]>
Commit | Line | Data |
---|---|---|
fbf59bc9 | 1 | /* |
88999a89 | 2 | * mm/percpu.c - percpu memory allocator |
fbf59bc9 TH |
3 | * |
4 | * Copyright (C) 2009 SUSE Linux Products GmbH | |
5 | * Copyright (C) 2009 Tejun Heo <[email protected]> | |
6 | * | |
5e81ee3e DZF |
7 | * Copyright (C) 2017 Facebook Inc. |
8 | * Copyright (C) 2017 Dennis Zhou <[email protected]> | |
9 | * | |
9c015162 | 10 | * This file is released under the GPLv2 license. |
fbf59bc9 | 11 | * |
9c015162 DZF |
12 | * The percpu allocator handles both static and dynamic areas. Percpu |
13 | * areas are allocated in chunks which are divided into units. There is | |
14 | * a 1-to-1 mapping for units to possible cpus. These units are grouped | |
15 | * based on NUMA properties of the machine. | |
fbf59bc9 TH |
16 | * |
17 | * c0 c1 c2 | |
18 | * ------------------- ------------------- ------------ | |
19 | * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u | |
20 | * ------------------- ...... ------------------- .... ------------ | |
21 | * | |
9c015162 DZF |
22 | * Allocation is done by offsets into a unit's address space. Ie., an |
23 | * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0, | |
24 | * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear | |
25 | * and even sparse. Access is handled by configuring percpu base | |
26 | * registers according to the cpu to unit mappings and offsetting the | |
27 | * base address using pcpu_unit_size. | |
28 | * | |
29 | * There is special consideration for the first chunk which must handle | |
30 | * the static percpu variables in the kernel image as allocation services | |
5e81ee3e | 31 | * are not online yet. In short, the first chunk is structured like so: |
9c015162 DZF |
32 | * |
33 | * <Static | [Reserved] | Dynamic> | |
34 | * | |
35 | * The static data is copied from the original section managed by the | |
36 | * linker. The reserved section, if non-zero, primarily manages static | |
37 | * percpu variables from kernel modules. Finally, the dynamic section | |
38 | * takes care of normal allocations. | |
fbf59bc9 | 39 | * |
5e81ee3e DZF |
40 | * The allocator organizes chunks into lists according to free size and |
41 | * tries to allocate from the fullest chunk first. Each chunk is managed | |
42 | * by a bitmap with metadata blocks. The allocation map is updated on | |
43 | * every allocation and free to reflect the current state while the boundary | |
44 | * map is only updated on allocation. Each metadata block contains | |
45 | * information to help mitigate the need to iterate over large portions | |
46 | * of the bitmap. The reverse mapping from page to chunk is stored in | |
47 | * the page's index. Lastly, units are lazily backed and grow in unison. | |
48 | * | |
49 | * There is a unique conversion that goes on here between bytes and bits. | |
50 | * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk | |
51 | * tracks the number of pages it is responsible for in nr_pages. Helper | |
52 | * functions are used to convert from between the bytes, bits, and blocks. | |
53 | * All hints are managed in bits unless explicitly stated. | |
9c015162 | 54 | * |
4091fb95 | 55 | * To use this allocator, arch code should do the following: |
fbf59bc9 | 56 | * |
fbf59bc9 | 57 | * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate |
e0100983 TH |
58 | * regular address to percpu pointer and back if they need to be |
59 | * different from the default | |
fbf59bc9 | 60 | * |
8d408b4b TH |
61 | * - use pcpu_setup_first_chunk() during percpu area initialization to |
62 | * setup the first chunk containing the kernel static percpu area | |
fbf59bc9 TH |
63 | */ |
64 | ||
870d4b12 JP |
65 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
66 | ||
fbf59bc9 | 67 | #include <linux/bitmap.h> |
57c8a661 | 68 | #include <linux/memblock.h> |
fd1e8a1f | 69 | #include <linux/err.h> |
ca460b3c | 70 | #include <linux/lcm.h> |
fbf59bc9 | 71 | #include <linux/list.h> |
a530b795 | 72 | #include <linux/log2.h> |
fbf59bc9 TH |
73 | #include <linux/mm.h> |
74 | #include <linux/module.h> | |
75 | #include <linux/mutex.h> | |
76 | #include <linux/percpu.h> | |
77 | #include <linux/pfn.h> | |
fbf59bc9 | 78 | #include <linux/slab.h> |
ccea34b5 | 79 | #include <linux/spinlock.h> |
fbf59bc9 | 80 | #include <linux/vmalloc.h> |
a56dbddf | 81 | #include <linux/workqueue.h> |
f528f0b8 | 82 | #include <linux/kmemleak.h> |
71546d10 | 83 | #include <linux/sched.h> |
fbf59bc9 TH |
84 | |
85 | #include <asm/cacheflush.h> | |
e0100983 | 86 | #include <asm/sections.h> |
fbf59bc9 | 87 | #include <asm/tlbflush.h> |
3b034b0d | 88 | #include <asm/io.h> |
fbf59bc9 | 89 | |
df95e795 DZ |
90 | #define CREATE_TRACE_POINTS |
91 | #include <trace/events/percpu.h> | |
92 | ||
8fa3ed80 DZ |
93 | #include "percpu-internal.h" |
94 | ||
40064aec DZF |
95 | /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */ |
96 | #define PCPU_SLOT_BASE_SHIFT 5 | |
97 | ||
1a4d7607 TH |
98 | #define PCPU_EMPTY_POP_PAGES_LOW 2 |
99 | #define PCPU_EMPTY_POP_PAGES_HIGH 4 | |
fbf59bc9 | 100 | |
bbddff05 | 101 | #ifdef CONFIG_SMP |
e0100983 TH |
102 | /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ |
103 | #ifndef __addr_to_pcpu_ptr | |
104 | #define __addr_to_pcpu_ptr(addr) \ | |
43cf38eb TH |
105 | (void __percpu *)((unsigned long)(addr) - \ |
106 | (unsigned long)pcpu_base_addr + \ | |
107 | (unsigned long)__per_cpu_start) | |
e0100983 TH |
108 | #endif |
109 | #ifndef __pcpu_ptr_to_addr | |
110 | #define __pcpu_ptr_to_addr(ptr) \ | |
43cf38eb TH |
111 | (void __force *)((unsigned long)(ptr) + \ |
112 | (unsigned long)pcpu_base_addr - \ | |
113 | (unsigned long)__per_cpu_start) | |
e0100983 | 114 | #endif |
bbddff05 TH |
115 | #else /* CONFIG_SMP */ |
116 | /* on UP, it's always identity mapped */ | |
117 | #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) | |
118 | #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) | |
119 | #endif /* CONFIG_SMP */ | |
e0100983 | 120 | |
1328710b DM |
121 | static int pcpu_unit_pages __ro_after_init; |
122 | static int pcpu_unit_size __ro_after_init; | |
123 | static int pcpu_nr_units __ro_after_init; | |
124 | static int pcpu_atom_size __ro_after_init; | |
8fa3ed80 | 125 | int pcpu_nr_slots __ro_after_init; |
1328710b | 126 | static size_t pcpu_chunk_struct_size __ro_after_init; |
fbf59bc9 | 127 | |
a855b84c | 128 | /* cpus with the lowest and highest unit addresses */ |
1328710b DM |
129 | static unsigned int pcpu_low_unit_cpu __ro_after_init; |
130 | static unsigned int pcpu_high_unit_cpu __ro_after_init; | |
2f39e637 | 131 | |
fbf59bc9 | 132 | /* the address of the first chunk which starts with the kernel static area */ |
1328710b | 133 | void *pcpu_base_addr __ro_after_init; |
fbf59bc9 TH |
134 | EXPORT_SYMBOL_GPL(pcpu_base_addr); |
135 | ||
1328710b DM |
136 | static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */ |
137 | const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */ | |
2f39e637 | 138 | |
6563297c | 139 | /* group information, used for vm allocation */ |
1328710b DM |
140 | static int pcpu_nr_groups __ro_after_init; |
141 | static const unsigned long *pcpu_group_offsets __ro_after_init; | |
142 | static const size_t *pcpu_group_sizes __ro_after_init; | |
6563297c | 143 | |
ae9e6bc9 TH |
144 | /* |
145 | * The first chunk which always exists. Note that unlike other | |
146 | * chunks, this one can be allocated and mapped in several different | |
147 | * ways and thus often doesn't live in the vmalloc area. | |
148 | */ | |
8fa3ed80 | 149 | struct pcpu_chunk *pcpu_first_chunk __ro_after_init; |
ae9e6bc9 TH |
150 | |
151 | /* | |
152 | * Optional reserved chunk. This chunk reserves part of the first | |
e2266705 DZF |
153 | * chunk and serves it for reserved allocations. When the reserved |
154 | * region doesn't exist, the following variable is NULL. | |
ae9e6bc9 | 155 | */ |
8fa3ed80 | 156 | struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init; |
edcb4639 | 157 | |
8fa3ed80 | 158 | DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ |
6710e594 | 159 | static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */ |
fbf59bc9 | 160 | |
8fa3ed80 | 161 | struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */ |
fbf59bc9 | 162 | |
4f996e23 TH |
163 | /* chunks which need their map areas extended, protected by pcpu_lock */ |
164 | static LIST_HEAD(pcpu_map_extend_chunks); | |
165 | ||
b539b87f TH |
166 | /* |
167 | * The number of empty populated pages, protected by pcpu_lock. The | |
168 | * reserved chunk doesn't contribute to the count. | |
169 | */ | |
6b9b6f39 | 170 | int pcpu_nr_empty_pop_pages; |
b539b87f | 171 | |
7e8a6304 DZF |
172 | /* |
173 | * The number of populated pages in use by the allocator, protected by | |
174 | * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets | |
175 | * allocated/deallocated, it is allocated/deallocated in all units of a chunk | |
176 | * and increments/decrements this count by 1). | |
177 | */ | |
178 | static unsigned long pcpu_nr_populated; | |
179 | ||
1a4d7607 TH |
180 | /* |
181 | * Balance work is used to populate or destroy chunks asynchronously. We | |
182 | * try to keep the number of populated free pages between | |
183 | * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one | |
184 | * empty chunk. | |
185 | */ | |
fe6bd8c3 TH |
186 | static void pcpu_balance_workfn(struct work_struct *work); |
187 | static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); | |
1a4d7607 TH |
188 | static bool pcpu_async_enabled __read_mostly; |
189 | static bool pcpu_atomic_alloc_failed; | |
190 | ||
191 | static void pcpu_schedule_balance_work(void) | |
192 | { | |
193 | if (pcpu_async_enabled) | |
194 | schedule_work(&pcpu_balance_work); | |
195 | } | |
a56dbddf | 196 | |
c0ebfdc3 | 197 | /** |
560f2c23 DZF |
198 | * pcpu_addr_in_chunk - check if the address is served from this chunk |
199 | * @chunk: chunk of interest | |
200 | * @addr: percpu address | |
c0ebfdc3 DZF |
201 | * |
202 | * RETURNS: | |
560f2c23 | 203 | * True if the address is served from this chunk. |
c0ebfdc3 | 204 | */ |
560f2c23 | 205 | static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr) |
020ec653 | 206 | { |
c0ebfdc3 DZF |
207 | void *start_addr, *end_addr; |
208 | ||
560f2c23 | 209 | if (!chunk) |
c0ebfdc3 | 210 | return false; |
020ec653 | 211 | |
560f2c23 DZF |
212 | start_addr = chunk->base_addr + chunk->start_offset; |
213 | end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE - | |
214 | chunk->end_offset; | |
c0ebfdc3 DZF |
215 | |
216 | return addr >= start_addr && addr < end_addr; | |
020ec653 TH |
217 | } |
218 | ||
d9b55eeb | 219 | static int __pcpu_size_to_slot(int size) |
fbf59bc9 | 220 | { |
cae3aeb8 | 221 | int highbit = fls(size); /* size is in bytes */ |
fbf59bc9 TH |
222 | return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); |
223 | } | |
224 | ||
d9b55eeb TH |
225 | static int pcpu_size_to_slot(int size) |
226 | { | |
227 | if (size == pcpu_unit_size) | |
228 | return pcpu_nr_slots - 1; | |
229 | return __pcpu_size_to_slot(size); | |
230 | } | |
231 | ||
fbf59bc9 TH |
232 | static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) |
233 | { | |
40064aec | 234 | if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0) |
fbf59bc9 TH |
235 | return 0; |
236 | ||
40064aec | 237 | return pcpu_size_to_slot(chunk->free_bytes); |
fbf59bc9 TH |
238 | } |
239 | ||
88999a89 TH |
240 | /* set the pointer to a chunk in a page struct */ |
241 | static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) | |
242 | { | |
243 | page->index = (unsigned long)pcpu; | |
244 | } | |
245 | ||
246 | /* obtain pointer to a chunk from a page struct */ | |
247 | static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) | |
248 | { | |
249 | return (struct pcpu_chunk *)page->index; | |
250 | } | |
251 | ||
252 | static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) | |
fbf59bc9 | 253 | { |
2f39e637 | 254 | return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; |
fbf59bc9 TH |
255 | } |
256 | ||
c0ebfdc3 DZF |
257 | static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx) |
258 | { | |
259 | return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); | |
260 | } | |
261 | ||
9983b6f0 TH |
262 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, |
263 | unsigned int cpu, int page_idx) | |
fbf59bc9 | 264 | { |
c0ebfdc3 DZF |
265 | return (unsigned long)chunk->base_addr + |
266 | pcpu_unit_page_offset(cpu, page_idx); | |
fbf59bc9 TH |
267 | } |
268 | ||
91e914c5 | 269 | static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end) |
ce3141a2 | 270 | { |
91e914c5 DZF |
271 | *rs = find_next_zero_bit(bitmap, end, *rs); |
272 | *re = find_next_bit(bitmap, end, *rs + 1); | |
ce3141a2 TH |
273 | } |
274 | ||
91e914c5 | 275 | static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end) |
ce3141a2 | 276 | { |
91e914c5 DZF |
277 | *rs = find_next_bit(bitmap, end, *rs); |
278 | *re = find_next_zero_bit(bitmap, end, *rs + 1); | |
ce3141a2 TH |
279 | } |
280 | ||
281 | /* | |
91e914c5 DZF |
282 | * Bitmap region iterators. Iterates over the bitmap between |
283 | * [@start, @end) in @chunk. @rs and @re should be integer variables | |
284 | * and will be set to start and end index of the current free region. | |
ce3141a2 | 285 | */ |
91e914c5 DZF |
286 | #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \ |
287 | for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \ | |
288 | (rs) < (re); \ | |
289 | (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end))) | |
ce3141a2 | 290 | |
91e914c5 DZF |
291 | #define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \ |
292 | for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \ | |
293 | (rs) < (re); \ | |
294 | (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end))) | |
ce3141a2 | 295 | |
ca460b3c DZF |
296 | /* |
297 | * The following are helper functions to help access bitmaps and convert | |
298 | * between bitmap offsets to address offsets. | |
299 | */ | |
300 | static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index) | |
301 | { | |
302 | return chunk->alloc_map + | |
303 | (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG); | |
304 | } | |
305 | ||
306 | static unsigned long pcpu_off_to_block_index(int off) | |
307 | { | |
308 | return off / PCPU_BITMAP_BLOCK_BITS; | |
309 | } | |
310 | ||
311 | static unsigned long pcpu_off_to_block_off(int off) | |
312 | { | |
313 | return off & (PCPU_BITMAP_BLOCK_BITS - 1); | |
314 | } | |
315 | ||
b185cd0d DZF |
316 | static unsigned long pcpu_block_off_to_off(int index, int off) |
317 | { | |
318 | return index * PCPU_BITMAP_BLOCK_BITS + off; | |
319 | } | |
320 | ||
525ca84d DZF |
321 | /** |
322 | * pcpu_next_md_free_region - finds the next hint free area | |
323 | * @chunk: chunk of interest | |
324 | * @bit_off: chunk offset | |
325 | * @bits: size of free area | |
326 | * | |
327 | * Helper function for pcpu_for_each_md_free_region. It checks | |
328 | * block->contig_hint and performs aggregation across blocks to find the | |
329 | * next hint. It modifies bit_off and bits in-place to be consumed in the | |
330 | * loop. | |
331 | */ | |
332 | static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off, | |
333 | int *bits) | |
334 | { | |
335 | int i = pcpu_off_to_block_index(*bit_off); | |
336 | int block_off = pcpu_off_to_block_off(*bit_off); | |
337 | struct pcpu_block_md *block; | |
338 | ||
339 | *bits = 0; | |
340 | for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); | |
341 | block++, i++) { | |
342 | /* handles contig area across blocks */ | |
343 | if (*bits) { | |
344 | *bits += block->left_free; | |
345 | if (block->left_free == PCPU_BITMAP_BLOCK_BITS) | |
346 | continue; | |
347 | return; | |
348 | } | |
349 | ||
350 | /* | |
351 | * This checks three things. First is there a contig_hint to | |
352 | * check. Second, have we checked this hint before by | |
353 | * comparing the block_off. Third, is this the same as the | |
354 | * right contig hint. In the last case, it spills over into | |
355 | * the next block and should be handled by the contig area | |
356 | * across blocks code. | |
357 | */ | |
358 | *bits = block->contig_hint; | |
359 | if (*bits && block->contig_hint_start >= block_off && | |
360 | *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) { | |
361 | *bit_off = pcpu_block_off_to_off(i, | |
362 | block->contig_hint_start); | |
363 | return; | |
364 | } | |
1fa4df3e DZ |
365 | /* reset to satisfy the second predicate above */ |
366 | block_off = 0; | |
525ca84d DZF |
367 | |
368 | *bits = block->right_free; | |
369 | *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free; | |
370 | } | |
371 | } | |
372 | ||
b4c2116c DZF |
373 | /** |
374 | * pcpu_next_fit_region - finds fit areas for a given allocation request | |
375 | * @chunk: chunk of interest | |
376 | * @alloc_bits: size of allocation | |
377 | * @align: alignment of area (max PAGE_SIZE) | |
378 | * @bit_off: chunk offset | |
379 | * @bits: size of free area | |
380 | * | |
381 | * Finds the next free region that is viable for use with a given size and | |
382 | * alignment. This only returns if there is a valid area to be used for this | |
383 | * allocation. block->first_free is returned if the allocation request fits | |
384 | * within the block to see if the request can be fulfilled prior to the contig | |
385 | * hint. | |
386 | */ | |
387 | static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits, | |
388 | int align, int *bit_off, int *bits) | |
389 | { | |
390 | int i = pcpu_off_to_block_index(*bit_off); | |
391 | int block_off = pcpu_off_to_block_off(*bit_off); | |
392 | struct pcpu_block_md *block; | |
393 | ||
394 | *bits = 0; | |
395 | for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); | |
396 | block++, i++) { | |
397 | /* handles contig area across blocks */ | |
398 | if (*bits) { | |
399 | *bits += block->left_free; | |
400 | if (*bits >= alloc_bits) | |
401 | return; | |
402 | if (block->left_free == PCPU_BITMAP_BLOCK_BITS) | |
403 | continue; | |
404 | } | |
405 | ||
406 | /* check block->contig_hint */ | |
407 | *bits = ALIGN(block->contig_hint_start, align) - | |
408 | block->contig_hint_start; | |
409 | /* | |
410 | * This uses the block offset to determine if this has been | |
411 | * checked in the prior iteration. | |
412 | */ | |
413 | if (block->contig_hint && | |
414 | block->contig_hint_start >= block_off && | |
415 | block->contig_hint >= *bits + alloc_bits) { | |
416 | *bits += alloc_bits + block->contig_hint_start - | |
417 | block->first_free; | |
418 | *bit_off = pcpu_block_off_to_off(i, block->first_free); | |
419 | return; | |
420 | } | |
1fa4df3e DZ |
421 | /* reset to satisfy the second predicate above */ |
422 | block_off = 0; | |
b4c2116c DZF |
423 | |
424 | *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free, | |
425 | align); | |
426 | *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off; | |
427 | *bit_off = pcpu_block_off_to_off(i, *bit_off); | |
428 | if (*bits >= alloc_bits) | |
429 | return; | |
430 | } | |
431 | ||
432 | /* no valid offsets were found - fail condition */ | |
433 | *bit_off = pcpu_chunk_map_bits(chunk); | |
434 | } | |
435 | ||
525ca84d DZF |
436 | /* |
437 | * Metadata free area iterators. These perform aggregation of free areas | |
438 | * based on the metadata blocks and return the offset @bit_off and size in | |
b4c2116c DZF |
439 | * bits of the free area @bits. pcpu_for_each_fit_region only returns when |
440 | * a fit is found for the allocation request. | |
525ca84d DZF |
441 | */ |
442 | #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \ | |
443 | for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \ | |
444 | (bit_off) < pcpu_chunk_map_bits((chunk)); \ | |
445 | (bit_off) += (bits) + 1, \ | |
446 | pcpu_next_md_free_region((chunk), &(bit_off), &(bits))) | |
447 | ||
b4c2116c DZF |
448 | #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \ |
449 | for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ | |
450 | &(bits)); \ | |
451 | (bit_off) < pcpu_chunk_map_bits((chunk)); \ | |
452 | (bit_off) += (bits), \ | |
453 | pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ | |
454 | &(bits))) | |
455 | ||
fbf59bc9 | 456 | /** |
90459ce0 | 457 | * pcpu_mem_zalloc - allocate memory |
1880d93b | 458 | * @size: bytes to allocate |
47504ee0 | 459 | * @gfp: allocation flags |
fbf59bc9 | 460 | * |
1880d93b | 461 | * Allocate @size bytes. If @size is smaller than PAGE_SIZE, |
47504ee0 DZ |
462 | * kzalloc() is used; otherwise, the equivalent of vzalloc() is used. |
463 | * This is to facilitate passing through whitelisted flags. The | |
464 | * returned memory is always zeroed. | |
fbf59bc9 TH |
465 | * |
466 | * RETURNS: | |
1880d93b | 467 | * Pointer to the allocated area on success, NULL on failure. |
fbf59bc9 | 468 | */ |
47504ee0 | 469 | static void *pcpu_mem_zalloc(size_t size, gfp_t gfp) |
fbf59bc9 | 470 | { |
099a19d9 TH |
471 | if (WARN_ON_ONCE(!slab_is_available())) |
472 | return NULL; | |
473 | ||
1880d93b | 474 | if (size <= PAGE_SIZE) |
554fef1c | 475 | return kzalloc(size, gfp); |
7af4c093 | 476 | else |
554fef1c | 477 | return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL); |
1880d93b | 478 | } |
fbf59bc9 | 479 | |
1880d93b TH |
480 | /** |
481 | * pcpu_mem_free - free memory | |
482 | * @ptr: memory to free | |
1880d93b | 483 | * |
90459ce0 | 484 | * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). |
1880d93b | 485 | */ |
1d5cfdb0 | 486 | static void pcpu_mem_free(void *ptr) |
1880d93b | 487 | { |
1d5cfdb0 | 488 | kvfree(ptr); |
fbf59bc9 TH |
489 | } |
490 | ||
491 | /** | |
492 | * pcpu_chunk_relocate - put chunk in the appropriate chunk slot | |
493 | * @chunk: chunk of interest | |
494 | * @oslot: the previous slot it was on | |
495 | * | |
496 | * This function is called after an allocation or free changed @chunk. | |
497 | * New slot according to the changed state is determined and @chunk is | |
edcb4639 TH |
498 | * moved to the slot. Note that the reserved chunk is never put on |
499 | * chunk slots. | |
ccea34b5 TH |
500 | * |
501 | * CONTEXT: | |
502 | * pcpu_lock. | |
fbf59bc9 TH |
503 | */ |
504 | static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | |
505 | { | |
506 | int nslot = pcpu_chunk_slot(chunk); | |
507 | ||
edcb4639 | 508 | if (chunk != pcpu_reserved_chunk && oslot != nslot) { |
fbf59bc9 TH |
509 | if (oslot < nslot) |
510 | list_move(&chunk->list, &pcpu_slot[nslot]); | |
511 | else | |
512 | list_move_tail(&chunk->list, &pcpu_slot[nslot]); | |
513 | } | |
514 | } | |
515 | ||
9f7dcf22 | 516 | /** |
40064aec | 517 | * pcpu_cnt_pop_pages- counts populated backing pages in range |
833af842 | 518 | * @chunk: chunk of interest |
40064aec DZF |
519 | * @bit_off: start offset |
520 | * @bits: size of area to check | |
9f7dcf22 | 521 | * |
40064aec DZF |
522 | * Calculates the number of populated pages in the region |
523 | * [page_start, page_end). This keeps track of how many empty populated | |
524 | * pages are available and decide if async work should be scheduled. | |
ccea34b5 | 525 | * |
9f7dcf22 | 526 | * RETURNS: |
40064aec | 527 | * The nr of populated pages. |
9f7dcf22 | 528 | */ |
40064aec DZF |
529 | static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off, |
530 | int bits) | |
9f7dcf22 | 531 | { |
40064aec DZF |
532 | int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE); |
533 | int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); | |
4f996e23 | 534 | |
40064aec | 535 | if (page_start >= page_end) |
9f7dcf22 TH |
536 | return 0; |
537 | ||
40064aec DZF |
538 | /* |
539 | * bitmap_weight counts the number of bits set in a bitmap up to | |
540 | * the specified number of bits. This is counting the populated | |
541 | * pages up to page_end and then subtracting the populated pages | |
542 | * up to page_start to count the populated pages in | |
543 | * [page_start, page_end). | |
544 | */ | |
545 | return bitmap_weight(chunk->populated, page_end) - | |
546 | bitmap_weight(chunk->populated, page_start); | |
833af842 TH |
547 | } |
548 | ||
549 | /** | |
40064aec | 550 | * pcpu_chunk_update - updates the chunk metadata given a free area |
833af842 | 551 | * @chunk: chunk of interest |
40064aec DZF |
552 | * @bit_off: chunk offset |
553 | * @bits: size of free area | |
833af842 | 554 | * |
13f96637 | 555 | * This updates the chunk's contig hint and starting offset given a free area. |
268625a6 | 556 | * Choose the best starting offset if the contig hint is equal. |
40064aec DZF |
557 | */ |
558 | static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits) | |
559 | { | |
13f96637 DZF |
560 | if (bits > chunk->contig_bits) { |
561 | chunk->contig_bits_start = bit_off; | |
40064aec | 562 | chunk->contig_bits = bits; |
268625a6 DZF |
563 | } else if (bits == chunk->contig_bits && chunk->contig_bits_start && |
564 | (!bit_off || | |
565 | __ffs(bit_off) > __ffs(chunk->contig_bits_start))) { | |
566 | /* use the start with the best alignment */ | |
567 | chunk->contig_bits_start = bit_off; | |
13f96637 | 568 | } |
40064aec DZF |
569 | } |
570 | ||
571 | /** | |
572 | * pcpu_chunk_refresh_hint - updates metadata about a chunk | |
573 | * @chunk: chunk of interest | |
833af842 | 574 | * |
525ca84d DZF |
575 | * Iterates over the metadata blocks to find the largest contig area. |
576 | * It also counts the populated pages and uses the delta to update the | |
577 | * global count. | |
833af842 | 578 | * |
40064aec DZF |
579 | * Updates: |
580 | * chunk->contig_bits | |
13f96637 | 581 | * chunk->contig_bits_start |
525ca84d | 582 | * nr_empty_pop_pages (chunk and global) |
833af842 | 583 | */ |
40064aec | 584 | static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk) |
833af842 | 585 | { |
525ca84d | 586 | int bit_off, bits, nr_empty_pop_pages; |
833af842 | 587 | |
40064aec DZF |
588 | /* clear metadata */ |
589 | chunk->contig_bits = 0; | |
6710e594 | 590 | |
525ca84d | 591 | bit_off = chunk->first_bit; |
40064aec | 592 | bits = nr_empty_pop_pages = 0; |
525ca84d DZF |
593 | pcpu_for_each_md_free_region(chunk, bit_off, bits) { |
594 | pcpu_chunk_update(chunk, bit_off, bits); | |
833af842 | 595 | |
525ca84d | 596 | nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits); |
40064aec | 597 | } |
9f7dcf22 | 598 | |
40064aec DZF |
599 | /* |
600 | * Keep track of nr_empty_pop_pages. | |
601 | * | |
602 | * The chunk maintains the previous number of free pages it held, | |
603 | * so the delta is used to update the global counter. The reserved | |
604 | * chunk is not part of the free page count as they are populated | |
605 | * at init and are special to serving reserved allocations. | |
606 | */ | |
607 | if (chunk != pcpu_reserved_chunk) | |
608 | pcpu_nr_empty_pop_pages += | |
609 | (nr_empty_pop_pages - chunk->nr_empty_pop_pages); | |
a002d148 | 610 | |
40064aec DZF |
611 | chunk->nr_empty_pop_pages = nr_empty_pop_pages; |
612 | } | |
9f7dcf22 | 613 | |
ca460b3c DZF |
614 | /** |
615 | * pcpu_block_update - updates a block given a free area | |
616 | * @block: block of interest | |
617 | * @start: start offset in block | |
618 | * @end: end offset in block | |
619 | * | |
620 | * Updates a block given a known free area. The region [start, end) is | |
268625a6 DZF |
621 | * expected to be the entirety of the free area within a block. Chooses |
622 | * the best starting offset if the contig hints are equal. | |
ca460b3c DZF |
623 | */ |
624 | static void pcpu_block_update(struct pcpu_block_md *block, int start, int end) | |
625 | { | |
626 | int contig = end - start; | |
627 | ||
628 | block->first_free = min(block->first_free, start); | |
629 | if (start == 0) | |
630 | block->left_free = contig; | |
631 | ||
632 | if (end == PCPU_BITMAP_BLOCK_BITS) | |
633 | block->right_free = contig; | |
634 | ||
635 | if (contig > block->contig_hint) { | |
636 | block->contig_hint_start = start; | |
637 | block->contig_hint = contig; | |
268625a6 DZF |
638 | } else if (block->contig_hint_start && contig == block->contig_hint && |
639 | (!start || __ffs(start) > __ffs(block->contig_hint_start))) { | |
640 | /* use the start with the best alignment */ | |
641 | block->contig_hint_start = start; | |
ca460b3c DZF |
642 | } |
643 | } | |
644 | ||
645 | /** | |
646 | * pcpu_block_refresh_hint | |
647 | * @chunk: chunk of interest | |
648 | * @index: index of the metadata block | |
649 | * | |
650 | * Scans over the block beginning at first_free and updates the block | |
651 | * metadata accordingly. | |
652 | */ | |
653 | static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index) | |
654 | { | |
655 | struct pcpu_block_md *block = chunk->md_blocks + index; | |
656 | unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); | |
657 | int rs, re; /* region start, region end */ | |
658 | ||
659 | /* clear hints */ | |
660 | block->contig_hint = 0; | |
661 | block->left_free = block->right_free = 0; | |
662 | ||
663 | /* iterate over free areas and update the contig hints */ | |
664 | pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free, | |
665 | PCPU_BITMAP_BLOCK_BITS) { | |
666 | pcpu_block_update(block, rs, re); | |
667 | } | |
668 | } | |
669 | ||
670 | /** | |
671 | * pcpu_block_update_hint_alloc - update hint on allocation path | |
672 | * @chunk: chunk of interest | |
673 | * @bit_off: chunk offset | |
674 | * @bits: size of request | |
fc304334 DZF |
675 | * |
676 | * Updates metadata for the allocation path. The metadata only has to be | |
677 | * refreshed by a full scan iff the chunk's contig hint is broken. Block level | |
678 | * scans are required if the block's contig hint is broken. | |
ca460b3c DZF |
679 | */ |
680 | static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, | |
681 | int bits) | |
682 | { | |
683 | struct pcpu_block_md *s_block, *e_block, *block; | |
684 | int s_index, e_index; /* block indexes of the freed allocation */ | |
685 | int s_off, e_off; /* block offsets of the freed allocation */ | |
686 | ||
687 | /* | |
688 | * Calculate per block offsets. | |
689 | * The calculation uses an inclusive range, but the resulting offsets | |
690 | * are [start, end). e_index always points to the last block in the | |
691 | * range. | |
692 | */ | |
693 | s_index = pcpu_off_to_block_index(bit_off); | |
694 | e_index = pcpu_off_to_block_index(bit_off + bits - 1); | |
695 | s_off = pcpu_off_to_block_off(bit_off); | |
696 | e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; | |
697 | ||
698 | s_block = chunk->md_blocks + s_index; | |
699 | e_block = chunk->md_blocks + e_index; | |
700 | ||
701 | /* | |
702 | * Update s_block. | |
fc304334 DZF |
703 | * block->first_free must be updated if the allocation takes its place. |
704 | * If the allocation breaks the contig_hint, a scan is required to | |
705 | * restore this hint. | |
ca460b3c | 706 | */ |
fc304334 DZF |
707 | if (s_off == s_block->first_free) |
708 | s_block->first_free = find_next_zero_bit( | |
709 | pcpu_index_alloc_map(chunk, s_index), | |
710 | PCPU_BITMAP_BLOCK_BITS, | |
711 | s_off + bits); | |
712 | ||
713 | if (s_off >= s_block->contig_hint_start && | |
714 | s_off < s_block->contig_hint_start + s_block->contig_hint) { | |
715 | /* block contig hint is broken - scan to fix it */ | |
716 | pcpu_block_refresh_hint(chunk, s_index); | |
717 | } else { | |
718 | /* update left and right contig manually */ | |
719 | s_block->left_free = min(s_block->left_free, s_off); | |
720 | if (s_index == e_index) | |
721 | s_block->right_free = min_t(int, s_block->right_free, | |
722 | PCPU_BITMAP_BLOCK_BITS - e_off); | |
723 | else | |
724 | s_block->right_free = 0; | |
725 | } | |
ca460b3c DZF |
726 | |
727 | /* | |
728 | * Update e_block. | |
729 | */ | |
730 | if (s_index != e_index) { | |
fc304334 DZF |
731 | /* |
732 | * When the allocation is across blocks, the end is along | |
733 | * the left part of the e_block. | |
734 | */ | |
735 | e_block->first_free = find_next_zero_bit( | |
736 | pcpu_index_alloc_map(chunk, e_index), | |
737 | PCPU_BITMAP_BLOCK_BITS, e_off); | |
738 | ||
739 | if (e_off == PCPU_BITMAP_BLOCK_BITS) { | |
740 | /* reset the block */ | |
741 | e_block++; | |
742 | } else { | |
743 | if (e_off > e_block->contig_hint_start) { | |
744 | /* contig hint is broken - scan to fix it */ | |
745 | pcpu_block_refresh_hint(chunk, e_index); | |
746 | } else { | |
747 | e_block->left_free = 0; | |
748 | e_block->right_free = | |
749 | min_t(int, e_block->right_free, | |
750 | PCPU_BITMAP_BLOCK_BITS - e_off); | |
751 | } | |
752 | } | |
ca460b3c DZF |
753 | |
754 | /* update in-between md_blocks */ | |
755 | for (block = s_block + 1; block < e_block; block++) { | |
756 | block->contig_hint = 0; | |
757 | block->left_free = 0; | |
758 | block->right_free = 0; | |
759 | } | |
760 | } | |
761 | ||
fc304334 DZF |
762 | /* |
763 | * The only time a full chunk scan is required is if the chunk | |
764 | * contig hint is broken. Otherwise, it means a smaller space | |
765 | * was used and therefore the chunk contig hint is still correct. | |
766 | */ | |
767 | if (bit_off >= chunk->contig_bits_start && | |
768 | bit_off < chunk->contig_bits_start + chunk->contig_bits) | |
769 | pcpu_chunk_refresh_hint(chunk); | |
ca460b3c DZF |
770 | } |
771 | ||
772 | /** | |
773 | * pcpu_block_update_hint_free - updates the block hints on the free path | |
774 | * @chunk: chunk of interest | |
775 | * @bit_off: chunk offset | |
776 | * @bits: size of request | |
b185cd0d DZF |
777 | * |
778 | * Updates metadata for the allocation path. This avoids a blind block | |
779 | * refresh by making use of the block contig hints. If this fails, it scans | |
780 | * forward and backward to determine the extent of the free area. This is | |
781 | * capped at the boundary of blocks. | |
782 | * | |
783 | * A chunk update is triggered if a page becomes free, a block becomes free, | |
784 | * or the free spans across blocks. This tradeoff is to minimize iterating | |
785 | * over the block metadata to update chunk->contig_bits. chunk->contig_bits | |
786 | * may be off by up to a page, but it will never be more than the available | |
787 | * space. If the contig hint is contained in one block, it will be accurate. | |
ca460b3c DZF |
788 | */ |
789 | static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, | |
790 | int bits) | |
791 | { | |
792 | struct pcpu_block_md *s_block, *e_block, *block; | |
793 | int s_index, e_index; /* block indexes of the freed allocation */ | |
794 | int s_off, e_off; /* block offsets of the freed allocation */ | |
b185cd0d | 795 | int start, end; /* start and end of the whole free area */ |
ca460b3c DZF |
796 | |
797 | /* | |
798 | * Calculate per block offsets. | |
799 | * The calculation uses an inclusive range, but the resulting offsets | |
800 | * are [start, end). e_index always points to the last block in the | |
801 | * range. | |
802 | */ | |
803 | s_index = pcpu_off_to_block_index(bit_off); | |
804 | e_index = pcpu_off_to_block_index(bit_off + bits - 1); | |
805 | s_off = pcpu_off_to_block_off(bit_off); | |
806 | e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; | |
807 | ||
808 | s_block = chunk->md_blocks + s_index; | |
809 | e_block = chunk->md_blocks + e_index; | |
810 | ||
b185cd0d DZF |
811 | /* |
812 | * Check if the freed area aligns with the block->contig_hint. | |
813 | * If it does, then the scan to find the beginning/end of the | |
814 | * larger free area can be avoided. | |
815 | * | |
816 | * start and end refer to beginning and end of the free area | |
817 | * within each their respective blocks. This is not necessarily | |
818 | * the entire free area as it may span blocks past the beginning | |
819 | * or end of the block. | |
820 | */ | |
821 | start = s_off; | |
822 | if (s_off == s_block->contig_hint + s_block->contig_hint_start) { | |
823 | start = s_block->contig_hint_start; | |
824 | } else { | |
825 | /* | |
826 | * Scan backwards to find the extent of the free area. | |
827 | * find_last_bit returns the starting bit, so if the start bit | |
828 | * is returned, that means there was no last bit and the | |
829 | * remainder of the chunk is free. | |
830 | */ | |
831 | int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), | |
832 | start); | |
833 | start = (start == l_bit) ? 0 : l_bit + 1; | |
834 | } | |
835 | ||
836 | end = e_off; | |
837 | if (e_off == e_block->contig_hint_start) | |
838 | end = e_block->contig_hint_start + e_block->contig_hint; | |
839 | else | |
840 | end = find_next_bit(pcpu_index_alloc_map(chunk, e_index), | |
841 | PCPU_BITMAP_BLOCK_BITS, end); | |
842 | ||
ca460b3c | 843 | /* update s_block */ |
b185cd0d DZF |
844 | e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; |
845 | pcpu_block_update(s_block, start, e_off); | |
ca460b3c DZF |
846 | |
847 | /* freeing in the same block */ | |
848 | if (s_index != e_index) { | |
849 | /* update e_block */ | |
b185cd0d | 850 | pcpu_block_update(e_block, 0, end); |
ca460b3c DZF |
851 | |
852 | /* reset md_blocks in the middle */ | |
853 | for (block = s_block + 1; block < e_block; block++) { | |
854 | block->first_free = 0; | |
855 | block->contig_hint_start = 0; | |
856 | block->contig_hint = PCPU_BITMAP_BLOCK_BITS; | |
857 | block->left_free = PCPU_BITMAP_BLOCK_BITS; | |
858 | block->right_free = PCPU_BITMAP_BLOCK_BITS; | |
859 | } | |
860 | } | |
861 | ||
b185cd0d DZF |
862 | /* |
863 | * Refresh chunk metadata when the free makes a page free, a block | |
864 | * free, or spans across blocks. The contig hint may be off by up to | |
865 | * a page, but if the hint is contained in a block, it will be accurate | |
866 | * with the else condition below. | |
867 | */ | |
868 | if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) > | |
869 | ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) || | |
870 | s_index != e_index) | |
871 | pcpu_chunk_refresh_hint(chunk); | |
872 | else | |
873 | pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start), | |
8e5a2b98 | 874 | end - start); |
ca460b3c DZF |
875 | } |
876 | ||
40064aec DZF |
877 | /** |
878 | * pcpu_is_populated - determines if the region is populated | |
879 | * @chunk: chunk of interest | |
880 | * @bit_off: chunk offset | |
881 | * @bits: size of area | |
882 | * @next_off: return value for the next offset to start searching | |
883 | * | |
884 | * For atomic allocations, check if the backing pages are populated. | |
885 | * | |
886 | * RETURNS: | |
887 | * Bool if the backing pages are populated. | |
888 | * next_index is to skip over unpopulated blocks in pcpu_find_block_fit. | |
889 | */ | |
890 | static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits, | |
891 | int *next_off) | |
892 | { | |
893 | int page_start, page_end, rs, re; | |
833af842 | 894 | |
40064aec DZF |
895 | page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE); |
896 | page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); | |
833af842 | 897 | |
40064aec DZF |
898 | rs = page_start; |
899 | pcpu_next_unpop(chunk->populated, &rs, &re, page_end); | |
900 | if (rs >= page_end) | |
901 | return true; | |
833af842 | 902 | |
40064aec DZF |
903 | *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; |
904 | return false; | |
9f7dcf22 TH |
905 | } |
906 | ||
a16037c8 | 907 | /** |
40064aec DZF |
908 | * pcpu_find_block_fit - finds the block index to start searching |
909 | * @chunk: chunk of interest | |
910 | * @alloc_bits: size of request in allocation units | |
911 | * @align: alignment of area (max PAGE_SIZE bytes) | |
912 | * @pop_only: use populated regions only | |
913 | * | |
b4c2116c DZF |
914 | * Given a chunk and an allocation spec, find the offset to begin searching |
915 | * for a free region. This iterates over the bitmap metadata blocks to | |
916 | * find an offset that will be guaranteed to fit the requirements. It is | |
917 | * not quite first fit as if the allocation does not fit in the contig hint | |
918 | * of a block or chunk, it is skipped. This errs on the side of caution | |
919 | * to prevent excess iteration. Poor alignment can cause the allocator to | |
920 | * skip over blocks and chunks that have valid free areas. | |
921 | * | |
40064aec DZF |
922 | * RETURNS: |
923 | * The offset in the bitmap to begin searching. | |
924 | * -1 if no offset is found. | |
a16037c8 | 925 | */ |
40064aec DZF |
926 | static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, |
927 | size_t align, bool pop_only) | |
a16037c8 | 928 | { |
b4c2116c | 929 | int bit_off, bits, next_off; |
a16037c8 | 930 | |
13f96637 DZF |
931 | /* |
932 | * Check to see if the allocation can fit in the chunk's contig hint. | |
933 | * This is an optimization to prevent scanning by assuming if it | |
934 | * cannot fit in the global hint, there is memory pressure and creating | |
935 | * a new chunk would happen soon. | |
936 | */ | |
937 | bit_off = ALIGN(chunk->contig_bits_start, align) - | |
938 | chunk->contig_bits_start; | |
939 | if (bit_off + alloc_bits > chunk->contig_bits) | |
940 | return -1; | |
941 | ||
b4c2116c DZF |
942 | bit_off = chunk->first_bit; |
943 | bits = 0; | |
944 | pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { | |
40064aec | 945 | if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, |
b4c2116c | 946 | &next_off)) |
40064aec | 947 | break; |
a16037c8 | 948 | |
b4c2116c | 949 | bit_off = next_off; |
40064aec | 950 | bits = 0; |
a16037c8 | 951 | } |
40064aec DZF |
952 | |
953 | if (bit_off == pcpu_chunk_map_bits(chunk)) | |
954 | return -1; | |
955 | ||
956 | return bit_off; | |
a16037c8 TH |
957 | } |
958 | ||
fbf59bc9 | 959 | /** |
40064aec | 960 | * pcpu_alloc_area - allocates an area from a pcpu_chunk |
fbf59bc9 | 961 | * @chunk: chunk of interest |
40064aec DZF |
962 | * @alloc_bits: size of request in allocation units |
963 | * @align: alignment of area (max PAGE_SIZE) | |
964 | * @start: bit_off to start searching | |
9f7dcf22 | 965 | * |
40064aec | 966 | * This function takes in a @start offset to begin searching to fit an |
b4c2116c DZF |
967 | * allocation of @alloc_bits with alignment @align. It needs to scan |
968 | * the allocation map because if it fits within the block's contig hint, | |
969 | * @start will be block->first_free. This is an attempt to fill the | |
970 | * allocation prior to breaking the contig hint. The allocation and | |
971 | * boundary maps are updated accordingly if it confirms a valid | |
972 | * free area. | |
ccea34b5 | 973 | * |
fbf59bc9 | 974 | * RETURNS: |
40064aec DZF |
975 | * Allocated addr offset in @chunk on success. |
976 | * -1 if no matching area is found. | |
fbf59bc9 | 977 | */ |
40064aec DZF |
978 | static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, |
979 | size_t align, int start) | |
fbf59bc9 | 980 | { |
40064aec DZF |
981 | size_t align_mask = (align) ? (align - 1) : 0; |
982 | int bit_off, end, oslot; | |
a16037c8 | 983 | |
40064aec | 984 | lockdep_assert_held(&pcpu_lock); |
fbf59bc9 | 985 | |
40064aec | 986 | oslot = pcpu_chunk_slot(chunk); |
fbf59bc9 | 987 | |
40064aec DZF |
988 | /* |
989 | * Search to find a fit. | |
990 | */ | |
b4c2116c | 991 | end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS; |
40064aec DZF |
992 | bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start, |
993 | alloc_bits, align_mask); | |
994 | if (bit_off >= end) | |
995 | return -1; | |
fbf59bc9 | 996 | |
40064aec DZF |
997 | /* update alloc map */ |
998 | bitmap_set(chunk->alloc_map, bit_off, alloc_bits); | |
3d331ad7 | 999 | |
40064aec DZF |
1000 | /* update boundary map */ |
1001 | set_bit(bit_off, chunk->bound_map); | |
1002 | bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1); | |
1003 | set_bit(bit_off + alloc_bits, chunk->bound_map); | |
fbf59bc9 | 1004 | |
40064aec | 1005 | chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; |
fbf59bc9 | 1006 | |
86b442fb DZF |
1007 | /* update first free bit */ |
1008 | if (bit_off == chunk->first_bit) | |
1009 | chunk->first_bit = find_next_zero_bit( | |
1010 | chunk->alloc_map, | |
1011 | pcpu_chunk_map_bits(chunk), | |
1012 | bit_off + alloc_bits); | |
1013 | ||
ca460b3c | 1014 | pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits); |
fbf59bc9 | 1015 | |
fbf59bc9 TH |
1016 | pcpu_chunk_relocate(chunk, oslot); |
1017 | ||
40064aec | 1018 | return bit_off * PCPU_MIN_ALLOC_SIZE; |
fbf59bc9 TH |
1019 | } |
1020 | ||
1021 | /** | |
40064aec | 1022 | * pcpu_free_area - frees the corresponding offset |
fbf59bc9 | 1023 | * @chunk: chunk of interest |
40064aec | 1024 | * @off: addr offset into chunk |
ccea34b5 | 1025 | * |
40064aec DZF |
1026 | * This function determines the size of an allocation to free using |
1027 | * the boundary bitmap and clears the allocation map. | |
fbf59bc9 | 1028 | */ |
40064aec | 1029 | static void pcpu_free_area(struct pcpu_chunk *chunk, int off) |
fbf59bc9 | 1030 | { |
40064aec | 1031 | int bit_off, bits, end, oslot; |
723ad1d9 | 1032 | |
5ccd30e4 | 1033 | lockdep_assert_held(&pcpu_lock); |
30a5b536 | 1034 | pcpu_stats_area_dealloc(chunk); |
5ccd30e4 | 1035 | |
40064aec | 1036 | oslot = pcpu_chunk_slot(chunk); |
fbf59bc9 | 1037 | |
40064aec | 1038 | bit_off = off / PCPU_MIN_ALLOC_SIZE; |
3d331ad7 | 1039 | |
40064aec DZF |
1040 | /* find end index */ |
1041 | end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), | |
1042 | bit_off + 1); | |
1043 | bits = end - bit_off; | |
1044 | bitmap_clear(chunk->alloc_map, bit_off, bits); | |
fbf59bc9 | 1045 | |
40064aec DZF |
1046 | /* update metadata */ |
1047 | chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE; | |
b539b87f | 1048 | |
86b442fb DZF |
1049 | /* update first free bit */ |
1050 | chunk->first_bit = min(chunk->first_bit, bit_off); | |
1051 | ||
ca460b3c | 1052 | pcpu_block_update_hint_free(chunk, bit_off, bits); |
fbf59bc9 | 1053 | |
fbf59bc9 TH |
1054 | pcpu_chunk_relocate(chunk, oslot); |
1055 | } | |
1056 | ||
ca460b3c DZF |
1057 | static void pcpu_init_md_blocks(struct pcpu_chunk *chunk) |
1058 | { | |
1059 | struct pcpu_block_md *md_block; | |
1060 | ||
1061 | for (md_block = chunk->md_blocks; | |
1062 | md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); | |
1063 | md_block++) { | |
1064 | md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS; | |
1065 | md_block->left_free = PCPU_BITMAP_BLOCK_BITS; | |
1066 | md_block->right_free = PCPU_BITMAP_BLOCK_BITS; | |
1067 | } | |
1068 | } | |
1069 | ||
40064aec DZF |
1070 | /** |
1071 | * pcpu_alloc_first_chunk - creates chunks that serve the first chunk | |
1072 | * @tmp_addr: the start of the region served | |
1073 | * @map_size: size of the region served | |
1074 | * | |
1075 | * This is responsible for creating the chunks that serve the first chunk. The | |
1076 | * base_addr is page aligned down of @tmp_addr while the region end is page | |
1077 | * aligned up. Offsets are kept track of to determine the region served. All | |
1078 | * this is done to appease the bitmap allocator in avoiding partial blocks. | |
1079 | * | |
1080 | * RETURNS: | |
1081 | * Chunk serving the region at @tmp_addr of @map_size. | |
1082 | */ | |
c0ebfdc3 | 1083 | static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr, |
40064aec | 1084 | int map_size) |
10edf5b0 DZF |
1085 | { |
1086 | struct pcpu_chunk *chunk; | |
ca460b3c | 1087 | unsigned long aligned_addr, lcm_align; |
40064aec | 1088 | int start_offset, offset_bits, region_size, region_bits; |
f655f405 | 1089 | size_t alloc_size; |
c0ebfdc3 DZF |
1090 | |
1091 | /* region calculations */ | |
1092 | aligned_addr = tmp_addr & PAGE_MASK; | |
1093 | ||
1094 | start_offset = tmp_addr - aligned_addr; | |
6b9d7c8e | 1095 | |
ca460b3c DZF |
1096 | /* |
1097 | * Align the end of the region with the LCM of PAGE_SIZE and | |
1098 | * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of | |
1099 | * the other. | |
1100 | */ | |
1101 | lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE); | |
1102 | region_size = ALIGN(start_offset + map_size, lcm_align); | |
10edf5b0 | 1103 | |
c0ebfdc3 | 1104 | /* allocate chunk */ |
f655f405 MR |
1105 | alloc_size = sizeof(struct pcpu_chunk) + |
1106 | BITS_TO_LONGS(region_size >> PAGE_SHIFT); | |
1107 | chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | |
1108 | if (!chunk) | |
1109 | panic("%s: Failed to allocate %zu bytes\n", __func__, | |
1110 | alloc_size); | |
c0ebfdc3 | 1111 | |
10edf5b0 | 1112 | INIT_LIST_HEAD(&chunk->list); |
c0ebfdc3 DZF |
1113 | |
1114 | chunk->base_addr = (void *)aligned_addr; | |
10edf5b0 | 1115 | chunk->start_offset = start_offset; |
6b9d7c8e | 1116 | chunk->end_offset = region_size - chunk->start_offset - map_size; |
c0ebfdc3 | 1117 | |
8ab16c43 | 1118 | chunk->nr_pages = region_size >> PAGE_SHIFT; |
40064aec | 1119 | region_bits = pcpu_chunk_map_bits(chunk); |
c0ebfdc3 | 1120 | |
f655f405 MR |
1121 | alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]); |
1122 | chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | |
1123 | if (!chunk->alloc_map) | |
1124 | panic("%s: Failed to allocate %zu bytes\n", __func__, | |
1125 | alloc_size); | |
1126 | ||
1127 | alloc_size = | |
1128 | BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]); | |
1129 | chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | |
1130 | if (!chunk->bound_map) | |
1131 | panic("%s: Failed to allocate %zu bytes\n", __func__, | |
1132 | alloc_size); | |
1133 | ||
1134 | alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]); | |
1135 | chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | |
1136 | if (!chunk->md_blocks) | |
1137 | panic("%s: Failed to allocate %zu bytes\n", __func__, | |
1138 | alloc_size); | |
1139 | ||
ca460b3c | 1140 | pcpu_init_md_blocks(chunk); |
10edf5b0 DZF |
1141 | |
1142 | /* manage populated page bitmap */ | |
1143 | chunk->immutable = true; | |
8ab16c43 DZF |
1144 | bitmap_fill(chunk->populated, chunk->nr_pages); |
1145 | chunk->nr_populated = chunk->nr_pages; | |
40064aec DZF |
1146 | chunk->nr_empty_pop_pages = |
1147 | pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE, | |
1148 | map_size / PCPU_MIN_ALLOC_SIZE); | |
10edf5b0 | 1149 | |
40064aec DZF |
1150 | chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE; |
1151 | chunk->free_bytes = map_size; | |
c0ebfdc3 DZF |
1152 | |
1153 | if (chunk->start_offset) { | |
1154 | /* hide the beginning of the bitmap */ | |
40064aec DZF |
1155 | offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; |
1156 | bitmap_set(chunk->alloc_map, 0, offset_bits); | |
1157 | set_bit(0, chunk->bound_map); | |
1158 | set_bit(offset_bits, chunk->bound_map); | |
ca460b3c | 1159 | |
86b442fb DZF |
1160 | chunk->first_bit = offset_bits; |
1161 | ||
ca460b3c | 1162 | pcpu_block_update_hint_alloc(chunk, 0, offset_bits); |
c0ebfdc3 DZF |
1163 | } |
1164 | ||
6b9d7c8e DZF |
1165 | if (chunk->end_offset) { |
1166 | /* hide the end of the bitmap */ | |
40064aec DZF |
1167 | offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE; |
1168 | bitmap_set(chunk->alloc_map, | |
1169 | pcpu_chunk_map_bits(chunk) - offset_bits, | |
1170 | offset_bits); | |
1171 | set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE, | |
1172 | chunk->bound_map); | |
1173 | set_bit(region_bits, chunk->bound_map); | |
6b9d7c8e | 1174 | |
ca460b3c DZF |
1175 | pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk) |
1176 | - offset_bits, offset_bits); | |
1177 | } | |
40064aec | 1178 | |
10edf5b0 DZF |
1179 | return chunk; |
1180 | } | |
1181 | ||
47504ee0 | 1182 | static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp) |
6081089f TH |
1183 | { |
1184 | struct pcpu_chunk *chunk; | |
40064aec | 1185 | int region_bits; |
6081089f | 1186 | |
47504ee0 | 1187 | chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp); |
6081089f TH |
1188 | if (!chunk) |
1189 | return NULL; | |
1190 | ||
40064aec DZF |
1191 | INIT_LIST_HEAD(&chunk->list); |
1192 | chunk->nr_pages = pcpu_unit_pages; | |
1193 | region_bits = pcpu_chunk_map_bits(chunk); | |
6081089f | 1194 | |
40064aec | 1195 | chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) * |
47504ee0 | 1196 | sizeof(chunk->alloc_map[0]), gfp); |
40064aec DZF |
1197 | if (!chunk->alloc_map) |
1198 | goto alloc_map_fail; | |
6081089f | 1199 | |
40064aec | 1200 | chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) * |
47504ee0 | 1201 | sizeof(chunk->bound_map[0]), gfp); |
40064aec DZF |
1202 | if (!chunk->bound_map) |
1203 | goto bound_map_fail; | |
6081089f | 1204 | |
ca460b3c | 1205 | chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) * |
47504ee0 | 1206 | sizeof(chunk->md_blocks[0]), gfp); |
ca460b3c DZF |
1207 | if (!chunk->md_blocks) |
1208 | goto md_blocks_fail; | |
1209 | ||
1210 | pcpu_init_md_blocks(chunk); | |
1211 | ||
40064aec DZF |
1212 | /* init metadata */ |
1213 | chunk->contig_bits = region_bits; | |
1214 | chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; | |
c0ebfdc3 | 1215 | |
6081089f | 1216 | return chunk; |
40064aec | 1217 | |
ca460b3c DZF |
1218 | md_blocks_fail: |
1219 | pcpu_mem_free(chunk->bound_map); | |
40064aec DZF |
1220 | bound_map_fail: |
1221 | pcpu_mem_free(chunk->alloc_map); | |
1222 | alloc_map_fail: | |
1223 | pcpu_mem_free(chunk); | |
1224 | ||
1225 | return NULL; | |
6081089f TH |
1226 | } |
1227 | ||
1228 | static void pcpu_free_chunk(struct pcpu_chunk *chunk) | |
1229 | { | |
1230 | if (!chunk) | |
1231 | return; | |
6685b357 | 1232 | pcpu_mem_free(chunk->md_blocks); |
40064aec DZF |
1233 | pcpu_mem_free(chunk->bound_map); |
1234 | pcpu_mem_free(chunk->alloc_map); | |
1d5cfdb0 | 1235 | pcpu_mem_free(chunk); |
6081089f TH |
1236 | } |
1237 | ||
b539b87f TH |
1238 | /** |
1239 | * pcpu_chunk_populated - post-population bookkeeping | |
1240 | * @chunk: pcpu_chunk which got populated | |
1241 | * @page_start: the start page | |
1242 | * @page_end: the end page | |
40064aec | 1243 | * @for_alloc: if this is to populate for allocation |
b539b87f TH |
1244 | * |
1245 | * Pages in [@page_start,@page_end) have been populated to @chunk. Update | |
1246 | * the bookkeeping information accordingly. Must be called after each | |
1247 | * successful population. | |
40064aec DZF |
1248 | * |
1249 | * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it | |
1250 | * is to serve an allocation in that area. | |
b539b87f | 1251 | */ |
40064aec DZF |
1252 | static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, |
1253 | int page_end, bool for_alloc) | |
b539b87f TH |
1254 | { |
1255 | int nr = page_end - page_start; | |
1256 | ||
1257 | lockdep_assert_held(&pcpu_lock); | |
1258 | ||
1259 | bitmap_set(chunk->populated, page_start, nr); | |
1260 | chunk->nr_populated += nr; | |
7e8a6304 | 1261 | pcpu_nr_populated += nr; |
40064aec DZF |
1262 | |
1263 | if (!for_alloc) { | |
1264 | chunk->nr_empty_pop_pages += nr; | |
1265 | pcpu_nr_empty_pop_pages += nr; | |
1266 | } | |
b539b87f TH |
1267 | } |
1268 | ||
1269 | /** | |
1270 | * pcpu_chunk_depopulated - post-depopulation bookkeeping | |
1271 | * @chunk: pcpu_chunk which got depopulated | |
1272 | * @page_start: the start page | |
1273 | * @page_end: the end page | |
1274 | * | |
1275 | * Pages in [@page_start,@page_end) have been depopulated from @chunk. | |
1276 | * Update the bookkeeping information accordingly. Must be called after | |
1277 | * each successful depopulation. | |
1278 | */ | |
1279 | static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, | |
1280 | int page_start, int page_end) | |
1281 | { | |
1282 | int nr = page_end - page_start; | |
1283 | ||
1284 | lockdep_assert_held(&pcpu_lock); | |
1285 | ||
1286 | bitmap_clear(chunk->populated, page_start, nr); | |
1287 | chunk->nr_populated -= nr; | |
0cecf50c | 1288 | chunk->nr_empty_pop_pages -= nr; |
b539b87f | 1289 | pcpu_nr_empty_pop_pages -= nr; |
7e8a6304 | 1290 | pcpu_nr_populated -= nr; |
b539b87f TH |
1291 | } |
1292 | ||
9f645532 TH |
1293 | /* |
1294 | * Chunk management implementation. | |
1295 | * | |
1296 | * To allow different implementations, chunk alloc/free and | |
1297 | * [de]population are implemented in a separate file which is pulled | |
1298 | * into this file and compiled together. The following functions | |
1299 | * should be implemented. | |
1300 | * | |
1301 | * pcpu_populate_chunk - populate the specified range of a chunk | |
1302 | * pcpu_depopulate_chunk - depopulate the specified range of a chunk | |
1303 | * pcpu_create_chunk - create a new chunk | |
1304 | * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop | |
1305 | * pcpu_addr_to_page - translate address to physical address | |
1306 | * pcpu_verify_alloc_info - check alloc_info is acceptable during init | |
fbf59bc9 | 1307 | */ |
15d9f3d1 | 1308 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, |
47504ee0 | 1309 | int page_start, int page_end, gfp_t gfp); |
15d9f3d1 DZ |
1310 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, |
1311 | int page_start, int page_end); | |
47504ee0 | 1312 | static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp); |
9f645532 TH |
1313 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); |
1314 | static struct page *pcpu_addr_to_page(void *addr); | |
1315 | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); | |
fbf59bc9 | 1316 | |
b0c9778b TH |
1317 | #ifdef CONFIG_NEED_PER_CPU_KM |
1318 | #include "percpu-km.c" | |
1319 | #else | |
9f645532 | 1320 | #include "percpu-vm.c" |
b0c9778b | 1321 | #endif |
fbf59bc9 | 1322 | |
88999a89 TH |
1323 | /** |
1324 | * pcpu_chunk_addr_search - determine chunk containing specified address | |
1325 | * @addr: address for which the chunk needs to be determined. | |
1326 | * | |
c0ebfdc3 DZF |
1327 | * This is an internal function that handles all but static allocations. |
1328 | * Static percpu address values should never be passed into the allocator. | |
1329 | * | |
88999a89 TH |
1330 | * RETURNS: |
1331 | * The address of the found chunk. | |
1332 | */ | |
1333 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | |
1334 | { | |
c0ebfdc3 | 1335 | /* is it in the dynamic region (first chunk)? */ |
560f2c23 | 1336 | if (pcpu_addr_in_chunk(pcpu_first_chunk, addr)) |
88999a89 | 1337 | return pcpu_first_chunk; |
c0ebfdc3 DZF |
1338 | |
1339 | /* is it in the reserved region? */ | |
560f2c23 | 1340 | if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr)) |
c0ebfdc3 | 1341 | return pcpu_reserved_chunk; |
88999a89 TH |
1342 | |
1343 | /* | |
1344 | * The address is relative to unit0 which might be unused and | |
1345 | * thus unmapped. Offset the address to the unit space of the | |
1346 | * current processor before looking it up in the vmalloc | |
1347 | * space. Note that any possible cpu id can be used here, so | |
1348 | * there's no need to worry about preemption or cpu hotplug. | |
1349 | */ | |
1350 | addr += pcpu_unit_offsets[raw_smp_processor_id()]; | |
9f645532 | 1351 | return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); |
88999a89 TH |
1352 | } |
1353 | ||
fbf59bc9 | 1354 | /** |
edcb4639 | 1355 | * pcpu_alloc - the percpu allocator |
cae3aeb8 | 1356 | * @size: size of area to allocate in bytes |
fbf59bc9 | 1357 | * @align: alignment of area (max PAGE_SIZE) |
edcb4639 | 1358 | * @reserved: allocate from the reserved chunk if available |
5835d96e | 1359 | * @gfp: allocation flags |
fbf59bc9 | 1360 | * |
5835d96e | 1361 | * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't |
0ea7eeec DB |
1362 | * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN |
1363 | * then no warning will be triggered on invalid or failed allocation | |
1364 | * requests. | |
fbf59bc9 TH |
1365 | * |
1366 | * RETURNS: | |
1367 | * Percpu pointer to the allocated area on success, NULL on failure. | |
1368 | */ | |
5835d96e TH |
1369 | static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, |
1370 | gfp_t gfp) | |
fbf59bc9 | 1371 | { |
554fef1c DZ |
1372 | /* whitelisted flags that can be passed to the backing allocators */ |
1373 | gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); | |
0ea7eeec DB |
1374 | bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; |
1375 | bool do_warn = !(gfp & __GFP_NOWARN); | |
f2badb0c | 1376 | static int warn_limit = 10; |
fbf59bc9 | 1377 | struct pcpu_chunk *chunk; |
f2badb0c | 1378 | const char *err; |
40064aec | 1379 | int slot, off, cpu, ret; |
403a91b1 | 1380 | unsigned long flags; |
f528f0b8 | 1381 | void __percpu *ptr; |
40064aec | 1382 | size_t bits, bit_align; |
fbf59bc9 | 1383 | |
723ad1d9 | 1384 | /* |
40064aec DZF |
1385 | * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE, |
1386 | * therefore alignment must be a minimum of that many bytes. | |
1387 | * An allocation may have internal fragmentation from rounding up | |
1388 | * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes. | |
723ad1d9 | 1389 | */ |
d2f3c384 DZF |
1390 | if (unlikely(align < PCPU_MIN_ALLOC_SIZE)) |
1391 | align = PCPU_MIN_ALLOC_SIZE; | |
723ad1d9 | 1392 | |
d2f3c384 | 1393 | size = ALIGN(size, PCPU_MIN_ALLOC_SIZE); |
40064aec DZF |
1394 | bits = size >> PCPU_MIN_ALLOC_SHIFT; |
1395 | bit_align = align >> PCPU_MIN_ALLOC_SHIFT; | |
2f69fa82 | 1396 | |
3ca45a46 | 1397 | if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || |
1398 | !is_power_of_2(align))) { | |
0ea7eeec | 1399 | WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n", |
756a025f | 1400 | size, align); |
fbf59bc9 TH |
1401 | return NULL; |
1402 | } | |
1403 | ||
f52ba1fe KT |
1404 | if (!is_atomic) { |
1405 | /* | |
1406 | * pcpu_balance_workfn() allocates memory under this mutex, | |
1407 | * and it may wait for memory reclaim. Allow current task | |
1408 | * to become OOM victim, in case of memory pressure. | |
1409 | */ | |
1410 | if (gfp & __GFP_NOFAIL) | |
1411 | mutex_lock(&pcpu_alloc_mutex); | |
1412 | else if (mutex_lock_killable(&pcpu_alloc_mutex)) | |
1413 | return NULL; | |
1414 | } | |
6710e594 | 1415 | |
403a91b1 | 1416 | spin_lock_irqsave(&pcpu_lock, flags); |
fbf59bc9 | 1417 | |
edcb4639 TH |
1418 | /* serve reserved allocations from the reserved chunk if available */ |
1419 | if (reserved && pcpu_reserved_chunk) { | |
1420 | chunk = pcpu_reserved_chunk; | |
833af842 | 1421 | |
40064aec DZF |
1422 | off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); |
1423 | if (off < 0) { | |
833af842 | 1424 | err = "alloc from reserved chunk failed"; |
ccea34b5 | 1425 | goto fail_unlock; |
f2badb0c | 1426 | } |
833af842 | 1427 | |
40064aec | 1428 | off = pcpu_alloc_area(chunk, bits, bit_align, off); |
edcb4639 TH |
1429 | if (off >= 0) |
1430 | goto area_found; | |
833af842 | 1431 | |
f2badb0c | 1432 | err = "alloc from reserved chunk failed"; |
ccea34b5 | 1433 | goto fail_unlock; |
edcb4639 TH |
1434 | } |
1435 | ||
ccea34b5 | 1436 | restart: |
edcb4639 | 1437 | /* search through normal chunks */ |
fbf59bc9 TH |
1438 | for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { |
1439 | list_for_each_entry(chunk, &pcpu_slot[slot], list) { | |
40064aec DZF |
1440 | off = pcpu_find_block_fit(chunk, bits, bit_align, |
1441 | is_atomic); | |
1442 | if (off < 0) | |
fbf59bc9 | 1443 | continue; |
ccea34b5 | 1444 | |
40064aec | 1445 | off = pcpu_alloc_area(chunk, bits, bit_align, off); |
fbf59bc9 TH |
1446 | if (off >= 0) |
1447 | goto area_found; | |
40064aec | 1448 | |
fbf59bc9 TH |
1449 | } |
1450 | } | |
1451 | ||
403a91b1 | 1452 | spin_unlock_irqrestore(&pcpu_lock, flags); |
ccea34b5 | 1453 | |
b38d08f3 TH |
1454 | /* |
1455 | * No space left. Create a new chunk. We don't want multiple | |
1456 | * tasks to create chunks simultaneously. Serialize and create iff | |
1457 | * there's still no empty chunk after grabbing the mutex. | |
1458 | */ | |
11df02bf DZ |
1459 | if (is_atomic) { |
1460 | err = "atomic alloc failed, no space left"; | |
5835d96e | 1461 | goto fail; |
11df02bf | 1462 | } |
5835d96e | 1463 | |
b38d08f3 | 1464 | if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) { |
554fef1c | 1465 | chunk = pcpu_create_chunk(pcpu_gfp); |
b38d08f3 TH |
1466 | if (!chunk) { |
1467 | err = "failed to allocate new chunk"; | |
1468 | goto fail; | |
1469 | } | |
1470 | ||
1471 | spin_lock_irqsave(&pcpu_lock, flags); | |
1472 | pcpu_chunk_relocate(chunk, -1); | |
1473 | } else { | |
1474 | spin_lock_irqsave(&pcpu_lock, flags); | |
f2badb0c | 1475 | } |
ccea34b5 | 1476 | |
ccea34b5 | 1477 | goto restart; |
fbf59bc9 TH |
1478 | |
1479 | area_found: | |
30a5b536 | 1480 | pcpu_stats_area_alloc(chunk, size); |
403a91b1 | 1481 | spin_unlock_irqrestore(&pcpu_lock, flags); |
ccea34b5 | 1482 | |
dca49645 | 1483 | /* populate if not all pages are already there */ |
5835d96e | 1484 | if (!is_atomic) { |
e04d3208 | 1485 | int page_start, page_end, rs, re; |
dca49645 | 1486 | |
e04d3208 TH |
1487 | page_start = PFN_DOWN(off); |
1488 | page_end = PFN_UP(off + size); | |
b38d08f3 | 1489 | |
91e914c5 DZF |
1490 | pcpu_for_each_unpop_region(chunk->populated, rs, re, |
1491 | page_start, page_end) { | |
e04d3208 TH |
1492 | WARN_ON(chunk->immutable); |
1493 | ||
554fef1c | 1494 | ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp); |
e04d3208 TH |
1495 | |
1496 | spin_lock_irqsave(&pcpu_lock, flags); | |
1497 | if (ret) { | |
40064aec | 1498 | pcpu_free_area(chunk, off); |
e04d3208 TH |
1499 | err = "failed to populate"; |
1500 | goto fail_unlock; | |
1501 | } | |
40064aec | 1502 | pcpu_chunk_populated(chunk, rs, re, true); |
e04d3208 | 1503 | spin_unlock_irqrestore(&pcpu_lock, flags); |
dca49645 | 1504 | } |
fbf59bc9 | 1505 | |
e04d3208 TH |
1506 | mutex_unlock(&pcpu_alloc_mutex); |
1507 | } | |
ccea34b5 | 1508 | |
1a4d7607 TH |
1509 | if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) |
1510 | pcpu_schedule_balance_work(); | |
1511 | ||
dca49645 TH |
1512 | /* clear the areas and return address relative to base address */ |
1513 | for_each_possible_cpu(cpu) | |
1514 | memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); | |
1515 | ||
f528f0b8 | 1516 | ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); |
8a8c35fa | 1517 | kmemleak_alloc_percpu(ptr, size, gfp); |
df95e795 DZ |
1518 | |
1519 | trace_percpu_alloc_percpu(reserved, is_atomic, size, align, | |
1520 | chunk->base_addr, off, ptr); | |
1521 | ||
f528f0b8 | 1522 | return ptr; |
ccea34b5 TH |
1523 | |
1524 | fail_unlock: | |
403a91b1 | 1525 | spin_unlock_irqrestore(&pcpu_lock, flags); |
b38d08f3 | 1526 | fail: |
df95e795 DZ |
1527 | trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align); |
1528 | ||
0ea7eeec | 1529 | if (!is_atomic && do_warn && warn_limit) { |
870d4b12 | 1530 | pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", |
598d8091 | 1531 | size, align, is_atomic, err); |
f2badb0c TH |
1532 | dump_stack(); |
1533 | if (!--warn_limit) | |
870d4b12 | 1534 | pr_info("limit reached, disable warning\n"); |
f2badb0c | 1535 | } |
1a4d7607 TH |
1536 | if (is_atomic) { |
1537 | /* see the flag handling in pcpu_blance_workfn() */ | |
1538 | pcpu_atomic_alloc_failed = true; | |
1539 | pcpu_schedule_balance_work(); | |
6710e594 TH |
1540 | } else { |
1541 | mutex_unlock(&pcpu_alloc_mutex); | |
1a4d7607 | 1542 | } |
ccea34b5 | 1543 | return NULL; |
fbf59bc9 | 1544 | } |
edcb4639 TH |
1545 | |
1546 | /** | |
5835d96e | 1547 | * __alloc_percpu_gfp - allocate dynamic percpu area |
edcb4639 TH |
1548 | * @size: size of area to allocate in bytes |
1549 | * @align: alignment of area (max PAGE_SIZE) | |
5835d96e | 1550 | * @gfp: allocation flags |
edcb4639 | 1551 | * |
5835d96e TH |
1552 | * Allocate zero-filled percpu area of @size bytes aligned at @align. If |
1553 | * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can | |
0ea7eeec DB |
1554 | * be called from any context but is a lot more likely to fail. If @gfp |
1555 | * has __GFP_NOWARN then no warning will be triggered on invalid or failed | |
1556 | * allocation requests. | |
ccea34b5 | 1557 | * |
edcb4639 TH |
1558 | * RETURNS: |
1559 | * Percpu pointer to the allocated area on success, NULL on failure. | |
1560 | */ | |
5835d96e TH |
1561 | void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) |
1562 | { | |
1563 | return pcpu_alloc(size, align, false, gfp); | |
1564 | } | |
1565 | EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); | |
1566 | ||
1567 | /** | |
1568 | * __alloc_percpu - allocate dynamic percpu area | |
1569 | * @size: size of area to allocate in bytes | |
1570 | * @align: alignment of area (max PAGE_SIZE) | |
1571 | * | |
1572 | * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). | |
1573 | */ | |
43cf38eb | 1574 | void __percpu *__alloc_percpu(size_t size, size_t align) |
edcb4639 | 1575 | { |
5835d96e | 1576 | return pcpu_alloc(size, align, false, GFP_KERNEL); |
edcb4639 | 1577 | } |
fbf59bc9 TH |
1578 | EXPORT_SYMBOL_GPL(__alloc_percpu); |
1579 | ||
edcb4639 TH |
1580 | /** |
1581 | * __alloc_reserved_percpu - allocate reserved percpu area | |
1582 | * @size: size of area to allocate in bytes | |
1583 | * @align: alignment of area (max PAGE_SIZE) | |
1584 | * | |
9329ba97 TH |
1585 | * Allocate zero-filled percpu area of @size bytes aligned at @align |
1586 | * from reserved percpu area if arch has set it up; otherwise, | |
1587 | * allocation is served from the same dynamic area. Might sleep. | |
1588 | * Might trigger writeouts. | |
edcb4639 | 1589 | * |
ccea34b5 TH |
1590 | * CONTEXT: |
1591 | * Does GFP_KERNEL allocation. | |
1592 | * | |
edcb4639 TH |
1593 | * RETURNS: |
1594 | * Percpu pointer to the allocated area on success, NULL on failure. | |
1595 | */ | |
43cf38eb | 1596 | void __percpu *__alloc_reserved_percpu(size_t size, size_t align) |
edcb4639 | 1597 | { |
5835d96e | 1598 | return pcpu_alloc(size, align, true, GFP_KERNEL); |
edcb4639 TH |
1599 | } |
1600 | ||
a56dbddf | 1601 | /** |
1a4d7607 | 1602 | * pcpu_balance_workfn - manage the amount of free chunks and populated pages |
a56dbddf TH |
1603 | * @work: unused |
1604 | * | |
47504ee0 DZ |
1605 | * Reclaim all fully free chunks except for the first one. This is also |
1606 | * responsible for maintaining the pool of empty populated pages. However, | |
1607 | * it is possible that this is called when physical memory is scarce causing | |
1608 | * OOM killer to be triggered. We should avoid doing so until an actual | |
1609 | * allocation causes the failure as it is possible that requests can be | |
1610 | * serviced from already backed regions. | |
a56dbddf | 1611 | */ |
fe6bd8c3 | 1612 | static void pcpu_balance_workfn(struct work_struct *work) |
fbf59bc9 | 1613 | { |
47504ee0 | 1614 | /* gfp flags passed to underlying allocators */ |
554fef1c | 1615 | const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; |
fe6bd8c3 TH |
1616 | LIST_HEAD(to_free); |
1617 | struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1]; | |
a56dbddf | 1618 | struct pcpu_chunk *chunk, *next; |
1a4d7607 | 1619 | int slot, nr_to_pop, ret; |
a56dbddf | 1620 | |
1a4d7607 TH |
1621 | /* |
1622 | * There's no reason to keep around multiple unused chunks and VM | |
1623 | * areas can be scarce. Destroy all free chunks except for one. | |
1624 | */ | |
ccea34b5 TH |
1625 | mutex_lock(&pcpu_alloc_mutex); |
1626 | spin_lock_irq(&pcpu_lock); | |
a56dbddf | 1627 | |
fe6bd8c3 | 1628 | list_for_each_entry_safe(chunk, next, free_head, list) { |
a56dbddf TH |
1629 | WARN_ON(chunk->immutable); |
1630 | ||
1631 | /* spare the first one */ | |
fe6bd8c3 | 1632 | if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) |
a56dbddf TH |
1633 | continue; |
1634 | ||
fe6bd8c3 | 1635 | list_move(&chunk->list, &to_free); |
a56dbddf TH |
1636 | } |
1637 | ||
ccea34b5 | 1638 | spin_unlock_irq(&pcpu_lock); |
a56dbddf | 1639 | |
fe6bd8c3 | 1640 | list_for_each_entry_safe(chunk, next, &to_free, list) { |
a93ace48 | 1641 | int rs, re; |
dca49645 | 1642 | |
91e914c5 DZF |
1643 | pcpu_for_each_pop_region(chunk->populated, rs, re, 0, |
1644 | chunk->nr_pages) { | |
a93ace48 | 1645 | pcpu_depopulate_chunk(chunk, rs, re); |
b539b87f TH |
1646 | spin_lock_irq(&pcpu_lock); |
1647 | pcpu_chunk_depopulated(chunk, rs, re); | |
1648 | spin_unlock_irq(&pcpu_lock); | |
a93ace48 | 1649 | } |
6081089f | 1650 | pcpu_destroy_chunk(chunk); |
accd4f36 | 1651 | cond_resched(); |
a56dbddf | 1652 | } |
971f3918 | 1653 | |
1a4d7607 TH |
1654 | /* |
1655 | * Ensure there are certain number of free populated pages for | |
1656 | * atomic allocs. Fill up from the most packed so that atomic | |
1657 | * allocs don't increase fragmentation. If atomic allocation | |
1658 | * failed previously, always populate the maximum amount. This | |
1659 | * should prevent atomic allocs larger than PAGE_SIZE from keeping | |
1660 | * failing indefinitely; however, large atomic allocs are not | |
1661 | * something we support properly and can be highly unreliable and | |
1662 | * inefficient. | |
1663 | */ | |
1664 | retry_pop: | |
1665 | if (pcpu_atomic_alloc_failed) { | |
1666 | nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; | |
1667 | /* best effort anyway, don't worry about synchronization */ | |
1668 | pcpu_atomic_alloc_failed = false; | |
1669 | } else { | |
1670 | nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - | |
1671 | pcpu_nr_empty_pop_pages, | |
1672 | 0, PCPU_EMPTY_POP_PAGES_HIGH); | |
1673 | } | |
1674 | ||
1675 | for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) { | |
1676 | int nr_unpop = 0, rs, re; | |
1677 | ||
1678 | if (!nr_to_pop) | |
1679 | break; | |
1680 | ||
1681 | spin_lock_irq(&pcpu_lock); | |
1682 | list_for_each_entry(chunk, &pcpu_slot[slot], list) { | |
8ab16c43 | 1683 | nr_unpop = chunk->nr_pages - chunk->nr_populated; |
1a4d7607 TH |
1684 | if (nr_unpop) |
1685 | break; | |
1686 | } | |
1687 | spin_unlock_irq(&pcpu_lock); | |
1688 | ||
1689 | if (!nr_unpop) | |
1690 | continue; | |
1691 | ||
1692 | /* @chunk can't go away while pcpu_alloc_mutex is held */ | |
91e914c5 DZF |
1693 | pcpu_for_each_unpop_region(chunk->populated, rs, re, 0, |
1694 | chunk->nr_pages) { | |
1a4d7607 TH |
1695 | int nr = min(re - rs, nr_to_pop); |
1696 | ||
47504ee0 | 1697 | ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp); |
1a4d7607 TH |
1698 | if (!ret) { |
1699 | nr_to_pop -= nr; | |
1700 | spin_lock_irq(&pcpu_lock); | |
40064aec | 1701 | pcpu_chunk_populated(chunk, rs, rs + nr, false); |
1a4d7607 TH |
1702 | spin_unlock_irq(&pcpu_lock); |
1703 | } else { | |
1704 | nr_to_pop = 0; | |
1705 | } | |
1706 | ||
1707 | if (!nr_to_pop) | |
1708 | break; | |
1709 | } | |
1710 | } | |
1711 | ||
1712 | if (nr_to_pop) { | |
1713 | /* ran out of chunks to populate, create a new one and retry */ | |
47504ee0 | 1714 | chunk = pcpu_create_chunk(gfp); |
1a4d7607 TH |
1715 | if (chunk) { |
1716 | spin_lock_irq(&pcpu_lock); | |
1717 | pcpu_chunk_relocate(chunk, -1); | |
1718 | spin_unlock_irq(&pcpu_lock); | |
1719 | goto retry_pop; | |
1720 | } | |
1721 | } | |
1722 | ||
971f3918 | 1723 | mutex_unlock(&pcpu_alloc_mutex); |
fbf59bc9 TH |
1724 | } |
1725 | ||
1726 | /** | |
1727 | * free_percpu - free percpu area | |
1728 | * @ptr: pointer to area to free | |
1729 | * | |
ccea34b5 TH |
1730 | * Free percpu area @ptr. |
1731 | * | |
1732 | * CONTEXT: | |
1733 | * Can be called from atomic context. | |
fbf59bc9 | 1734 | */ |
43cf38eb | 1735 | void free_percpu(void __percpu *ptr) |
fbf59bc9 | 1736 | { |
129182e5 | 1737 | void *addr; |
fbf59bc9 | 1738 | struct pcpu_chunk *chunk; |
ccea34b5 | 1739 | unsigned long flags; |
40064aec | 1740 | int off; |
fbf59bc9 TH |
1741 | |
1742 | if (!ptr) | |
1743 | return; | |
1744 | ||
f528f0b8 CM |
1745 | kmemleak_free_percpu(ptr); |
1746 | ||
129182e5 AM |
1747 | addr = __pcpu_ptr_to_addr(ptr); |
1748 | ||
ccea34b5 | 1749 | spin_lock_irqsave(&pcpu_lock, flags); |
fbf59bc9 TH |
1750 | |
1751 | chunk = pcpu_chunk_addr_search(addr); | |
bba174f5 | 1752 | off = addr - chunk->base_addr; |
fbf59bc9 | 1753 | |
40064aec | 1754 | pcpu_free_area(chunk, off); |
fbf59bc9 | 1755 | |
a56dbddf | 1756 | /* if there are more than one fully free chunks, wake up grim reaper */ |
40064aec | 1757 | if (chunk->free_bytes == pcpu_unit_size) { |
fbf59bc9 TH |
1758 | struct pcpu_chunk *pos; |
1759 | ||
a56dbddf | 1760 | list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) |
fbf59bc9 | 1761 | if (pos != chunk) { |
1a4d7607 | 1762 | pcpu_schedule_balance_work(); |
fbf59bc9 TH |
1763 | break; |
1764 | } | |
1765 | } | |
1766 | ||
df95e795 DZ |
1767 | trace_percpu_free_percpu(chunk->base_addr, off, ptr); |
1768 | ||
ccea34b5 | 1769 | spin_unlock_irqrestore(&pcpu_lock, flags); |
fbf59bc9 TH |
1770 | } |
1771 | EXPORT_SYMBOL_GPL(free_percpu); | |
1772 | ||
383776fa | 1773 | bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr) |
10fad5e4 | 1774 | { |
bbddff05 | 1775 | #ifdef CONFIG_SMP |
10fad5e4 TH |
1776 | const size_t static_size = __per_cpu_end - __per_cpu_start; |
1777 | void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); | |
1778 | unsigned int cpu; | |
1779 | ||
1780 | for_each_possible_cpu(cpu) { | |
1781 | void *start = per_cpu_ptr(base, cpu); | |
383776fa | 1782 | void *va = (void *)addr; |
10fad5e4 | 1783 | |
383776fa | 1784 | if (va >= start && va < start + static_size) { |
8ce371f9 | 1785 | if (can_addr) { |
383776fa | 1786 | *can_addr = (unsigned long) (va - start); |
8ce371f9 PZ |
1787 | *can_addr += (unsigned long) |
1788 | per_cpu_ptr(base, get_boot_cpu_id()); | |
1789 | } | |
10fad5e4 | 1790 | return true; |
383776fa TG |
1791 | } |
1792 | } | |
bbddff05 TH |
1793 | #endif |
1794 | /* on UP, can't distinguish from other static vars, always false */ | |
10fad5e4 TH |
1795 | return false; |
1796 | } | |
1797 | ||
383776fa TG |
1798 | /** |
1799 | * is_kernel_percpu_address - test whether address is from static percpu area | |
1800 | * @addr: address to test | |
1801 | * | |
1802 | * Test whether @addr belongs to in-kernel static percpu area. Module | |
1803 | * static percpu areas are not considered. For those, use | |
1804 | * is_module_percpu_address(). | |
1805 | * | |
1806 | * RETURNS: | |
1807 | * %true if @addr is from in-kernel static percpu area, %false otherwise. | |
1808 | */ | |
1809 | bool is_kernel_percpu_address(unsigned long addr) | |
1810 | { | |
1811 | return __is_kernel_percpu_address(addr, NULL); | |
1812 | } | |
1813 | ||
3b034b0d VG |
1814 | /** |
1815 | * per_cpu_ptr_to_phys - convert translated percpu address to physical address | |
1816 | * @addr: the address to be converted to physical address | |
1817 | * | |
1818 | * Given @addr which is dereferenceable address obtained via one of | |
1819 | * percpu access macros, this function translates it into its physical | |
1820 | * address. The caller is responsible for ensuring @addr stays valid | |
1821 | * until this function finishes. | |
1822 | * | |
67589c71 DY |
1823 | * percpu allocator has special setup for the first chunk, which currently |
1824 | * supports either embedding in linear address space or vmalloc mapping, | |
1825 | * and, from the second one, the backing allocator (currently either vm or | |
1826 | * km) provides translation. | |
1827 | * | |
bffc4375 | 1828 | * The addr can be translated simply without checking if it falls into the |
67589c71 DY |
1829 | * first chunk. But the current code reflects better how percpu allocator |
1830 | * actually works, and the verification can discover both bugs in percpu | |
1831 | * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current | |
1832 | * code. | |
1833 | * | |
3b034b0d VG |
1834 | * RETURNS: |
1835 | * The physical address for @addr. | |
1836 | */ | |
1837 | phys_addr_t per_cpu_ptr_to_phys(void *addr) | |
1838 | { | |
9983b6f0 TH |
1839 | void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); |
1840 | bool in_first_chunk = false; | |
a855b84c | 1841 | unsigned long first_low, first_high; |
9983b6f0 TH |
1842 | unsigned int cpu; |
1843 | ||
1844 | /* | |
a855b84c | 1845 | * The following test on unit_low/high isn't strictly |
9983b6f0 TH |
1846 | * necessary but will speed up lookups of addresses which |
1847 | * aren't in the first chunk. | |
c0ebfdc3 DZF |
1848 | * |
1849 | * The address check is against full chunk sizes. pcpu_base_addr | |
1850 | * points to the beginning of the first chunk including the | |
1851 | * static region. Assumes good intent as the first chunk may | |
1852 | * not be full (ie. < pcpu_unit_pages in size). | |
9983b6f0 | 1853 | */ |
c0ebfdc3 DZF |
1854 | first_low = (unsigned long)pcpu_base_addr + |
1855 | pcpu_unit_page_offset(pcpu_low_unit_cpu, 0); | |
1856 | first_high = (unsigned long)pcpu_base_addr + | |
1857 | pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages); | |
a855b84c TH |
1858 | if ((unsigned long)addr >= first_low && |
1859 | (unsigned long)addr < first_high) { | |
9983b6f0 TH |
1860 | for_each_possible_cpu(cpu) { |
1861 | void *start = per_cpu_ptr(base, cpu); | |
1862 | ||
1863 | if (addr >= start && addr < start + pcpu_unit_size) { | |
1864 | in_first_chunk = true; | |
1865 | break; | |
1866 | } | |
1867 | } | |
1868 | } | |
1869 | ||
1870 | if (in_first_chunk) { | |
eac522ef | 1871 | if (!is_vmalloc_addr(addr)) |
020ec653 TH |
1872 | return __pa(addr); |
1873 | else | |
9f57bd4d ES |
1874 | return page_to_phys(vmalloc_to_page(addr)) + |
1875 | offset_in_page(addr); | |
020ec653 | 1876 | } else |
9f57bd4d ES |
1877 | return page_to_phys(pcpu_addr_to_page(addr)) + |
1878 | offset_in_page(addr); | |
3b034b0d VG |
1879 | } |
1880 | ||
fbf59bc9 | 1881 | /** |
fd1e8a1f TH |
1882 | * pcpu_alloc_alloc_info - allocate percpu allocation info |
1883 | * @nr_groups: the number of groups | |
1884 | * @nr_units: the number of units | |
1885 | * | |
1886 | * Allocate ai which is large enough for @nr_groups groups containing | |
1887 | * @nr_units units. The returned ai's groups[0].cpu_map points to the | |
1888 | * cpu_map array which is long enough for @nr_units and filled with | |
1889 | * NR_CPUS. It's the caller's responsibility to initialize cpu_map | |
1890 | * pointer of other groups. | |
1891 | * | |
1892 | * RETURNS: | |
1893 | * Pointer to the allocated pcpu_alloc_info on success, NULL on | |
1894 | * failure. | |
1895 | */ | |
1896 | struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, | |
1897 | int nr_units) | |
1898 | { | |
1899 | struct pcpu_alloc_info *ai; | |
1900 | size_t base_size, ai_size; | |
1901 | void *ptr; | |
1902 | int unit; | |
1903 | ||
1904 | base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), | |
1905 | __alignof__(ai->groups[0].cpu_map[0])); | |
1906 | ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); | |
1907 | ||
26fb3dae | 1908 | ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE); |
fd1e8a1f TH |
1909 | if (!ptr) |
1910 | return NULL; | |
1911 | ai = ptr; | |
1912 | ptr += base_size; | |
1913 | ||
1914 | ai->groups[0].cpu_map = ptr; | |
1915 | ||
1916 | for (unit = 0; unit < nr_units; unit++) | |
1917 | ai->groups[0].cpu_map[unit] = NR_CPUS; | |
1918 | ||
1919 | ai->nr_groups = nr_groups; | |
1920 | ai->__ai_size = PFN_ALIGN(ai_size); | |
1921 | ||
1922 | return ai; | |
1923 | } | |
1924 | ||
1925 | /** | |
1926 | * pcpu_free_alloc_info - free percpu allocation info | |
1927 | * @ai: pcpu_alloc_info to free | |
1928 | * | |
1929 | * Free @ai which was allocated by pcpu_alloc_alloc_info(). | |
1930 | */ | |
1931 | void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) | |
1932 | { | |
999c17e3 | 1933 | memblock_free_early(__pa(ai), ai->__ai_size); |
fd1e8a1f TH |
1934 | } |
1935 | ||
fd1e8a1f TH |
1936 | /** |
1937 | * pcpu_dump_alloc_info - print out information about pcpu_alloc_info | |
1938 | * @lvl: loglevel | |
1939 | * @ai: allocation info to dump | |
1940 | * | |
1941 | * Print out information about @ai using loglevel @lvl. | |
1942 | */ | |
1943 | static void pcpu_dump_alloc_info(const char *lvl, | |
1944 | const struct pcpu_alloc_info *ai) | |
033e48fb | 1945 | { |
fd1e8a1f | 1946 | int group_width = 1, cpu_width = 1, width; |
033e48fb | 1947 | char empty_str[] = "--------"; |
fd1e8a1f TH |
1948 | int alloc = 0, alloc_end = 0; |
1949 | int group, v; | |
1950 | int upa, apl; /* units per alloc, allocs per line */ | |
1951 | ||
1952 | v = ai->nr_groups; | |
1953 | while (v /= 10) | |
1954 | group_width++; | |
033e48fb | 1955 | |
fd1e8a1f | 1956 | v = num_possible_cpus(); |
033e48fb | 1957 | while (v /= 10) |
fd1e8a1f TH |
1958 | cpu_width++; |
1959 | empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; | |
033e48fb | 1960 | |
fd1e8a1f TH |
1961 | upa = ai->alloc_size / ai->unit_size; |
1962 | width = upa * (cpu_width + 1) + group_width + 3; | |
1963 | apl = rounddown_pow_of_two(max(60 / width, 1)); | |
033e48fb | 1964 | |
fd1e8a1f TH |
1965 | printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", |
1966 | lvl, ai->static_size, ai->reserved_size, ai->dyn_size, | |
1967 | ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); | |
033e48fb | 1968 | |
fd1e8a1f TH |
1969 | for (group = 0; group < ai->nr_groups; group++) { |
1970 | const struct pcpu_group_info *gi = &ai->groups[group]; | |
1971 | int unit = 0, unit_end = 0; | |
1972 | ||
1973 | BUG_ON(gi->nr_units % upa); | |
1974 | for (alloc_end += gi->nr_units / upa; | |
1975 | alloc < alloc_end; alloc++) { | |
1976 | if (!(alloc % apl)) { | |
1170532b | 1977 | pr_cont("\n"); |
fd1e8a1f TH |
1978 | printk("%spcpu-alloc: ", lvl); |
1979 | } | |
1170532b | 1980 | pr_cont("[%0*d] ", group_width, group); |
fd1e8a1f TH |
1981 | |
1982 | for (unit_end += upa; unit < unit_end; unit++) | |
1983 | if (gi->cpu_map[unit] != NR_CPUS) | |
1170532b JP |
1984 | pr_cont("%0*d ", |
1985 | cpu_width, gi->cpu_map[unit]); | |
fd1e8a1f | 1986 | else |
1170532b | 1987 | pr_cont("%s ", empty_str); |
033e48fb | 1988 | } |
033e48fb | 1989 | } |
1170532b | 1990 | pr_cont("\n"); |
033e48fb | 1991 | } |
033e48fb | 1992 | |
fbf59bc9 | 1993 | /** |
8d408b4b | 1994 | * pcpu_setup_first_chunk - initialize the first percpu chunk |
fd1e8a1f | 1995 | * @ai: pcpu_alloc_info describing how to percpu area is shaped |
38a6be52 | 1996 | * @base_addr: mapped address |
8d408b4b TH |
1997 | * |
1998 | * Initialize the first percpu chunk which contains the kernel static | |
1999 | * perpcu area. This function is to be called from arch percpu area | |
38a6be52 | 2000 | * setup path. |
8d408b4b | 2001 | * |
fd1e8a1f TH |
2002 | * @ai contains all information necessary to initialize the first |
2003 | * chunk and prime the dynamic percpu allocator. | |
2004 | * | |
2005 | * @ai->static_size is the size of static percpu area. | |
2006 | * | |
2007 | * @ai->reserved_size, if non-zero, specifies the amount of bytes to | |
edcb4639 TH |
2008 | * reserve after the static area in the first chunk. This reserves |
2009 | * the first chunk such that it's available only through reserved | |
2010 | * percpu allocation. This is primarily used to serve module percpu | |
2011 | * static areas on architectures where the addressing model has | |
2012 | * limited offset range for symbol relocations to guarantee module | |
2013 | * percpu symbols fall inside the relocatable range. | |
2014 | * | |
fd1e8a1f TH |
2015 | * @ai->dyn_size determines the number of bytes available for dynamic |
2016 | * allocation in the first chunk. The area between @ai->static_size + | |
2017 | * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. | |
6074d5b0 | 2018 | * |
fd1e8a1f TH |
2019 | * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE |
2020 | * and equal to or larger than @ai->static_size + @ai->reserved_size + | |
2021 | * @ai->dyn_size. | |
8d408b4b | 2022 | * |
fd1e8a1f TH |
2023 | * @ai->atom_size is the allocation atom size and used as alignment |
2024 | * for vm areas. | |
8d408b4b | 2025 | * |
fd1e8a1f TH |
2026 | * @ai->alloc_size is the allocation size and always multiple of |
2027 | * @ai->atom_size. This is larger than @ai->atom_size if | |
2028 | * @ai->unit_size is larger than @ai->atom_size. | |
2029 | * | |
2030 | * @ai->nr_groups and @ai->groups describe virtual memory layout of | |
2031 | * percpu areas. Units which should be colocated are put into the | |
2032 | * same group. Dynamic VM areas will be allocated according to these | |
2033 | * groupings. If @ai->nr_groups is zero, a single group containing | |
2034 | * all units is assumed. | |
8d408b4b | 2035 | * |
38a6be52 TH |
2036 | * The caller should have mapped the first chunk at @base_addr and |
2037 | * copied static data to each unit. | |
fbf59bc9 | 2038 | * |
c0ebfdc3 DZF |
2039 | * The first chunk will always contain a static and a dynamic region. |
2040 | * However, the static region is not managed by any chunk. If the first | |
2041 | * chunk also contains a reserved region, it is served by two chunks - | |
2042 | * one for the reserved region and one for the dynamic region. They | |
2043 | * share the same vm, but use offset regions in the area allocation map. | |
2044 | * The chunk serving the dynamic region is circulated in the chunk slots | |
2045 | * and available for dynamic allocation like any other chunk. | |
edcb4639 | 2046 | * |
fbf59bc9 | 2047 | * RETURNS: |
fb435d52 | 2048 | * 0 on success, -errno on failure. |
fbf59bc9 | 2049 | */ |
fb435d52 TH |
2050 | int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, |
2051 | void *base_addr) | |
fbf59bc9 | 2052 | { |
b9c39442 | 2053 | size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; |
d2f3c384 | 2054 | size_t static_size, dyn_size; |
0c4169c3 | 2055 | struct pcpu_chunk *chunk; |
6563297c TH |
2056 | unsigned long *group_offsets; |
2057 | size_t *group_sizes; | |
fb435d52 | 2058 | unsigned long *unit_off; |
fbf59bc9 | 2059 | unsigned int cpu; |
fd1e8a1f TH |
2060 | int *unit_map; |
2061 | int group, unit, i; | |
c0ebfdc3 DZF |
2062 | int map_size; |
2063 | unsigned long tmp_addr; | |
f655f405 | 2064 | size_t alloc_size; |
fbf59bc9 | 2065 | |
635b75fc TH |
2066 | #define PCPU_SETUP_BUG_ON(cond) do { \ |
2067 | if (unlikely(cond)) { \ | |
870d4b12 JP |
2068 | pr_emerg("failed to initialize, %s\n", #cond); \ |
2069 | pr_emerg("cpu_possible_mask=%*pb\n", \ | |
807de073 | 2070 | cpumask_pr_args(cpu_possible_mask)); \ |
635b75fc TH |
2071 | pcpu_dump_alloc_info(KERN_EMERG, ai); \ |
2072 | BUG(); \ | |
2073 | } \ | |
2074 | } while (0) | |
2075 | ||
2f39e637 | 2076 | /* sanity checks */ |
635b75fc | 2077 | PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); |
bbddff05 | 2078 | #ifdef CONFIG_SMP |
635b75fc | 2079 | PCPU_SETUP_BUG_ON(!ai->static_size); |
f09f1243 | 2080 | PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); |
bbddff05 | 2081 | #endif |
635b75fc | 2082 | PCPU_SETUP_BUG_ON(!base_addr); |
f09f1243 | 2083 | PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); |
635b75fc | 2084 | PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); |
f09f1243 | 2085 | PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); |
635b75fc | 2086 | PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); |
ca460b3c | 2087 | PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE)); |
099a19d9 | 2088 | PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); |
fb29a2cc | 2089 | PCPU_SETUP_BUG_ON(!ai->dyn_size); |
d2f3c384 | 2090 | PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE)); |
ca460b3c DZF |
2091 | PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) || |
2092 | IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE))); | |
9f645532 | 2093 | PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); |
8d408b4b | 2094 | |
6563297c | 2095 | /* process group information and build config tables accordingly */ |
f655f405 MR |
2096 | alloc_size = ai->nr_groups * sizeof(group_offsets[0]); |
2097 | group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | |
2098 | if (!group_offsets) | |
2099 | panic("%s: Failed to allocate %zu bytes\n", __func__, | |
2100 | alloc_size); | |
2101 | ||
2102 | alloc_size = ai->nr_groups * sizeof(group_sizes[0]); | |
2103 | group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | |
2104 | if (!group_sizes) | |
2105 | panic("%s: Failed to allocate %zu bytes\n", __func__, | |
2106 | alloc_size); | |
2107 | ||
2108 | alloc_size = nr_cpu_ids * sizeof(unit_map[0]); | |
2109 | unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | |
2110 | if (!unit_map) | |
2111 | panic("%s: Failed to allocate %zu bytes\n", __func__, | |
2112 | alloc_size); | |
2113 | ||
2114 | alloc_size = nr_cpu_ids * sizeof(unit_off[0]); | |
2115 | unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES); | |
2116 | if (!unit_off) | |
2117 | panic("%s: Failed to allocate %zu bytes\n", __func__, | |
2118 | alloc_size); | |
2f39e637 | 2119 | |
fd1e8a1f | 2120 | for (cpu = 0; cpu < nr_cpu_ids; cpu++) |
ffe0d5a5 | 2121 | unit_map[cpu] = UINT_MAX; |
a855b84c TH |
2122 | |
2123 | pcpu_low_unit_cpu = NR_CPUS; | |
2124 | pcpu_high_unit_cpu = NR_CPUS; | |
2f39e637 | 2125 | |
fd1e8a1f TH |
2126 | for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { |
2127 | const struct pcpu_group_info *gi = &ai->groups[group]; | |
2f39e637 | 2128 | |
6563297c TH |
2129 | group_offsets[group] = gi->base_offset; |
2130 | group_sizes[group] = gi->nr_units * ai->unit_size; | |
2131 | ||
fd1e8a1f TH |
2132 | for (i = 0; i < gi->nr_units; i++) { |
2133 | cpu = gi->cpu_map[i]; | |
2134 | if (cpu == NR_CPUS) | |
2135 | continue; | |
8d408b4b | 2136 | |
9f295664 | 2137 | PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); |
635b75fc TH |
2138 | PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); |
2139 | PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); | |
fbf59bc9 | 2140 | |
fd1e8a1f | 2141 | unit_map[cpu] = unit + i; |
fb435d52 TH |
2142 | unit_off[cpu] = gi->base_offset + i * ai->unit_size; |
2143 | ||
a855b84c TH |
2144 | /* determine low/high unit_cpu */ |
2145 | if (pcpu_low_unit_cpu == NR_CPUS || | |
2146 | unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) | |
2147 | pcpu_low_unit_cpu = cpu; | |
2148 | if (pcpu_high_unit_cpu == NR_CPUS || | |
2149 | unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) | |
2150 | pcpu_high_unit_cpu = cpu; | |
fd1e8a1f | 2151 | } |
2f39e637 | 2152 | } |
fd1e8a1f TH |
2153 | pcpu_nr_units = unit; |
2154 | ||
2155 | for_each_possible_cpu(cpu) | |
635b75fc TH |
2156 | PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); |
2157 | ||
2158 | /* we're done parsing the input, undefine BUG macro and dump config */ | |
2159 | #undef PCPU_SETUP_BUG_ON | |
bcbea798 | 2160 | pcpu_dump_alloc_info(KERN_DEBUG, ai); |
fd1e8a1f | 2161 | |
6563297c TH |
2162 | pcpu_nr_groups = ai->nr_groups; |
2163 | pcpu_group_offsets = group_offsets; | |
2164 | pcpu_group_sizes = group_sizes; | |
fd1e8a1f | 2165 | pcpu_unit_map = unit_map; |
fb435d52 | 2166 | pcpu_unit_offsets = unit_off; |
2f39e637 TH |
2167 | |
2168 | /* determine basic parameters */ | |
fd1e8a1f | 2169 | pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; |
d9b55eeb | 2170 | pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; |
6563297c | 2171 | pcpu_atom_size = ai->atom_size; |
ce3141a2 TH |
2172 | pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + |
2173 | BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); | |
cafe8816 | 2174 | |
30a5b536 DZ |
2175 | pcpu_stats_save_ai(ai); |
2176 | ||
d9b55eeb TH |
2177 | /* |
2178 | * Allocate chunk slots. The additional last slot is for | |
2179 | * empty chunks. | |
2180 | */ | |
2181 | pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; | |
7e1c4e27 MR |
2182 | pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]), |
2183 | SMP_CACHE_BYTES); | |
f655f405 MR |
2184 | if (!pcpu_slot) |
2185 | panic("%s: Failed to allocate %zu bytes\n", __func__, | |
2186 | pcpu_nr_slots * sizeof(pcpu_slot[0])); | |
fbf59bc9 TH |
2187 | for (i = 0; i < pcpu_nr_slots; i++) |
2188 | INIT_LIST_HEAD(&pcpu_slot[i]); | |
2189 | ||
d2f3c384 DZF |
2190 | /* |
2191 | * The end of the static region needs to be aligned with the | |
2192 | * minimum allocation size as this offsets the reserved and | |
2193 | * dynamic region. The first chunk ends page aligned by | |
2194 | * expanding the dynamic region, therefore the dynamic region | |
2195 | * can be shrunk to compensate while still staying above the | |
2196 | * configured sizes. | |
2197 | */ | |
2198 | static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE); | |
2199 | dyn_size = ai->dyn_size - (static_size - ai->static_size); | |
2200 | ||
edcb4639 | 2201 | /* |
c0ebfdc3 DZF |
2202 | * Initialize first chunk. |
2203 | * If the reserved_size is non-zero, this initializes the reserved | |
2204 | * chunk. If the reserved_size is zero, the reserved chunk is NULL | |
2205 | * and the dynamic region is initialized here. The first chunk, | |
2206 | * pcpu_first_chunk, will always point to the chunk that serves | |
2207 | * the dynamic region. | |
edcb4639 | 2208 | */ |
d2f3c384 DZF |
2209 | tmp_addr = (unsigned long)base_addr + static_size; |
2210 | map_size = ai->reserved_size ?: dyn_size; | |
40064aec | 2211 | chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); |
61ace7fa | 2212 | |
edcb4639 | 2213 | /* init dynamic chunk if necessary */ |
b9c39442 | 2214 | if (ai->reserved_size) { |
0c4169c3 | 2215 | pcpu_reserved_chunk = chunk; |
b9c39442 | 2216 | |
d2f3c384 | 2217 | tmp_addr = (unsigned long)base_addr + static_size + |
c0ebfdc3 | 2218 | ai->reserved_size; |
d2f3c384 | 2219 | map_size = dyn_size; |
40064aec | 2220 | chunk = pcpu_alloc_first_chunk(tmp_addr, map_size); |
edcb4639 TH |
2221 | } |
2222 | ||
2441d15c | 2223 | /* link the first chunk in */ |
0c4169c3 | 2224 | pcpu_first_chunk = chunk; |
0cecf50c | 2225 | pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages; |
ae9e6bc9 | 2226 | pcpu_chunk_relocate(pcpu_first_chunk, -1); |
fbf59bc9 | 2227 | |
7e8a6304 DZF |
2228 | /* include all regions of the first chunk */ |
2229 | pcpu_nr_populated += PFN_DOWN(size_sum); | |
2230 | ||
30a5b536 | 2231 | pcpu_stats_chunk_alloc(); |
df95e795 | 2232 | trace_percpu_create_chunk(base_addr); |
30a5b536 | 2233 | |
fbf59bc9 | 2234 | /* we're done */ |
bba174f5 | 2235 | pcpu_base_addr = base_addr; |
fb435d52 | 2236 | return 0; |
fbf59bc9 | 2237 | } |
66c3a757 | 2238 | |
bbddff05 TH |
2239 | #ifdef CONFIG_SMP |
2240 | ||
17f3609c | 2241 | const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { |
f58dc01b TH |
2242 | [PCPU_FC_AUTO] = "auto", |
2243 | [PCPU_FC_EMBED] = "embed", | |
2244 | [PCPU_FC_PAGE] = "page", | |
f58dc01b | 2245 | }; |
66c3a757 | 2246 | |
f58dc01b | 2247 | enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; |
66c3a757 | 2248 | |
f58dc01b TH |
2249 | static int __init percpu_alloc_setup(char *str) |
2250 | { | |
5479c78a CG |
2251 | if (!str) |
2252 | return -EINVAL; | |
2253 | ||
f58dc01b TH |
2254 | if (0) |
2255 | /* nada */; | |
2256 | #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK | |
2257 | else if (!strcmp(str, "embed")) | |
2258 | pcpu_chosen_fc = PCPU_FC_EMBED; | |
2259 | #endif | |
2260 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | |
2261 | else if (!strcmp(str, "page")) | |
2262 | pcpu_chosen_fc = PCPU_FC_PAGE; | |
f58dc01b TH |
2263 | #endif |
2264 | else | |
870d4b12 | 2265 | pr_warn("unknown allocator %s specified\n", str); |
66c3a757 | 2266 | |
f58dc01b | 2267 | return 0; |
66c3a757 | 2268 | } |
f58dc01b | 2269 | early_param("percpu_alloc", percpu_alloc_setup); |
66c3a757 | 2270 | |
3c9a024f TH |
2271 | /* |
2272 | * pcpu_embed_first_chunk() is used by the generic percpu setup. | |
2273 | * Build it if needed by the arch config or the generic setup is going | |
2274 | * to be used. | |
2275 | */ | |
08fc4580 TH |
2276 | #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ |
2277 | !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) | |
3c9a024f TH |
2278 | #define BUILD_EMBED_FIRST_CHUNK |
2279 | #endif | |
2280 | ||
2281 | /* build pcpu_page_first_chunk() iff needed by the arch config */ | |
2282 | #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) | |
2283 | #define BUILD_PAGE_FIRST_CHUNK | |
2284 | #endif | |
2285 | ||
2286 | /* pcpu_build_alloc_info() is used by both embed and page first chunk */ | |
2287 | #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) | |
2288 | /** | |
2289 | * pcpu_build_alloc_info - build alloc_info considering distances between CPUs | |
2290 | * @reserved_size: the size of reserved percpu area in bytes | |
2291 | * @dyn_size: minimum free size for dynamic allocation in bytes | |
2292 | * @atom_size: allocation atom size | |
2293 | * @cpu_distance_fn: callback to determine distance between cpus, optional | |
2294 | * | |
2295 | * This function determines grouping of units, their mappings to cpus | |
2296 | * and other parameters considering needed percpu size, allocation | |
2297 | * atom size and distances between CPUs. | |
2298 | * | |
bffc4375 | 2299 | * Groups are always multiples of atom size and CPUs which are of |
3c9a024f TH |
2300 | * LOCAL_DISTANCE both ways are grouped together and share space for |
2301 | * units in the same group. The returned configuration is guaranteed | |
2302 | * to have CPUs on different nodes on different groups and >=75% usage | |
2303 | * of allocated virtual address space. | |
2304 | * | |
2305 | * RETURNS: | |
2306 | * On success, pointer to the new allocation_info is returned. On | |
2307 | * failure, ERR_PTR value is returned. | |
2308 | */ | |
2309 | static struct pcpu_alloc_info * __init pcpu_build_alloc_info( | |
2310 | size_t reserved_size, size_t dyn_size, | |
2311 | size_t atom_size, | |
2312 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn) | |
2313 | { | |
2314 | static int group_map[NR_CPUS] __initdata; | |
2315 | static int group_cnt[NR_CPUS] __initdata; | |
2316 | const size_t static_size = __per_cpu_end - __per_cpu_start; | |
2317 | int nr_groups = 1, nr_units = 0; | |
2318 | size_t size_sum, min_unit_size, alloc_size; | |
2319 | int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ | |
2320 | int last_allocs, group, unit; | |
2321 | unsigned int cpu, tcpu; | |
2322 | struct pcpu_alloc_info *ai; | |
2323 | unsigned int *cpu_map; | |
2324 | ||
2325 | /* this function may be called multiple times */ | |
2326 | memset(group_map, 0, sizeof(group_map)); | |
2327 | memset(group_cnt, 0, sizeof(group_cnt)); | |
2328 | ||
2329 | /* calculate size_sum and ensure dyn_size is enough for early alloc */ | |
2330 | size_sum = PFN_ALIGN(static_size + reserved_size + | |
2331 | max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); | |
2332 | dyn_size = size_sum - static_size - reserved_size; | |
2333 | ||
2334 | /* | |
2335 | * Determine min_unit_size, alloc_size and max_upa such that | |
2336 | * alloc_size is multiple of atom_size and is the smallest | |
25985edc | 2337 | * which can accommodate 4k aligned segments which are equal to |
3c9a024f TH |
2338 | * or larger than min_unit_size. |
2339 | */ | |
2340 | min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); | |
2341 | ||
9c015162 | 2342 | /* determine the maximum # of units that can fit in an allocation */ |
3c9a024f TH |
2343 | alloc_size = roundup(min_unit_size, atom_size); |
2344 | upa = alloc_size / min_unit_size; | |
f09f1243 | 2345 | while (alloc_size % upa || (offset_in_page(alloc_size / upa))) |
3c9a024f TH |
2346 | upa--; |
2347 | max_upa = upa; | |
2348 | ||
2349 | /* group cpus according to their proximity */ | |
2350 | for_each_possible_cpu(cpu) { | |
2351 | group = 0; | |
2352 | next_group: | |
2353 | for_each_possible_cpu(tcpu) { | |
2354 | if (cpu == tcpu) | |
2355 | break; | |
2356 | if (group_map[tcpu] == group && cpu_distance_fn && | |
2357 | (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || | |
2358 | cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { | |
2359 | group++; | |
2360 | nr_groups = max(nr_groups, group + 1); | |
2361 | goto next_group; | |
2362 | } | |
2363 | } | |
2364 | group_map[cpu] = group; | |
2365 | group_cnt[group]++; | |
2366 | } | |
2367 | ||
2368 | /* | |
9c015162 DZF |
2369 | * Wasted space is caused by a ratio imbalance of upa to group_cnt. |
2370 | * Expand the unit_size until we use >= 75% of the units allocated. | |
2371 | * Related to atom_size, which could be much larger than the unit_size. | |
3c9a024f TH |
2372 | */ |
2373 | last_allocs = INT_MAX; | |
2374 | for (upa = max_upa; upa; upa--) { | |
2375 | int allocs = 0, wasted = 0; | |
2376 | ||
f09f1243 | 2377 | if (alloc_size % upa || (offset_in_page(alloc_size / upa))) |
3c9a024f TH |
2378 | continue; |
2379 | ||
2380 | for (group = 0; group < nr_groups; group++) { | |
2381 | int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); | |
2382 | allocs += this_allocs; | |
2383 | wasted += this_allocs * upa - group_cnt[group]; | |
2384 | } | |
2385 | ||
2386 | /* | |
2387 | * Don't accept if wastage is over 1/3. The | |
2388 | * greater-than comparison ensures upa==1 always | |
2389 | * passes the following check. | |
2390 | */ | |
2391 | if (wasted > num_possible_cpus() / 3) | |
2392 | continue; | |
2393 | ||
2394 | /* and then don't consume more memory */ | |
2395 | if (allocs > last_allocs) | |
2396 | break; | |
2397 | last_allocs = allocs; | |
2398 | best_upa = upa; | |
2399 | } | |
2400 | upa = best_upa; | |
2401 | ||
2402 | /* allocate and fill alloc_info */ | |
2403 | for (group = 0; group < nr_groups; group++) | |
2404 | nr_units += roundup(group_cnt[group], upa); | |
2405 | ||
2406 | ai = pcpu_alloc_alloc_info(nr_groups, nr_units); | |
2407 | if (!ai) | |
2408 | return ERR_PTR(-ENOMEM); | |
2409 | cpu_map = ai->groups[0].cpu_map; | |
2410 | ||
2411 | for (group = 0; group < nr_groups; group++) { | |
2412 | ai->groups[group].cpu_map = cpu_map; | |
2413 | cpu_map += roundup(group_cnt[group], upa); | |
2414 | } | |
2415 | ||
2416 | ai->static_size = static_size; | |
2417 | ai->reserved_size = reserved_size; | |
2418 | ai->dyn_size = dyn_size; | |
2419 | ai->unit_size = alloc_size / upa; | |
2420 | ai->atom_size = atom_size; | |
2421 | ai->alloc_size = alloc_size; | |
2422 | ||
2de7852f | 2423 | for (group = 0, unit = 0; group < nr_groups; group++) { |
3c9a024f TH |
2424 | struct pcpu_group_info *gi = &ai->groups[group]; |
2425 | ||
2426 | /* | |
2427 | * Initialize base_offset as if all groups are located | |
2428 | * back-to-back. The caller should update this to | |
2429 | * reflect actual allocation. | |
2430 | */ | |
2431 | gi->base_offset = unit * ai->unit_size; | |
2432 | ||
2433 | for_each_possible_cpu(cpu) | |
2434 | if (group_map[cpu] == group) | |
2435 | gi->cpu_map[gi->nr_units++] = cpu; | |
2436 | gi->nr_units = roundup(gi->nr_units, upa); | |
2437 | unit += gi->nr_units; | |
2438 | } | |
2439 | BUG_ON(unit != nr_units); | |
2440 | ||
2441 | return ai; | |
2442 | } | |
2443 | #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ | |
2444 | ||
2445 | #if defined(BUILD_EMBED_FIRST_CHUNK) | |
66c3a757 TH |
2446 | /** |
2447 | * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem | |
66c3a757 | 2448 | * @reserved_size: the size of reserved percpu area in bytes |
4ba6ce25 | 2449 | * @dyn_size: minimum free size for dynamic allocation in bytes |
c8826dd5 TH |
2450 | * @atom_size: allocation atom size |
2451 | * @cpu_distance_fn: callback to determine distance between cpus, optional | |
2452 | * @alloc_fn: function to allocate percpu page | |
25985edc | 2453 | * @free_fn: function to free percpu page |
66c3a757 TH |
2454 | * |
2455 | * This is a helper to ease setting up embedded first percpu chunk and | |
2456 | * can be called where pcpu_setup_first_chunk() is expected. | |
2457 | * | |
2458 | * If this function is used to setup the first chunk, it is allocated | |
c8826dd5 TH |
2459 | * by calling @alloc_fn and used as-is without being mapped into |
2460 | * vmalloc area. Allocations are always whole multiples of @atom_size | |
2461 | * aligned to @atom_size. | |
2462 | * | |
2463 | * This enables the first chunk to piggy back on the linear physical | |
2464 | * mapping which often uses larger page size. Please note that this | |
2465 | * can result in very sparse cpu->unit mapping on NUMA machines thus | |
2466 | * requiring large vmalloc address space. Don't use this allocator if | |
2467 | * vmalloc space is not orders of magnitude larger than distances | |
2468 | * between node memory addresses (ie. 32bit NUMA machines). | |
66c3a757 | 2469 | * |
4ba6ce25 | 2470 | * @dyn_size specifies the minimum dynamic area size. |
66c3a757 TH |
2471 | * |
2472 | * If the needed size is smaller than the minimum or specified unit | |
c8826dd5 | 2473 | * size, the leftover is returned using @free_fn. |
66c3a757 TH |
2474 | * |
2475 | * RETURNS: | |
fb435d52 | 2476 | * 0 on success, -errno on failure. |
66c3a757 | 2477 | */ |
4ba6ce25 | 2478 | int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, |
c8826dd5 TH |
2479 | size_t atom_size, |
2480 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn, | |
2481 | pcpu_fc_alloc_fn_t alloc_fn, | |
2482 | pcpu_fc_free_fn_t free_fn) | |
66c3a757 | 2483 | { |
c8826dd5 TH |
2484 | void *base = (void *)ULONG_MAX; |
2485 | void **areas = NULL; | |
fd1e8a1f | 2486 | struct pcpu_alloc_info *ai; |
93c76b6b | 2487 | size_t size_sum, areas_size; |
2488 | unsigned long max_distance; | |
9b739662 | 2489 | int group, i, highest_group, rc; |
66c3a757 | 2490 | |
c8826dd5 TH |
2491 | ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, |
2492 | cpu_distance_fn); | |
fd1e8a1f TH |
2493 | if (IS_ERR(ai)) |
2494 | return PTR_ERR(ai); | |
66c3a757 | 2495 | |
fd1e8a1f | 2496 | size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; |
c8826dd5 | 2497 | areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); |
fa8a7094 | 2498 | |
26fb3dae | 2499 | areas = memblock_alloc(areas_size, SMP_CACHE_BYTES); |
c8826dd5 | 2500 | if (!areas) { |
fb435d52 | 2501 | rc = -ENOMEM; |
c8826dd5 | 2502 | goto out_free; |
fa8a7094 | 2503 | } |
66c3a757 | 2504 | |
9b739662 | 2505 | /* allocate, copy and determine base address & max_distance */ |
2506 | highest_group = 0; | |
c8826dd5 TH |
2507 | for (group = 0; group < ai->nr_groups; group++) { |
2508 | struct pcpu_group_info *gi = &ai->groups[group]; | |
2509 | unsigned int cpu = NR_CPUS; | |
2510 | void *ptr; | |
2511 | ||
2512 | for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) | |
2513 | cpu = gi->cpu_map[i]; | |
2514 | BUG_ON(cpu == NR_CPUS); | |
2515 | ||
2516 | /* allocate space for the whole group */ | |
2517 | ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); | |
2518 | if (!ptr) { | |
2519 | rc = -ENOMEM; | |
2520 | goto out_free_areas; | |
2521 | } | |
f528f0b8 CM |
2522 | /* kmemleak tracks the percpu allocations separately */ |
2523 | kmemleak_free(ptr); | |
c8826dd5 | 2524 | areas[group] = ptr; |
fd1e8a1f | 2525 | |
c8826dd5 | 2526 | base = min(ptr, base); |
9b739662 | 2527 | if (ptr > areas[highest_group]) |
2528 | highest_group = group; | |
2529 | } | |
2530 | max_distance = areas[highest_group] - base; | |
2531 | max_distance += ai->unit_size * ai->groups[highest_group].nr_units; | |
2532 | ||
2533 | /* warn if maximum distance is further than 75% of vmalloc space */ | |
2534 | if (max_distance > VMALLOC_TOTAL * 3 / 4) { | |
2535 | pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", | |
2536 | max_distance, VMALLOC_TOTAL); | |
2537 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | |
2538 | /* and fail if we have fallback */ | |
2539 | rc = -EINVAL; | |
2540 | goto out_free_areas; | |
2541 | #endif | |
42b64281 TH |
2542 | } |
2543 | ||
2544 | /* | |
2545 | * Copy data and free unused parts. This should happen after all | |
2546 | * allocations are complete; otherwise, we may end up with | |
2547 | * overlapping groups. | |
2548 | */ | |
2549 | for (group = 0; group < ai->nr_groups; group++) { | |
2550 | struct pcpu_group_info *gi = &ai->groups[group]; | |
2551 | void *ptr = areas[group]; | |
c8826dd5 TH |
2552 | |
2553 | for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { | |
2554 | if (gi->cpu_map[i] == NR_CPUS) { | |
2555 | /* unused unit, free whole */ | |
2556 | free_fn(ptr, ai->unit_size); | |
2557 | continue; | |
2558 | } | |
2559 | /* copy and return the unused part */ | |
2560 | memcpy(ptr, __per_cpu_load, ai->static_size); | |
2561 | free_fn(ptr + size_sum, ai->unit_size - size_sum); | |
2562 | } | |
fa8a7094 | 2563 | } |
66c3a757 | 2564 | |
c8826dd5 | 2565 | /* base address is now known, determine group base offsets */ |
6ea529a2 | 2566 | for (group = 0; group < ai->nr_groups; group++) { |
c8826dd5 | 2567 | ai->groups[group].base_offset = areas[group] - base; |
6ea529a2 | 2568 | } |
c8826dd5 | 2569 | |
870d4b12 | 2570 | pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", |
fd1e8a1f TH |
2571 | PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, |
2572 | ai->dyn_size, ai->unit_size); | |
d4b95f80 | 2573 | |
fb435d52 | 2574 | rc = pcpu_setup_first_chunk(ai, base); |
c8826dd5 TH |
2575 | goto out_free; |
2576 | ||
2577 | out_free_areas: | |
2578 | for (group = 0; group < ai->nr_groups; group++) | |
f851c8d8 MH |
2579 | if (areas[group]) |
2580 | free_fn(areas[group], | |
2581 | ai->groups[group].nr_units * ai->unit_size); | |
c8826dd5 | 2582 | out_free: |
fd1e8a1f | 2583 | pcpu_free_alloc_info(ai); |
c8826dd5 | 2584 | if (areas) |
999c17e3 | 2585 | memblock_free_early(__pa(areas), areas_size); |
fb435d52 | 2586 | return rc; |
d4b95f80 | 2587 | } |
3c9a024f | 2588 | #endif /* BUILD_EMBED_FIRST_CHUNK */ |
d4b95f80 | 2589 | |
3c9a024f | 2590 | #ifdef BUILD_PAGE_FIRST_CHUNK |
d4b95f80 | 2591 | /** |
00ae4064 | 2592 | * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages |
d4b95f80 TH |
2593 | * @reserved_size: the size of reserved percpu area in bytes |
2594 | * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE | |
25985edc | 2595 | * @free_fn: function to free percpu page, always called with PAGE_SIZE |
d4b95f80 TH |
2596 | * @populate_pte_fn: function to populate pte |
2597 | * | |
00ae4064 TH |
2598 | * This is a helper to ease setting up page-remapped first percpu |
2599 | * chunk and can be called where pcpu_setup_first_chunk() is expected. | |
d4b95f80 TH |
2600 | * |
2601 | * This is the basic allocator. Static percpu area is allocated | |
2602 | * page-by-page into vmalloc area. | |
2603 | * | |
2604 | * RETURNS: | |
fb435d52 | 2605 | * 0 on success, -errno on failure. |
d4b95f80 | 2606 | */ |
fb435d52 TH |
2607 | int __init pcpu_page_first_chunk(size_t reserved_size, |
2608 | pcpu_fc_alloc_fn_t alloc_fn, | |
2609 | pcpu_fc_free_fn_t free_fn, | |
2610 | pcpu_fc_populate_pte_fn_t populate_pte_fn) | |
d4b95f80 | 2611 | { |
8f05a6a6 | 2612 | static struct vm_struct vm; |
fd1e8a1f | 2613 | struct pcpu_alloc_info *ai; |
00ae4064 | 2614 | char psize_str[16]; |
ce3141a2 | 2615 | int unit_pages; |
d4b95f80 | 2616 | size_t pages_size; |
ce3141a2 | 2617 | struct page **pages; |
fb435d52 | 2618 | int unit, i, j, rc; |
8f606604 | 2619 | int upa; |
2620 | int nr_g0_units; | |
d4b95f80 | 2621 | |
00ae4064 TH |
2622 | snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); |
2623 | ||
4ba6ce25 | 2624 | ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); |
fd1e8a1f TH |
2625 | if (IS_ERR(ai)) |
2626 | return PTR_ERR(ai); | |
2627 | BUG_ON(ai->nr_groups != 1); | |
8f606604 | 2628 | upa = ai->alloc_size/ai->unit_size; |
2629 | nr_g0_units = roundup(num_possible_cpus(), upa); | |
0b59c25f | 2630 | if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) { |
8f606604 | 2631 | pcpu_free_alloc_info(ai); |
2632 | return -EINVAL; | |
2633 | } | |
fd1e8a1f TH |
2634 | |
2635 | unit_pages = ai->unit_size >> PAGE_SHIFT; | |
d4b95f80 TH |
2636 | |
2637 | /* unaligned allocations can't be freed, round up to page size */ | |
fd1e8a1f TH |
2638 | pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * |
2639 | sizeof(pages[0])); | |
7e1c4e27 | 2640 | pages = memblock_alloc(pages_size, SMP_CACHE_BYTES); |
f655f405 MR |
2641 | if (!pages) |
2642 | panic("%s: Failed to allocate %zu bytes\n", __func__, | |
2643 | pages_size); | |
d4b95f80 | 2644 | |
8f05a6a6 | 2645 | /* allocate pages */ |
d4b95f80 | 2646 | j = 0; |
8f606604 | 2647 | for (unit = 0; unit < num_possible_cpus(); unit++) { |
2648 | unsigned int cpu = ai->groups[0].cpu_map[unit]; | |
ce3141a2 | 2649 | for (i = 0; i < unit_pages; i++) { |
d4b95f80 TH |
2650 | void *ptr; |
2651 | ||
3cbc8565 | 2652 | ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); |
d4b95f80 | 2653 | if (!ptr) { |
870d4b12 | 2654 | pr_warn("failed to allocate %s page for cpu%u\n", |
8f606604 | 2655 | psize_str, cpu); |
d4b95f80 TH |
2656 | goto enomem; |
2657 | } | |
f528f0b8 CM |
2658 | /* kmemleak tracks the percpu allocations separately */ |
2659 | kmemleak_free(ptr); | |
ce3141a2 | 2660 | pages[j++] = virt_to_page(ptr); |
d4b95f80 | 2661 | } |
8f606604 | 2662 | } |
d4b95f80 | 2663 | |
8f05a6a6 TH |
2664 | /* allocate vm area, map the pages and copy static data */ |
2665 | vm.flags = VM_ALLOC; | |
fd1e8a1f | 2666 | vm.size = num_possible_cpus() * ai->unit_size; |
8f05a6a6 TH |
2667 | vm_area_register_early(&vm, PAGE_SIZE); |
2668 | ||
fd1e8a1f | 2669 | for (unit = 0; unit < num_possible_cpus(); unit++) { |
1d9d3257 | 2670 | unsigned long unit_addr = |
fd1e8a1f | 2671 | (unsigned long)vm.addr + unit * ai->unit_size; |
8f05a6a6 | 2672 | |
ce3141a2 | 2673 | for (i = 0; i < unit_pages; i++) |
8f05a6a6 TH |
2674 | populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); |
2675 | ||
2676 | /* pte already populated, the following shouldn't fail */ | |
fb435d52 TH |
2677 | rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], |
2678 | unit_pages); | |
2679 | if (rc < 0) | |
2680 | panic("failed to map percpu area, err=%d\n", rc); | |
66c3a757 | 2681 | |
8f05a6a6 TH |
2682 | /* |
2683 | * FIXME: Archs with virtual cache should flush local | |
2684 | * cache for the linear mapping here - something | |
2685 | * equivalent to flush_cache_vmap() on the local cpu. | |
2686 | * flush_cache_vmap() can't be used as most supporting | |
2687 | * data structures are not set up yet. | |
2688 | */ | |
2689 | ||
2690 | /* copy static data */ | |
fd1e8a1f | 2691 | memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); |
66c3a757 TH |
2692 | } |
2693 | ||
2694 | /* we're ready, commit */ | |
870d4b12 | 2695 | pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n", |
fd1e8a1f TH |
2696 | unit_pages, psize_str, vm.addr, ai->static_size, |
2697 | ai->reserved_size, ai->dyn_size); | |
d4b95f80 | 2698 | |
fb435d52 | 2699 | rc = pcpu_setup_first_chunk(ai, vm.addr); |
d4b95f80 TH |
2700 | goto out_free_ar; |
2701 | ||
2702 | enomem: | |
2703 | while (--j >= 0) | |
ce3141a2 | 2704 | free_fn(page_address(pages[j]), PAGE_SIZE); |
fb435d52 | 2705 | rc = -ENOMEM; |
d4b95f80 | 2706 | out_free_ar: |
999c17e3 | 2707 | memblock_free_early(__pa(pages), pages_size); |
fd1e8a1f | 2708 | pcpu_free_alloc_info(ai); |
fb435d52 | 2709 | return rc; |
d4b95f80 | 2710 | } |
3c9a024f | 2711 | #endif /* BUILD_PAGE_FIRST_CHUNK */ |
d4b95f80 | 2712 | |
bbddff05 | 2713 | #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA |
e74e3962 | 2714 | /* |
bbddff05 | 2715 | * Generic SMP percpu area setup. |
e74e3962 TH |
2716 | * |
2717 | * The embedding helper is used because its behavior closely resembles | |
2718 | * the original non-dynamic generic percpu area setup. This is | |
2719 | * important because many archs have addressing restrictions and might | |
2720 | * fail if the percpu area is located far away from the previous | |
2721 | * location. As an added bonus, in non-NUMA cases, embedding is | |
2722 | * generally a good idea TLB-wise because percpu area can piggy back | |
2723 | * on the physical linear memory mapping which uses large page | |
2724 | * mappings on applicable archs. | |
2725 | */ | |
e74e3962 TH |
2726 | unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; |
2727 | EXPORT_SYMBOL(__per_cpu_offset); | |
2728 | ||
c8826dd5 TH |
2729 | static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, |
2730 | size_t align) | |
2731 | { | |
26fb3dae | 2732 | return memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS)); |
c8826dd5 | 2733 | } |
66c3a757 | 2734 | |
c8826dd5 TH |
2735 | static void __init pcpu_dfl_fc_free(void *ptr, size_t size) |
2736 | { | |
999c17e3 | 2737 | memblock_free_early(__pa(ptr), size); |
c8826dd5 TH |
2738 | } |
2739 | ||
e74e3962 TH |
2740 | void __init setup_per_cpu_areas(void) |
2741 | { | |
e74e3962 TH |
2742 | unsigned long delta; |
2743 | unsigned int cpu; | |
fb435d52 | 2744 | int rc; |
e74e3962 TH |
2745 | |
2746 | /* | |
2747 | * Always reserve area for module percpu variables. That's | |
2748 | * what the legacy allocator did. | |
2749 | */ | |
fb435d52 | 2750 | rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, |
c8826dd5 TH |
2751 | PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, |
2752 | pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); | |
fb435d52 | 2753 | if (rc < 0) |
bbddff05 | 2754 | panic("Failed to initialize percpu areas."); |
e74e3962 TH |
2755 | |
2756 | delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; | |
2757 | for_each_possible_cpu(cpu) | |
fb435d52 | 2758 | __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; |
66c3a757 | 2759 | } |
bbddff05 TH |
2760 | #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ |
2761 | ||
2762 | #else /* CONFIG_SMP */ | |
2763 | ||
2764 | /* | |
2765 | * UP percpu area setup. | |
2766 | * | |
2767 | * UP always uses km-based percpu allocator with identity mapping. | |
2768 | * Static percpu variables are indistinguishable from the usual static | |
2769 | * variables and don't require any special preparation. | |
2770 | */ | |
2771 | void __init setup_per_cpu_areas(void) | |
2772 | { | |
2773 | const size_t unit_size = | |
2774 | roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, | |
2775 | PERCPU_DYNAMIC_RESERVE)); | |
2776 | struct pcpu_alloc_info *ai; | |
2777 | void *fc; | |
2778 | ||
2779 | ai = pcpu_alloc_alloc_info(1, 1); | |
26fb3dae | 2780 | fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); |
bbddff05 TH |
2781 | if (!ai || !fc) |
2782 | panic("Failed to allocate memory for percpu areas."); | |
100d13c3 CM |
2783 | /* kmemleak tracks the percpu allocations separately */ |
2784 | kmemleak_free(fc); | |
bbddff05 TH |
2785 | |
2786 | ai->dyn_size = unit_size; | |
2787 | ai->unit_size = unit_size; | |
2788 | ai->atom_size = unit_size; | |
2789 | ai->alloc_size = unit_size; | |
2790 | ai->groups[0].nr_units = 1; | |
2791 | ai->groups[0].cpu_map[0] = 0; | |
2792 | ||
2793 | if (pcpu_setup_first_chunk(ai, fc) < 0) | |
2794 | panic("Failed to initialize percpu areas."); | |
438a5061 | 2795 | pcpu_free_alloc_info(ai); |
bbddff05 TH |
2796 | } |
2797 | ||
2798 | #endif /* CONFIG_SMP */ | |
099a19d9 | 2799 | |
7e8a6304 DZF |
2800 | /* |
2801 | * pcpu_nr_pages - calculate total number of populated backing pages | |
2802 | * | |
2803 | * This reflects the number of pages populated to back chunks. Metadata is | |
2804 | * excluded in the number exposed in meminfo as the number of backing pages | |
2805 | * scales with the number of cpus and can quickly outweigh the memory used for | |
2806 | * metadata. It also keeps this calculation nice and simple. | |
2807 | * | |
2808 | * RETURNS: | |
2809 | * Total number of populated backing pages in use by the allocator. | |
2810 | */ | |
2811 | unsigned long pcpu_nr_pages(void) | |
2812 | { | |
2813 | return pcpu_nr_populated * pcpu_nr_units; | |
2814 | } | |
2815 | ||
1a4d7607 TH |
2816 | /* |
2817 | * Percpu allocator is initialized early during boot when neither slab or | |
2818 | * workqueue is available. Plug async management until everything is up | |
2819 | * and running. | |
2820 | */ | |
2821 | static int __init percpu_enable_async(void) | |
2822 | { | |
2823 | pcpu_async_enabled = true; | |
2824 | return 0; | |
2825 | } | |
2826 | subsys_initcall(percpu_enable_async); |