_block_md *block; | |
724 | ||
725 | if (e_off > PCPU_BITMAP_BLOCK_BITS) | |
726 | return; | |
727 | ||
728 | s_index = pcpu_off_to_block_index(bit_off); | |
729 | block = chunk->md_blocks + s_index; | |
730 | ||
731 | /* scan backwards in case of alignment skipping free bits */ | |
732 | l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off); | |
733 | s_off = (s_off == l_bit) ? 0 : l_bit + 1; | |
734 | ||
735 | pcpu_block_update(block, s_off, e_off); | |
736 | } | |
737 | ||
92c14cab DZ |
738 | /** |
739 | * pcpu_chunk_refresh_hint - updates metadata about a chunk | |
740 | * @chunk: chunk of interest | |
d33d9f3d | 741 | * @full_scan: if we should scan from the beginning |
92c14cab DZ |
742 | * |
743 | * Iterates over the metadata blocks to find the largest contig area. | |
d33d9f3d DZ |
744 | * A full scan can be avoided on the allocation path as this is triggered |
745 | * if we broke the contig_hint. In doing so, the scan_hint will be before | |
746 | * the contig_hint or after if the scan_hint == contig_hint. This cannot | |
747 | * be prevented on freeing as we want to find the largest area possibly | |
748 | * spanning blocks. | |
92c14cab | 749 | */ |
d33d9f3d | 750 | static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan) |
92c14cab DZ |
751 | { |
752 | struct pcpu_block_md *chunk_md = &chunk->chunk_md; | |
753 | int bit_off, bits; | |
754 | ||
d33d9f3d DZ |
755 | /* promote scan_hint to contig_hint */ |
756 | if (!full_scan && chunk_md->scan_hint) { | |
757 | bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint; | |
758 | chunk_md->contig_hint_start = chunk_md->scan_hint_start; | |
759 | chunk_md->contig_hint = chunk_md->scan_hint; | |
760 | chunk_md->scan_hint = 0; | |
761 | } else { | |
762 | bit_off = chunk_md->first_free; | |
763 | chunk_md->contig_hint = 0; | |
764 | } | |
92c14cab | 765 | |
92c14cab | 766 | bits = 0; |
e837dfde | 767 | pcpu_for_each_md_free_region(chunk, bit_off, bits) |
92c14cab | 768 | pcpu_block_update(chunk_md, bit_off, bit_off + bits); |
ca460b3c DZF |
769 | } |
770 | ||
771 | /** | |
772 | * pcpu_block_refresh_hint | |
773 | * @chunk: chunk of interest | |
774 | * @index: index of the metadata block | |
775 | * | |
776 | * Scans over the block beginning at first_free and updates the block | |
777 | * metadata accordingly. | |
778 | */ | |
779 | static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index) | |
780 | { | |
781 | struct pcpu_block_md *block = chunk->md_blocks + index; | |
782 | unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); | |
e837dfde | 783 | unsigned int rs, re, start; /* region start, region end */ |
da3afdd5 DZ |
784 | |
785 | /* promote scan_hint to contig_hint */ | |
786 | if (block->scan_hint) { | |
787 | start = block->scan_hint_start + block->scan_hint; | |
788 | block->contig_hint_start = block->scan_hint_start; | |
789 | block->contig_hint = block->scan_hint; | |
790 | block->scan_hint = 0; | |
791 | } else { | |
792 | start = block->first_free; | |
793 | block->contig_hint = 0; | |
794 | } | |
ca460b3c | 795 | |
da3afdd5 | 796 | block->right_free = 0; |
ca460b3c DZF |
797 | |
798 | /* iterate over free areas and update the contig hints */ | |
e837dfde DZ |
799 | bitmap_for_each_clear_region(alloc_map, rs, re, start, |
800 | PCPU_BITMAP_BLOCK_BITS) | |
ca460b3c | 801 | pcpu_block_update(block, rs, re); |
ca460b3c DZF |
802 | } |
803 | ||
804 | /** | |
805 | * pcpu_block_update_hint_alloc - update hint on allocation path | |
806 | * @chunk: chunk of interest | |
807 | * @bit_off: chunk offset | |
808 | * @bits: size of request | |
fc304334 DZF |
809 | * |
810 | * Updates metadata for the allocation path. The metadata only has to be | |
811 | * refreshed by a full scan iff the chunk's contig hint is broken. Block level | |
812 | * scans are required if the block's contig hint is broken. | |
ca460b3c DZF |
813 | */ |
814 | static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, | |
815 | int bits) | |
816 | { | |
92c14cab | 817 | struct pcpu_block_md *chunk_md = &chunk->chunk_md; |
b239f7da | 818 | int nr_empty_pages = 0; |
ca460b3c DZF |
819 | struct pcpu_block_md *s_block, *e_block, *block; |
820 | int s_index, e_index; /* block indexes of the freed allocation */ | |
821 | int s_off, e_off; /* block offsets of the freed allocation */ | |
822 | ||
823 | /* | |
824 | * Calculate per block offsets. | |
825 | * The calculation uses an inclusive range, but the resulting offsets | |
826 | * are [start, end). e_index always points to the last block in the | |
827 | * range. | |
828 | */ | |
829 | s_index = pcpu_off_to_block_index(bit_off); | |
830 | e_index = pcpu_off_to_block_index(bit_off + bits - 1); | |
831 | s_off = pcpu_off_to_block_off(bit_off); | |
832 | e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; | |
833 | ||
834 | s_block = chunk->md_blocks + s_index; | |
835 | e_block = chunk->md_blocks + e_index; | |
836 | ||
837 | /* | |
838 | * Update s_block. | |
fc304334 DZF |
839 | * block->first_free must be updated if the allocation takes its place. |
840 | * If the allocation breaks the contig_hint, a scan is required to | |
841 | * restore this hint. | |
ca460b3c | 842 | */ |
b239f7da DZ |
843 | if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) |
844 | nr_empty_pages++; | |
845 | ||
fc304334 DZF |
846 | if (s_off == s_block->first_free) |
847 | s_block->first_free = find_next_zero_bit( | |
848 | pcpu_index_alloc_map(chunk, s_index), | |
849 | PCPU_BITMAP_BLOCK_BITS, | |
850 | s_off + bits); | |
851 | ||
382b88e9 DZ |
852 | if (pcpu_region_overlap(s_block->scan_hint_start, |
853 | s_block->scan_hint_start + s_block->scan_hint, | |
854 | s_off, | |
855 | s_off + bits)) | |
856 | s_block->scan_hint = 0; | |
857 | ||
d9f3a01e DZ |
858 | if (pcpu_region_overlap(s_block->contig_hint_start, |
859 | s_block->contig_hint_start + | |
860 | s_block->contig_hint, | |
861 | s_off, | |
862 | s_off + bits)) { | |
fc304334 | 863 | /* block contig hint is broken - scan to fix it */ |
da3afdd5 DZ |
864 | if (!s_off) |
865 | s_block->left_free = 0; | |
fc304334 DZF |
866 | pcpu_block_refresh_hint(chunk, s_index); |
867 | } else { | |
868 | /* update left and right contig manually */ | |
869 | s_block->left_free = min(s_block->left_free, s_off); | |
870 | if (s_index == e_index) | |
871 | s_block->right_free = min_t(int, s_block->right_free, | |
872 | PCPU_BITMAP_BLOCK_BITS - e_off); | |
873 | else | |
874 | s_block->right_free = 0; | |
875 | } | |
ca460b3c DZF |
876 | |
877 | /* | |
878 | * Update e_block. | |
879 | */ | |
880 | if (s_index != e_index) { | |
b239f7da DZ |
881 | if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) |
882 | nr_empty_pages++; | |
883 | ||
fc304334 DZF |
884 | /* |
885 | * When the allocation is across blocks, the end is along | |
886 | * the left part of the e_block. | |
887 | */ | |
888 | e_block->first_free = find_next_zero_bit( | |
889 | pcpu_index_alloc_map(chunk, e_index), | |
890 | PCPU_BITMAP_BLOCK_BITS, e_off); | |
891 | ||
892 | if (e_off == PCPU_BITMAP_BLOCK_BITS) { | |
893 | /* reset the block */ | |
894 | e_block++; | |
895 | } else { | |
382b88e9 DZ |
896 | if (e_off > e_block->scan_hint_start) |
897 | e_block->scan_hint = 0; | |
898 | ||
da3afdd5 | 899 | e_block->left_free = 0; |
fc304334 DZF |
900 | if (e_off > e_block->contig_hint_start) { |
901 | /* contig hint is broken - scan to fix it */ | |
902 | pcpu_block_refresh_hint(chunk, e_index); | |
903 | } else { | |
fc304334 DZF |
904 | e_block->right_free = |
905 | min_t(int, e_block->right_free, | |
906 | PCPU_BITMAP_BLOCK_BITS - e_off); | |
907 | } | |
908 | } | |
ca460b3c DZF |
909 | |
910 | /* update in-between md_blocks */ | |
b239f7da | 911 | nr_empty_pages += (e_index - s_index - 1); |
ca460b3c | 912 | for (block = s_block + 1; block < e_block; block++) { |
382b88e9 | 913 | block->scan_hint = 0; |
ca460b3c DZF |
914 | block->contig_hint = 0; |
915 | block->left_free = 0; | |
916 | block->right_free = 0; | |
917 | } | |
918 | } | |
919 | ||
b239f7da DZ |
920 | if (nr_empty_pages) |
921 | pcpu_update_empty_pages(chunk, -nr_empty_pages); | |
922 | ||
d33d9f3d DZ |
923 | if (pcpu_region_overlap(chunk_md->scan_hint_start, |
924 | chunk_md->scan_hint_start + | |
925 | chunk_md->scan_hint, | |
926 | bit_off, | |
927 | bit_off + bits)) | |
928 | chunk_md->scan_hint = 0; | |
929 | ||
fc304334 DZF |
930 | /* |
931 | * The only time a full chunk scan is required is if the chunk | |
932 | * contig hint is broken. Otherwise, it means a smaller space | |
933 | * was used and therefore the chunk contig hint is still correct. | |
934 | */ | |
92c14cab DZ |
935 | if (pcpu_region_overlap(chunk_md->contig_hint_start, |
936 | chunk_md->contig_hint_start + | |
937 | chunk_md->contig_hint, | |
d9f3a01e DZ |
938 | bit_off, |
939 | bit_off + bits)) | |
d33d9f3d | 940 | pcpu_chunk_refresh_hint(chunk, false); |
ca460b3c DZF |
941 | } |
942 | ||
943 | /** | |
944 | * pcpu_block_update_hint_free - updates the block hints on the free path | |
945 | * @chunk: chunk of interest | |
946 | * @bit_off: chunk offset | |
947 | * @bits: size of request | |
b185cd0d DZF |
948 | * |
949 | * Updates metadata for the allocation path. This avoids a blind block | |
950 | * refresh by making use of the block contig hints. If this fails, it scans | |
951 | * forward and backward to determine the extent of the free area. This is | |
952 | * capped at the boundary of blocks. | |
953 | * | |
954 | * A chunk update is triggered if a page becomes free, a block becomes free, | |
955 | * or the free spans across blocks. This tradeoff is to minimize iterating | |
92c14cab DZ |
956 | * over the block metadata to update chunk_md->contig_hint. |
957 | * chunk_md->contig_hint may be off by up to a page, but it will never be more | |
958 | * than the available space. If the contig hint is contained in one block, it | |
959 | * will be accurate. | |
ca460b3c DZF |
960 | */ |
961 | static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, | |
962 | int bits) | |
963 | { | |
b239f7da | 964 | int nr_empty_pages = 0; |
ca460b3c DZF |
965 | struct pcpu_block_md *s_block, *e_block, *block; |
966 | int s_index, e_index; /* block indexes of the freed allocation */ | |
967 | int s_off, e_off; /* block offsets of the freed allocation */ | |
b185cd0d | 968 | int start, end; /* start and end of the whole free area */ |
ca460b3c DZF |
969 | |
970 | /* | |
971 | * Calculate per block offsets. | |
972 | * The calculation uses an inclusive range, but the resulting offsets | |
973 | * are [start, end). e_index always points to the last block in the | |
974 | * range. | |
975 | */ | |
976 | s_index = pcpu_off_to_block_index(bit_off); | |
977 | e_index = pcpu_off_to_block_index(bit_off + bits - 1); | |
978 | s_off = pcpu_off_to_block_off(bit_off); | |
979 | e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; | |
980 | ||
981 | s_block = chunk->md_blocks + s_index; | |
982 | e_block = chunk->md_blocks + e_index; | |
983 | ||
b185cd0d DZF |
984 | /* |
985 | * Check if the freed area aligns with the block->contig_hint. | |
986 | * If it does, then the scan to find the beginning/end of the | |
987 | * larger free area can be avoided. | |
988 | * | |
989 | * start and end refer to beginning and end of the free area | |
990 | * within each their respective blocks. This is not necessarily | |
991 | * the entire free area as it may span blocks past the beginning | |
992 | * or end of the block. | |
993 | */ | |
994 | start = s_off; | |
995 | if (s_off == s_block->contig_hint + s_block->contig_hint_start) { | |
996 | start = s_block->contig_hint_start; | |
997 | } else { | |
998 | /* | |
999 | * Scan backwards to find the extent of the free area. | |
1000 | * find_last_bit returns the starting bit, so if the start bit | |
1001 | * is returned, that means there was no last bit and the | |
1002 | * remainder of the chunk is free. | |
1003 | */ | |
1004 | int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), | |
1005 | start); | |
1006 | start = (start == l_bit) ? 0 : l_bit + 1; | |
1007 | } | |
1008 | ||
1009 | end = e_off; | |
1010 | if (e_off == e_block->contig_hint_start) | |
1011 | end = e_block->contig_hint_start + e_block->contig_hint; | |
1012 | else | |
1013 | end = find_next_bit(pcpu_index_alloc_map(chunk, e_index), | |
1014 | PCPU_BITMAP_BLOCK_BITS, end); | |
1015 | ||
ca460b3c | 1016 | /* update s_block */ |
b185cd0d | 1017 | e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; |
b239f7da DZ |
1018 | if (!start && e_off == PCPU_BITMAP_BLOCK_BITS) |
1019 | nr_empty_pages++; | |
b185cd0d | 1020 | pcpu_block_update(s_block, start, e_off); |
ca460b3c DZF |
1021 | |
1022 | /* freeing in the same block */ | |
1023 | if (s_index != e_index) { | |
1024 | /* update e_block */ | |
b239f7da DZ |
1025 | if (end == PCPU_BITMAP_BLOCK_BITS) |
1026 | nr_empty_pages++; | |
b185cd0d | 1027 | pcpu_block_update(e_block, 0, end); |
ca460b3c DZF |
1028 | |
1029 | /* reset md_blocks in the middle */ | |
b239f7da | 1030 | nr_empty_pages += (e_index - s_index - 1); |
ca460b3c DZF |
1031 | for (block = s_block + 1; block < e_block; block++) { |
1032 | block->first_free = 0; | |
382b88e9 | 1033 | block->scan_hint = 0; |
ca460b3c DZF |
1034 | block->contig_hint_start = 0; |
1035 | block->contig_hint = PCPU_BITMAP_BLOCK_BITS; | |
1036 | block->left_free = PCPU_BITMAP_BLOCK_BITS; | |
1037 | block->right_free = PCPU_BITMAP_BLOCK_BITS; | |
1038 | } | |
1039 | } | |
1040 | ||
b239f7da DZ |
1041 | if (nr_empty_pages) |
1042 | pcpu_update_empty_pages(chunk, nr_empty_pages); | |
1043 | ||
b185cd0d | 1044 | /* |
b239f7da DZ |
1045 | * Refresh chunk metadata when the free makes a block free or spans |
1046 | * across blocks. The contig_hint may be off by up to a page, but if | |
1047 | * the contig_hint is contained in a block, it will be accurate with | |
1048 | * the else condition below. | |
b185cd0d | 1049 | */ |
b239f7da | 1050 | if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index) |
d33d9f3d | 1051 | pcpu_chunk_refresh_hint(chunk, true); |
b185cd0d | 1052 | else |
92c14cab DZ |
1053 | pcpu_block_update(&chunk->chunk_md, |
1054 | pcpu_block_off_to_off(s_index, start), | |
1055 | end); | |
ca460b3c DZF |
1056 | } |
1057 | ||
40064aec DZF |
1058 | /** |
1059 | * pcpu_is_populated - determines if the region is populated | |
1060 | * @chunk: chunk of interest | |
1061 | * @bit_off: chunk offset | |
1062 | * @bits: size of area | |
1063 | * @next_off: return value for the next offset to start searching | |
1064 | * | |
1065 | * For atomic allocations, check if the backing pages are populated. | |
1066 | * | |
1067 | * RETURNS: | |
1068 | * Bool if the backing pages are populated. | |
1069 | * next_index is to skip over unpopulated blocks in pcpu_find_block_fit. | |
1070 | */ | |
1071 | static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits, | |
1072 | int *next_off) | |
1073 | { | |
e837dfde | 1074 | unsigned int page_start, page_end, rs, re; |
833af842 | 1075 | |
40064aec DZF |
1076 | page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE); |
1077 | page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); | |
833af842 | 1078 | |
40064aec | 1079 | rs = page_start; |
e837dfde | 1080 | bitmap_next_clear_region(chunk->populated, &rs, &re, page_end); |
40064aec DZF |
1081 | if (rs >= page_end) |
1082 | return true; | |
833af842 | 1083 | |
40064aec DZF |
1084 | *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; |
1085 | return false; | |
9f7dcf22 TH |
1086 | } |
1087 | ||
a16037c8 | 1088 | /** |
40064aec DZF |
1089 | * pcpu_find_block_fit - finds the block index to start searching |
1090 | * @chunk: chunk of interest | |
1091 | * @alloc_bits: size of request in allocation units | |
1092 | * @align: alignment of area (max PAGE_SIZE bytes) | |
1093 | * @pop_only: use populated regions only | |
1094 | * | |
b4c2116c DZF |
1095 | * Given a chunk and an allocation spec, find the offset to begin searching |
1096 | * for a free region. This iterates over the bitmap metadata blocks to | |
1097 | * find an offset that will be guaranteed to fit the requirements. It is | |
1098 | * not quite first fit as if the allocation does not fit in the contig hint | |
1099 | * of a block or chunk, it is skipped. This errs on the side of caution | |
1100 | * to prevent excess iteration. Poor alignment can cause the allocator to | |
1101 | * skip over blocks and chunks that have valid free areas. | |
1102 | * | |
40064aec DZF |
1103 | * RETURNS: |
1104 | * The offset in the bitmap to begin searching. | |
1105 | * -1 if no offset is found. | |
a16037c8 | 1106 | */ |
40064aec DZF |
1107 | static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, |
1108 | size_t align, bool pop_only) | |
a16037c8 | 1109 | { |
92c14cab | 1110 | struct pcpu_block_md *chunk_md = &chunk->chunk_md; |
b4c2116c | 1111 | int bit_off, bits, next_off; |
a16037c8 | 1112 | |
13f96637 | 1113 | /* |
8ea2e1e3 RG |
1114 | * This is an optimization to prevent scanning by assuming if the |
1115 | * allocation cannot fit in the global hint, there is memory pressure | |
1116 | * and creating a new chunk would happen soon. | |
13f96637 | 1117 | */ |
8ea2e1e3 | 1118 | if (!pcpu_check_block_hint(chunk_md, alloc_bits, align)) |
13f96637 DZF |
1119 | return -1; |
1120 | ||
d33d9f3d | 1121 | bit_off = pcpu_next_hint(chunk_md, alloc_bits); |
b4c2116c DZF |
1122 | bits = 0; |
1123 | pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { | |
40064aec | 1124 | if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, |
b4c2116c | 1125 | &next_off)) |
40064aec | 1126 | break; |
a16037c8 | 1127 | |
b4c2116c | 1128 | bit_off = next_off; |
40064aec | 1129 | bits = 0; |
a16037c8 | 1130 | } |
40064aec DZF |
1131 | |
1132 | if (bit_off == pcpu_chunk_map_bits(chunk)) | |
1133 | return -1; | |
1134 | ||
1135 | return bit_off; | |
a16037c8 TH |
1136 | } |
1137 | ||
b89462a9 DZ |
1138 | /* |
1139 | * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off() | |
1140 | * @map: the address to base the search on | |
1141 | * @size: the bitmap size in bits | |
1142 | * @start: the bitnumber to start searching at | |
1143 | * @nr: the number of zeroed bits we're looking for | |
1144 | * @align_mask: alignment mask for zero area | |
1145 | * @largest_off: offset of the largest area skipped | |
1146 | * @largest_bits: size of the largest area skipped | |
1147 | * | |
1148 | * The @align_mask should be one less than a power of 2. | |
1149 | * | |
1150 | * This is a modified version of bitmap_find_next_zero_area_off() to remember | |
1151 | * the largest area that was skipped. This is imperfect, but in general is | |
1152 | * good enough. The largest remembered region is the largest failed region | |
1153 | * seen. This does not include anything we possibly skipped due to alignment. | |
1154 | * pcpu_block_update_scan() does scan backwards to try and recover what was | |
1155 | * lost to alignment. While this can cause scanning to miss earlier possible | |
1156 | * free areas, smaller allocations will eventually fill those holes. | |
1157 | */ | |
1158 | static unsigned long pcpu_find_zero_area(unsigned long *map, | |
1159 | unsigned long size, | |
1160 | unsigned long start, | |
1161 | unsigned long nr, | |
1162 | unsigned long align_mask, | |
1163 | unsigned long *largest_off, | |
1164 | unsigned long *largest_bits) | |
1165 | { | |
1166 | unsigned long index, end, i, area_off, area_bits; | |
1167 | again: | |
1168 | index = find_next_zero_bit(map, size, start); | |
1169 | ||
1170 | /* Align allocation */ | |
1171 | index = __ALIGN_MASK(index, align_mask); | |
1172 | area_off = index; | |
1173 | ||
1174 | end = index + nr; | |
1175 | if (end > size) | |
1176 | return end; | |
1177 | i = find_next_bit(map, end, index); | |
1178 | if (i < end) { | |
1179 | area_bits = i - area_off; | |
1180 | /* remember largest unused area with best alignment */ | |
1181 | if (area_bits > *largest_bits || | |
1182 | (area_bits == *largest_bits && *largest_off && | |
1183 | (!area_off || __ffs(area_off) > __ffs(*largest_off)))) { | |
1184 | *largest_off = area_off; | |
1185 | *largest_bits = area_bits; | |
1186 | } | |
1187 | ||
1188 | start = i + 1; | |
1189 | goto again; | |
1190 | } | |
1191 | return index; | |
1192 | } | |
1193 | ||
fbf59bc9 | 1194 | /** |
40064aec | 1195 | * pcpu_alloc_area - allocates an area from a pcpu_chunk |
fbf59bc9 | 1196 | * @chunk: chunk of interest |
40064aec DZF |
1197 | * @alloc_bits: size of request in allocation units |
1198 | * @align: alignment of area (max PAGE_SIZE) | |
1199 | * @start: bit_off to start searching | |
9f7dcf22 | 1200 | * |
40064aec | 1201 | * This function takes in a @start offset to begin searching to fit an |
b4c2116c DZF |
1202 | * allocation of @alloc_bits with alignment @align. It needs to scan |
1203 | * the allocation map because if it fits within the block's contig hint, | |
1204 | * @start will be block->first_free. This is an attempt to fill the | |
1205 | * allocation prior to breaking the contig hint. The allocation and | |
1206 | * boundary maps are updated accordingly if it confirms a valid | |
1207 | * free area. | |
ccea34b5 | 1208 | * |
fbf59bc9 | 1209 | * RETURNS: |
40064aec DZF |
1210 | * Allocated addr offset in @chunk on success. |
1211 | * -1 if no matching area is found. | |
fbf59bc9 | 1212 | */ |
40064aec DZF |
1213 | static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, |
1214 | size_t align, int start) | |
fbf59bc9 | 1215 | { |
92c14cab | 1216 | struct pcpu_block_md *chunk_md = &chunk->chunk_md; |
40064aec | 1217 | size_t align_mask = (align) ? (align - 1) : 0; |
b89462a9 | 1218 | unsigned long area_off = 0, area_bits = 0; |
40064aec | 1219 | int bit_off, end, oslot; |
a16037c8 | 1220 | |
40064aec | 1221 | lockdep_assert_held(&pcpu_lock); |
fbf59bc9 | 1222 | |
40064aec | 1223 | oslot = pcpu_chunk_slot(chunk); |
fbf59bc9 | 1224 | |
40064aec DZF |
1225 | /* |
1226 | * Search to find a fit. | |
1227 | */ | |
8c43004a DZ |
1228 | end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS, |
1229 | pcpu_chunk_map_bits(chunk)); | |
b89462a9 DZ |
1230 | bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits, |
1231 | align_mask, &area_off, &area_bits); | |
40064aec DZF |
1232 | if (bit_off >= end) |
1233 | return -1; | |
fbf59bc9 | 1234 | |
b89462a9 DZ |
1235 | if (area_bits) |
1236 | pcpu_block_update_scan(chunk, area_off, area_bits); | |
1237 | ||
40064aec DZF |
1238 | /* update alloc map */ |
1239 | bitmap_set(chunk->alloc_map, bit_off, alloc_bits); | |
3d331ad7 | 1240 | |
40064aec DZF |
1241 | /* update boundary map */ |
1242 | set_bit(bit_off, chunk->bound_map); | |
1243 | bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1); | |
1244 | set_bit(bit_off + alloc_bits, chunk->bound_map); | |
fbf59bc9 | 1245 | |
40064aec | 1246 | chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; |
fbf59bc9 | 1247 | |
86b442fb | 1248 | /* update first free bit */ |
92c14cab DZ |
1249 | if (bit_off == chunk_md->first_free) |
1250 | chunk_md->first_free = find_next_zero_bit( | |
86b442fb DZF |
1251 | chunk->alloc_map, |
1252 | pcpu_chunk_map_bits(chunk), | |
1253 | bit_off + alloc_bits); | |
1254 | ||
ca460b3c | 1255 | pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits); |
fbf59bc9 | 1256 | |
fbf59bc9 TH |
1257 | pcpu_chunk_relocate(chunk, oslot); |
1258 | ||
40064aec | 1259 | return bit_off * PCPU_MIN_ALLOC_SIZE; |
fbf59bc9 TH |
1260 | } |
1261 | ||
1262 | /** | |
40064aec | 1263 | * pcpu_free_area - frees the corresponding offset |
fbf59bc9 | 1264 | * @chunk: chunk of interest |
40064aec | 1265 | * @off: addr offset into chunk |
ccea34b5 | 1266 | * |
40064aec DZF |
1267 | * This function determines the size of an allocation to free using |
1268 | * the boundary bitmap and clears the allocation map. | |
5b32af91 RG |
1269 | * |
1270 | * RETURNS: | |
1271 | * Number of freed bytes. | |
fbf59bc9 | 1272 | */ |
5b32af91 | 1273 | static int pcpu_free_area(struct pcpu_chunk *chunk, int off) |
fbf59bc9 | 1274 | { |
92c14cab | 1275 | struct pcpu_block_md *chunk_md = &chunk->chunk_md; |
5b32af91 | 1276 | int bit_off, bits, end, oslot, freed; |
723ad1d9 | 1277 | |
5ccd30e4 | 1278 | lockdep_assert_held(&pcpu_lock); |
30a5b536 | 1279 | pcpu_stats_area_dealloc(chunk); |
5ccd30e4 | 1280 | |
40064aec | 1281 | oslot = pcpu_chunk_slot(chunk); |
fbf59bc9 | 1282 | |
40064aec | 1283 | bit_off = off / PCPU_MIN_ALLOC_SIZE; |
3d331ad7 | 1284 | |
40064aec DZF |
1285 | /* find end index */ |
1286 | end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), | |
1287 | bit_off + 1); | |
1288 | bits = end - bit_off; | |
1289 | bitmap_clear(chunk->alloc_map, bit_off, bits); | |
fbf59bc9 | 1290 | |
5b32af91 RG |
1291 | freed = bits * PCPU_MIN_ALLOC_SIZE; |
1292 | ||
40064aec | 1293 | /* update metadata */ |
5b32af91 | 1294 | chunk->free_bytes += freed; |
b539b87f | 1295 | |
86b442fb | 1296 | /* update first free bit */ |
92c14cab | 1297 | chunk_md->first_free = min(chunk_md->first_free, bit_off); |
86b442fb | 1298 | |
ca460b3c | 1299 | pcpu_block_update_hint_free(chunk, bit_off, bits); |
fbf59bc9 | 1300 | |
fbf59bc9 | 1301 | pcpu_chunk_relocate(chunk, oslot); |
5b32af91 RG |
1302 | |
1303 | return freed; | |
fbf59bc9 TH |
1304 | } |
1305 | ||
047924c9 DZ |
1306 | static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits) |
1307 | { | |
1308 | block->scan_hint = 0; | |
1309 | block->contig_hint = nr_bits; | |
1310 | block->left_free = nr_bits; | |
1311 | block->right_free = nr_bits; | |
1312 | block->first_free = 0; | |
1313 | block->nr_bits = nr_bits; | |
1314 | } | |
1315 | ||
ca460b3c DZF |
1316 | static void pcpu_init_md_blocks(struct pcpu_chunk *chunk) |
1317 | { | |
1318 | struct pcpu_block_md *md_block; | |
1319 | ||
92c14cab DZ |
1320 | /* init the chunk's block */ |
1321 | pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk)); | |
1322 | ||
ca460b3c DZF |
1323 | for (md_block = chunk->md_blocks; |
1324 | md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); | |
047924c9 DZ |
1325 | md_block++) |
1326 | pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS); | |
ca460b3c DZF |
1327 | } |
1328 | ||
40064aec DZF |
1329 | /** |
1330 | * pcpu_alloc_first_chunk - creates chunks that serve the first chunk | |
1331 | * @tmp_addr: the start of the region served | |
1332 | * @map_size: size of the region served | |
1333 | * | |
1334 | * This is responsible for creating the chunks that serve the first chunk. The | |
1335 | * base_addr is page aligned down of @tmp_addr while the region end is page | |
1336 | * aligned up. Offsets are kept track of to determine the region served. All | |
1337 | * this is done to appease the bitmap allocator in avoiding partial blocks. | |
1338 | * | |
1339 | * RETURNS: | |
1340 | * Chunk serving the region at @tmp_addr of @map_size. | |
1341 | */ | |
c0ebfdc3 | 1342 | static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr, |
40064aec | 1343 | int map_size) |
10edf5b0 DZF |
1344 | { |
1345 | struct pcpu_chunk *chunk; | |
ca460b3c | 1346 | unsigned long aligned_addr, lcm_align; |
40064aec | 1347 | int start_offset, offset_bits, region_size, region_bits; |
f655f405 | 1348 | size_t alloc_size; |
c0ebfdc3 DZF |
1349 | |
1350 | /* region calculations */ | |
1351 | aligned_addr = tmp_addr & PAGE_MASK; | |
1352 | ||
1353 | start_offset = tmp_addr - aligned_addr; | |
6b9d7c8e | 1354 | |
ca460b3c DZF |
1355 | /* |
1356 | * Align the end of the region with the LCM of PAGE_SIZE and | |
1357 | * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of | |
1358 | * the other. | |
1359 | */ | |
1360 | lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE); | |
1361 | region_size = ALIGN(start_offset + map_size, lcm_align); | |
10edf5b0 | 1362 | |
c0ebfdc3 | 1363 | /* allocate chunk */ |
61cf93d3 DZ |
1364 | alloc_size = struct_size(chunk, populated, |
1365 | BITS_TO_LONGS(region_size >> PAGE_SHIFT)); | |
f655f405 MR |
1366 | chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES); |
1367 | if (!chunk) | |
1368 | panic("%s: Failed to allocate %zu bytes\n", __func__, | |
1369 | alloc_size); | |
c0ebfdc3 | 1370 | |
10edf5b0 | 1371 | INIT_LIST_HEAD(&chunk->list); |
c0ebfdc3 DZF |
1372 | |
1373 | chunk->base_addr = (void *)aligned_addr; | |
10edf5b0 | 1374 | chunk->start_offset = start_offset; |
6b9d7c8e | 1375 | chunk->end_offset = region_size - chunk->start_offset - map_size; |
c0ebfdc3 | 1376 | |
8ab16c43 | 1377 | chunk->nr_pages = region_size >> PAGE_SHIFT; |
40064aec | 1378 | region_bits = pcpu_chunk_map_bits(chunk); |
c0ebfdc3 | 1379 | |
f655f405 MR |
1380 | alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]); |
1381 | chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | |
1382 | if (!chunk->alloc_map) | |
1383 | panic("%s: Failed to allocate %zu bytes\n", __func__, | |
1384 | alloc_size); | |
1385 | ||
1386 | alloc_size = | |
1387 | BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]); | |
1388 | chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | |
1389 | if (!chunk->bound_map) | |
1390 | panic("%s: Failed to allocate %zu bytes\n", __func__, | |
1391 | alloc_size); | |
1392 | ||
1393 | alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]); | |
1394 | chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | |
1395 | if (!chunk->md_blocks) | |
1396 | panic("%s: Failed to allocate %zu bytes\n", __func__, | |
1397 | alloc_size); | |
1398 | ||
3c7be18a | 1399 | #ifdef CONFIG_MEMCG_KMEM |
faf65dde | 1400 | /* first chunk is free to use */ |
3c7be18a RG |
1401 | chunk->obj_cgroups = NULL; |
1402 | #endif | |
ca460b3c | 1403 | pcpu_init_md_blocks(chunk); |
10edf5b0 DZF |
1404 | |
1405 | /* manage populated page bitmap */ | |
1406 | chunk->immutable = true; | |
8ab16c43 DZF |
1407 | bitmap_fill(chunk->populated, chunk->nr_pages); |
1408 | chunk->nr_populated = chunk->nr_pages; | |
b239f7da | 1409 | chunk->nr_empty_pop_pages = chunk->nr_pages; |
10edf5b0 | 1410 | |
40064aec | 1411 | chunk->free_bytes = map_size; |
c0ebfdc3 DZF |
1412 | |
1413 | if (chunk->start_offset) { | |
1414 | /* hide the beginning of the bitmap */ | |
40064aec DZF |
1415 | offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; |
1416 | bitmap_set(chunk->alloc_map, 0, offset_bits); | |
1417 | set_bit(0, chunk->bound_map); | |
1418 | set_bit(offset_bits, chunk->bound_map); | |
ca460b3c | 1419 | |
92c14cab | 1420 | chunk->chunk_md.first_free = offset_bits; |
86b442fb | 1421 | |
ca460b3c | 1422 | pcpu_block_update_hint_alloc(chunk, 0, offset_bits); |
c0ebfdc3 DZF |
1423 | } |
1424 | ||
6b9d7c8e DZF |
1425 | if (chunk->end_offset) { |
1426 | /* hide the end of the bitmap */ | |
40064aec DZF |
1427 | offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE; |
1428 | bitmap_set(chunk->alloc_map, | |
1429 | pcpu_chunk_map_bits(chunk) - offset_bits, | |
1430 | offset_bits); | |
1431 | set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE, | |
1432 | chunk->bound_map); | |
1433 | set_bit(region_bits, chunk->bound_map); | |
6b9d7c8e | 1434 | |
ca460b3c DZF |
1435 | pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk) |
1436 | - offset_bits, offset_bits); | |
1437 | } | |
40064aec | 1438 | |
10edf5b0 DZF |
1439 | return chunk; |
1440 | } | |
1441 | ||
faf65dde | 1442 | static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp) |
6081089f TH |
1443 | { |
1444 | struct pcpu_chunk *chunk; | |
40064aec | 1445 | int region_bits; |
6081089f | 1446 | |
47504ee0 | 1447 | chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp); |
6081089f TH |
1448 | if (!chunk) |
1449 | return NULL; | |
1450 | ||
40064aec DZF |
1451 | INIT_LIST_HEAD(&chunk->list); |
1452 | chunk->nr_pages = pcpu_unit_pages; | |
1453 | region_bits = pcpu_chunk_map_bits(chunk); | |
6081089f | 1454 | |
40064aec | 1455 | chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) * |
47504ee0 | 1456 | sizeof(chunk->alloc_map[0]), gfp); |
40064aec DZF |
1457 | if (!chunk->alloc_map) |
1458 | goto alloc_map_fail; | |
6081089f | 1459 | |
40064aec | 1460 | chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) * |
47504ee0 | 1461 | sizeof(chunk->bound_map[0]), gfp); |
40064aec DZF |
1462 | if (!chunk->bound_map) |
1463 | goto bound_map_fail; | |
6081089f | 1464 | |
ca460b3c | 1465 | chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) * |
47504ee0 | 1466 | sizeof(chunk->md_blocks[0]), gfp); |
ca460b3c DZF |
1467 | if (!chunk->md_blocks) |
1468 | goto md_blocks_fail; | |
1469 | ||
3c7be18a | 1470 | #ifdef CONFIG_MEMCG_KMEM |
faf65dde | 1471 | if (!mem_cgroup_kmem_disabled()) { |
3c7be18a RG |
1472 | chunk->obj_cgroups = |
1473 | pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) * | |
1474 | sizeof(struct obj_cgroup *), gfp); | |
1475 | if (!chunk->obj_cgroups) | |
1476 | goto objcg_fail; | |
1477 | } | |
1478 | #endif | |
1479 | ||
ca460b3c DZF |
1480 | pcpu_init_md_blocks(chunk); |
1481 | ||
40064aec | 1482 | /* init metadata */ |
40064aec | 1483 | chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; |
c0ebfdc3 | 1484 | |
6081089f | 1485 | return chunk; |
40064aec | 1486 | |
3c7be18a RG |
1487 | #ifdef CONFIG_MEMCG_KMEM |
1488 | objcg_fail: | |
1489 | pcpu_mem_free(chunk->md_blocks); | |
1490 | #endif | |
ca460b3c DZF |
1491 | md_blocks_fail: |
1492 | pcpu_mem_free(chunk->bound_map); | |
40064aec DZF |
1493 | bound_map_fail: |
1494 | pcpu_mem_free(chunk->alloc_map); | |
1495 | alloc_map_fail: | |
1496 | pcpu_mem_free(chunk); | |
1497 | ||
1498 | return NULL; | |
6081089f TH |
1499 | } |
1500 | ||
1501 | static void pcpu_free_chunk(struct pcpu_chunk *chunk) | |
1502 | { | |
1503 | if (!chunk) | |
1504 | return; | |
3c7be18a RG |
1505 | #ifdef CONFIG_MEMCG_KMEM |
1506 | pcpu_mem_free(chunk->obj_cgroups); | |
1507 | #endif | |
6685b357 | 1508 | pcpu_mem_free(chunk->md_blocks); |
40064aec DZF |
1509 | pcpu_mem_free(chunk->bound_map); |
1510 | pcpu_mem_free(chunk->alloc_map); | |
1d5cfdb0 | 1511 | pcpu_mem_free(chunk); |
6081089f TH |
1512 | } |
1513 | ||
b539b87f TH |
1514 | /** |
1515 | * pcpu_chunk_populated - post-population bookkeeping | |
1516 | * @chunk: pcpu_chunk which got populated | |
1517 | * @page_start: the start page | |
1518 | * @page_end: the end page | |
1519 | * | |
1520 | * Pages in [@page_start,@page_end) have been populated to @chunk. Update | |
1521 | * the bookkeeping information accordingly. Must be called after each | |
1522 | * successful population. | |
40064aec DZF |
1523 | * |
1524 | * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it | |
1525 | * is to serve an allocation in that area. | |
b539b87f | 1526 | */ |
40064aec | 1527 | static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, |
b239f7da | 1528 | int page_end) |
b539b87f TH |
1529 | { |
1530 | int nr = page_end - page_start; | |
1531 | ||
1532 | lockdep_assert_held(&pcpu_lock); | |
1533 | ||
1534 | bitmap_set(chunk->populated, page_start, nr); | |
1535 | chunk->nr_populated += nr; | |
7e8a6304 | 1536 | pcpu_nr_populated += nr; |
40064aec | 1537 | |
b239f7da | 1538 | pcpu_update_empty_pages(chunk, nr); |
b539b87f TH |
1539 | } |
1540 | ||
1541 | /** | |
1542 | * pcpu_chunk_depopulated - post-depopulation bookkeeping | |
1543 | * @chunk: pcpu_chunk which got depopulated | |
1544 | * @page_start: the start page | |
1545 | * @page_end: the end page | |
1546 | * | |
1547 | * Pages in [@page_start,@page_end) have been depopulated from @chunk. | |
1548 | * Update the bookkeeping information accordingly. Must be called after | |
1549 | * each successful depopulation. | |
1550 | */ | |
1551 | static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, | |
1552 | int page_start, int page_end) | |
1553 | { | |
1554 | int nr = page_end - page_start; | |
1555 | ||
1556 | lockdep_assert_held(&pcpu_lock); | |
1557 | ||
1558 | bitmap_clear(chunk->populated, page_start, nr); | |
1559 | chunk->nr_populated -= nr; | |
7e8a6304 | 1560 | pcpu_nr_populated -= nr; |
b239f7da DZ |
1561 | |
1562 | pcpu_update_empty_pages(chunk, -nr); | |
b539b87f TH |
1563 | } |
1564 | ||
9f645532 TH |
1565 | /* |
1566 | * Chunk management implementation. | |
1567 | * | |
1568 | * To allow different implementations, chunk alloc/free and | |
1569 | * [de]population are implemented in a separate file which is pulled | |
1570 | * into this file and compiled together. The following functions | |
1571 | * should be implemented. | |
1572 | * | |
1573 | * pcpu_populate_chunk - populate the specified range of a chunk | |
1574 | * pcpu_depopulate_chunk - depopulate the specified range of a chunk | |
93274f1d | 1575 | * pcpu_post_unmap_tlb_flush - flush tlb for the specified range of a chunk |
9f645532 TH |
1576 | * pcpu_create_chunk - create a new chunk |
1577 | * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop | |
1578 | * pcpu_addr_to_page - translate address to physical address | |
1579 | * pcpu_verify_alloc_info - check alloc_info is acceptable during init | |
fbf59bc9 | 1580 | */ |
15d9f3d1 | 1581 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, |
47504ee0 | 1582 | int page_start, int page_end, gfp_t gfp); |
15d9f3d1 DZ |
1583 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, |
1584 | int page_start, int page_end); | |
93274f1d DZ |
1585 | static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, |
1586 | int page_start, int page_end); | |
faf65dde | 1587 | static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp); |
9f645532 TH |
1588 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); |
1589 | static struct page *pcpu_addr_to_page(void *addr); | |
1590 | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); | |
fbf59bc9 | 1591 | |
b0c9778b TH |
1592 | #ifdef CONFIG_NEED_PER_CPU_KM |
1593 | #include "percpu-km.c" | |
1594 | #else | |
9f645532 | 1595 | #include "percpu-vm.c" |
b0c9778b | 1596 | #endif |
fbf59bc9 | 1597 | |
88999a89 TH |
1598 | /** |
1599 | * pcpu_chunk_addr_search - determine chunk containing specified address | |
1600 | * @addr: address for which the chunk needs to be determined. | |
1601 | * | |
c0ebfdc3 DZF |
1602 | * This is an internal function that handles all but static allocations. |
1603 | * Static percpu address values should never be passed into the allocator. | |
1604 | * | |
88999a89 TH |
1605 | * RETURNS: |
1606 | * The address of the found chunk. | |
1607 | */ | |
1608 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | |
1609 | { | |
c0ebfdc3 | 1610 | /* is it in the dynamic region (first chunk)? */ |
560f2c23 | 1611 | if (pcpu_addr_in_chunk(pcpu_first_chunk, addr)) |
88999a89 | 1612 | return pcpu_first_chunk; |
c0ebfdc3 DZF |
1613 | |
1614 | /* is it in the reserved region? */ | |
560f2c23 | 1615 | if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr)) |
c0ebfdc3 | 1616 | return pcpu_reserved_chunk; |
88999a89 TH |
1617 | |
1618 | /* | |
1619 | * The address is relative to unit0 which might be unused and | |
1620 | * thus unmapped. Offset the address to the unit space of the | |
1621 | * current processor before looking it up in the vmalloc | |
1622 | * space. Note that any possible cpu id can be used here, so | |
1623 | * there's no need to worry about preemption or cpu hotplug. | |
1624 | */ | |
1625 | addr += pcpu_unit_offsets[raw_smp_processor_id()]; | |
9f645532 | 1626 | return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); |
88999a89 TH |
1627 | } |
1628 | ||
3c7be18a | 1629 | #ifdef CONFIG_MEMCG_KMEM |
faf65dde RG |
1630 | static bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, |
1631 | struct obj_cgroup **objcgp) | |
3c7be18a RG |
1632 | { |
1633 | struct obj_cgroup *objcg; | |
1634 | ||
279c3393 | 1635 | if (!memcg_kmem_enabled() || !(gfp & __GFP_ACCOUNT)) |
faf65dde | 1636 | return true; |
3c7be18a RG |
1637 | |
1638 | objcg = get_obj_cgroup_from_current(); | |
1639 | if (!objcg) | |
faf65dde | 1640 | return true; |
3c7be18a RG |
1641 | |
1642 | if (obj_cgroup_charge(objcg, gfp, size * num_possible_cpus())) { | |
1643 | obj_cgroup_put(objcg); | |
faf65dde | 1644 | return false; |
3c7be18a RG |
1645 | } |
1646 | ||
1647 | *objcgp = objcg; | |
faf65dde | 1648 | return true; |
3c7be18a RG |
1649 | } |
1650 | ||
1651 | static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, | |
1652 | struct pcpu_chunk *chunk, int off, | |
1653 | size_t size) | |
1654 | { | |
1655 | if (!objcg) | |
1656 | return; | |
1657 | ||
faf65dde | 1658 | if (likely(chunk && chunk->obj_cgroups)) { |
3c7be18a | 1659 | chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg; |
772616b0 RG |
1660 | |
1661 | rcu_read_lock(); | |
1662 | mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, | |
1663 | size * num_possible_cpus()); | |
1664 | rcu_read_unlock(); | |
3c7be18a RG |
1665 | } else { |
1666 | obj_cgroup_uncharge(objcg, size * num_possible_cpus()); | |
1667 | obj_cgroup_put(objcg); | |
1668 | } | |
1669 | } | |
1670 | ||
1671 | static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) | |
1672 | { | |
1673 | struct obj_cgroup *objcg; | |
1674 | ||
faf65dde | 1675 | if (unlikely(!chunk->obj_cgroups)) |
3c7be18a RG |
1676 | return; |
1677 | ||
1678 | objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT]; | |
faf65dde RG |
1679 | if (!objcg) |
1680 | return; | |
3c7be18a RG |
1681 | chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL; |
1682 | ||
1683 | obj_cgroup_uncharge(objcg, size * num_possible_cpus()); | |
1684 | ||
772616b0 RG |
1685 | rcu_read_lock(); |
1686 | mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, | |
1687 | -(size * num_possible_cpus())); | |
1688 | rcu_read_unlock(); | |
1689 | ||
3c7be18a RG |
1690 | obj_cgroup_put(objcg); |
1691 | } | |
1692 | ||
1693 | #else /* CONFIG_MEMCG_KMEM */ | |
faf65dde | 1694 | static bool |
3c7be18a RG |
1695 | pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp) |
1696 | { | |
faf65dde | 1697 | return true; |
3c7be18a RG |
1698 | } |
1699 | ||
1700 | static void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, | |
1701 | struct pcpu_chunk *chunk, int off, | |
1702 | size_t size) | |
1703 | { | |
1704 | } | |
1705 | ||
1706 | static void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) | |
1707 | { | |
1708 | } | |
1709 | #endif /* CONFIG_MEMCG_KMEM */ | |
1710 | ||
fbf59bc9 | 1711 | /** |
edcb4639 | 1712 | * pcpu_alloc - the percpu allocator |
cae3aeb8 | 1713 | * @size: size of area to allocate in bytes |
fbf59bc9 | 1714 | * @align: alignment of area (max PAGE_SIZE) |
edcb4639 | 1715 | * @reserved: allocate from the reserved chunk if available |
5835d96e | 1716 | * @gfp: allocation flags |
fbf59bc9 | 1717 | * |
5835d96e | 1718 | * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't |
0ea7eeec DB |
1719 | * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN |
1720 | * then no warning will be triggered on invalid or failed allocation | |
1721 | * requests. | |
fbf59bc9 TH |
1722 | * |
1723 | * RETURNS: | |
1724 | * Percpu pointer to the allocated area on success, NULL on failure. | |
1725 | */ | |
5835d96e TH |
1726 | static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, |
1727 | gfp_t gfp) | |
fbf59bc9 | 1728 | { |
28307d93 FM |
1729 | gfp_t pcpu_gfp; |
1730 | bool is_atomic; | |
1731 | bool do_warn; | |
3c7be18a | 1732 | struct obj_cgroup *objcg = NULL; |
f2badb0c | 1733 | static int warn_limit = 10; |
8744d859 | 1734 | struct pcpu_chunk *chunk, *next; |
f2badb0c | 1735 | const char *err; |
40064aec | 1736 | int slot, off, cpu, ret; |
403a91b1 | 1737 | unsigned long flags; |
f528f0b8 | 1738 | void __percpu *ptr; |
40064aec | 1739 | size_t bits, bit_align; |
fbf59bc9 | 1740 | |
28307d93 FM |
1741 | gfp = current_gfp_context(gfp); |
1742 | /* whitelisted flags that can be passed to the backing allocators */ | |
1743 | pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); | |
1744 | is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; | |
1745 | do_warn = !(gfp & __GFP_NOWARN); | |
1746 | ||
723ad1d9 | 1747 | /* |
40064aec DZF |
1748 | * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE, |
1749 | * therefore alignment must be a minimum of that many bytes. | |
1750 | * An allocation may have internal fragmentation from rounding up | |
1751 | * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes. | |
723ad1d9 | 1752 | */ |
d2f3c384 DZF |
1753 | if (unlikely(align < PCPU_MIN_ALLOC_SIZE)) |
1754 | align = PCPU_MIN_ALLOC_SIZE; | |
723ad1d9 | 1755 | |
d2f3c384 | 1756 | size = ALIGN(size, PCPU_MIN_ALLOC_SIZE); |
40064aec DZF |
1757 | bits = size >> PCPU_MIN_ALLOC_SHIFT; |
1758 | bit_align = align >> PCPU_MIN_ALLOC_SHIFT; | |
2f69fa82 | 1759 | |
3ca45a46 | 1760 | if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || |
1761 | !is_power_of_2(align))) { | |
0ea7eeec | 1762 | WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n", |
756a025f | 1763 | size, align); |
fbf59bc9 TH |
1764 | return NULL; |
1765 | } | |
1766 | ||
faf65dde | 1767 | if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg))) |
3c7be18a | 1768 | return NULL; |
3c7be18a | 1769 | |
f52ba1fe KT |
1770 | if (!is_atomic) { |
1771 | /* | |
1772 | * pcpu_balance_workfn() allocates memory under this mutex, | |
1773 | * and it may wait for memory reclaim. Allow current task | |
1774 | * to become OOM victim, in case of memory pressure. | |
1775 | */ | |
3c7be18a | 1776 | if (gfp & __GFP_NOFAIL) { |
f52ba1fe | 1777 | mutex_lock(&pcpu_alloc_mutex); |
3c7be18a RG |
1778 | } else if (mutex_lock_killable(&pcpu_alloc_mutex)) { |
1779 | pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); | |
f52ba1fe | 1780 | return NULL; |
3c7be18a | 1781 | } |
f52ba1fe | 1782 | } |
6710e594 | 1783 | |
403a91b1 | 1784 | spin_lock_irqsave(&pcpu_lock, flags); |
fbf59bc9 | 1785 | |
edcb4639 TH |
1786 | /* serve reserved allocations from the reserved chunk if available */ |
1787 | if (reserved && pcpu_reserved_chunk) { | |
1788 | chunk = pcpu_reserved_chunk; | |
833af842 | 1789 | |
40064aec DZF |
1790 | off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); |
1791 | if (off < 0) { | |
833af842 | 1792 | err = "alloc from reserved chunk failed"; |
ccea34b5 | 1793 | goto fail_unlock; |
f2badb0c | 1794 | } |
833af842 | 1795 | |
40064aec | 1796 | off = pcpu_alloc_area(chunk, bits, bit_align, off); |
edcb4639 TH |
1797 | if (off >= 0) |
1798 | goto area_found; | |
833af842 | 1799 | |
f2badb0c | 1800 | err = "alloc from reserved chunk failed"; |
ccea34b5 | 1801 | goto fail_unlock; |
edcb4639 TH |
1802 | } |
1803 | ||
ccea34b5 | 1804 | restart: |
edcb4639 | 1805 | /* search through normal chunks */ |
f1833241 | 1806 | for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) { |
faf65dde RG |
1807 | list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot], |
1808 | list) { | |
40064aec DZF |
1809 | off = pcpu_find_block_fit(chunk, bits, bit_align, |
1810 | is_atomic); | |
8744d859 DZ |
1811 | if (off < 0) { |
1812 | if (slot < PCPU_SLOT_FAIL_THRESHOLD) | |
1813 | pcpu_chunk_move(chunk, 0); | |
fbf59bc9 | 1814 | continue; |
8744d859 | 1815 | } |
ccea34b5 | 1816 | |
40064aec | 1817 | off = pcpu_alloc_area(chunk, bits, bit_align, off); |
f1833241 RG |
1818 | if (off >= 0) { |
1819 | pcpu_reintegrate_chunk(chunk); | |
fbf59bc9 | 1820 | goto area_found; |
f1833241 | 1821 | } |
fbf59bc9 TH |
1822 | } |
1823 | } | |
1824 | ||
403a91b1 | 1825 | spin_unlock_irqrestore(&pcpu_lock, flags); |
ccea34b5 | 1826 | |
b38d08f3 TH |
1827 | /* |
1828 | * No space left. Create a new chunk. We don't want multiple | |
1829 | * tasks to create chunks simultaneously. Serialize and create iff | |
1830 | * there's still no empty chunk after grabbing the mutex. | |
1831 | */ | |
11df02bf DZ |
1832 | if (is_atomic) { |
1833 | err = "atomic alloc failed, no space left"; | |
5835d96e | 1834 | goto fail; |
11df02bf | 1835 | } |
5835d96e | 1836 | |
faf65dde RG |
1837 | if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) { |
1838 | chunk = pcpu_create_chunk(pcpu_gfp); | |
b38d08f3 TH |
1839 | if (!chunk) { |
1840 | err = "failed to allocate new chunk"; | |
1841 | goto fail; | |
1842 | } | |
1843 | ||
1844 | spin_lock_irqsave(&pcpu_lock, flags); | |
1845 | pcpu_chunk_relocate(chunk, -1); | |
1846 | } else { | |
1847 | spin_lock_irqsave(&pcpu_lock, flags); | |
f2badb0c | 1848 | } |
ccea34b5 | 1849 | |
ccea34b5 | 1850 | goto restart; |
fbf59bc9 TH |
1851 | |
1852 | area_found: | |
30a5b536 | 1853 | pcpu_stats_area_alloc(chunk, size); |
403a91b1 | 1854 | spin_unlock_irqrestore(&pcpu_lock, flags); |
ccea34b5 | 1855 | |
dca49645 | 1856 | /* populate if not all pages are already there */ |
5835d96e | 1857 | if (!is_atomic) { |
e837dfde | 1858 | unsigned int page_start, page_end, rs, re; |
dca49645 | 1859 | |
e04d3208 TH |
1860 | page_start = PFN_DOWN(off); |
1861 | page_end = PFN_UP(off + size); | |
b38d08f3 | 1862 | |
e837dfde DZ |
1863 | bitmap_for_each_clear_region(chunk->populated, rs, re, |
1864 | page_start, page_end) { | |
e04d3208 TH |
1865 | WARN_ON(chunk->immutable); |
1866 | ||
554fef1c | 1867 | ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp); |
e04d3208 TH |
1868 | |
1869 | spin_lock_irqsave(&pcpu_lock, flags); | |
1870 | if (ret) { | |
40064aec | 1871 | pcpu_free_area(chunk, off); |
e04d3208 TH |
1872 | err = "failed to populate"; |
1873 | goto fail_unlock; | |
1874 | } | |
b239f7da | 1875 | pcpu_chunk_populated(chunk, rs, re); |
e04d3208 | 1876 | spin_unlock_irqrestore(&pcpu_lock, flags); |
dca49645 | 1877 | } |
fbf59bc9 | 1878 | |
e04d3208 TH |
1879 | mutex_unlock(&pcpu_alloc_mutex); |
1880 | } | |
ccea34b5 | 1881 | |
faf65dde | 1882 | if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) |
1a4d7607 TH |
1883 | pcpu_schedule_balance_work(); |
1884 | ||
dca49645 TH |
1885 | /* clear the areas and return address relative to base address */ |
1886 | for_each_possible_cpu(cpu) | |
1887 | memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); | |
1888 | ||
f528f0b8 | 1889 | ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); |
8a8c35fa | 1890 | kmemleak_alloc_percpu(ptr, size, gfp); |
df95e795 DZ |
1891 | |
1892 | trace_percpu_alloc_percpu(reserved, is_atomic, size, align, | |
1893 | chunk->base_addr, off, ptr); | |
1894 | ||
3c7be18a RG |
1895 | pcpu_memcg_post_alloc_hook(objcg, chunk, off, size); |
1896 | ||
f528f0b8 | 1897 | return ptr; |
ccea34b5 TH |
1898 | |
1899 | fail_unlock: | |
403a91b1 | 1900 | spin_unlock_irqrestore(&pcpu_lock, flags); |
b38d08f3 | 1901 | fail: |
df95e795 DZ |
1902 | trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align); |
1903 | ||
0ea7eeec | 1904 | if (!is_atomic && do_warn && warn_limit) { |
870d4b12 | 1905 | pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", |
598d8091 | 1906 | size, align, is_atomic, err); |
f2badb0c TH |
1907 | dump_stack(); |
1908 | if (!--warn_limit) | |
870d4b12 | 1909 | pr_info("limit reached, disable warning\n"); |
f2badb0c | 1910 | } |
1a4d7607 | 1911 | if (is_atomic) { |
f0953a1b | 1912 | /* see the flag handling in pcpu_balance_workfn() */ |
1a4d7607 TH |
1913 | pcpu_atomic_alloc_failed = true; |
1914 | pcpu_schedule_balance_work(); | |
6710e594 TH |
1915 | } else { |
1916 | mutex_unlock(&pcpu_alloc_mutex); | |
1a4d7607 | 1917 | } |
3c7be18a RG |
1918 | |
1919 | pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); | |
1920 | ||
ccea34b5 | 1921 | return NULL; |
fbf59bc9 | 1922 | } |
edcb4639 TH |
1923 | |
1924 | /** | |
5835d96e | 1925 | * __alloc_percpu_gfp - allocate dynamic percpu area |
edcb4639 TH |
1926 | * @size: size of area to allocate in bytes |
1927 | * @align: alignment of area (max PAGE_SIZE) | |
5835d96e | 1928 | * @gfp: allocation flags |
edcb4639 | 1929 | * |
5835d96e TH |
1930 | * Allocate zero-filled percpu area of @size bytes aligned at @align. If |
1931 | * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can | |
0ea7eeec DB |
1932 | * be called from any context but is a lot more likely to fail. If @gfp |
1933 | * has __GFP_NOWARN then no warning will be triggered on invalid or failed | |
1934 | * allocation requests. | |
ccea34b5 | 1935 | * |
edcb4639 TH |
1936 | * RETURNS: |
1937 | * Percpu pointer to the allocated area on success, NULL on failure. | |
1938 | */ | |
5835d96e TH |
1939 | void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) |
1940 | { | |
1941 | return pcpu_alloc(size, align, false, gfp); | |
1942 | } | |
1943 | EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); | |
1944 | ||
1945 | /** | |
1946 | * __alloc_percpu - allocate dynamic percpu area | |
1947 | * @size: size of area to allocate in bytes | |
1948 | * @align: alignment of area (max PAGE_SIZE) | |
1949 | * | |
1950 | * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). | |
1951 | */ | |
43cf38eb | 1952 | void __percpu *__alloc_percpu(size_t size, size_t align) |
edcb4639 | 1953 | { |
5835d96e | 1954 | return pcpu_alloc(size, align, false, GFP_KERNEL); |
edcb4639 | 1955 | } |
fbf59bc9 TH |
1956 | EXPORT_SYMBOL_GPL(__alloc_percpu); |
1957 | ||
edcb4639 TH |
1958 | /** |
1959 | * __alloc_reserved_percpu - allocate reserved percpu area | |
1960 | * @size: size of area to allocate in bytes | |
1961 | * @align: alignment of area (max PAGE_SIZE) | |
1962 | * | |
9329ba97 TH |
1963 | * Allocate zero-filled percpu area of @size bytes aligned at @align |
1964 | * from reserved percpu area if arch has set it up; otherwise, | |
1965 | * allocation is served from the same dynamic area. Might sleep. | |
1966 | * Might trigger writeouts. | |
edcb4639 | 1967 | * |
ccea34b5 TH |
1968 | * CONTEXT: |
1969 | * Does GFP_KERNEL allocation. | |
1970 | * | |
edcb4639 TH |
1971 | * RETURNS: |
1972 | * Percpu pointer to the allocated area on success, NULL on failure. | |
1973 | */ | |
43cf38eb | 1974 | void __percpu *__alloc_reserved_percpu(size_t size, size_t align) |
edcb4639 | 1975 | { |
5835d96e | 1976 | return pcpu_alloc(size, align, true, GFP_KERNEL); |
edcb4639 TH |
1977 | } |
1978 | ||
a56dbddf | 1979 | /** |
67c2669d | 1980 | * pcpu_balance_free - manage the amount of free chunks |
f1833241 | 1981 | * @empty_only: free chunks only if there are no populated pages |
a56dbddf | 1982 | * |
f1833241 RG |
1983 | * If empty_only is %false, reclaim all fully free chunks regardless of the |
1984 | * number of populated pages. Otherwise, only reclaim chunks that have no | |
1985 | * populated pages. | |
e4d77700 RG |
1986 | * |
1987 | * CONTEXT: | |
1988 | * pcpu_lock (can be dropped temporarily) | |
a56dbddf | 1989 | */ |
faf65dde | 1990 | static void pcpu_balance_free(bool empty_only) |
fbf59bc9 | 1991 | { |
fe6bd8c3 | 1992 | LIST_HEAD(to_free); |
faf65dde | 1993 | struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot]; |
a56dbddf TH |
1994 | struct pcpu_chunk *chunk, *next; |
1995 | ||
e4d77700 | 1996 | lockdep_assert_held(&pcpu_lock); |
a56dbddf | 1997 | |
1a4d7607 TH |
1998 | /* |
1999 | * There's no reason to keep around multiple unused chunks and VM | |
2000 | * areas can be scarce. Destroy all free chunks except for one. | |
2001 | */ | |
fe6bd8c3 | 2002 | list_for_each_entry_safe(chunk, next, free_head, list) { |
a56dbddf TH |
2003 | WARN_ON(chunk->immutable); |
2004 | ||
2005 | /* spare the first one */ | |
fe6bd8c3 | 2006 | if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) |
a56dbddf TH |
2007 | continue; |
2008 | ||
f1833241 RG |
2009 | if (!empty_only || chunk->nr_empty_pop_pages == 0) |
2010 | list_move(&chunk->list, &to_free); | |
a56dbddf TH |
2011 | } |
2012 | ||
e4d77700 RG |
2013 | if (list_empty(&to_free)) |
2014 | return; | |
a56dbddf | 2015 | |
e4d77700 | 2016 | spin_unlock_irq(&pcpu_lock); |
fe6bd8c3 | 2017 | list_for_each_entry_safe(chunk, next, &to_free, list) { |
e837dfde | 2018 | unsigned int rs, re; |
dca49645 | 2019 | |
e837dfde DZ |
2020 | bitmap_for_each_set_region(chunk->populated, rs, re, 0, |
2021 | chunk->nr_pages) { | |
a93ace48 | 2022 | pcpu_depopulate_chunk(chunk, rs, re); |
b539b87f TH |
2023 | spin_lock_irq(&pcpu_lock); |
2024 | pcpu_chunk_depopulated(chunk, rs, re); | |
2025 | spin_unlock_irq(&pcpu_lock); | |
a93ace48 | 2026 | } |
6081089f | 2027 | pcpu_destroy_chunk(chunk); |
accd4f36 | 2028 | cond_resched(); |
a56dbddf | 2029 | } |
e4d77700 | 2030 | spin_lock_irq(&pcpu_lock); |
67c2669d RG |
2031 | } |
2032 | ||
2033 | /** | |
2034 | * pcpu_balance_populated - manage the amount of populated pages | |
67c2669d RG |
2035 | * |
2036 | * Maintain a certain amount of populated pages to satisfy atomic allocations. | |
2037 | * It is possible that this is called when physical memory is scarce causing | |
2038 | * OOM killer to be triggered. We should avoid doing so until an actual | |
2039 | * allocation causes the failure as it is possible that requests can be | |
2040 | * serviced from already backed regions. | |
e4d77700 RG |
2041 | * |
2042 | * CONTEXT: | |
2043 | * pcpu_lock (can be dropped temporarily) | |
67c2669d | 2044 | */ |
faf65dde | 2045 | static void pcpu_balance_populated(void) |
67c2669d RG |
2046 | { |
2047 | /* gfp flags passed to underlying allocators */ | |
2048 | const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; | |
67c2669d RG |
2049 | struct pcpu_chunk *chunk; |
2050 | int slot, nr_to_pop, ret; | |
971f3918 | 2051 | |
e4d77700 | 2052 | lockdep_assert_held(&pcpu_lock); |
971f3918 | 2053 | |
1a4d7607 TH |
2054 | /* |
2055 | * Ensure there are certain number of free populated pages for | |
2056 | * atomic allocs. Fill up from the most packed so that atomic | |
2057 | * allocs don't increase fragmentation. If atomic allocation | |
2058 | * failed previously, always populate the maximum amount. This | |
2059 | * should prevent atomic allocs larger than PAGE_SIZE from keeping | |
2060 | * failing indefinitely; however, large atomic allocs are not | |
2061 | * something we support properly and can be highly unreliable and | |
2062 | * inefficient. | |
2063 | */ | |
2064 | retry_pop: | |
2065 | if (pcpu_atomic_alloc_failed) { | |
2066 | nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; | |
2067 | /* best effort anyway, don't worry about synchronization */ | |
2068 | pcpu_atomic_alloc_failed = false; | |
2069 | } else { | |
2070 | nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - | |
faf65dde | 2071 | pcpu_nr_empty_pop_pages, |
1a4d7607 TH |
2072 | 0, PCPU_EMPTY_POP_PAGES_HIGH); |
2073 | } | |
2074 | ||
1c29a3ce | 2075 | for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) { |
e837dfde | 2076 | unsigned int nr_unpop = 0, rs, re; |
1a4d7607 TH |
2077 | |
2078 | if (!nr_to_pop) | |
2079 | break; | |
2080 | ||
faf65dde | 2081 | list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) { |
8ab16c43 | 2082 | nr_unpop = chunk->nr_pages - chunk->nr_populated; |
1a4d7607 TH |
2083 | if (nr_unpop) |
2084 | break; | |
2085 | } | |
1a4d7607 TH |
2086 | |
2087 | if (!nr_unpop) | |
2088 | continue; | |
2089 | ||
2090 | /* @chunk can't go away while pcpu_alloc_mutex is held */ | |
e837dfde DZ |
2091 | bitmap_for_each_clear_region(chunk->populated, rs, re, 0, |
2092 | chunk->nr_pages) { | |
2093 | int nr = min_t(int, re - rs, nr_to_pop); | |
1a4d7607 | 2094 | |
e4d77700 | 2095 | spin_unlock_irq(&pcpu_lock); |
47504ee0 | 2096 | ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp); |
e4d77700 RG |
2097 | cond_resched(); |
2098 | spin_lock_irq(&pcpu_lock); | |
1a4d7607 TH |
2099 | if (!ret) { |
2100 | nr_to_pop -= nr; | |
b239f7da | 2101 | pcpu_chunk_populated(chunk, rs, rs + nr); |
1a4d7607 TH |
2102 | } else { |
2103 | nr_to_pop = 0; | |
2104 | } | |
2105 | ||
2106 | if (!nr_to_pop) | |
2107 | break; | |
2108 | } | |
2109 | } | |
2110 | ||
2111 | if (nr_to_pop) { | |
2112 | /* ran out of chunks to populate, create a new one and retry */ | |
e4d77700 | 2113 | spin_unlock_irq(&pcpu_lock); |
faf65dde | 2114 | chunk = pcpu_create_chunk(gfp); |
e4d77700 RG |
2115 | cond_resched(); |
2116 | spin_lock_irq(&pcpu_lock); | |
1a4d7607 | 2117 | if (chunk) { |
1a4d7607 | 2118 | pcpu_chunk_relocate(chunk, -1); |
1a4d7607 TH |
2119 | goto retry_pop; |
2120 | } | |
2121 | } | |
fbf59bc9 | 2122 | } |
1a4d7607 | 2123 | |
f1833241 RG |
2124 | /** |
2125 | * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages | |
f1833241 RG |
2126 | * |
2127 | * Scan over chunks in the depopulate list and try to release unused populated | |
2128 | * pages back to the system. Depopulated chunks are sidelined to prevent | |
2129 | * repopulating these pages unless required. Fully free chunks are reintegrated | |
2130 | * and freed accordingly (1 is kept around). If we drop below the empty | |
2131 | * populated pages threshold, reintegrate the chunk if it has empty free pages. | |
2132 | * Each chunk is scanned in the reverse order to keep populated pages close to | |
2133 | * the beginning of the chunk. | |
e4d77700 RG |
2134 | * |
2135 | * CONTEXT: | |
2136 | * pcpu_lock (can be dropped temporarily) | |
2137 | * | |
f1833241 | 2138 | */ |
faf65dde | 2139 | static void pcpu_reclaim_populated(void) |
f1833241 | 2140 | { |
f1833241 RG |
2141 | struct pcpu_chunk *chunk; |
2142 | struct pcpu_block_md *block; | |
93274f1d | 2143 | int freed_page_start, freed_page_end; |
f1833241 | 2144 | int i, end; |
93274f1d | 2145 | bool reintegrate; |
f1833241 | 2146 | |
e4d77700 | 2147 | lockdep_assert_held(&pcpu_lock); |
f1833241 | 2148 | |
f1833241 RG |
2149 | /* |
2150 | * Once a chunk is isolated to the to_depopulate list, the chunk is no | |
2151 | * longer discoverable to allocations whom may populate pages. The only | |
2152 | * other accessor is the free path which only returns area back to the | |
2153 | * allocator not touching the populated bitmap. | |
2154 | */ | |
faf65dde RG |
2155 | while (!list_empty(&pcpu_chunk_lists[pcpu_to_depopulate_slot])) { |
2156 | chunk = list_first_entry(&pcpu_chunk_lists[pcpu_to_depopulate_slot], | |
f1833241 RG |
2157 | struct pcpu_chunk, list); |
2158 | WARN_ON(chunk->immutable); | |
2159 | ||
2160 | /* | |
2161 | * Scan chunk's pages in the reverse order to keep populated | |
2162 | * pages close to the beginning of the chunk. | |
2163 | */ | |
93274f1d DZ |
2164 | freed_page_start = chunk->nr_pages; |
2165 | freed_page_end = 0; | |
2166 | reintegrate = false; | |
f1833241 RG |
2167 | for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) { |
2168 | /* no more work to do */ | |
2169 | if (chunk->nr_empty_pop_pages == 0) | |
2170 | break; | |
2171 | ||
2172 | /* reintegrate chunk to prevent atomic alloc failures */ | |
faf65dde | 2173 | if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) { |
93274f1d DZ |
2174 | reintegrate = true; |
2175 | goto end_chunk; | |
f1833241 RG |
2176 | } |
2177 | ||
2178 | /* | |
2179 | * If the page is empty and populated, start or | |
2180 | * extend the (i, end) range. If i == 0, decrease | |
2181 | * i and perform the depopulation to cover the last | |
2182 | * (first) page in the chunk. | |
2183 | */ | |
2184 | block = chunk->md_blocks + i; | |
2185 | if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS && | |
2186 | test_bit(i, chunk->populated)) { | |
2187 | if (end == -1) | |
2188 | end = i; | |
2189 | if (i > 0) | |
2190 | continue; | |
2191 | i--; | |
2192 | } | |
2193 | ||
2194 | /* depopulate if there is an active range */ | |
2195 | if (end == -1) | |
2196 | continue; | |
2197 | ||
2198 | spin_unlock_irq(&pcpu_lock); | |
2199 | pcpu_depopulate_chunk(chunk, i + 1, end + 1); | |
2200 | cond_resched(); | |
2201 | spin_lock_irq(&pcpu_lock); | |
2202 | ||
2203 | pcpu_chunk_depopulated(chunk, i + 1, end + 1); | |
93274f1d DZ |
2204 | freed_page_start = min(freed_page_start, i + 1); |
2205 | freed_page_end = max(freed_page_end, end + 1); | |
f1833241 RG |
2206 | |
2207 | /* reset the range and continue */ | |
2208 | end = -1; | |
2209 | } | |
2210 | ||
93274f1d DZ |
2211 | end_chunk: |
2212 | /* batch tlb flush per chunk to amortize cost */ | |
2213 | if (freed_page_start < freed_page_end) { | |
2214 | spin_unlock_irq(&pcpu_lock); | |
2215 | pcpu_post_unmap_tlb_flush(chunk, | |
2216 | freed_page_start, | |
2217 | freed_page_end); | |
2218 | cond_resched(); | |
2219 | spin_lock_irq(&pcpu_lock); | |
2220 | } | |
2221 | ||
2222 | if (reintegrate || chunk->free_bytes == pcpu_unit_size) | |
f1833241 RG |
2223 | pcpu_reintegrate_chunk(chunk); |
2224 | else | |
93274f1d DZ |
2225 | list_move_tail(&chunk->list, |
2226 | &pcpu_chunk_lists[pcpu_sidelined_slot]); | |
f1833241 | 2227 | } |
fbf59bc9 TH |
2228 | } |
2229 | ||
3c7be18a RG |
2230 | /** |
2231 | * pcpu_balance_workfn - manage the amount of free chunks and populated pages | |
2232 | * @work: unused | |
2233 | * | |
f1833241 RG |
2234 | * For each chunk type, manage the number of fully free chunks and the number of |
2235 | * populated pages. An important thing to consider is when pages are freed and | |
2236 | * how they contribute to the global counts. | |
3c7be18a RG |
2237 | */ |
2238 | static void pcpu_balance_workfn(struct work_struct *work) | |
2239 | { | |
f1833241 RG |
2240 | /* |
2241 | * pcpu_balance_free() is called twice because the first time we may | |
2242 | * trim pages in the active pcpu_nr_empty_pop_pages which may cause us | |
2243 | * to grow other chunks. This then gives pcpu_reclaim_populated() time | |
2244 | * to move fully free chunks to the active list to be freed if | |
2245 | * appropriate. | |
2246 | */ | |
faf65dde | 2247 | mutex_lock(&pcpu_alloc_mutex); |
e4d77700 RG |
2248 | spin_lock_irq(&pcpu_lock); |
2249 | ||
faf65dde RG |
2250 | pcpu_balance_free(false); |
2251 | pcpu_reclaim_populated(); | |
2252 | pcpu_balance_populated(); | |
2253 | pcpu_balance_free(true); | |
3c7be18a | 2254 | |
e4d77700 | 2255 | spin_unlock_irq(&pcpu_lock); |
faf65dde | 2256 | mutex_unlock(&pcpu_alloc_mutex); |
3c7be18a RG |
2257 | } |
2258 | ||
fbf59bc9 TH |
2259 | /** |
2260 | * free_percpu - free percpu area | |
2261 | * @ptr: pointer to area to free | |
2262 | * | |
ccea34b5 TH |
2263 | * Free percpu area @ptr. |
2264 | * | |
2265 | * CONTEXT: | |
2266 | * Can be called from atomic context. | |
fbf59bc9 | 2267 | */ |
43cf38eb | 2268 | void free_percpu(void __percpu *ptr) |
fbf59bc9 | 2269 | { |
129182e5 | 2270 | void *addr; |
fbf59bc9 | 2271 | struct pcpu_chunk *chunk; |
ccea34b5 | 2272 | unsigned long flags; |
3c7be18a | 2273 | int size, off; |
198790d9 | 2274 | bool need_balance = false; |
fbf59bc9 TH |
2275 | |
2276 | if (!ptr) | |
2277 | return; | |
2278 | ||
f528f0b8 CM |
2279 | kmemleak_free_percpu(ptr); |
2280 | ||
129182e5 AM |
2281 | addr = __pcpu_ptr_to_addr(ptr); |
2282 | ||
ccea34b5 | 2283 | spin_lock_irqsave(&pcpu_lock, flags); |
fbf59bc9 TH |
2284 | |
2285 | chunk = pcpu_chunk_addr_search(addr); | |
bba174f5 | 2286 | off = addr - chunk->base_addr; |
fbf59bc9 | 2287 | |
3c7be18a RG |
2288 | size = pcpu_free_area(chunk, off); |
2289 | ||
3c7be18a | 2290 | pcpu_memcg_free_hook(chunk, off, size); |
fbf59bc9 | 2291 | |
f1833241 RG |
2292 | /* |
2293 | * If there are more than one fully free chunks, wake up grim reaper. | |
2294 | * If the chunk is isolated, it may be in the process of being | |
2295 | * reclaimed. Let reclaim manage cleaning up of that chunk. | |
2296 | */ | |
2297 | if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) { | |
fbf59bc9 TH |
2298 | struct pcpu_chunk *pos; |
2299 | ||
faf65dde | 2300 | list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list) |
fbf59bc9 | 2301 | if (pos != chunk) { |
198790d9 | 2302 | need_balance = true; |
fbf59bc9 TH |
2303 | break; |
2304 | } | |
f1833241 RG |
2305 | } else if (pcpu_should_reclaim_chunk(chunk)) { |
2306 | pcpu_isolate_chunk(chunk); | |
2307 | need_balance = true; | |
fbf59bc9 TH |
2308 | } |
2309 | ||
df95e795 DZ |
2310 | trace_percpu_free_percpu(chunk->base_addr, off, ptr); |
2311 | ||
ccea34b5 | 2312 | spin_unlock_irqrestore(&pcpu_lock, flags); |
198790d9 JS |
2313 | |
2314 | if (need_balance) | |
2315 | pcpu_schedule_balance_work(); | |
fbf59bc9 TH |
2316 | } |
2317 | EXPORT_SYMBOL_GPL(free_percpu); | |
2318 | ||
383776fa | 2319 | bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr) |
10fad5e4 | 2320 | { |
bbddff05 | 2321 | #ifdef CONFIG_SMP |
10fad5e4 TH |
2322 | const size_t static_size = __per_cpu_end - __per_cpu_start; |
2323 | void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); | |
2324 | unsigned int cpu; | |
2325 | ||
2326 | for_each_possible_cpu(cpu) { | |
2327 | void *start = per_cpu_ptr(base, cpu); | |
383776fa | 2328 | void *va = (void *)addr; |
10fad5e4 | 2329 | |
383776fa | 2330 | if (va >= start && va < start + static_size) { |
8ce371f9 | 2331 | if (can_addr) { |
383776fa | 2332 | *can_addr = (unsigned long) (va - start); |
8ce371f9 PZ |
2333 | *can_addr += (unsigned long) |
2334 | per_cpu_ptr(base, get_boot_cpu_id()); | |
2335 | } | |
10fad5e4 | 2336 | return true; |
383776fa TG |
2337 | } |
2338 | } | |
bbddff05 TH |
2339 | #endif |
2340 | /* on UP, can't distinguish from other static vars, always false */ | |
10fad5e4 TH |
2341 | return false; |
2342 | } | |
2343 | ||
383776fa TG |
2344 | /** |
2345 | * is_kernel_percpu_address - test whether address is from static percpu area | |
2346 | * @addr: address to test | |
2347 | * | |
2348 | * Test whether @addr belongs to in-kernel static percpu area. Module | |
2349 | * static percpu areas are not considered. For those, use | |
2350 | * is_module_percpu_address(). | |
2351 | * | |
2352 | * RETURNS: | |
2353 | * %true if @addr is from in-kernel static percpu area, %false otherwise. | |
2354 | */ | |
2355 | bool is_kernel_percpu_address(unsigned long addr) | |
2356 | { | |
2357 | return __is_kernel_percpu_address(addr, NULL); | |
2358 | } | |
2359 | ||
3b034b0d VG |
2360 | /** |
2361 | * per_cpu_ptr_to_phys - convert translated percpu address to physical address | |
2362 | * @addr: the address to be converted to physical address | |
2363 | * | |
2364 | * Given @addr which is dereferenceable address obtained via one of | |
2365 | * percpu access macros, this function translates it into its physical | |
2366 | * address. The caller is responsible for ensuring @addr stays valid | |
2367 | * until this function finishes. | |
2368 | * | |
67589c71 DY |
2369 | * percpu allocator has special setup for the first chunk, which currently |
2370 | * supports either embedding in linear address space or vmalloc mapping, | |
2371 | * and, from the second one, the backing allocator (currently either vm or | |
2372 | * km) provides translation. | |
2373 | * | |
bffc4375 | 2374 | * The addr can be translated simply without checking if it falls into the |
67589c71 DY |
2375 | * first chunk. But the current code reflects better how percpu allocator |
2376 | * actually works, and the verification can discover both bugs in percpu | |
2377 | * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current | |
2378 | * code. | |
2379 | * | |
3b034b0d VG |
2380 | * RETURNS: |
2381 | * The physical address for @addr. | |
2382 | */ | |
2383 | phys_addr_t per_cpu_ptr_to_phys(void *addr) | |
2384 | { | |
9983b6f0 TH |
2385 | void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); |
2386 | bool in_first_chunk = false; | |
a855b84c | 2387 | unsigned long first_low, first_high; |
9983b6f0 TH |
2388 | unsigned int cpu; |
2389 | ||
2390 | /* | |
a855b84c | 2391 | * The following test on unit_low/high isn't strictly |
9983b6f0 TH |
2392 | * necessary but will speed up lookups of addresses which |
2393 | * aren't in the first chunk. | |
c0ebfdc3 DZF |
2394 | * |
2395 | * The address check is against full chunk sizes. pcpu_base_addr | |
2396 | * points to the beginning of the first chunk including the | |
2397 | * static region. Assumes good intent as the first chunk may | |
2398 | * not be full (ie. < pcpu_unit_pages in size). | |
9983b6f0 | 2399 | */ |
c0ebfdc3 DZF |
2400 | first_low = (unsigned long)pcpu_base_addr + |
2401 | pcpu_unit_page_offset(pcpu_low_unit_cpu, 0); | |
2402 | first_high = (unsigned long)pcpu_base_addr + | |
2403 | pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages); | |
a855b84c TH |
2404 | if ((unsigned long)addr >= first_low && |
2405 | (unsigned long)addr < first_high) { | |
9983b6f0 TH |
2406 | for_each_possible_cpu(cpu) { |
2407 | void *start = per_cpu_ptr(base, cpu); | |
2408 | ||
2409 | if (addr >= start && addr < start + pcpu_unit_size) { | |
2410 | in_first_chunk = true; | |
2411 | break; | |
2412 | } | |
2413 | } | |
2414 | } | |
2415 | ||
2416 | if (in_first_chunk) { | |
eac522ef | 2417 | if (!is_vmalloc_addr(addr)) |
020ec653 TH |
2418 | return __pa(addr); |
2419 | else | |
9f57bd4d ES |
2420 | return page_to_phys(vmalloc_to_page(addr)) + |
2421 | offset_in_page(addr); | |
020ec653 | 2422 | } else |
9f57bd4d ES |
2423 | return page_to_phys(pcpu_addr_to_page(addr)) + |
2424 | offset_in_page(addr); | |
3b034b0d VG |
2425 | } |
2426 | ||
fbf59bc9 | 2427 | /** |
fd1e8a1f TH |
2428 | * pcpu_alloc_alloc_info - allocate percpu allocation info |
2429 | * @nr_groups: the number of groups | |
2430 | * @nr_units: the number of units | |
2431 | * | |
2432 | * Allocate ai which is large enough for @nr_groups groups containing | |
2433 | * @nr_units units. The returned ai's groups[0].cpu_map points to the | |
2434 | * cpu_map array which is long enough for @nr_units and filled with | |
2435 | * NR_CPUS. It's the caller's responsibility to initialize cpu_map | |
2436 | * pointer of other groups. | |
2437 | * | |
2438 | * RETURNS: | |
2439 | * Pointer to the allocated pcpu_alloc_info on success, NULL on | |
2440 | * failure. | |
2441 | */ | |
2442 | struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, | |
2443 | int nr_units) | |
2444 | { | |
2445 | struct pcpu_alloc_info *ai; | |
2446 | size_t base_size, ai_size; | |
2447 | void *ptr; | |
2448 | int unit; | |
2449 | ||
14d37612 | 2450 | base_size = ALIGN(struct_size(ai, groups, nr_groups), |
fd1e8a1f TH |
2451 | __alignof__(ai->groups[0].cpu_map[0])); |
2452 | ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); | |
2453 | ||
26fb3dae | 2454 | ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE); |
fd1e8a1f TH |
2455 | if (!ptr) |
2456 | return NULL; | |
2457 | ai = ptr; | |
2458 | ptr += base_size; | |
2459 | ||
2460 | ai->groups[0].cpu_map = ptr; | |
2461 | ||
2462 | for (unit = 0; unit < nr_units; unit++) | |
2463 | ai->groups[0].cpu_map[unit] = NR_CPUS; | |
2464 | ||
2465 | ai->nr_groups = nr_groups; | |
2466 | ai->__ai_size = PFN_ALIGN(ai_size); | |
2467 | ||
2468 | return ai; | |
2469 | } | |
2470 | ||
2471 | /** | |
2472 | * pcpu_free_alloc_info - free percpu allocation info | |
2473 | * @ai: pcpu_alloc_info to free | |
2474 | * | |
2475 | * Free @ai which was allocated by pcpu_alloc_alloc_info(). | |
2476 | */ | |
2477 | void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) | |
2478 | { | |
999c17e3 | 2479 | memblock_free_early(__pa(ai), ai->__ai_size); |
fd1e8a1f TH |
2480 | } |
2481 | ||
fd1e8a1f TH |
2482 | /** |
2483 | * pcpu_dump_alloc_info - print out information about pcpu_alloc_info | |
2484 | * @lvl: loglevel | |
2485 | * @ai: allocation info to dump | |
2486 | * | |
2487 | * Print out information about @ai using loglevel @lvl. | |
2488 | */ | |
2489 | static void pcpu_dump_alloc_info(const char *lvl, | |
2490 | const struct pcpu_alloc_info *ai) | |
033e48fb | 2491 | { |
fd1e8a1f | 2492 | int group_width = 1, cpu_width = 1, width; |
033e48fb | 2493 | char empty_str[] = "--------"; |
fd1e8a1f TH |
2494 | int alloc = 0, alloc_end = 0; |
2495 | int group, v; | |
2496 | int upa, apl; /* units per alloc, allocs per line */ | |
2497 | ||
2498 | v = ai->nr_groups; | |
2499 | while (v /= 10) | |
2500 | group_width++; | |
033e48fb | 2501 | |
fd1e8a1f | 2502 | v = num_possible_cpus(); |
033e48fb | 2503 | while (v /= 10) |
fd1e8a1f TH |
2504 | cpu_width++; |
2505 | empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; | |
033e48fb | 2506 | |
fd1e8a1f TH |
2507 | upa = ai->alloc_size / ai->unit_size; |
2508 | width = upa * (cpu_width + 1) + group_width + 3; | |
2509 | apl = rounddown_pow_of_two(max(60 / width, 1)); | |
033e48fb | 2510 | |
fd1e8a1f TH |
2511 | printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", |
2512 | lvl, ai->static_size, ai->reserved_size, ai->dyn_size, | |
2513 | ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); | |
033e48fb | 2514 | |
fd1e8a1f TH |
2515 | for (group = 0; group < ai->nr_groups; group++) { |
2516 | const struct pcpu_group_info *gi = &ai->groups[group]; | |
2517 | int unit = 0, unit_end = 0; | |
2518 | ||
2519 | BUG_ON(gi->nr_units % upa); | |
2520 | for (alloc_end += gi->nr_units / upa; | |
2521 | alloc < alloc_end; alloc++) { | |
2522 | if (!(alloc % apl)) { | |
1170532b | 2523 | pr_cont("\n"); |
fd1e8a1f TH |
2524 | printk("%spcpu-alloc: ", lvl); |
2525 | } | |
1170532b | 2526 | pr_cont("[%0*d] ", group_width, group); |
fd1e8a1f TH |
2527 | |
2528 | for (unit_end += upa; unit < unit_end; unit++) | |
2529 | if (gi->cpu_map[unit] != NR_CPUS) | |
1170532b JP |
2530 | pr_cont("%0*d ", |
2531 | cpu_width, gi->cpu_map[unit]); | |
fd1e8a1f | 2532 | else |
1170532b | 2533 | pr_cont("%s ", empty_str); |
033e48fb | 2534 | } |
033e48fb | 2535 | } |
1170532b | 2536 | pr_cont("\n"); |
033e48fb | 2537 | } |
033e48fb | 2538 | |
fbf59bc9 | 2539 | /** |
8d408b4b | 2540 | * pcpu_setup_first_chunk - initialize the first percpu chunk |
fd1e8a1f | 2541 | * @ai: pcpu_alloc_info describing how to percpu area is shaped |
38a6be52 | 2542 | * @base_addr: mapped address |
8d408b4b TH |
2543 | * |
2544 | * Initialize the first percpu chunk which contains the kernel static | |
69ab285b | 2545 | * percpu area. This function is to be called from arch percpu area |
38a6be52 | 2546 | * setup path. |
8d408b4b | 2547 | * |
fd1e8a1f TH |
2548 | * @ai contains all information necessary to initialize the first |
2549 | * chunk and prime the dynamic percpu allocator. | |
2550 | * | |
2551 | * @ai->static_size is the size of static percpu area. | |
2552 | * | |
2553 | * @ai->reserved_size, if non-zero, specifies the amount of bytes to | |
edcb4639 TH |
2554 | * reserve after the static area in the first chunk. This reserves |
2555 | * the first chunk such that it's available only through reserved | |
2556 | * percpu allocation. This is primarily used to serve module percpu | |
2557 | * static areas on architectures where the addressing model has | |
2558 | * limited offset range for symbol relocations to guarantee module | |
2559 | * percpu symbols fall inside the relocatable range. | |
2560 | * | |
fd1e8a1f TH |
2561 | * @ai->dyn_size determines the number of bytes available for dynamic |
2562 | * allocation in the first chunk. The area between @ai->static_size + | |
2563 | * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. | |
6074d5b0 | 2564 | * |
fd1e8a1f TH |
2565 | * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE |
2566 | * and equal to or larger than @ai->static_size + @ai->reserved_size + | |
2567 | * @ai->dyn_size. | |
8d408b4b | 2568 | * |
fd1e8a1f TH |
2569 | * @ai->atom_size is the allocation atom size and used as alignment |
2570 | * for vm areas. | |
8d408b4b | 2571 | * |
fd1e8a1f TH |
2572 | * @ai->alloc_size is the allocation size and always multiple of |
2573 | * @ai->atom_size. This is larger than @ai->atom_size if | |
2574 | * @ai->unit_size is larger than @ai->atom_size. | |
2575 | * | |
2576 | * @ai->nr_groups and @ai->groups describe virtual memory layout of | |
2577 | * percpu areas. Units which should be colocated are put into the | |
2578 | * same group. Dynamic VM areas will be allocated according to these | |
2579 | * groupings. If @ai->nr_groups is zero, a single group containing | |
2580 | * all units is assumed. | |
8d408b4b | 2581 | * |
38a6be52 TH |
2582 | * The caller should have mapped the first chunk at @base_addr and |
2583 | * copied static data to each unit. | |
fbf59bc9 | 2584 | * |
c0ebfdc3 DZF |
2585 | * The first chunk will always contain a static and a dynamic region. |
2586 | * However, the static region is not managed by any chunk. If the first | |
2587 | * chunk also contains a reserved region, it is served by two chunks - | |
2588 | * one for the reserved region and one for the dynamic region. They | |
2589 | * share the same vm, but use offset regions in the area allocation map. | |
2590 | * The chunk serving the dynamic region is circulated in the chunk slots | |
2591 | * and available for dynamic allocation like any other chunk. | |
fbf59bc9 | 2592 | */ |
163fa234 KW |
2593 | void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, |
2594 | void *base_addr) | |
fbf59bc9 | 2595 | { |
b9c39442 | 2596 | size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; |
d2f3c384 | 2597 | size_t static_size, dyn_size; |
0c4169c3 | 2598 | struct pcpu_chunk *chunk; |
6563297c TH |
2599 | unsigned long *group_offsets; |
2600 | size_t *group_sizes; | |
fb435d52 | 2601 | unsigned long *unit_off; |
fbf59bc9 | 2602 | unsigned int cpu; |
fd1e8a1f TH |
2603 | int *unit_map; |
2604 | int group, unit, i; | |
c0ebfdc3 DZF |
2605 | int map_size; |
2606 | unsigned long tmp_addr; | |
f655f405 | 2607 | size_t alloc_size; |
fbf59bc9 | 2608 | |
635b75fc TH |
2609 | #define PCPU_SETUP_BUG_ON(cond) do { \ |
2610 | if (unlikely(cond)) { \ | |
870d4b12 JP |
2611 | pr_emerg("failed to initialize, %s\n", #cond); \ |
2612 | pr_emerg("cpu_possible_mask=%*pb\n", \ | |
807de073 | 2613 | cpumask_pr_args(cpu_possible_mask)); \ |
635b75fc TH |
2614 | pcpu_dump_alloc_info(KERN_EMERG, ai); \ |
2615 | BUG(); \ | |
2616 | } \ | |
2617 | } while (0) | |
2618 | ||
2f39e637 | 2619 | /* sanity checks */ |
635b75fc | 2620 | PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); |
bbddff05 | 2621 | #ifdef CONFIG_SMP |
635b75fc | 2622 | PCPU_SETUP_BUG_ON(!ai->static_size); |
f09f1243 | 2623 | PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); |
bbddff05 | 2624 | #endif |
635b75fc | 2625 | PCPU_SETUP_BUG_ON(!base_addr); |
f09f1243 | 2626 | PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); |
635b75fc | 2627 | PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); |
f09f1243 | 2628 | PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); |
635b75fc | 2629 | PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); |
ca460b3c | 2630 | PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE)); |
099a19d9 | 2631 | PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); |
fb29a2cc | 2632 | PCPU_SETUP_BUG_ON(!ai->dyn_size); |
d2f3c384 | 2633 | PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE)); |
ca460b3c DZF |
2634 | PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) || |
2635 | IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE))); | |
9f645532 | 2636 | PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); |
8d408b4b | 2637 | |
6563297c | 2638 | /* process group information and build config tables accordingly */ |
f655f405 MR |
2639 | alloc_size = ai->nr_groups * sizeof(group_offsets[0]); |
2640 | group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | |
2641 | if (!group_offsets) | |
2642 | panic("%s: Failed to allocate %zu bytes\n", __func__, | |
2643 | alloc_size); | |
2644 | ||
2645 | alloc_size = ai->nr_groups * sizeof(group_sizes[0]); | |
2646 | group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | |
2647 | if (!group_sizes) | |
2648 | panic("%s: Failed to allocate %zu bytes\n", __func__, | |
2649 | alloc_size); | |
2650 | ||
2651 | alloc_size = nr_cpu_ids * sizeof(unit_map[0]); | |
2652 | unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | |
2653 | if (!unit_map) | |
2654 | panic("%s: Failed to allocate %zu bytes\n", __func__, | |
2655 | alloc_size); | |
2656 | ||
2657 | alloc_size = nr_cpu_ids * sizeof(unit_off[0]); | |
2658 | unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | |
2659 | if (!unit_off) | |
2660 | panic("%s: Failed to allocate %zu bytes\n", __func__, | |
2661 | alloc_size); | |
2f39e637 | 2662 | |
fd1e8a1f | 2663 | for (cpu = 0; cpu < nr_cpu_ids; cpu++) |
ffe0d5a5 | 2664 | unit_map[cpu] = UINT_MAX; |
a855b84c TH |
2665 | |
2666 | pcpu_low_unit_cpu = NR_CPUS; | |
2667 | pcpu_high_unit_cpu = NR_CPUS; | |
2f39e637 | 2668 | |
fd1e8a1f TH |
2669 | for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { |
2670 | const struct pcpu_group_info *gi = &ai->groups[group]; | |
2f39e637 | 2671 | |
6563297c TH |
2672 | group_offsets[group] = gi->base_offset; |
2673 | group_sizes[group] = gi->nr_units * ai->unit_size; | |
2674 | ||
fd1e8a1f TH |
2675 | for (i = 0; i < gi->nr_units; i++) { |
2676 | cpu = gi->cpu_map[i]; | |
2677 | if (cpu == NR_CPUS) | |
2678 | continue; | |
8d408b4b | 2679 | |
9f295664 | 2680 | PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); |
635b75fc TH |
2681 | PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); |
2682 | PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); | |
fbf59bc9 | 2683 | |
fd1e8a1f | 2684 | unit_map[cpu] = unit + i; |
fb435d52 TH |
2685 | unit_off[cpu] = gi->base_offset + i * ai->unit_size; |
2686 | ||
a855b84c TH |
2687 | /* determine low/high unit_cpu */ |
2688 | if (pcpu_low_unit_cpu == NR_CPUS || | |
2689 | unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) | |
2690 | pcpu_low_unit_cpu = cpu; | |
2691 | if (pcpu_high_unit_cpu == NR_CPUS || | |
2692 | unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) | |
2693 | pcpu_high_unit_cpu = cpu; | |
fd1e8a1f | 2694 | } |
2f39e637 | 2695 | } |
fd1e8a1f TH |
2696 | pcpu_nr_units = unit; |
2697 | ||
2698 | for_each_possible_cpu(cpu) | |
635b75fc TH |
2699 | PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); |
2700 | ||
2701 | /* we're done parsing the input, undefine BUG macro and dump config */ | |
2702 | #undef PCPU_SETUP_BUG_ON | |
bcbea798 | 2703 | pcpu_dump_alloc_info(KERN_DEBUG, ai); |
fd1e8a1f | 2704 | |
6563297c TH |
2705 | pcpu_nr_groups = ai->nr_groups; |
2706 | pcpu_group_offsets = group_offsets; | |
2707 | pcpu_group_sizes = group_sizes; | |
fd1e8a1f | 2708 | pcpu_unit_map = unit_map; |
fb435d52 | 2709 | pcpu_unit_offsets = unit_off; |
2f39e637 TH |
2710 | |
2711 | /* determine basic parameters */ | |
fd1e8a1f | 2712 | pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; |
d9b55eeb | 2713 | pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; |
6563297c | 2714 | pcpu_atom_size = ai->atom_size; |
61cf93d3 DZ |
2715 | pcpu_chunk_struct_size = struct_size(chunk, populated, |
2716 | BITS_TO_LONGS(pcpu_unit_pages)); | |
cafe8816 | 2717 | |
30a5b536 DZ |
2718 | pcpu_stats_save_ai(ai); |
2719 | ||
d9b55eeb | 2720 | /* |
f1833241 RG |
2721 | * Allocate chunk slots. The slots after the active slots are: |
2722 | * sidelined_slot - isolated, depopulated chunks | |
2723 | * free_slot - fully free chunks | |
2724 | * to_depopulate_slot - isolated, chunks to depopulate | |
d9b55eeb | 2725 | */ |
f1833241 RG |
2726 | pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1; |
2727 | pcpu_free_slot = pcpu_sidelined_slot + 1; | |
2728 | pcpu_to_depopulate_slot = pcpu_free_slot + 1; | |
2729 | pcpu_nr_slots = pcpu_to_depopulate_slot + 1; | |
3c7be18a | 2730 | pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots * |
faf65dde | 2731 | sizeof(pcpu_chunk_lists[0]), |
3c7be18a RG |
2732 | SMP_CACHE_BYTES); |
2733 | if (!pcpu_chunk_lists) | |
f655f405 | 2734 | panic("%s: Failed to allocate %zu bytes\n", __func__, |
faf65dde | 2735 | pcpu_nr_slots * sizeof(pcpu_chunk_lists[0])); |
3c7be18a | 2736 | |
faf65dde RG |
2737 | for (i = 0; i < pcpu_nr_slots; i++) |
2738 | INIT_LIST_HEAD(&pcpu_chunk_lists[i]); | |
fbf59bc9 | 2739 | |
d2f3c384 DZF |
2740 | /* |
2741 | * The end of the static region needs to be aligned with the | |
2742 | * minimum allocation size as this offsets the reserved and | |
2743 | * dynamic region. The first chunk ends page aligned by | |
2744 | * expanding the dynamic region, therefore the dynamic region | |
2745 | * can be shrunk to compensate while still staying above the | |
2746 | * configured sizes. | |
2747 | */ | |
2748 | static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE); | |
2749 | dyn_size = ai->dyn_size - (static_size - ai->static_size); | |
2750 | ||
edcb4639 | 2751 | /* |
c0ebfdc3 DZF |
2752 | * Initialize first chunk. |
2753 | * If the reserved_size is non-zero, this initializes the reserved | |
2754 | * chunk. If the reserved_size is zero, the reserved chunk is NULL | |
2755 | * and the dynamic region is initialized here. The first chunk, | |
2756 | * pcpu_first_chunk, will always point to the chunk that serves | |
2757 | * the dynamic region. | |
edcb4639 | 2758 | */ |
d2f3c384 DZF |
2759 | tmp_addr = (unsigned long)base_addr + static_size; |
2760 | map_size = ai->reserved_size ?: dyn_size; | |
40064aec | 2761 | chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); |
61ace7fa | 2762 | |
edcb4639 | 2763 | /* init dynamic chunk if necessary */ |
b9c39442 | 2764 | if (ai->reserved_size) { |
0c4169c3 | 2765 | pcpu_reserved_chunk = chunk; |
b9c39442 | 2766 | |
d2f3c384 | 2767 | tmp_addr = (unsigned long)base_addr + static_size + |
c0ebfdc3 | 2768 | ai->reserved_size; |
d2f3c384 | 2769 | map_size = dyn_size; |
40064aec | 2770 | chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); |
edcb4639 TH |
2771 | } |
2772 | ||
2441d15c | 2773 | /* link the first chunk in */ |
0c4169c3 | 2774 | pcpu_first_chunk = chunk; |
faf65dde | 2775 | pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages; |
ae9e6bc9 | 2776 | pcpu_chunk_relocate(pcpu_first_chunk, -1); |
fbf59bc9 | 2777 | |
7e8a6304 DZF |
2778 | /* include all regions of the first chunk */ |
2779 | pcpu_nr_populated += PFN_DOWN(size_sum); | |
2780 | ||
30a5b536 | 2781 | pcpu_stats_chunk_alloc(); |
df95e795 | 2782 | trace_percpu_create_chunk(base_addr); |
30a5b536 | 2783 | |
fbf59bc9 | 2784 | /* we're done */ |
bba174f5 | 2785 | pcpu_base_addr = base_addr; |
fbf59bc9 | 2786 | } |
66c3a757 | 2787 | |
bbddff05 TH |
2788 | #ifdef CONFIG_SMP |
2789 | ||
17f3609c | 2790 | const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { |
f58dc01b TH |
2791 | [PCPU_FC_AUTO] = "auto", |
2792 | [PCPU_FC_EMBED] = "embed", | |
2793 | [PCPU_FC_PAGE] = "page", | |
f58dc01b | 2794 | }; |
66c3a757 | 2795 | |
f58dc01b | 2796 | enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; |
66c3a757 | 2797 | |
f58dc01b TH |
2798 | static int __init percpu_alloc_setup(char *str) |
2799 | { | |
5479c78a CG |
2800 | if (!str) |
2801 | return -EINVAL; | |
2802 | ||
f58dc01b TH |
2803 | if (0) |
2804 | /* nada */; | |
2805 | #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK | |
2806 | else if (!strcmp(str, "embed")) | |
2807 | pcpu_chosen_fc = PCPU_FC_EMBED; | |
2808 | #endif | |
2809 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | |
2810 | else if (!strcmp(str, "page")) | |
2811 | pcpu_chosen_fc = PCPU_FC_PAGE; | |
f58dc01b TH |
2812 | #endif |
2813 | else | |
870d4b12 | 2814 | pr_warn("unknown allocator %s specified\n", str); |
66c3a757 | 2815 | |
f58dc01b | 2816 | return 0; |
66c3a757 | 2817 | } |
f58dc01b | 2818 | early_param("percpu_alloc", percpu_alloc_setup); |
66c3a757 | 2819 | |
3c9a024f TH |
2820 | /* |
2821 | * pcpu_embed_first_chunk() is used by the generic percpu setup. | |
2822 | * Build it if needed by the arch config or the generic setup is going | |
2823 | * to be used. | |
2824 | */ | |
08fc4580 TH |
2825 | #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ |
2826 | !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) | |
3c9a024f TH |
2827 | #define BUILD_EMBED_FIRST_CHUNK |
2828 | #endif | |
2829 | ||
2830 | /* build pcpu_page_first_chunk() iff needed by the arch config */ | |
2831 | #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) | |
2832 | #define BUILD_PAGE_FIRST_CHUNK | |
2833 | #endif | |
2834 | ||
2835 | /* pcpu_build_alloc_info() is used by both embed and page first chunk */ | |
2836 | #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) | |
2837 | /** | |
2838 | * pcpu_build_alloc_info - build alloc_info considering distances between CPUs | |
2839 | * @reserved_size: the size of reserved percpu area in bytes | |
2840 | * @dyn_size: minimum free size for dynamic allocation in bytes | |
2841 | * @atom_size: allocation atom size | |
2842 | * @cpu_distance_fn: callback to determine distance between cpus, optional | |
2843 | * | |
2844 | * This function determines grouping of units, their mappings to cpus | |
2845 | * and other parameters considering needed percpu size, allocation | |
2846 | * atom size and distances between CPUs. | |
2847 | * | |
bffc4375 | 2848 | * Groups are always multiples of atom size and CPUs which are of |
3c9a024f TH |
2849 | * LOCAL_DISTANCE both ways are grouped together and share space for |
2850 | * units in the same group. The returned configuration is guaranteed | |
2851 | * to have CPUs on different nodes on different groups and >=75% usage | |
2852 | * of allocated virtual address space. | |
2853 | * | |
2854 | * RETURNS: | |
2855 | * On success, pointer to the new allocation_info is returned. On | |
2856 | * failure, ERR_PTR value is returned. | |
2857 | */ | |
258e0815 | 2858 | static struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info( |
3c9a024f TH |
2859 | size_t reserved_size, size_t dyn_size, |
2860 | size_t atom_size, | |
2861 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn) | |
2862 | { | |
2863 | static int group_map[NR_CPUS] __initdata; | |
2864 | static int group_cnt[NR_CPUS] __initdata; | |
d7d29ac7 | 2865 | static struct cpumask mask __initdata; |
3c9a024f TH |
2866 | const size_t static_size = __per_cpu_end - __per_cpu_start; |
2867 | int nr_groups = 1, nr_units = 0; | |
2868 | size_t size_sum, min_unit_size, alloc_size; | |
3f649ab7 | 2869 | int upa, max_upa, best_upa; /* units_per_alloc */ |
3c9a024f TH |
2870 | int last_allocs, group, unit; |
2871 | unsigned int cpu, tcpu; | |
2872 | struct pcpu_alloc_info *ai; | |
2873 | unsigned int *cpu_map; | |
2874 | ||
2875 | /* this function may be called multiple times */ | |
2876 | memset(group_map, 0, sizeof(group_map)); | |
2877 | memset(group_cnt, 0, sizeof(group_cnt)); | |
d7d29ac7 | 2878 | cpumask_clear(&mask); |
3c9a024f TH |
2879 | |
2880 | /* calculate size_sum and ensure dyn_size is enough for early alloc */ | |
2881 | size_sum = PFN_ALIGN(static_size + reserved_size + | |
2882 | max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); | |
2883 | dyn_size = size_sum - static_size - reserved_size; | |
2884 | ||
2885 | /* | |
2886 | * Determine min_unit_size, alloc_size and max_upa such that | |
2887 | * alloc_size is multiple of atom_size and is the smallest | |
25985edc | 2888 | * which can accommodate 4k aligned segments which are equal to |
3c9a024f TH |
2889 | * or larger than min_unit_size. |
2890 | */ | |
2891 | min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); | |
2892 | ||
9c015162 | 2893 | /* determine the maximum # of units that can fit in an allocation */ |
3c9a024f TH |
2894 | alloc_size = roundup(min_unit_size, atom_size); |
2895 | upa = alloc_size / min_unit_size; | |
f09f1243 | 2896 | while (alloc_size % upa || (offset_in_page(alloc_size / upa))) |
3c9a024f TH |
2897 | upa--; |
2898 | max_upa = upa; | |
2899 | ||
d7d29ac7 WY |
2900 | cpumask_copy(&mask, cpu_possible_mask); |
2901 | ||
3c9a024f | 2902 | /* group cpus according to their proximity */ |
d7d29ac7 WY |
2903 | for (group = 0; !cpumask_empty(&mask); group++) { |
2904 | /* pop the group's first cpu */ | |
2905 | cpu = cpumask_first(&mask); | |
3c9a024f TH |
2906 | group_map[cpu] = group; |
2907 | group_cnt[group]++; | |
d7d29ac7 WY |
2908 | cpumask_clear_cpu(cpu, &mask); |
2909 | ||
2910 | for_each_cpu(tcpu, &mask) { | |
2911 | if (!cpu_distance_fn || | |
2912 | (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE && | |
2913 | cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) { | |
2914 | group_map[tcpu] = group; | |
2915 | group_cnt[group]++; | |
2916 | cpumask_clear_cpu(tcpu, &mask); | |
2917 | } | |
2918 | } | |
3c9a024f | 2919 | } |
d7d29ac7 | 2920 | nr_groups = group; |
3c9a024f TH |
2921 | |
2922 | /* | |
9c015162 DZF |
2923 | * Wasted space is caused by a ratio imbalance of upa to group_cnt. |
2924 | * Expand the unit_size until we use >= 75% of the units allocated. | |
2925 | * Related to atom_size, which could be much larger than the unit_size. | |
3c9a024f TH |
2926 | */ |
2927 | last_allocs = INT_MAX; | |
4829c791 | 2928 | best_upa = 0; |
3c9a024f TH |
2929 | for (upa = max_upa; upa; upa--) { |
2930 | int allocs = 0, wasted = 0; | |
2931 | ||
f09f1243 | 2932 | if (alloc_size % upa || (offset_in_page(alloc_size / upa))) |
3c9a024f TH |
2933 | continue; |
2934 | ||
2935 | for (group = 0; group < nr_groups; group++) { | |
2936 | int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); | |
2937 | allocs += this_allocs; | |
2938 | wasted += this_allocs * upa - group_cnt[group]; | |
2939 | } | |
2940 | ||
2941 | /* | |
2942 | * Don't accept if wastage is over 1/3. The | |
2943 | * greater-than comparison ensures upa==1 always | |
2944 | * passes the following check. | |
2945 | */ | |
2946 | if (wasted > num_possible_cpus() / 3) | |
2947 | continue; | |
2948 | ||
2949 | /* and then don't consume more memory */ | |
2950 | if (allocs > last_allocs) | |
2951 | break; | |
2952 | last_allocs = allocs; | |
2953 | best_upa = upa; | |
2954 | } | |
4829c791 | 2955 | BUG_ON(!best_upa); |
3c9a024f TH |
2956 | upa = best_upa; |
2957 | ||
2958 | /* allocate and fill alloc_info */ | |
2959 | for (group = 0; group < nr_groups; group++) | |
2960 | nr_units += roundup(group_cnt[group], upa); | |
2961 | ||
2962 | ai = pcpu_alloc_alloc_info(nr_groups, nr_units); | |
2963 | if (!ai) | |
2964 | return ERR_PTR(-ENOMEM); | |
2965 | cpu_map = ai->groups[0].cpu_map; | |
2966 | ||
2967 | for (group = 0; group < nr_groups; group++) { | |
2968 | ai->groups[group].cpu_map = cpu_map; | |
2969 | cpu_map += roundup(group_cnt[group], upa); | |
2970 | } | |
2971 | ||
2972 | ai->static_size = static_size; | |
2973 | ai->reserved_size = reserved_size; | |
2974 | ai->dyn_size = dyn_size; | |
2975 | ai->unit_size = alloc_size / upa; | |
2976 | ai->atom_size = atom_size; | |
2977 | ai->alloc_size = alloc_size; | |
2978 | ||
2de7852f | 2979 | for (group = 0, unit = 0; group < nr_groups; group++) { |
3c9a024f TH |
2980 | struct pcpu_group_info *gi = &ai->groups[group]; |
2981 | ||
2982 | /* | |
2983 | * Initialize base_offset as if all groups are located | |
2984 | * back-to-back. The caller should update this to | |
2985 | * reflect actual allocation. | |
2986 | */ | |
2987 | gi->base_offset = unit * ai->unit_size; | |
2988 | ||
2989 | for_each_possible_cpu(cpu) | |
2990 | if (group_map[cpu] == group) | |
2991 | gi->cpu_map[gi->nr_units++] = cpu; | |
2992 | gi->nr_units = roundup(gi->nr_units, upa); | |
2993 | unit += gi->nr_units; | |
2994 | } | |
2995 | BUG_ON(unit != nr_units); | |
2996 | ||
2997 | return ai; | |
2998 | } | |
2999 | #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ | |
3000 | ||
3001 | #if defined(BUILD_EMBED_FIRST_CHUNK) | |
66c3a757 TH |
3002 | /** |
3003 | * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem | |
66c3a757 | 3004 | * @reserved_size: the size of reserved percpu area in bytes |
4ba6ce25 | 3005 | * @dyn_size: minimum free size for dynamic allocation in bytes |
c8826dd5 TH |
3006 | * @atom_size: allocation atom size |
3007 | * @cpu_distance_fn: callback to determine distance between cpus, optional | |
3008 | * @alloc_fn: function to allocate percpu page | |
25985edc | 3009 | * @free_fn: function to free percpu page |
66c3a757 TH |
3010 | * |
3011 | * This is a helper to ease setting up embedded first percpu chunk and | |
3012 | * can be called where pcpu_setup_first_chunk() is expected. | |
3013 | * | |
3014 | * If this function is used to setup the first chunk, it is allocated | |
c8826dd5 TH |
3015 | * by calling @alloc_fn and used as-is without being mapped into |
3016 | * vmalloc area. Allocations are always whole multiples of @atom_size | |
3017 | * aligned to @atom_size. | |
3018 | * | |
3019 | * This enables the first chunk to piggy back on the linear physical | |
3020 | * mapping which often uses larger page size. Please note that this | |
3021 | * can result in very sparse cpu->unit mapping on NUMA machines thus | |
3022 | * requiring large vmalloc address space. Don't use this allocator if | |
3023 | * vmalloc space is not orders of magnitude larger than distances | |
3024 | * between node memory addresses (ie. 32bit NUMA machines). | |
66c3a757 | 3025 | * |
4ba6ce25 | 3026 | * @dyn_size specifies the minimum dynamic area size. |
66c3a757 TH |
3027 | * |
3028 | * If the needed size is smaller than the minimum or specified unit | |
c8826dd5 | 3029 | * size, the leftover is returned using @free_fn. |
66c3a757 TH |
3030 | * |
3031 | * RETURNS: | |
fb435d52 | 3032 | * 0 on success, -errno on failure. |
66c3a757 | 3033 | */ |
4ba6ce25 | 3034 | int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, |
c8826dd5 TH |
3035 | size_t atom_size, |
3036 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn, | |
3037 | pcpu_fc_alloc_fn_t alloc_fn, | |
3038 | pcpu_fc_free_fn_t free_fn) | |
66c3a757 | 3039 | { |
c8826dd5 TH |
3040 | void *base = (void *)ULONG_MAX; |
3041 | void **areas = NULL; | |
fd1e8a1f | 3042 | struct pcpu_alloc_info *ai; |
93c76b6b | 3043 | size_t size_sum, areas_size; |
3044 | unsigned long max_distance; | |
163fa234 | 3045 | int group, i, highest_group, rc = 0; |
66c3a757 | 3046 | |
c8826dd5 TH |
3047 | ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, |
3048 | cpu_distance_fn); | |
fd1e8a1f TH |
3049 | if (IS_ERR(ai)) |
3050 | return PTR_ERR(ai); | |
66c3a757 | 3051 | |
fd1e8a1f | 3052 | size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; |
c8826dd5 | 3053 | areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); |
fa8a7094 | 3054 | |
26fb3dae | 3055 | areas = memblock_alloc(areas_size, SMP_CACHE_BYTES); |
c8826dd5 | 3056 | if (!areas) { |
fb435d52 | 3057 | rc = -ENOMEM; |
c8826dd5 | 3058 | goto out_free; |
fa8a7094 | 3059 | } |
66c3a757 | 3060 | |
9b739662 | 3061 | /* allocate, copy and determine base address & max_distance */ |
3062 | highest_group = 0; | |
c8826dd5 TH |
3063 | for (group = 0; group < ai->nr_groups; group++) { |
3064 | struct pcpu_group_info *gi = &ai->groups[group]; | |
3065 | unsigned int cpu = NR_CPUS; | |
3066 | void *ptr; | |
3067 | ||
3068 | for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) | |
3069 | cpu = gi->cpu_map[i]; | |
3070 | BUG_ON(cpu == NR_CPUS); | |
3071 | ||
3072 | /* allocate space for the whole group */ | |
3073 | ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); | |
3074 | if (!ptr) { | |
3075 | rc = -ENOMEM; | |
3076 | goto out_free_areas; | |
3077 | } | |
f528f0b8 CM |
3078 | /* kmemleak tracks the percpu allocations separately */ |
3079 | kmemleak_free(ptr); | |
c8826dd5 | 3080 | areas[group] = ptr; |
fd1e8a1f | 3081 | |
c8826dd5 | 3082 | base = min(ptr, base); |
9b739662 | 3083 | if (ptr > areas[highest_group]) |
3084 | highest_group = group; | |
3085 | } | |
3086 | max_distance = areas[highest_group] - base; | |
3087 | max_distance += ai->unit_size * ai->groups[highest_group].nr_units; | |
3088 | ||
3089 | /* warn if maximum distance is further than 75% of vmalloc space */ | |
3090 | if (max_distance > VMALLOC_TOTAL * 3 / 4) { | |
3091 | pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", | |
3092 | max_distance, VMALLOC_TOTAL); | |
3093 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | |
3094 | /* and fail if we have fallback */ | |
3095 | rc = -EINVAL; | |
3096 | goto out_free_areas; | |
3097 | #endif | |
42b64281 TH |
3098 | } |
3099 | ||
3100 | /* | |
3101 | * Copy data and free unused parts. This should happen after all | |
3102 | * allocations are complete; otherwise, we may end up with | |
3103 | * overlapping groups. | |
3104 | */ | |
3105 | for (group = 0; group < ai->nr_groups; group++) { | |
3106 | struct pcpu_group_info *gi = &ai->groups[group]; | |
3107 | void *ptr = areas[group]; | |
c8826dd5 TH |
3108 | |
3109 | for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { | |
3110 | if (gi->cpu_map[i] == NR_CPUS) { | |
3111 | /* unused unit, free whole */ | |
3112 | free_fn(ptr, ai->unit_size); | |
3113 | continue; | |
3114 | } | |
3115 | /* copy and return the unused part */ | |
3116 | memcpy(ptr, __per_cpu_load, ai->static_size); | |
3117 | free_fn(ptr + size_sum, ai->unit_size - size_sum); | |
3118 | } | |
fa8a7094 | 3119 | } |
66c3a757 | 3120 | |
c8826dd5 | 3121 | /* base address is now known, determine group base offsets */ |
6ea529a2 | 3122 | for (group = 0; group < ai->nr_groups; group++) { |
c8826dd5 | 3123 | ai->groups[group].base_offset = areas[group] - base; |
6ea529a2 | 3124 | } |
c8826dd5 | 3125 | |
00206a69 MC |
3126 | pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n", |
3127 | PFN_DOWN(size_sum), ai->static_size, ai->reserved_size, | |
fd1e8a1f | 3128 | ai->dyn_size, ai->unit_size); |
d4b95f80 | 3129 | |
163fa234 | 3130 | pcpu_setup_first_chunk(ai, base); |
c8826dd5 TH |
3131 | goto out_free; |
3132 | ||
3133 | out_free_areas: | |
3134 | for (group = 0; group < ai->nr_groups; group++) | |
f851c8d8 MH |
3135 | if (areas[group]) |
3136 | free_fn(areas[group], | |
3137 | ai->groups[group].nr_units * ai->unit_size); | |
c8826dd5 | 3138 | out_free: |
fd1e8a1f | 3139 | pcpu_free_alloc_info(ai); |
c8826dd5 | 3140 | if (areas) |
999c17e3 | 3141 | memblock_free_early(__pa(areas), areas_size); |
fb435d52 | 3142 | return rc; |
d4b95f80 | 3143 | } |
3c9a024f | 3144 | #endif /* BUILD_EMBED_FIRST_CHUNK */ |
d4b95f80 | 3145 | |
3c9a024f | 3146 | #ifdef BUILD_PAGE_FIRST_CHUNK |
d4b95f80 | 3147 | /** |
00ae4064 | 3148 | * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages |
d4b95f80 TH |
3149 | * @reserved_size: the size of reserved percpu area in bytes |
3150 | * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE | |
25985edc | 3151 | * @free_fn: function to free percpu page, always called with PAGE_SIZE |
d4b95f80 TH |
3152 | * @populate_pte_fn: function to populate pte |
3153 | * | |
00ae4064 TH |
3154 | * This is a helper to ease setting up page-remapped first percpu |
3155 | * chunk and can be called where pcpu_setup_first_chunk() is expected. | |
d4b95f80 TH |
3156 | * |
3157 | * This is the basic allocator. Static percpu area is allocated | |
3158 | * page-by-page into vmalloc area. | |
3159 | * | |
3160 | * RETURNS: | |
fb435d52 | 3161 | * 0 on success, -errno on failure. |
d4b95f80 | 3162 | */ |
fb435d52 TH |
3163 | int __init pcpu_page_first_chunk(size_t reserved_size, |
3164 | pcpu_fc_alloc_fn_t alloc_fn, | |
3165 | pcpu_fc_free_fn_t free_fn, | |
3166 | pcpu_fc_populate_pte_fn_t populate_pte_fn) | |
d4b95f80 | 3167 | { |
8f05a6a6 | 3168 | static struct vm_struct vm; |
fd1e8a1f | 3169 | struct pcpu_alloc_info *ai; |
00ae4064 | 3170 | char psize_str[16]; |
ce3141a2 | 3171 | int unit_pages; |
d4b95f80 | 3172 | size_t pages_size; |
ce3141a2 | 3173 | struct page **pages; |
163fa234 | 3174 | int unit, i, j, rc = 0; |
8f606604 | 3175 | int upa; |
3176 | int nr_g0_units; | |
d4b95f80 | 3177 | |
00ae4064 TH |
3178 | snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); |
3179 | ||
4ba6ce25 | 3180 | ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); |
fd1e8a1f TH |
3181 | if (IS_ERR(ai)) |
3182 | return PTR_ERR(ai); | |
3183 | BUG_ON(ai->nr_groups != 1); | |
8f606604 | 3184 | upa = ai->alloc_size/ai->unit_size; |
3185 | nr_g0_units = roundup(num_possible_cpus(), upa); | |
0b59c25f | 3186 | if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) { |
8f606604 | 3187 | pcpu_free_alloc_info(ai); |
3188 | return -EINVAL; | |
3189 | } | |
fd1e8a1f TH |
3190 | |
3191 | unit_pages = ai->unit_size >> PAGE_SHIFT; | |
d4b95f80 TH |
3192 | |
3193 | /* unaligned allocations can't be freed, round up to page size */ | |
fd1e8a1f TH |
3194 | pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * |
3195 | sizeof(pages[0])); | |
7e1c4e27 | 3196 | pages = memblock_alloc(pages_size, SMP_CACHE_BYTES); |
f655f405 MR |
3197 | if (!pages) |
3198 | panic("%s: Failed to allocate %zu bytes\n", __func__, | |
3199 | pages_size); | |
d4b95f80 | 3200 | |
8f05a6a6 | 3201 | /* allocate pages */ |
d4b95f80 | 3202 | j = 0; |
8f606604 | 3203 | for (unit = 0; unit < num_possible_cpus(); unit++) { |
3204 | unsigned int cpu = ai->groups[0].cpu_map[unit]; | |
ce3141a2 | 3205 | for (i = 0; i < unit_pages; i++) { |
d4b95f80 TH |
3206 | void *ptr; |
3207 | ||
3cbc8565 | 3208 | ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); |
d4b95f80 | 3209 | if (!ptr) { |
870d4b12 | 3210 | pr_warn("failed to allocate %s page for cpu%u\n", |
8f606604 | 3211 | psize_str, cpu); |
d4b95f80 TH |
3212 | goto enomem; |
3213 | } | |
f528f0b8 CM |
3214 | /* kmemleak tracks the percpu allocations separately */ |
3215 | kmemleak_free(ptr); | |
ce3141a2 | 3216 | pages[j++] = virt_to_page(ptr); |
d4b95f80 | 3217 | } |
8f606604 | 3218 | } |
d4b95f80 | 3219 | |
8f05a6a6 TH |
3220 | /* allocate vm area, map the pages and copy static data */ |
3221 | vm.flags = VM_ALLOC; | |
fd1e8a1f | 3222 | vm.size = num_possible_cpus() * ai->unit_size; |
8f05a6a6 TH |
3223 | vm_area_register_early(&vm, PAGE_SIZE); |
3224 | ||
fd1e8a1f | 3225 | for (unit = 0; unit < num_possible_cpus(); unit++) { |
1d9d3257 | 3226 | unsigned long unit_addr = |
fd1e8a1f | 3227 | (unsigned long)vm.addr + unit * ai->unit_size; |
8f05a6a6 | 3228 | |
ce3141a2 | 3229 | for (i = 0; i < unit_pages; i++) |
8f05a6a6 TH |
3230 | populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); |
3231 | ||
3232 | /* pte already populated, the following shouldn't fail */ | |
fb435d52 TH |
3233 | rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], |
3234 | unit_pages); | |
3235 | if (rc < 0) | |
3236 | panic("failed to map percpu area, err=%d\n", rc); | |
66c3a757 | 3237 | |
8f05a6a6 TH |
3238 | /* |
3239 | * FIXME: Archs with virtual cache should flush local | |
3240 | * cache for the linear mapping here - something | |
3241 | * equivalent to flush_cache_vmap() on the local cpu. | |
3242 | * flush_cache_vmap() can't be used as most supporting | |
3243 | * data structures are not set up yet. | |
3244 | */ | |
3245 | ||
3246 | /* copy static data */ | |
fd1e8a1f | 3247 | memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); |
66c3a757 TH |
3248 | } |
3249 | ||
3250 | /* we're ready, commit */ | |
00206a69 MC |
3251 | pr_info("%d %s pages/cpu s%zu r%zu d%zu\n", |
3252 | unit_pages, psize_str, ai->static_size, | |
fd1e8a1f | 3253 | ai->reserved_size, ai->dyn_size); |
d4b95f80 | 3254 | |
163fa234 | 3255 | pcpu_setup_first_chunk(ai, vm.addr); |
d4b95f80 TH |
3256 | goto out_free_ar; |
3257 | ||
3258 | enomem: | |
3259 | while (--j >= 0) | |
ce3141a2 | 3260 | free_fn(page_address(pages[j]), PAGE_SIZE); |
fb435d52 | 3261 | rc = -ENOMEM; |
d4b95f80 | 3262 | out_free_ar: |
999c17e3 | 3263 | memblock_free_early(__pa(pages), pages_size); |
fd1e8a1f | 3264 | pcpu_free_alloc_info(ai); |
fb435d52 | 3265 | return rc; |
d4b95f80 | 3266 | } |
3c9a024f | 3267 | #endif /* BUILD_PAGE_FIRST_CHUNK */ |
d4b95f80 | 3268 | |
bbddff05 | 3269 | #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA |
e74e3962 | 3270 | /* |
bbddff05 | 3271 | * Generic SMP percpu area setup. |
e74e3962 TH |
3272 | * |
3273 | * The embedding helper is used because its behavior closely resembles | |
3274 | * the original non-dynamic generic percpu area setup. This is | |
3275 | * important because many archs have addressing restrictions and might | |
3276 | * fail if the percpu area is located far away from the previous | |
3277 | * location. As an added bonus, in non-NUMA cases, embedding is | |
3278 | * generally a good idea TLB-wise because percpu area can piggy back | |
3279 | * on the physical linear memory mapping which uses large page | |
3280 | * mappings on applicable archs. | |
3281 | */ | |
e74e3962 TH |
3282 | unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; |
3283 | EXPORT_SYMBOL(__per_cpu_offset); | |
3284 | ||
c8826dd5 TH |
3285 | static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, |
3286 | size_t align) | |
3287 | { | |
26fb3dae | 3288 | return memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS)); |
c8826dd5 | 3289 | } |
66c3a757 | 3290 | |
c8826dd5 TH |
3291 | static void __init pcpu_dfl_fc_free(void *ptr, size_t size) |
3292 | { | |
999c17e3 | 3293 | memblock_free_early(__pa(ptr), size); |
c8826dd5 TH |
3294 | } |
3295 | ||
e74e3962 TH |
3296 | void __init setup_per_cpu_areas(void) |
3297 | { | |
e74e3962 TH |
3298 | unsigned long delta; |
3299 | unsigned int cpu; | |
fb435d52 | 3300 | int rc; |
e74e3962 TH |
3301 | |
3302 | /* | |
3303 | * Always reserve area for module percpu variables. That's | |
3304 | * what the legacy allocator did. | |
3305 | */ | |
fb435d52 | 3306 | rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, |
c8826dd5 TH |
3307 | PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, |
3308 | pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); | |
fb435d52 | 3309 | if (rc < 0) |
bbddff05 | 3310 | panic("Failed to initialize percpu areas."); |
e74e3962 TH |
3311 | |
3312 | delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; | |
3313 | for_each_possible_cpu(cpu) | |
fb435d52 | 3314 | __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; |
66c3a757 | 3315 | } |
bbddff05 TH |
3316 | #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ |
3317 | ||
3318 | #else /* CONFIG_SMP */ | |
3319 | ||
3320 | /* | |
3321 | * UP percpu area setup. | |
3322 | * | |
3323 | * UP always uses km-based percpu allocator with identity mapping. | |
3324 | * Static percpu variables are indistinguishable from the usual static | |
3325 | * variables and don't require any special preparation. | |
3326 | */ | |
3327 | void __init setup_per_cpu_areas(void) | |
3328 | { | |
3329 | const size_t unit_size = | |
3330 | roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, | |
3331 | PERCPU_DYNAMIC_RESERVE)); | |
3332 | struct pcpu_alloc_info *ai; | |
3333 | void *fc; | |
3334 | ||
3335 | ai = pcpu_alloc_alloc_info(1, 1); | |
26fb3dae | 3336 | fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); |
bbddff05 TH |
3337 | if (!ai || !fc) |
3338 | panic("Failed to allocate memory for percpu areas."); | |
100d13c3 CM |
3339 | /* kmemleak tracks the percpu allocations separately */ |
3340 | kmemleak_free(fc); | |
bbddff05 TH |
3341 | |
3342 | ai->dyn_size = unit_size; | |
3343 | ai->unit_size = unit_size; | |
3344 | ai->atom_size = unit_size; | |
3345 | ai->alloc_size = unit_size; | |
3346 | ai->groups[0].nr_units = 1; | |
3347 | ai->groups[0].cpu_map[0] = 0; | |
3348 | ||
163fa234 | 3349 | pcpu_setup_first_chunk(ai, fc); |
438a5061 | 3350 | pcpu_free_alloc_info(ai); |
bbddff05 TH |
3351 | } |
3352 | ||
3353 | #endif /* CONFIG_SMP */ | |
099a19d9 | 3354 | |
7e8a6304 DZF |
3355 | /* |
3356 | * pcpu_nr_pages - calculate total number of populated backing pages | |
3357 | * | |
3358 | * This reflects the number of pages populated to back chunks. Metadata is | |
3359 | * excluded in the number exposed in meminfo as the number of backing pages | |
3360 | * scales with the number of cpus and can quickly outweigh the memory used for | |
3361 | * metadata. It also keeps this calculation nice and simple. | |
3362 | * | |
3363 | * RETURNS: | |
3364 | * Total number of populated backing pages in use by the allocator. | |
3365 | */ | |
3366 | unsigned long pcpu_nr_pages(void) | |
3367 | { | |
3368 | return pcpu_nr_populated * pcpu_nr_units; | |
3369 | } | |
3370 | ||
1a4d7607 TH |
3371 | /* |
3372 | * Percpu allocator is initialized early during boot when neither slab or | |
3373 | * workqueue is available. Plug async management until everything is up | |
3374 | * and running. | |
3375 | */ | |
3376 | static int __init percpu_enable_async(void) | |
3377 | { | |
3378 | pcpu_async_enabled = true; | |
3379 | return 0; | |
3380 | } | |
3381 | subsys_initcall(percpu_enable_async); |