]>
Commit | Line | Data |
---|---|---|
fbf59bc9 | 1 | /* |
88999a89 | 2 | * mm/percpu.c - percpu memory allocator |
fbf59bc9 TH |
3 | * |
4 | * Copyright (C) 2009 SUSE Linux Products GmbH | |
5 | * Copyright (C) 2009 Tejun Heo <[email protected]> | |
6 | * | |
7 | * This file is released under the GPLv2. | |
8 | * | |
9 | * This is percpu allocator which can handle both static and dynamic | |
88999a89 TH |
10 | * areas. Percpu areas are allocated in chunks. Each chunk is |
11 | * consisted of boot-time determined number of units and the first | |
12 | * chunk is used for static percpu variables in the kernel image | |
2f39e637 TH |
13 | * (special boot time alloc/init handling necessary as these areas |
14 | * need to be brought up before allocation services are running). | |
15 | * Unit grows as necessary and all units grow or shrink in unison. | |
88999a89 | 16 | * When a chunk is filled up, another chunk is allocated. |
fbf59bc9 TH |
17 | * |
18 | * c0 c1 c2 | |
19 | * ------------------- ------------------- ------------ | |
20 | * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u | |
21 | * ------------------- ...... ------------------- .... ------------ | |
22 | * | |
23 | * Allocation is done in offset-size areas of single unit space. Ie, | |
24 | * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, | |
2f39e637 TH |
25 | * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to |
26 | * cpus. On NUMA, the mapping can be non-linear and even sparse. | |
27 | * Percpu access can be done by configuring percpu base registers | |
28 | * according to cpu to unit mapping and pcpu_unit_size. | |
fbf59bc9 | 29 | * |
2f39e637 TH |
30 | * There are usually many small percpu allocations many of them being |
31 | * as small as 4 bytes. The allocator organizes chunks into lists | |
fbf59bc9 TH |
32 | * according to free size and tries to allocate from the fullest one. |
33 | * Each chunk keeps the maximum contiguous area size hint which is | |
4785879e | 34 | * guaranteed to be equal to or larger than the maximum contiguous |
fbf59bc9 TH |
35 | * area in the chunk. This helps the allocator not to iterate the |
36 | * chunk maps unnecessarily. | |
37 | * | |
38 | * Allocation state in each chunk is kept using an array of integers | |
39 | * on chunk->map. A positive value in the map represents a free | |
40 | * region and negative allocated. Allocation inside a chunk is done | |
41 | * by scanning this map sequentially and serving the first matching | |
42 | * entry. This is mostly copied from the percpu_modalloc() allocator. | |
e1b9aa3f CL |
43 | * Chunks can be determined from the address using the index field |
44 | * in the page struct. The index field contains a pointer to the chunk. | |
fbf59bc9 TH |
45 | * |
46 | * To use this allocator, arch code should do the followings. | |
47 | * | |
fbf59bc9 | 48 | * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate |
e0100983 TH |
49 | * regular address to percpu pointer and back if they need to be |
50 | * different from the default | |
fbf59bc9 | 51 | * |
8d408b4b TH |
52 | * - use pcpu_setup_first_chunk() during percpu area initialization to |
53 | * setup the first chunk containing the kernel static percpu area | |
fbf59bc9 TH |
54 | */ |
55 | ||
56 | #include <linux/bitmap.h> | |
57 | #include <linux/bootmem.h> | |
fd1e8a1f | 58 | #include <linux/err.h> |
fbf59bc9 | 59 | #include <linux/list.h> |
a530b795 | 60 | #include <linux/log2.h> |
fbf59bc9 TH |
61 | #include <linux/mm.h> |
62 | #include <linux/module.h> | |
63 | #include <linux/mutex.h> | |
64 | #include <linux/percpu.h> | |
65 | #include <linux/pfn.h> | |
fbf59bc9 | 66 | #include <linux/slab.h> |
ccea34b5 | 67 | #include <linux/spinlock.h> |
fbf59bc9 | 68 | #include <linux/vmalloc.h> |
a56dbddf | 69 | #include <linux/workqueue.h> |
f528f0b8 | 70 | #include <linux/kmemleak.h> |
fbf59bc9 TH |
71 | |
72 | #include <asm/cacheflush.h> | |
e0100983 | 73 | #include <asm/sections.h> |
fbf59bc9 | 74 | #include <asm/tlbflush.h> |
3b034b0d | 75 | #include <asm/io.h> |
fbf59bc9 | 76 | |
fbf59bc9 TH |
77 | #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ |
78 | #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ | |
9c824b6a TH |
79 | #define PCPU_ATOMIC_MAP_MARGIN_LOW 32 |
80 | #define PCPU_ATOMIC_MAP_MARGIN_HIGH 64 | |
1a4d7607 TH |
81 | #define PCPU_EMPTY_POP_PAGES_LOW 2 |
82 | #define PCPU_EMPTY_POP_PAGES_HIGH 4 | |
fbf59bc9 | 83 | |
bbddff05 | 84 | #ifdef CONFIG_SMP |
e0100983 TH |
85 | /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ |
86 | #ifndef __addr_to_pcpu_ptr | |
87 | #define __addr_to_pcpu_ptr(addr) \ | |
43cf38eb TH |
88 | (void __percpu *)((unsigned long)(addr) - \ |
89 | (unsigned long)pcpu_base_addr + \ | |
90 | (unsigned long)__per_cpu_start) | |
e0100983 TH |
91 | #endif |
92 | #ifndef __pcpu_ptr_to_addr | |
93 | #define __pcpu_ptr_to_addr(ptr) \ | |
43cf38eb TH |
94 | (void __force *)((unsigned long)(ptr) + \ |
95 | (unsigned long)pcpu_base_addr - \ | |
96 | (unsigned long)__per_cpu_start) | |
e0100983 | 97 | #endif |
bbddff05 TH |
98 | #else /* CONFIG_SMP */ |
99 | /* on UP, it's always identity mapped */ | |
100 | #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) | |
101 | #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) | |
102 | #endif /* CONFIG_SMP */ | |
e0100983 | 103 | |
fbf59bc9 TH |
104 | struct pcpu_chunk { |
105 | struct list_head list; /* linked to pcpu_slot lists */ | |
fbf59bc9 TH |
106 | int free_size; /* free bytes in the chunk */ |
107 | int contig_hint; /* max contiguous size hint */ | |
bba174f5 | 108 | void *base_addr; /* base address of this chunk */ |
9c824b6a | 109 | |
723ad1d9 | 110 | int map_used; /* # of map entries used before the sentry */ |
fbf59bc9 TH |
111 | int map_alloc; /* # of map entries allocated */ |
112 | int *map; /* allocation map */ | |
9c824b6a TH |
113 | struct work_struct map_extend_work;/* async ->map[] extension */ |
114 | ||
88999a89 | 115 | void *data; /* chunk data */ |
3d331ad7 | 116 | int first_free; /* no free below this */ |
8d408b4b | 117 | bool immutable; /* no [de]population allowed */ |
b539b87f | 118 | int nr_populated; /* # of populated pages */ |
ce3141a2 | 119 | unsigned long populated[]; /* populated bitmap */ |
fbf59bc9 TH |
120 | }; |
121 | ||
40150d37 TH |
122 | static int pcpu_unit_pages __read_mostly; |
123 | static int pcpu_unit_size __read_mostly; | |
2f39e637 | 124 | static int pcpu_nr_units __read_mostly; |
6563297c | 125 | static int pcpu_atom_size __read_mostly; |
40150d37 TH |
126 | static int pcpu_nr_slots __read_mostly; |
127 | static size_t pcpu_chunk_struct_size __read_mostly; | |
fbf59bc9 | 128 | |
a855b84c TH |
129 | /* cpus with the lowest and highest unit addresses */ |
130 | static unsigned int pcpu_low_unit_cpu __read_mostly; | |
131 | static unsigned int pcpu_high_unit_cpu __read_mostly; | |
2f39e637 | 132 | |
fbf59bc9 | 133 | /* the address of the first chunk which starts with the kernel static area */ |
40150d37 | 134 | void *pcpu_base_addr __read_mostly; |
fbf59bc9 TH |
135 | EXPORT_SYMBOL_GPL(pcpu_base_addr); |
136 | ||
fb435d52 TH |
137 | static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ |
138 | const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ | |
2f39e637 | 139 | |
6563297c TH |
140 | /* group information, used for vm allocation */ |
141 | static int pcpu_nr_groups __read_mostly; | |
142 | static const unsigned long *pcpu_group_offsets __read_mostly; | |
143 | static const size_t *pcpu_group_sizes __read_mostly; | |
144 | ||
ae9e6bc9 TH |
145 | /* |
146 | * The first chunk which always exists. Note that unlike other | |
147 | * chunks, this one can be allocated and mapped in several different | |
148 | * ways and thus often doesn't live in the vmalloc area. | |
149 | */ | |
150 | static struct pcpu_chunk *pcpu_first_chunk; | |
151 | ||
152 | /* | |
153 | * Optional reserved chunk. This chunk reserves part of the first | |
154 | * chunk and serves it for reserved allocations. The amount of | |
155 | * reserved offset is in pcpu_reserved_chunk_limit. When reserved | |
156 | * area doesn't exist, the following variables contain NULL and 0 | |
157 | * respectively. | |
158 | */ | |
edcb4639 | 159 | static struct pcpu_chunk *pcpu_reserved_chunk; |
edcb4639 TH |
160 | static int pcpu_reserved_chunk_limit; |
161 | ||
b38d08f3 TH |
162 | static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ |
163 | static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop */ | |
fbf59bc9 | 164 | |
40150d37 | 165 | static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ |
fbf59bc9 | 166 | |
b539b87f TH |
167 | /* |
168 | * The number of empty populated pages, protected by pcpu_lock. The | |
169 | * reserved chunk doesn't contribute to the count. | |
170 | */ | |
171 | static int pcpu_nr_empty_pop_pages; | |
172 | ||
1a4d7607 TH |
173 | /* |
174 | * Balance work is used to populate or destroy chunks asynchronously. We | |
175 | * try to keep the number of populated free pages between | |
176 | * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one | |
177 | * empty chunk. | |
178 | */ | |
fe6bd8c3 TH |
179 | static void pcpu_balance_workfn(struct work_struct *work); |
180 | static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); | |
1a4d7607 TH |
181 | static bool pcpu_async_enabled __read_mostly; |
182 | static bool pcpu_atomic_alloc_failed; | |
183 | ||
184 | static void pcpu_schedule_balance_work(void) | |
185 | { | |
186 | if (pcpu_async_enabled) | |
187 | schedule_work(&pcpu_balance_work); | |
188 | } | |
a56dbddf | 189 | |
020ec653 TH |
190 | static bool pcpu_addr_in_first_chunk(void *addr) |
191 | { | |
192 | void *first_start = pcpu_first_chunk->base_addr; | |
193 | ||
194 | return addr >= first_start && addr < first_start + pcpu_unit_size; | |
195 | } | |
196 | ||
197 | static bool pcpu_addr_in_reserved_chunk(void *addr) | |
198 | { | |
199 | void *first_start = pcpu_first_chunk->base_addr; | |
200 | ||
201 | return addr >= first_start && | |
202 | addr < first_start + pcpu_reserved_chunk_limit; | |
203 | } | |
204 | ||
d9b55eeb | 205 | static int __pcpu_size_to_slot(int size) |
fbf59bc9 | 206 | { |
cae3aeb8 | 207 | int highbit = fls(size); /* size is in bytes */ |
fbf59bc9 TH |
208 | return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); |
209 | } | |
210 | ||
d9b55eeb TH |
211 | static int pcpu_size_to_slot(int size) |
212 | { | |
213 | if (size == pcpu_unit_size) | |
214 | return pcpu_nr_slots - 1; | |
215 | return __pcpu_size_to_slot(size); | |
216 | } | |
217 | ||
fbf59bc9 TH |
218 | static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) |
219 | { | |
220 | if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) | |
221 | return 0; | |
222 | ||
223 | return pcpu_size_to_slot(chunk->free_size); | |
224 | } | |
225 | ||
88999a89 TH |
226 | /* set the pointer to a chunk in a page struct */ |
227 | static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) | |
228 | { | |
229 | page->index = (unsigned long)pcpu; | |
230 | } | |
231 | ||
232 | /* obtain pointer to a chunk from a page struct */ | |
233 | static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) | |
234 | { | |
235 | return (struct pcpu_chunk *)page->index; | |
236 | } | |
237 | ||
238 | static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) | |
fbf59bc9 | 239 | { |
2f39e637 | 240 | return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; |
fbf59bc9 TH |
241 | } |
242 | ||
9983b6f0 TH |
243 | static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, |
244 | unsigned int cpu, int page_idx) | |
fbf59bc9 | 245 | { |
bba174f5 | 246 | return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + |
fb435d52 | 247 | (page_idx << PAGE_SHIFT); |
fbf59bc9 TH |
248 | } |
249 | ||
88999a89 TH |
250 | static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, |
251 | int *rs, int *re, int end) | |
ce3141a2 TH |
252 | { |
253 | *rs = find_next_zero_bit(chunk->populated, end, *rs); | |
254 | *re = find_next_bit(chunk->populated, end, *rs + 1); | |
255 | } | |
256 | ||
88999a89 TH |
257 | static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, |
258 | int *rs, int *re, int end) | |
ce3141a2 TH |
259 | { |
260 | *rs = find_next_bit(chunk->populated, end, *rs); | |
261 | *re = find_next_zero_bit(chunk->populated, end, *rs + 1); | |
262 | } | |
263 | ||
264 | /* | |
265 | * (Un)populated page region iterators. Iterate over (un)populated | |
b595076a | 266 | * page regions between @start and @end in @chunk. @rs and @re should |
ce3141a2 TH |
267 | * be integer variables and will be set to start and end page index of |
268 | * the current region. | |
269 | */ | |
270 | #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ | |
271 | for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ | |
272 | (rs) < (re); \ | |
273 | (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) | |
274 | ||
275 | #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ | |
276 | for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ | |
277 | (rs) < (re); \ | |
278 | (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) | |
279 | ||
fbf59bc9 | 280 | /** |
90459ce0 | 281 | * pcpu_mem_zalloc - allocate memory |
1880d93b | 282 | * @size: bytes to allocate |
fbf59bc9 | 283 | * |
1880d93b | 284 | * Allocate @size bytes. If @size is smaller than PAGE_SIZE, |
90459ce0 | 285 | * kzalloc() is used; otherwise, vzalloc() is used. The returned |
1880d93b | 286 | * memory is always zeroed. |
fbf59bc9 | 287 | * |
ccea34b5 TH |
288 | * CONTEXT: |
289 | * Does GFP_KERNEL allocation. | |
290 | * | |
fbf59bc9 | 291 | * RETURNS: |
1880d93b | 292 | * Pointer to the allocated area on success, NULL on failure. |
fbf59bc9 | 293 | */ |
90459ce0 | 294 | static void *pcpu_mem_zalloc(size_t size) |
fbf59bc9 | 295 | { |
099a19d9 TH |
296 | if (WARN_ON_ONCE(!slab_is_available())) |
297 | return NULL; | |
298 | ||
1880d93b TH |
299 | if (size <= PAGE_SIZE) |
300 | return kzalloc(size, GFP_KERNEL); | |
7af4c093 JJ |
301 | else |
302 | return vzalloc(size); | |
1880d93b | 303 | } |
fbf59bc9 | 304 | |
1880d93b TH |
305 | /** |
306 | * pcpu_mem_free - free memory | |
307 | * @ptr: memory to free | |
308 | * @size: size of the area | |
309 | * | |
90459ce0 | 310 | * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). |
1880d93b TH |
311 | */ |
312 | static void pcpu_mem_free(void *ptr, size_t size) | |
313 | { | |
fbf59bc9 | 314 | if (size <= PAGE_SIZE) |
1880d93b | 315 | kfree(ptr); |
fbf59bc9 | 316 | else |
1880d93b | 317 | vfree(ptr); |
fbf59bc9 TH |
318 | } |
319 | ||
b539b87f TH |
320 | /** |
321 | * pcpu_count_occupied_pages - count the number of pages an area occupies | |
322 | * @chunk: chunk of interest | |
323 | * @i: index of the area in question | |
324 | * | |
325 | * Count the number of pages chunk's @i'th area occupies. When the area's | |
326 | * start and/or end address isn't aligned to page boundary, the straddled | |
327 | * page is included in the count iff the rest of the page is free. | |
328 | */ | |
329 | static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i) | |
330 | { | |
331 | int off = chunk->map[i] & ~1; | |
332 | int end = chunk->map[i + 1] & ~1; | |
333 | ||
334 | if (!PAGE_ALIGNED(off) && i > 0) { | |
335 | int prev = chunk->map[i - 1]; | |
336 | ||
337 | if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE)) | |
338 | off = round_down(off, PAGE_SIZE); | |
339 | } | |
340 | ||
341 | if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) { | |
342 | int next = chunk->map[i + 1]; | |
343 | int nend = chunk->map[i + 2] & ~1; | |
344 | ||
345 | if (!(next & 1) && nend >= round_up(end, PAGE_SIZE)) | |
346 | end = round_up(end, PAGE_SIZE); | |
347 | } | |
348 | ||
349 | return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0); | |
350 | } | |
351 | ||
fbf59bc9 TH |
352 | /** |
353 | * pcpu_chunk_relocate - put chunk in the appropriate chunk slot | |
354 | * @chunk: chunk of interest | |
355 | * @oslot: the previous slot it was on | |
356 | * | |
357 | * This function is called after an allocation or free changed @chunk. | |
358 | * New slot according to the changed state is determined and @chunk is | |
edcb4639 TH |
359 | * moved to the slot. Note that the reserved chunk is never put on |
360 | * chunk slots. | |
ccea34b5 TH |
361 | * |
362 | * CONTEXT: | |
363 | * pcpu_lock. | |
fbf59bc9 TH |
364 | */ |
365 | static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) | |
366 | { | |
367 | int nslot = pcpu_chunk_slot(chunk); | |
368 | ||
edcb4639 | 369 | if (chunk != pcpu_reserved_chunk && oslot != nslot) { |
fbf59bc9 TH |
370 | if (oslot < nslot) |
371 | list_move(&chunk->list, &pcpu_slot[nslot]); | |
372 | else | |
373 | list_move_tail(&chunk->list, &pcpu_slot[nslot]); | |
374 | } | |
375 | } | |
376 | ||
9f7dcf22 | 377 | /** |
833af842 TH |
378 | * pcpu_need_to_extend - determine whether chunk area map needs to be extended |
379 | * @chunk: chunk of interest | |
9c824b6a | 380 | * @is_atomic: the allocation context |
9f7dcf22 | 381 | * |
9c824b6a TH |
382 | * Determine whether area map of @chunk needs to be extended. If |
383 | * @is_atomic, only the amount necessary for a new allocation is | |
384 | * considered; however, async extension is scheduled if the left amount is | |
385 | * low. If !@is_atomic, it aims for more empty space. Combined, this | |
386 | * ensures that the map is likely to have enough available space to | |
387 | * accomodate atomic allocations which can't extend maps directly. | |
9f7dcf22 | 388 | * |
ccea34b5 | 389 | * CONTEXT: |
833af842 | 390 | * pcpu_lock. |
ccea34b5 | 391 | * |
9f7dcf22 | 392 | * RETURNS: |
833af842 TH |
393 | * New target map allocation length if extension is necessary, 0 |
394 | * otherwise. | |
9f7dcf22 | 395 | */ |
9c824b6a | 396 | static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic) |
9f7dcf22 | 397 | { |
9c824b6a TH |
398 | int margin, new_alloc; |
399 | ||
400 | if (is_atomic) { | |
401 | margin = 3; | |
9f7dcf22 | 402 | |
9c824b6a | 403 | if (chunk->map_alloc < |
1a4d7607 TH |
404 | chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW && |
405 | pcpu_async_enabled) | |
9c824b6a TH |
406 | schedule_work(&chunk->map_extend_work); |
407 | } else { | |
408 | margin = PCPU_ATOMIC_MAP_MARGIN_HIGH; | |
409 | } | |
410 | ||
411 | if (chunk->map_alloc >= chunk->map_used + margin) | |
9f7dcf22 TH |
412 | return 0; |
413 | ||
414 | new_alloc = PCPU_DFL_MAP_ALLOC; | |
9c824b6a | 415 | while (new_alloc < chunk->map_used + margin) |
9f7dcf22 TH |
416 | new_alloc *= 2; |
417 | ||
833af842 TH |
418 | return new_alloc; |
419 | } | |
420 | ||
421 | /** | |
422 | * pcpu_extend_area_map - extend area map of a chunk | |
423 | * @chunk: chunk of interest | |
424 | * @new_alloc: new target allocation length of the area map | |
425 | * | |
426 | * Extend area map of @chunk to have @new_alloc entries. | |
427 | * | |
428 | * CONTEXT: | |
429 | * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock. | |
430 | * | |
431 | * RETURNS: | |
432 | * 0 on success, -errno on failure. | |
433 | */ | |
434 | static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) | |
435 | { | |
436 | int *old = NULL, *new = NULL; | |
437 | size_t old_size = 0, new_size = new_alloc * sizeof(new[0]); | |
438 | unsigned long flags; | |
439 | ||
90459ce0 | 440 | new = pcpu_mem_zalloc(new_size); |
833af842 | 441 | if (!new) |
9f7dcf22 | 442 | return -ENOMEM; |
ccea34b5 | 443 | |
833af842 TH |
444 | /* acquire pcpu_lock and switch to new area map */ |
445 | spin_lock_irqsave(&pcpu_lock, flags); | |
446 | ||
447 | if (new_alloc <= chunk->map_alloc) | |
448 | goto out_unlock; | |
9f7dcf22 | 449 | |
833af842 | 450 | old_size = chunk->map_alloc * sizeof(chunk->map[0]); |
a002d148 HS |
451 | old = chunk->map; |
452 | ||
453 | memcpy(new, old, old_size); | |
9f7dcf22 | 454 | |
9f7dcf22 TH |
455 | chunk->map_alloc = new_alloc; |
456 | chunk->map = new; | |
833af842 TH |
457 | new = NULL; |
458 | ||
459 | out_unlock: | |
460 | spin_unlock_irqrestore(&pcpu_lock, flags); | |
461 | ||
462 | /* | |
463 | * pcpu_mem_free() might end up calling vfree() which uses | |
464 | * IRQ-unsafe lock and thus can't be called under pcpu_lock. | |
465 | */ | |
466 | pcpu_mem_free(old, old_size); | |
467 | pcpu_mem_free(new, new_size); | |
468 | ||
9f7dcf22 TH |
469 | return 0; |
470 | } | |
471 | ||
9c824b6a TH |
472 | static void pcpu_map_extend_workfn(struct work_struct *work) |
473 | { | |
474 | struct pcpu_chunk *chunk = container_of(work, struct pcpu_chunk, | |
475 | map_extend_work); | |
476 | int new_alloc; | |
477 | ||
478 | spin_lock_irq(&pcpu_lock); | |
479 | new_alloc = pcpu_need_to_extend(chunk, false); | |
480 | spin_unlock_irq(&pcpu_lock); | |
481 | ||
482 | if (new_alloc) | |
483 | pcpu_extend_area_map(chunk, new_alloc); | |
484 | } | |
485 | ||
a16037c8 TH |
486 | /** |
487 | * pcpu_fit_in_area - try to fit the requested allocation in a candidate area | |
488 | * @chunk: chunk the candidate area belongs to | |
489 | * @off: the offset to the start of the candidate area | |
490 | * @this_size: the size of the candidate area | |
491 | * @size: the size of the target allocation | |
492 | * @align: the alignment of the target allocation | |
493 | * @pop_only: only allocate from already populated region | |
494 | * | |
495 | * We're trying to allocate @size bytes aligned at @align. @chunk's area | |
496 | * at @off sized @this_size is a candidate. This function determines | |
497 | * whether the target allocation fits in the candidate area and returns the | |
498 | * number of bytes to pad after @off. If the target area doesn't fit, -1 | |
499 | * is returned. | |
500 | * | |
501 | * If @pop_only is %true, this function only considers the already | |
502 | * populated part of the candidate area. | |
503 | */ | |
504 | static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size, | |
505 | int size, int align, bool pop_only) | |
506 | { | |
507 | int cand_off = off; | |
508 | ||
509 | while (true) { | |
510 | int head = ALIGN(cand_off, align) - off; | |
511 | int page_start, page_end, rs, re; | |
512 | ||
513 | if (this_size < head + size) | |
514 | return -1; | |
515 | ||
516 | if (!pop_only) | |
517 | return head; | |
518 | ||
519 | /* | |
520 | * If the first unpopulated page is beyond the end of the | |
521 | * allocation, the whole allocation is populated; | |
522 | * otherwise, retry from the end of the unpopulated area. | |
523 | */ | |
524 | page_start = PFN_DOWN(head + off); | |
525 | page_end = PFN_UP(head + off + size); | |
526 | ||
527 | rs = page_start; | |
528 | pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size)); | |
529 | if (rs >= page_end) | |
530 | return head; | |
531 | cand_off = re * PAGE_SIZE; | |
532 | } | |
533 | } | |
534 | ||
fbf59bc9 TH |
535 | /** |
536 | * pcpu_alloc_area - allocate area from a pcpu_chunk | |
537 | * @chunk: chunk of interest | |
cae3aeb8 | 538 | * @size: wanted size in bytes |
fbf59bc9 | 539 | * @align: wanted align |
a16037c8 | 540 | * @pop_only: allocate only from the populated area |
b539b87f | 541 | * @occ_pages_p: out param for the number of pages the area occupies |
fbf59bc9 TH |
542 | * |
543 | * Try to allocate @size bytes area aligned at @align from @chunk. | |
544 | * Note that this function only allocates the offset. It doesn't | |
545 | * populate or map the area. | |
546 | * | |
9f7dcf22 TH |
547 | * @chunk->map must have at least two free slots. |
548 | * | |
ccea34b5 TH |
549 | * CONTEXT: |
550 | * pcpu_lock. | |
551 | * | |
fbf59bc9 | 552 | * RETURNS: |
9f7dcf22 TH |
553 | * Allocated offset in @chunk on success, -1 if no matching area is |
554 | * found. | |
fbf59bc9 | 555 | */ |
a16037c8 | 556 | static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align, |
b539b87f | 557 | bool pop_only, int *occ_pages_p) |
fbf59bc9 TH |
558 | { |
559 | int oslot = pcpu_chunk_slot(chunk); | |
560 | int max_contig = 0; | |
561 | int i, off; | |
3d331ad7 | 562 | bool seen_free = false; |
723ad1d9 | 563 | int *p; |
fbf59bc9 | 564 | |
3d331ad7 | 565 | for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) { |
fbf59bc9 | 566 | int head, tail; |
723ad1d9 AV |
567 | int this_size; |
568 | ||
569 | off = *p; | |
570 | if (off & 1) | |
571 | continue; | |
fbf59bc9 | 572 | |
723ad1d9 | 573 | this_size = (p[1] & ~1) - off; |
a16037c8 TH |
574 | |
575 | head = pcpu_fit_in_area(chunk, off, this_size, size, align, | |
576 | pop_only); | |
577 | if (head < 0) { | |
3d331ad7 AV |
578 | if (!seen_free) { |
579 | chunk->first_free = i; | |
580 | seen_free = true; | |
581 | } | |
723ad1d9 | 582 | max_contig = max(this_size, max_contig); |
fbf59bc9 TH |
583 | continue; |
584 | } | |
585 | ||
586 | /* | |
587 | * If head is small or the previous block is free, | |
588 | * merge'em. Note that 'small' is defined as smaller | |
589 | * than sizeof(int), which is very small but isn't too | |
590 | * uncommon for percpu allocations. | |
591 | */ | |
723ad1d9 | 592 | if (head && (head < sizeof(int) || !(p[-1] & 1))) { |
21ddfd38 | 593 | *p = off += head; |
723ad1d9 | 594 | if (p[-1] & 1) |
fbf59bc9 | 595 | chunk->free_size -= head; |
21ddfd38 JZ |
596 | else |
597 | max_contig = max(*p - p[-1], max_contig); | |
723ad1d9 | 598 | this_size -= head; |
fbf59bc9 TH |
599 | head = 0; |
600 | } | |
601 | ||
602 | /* if tail is small, just keep it around */ | |
723ad1d9 AV |
603 | tail = this_size - head - size; |
604 | if (tail < sizeof(int)) { | |
fbf59bc9 | 605 | tail = 0; |
723ad1d9 AV |
606 | size = this_size - head; |
607 | } | |
fbf59bc9 TH |
608 | |
609 | /* split if warranted */ | |
610 | if (head || tail) { | |
706c16f2 AV |
611 | int nr_extra = !!head + !!tail; |
612 | ||
613 | /* insert new subblocks */ | |
723ad1d9 | 614 | memmove(p + nr_extra + 1, p + 1, |
706c16f2 AV |
615 | sizeof(chunk->map[0]) * (chunk->map_used - i)); |
616 | chunk->map_used += nr_extra; | |
617 | ||
fbf59bc9 | 618 | if (head) { |
3d331ad7 AV |
619 | if (!seen_free) { |
620 | chunk->first_free = i; | |
621 | seen_free = true; | |
622 | } | |
723ad1d9 AV |
623 | *++p = off += head; |
624 | ++i; | |
706c16f2 AV |
625 | max_contig = max(head, max_contig); |
626 | } | |
627 | if (tail) { | |
723ad1d9 | 628 | p[1] = off + size; |
706c16f2 | 629 | max_contig = max(tail, max_contig); |
fbf59bc9 | 630 | } |
fbf59bc9 TH |
631 | } |
632 | ||
3d331ad7 AV |
633 | if (!seen_free) |
634 | chunk->first_free = i + 1; | |
635 | ||
fbf59bc9 | 636 | /* update hint and mark allocated */ |
723ad1d9 | 637 | if (i + 1 == chunk->map_used) |
fbf59bc9 TH |
638 | chunk->contig_hint = max_contig; /* fully scanned */ |
639 | else | |
640 | chunk->contig_hint = max(chunk->contig_hint, | |
641 | max_contig); | |
642 | ||
723ad1d9 AV |
643 | chunk->free_size -= size; |
644 | *p |= 1; | |
fbf59bc9 | 645 | |
b539b87f | 646 | *occ_pages_p = pcpu_count_occupied_pages(chunk, i); |
fbf59bc9 TH |
647 | pcpu_chunk_relocate(chunk, oslot); |
648 | return off; | |
649 | } | |
650 | ||
651 | chunk->contig_hint = max_contig; /* fully scanned */ | |
652 | pcpu_chunk_relocate(chunk, oslot); | |
653 | ||
9f7dcf22 TH |
654 | /* tell the upper layer that this chunk has no matching area */ |
655 | return -1; | |
fbf59bc9 TH |
656 | } |
657 | ||
658 | /** | |
659 | * pcpu_free_area - free area to a pcpu_chunk | |
660 | * @chunk: chunk of interest | |
661 | * @freeme: offset of area to free | |
b539b87f | 662 | * @occ_pages_p: out param for the number of pages the area occupies |
fbf59bc9 TH |
663 | * |
664 | * Free area starting from @freeme to @chunk. Note that this function | |
665 | * only modifies the allocation map. It doesn't depopulate or unmap | |
666 | * the area. | |
ccea34b5 TH |
667 | * |
668 | * CONTEXT: | |
669 | * pcpu_lock. | |
fbf59bc9 | 670 | */ |
b539b87f TH |
671 | static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme, |
672 | int *occ_pages_p) | |
fbf59bc9 TH |
673 | { |
674 | int oslot = pcpu_chunk_slot(chunk); | |
723ad1d9 AV |
675 | int off = 0; |
676 | unsigned i, j; | |
677 | int to_free = 0; | |
678 | int *p; | |
679 | ||
680 | freeme |= 1; /* we are searching for <given offset, in use> pair */ | |
681 | ||
682 | i = 0; | |
683 | j = chunk->map_used; | |
684 | while (i != j) { | |
685 | unsigned k = (i + j) / 2; | |
686 | off = chunk->map[k]; | |
687 | if (off < freeme) | |
688 | i = k + 1; | |
689 | else if (off > freeme) | |
690 | j = k; | |
691 | else | |
692 | i = j = k; | |
693 | } | |
fbf59bc9 | 694 | BUG_ON(off != freeme); |
fbf59bc9 | 695 | |
3d331ad7 AV |
696 | if (i < chunk->first_free) |
697 | chunk->first_free = i; | |
698 | ||
723ad1d9 AV |
699 | p = chunk->map + i; |
700 | *p = off &= ~1; | |
701 | chunk->free_size += (p[1] & ~1) - off; | |
fbf59bc9 | 702 | |
b539b87f TH |
703 | *occ_pages_p = pcpu_count_occupied_pages(chunk, i); |
704 | ||
723ad1d9 AV |
705 | /* merge with next? */ |
706 | if (!(p[1] & 1)) | |
707 | to_free++; | |
fbf59bc9 | 708 | /* merge with previous? */ |
723ad1d9 AV |
709 | if (i > 0 && !(p[-1] & 1)) { |
710 | to_free++; | |
fbf59bc9 | 711 | i--; |
723ad1d9 | 712 | p--; |
fbf59bc9 | 713 | } |
723ad1d9 AV |
714 | if (to_free) { |
715 | chunk->map_used -= to_free; | |
716 | memmove(p + 1, p + 1 + to_free, | |
717 | (chunk->map_used - i) * sizeof(chunk->map[0])); | |
fbf59bc9 TH |
718 | } |
719 | ||
723ad1d9 | 720 | chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint); |
fbf59bc9 TH |
721 | pcpu_chunk_relocate(chunk, oslot); |
722 | } | |
723 | ||
6081089f TH |
724 | static struct pcpu_chunk *pcpu_alloc_chunk(void) |
725 | { | |
726 | struct pcpu_chunk *chunk; | |
727 | ||
90459ce0 | 728 | chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size); |
6081089f TH |
729 | if (!chunk) |
730 | return NULL; | |
731 | ||
90459ce0 BL |
732 | chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC * |
733 | sizeof(chunk->map[0])); | |
6081089f | 734 | if (!chunk->map) { |
5a838c3b | 735 | pcpu_mem_free(chunk, pcpu_chunk_struct_size); |
6081089f TH |
736 | return NULL; |
737 | } | |
738 | ||
739 | chunk->map_alloc = PCPU_DFL_MAP_ALLOC; | |
723ad1d9 AV |
740 | chunk->map[0] = 0; |
741 | chunk->map[1] = pcpu_unit_size | 1; | |
742 | chunk->map_used = 1; | |
6081089f TH |
743 | |
744 | INIT_LIST_HEAD(&chunk->list); | |
9c824b6a | 745 | INIT_WORK(&chunk->map_extend_work, pcpu_map_extend_workfn); |
6081089f TH |
746 | chunk->free_size = pcpu_unit_size; |
747 | chunk->contig_hint = pcpu_unit_size; | |
748 | ||
749 | return chunk; | |
750 | } | |
751 | ||
752 | static void pcpu_free_chunk(struct pcpu_chunk *chunk) | |
753 | { | |
754 | if (!chunk) | |
755 | return; | |
756 | pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); | |
b4916cb1 | 757 | pcpu_mem_free(chunk, pcpu_chunk_struct_size); |
6081089f TH |
758 | } |
759 | ||
b539b87f TH |
760 | /** |
761 | * pcpu_chunk_populated - post-population bookkeeping | |
762 | * @chunk: pcpu_chunk which got populated | |
763 | * @page_start: the start page | |
764 | * @page_end: the end page | |
765 | * | |
766 | * Pages in [@page_start,@page_end) have been populated to @chunk. Update | |
767 | * the bookkeeping information accordingly. Must be called after each | |
768 | * successful population. | |
769 | */ | |
770 | static void pcpu_chunk_populated(struct pcpu_chunk *chunk, | |
771 | int page_start, int page_end) | |
772 | { | |
773 | int nr = page_end - page_start; | |
774 | ||
775 | lockdep_assert_held(&pcpu_lock); | |
776 | ||
777 | bitmap_set(chunk->populated, page_start, nr); | |
778 | chunk->nr_populated += nr; | |
779 | pcpu_nr_empty_pop_pages += nr; | |
780 | } | |
781 | ||
782 | /** | |
783 | * pcpu_chunk_depopulated - post-depopulation bookkeeping | |
784 | * @chunk: pcpu_chunk which got depopulated | |
785 | * @page_start: the start page | |
786 | * @page_end: the end page | |
787 | * | |
788 | * Pages in [@page_start,@page_end) have been depopulated from @chunk. | |
789 | * Update the bookkeeping information accordingly. Must be called after | |
790 | * each successful depopulation. | |
791 | */ | |
792 | static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, | |
793 | int page_start, int page_end) | |
794 | { | |
795 | int nr = page_end - page_start; | |
796 | ||
797 | lockdep_assert_held(&pcpu_lock); | |
798 | ||
799 | bitmap_clear(chunk->populated, page_start, nr); | |
800 | chunk->nr_populated -= nr; | |
801 | pcpu_nr_empty_pop_pages -= nr; | |
802 | } | |
803 | ||
9f645532 TH |
804 | /* |
805 | * Chunk management implementation. | |
806 | * | |
807 | * To allow different implementations, chunk alloc/free and | |
808 | * [de]population are implemented in a separate file which is pulled | |
809 | * into this file and compiled together. The following functions | |
810 | * should be implemented. | |
811 | * | |
812 | * pcpu_populate_chunk - populate the specified range of a chunk | |
813 | * pcpu_depopulate_chunk - depopulate the specified range of a chunk | |
814 | * pcpu_create_chunk - create a new chunk | |
815 | * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop | |
816 | * pcpu_addr_to_page - translate address to physical address | |
817 | * pcpu_verify_alloc_info - check alloc_info is acceptable during init | |
fbf59bc9 | 818 | */ |
9f645532 TH |
819 | static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); |
820 | static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); | |
821 | static struct pcpu_chunk *pcpu_create_chunk(void); | |
822 | static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); | |
823 | static struct page *pcpu_addr_to_page(void *addr); | |
824 | static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); | |
fbf59bc9 | 825 | |
b0c9778b TH |
826 | #ifdef CONFIG_NEED_PER_CPU_KM |
827 | #include "percpu-km.c" | |
828 | #else | |
9f645532 | 829 | #include "percpu-vm.c" |
b0c9778b | 830 | #endif |
fbf59bc9 | 831 | |
88999a89 TH |
832 | /** |
833 | * pcpu_chunk_addr_search - determine chunk containing specified address | |
834 | * @addr: address for which the chunk needs to be determined. | |
835 | * | |
836 | * RETURNS: | |
837 | * The address of the found chunk. | |
838 | */ | |
839 | static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) | |
840 | { | |
841 | /* is it in the first chunk? */ | |
842 | if (pcpu_addr_in_first_chunk(addr)) { | |
843 | /* is it in the reserved area? */ | |
844 | if (pcpu_addr_in_reserved_chunk(addr)) | |
845 | return pcpu_reserved_chunk; | |
846 | return pcpu_first_chunk; | |
847 | } | |
848 | ||
849 | /* | |
850 | * The address is relative to unit0 which might be unused and | |
851 | * thus unmapped. Offset the address to the unit space of the | |
852 | * current processor before looking it up in the vmalloc | |
853 | * space. Note that any possible cpu id can be used here, so | |
854 | * there's no need to worry about preemption or cpu hotplug. | |
855 | */ | |
856 | addr += pcpu_unit_offsets[raw_smp_processor_id()]; | |
9f645532 | 857 | return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); |
88999a89 TH |
858 | } |
859 | ||
fbf59bc9 | 860 | /** |
edcb4639 | 861 | * pcpu_alloc - the percpu allocator |
cae3aeb8 | 862 | * @size: size of area to allocate in bytes |
fbf59bc9 | 863 | * @align: alignment of area (max PAGE_SIZE) |
edcb4639 | 864 | * @reserved: allocate from the reserved chunk if available |
5835d96e | 865 | * @gfp: allocation flags |
fbf59bc9 | 866 | * |
5835d96e TH |
867 | * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't |
868 | * contain %GFP_KERNEL, the allocation is atomic. | |
fbf59bc9 TH |
869 | * |
870 | * RETURNS: | |
871 | * Percpu pointer to the allocated area on success, NULL on failure. | |
872 | */ | |
5835d96e TH |
873 | static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, |
874 | gfp_t gfp) | |
fbf59bc9 | 875 | { |
f2badb0c | 876 | static int warn_limit = 10; |
fbf59bc9 | 877 | struct pcpu_chunk *chunk; |
f2badb0c | 878 | const char *err; |
6ae833c7 | 879 | bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; |
b539b87f | 880 | int occ_pages = 0; |
b38d08f3 | 881 | int slot, off, new_alloc, cpu, ret; |
403a91b1 | 882 | unsigned long flags; |
f528f0b8 | 883 | void __percpu *ptr; |
fbf59bc9 | 884 | |
723ad1d9 AV |
885 | /* |
886 | * We want the lowest bit of offset available for in-use/free | |
2f69fa82 | 887 | * indicator, so force >= 16bit alignment and make size even. |
723ad1d9 AV |
888 | */ |
889 | if (unlikely(align < 2)) | |
890 | align = 2; | |
891 | ||
fb009e3a | 892 | size = ALIGN(size, 2); |
2f69fa82 | 893 | |
8d408b4b | 894 | if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { |
fbf59bc9 TH |
895 | WARN(true, "illegal size (%zu) or align (%zu) for " |
896 | "percpu allocation\n", size, align); | |
897 | return NULL; | |
898 | } | |
899 | ||
403a91b1 | 900 | spin_lock_irqsave(&pcpu_lock, flags); |
fbf59bc9 | 901 | |
edcb4639 TH |
902 | /* serve reserved allocations from the reserved chunk if available */ |
903 | if (reserved && pcpu_reserved_chunk) { | |
904 | chunk = pcpu_reserved_chunk; | |
833af842 TH |
905 | |
906 | if (size > chunk->contig_hint) { | |
907 | err = "alloc from reserved chunk failed"; | |
ccea34b5 | 908 | goto fail_unlock; |
f2badb0c | 909 | } |
833af842 | 910 | |
9c824b6a | 911 | while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) { |
833af842 | 912 | spin_unlock_irqrestore(&pcpu_lock, flags); |
5835d96e TH |
913 | if (is_atomic || |
914 | pcpu_extend_area_map(chunk, new_alloc) < 0) { | |
833af842 | 915 | err = "failed to extend area map of reserved chunk"; |
b38d08f3 | 916 | goto fail; |
833af842 TH |
917 | } |
918 | spin_lock_irqsave(&pcpu_lock, flags); | |
919 | } | |
920 | ||
b539b87f TH |
921 | off = pcpu_alloc_area(chunk, size, align, is_atomic, |
922 | &occ_pages); | |
edcb4639 TH |
923 | if (off >= 0) |
924 | goto area_found; | |
833af842 | 925 | |
f2badb0c | 926 | err = "alloc from reserved chunk failed"; |
ccea34b5 | 927 | goto fail_unlock; |
edcb4639 TH |
928 | } |
929 | ||
ccea34b5 | 930 | restart: |
edcb4639 | 931 | /* search through normal chunks */ |
fbf59bc9 TH |
932 | for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { |
933 | list_for_each_entry(chunk, &pcpu_slot[slot], list) { | |
934 | if (size > chunk->contig_hint) | |
935 | continue; | |
ccea34b5 | 936 | |
9c824b6a | 937 | new_alloc = pcpu_need_to_extend(chunk, is_atomic); |
833af842 | 938 | if (new_alloc) { |
5835d96e TH |
939 | if (is_atomic) |
940 | continue; | |
833af842 TH |
941 | spin_unlock_irqrestore(&pcpu_lock, flags); |
942 | if (pcpu_extend_area_map(chunk, | |
943 | new_alloc) < 0) { | |
944 | err = "failed to extend area map"; | |
b38d08f3 | 945 | goto fail; |
833af842 TH |
946 | } |
947 | spin_lock_irqsave(&pcpu_lock, flags); | |
948 | /* | |
949 | * pcpu_lock has been dropped, need to | |
950 | * restart cpu_slot list walking. | |
951 | */ | |
952 | goto restart; | |
ccea34b5 TH |
953 | } |
954 | ||
b539b87f TH |
955 | off = pcpu_alloc_area(chunk, size, align, is_atomic, |
956 | &occ_pages); | |
fbf59bc9 TH |
957 | if (off >= 0) |
958 | goto area_found; | |
fbf59bc9 TH |
959 | } |
960 | } | |
961 | ||
403a91b1 | 962 | spin_unlock_irqrestore(&pcpu_lock, flags); |
ccea34b5 | 963 | |
b38d08f3 TH |
964 | /* |
965 | * No space left. Create a new chunk. We don't want multiple | |
966 | * tasks to create chunks simultaneously. Serialize and create iff | |
967 | * there's still no empty chunk after grabbing the mutex. | |
968 | */ | |
5835d96e TH |
969 | if (is_atomic) |
970 | goto fail; | |
971 | ||
b38d08f3 TH |
972 | mutex_lock(&pcpu_alloc_mutex); |
973 | ||
974 | if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) { | |
975 | chunk = pcpu_create_chunk(); | |
976 | if (!chunk) { | |
23cb8981 | 977 | mutex_unlock(&pcpu_alloc_mutex); |
b38d08f3 TH |
978 | err = "failed to allocate new chunk"; |
979 | goto fail; | |
980 | } | |
981 | ||
982 | spin_lock_irqsave(&pcpu_lock, flags); | |
983 | pcpu_chunk_relocate(chunk, -1); | |
984 | } else { | |
985 | spin_lock_irqsave(&pcpu_lock, flags); | |
f2badb0c | 986 | } |
ccea34b5 | 987 | |
b38d08f3 | 988 | mutex_unlock(&pcpu_alloc_mutex); |
ccea34b5 | 989 | goto restart; |
fbf59bc9 TH |
990 | |
991 | area_found: | |
403a91b1 | 992 | spin_unlock_irqrestore(&pcpu_lock, flags); |
ccea34b5 | 993 | |
dca49645 | 994 | /* populate if not all pages are already there */ |
5835d96e | 995 | if (!is_atomic) { |
e04d3208 | 996 | int page_start, page_end, rs, re; |
dca49645 | 997 | |
e04d3208 | 998 | mutex_lock(&pcpu_alloc_mutex); |
dca49645 | 999 | |
e04d3208 TH |
1000 | page_start = PFN_DOWN(off); |
1001 | page_end = PFN_UP(off + size); | |
b38d08f3 | 1002 | |
e04d3208 TH |
1003 | pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { |
1004 | WARN_ON(chunk->immutable); | |
1005 | ||
1006 | ret = pcpu_populate_chunk(chunk, rs, re); | |
1007 | ||
1008 | spin_lock_irqsave(&pcpu_lock, flags); | |
1009 | if (ret) { | |
1010 | mutex_unlock(&pcpu_alloc_mutex); | |
b539b87f | 1011 | pcpu_free_area(chunk, off, &occ_pages); |
e04d3208 TH |
1012 | err = "failed to populate"; |
1013 | goto fail_unlock; | |
1014 | } | |
b539b87f | 1015 | pcpu_chunk_populated(chunk, rs, re); |
e04d3208 | 1016 | spin_unlock_irqrestore(&pcpu_lock, flags); |
dca49645 | 1017 | } |
fbf59bc9 | 1018 | |
e04d3208 TH |
1019 | mutex_unlock(&pcpu_alloc_mutex); |
1020 | } | |
ccea34b5 | 1021 | |
b539b87f TH |
1022 | if (chunk != pcpu_reserved_chunk) |
1023 | pcpu_nr_empty_pop_pages -= occ_pages; | |
1024 | ||
1a4d7607 TH |
1025 | if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) |
1026 | pcpu_schedule_balance_work(); | |
1027 | ||
dca49645 TH |
1028 | /* clear the areas and return address relative to base address */ |
1029 | for_each_possible_cpu(cpu) | |
1030 | memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); | |
1031 | ||
f528f0b8 CM |
1032 | ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); |
1033 | kmemleak_alloc_percpu(ptr, size); | |
1034 | return ptr; | |
ccea34b5 TH |
1035 | |
1036 | fail_unlock: | |
403a91b1 | 1037 | spin_unlock_irqrestore(&pcpu_lock, flags); |
b38d08f3 | 1038 | fail: |
5835d96e TH |
1039 | if (!is_atomic && warn_limit) { |
1040 | pr_warning("PERCPU: allocation failed, size=%zu align=%zu atomic=%d, %s\n", | |
1041 | size, align, is_atomic, err); | |
f2badb0c TH |
1042 | dump_stack(); |
1043 | if (!--warn_limit) | |
1044 | pr_info("PERCPU: limit reached, disable warning\n"); | |
1045 | } | |
1a4d7607 TH |
1046 | if (is_atomic) { |
1047 | /* see the flag handling in pcpu_blance_workfn() */ | |
1048 | pcpu_atomic_alloc_failed = true; | |
1049 | pcpu_schedule_balance_work(); | |
1050 | } | |
ccea34b5 | 1051 | return NULL; |
fbf59bc9 | 1052 | } |
edcb4639 TH |
1053 | |
1054 | /** | |
5835d96e | 1055 | * __alloc_percpu_gfp - allocate dynamic percpu area |
edcb4639 TH |
1056 | * @size: size of area to allocate in bytes |
1057 | * @align: alignment of area (max PAGE_SIZE) | |
5835d96e | 1058 | * @gfp: allocation flags |
edcb4639 | 1059 | * |
5835d96e TH |
1060 | * Allocate zero-filled percpu area of @size bytes aligned at @align. If |
1061 | * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can | |
1062 | * be called from any context but is a lot more likely to fail. | |
ccea34b5 | 1063 | * |
edcb4639 TH |
1064 | * RETURNS: |
1065 | * Percpu pointer to the allocated area on success, NULL on failure. | |
1066 | */ | |
5835d96e TH |
1067 | void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) |
1068 | { | |
1069 | return pcpu_alloc(size, align, false, gfp); | |
1070 | } | |
1071 | EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); | |
1072 | ||
1073 | /** | |
1074 | * __alloc_percpu - allocate dynamic percpu area | |
1075 | * @size: size of area to allocate in bytes | |
1076 | * @align: alignment of area (max PAGE_SIZE) | |
1077 | * | |
1078 | * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). | |
1079 | */ | |
43cf38eb | 1080 | void __percpu *__alloc_percpu(size_t size, size_t align) |
edcb4639 | 1081 | { |
5835d96e | 1082 | return pcpu_alloc(size, align, false, GFP_KERNEL); |
edcb4639 | 1083 | } |
fbf59bc9 TH |
1084 | EXPORT_SYMBOL_GPL(__alloc_percpu); |
1085 | ||
edcb4639 TH |
1086 | /** |
1087 | * __alloc_reserved_percpu - allocate reserved percpu area | |
1088 | * @size: size of area to allocate in bytes | |
1089 | * @align: alignment of area (max PAGE_SIZE) | |
1090 | * | |
9329ba97 TH |
1091 | * Allocate zero-filled percpu area of @size bytes aligned at @align |
1092 | * from reserved percpu area if arch has set it up; otherwise, | |
1093 | * allocation is served from the same dynamic area. Might sleep. | |
1094 | * Might trigger writeouts. | |
edcb4639 | 1095 | * |
ccea34b5 TH |
1096 | * CONTEXT: |
1097 | * Does GFP_KERNEL allocation. | |
1098 | * | |
edcb4639 TH |
1099 | * RETURNS: |
1100 | * Percpu pointer to the allocated area on success, NULL on failure. | |
1101 | */ | |
43cf38eb | 1102 | void __percpu *__alloc_reserved_percpu(size_t size, size_t align) |
edcb4639 | 1103 | { |
5835d96e | 1104 | return pcpu_alloc(size, align, true, GFP_KERNEL); |
edcb4639 TH |
1105 | } |
1106 | ||
a56dbddf | 1107 | /** |
1a4d7607 | 1108 | * pcpu_balance_workfn - manage the amount of free chunks and populated pages |
a56dbddf TH |
1109 | * @work: unused |
1110 | * | |
1111 | * Reclaim all fully free chunks except for the first one. | |
1112 | */ | |
fe6bd8c3 | 1113 | static void pcpu_balance_workfn(struct work_struct *work) |
fbf59bc9 | 1114 | { |
fe6bd8c3 TH |
1115 | LIST_HEAD(to_free); |
1116 | struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1]; | |
a56dbddf | 1117 | struct pcpu_chunk *chunk, *next; |
1a4d7607 | 1118 | int slot, nr_to_pop, ret; |
a56dbddf | 1119 | |
1a4d7607 TH |
1120 | /* |
1121 | * There's no reason to keep around multiple unused chunks and VM | |
1122 | * areas can be scarce. Destroy all free chunks except for one. | |
1123 | */ | |
ccea34b5 TH |
1124 | mutex_lock(&pcpu_alloc_mutex); |
1125 | spin_lock_irq(&pcpu_lock); | |
a56dbddf | 1126 | |
fe6bd8c3 | 1127 | list_for_each_entry_safe(chunk, next, free_head, list) { |
a56dbddf TH |
1128 | WARN_ON(chunk->immutable); |
1129 | ||
1130 | /* spare the first one */ | |
fe6bd8c3 | 1131 | if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) |
a56dbddf TH |
1132 | continue; |
1133 | ||
fe6bd8c3 | 1134 | list_move(&chunk->list, &to_free); |
a56dbddf TH |
1135 | } |
1136 | ||
ccea34b5 | 1137 | spin_unlock_irq(&pcpu_lock); |
a56dbddf | 1138 | |
fe6bd8c3 | 1139 | list_for_each_entry_safe(chunk, next, &to_free, list) { |
a93ace48 | 1140 | int rs, re; |
dca49645 | 1141 | |
a93ace48 TH |
1142 | pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) { |
1143 | pcpu_depopulate_chunk(chunk, rs, re); | |
b539b87f TH |
1144 | spin_lock_irq(&pcpu_lock); |
1145 | pcpu_chunk_depopulated(chunk, rs, re); | |
1146 | spin_unlock_irq(&pcpu_lock); | |
a93ace48 | 1147 | } |
6081089f | 1148 | pcpu_destroy_chunk(chunk); |
a56dbddf | 1149 | } |
971f3918 | 1150 | |
1a4d7607 TH |
1151 | /* |
1152 | * Ensure there are certain number of free populated pages for | |
1153 | * atomic allocs. Fill up from the most packed so that atomic | |
1154 | * allocs don't increase fragmentation. If atomic allocation | |
1155 | * failed previously, always populate the maximum amount. This | |
1156 | * should prevent atomic allocs larger than PAGE_SIZE from keeping | |
1157 | * failing indefinitely; however, large atomic allocs are not | |
1158 | * something we support properly and can be highly unreliable and | |
1159 | * inefficient. | |
1160 | */ | |
1161 | retry_pop: | |
1162 | if (pcpu_atomic_alloc_failed) { | |
1163 | nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; | |
1164 | /* best effort anyway, don't worry about synchronization */ | |
1165 | pcpu_atomic_alloc_failed = false; | |
1166 | } else { | |
1167 | nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - | |
1168 | pcpu_nr_empty_pop_pages, | |
1169 | 0, PCPU_EMPTY_POP_PAGES_HIGH); | |
1170 | } | |
1171 | ||
1172 | for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) { | |
1173 | int nr_unpop = 0, rs, re; | |
1174 | ||
1175 | if (!nr_to_pop) | |
1176 | break; | |
1177 | ||
1178 | spin_lock_irq(&pcpu_lock); | |
1179 | list_for_each_entry(chunk, &pcpu_slot[slot], list) { | |
1180 | nr_unpop = pcpu_unit_pages - chunk->nr_populated; | |
1181 | if (nr_unpop) | |
1182 | break; | |
1183 | } | |
1184 | spin_unlock_irq(&pcpu_lock); | |
1185 | ||
1186 | if (!nr_unpop) | |
1187 | continue; | |
1188 | ||
1189 | /* @chunk can't go away while pcpu_alloc_mutex is held */ | |
1190 | pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) { | |
1191 | int nr = min(re - rs, nr_to_pop); | |
1192 | ||
1193 | ret = pcpu_populate_chunk(chunk, rs, rs + nr); | |
1194 | if (!ret) { | |
1195 | nr_to_pop -= nr; | |
1196 | spin_lock_irq(&pcpu_lock); | |
1197 | pcpu_chunk_populated(chunk, rs, rs + nr); | |
1198 | spin_unlock_irq(&pcpu_lock); | |
1199 | } else { | |
1200 | nr_to_pop = 0; | |
1201 | } | |
1202 | ||
1203 | if (!nr_to_pop) | |
1204 | break; | |
1205 | } | |
1206 | } | |
1207 | ||
1208 | if (nr_to_pop) { | |
1209 | /* ran out of chunks to populate, create a new one and retry */ | |
1210 | chunk = pcpu_create_chunk(); | |
1211 | if (chunk) { | |
1212 | spin_lock_irq(&pcpu_lock); | |
1213 | pcpu_chunk_relocate(chunk, -1); | |
1214 | spin_unlock_irq(&pcpu_lock); | |
1215 | goto retry_pop; | |
1216 | } | |
1217 | } | |
1218 | ||
971f3918 | 1219 | mutex_unlock(&pcpu_alloc_mutex); |
fbf59bc9 TH |
1220 | } |
1221 | ||
1222 | /** | |
1223 | * free_percpu - free percpu area | |
1224 | * @ptr: pointer to area to free | |
1225 | * | |
ccea34b5 TH |
1226 | * Free percpu area @ptr. |
1227 | * | |
1228 | * CONTEXT: | |
1229 | * Can be called from atomic context. | |
fbf59bc9 | 1230 | */ |
43cf38eb | 1231 | void free_percpu(void __percpu *ptr) |
fbf59bc9 | 1232 | { |
129182e5 | 1233 | void *addr; |
fbf59bc9 | 1234 | struct pcpu_chunk *chunk; |
ccea34b5 | 1235 | unsigned long flags; |
b539b87f | 1236 | int off, occ_pages; |
fbf59bc9 TH |
1237 | |
1238 | if (!ptr) | |
1239 | return; | |
1240 | ||
f528f0b8 CM |
1241 | kmemleak_free_percpu(ptr); |
1242 | ||
129182e5 AM |
1243 | addr = __pcpu_ptr_to_addr(ptr); |
1244 | ||
ccea34b5 | 1245 | spin_lock_irqsave(&pcpu_lock, flags); |
fbf59bc9 TH |
1246 | |
1247 | chunk = pcpu_chunk_addr_search(addr); | |
bba174f5 | 1248 | off = addr - chunk->base_addr; |
fbf59bc9 | 1249 | |
b539b87f TH |
1250 | pcpu_free_area(chunk, off, &occ_pages); |
1251 | ||
1252 | if (chunk != pcpu_reserved_chunk) | |
1253 | pcpu_nr_empty_pop_pages += occ_pages; | |
fbf59bc9 | 1254 | |
a56dbddf | 1255 | /* if there are more than one fully free chunks, wake up grim reaper */ |
fbf59bc9 TH |
1256 | if (chunk->free_size == pcpu_unit_size) { |
1257 | struct pcpu_chunk *pos; | |
1258 | ||
a56dbddf | 1259 | list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) |
fbf59bc9 | 1260 | if (pos != chunk) { |
1a4d7607 | 1261 | pcpu_schedule_balance_work(); |
fbf59bc9 TH |
1262 | break; |
1263 | } | |
1264 | } | |
1265 | ||
ccea34b5 | 1266 | spin_unlock_irqrestore(&pcpu_lock, flags); |
fbf59bc9 TH |
1267 | } |
1268 | EXPORT_SYMBOL_GPL(free_percpu); | |
1269 | ||
10fad5e4 TH |
1270 | /** |
1271 | * is_kernel_percpu_address - test whether address is from static percpu area | |
1272 | * @addr: address to test | |
1273 | * | |
1274 | * Test whether @addr belongs to in-kernel static percpu area. Module | |
1275 | * static percpu areas are not considered. For those, use | |
1276 | * is_module_percpu_address(). | |
1277 | * | |
1278 | * RETURNS: | |
1279 | * %true if @addr is from in-kernel static percpu area, %false otherwise. | |
1280 | */ | |
1281 | bool is_kernel_percpu_address(unsigned long addr) | |
1282 | { | |
bbddff05 | 1283 | #ifdef CONFIG_SMP |
10fad5e4 TH |
1284 | const size_t static_size = __per_cpu_end - __per_cpu_start; |
1285 | void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); | |
1286 | unsigned int cpu; | |
1287 | ||
1288 | for_each_possible_cpu(cpu) { | |
1289 | void *start = per_cpu_ptr(base, cpu); | |
1290 | ||
1291 | if ((void *)addr >= start && (void *)addr < start + static_size) | |
1292 | return true; | |
1293 | } | |
bbddff05 TH |
1294 | #endif |
1295 | /* on UP, can't distinguish from other static vars, always false */ | |
10fad5e4 TH |
1296 | return false; |
1297 | } | |
1298 | ||
3b034b0d VG |
1299 | /** |
1300 | * per_cpu_ptr_to_phys - convert translated percpu address to physical address | |
1301 | * @addr: the address to be converted to physical address | |
1302 | * | |
1303 | * Given @addr which is dereferenceable address obtained via one of | |
1304 | * percpu access macros, this function translates it into its physical | |
1305 | * address. The caller is responsible for ensuring @addr stays valid | |
1306 | * until this function finishes. | |
1307 | * | |
67589c71 DY |
1308 | * percpu allocator has special setup for the first chunk, which currently |
1309 | * supports either embedding in linear address space or vmalloc mapping, | |
1310 | * and, from the second one, the backing allocator (currently either vm or | |
1311 | * km) provides translation. | |
1312 | * | |
1313 | * The addr can be tranlated simply without checking if it falls into the | |
1314 | * first chunk. But the current code reflects better how percpu allocator | |
1315 | * actually works, and the verification can discover both bugs in percpu | |
1316 | * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current | |
1317 | * code. | |
1318 | * | |
3b034b0d VG |
1319 | * RETURNS: |
1320 | * The physical address for @addr. | |
1321 | */ | |
1322 | phys_addr_t per_cpu_ptr_to_phys(void *addr) | |
1323 | { | |
9983b6f0 TH |
1324 | void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); |
1325 | bool in_first_chunk = false; | |
a855b84c | 1326 | unsigned long first_low, first_high; |
9983b6f0 TH |
1327 | unsigned int cpu; |
1328 | ||
1329 | /* | |
a855b84c | 1330 | * The following test on unit_low/high isn't strictly |
9983b6f0 TH |
1331 | * necessary but will speed up lookups of addresses which |
1332 | * aren't in the first chunk. | |
1333 | */ | |
a855b84c TH |
1334 | first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0); |
1335 | first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu, | |
1336 | pcpu_unit_pages); | |
1337 | if ((unsigned long)addr >= first_low && | |
1338 | (unsigned long)addr < first_high) { | |
9983b6f0 TH |
1339 | for_each_possible_cpu(cpu) { |
1340 | void *start = per_cpu_ptr(base, cpu); | |
1341 | ||
1342 | if (addr >= start && addr < start + pcpu_unit_size) { | |
1343 | in_first_chunk = true; | |
1344 | break; | |
1345 | } | |
1346 | } | |
1347 | } | |
1348 | ||
1349 | if (in_first_chunk) { | |
eac522ef | 1350 | if (!is_vmalloc_addr(addr)) |
020ec653 TH |
1351 | return __pa(addr); |
1352 | else | |
9f57bd4d ES |
1353 | return page_to_phys(vmalloc_to_page(addr)) + |
1354 | offset_in_page(addr); | |
020ec653 | 1355 | } else |
9f57bd4d ES |
1356 | return page_to_phys(pcpu_addr_to_page(addr)) + |
1357 | offset_in_page(addr); | |
3b034b0d VG |
1358 | } |
1359 | ||
fbf59bc9 | 1360 | /** |
fd1e8a1f TH |
1361 | * pcpu_alloc_alloc_info - allocate percpu allocation info |
1362 | * @nr_groups: the number of groups | |
1363 | * @nr_units: the number of units | |
1364 | * | |
1365 | * Allocate ai which is large enough for @nr_groups groups containing | |
1366 | * @nr_units units. The returned ai's groups[0].cpu_map points to the | |
1367 | * cpu_map array which is long enough for @nr_units and filled with | |
1368 | * NR_CPUS. It's the caller's responsibility to initialize cpu_map | |
1369 | * pointer of other groups. | |
1370 | * | |
1371 | * RETURNS: | |
1372 | * Pointer to the allocated pcpu_alloc_info on success, NULL on | |
1373 | * failure. | |
1374 | */ | |
1375 | struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, | |
1376 | int nr_units) | |
1377 | { | |
1378 | struct pcpu_alloc_info *ai; | |
1379 | size_t base_size, ai_size; | |
1380 | void *ptr; | |
1381 | int unit; | |
1382 | ||
1383 | base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), | |
1384 | __alignof__(ai->groups[0].cpu_map[0])); | |
1385 | ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); | |
1386 | ||
999c17e3 | 1387 | ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0); |
fd1e8a1f TH |
1388 | if (!ptr) |
1389 | return NULL; | |
1390 | ai = ptr; | |
1391 | ptr += base_size; | |
1392 | ||
1393 | ai->groups[0].cpu_map = ptr; | |
1394 | ||
1395 | for (unit = 0; unit < nr_units; unit++) | |
1396 | ai->groups[0].cpu_map[unit] = NR_CPUS; | |
1397 | ||
1398 | ai->nr_groups = nr_groups; | |
1399 | ai->__ai_size = PFN_ALIGN(ai_size); | |
1400 | ||
1401 | return ai; | |
1402 | } | |
1403 | ||
1404 | /** | |
1405 | * pcpu_free_alloc_info - free percpu allocation info | |
1406 | * @ai: pcpu_alloc_info to free | |
1407 | * | |
1408 | * Free @ai which was allocated by pcpu_alloc_alloc_info(). | |
1409 | */ | |
1410 | void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) | |
1411 | { | |
999c17e3 | 1412 | memblock_free_early(__pa(ai), ai->__ai_size); |
fd1e8a1f TH |
1413 | } |
1414 | ||
fd1e8a1f TH |
1415 | /** |
1416 | * pcpu_dump_alloc_info - print out information about pcpu_alloc_info | |
1417 | * @lvl: loglevel | |
1418 | * @ai: allocation info to dump | |
1419 | * | |
1420 | * Print out information about @ai using loglevel @lvl. | |
1421 | */ | |
1422 | static void pcpu_dump_alloc_info(const char *lvl, | |
1423 | const struct pcpu_alloc_info *ai) | |
033e48fb | 1424 | { |
fd1e8a1f | 1425 | int group_width = 1, cpu_width = 1, width; |
033e48fb | 1426 | char empty_str[] = "--------"; |
fd1e8a1f TH |
1427 | int alloc = 0, alloc_end = 0; |
1428 | int group, v; | |
1429 | int upa, apl; /* units per alloc, allocs per line */ | |
1430 | ||
1431 | v = ai->nr_groups; | |
1432 | while (v /= 10) | |
1433 | group_width++; | |
033e48fb | 1434 | |
fd1e8a1f | 1435 | v = num_possible_cpus(); |
033e48fb | 1436 | while (v /= 10) |
fd1e8a1f TH |
1437 | cpu_width++; |
1438 | empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; | |
033e48fb | 1439 | |
fd1e8a1f TH |
1440 | upa = ai->alloc_size / ai->unit_size; |
1441 | width = upa * (cpu_width + 1) + group_width + 3; | |
1442 | apl = rounddown_pow_of_two(max(60 / width, 1)); | |
033e48fb | 1443 | |
fd1e8a1f TH |
1444 | printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", |
1445 | lvl, ai->static_size, ai->reserved_size, ai->dyn_size, | |
1446 | ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); | |
033e48fb | 1447 | |
fd1e8a1f TH |
1448 | for (group = 0; group < ai->nr_groups; group++) { |
1449 | const struct pcpu_group_info *gi = &ai->groups[group]; | |
1450 | int unit = 0, unit_end = 0; | |
1451 | ||
1452 | BUG_ON(gi->nr_units % upa); | |
1453 | for (alloc_end += gi->nr_units / upa; | |
1454 | alloc < alloc_end; alloc++) { | |
1455 | if (!(alloc % apl)) { | |
cb129820 | 1456 | printk(KERN_CONT "\n"); |
fd1e8a1f TH |
1457 | printk("%spcpu-alloc: ", lvl); |
1458 | } | |
cb129820 | 1459 | printk(KERN_CONT "[%0*d] ", group_width, group); |
fd1e8a1f TH |
1460 | |
1461 | for (unit_end += upa; unit < unit_end; unit++) | |
1462 | if (gi->cpu_map[unit] != NR_CPUS) | |
cb129820 | 1463 | printk(KERN_CONT "%0*d ", cpu_width, |
fd1e8a1f TH |
1464 | gi->cpu_map[unit]); |
1465 | else | |
cb129820 | 1466 | printk(KERN_CONT "%s ", empty_str); |
033e48fb | 1467 | } |
033e48fb | 1468 | } |
cb129820 | 1469 | printk(KERN_CONT "\n"); |
033e48fb | 1470 | } |
033e48fb | 1471 | |
fbf59bc9 | 1472 | /** |
8d408b4b | 1473 | * pcpu_setup_first_chunk - initialize the first percpu chunk |
fd1e8a1f | 1474 | * @ai: pcpu_alloc_info describing how to percpu area is shaped |
38a6be52 | 1475 | * @base_addr: mapped address |
8d408b4b TH |
1476 | * |
1477 | * Initialize the first percpu chunk which contains the kernel static | |
1478 | * perpcu area. This function is to be called from arch percpu area | |
38a6be52 | 1479 | * setup path. |
8d408b4b | 1480 | * |
fd1e8a1f TH |
1481 | * @ai contains all information necessary to initialize the first |
1482 | * chunk and prime the dynamic percpu allocator. | |
1483 | * | |
1484 | * @ai->static_size is the size of static percpu area. | |
1485 | * | |
1486 | * @ai->reserved_size, if non-zero, specifies the amount of bytes to | |
edcb4639 TH |
1487 | * reserve after the static area in the first chunk. This reserves |
1488 | * the first chunk such that it's available only through reserved | |
1489 | * percpu allocation. This is primarily used to serve module percpu | |
1490 | * static areas on architectures where the addressing model has | |
1491 | * limited offset range for symbol relocations to guarantee module | |
1492 | * percpu symbols fall inside the relocatable range. | |
1493 | * | |
fd1e8a1f TH |
1494 | * @ai->dyn_size determines the number of bytes available for dynamic |
1495 | * allocation in the first chunk. The area between @ai->static_size + | |
1496 | * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. | |
6074d5b0 | 1497 | * |
fd1e8a1f TH |
1498 | * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE |
1499 | * and equal to or larger than @ai->static_size + @ai->reserved_size + | |
1500 | * @ai->dyn_size. | |
8d408b4b | 1501 | * |
fd1e8a1f TH |
1502 | * @ai->atom_size is the allocation atom size and used as alignment |
1503 | * for vm areas. | |
8d408b4b | 1504 | * |
fd1e8a1f TH |
1505 | * @ai->alloc_size is the allocation size and always multiple of |
1506 | * @ai->atom_size. This is larger than @ai->atom_size if | |
1507 | * @ai->unit_size is larger than @ai->atom_size. | |
1508 | * | |
1509 | * @ai->nr_groups and @ai->groups describe virtual memory layout of | |
1510 | * percpu areas. Units which should be colocated are put into the | |
1511 | * same group. Dynamic VM areas will be allocated according to these | |
1512 | * groupings. If @ai->nr_groups is zero, a single group containing | |
1513 | * all units is assumed. | |
8d408b4b | 1514 | * |
38a6be52 TH |
1515 | * The caller should have mapped the first chunk at @base_addr and |
1516 | * copied static data to each unit. | |
fbf59bc9 | 1517 | * |
edcb4639 TH |
1518 | * If the first chunk ends up with both reserved and dynamic areas, it |
1519 | * is served by two chunks - one to serve the core static and reserved | |
1520 | * areas and the other for the dynamic area. They share the same vm | |
1521 | * and page map but uses different area allocation map to stay away | |
1522 | * from each other. The latter chunk is circulated in the chunk slots | |
1523 | * and available for dynamic allocation like any other chunks. | |
1524 | * | |
fbf59bc9 | 1525 | * RETURNS: |
fb435d52 | 1526 | * 0 on success, -errno on failure. |
fbf59bc9 | 1527 | */ |
fb435d52 TH |
1528 | int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, |
1529 | void *base_addr) | |
fbf59bc9 | 1530 | { |
099a19d9 TH |
1531 | static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; |
1532 | static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; | |
fd1e8a1f TH |
1533 | size_t dyn_size = ai->dyn_size; |
1534 | size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; | |
edcb4639 | 1535 | struct pcpu_chunk *schunk, *dchunk = NULL; |
6563297c TH |
1536 | unsigned long *group_offsets; |
1537 | size_t *group_sizes; | |
fb435d52 | 1538 | unsigned long *unit_off; |
fbf59bc9 | 1539 | unsigned int cpu; |
fd1e8a1f TH |
1540 | int *unit_map; |
1541 | int group, unit, i; | |
fbf59bc9 | 1542 | |
635b75fc TH |
1543 | #define PCPU_SETUP_BUG_ON(cond) do { \ |
1544 | if (unlikely(cond)) { \ | |
1545 | pr_emerg("PERCPU: failed to initialize, %s", #cond); \ | |
807de073 TH |
1546 | pr_emerg("PERCPU: cpu_possible_mask=%*pb\n", \ |
1547 | cpumask_pr_args(cpu_possible_mask)); \ | |
635b75fc TH |
1548 | pcpu_dump_alloc_info(KERN_EMERG, ai); \ |
1549 | BUG(); \ | |
1550 | } \ | |
1551 | } while (0) | |
1552 | ||
2f39e637 | 1553 | /* sanity checks */ |
635b75fc | 1554 | PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); |
bbddff05 | 1555 | #ifdef CONFIG_SMP |
635b75fc | 1556 | PCPU_SETUP_BUG_ON(!ai->static_size); |
0415b00d | 1557 | PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK); |
bbddff05 | 1558 | #endif |
635b75fc | 1559 | PCPU_SETUP_BUG_ON(!base_addr); |
0415b00d | 1560 | PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK); |
635b75fc TH |
1561 | PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); |
1562 | PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); | |
1563 | PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); | |
099a19d9 | 1564 | PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); |
9f645532 | 1565 | PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); |
8d408b4b | 1566 | |
6563297c | 1567 | /* process group information and build config tables accordingly */ |
999c17e3 SS |
1568 | group_offsets = memblock_virt_alloc(ai->nr_groups * |
1569 | sizeof(group_offsets[0]), 0); | |
1570 | group_sizes = memblock_virt_alloc(ai->nr_groups * | |
1571 | sizeof(group_sizes[0]), 0); | |
1572 | unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0); | |
1573 | unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0); | |
2f39e637 | 1574 | |
fd1e8a1f | 1575 | for (cpu = 0; cpu < nr_cpu_ids; cpu++) |
ffe0d5a5 | 1576 | unit_map[cpu] = UINT_MAX; |
a855b84c TH |
1577 | |
1578 | pcpu_low_unit_cpu = NR_CPUS; | |
1579 | pcpu_high_unit_cpu = NR_CPUS; | |
2f39e637 | 1580 | |
fd1e8a1f TH |
1581 | for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { |
1582 | const struct pcpu_group_info *gi = &ai->groups[group]; | |
2f39e637 | 1583 | |
6563297c TH |
1584 | group_offsets[group] = gi->base_offset; |
1585 | group_sizes[group] = gi->nr_units * ai->unit_size; | |
1586 | ||
fd1e8a1f TH |
1587 | for (i = 0; i < gi->nr_units; i++) { |
1588 | cpu = gi->cpu_map[i]; | |
1589 | if (cpu == NR_CPUS) | |
1590 | continue; | |
8d408b4b | 1591 | |
9f295664 | 1592 | PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); |
635b75fc TH |
1593 | PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); |
1594 | PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); | |
fbf59bc9 | 1595 | |
fd1e8a1f | 1596 | unit_map[cpu] = unit + i; |
fb435d52 TH |
1597 | unit_off[cpu] = gi->base_offset + i * ai->unit_size; |
1598 | ||
a855b84c TH |
1599 | /* determine low/high unit_cpu */ |
1600 | if (pcpu_low_unit_cpu == NR_CPUS || | |
1601 | unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) | |
1602 | pcpu_low_unit_cpu = cpu; | |
1603 | if (pcpu_high_unit_cpu == NR_CPUS || | |
1604 | unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) | |
1605 | pcpu_high_unit_cpu = cpu; | |
fd1e8a1f | 1606 | } |
2f39e637 | 1607 | } |
fd1e8a1f TH |
1608 | pcpu_nr_units = unit; |
1609 | ||
1610 | for_each_possible_cpu(cpu) | |
635b75fc TH |
1611 | PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); |
1612 | ||
1613 | /* we're done parsing the input, undefine BUG macro and dump config */ | |
1614 | #undef PCPU_SETUP_BUG_ON | |
bcbea798 | 1615 | pcpu_dump_alloc_info(KERN_DEBUG, ai); |
fd1e8a1f | 1616 | |
6563297c TH |
1617 | pcpu_nr_groups = ai->nr_groups; |
1618 | pcpu_group_offsets = group_offsets; | |
1619 | pcpu_group_sizes = group_sizes; | |
fd1e8a1f | 1620 | pcpu_unit_map = unit_map; |
fb435d52 | 1621 | pcpu_unit_offsets = unit_off; |
2f39e637 TH |
1622 | |
1623 | /* determine basic parameters */ | |
fd1e8a1f | 1624 | pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; |
d9b55eeb | 1625 | pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; |
6563297c | 1626 | pcpu_atom_size = ai->atom_size; |
ce3141a2 TH |
1627 | pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + |
1628 | BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); | |
cafe8816 | 1629 | |
d9b55eeb TH |
1630 | /* |
1631 | * Allocate chunk slots. The additional last slot is for | |
1632 | * empty chunks. | |
1633 | */ | |
1634 | pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; | |
999c17e3 SS |
1635 | pcpu_slot = memblock_virt_alloc( |
1636 | pcpu_nr_slots * sizeof(pcpu_slot[0]), 0); | |
fbf59bc9 TH |
1637 | for (i = 0; i < pcpu_nr_slots; i++) |
1638 | INIT_LIST_HEAD(&pcpu_slot[i]); | |
1639 | ||
edcb4639 TH |
1640 | /* |
1641 | * Initialize static chunk. If reserved_size is zero, the | |
1642 | * static chunk covers static area + dynamic allocation area | |
1643 | * in the first chunk. If reserved_size is not zero, it | |
1644 | * covers static area + reserved area (mostly used for module | |
1645 | * static percpu allocation). | |
1646 | */ | |
999c17e3 | 1647 | schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0); |
2441d15c | 1648 | INIT_LIST_HEAD(&schunk->list); |
9c824b6a | 1649 | INIT_WORK(&schunk->map_extend_work, pcpu_map_extend_workfn); |
bba174f5 | 1650 | schunk->base_addr = base_addr; |
61ace7fa TH |
1651 | schunk->map = smap; |
1652 | schunk->map_alloc = ARRAY_SIZE(smap); | |
38a6be52 | 1653 | schunk->immutable = true; |
ce3141a2 | 1654 | bitmap_fill(schunk->populated, pcpu_unit_pages); |
b539b87f | 1655 | schunk->nr_populated = pcpu_unit_pages; |
edcb4639 | 1656 | |
fd1e8a1f TH |
1657 | if (ai->reserved_size) { |
1658 | schunk->free_size = ai->reserved_size; | |
ae9e6bc9 | 1659 | pcpu_reserved_chunk = schunk; |
fd1e8a1f | 1660 | pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; |
edcb4639 TH |
1661 | } else { |
1662 | schunk->free_size = dyn_size; | |
1663 | dyn_size = 0; /* dynamic area covered */ | |
1664 | } | |
2441d15c | 1665 | schunk->contig_hint = schunk->free_size; |
fbf59bc9 | 1666 | |
723ad1d9 AV |
1667 | schunk->map[0] = 1; |
1668 | schunk->map[1] = ai->static_size; | |
1669 | schunk->map_used = 1; | |
61ace7fa | 1670 | if (schunk->free_size) |
723ad1d9 AV |
1671 | schunk->map[++schunk->map_used] = 1 | (ai->static_size + schunk->free_size); |
1672 | else | |
1673 | schunk->map[1] |= 1; | |
61ace7fa | 1674 | |
edcb4639 TH |
1675 | /* init dynamic chunk if necessary */ |
1676 | if (dyn_size) { | |
999c17e3 | 1677 | dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0); |
edcb4639 | 1678 | INIT_LIST_HEAD(&dchunk->list); |
9c824b6a | 1679 | INIT_WORK(&dchunk->map_extend_work, pcpu_map_extend_workfn); |
bba174f5 | 1680 | dchunk->base_addr = base_addr; |
edcb4639 TH |
1681 | dchunk->map = dmap; |
1682 | dchunk->map_alloc = ARRAY_SIZE(dmap); | |
38a6be52 | 1683 | dchunk->immutable = true; |
ce3141a2 | 1684 | bitmap_fill(dchunk->populated, pcpu_unit_pages); |
b539b87f | 1685 | dchunk->nr_populated = pcpu_unit_pages; |
edcb4639 TH |
1686 | |
1687 | dchunk->contig_hint = dchunk->free_size = dyn_size; | |
723ad1d9 AV |
1688 | dchunk->map[0] = 1; |
1689 | dchunk->map[1] = pcpu_reserved_chunk_limit; | |
1690 | dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1; | |
1691 | dchunk->map_used = 2; | |
edcb4639 TH |
1692 | } |
1693 | ||
2441d15c | 1694 | /* link the first chunk in */ |
ae9e6bc9 | 1695 | pcpu_first_chunk = dchunk ?: schunk; |
b539b87f TH |
1696 | pcpu_nr_empty_pop_pages += |
1697 | pcpu_count_occupied_pages(pcpu_first_chunk, 1); | |
ae9e6bc9 | 1698 | pcpu_chunk_relocate(pcpu_first_chunk, -1); |
fbf59bc9 TH |
1699 | |
1700 | /* we're done */ | |
bba174f5 | 1701 | pcpu_base_addr = base_addr; |
fb435d52 | 1702 | return 0; |
fbf59bc9 | 1703 | } |
66c3a757 | 1704 | |
bbddff05 TH |
1705 | #ifdef CONFIG_SMP |
1706 | ||
17f3609c | 1707 | const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { |
f58dc01b TH |
1708 | [PCPU_FC_AUTO] = "auto", |
1709 | [PCPU_FC_EMBED] = "embed", | |
1710 | [PCPU_FC_PAGE] = "page", | |
f58dc01b | 1711 | }; |
66c3a757 | 1712 | |
f58dc01b | 1713 | enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; |
66c3a757 | 1714 | |
f58dc01b TH |
1715 | static int __init percpu_alloc_setup(char *str) |
1716 | { | |
5479c78a CG |
1717 | if (!str) |
1718 | return -EINVAL; | |
1719 | ||
f58dc01b TH |
1720 | if (0) |
1721 | /* nada */; | |
1722 | #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK | |
1723 | else if (!strcmp(str, "embed")) | |
1724 | pcpu_chosen_fc = PCPU_FC_EMBED; | |
1725 | #endif | |
1726 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | |
1727 | else if (!strcmp(str, "page")) | |
1728 | pcpu_chosen_fc = PCPU_FC_PAGE; | |
f58dc01b TH |
1729 | #endif |
1730 | else | |
1731 | pr_warning("PERCPU: unknown allocator %s specified\n", str); | |
66c3a757 | 1732 | |
f58dc01b | 1733 | return 0; |
66c3a757 | 1734 | } |
f58dc01b | 1735 | early_param("percpu_alloc", percpu_alloc_setup); |
66c3a757 | 1736 | |
3c9a024f TH |
1737 | /* |
1738 | * pcpu_embed_first_chunk() is used by the generic percpu setup. | |
1739 | * Build it if needed by the arch config or the generic setup is going | |
1740 | * to be used. | |
1741 | */ | |
08fc4580 TH |
1742 | #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ |
1743 | !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) | |
3c9a024f TH |
1744 | #define BUILD_EMBED_FIRST_CHUNK |
1745 | #endif | |
1746 | ||
1747 | /* build pcpu_page_first_chunk() iff needed by the arch config */ | |
1748 | #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) | |
1749 | #define BUILD_PAGE_FIRST_CHUNK | |
1750 | #endif | |
1751 | ||
1752 | /* pcpu_build_alloc_info() is used by both embed and page first chunk */ | |
1753 | #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) | |
1754 | /** | |
1755 | * pcpu_build_alloc_info - build alloc_info considering distances between CPUs | |
1756 | * @reserved_size: the size of reserved percpu area in bytes | |
1757 | * @dyn_size: minimum free size for dynamic allocation in bytes | |
1758 | * @atom_size: allocation atom size | |
1759 | * @cpu_distance_fn: callback to determine distance between cpus, optional | |
1760 | * | |
1761 | * This function determines grouping of units, their mappings to cpus | |
1762 | * and other parameters considering needed percpu size, allocation | |
1763 | * atom size and distances between CPUs. | |
1764 | * | |
1765 | * Groups are always mutliples of atom size and CPUs which are of | |
1766 | * LOCAL_DISTANCE both ways are grouped together and share space for | |
1767 | * units in the same group. The returned configuration is guaranteed | |
1768 | * to have CPUs on different nodes on different groups and >=75% usage | |
1769 | * of allocated virtual address space. | |
1770 | * | |
1771 | * RETURNS: | |
1772 | * On success, pointer to the new allocation_info is returned. On | |
1773 | * failure, ERR_PTR value is returned. | |
1774 | */ | |
1775 | static struct pcpu_alloc_info * __init pcpu_build_alloc_info( | |
1776 | size_t reserved_size, size_t dyn_size, | |
1777 | size_t atom_size, | |
1778 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn) | |
1779 | { | |
1780 | static int group_map[NR_CPUS] __initdata; | |
1781 | static int group_cnt[NR_CPUS] __initdata; | |
1782 | const size_t static_size = __per_cpu_end - __per_cpu_start; | |
1783 | int nr_groups = 1, nr_units = 0; | |
1784 | size_t size_sum, min_unit_size, alloc_size; | |
1785 | int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ | |
1786 | int last_allocs, group, unit; | |
1787 | unsigned int cpu, tcpu; | |
1788 | struct pcpu_alloc_info *ai; | |
1789 | unsigned int *cpu_map; | |
1790 | ||
1791 | /* this function may be called multiple times */ | |
1792 | memset(group_map, 0, sizeof(group_map)); | |
1793 | memset(group_cnt, 0, sizeof(group_cnt)); | |
1794 | ||
1795 | /* calculate size_sum and ensure dyn_size is enough for early alloc */ | |
1796 | size_sum = PFN_ALIGN(static_size + reserved_size + | |
1797 | max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); | |
1798 | dyn_size = size_sum - static_size - reserved_size; | |
1799 | ||
1800 | /* | |
1801 | * Determine min_unit_size, alloc_size and max_upa such that | |
1802 | * alloc_size is multiple of atom_size and is the smallest | |
25985edc | 1803 | * which can accommodate 4k aligned segments which are equal to |
3c9a024f TH |
1804 | * or larger than min_unit_size. |
1805 | */ | |
1806 | min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); | |
1807 | ||
1808 | alloc_size = roundup(min_unit_size, atom_size); | |
1809 | upa = alloc_size / min_unit_size; | |
1810 | while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) | |
1811 | upa--; | |
1812 | max_upa = upa; | |
1813 | ||
1814 | /* group cpus according to their proximity */ | |
1815 | for_each_possible_cpu(cpu) { | |
1816 | group = 0; | |
1817 | next_group: | |
1818 | for_each_possible_cpu(tcpu) { | |
1819 | if (cpu == tcpu) | |
1820 | break; | |
1821 | if (group_map[tcpu] == group && cpu_distance_fn && | |
1822 | (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || | |
1823 | cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { | |
1824 | group++; | |
1825 | nr_groups = max(nr_groups, group + 1); | |
1826 | goto next_group; | |
1827 | } | |
1828 | } | |
1829 | group_map[cpu] = group; | |
1830 | group_cnt[group]++; | |
1831 | } | |
1832 | ||
1833 | /* | |
1834 | * Expand unit size until address space usage goes over 75% | |
1835 | * and then as much as possible without using more address | |
1836 | * space. | |
1837 | */ | |
1838 | last_allocs = INT_MAX; | |
1839 | for (upa = max_upa; upa; upa--) { | |
1840 | int allocs = 0, wasted = 0; | |
1841 | ||
1842 | if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) | |
1843 | continue; | |
1844 | ||
1845 | for (group = 0; group < nr_groups; group++) { | |
1846 | int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); | |
1847 | allocs += this_allocs; | |
1848 | wasted += this_allocs * upa - group_cnt[group]; | |
1849 | } | |
1850 | ||
1851 | /* | |
1852 | * Don't accept if wastage is over 1/3. The | |
1853 | * greater-than comparison ensures upa==1 always | |
1854 | * passes the following check. | |
1855 | */ | |
1856 | if (wasted > num_possible_cpus() / 3) | |
1857 | continue; | |
1858 | ||
1859 | /* and then don't consume more memory */ | |
1860 | if (allocs > last_allocs) | |
1861 | break; | |
1862 | last_allocs = allocs; | |
1863 | best_upa = upa; | |
1864 | } | |
1865 | upa = best_upa; | |
1866 | ||
1867 | /* allocate and fill alloc_info */ | |
1868 | for (group = 0; group < nr_groups; group++) | |
1869 | nr_units += roundup(group_cnt[group], upa); | |
1870 | ||
1871 | ai = pcpu_alloc_alloc_info(nr_groups, nr_units); | |
1872 | if (!ai) | |
1873 | return ERR_PTR(-ENOMEM); | |
1874 | cpu_map = ai->groups[0].cpu_map; | |
1875 | ||
1876 | for (group = 0; group < nr_groups; group++) { | |
1877 | ai->groups[group].cpu_map = cpu_map; | |
1878 | cpu_map += roundup(group_cnt[group], upa); | |
1879 | } | |
1880 | ||
1881 | ai->static_size = static_size; | |
1882 | ai->reserved_size = reserved_size; | |
1883 | ai->dyn_size = dyn_size; | |
1884 | ai->unit_size = alloc_size / upa; | |
1885 | ai->atom_size = atom_size; | |
1886 | ai->alloc_size = alloc_size; | |
1887 | ||
1888 | for (group = 0, unit = 0; group_cnt[group]; group++) { | |
1889 | struct pcpu_group_info *gi = &ai->groups[group]; | |
1890 | ||
1891 | /* | |
1892 | * Initialize base_offset as if all groups are located | |
1893 | * back-to-back. The caller should update this to | |
1894 | * reflect actual allocation. | |
1895 | */ | |
1896 | gi->base_offset = unit * ai->unit_size; | |
1897 | ||
1898 | for_each_possible_cpu(cpu) | |
1899 | if (group_map[cpu] == group) | |
1900 | gi->cpu_map[gi->nr_units++] = cpu; | |
1901 | gi->nr_units = roundup(gi->nr_units, upa); | |
1902 | unit += gi->nr_units; | |
1903 | } | |
1904 | BUG_ON(unit != nr_units); | |
1905 | ||
1906 | return ai; | |
1907 | } | |
1908 | #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ | |
1909 | ||
1910 | #if defined(BUILD_EMBED_FIRST_CHUNK) | |
66c3a757 TH |
1911 | /** |
1912 | * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem | |
66c3a757 | 1913 | * @reserved_size: the size of reserved percpu area in bytes |
4ba6ce25 | 1914 | * @dyn_size: minimum free size for dynamic allocation in bytes |
c8826dd5 TH |
1915 | * @atom_size: allocation atom size |
1916 | * @cpu_distance_fn: callback to determine distance between cpus, optional | |
1917 | * @alloc_fn: function to allocate percpu page | |
25985edc | 1918 | * @free_fn: function to free percpu page |
66c3a757 TH |
1919 | * |
1920 | * This is a helper to ease setting up embedded first percpu chunk and | |
1921 | * can be called where pcpu_setup_first_chunk() is expected. | |
1922 | * | |
1923 | * If this function is used to setup the first chunk, it is allocated | |
c8826dd5 TH |
1924 | * by calling @alloc_fn and used as-is without being mapped into |
1925 | * vmalloc area. Allocations are always whole multiples of @atom_size | |
1926 | * aligned to @atom_size. | |
1927 | * | |
1928 | * This enables the first chunk to piggy back on the linear physical | |
1929 | * mapping which often uses larger page size. Please note that this | |
1930 | * can result in very sparse cpu->unit mapping on NUMA machines thus | |
1931 | * requiring large vmalloc address space. Don't use this allocator if | |
1932 | * vmalloc space is not orders of magnitude larger than distances | |
1933 | * between node memory addresses (ie. 32bit NUMA machines). | |
66c3a757 | 1934 | * |
4ba6ce25 | 1935 | * @dyn_size specifies the minimum dynamic area size. |
66c3a757 TH |
1936 | * |
1937 | * If the needed size is smaller than the minimum or specified unit | |
c8826dd5 | 1938 | * size, the leftover is returned using @free_fn. |
66c3a757 TH |
1939 | * |
1940 | * RETURNS: | |
fb435d52 | 1941 | * 0 on success, -errno on failure. |
66c3a757 | 1942 | */ |
4ba6ce25 | 1943 | int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, |
c8826dd5 TH |
1944 | size_t atom_size, |
1945 | pcpu_fc_cpu_distance_fn_t cpu_distance_fn, | |
1946 | pcpu_fc_alloc_fn_t alloc_fn, | |
1947 | pcpu_fc_free_fn_t free_fn) | |
66c3a757 | 1948 | { |
c8826dd5 TH |
1949 | void *base = (void *)ULONG_MAX; |
1950 | void **areas = NULL; | |
fd1e8a1f | 1951 | struct pcpu_alloc_info *ai; |
6ea529a2 | 1952 | size_t size_sum, areas_size, max_distance; |
c8826dd5 | 1953 | int group, i, rc; |
66c3a757 | 1954 | |
c8826dd5 TH |
1955 | ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, |
1956 | cpu_distance_fn); | |
fd1e8a1f TH |
1957 | if (IS_ERR(ai)) |
1958 | return PTR_ERR(ai); | |
66c3a757 | 1959 | |
fd1e8a1f | 1960 | size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; |
c8826dd5 | 1961 | areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); |
fa8a7094 | 1962 | |
999c17e3 | 1963 | areas = memblock_virt_alloc_nopanic(areas_size, 0); |
c8826dd5 | 1964 | if (!areas) { |
fb435d52 | 1965 | rc = -ENOMEM; |
c8826dd5 | 1966 | goto out_free; |
fa8a7094 | 1967 | } |
66c3a757 | 1968 | |
c8826dd5 TH |
1969 | /* allocate, copy and determine base address */ |
1970 | for (group = 0; group < ai->nr_groups; group++) { | |
1971 | struct pcpu_group_info *gi = &ai->groups[group]; | |
1972 | unsigned int cpu = NR_CPUS; | |
1973 | void *ptr; | |
1974 | ||
1975 | for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) | |
1976 | cpu = gi->cpu_map[i]; | |
1977 | BUG_ON(cpu == NR_CPUS); | |
1978 | ||
1979 | /* allocate space for the whole group */ | |
1980 | ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); | |
1981 | if (!ptr) { | |
1982 | rc = -ENOMEM; | |
1983 | goto out_free_areas; | |
1984 | } | |
f528f0b8 CM |
1985 | /* kmemleak tracks the percpu allocations separately */ |
1986 | kmemleak_free(ptr); | |
c8826dd5 | 1987 | areas[group] = ptr; |
fd1e8a1f | 1988 | |
c8826dd5 | 1989 | base = min(ptr, base); |
42b64281 TH |
1990 | } |
1991 | ||
1992 | /* | |
1993 | * Copy data and free unused parts. This should happen after all | |
1994 | * allocations are complete; otherwise, we may end up with | |
1995 | * overlapping groups. | |
1996 | */ | |
1997 | for (group = 0; group < ai->nr_groups; group++) { | |
1998 | struct pcpu_group_info *gi = &ai->groups[group]; | |
1999 | void *ptr = areas[group]; | |
c8826dd5 TH |
2000 | |
2001 | for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { | |
2002 | if (gi->cpu_map[i] == NR_CPUS) { | |
2003 | /* unused unit, free whole */ | |
2004 | free_fn(ptr, ai->unit_size); | |
2005 | continue; | |
2006 | } | |
2007 | /* copy and return the unused part */ | |
2008 | memcpy(ptr, __per_cpu_load, ai->static_size); | |
2009 | free_fn(ptr + size_sum, ai->unit_size - size_sum); | |
2010 | } | |
fa8a7094 | 2011 | } |
66c3a757 | 2012 | |
c8826dd5 | 2013 | /* base address is now known, determine group base offsets */ |
6ea529a2 TH |
2014 | max_distance = 0; |
2015 | for (group = 0; group < ai->nr_groups; group++) { | |
c8826dd5 | 2016 | ai->groups[group].base_offset = areas[group] - base; |
1a0c3298 TH |
2017 | max_distance = max_t(size_t, max_distance, |
2018 | ai->groups[group].base_offset); | |
6ea529a2 TH |
2019 | } |
2020 | max_distance += ai->unit_size; | |
2021 | ||
2022 | /* warn if maximum distance is further than 75% of vmalloc space */ | |
8a092171 | 2023 | if (max_distance > VMALLOC_TOTAL * 3 / 4) { |
1a0c3298 | 2024 | pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc " |
787e5b06 | 2025 | "space 0x%lx\n", max_distance, |
8a092171 | 2026 | VMALLOC_TOTAL); |
6ea529a2 TH |
2027 | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK |
2028 | /* and fail if we have fallback */ | |
2029 | rc = -EINVAL; | |
2030 | goto out_free; | |
2031 | #endif | |
2032 | } | |
c8826dd5 | 2033 | |
004018e2 | 2034 | pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", |
fd1e8a1f TH |
2035 | PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, |
2036 | ai->dyn_size, ai->unit_size); | |
d4b95f80 | 2037 | |
fb435d52 | 2038 | rc = pcpu_setup_first_chunk(ai, base); |
c8826dd5 TH |
2039 | goto out_free; |
2040 | ||
2041 | out_free_areas: | |
2042 | for (group = 0; group < ai->nr_groups; group++) | |
f851c8d8 MH |
2043 | if (areas[group]) |
2044 | free_fn(areas[group], | |
2045 | ai->groups[group].nr_units * ai->unit_size); | |
c8826dd5 | 2046 | out_free: |
fd1e8a1f | 2047 | pcpu_free_alloc_info(ai); |
c8826dd5 | 2048 | if (areas) |
999c17e3 | 2049 | memblock_free_early(__pa(areas), areas_size); |
fb435d52 | 2050 | return rc; |
d4b95f80 | 2051 | } |
3c9a024f | 2052 | #endif /* BUILD_EMBED_FIRST_CHUNK */ |
d4b95f80 | 2053 | |
3c9a024f | 2054 | #ifdef BUILD_PAGE_FIRST_CHUNK |
d4b95f80 | 2055 | /** |
00ae4064 | 2056 | * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages |
d4b95f80 TH |
2057 | * @reserved_size: the size of reserved percpu area in bytes |
2058 | * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE | |
25985edc | 2059 | * @free_fn: function to free percpu page, always called with PAGE_SIZE |
d4b95f80 TH |
2060 | * @populate_pte_fn: function to populate pte |
2061 | * | |
00ae4064 TH |
2062 | * This is a helper to ease setting up page-remapped first percpu |
2063 | * chunk and can be called where pcpu_setup_first_chunk() is expected. | |
d4b95f80 TH |
2064 | * |
2065 | * This is the basic allocator. Static percpu area is allocated | |
2066 | * page-by-page into vmalloc area. | |
2067 | * | |
2068 | * RETURNS: | |
fb435d52 | 2069 | * 0 on success, -errno on failure. |
d4b95f80 | 2070 | */ |
fb435d52 TH |
2071 | int __init pcpu_page_first_chunk(size_t reserved_size, |
2072 | pcpu_fc_alloc_fn_t alloc_fn, | |
2073 | pcpu_fc_free_fn_t free_fn, | |
2074 | pcpu_fc_populate_pte_fn_t populate_pte_fn) | |
d4b95f80 | 2075 | { |
8f05a6a6 | 2076 | static struct vm_struct vm; |
fd1e8a1f | 2077 | struct pcpu_alloc_info *ai; |
00ae4064 | 2078 | char psize_str[16]; |
ce3141a2 | 2079 | int unit_pages; |
d4b95f80 | 2080 | size_t pages_size; |
ce3141a2 | 2081 | struct page **pages; |
fb435d52 | 2082 | int unit, i, j, rc; |
d4b95f80 | 2083 | |
00ae4064 TH |
2084 | snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); |
2085 | ||
4ba6ce25 | 2086 | ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); |
fd1e8a1f TH |
2087 | if (IS_ERR(ai)) |
2088 | return PTR_ERR(ai); | |
2089 | BUG_ON(ai->nr_groups != 1); | |
2090 | BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); | |
2091 | ||
2092 | unit_pages = ai->unit_size >> PAGE_SHIFT; | |
d4b95f80 TH |
2093 | |
2094 | /* unaligned allocations can't be freed, round up to page size */ | |
fd1e8a1f TH |
2095 | pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * |
2096 | sizeof(pages[0])); | |
999c17e3 | 2097 | pages = memblock_virt_alloc(pages_size, 0); |
d4b95f80 | 2098 | |
8f05a6a6 | 2099 | /* allocate pages */ |
d4b95f80 | 2100 | j = 0; |
fd1e8a1f | 2101 | for (unit = 0; unit < num_possible_cpus(); unit++) |
ce3141a2 | 2102 | for (i = 0; i < unit_pages; i++) { |
fd1e8a1f | 2103 | unsigned int cpu = ai->groups[0].cpu_map[unit]; |
d4b95f80 TH |
2104 | void *ptr; |
2105 | ||
3cbc8565 | 2106 | ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); |
d4b95f80 | 2107 | if (!ptr) { |
00ae4064 TH |
2108 | pr_warning("PERCPU: failed to allocate %s page " |
2109 | "for cpu%u\n", psize_str, cpu); | |
d4b95f80 TH |
2110 | goto enomem; |
2111 | } | |
f528f0b8 CM |
2112 | /* kmemleak tracks the percpu allocations separately */ |
2113 | kmemleak_free(ptr); | |
ce3141a2 | 2114 | pages[j++] = virt_to_page(ptr); |
d4b95f80 TH |
2115 | } |
2116 | ||
8f05a6a6 TH |
2117 | /* allocate vm area, map the pages and copy static data */ |
2118 | vm.flags = VM_ALLOC; | |
fd1e8a1f | 2119 | vm.size = num_possible_cpus() * ai->unit_size; |
8f05a6a6 TH |
2120 | vm_area_register_early(&vm, PAGE_SIZE); |
2121 | ||
fd1e8a1f | 2122 | for (unit = 0; unit < num_possible_cpus(); unit++) { |
1d9d3257 | 2123 | unsigned long unit_addr = |
fd1e8a1f | 2124 | (unsigned long)vm.addr + unit * ai->unit_size; |
8f05a6a6 | 2125 | |
ce3141a2 | 2126 | for (i = 0; i < unit_pages; i++) |
8f05a6a6 TH |
2127 | populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); |
2128 | ||
2129 | /* pte already populated, the following shouldn't fail */ | |
fb435d52 TH |
2130 | rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], |
2131 | unit_pages); | |
2132 | if (rc < 0) | |
2133 | panic("failed to map percpu area, err=%d\n", rc); | |
66c3a757 | 2134 | |
8f05a6a6 TH |
2135 | /* |
2136 | * FIXME: Archs with virtual cache should flush local | |
2137 | * cache for the linear mapping here - something | |
2138 | * equivalent to flush_cache_vmap() on the local cpu. | |
2139 | * flush_cache_vmap() can't be used as most supporting | |
2140 | * data structures are not set up yet. | |
2141 | */ | |
2142 | ||
2143 | /* copy static data */ | |
fd1e8a1f | 2144 | memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); |
66c3a757 TH |
2145 | } |
2146 | ||
2147 | /* we're ready, commit */ | |
1d9d3257 | 2148 | pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n", |
fd1e8a1f TH |
2149 | unit_pages, psize_str, vm.addr, ai->static_size, |
2150 | ai->reserved_size, ai->dyn_size); | |
d4b95f80 | 2151 | |
fb435d52 | 2152 | rc = pcpu_setup_first_chunk(ai, vm.addr); |
d4b95f80 TH |
2153 | goto out_free_ar; |
2154 | ||
2155 | enomem: | |
2156 | while (--j >= 0) | |
ce3141a2 | 2157 | free_fn(page_address(pages[j]), PAGE_SIZE); |
fb435d52 | 2158 | rc = -ENOMEM; |
d4b95f80 | 2159 | out_free_ar: |
999c17e3 | 2160 | memblock_free_early(__pa(pages), pages_size); |
fd1e8a1f | 2161 | pcpu_free_alloc_info(ai); |
fb435d52 | 2162 | return rc; |
d4b95f80 | 2163 | } |
3c9a024f | 2164 | #endif /* BUILD_PAGE_FIRST_CHUNK */ |
d4b95f80 | 2165 | |
bbddff05 | 2166 | #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA |
e74e3962 | 2167 | /* |
bbddff05 | 2168 | * Generic SMP percpu area setup. |
e74e3962 TH |
2169 | * |
2170 | * The embedding helper is used because its behavior closely resembles | |
2171 | * the original non-dynamic generic percpu area setup. This is | |
2172 | * important because many archs have addressing restrictions and might | |
2173 | * fail if the percpu area is located far away from the previous | |
2174 | * location. As an added bonus, in non-NUMA cases, embedding is | |
2175 | * generally a good idea TLB-wise because percpu area can piggy back | |
2176 | * on the physical linear memory mapping which uses large page | |
2177 | * mappings on applicable archs. | |
2178 | */ | |
e74e3962 TH |
2179 | unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; |
2180 | EXPORT_SYMBOL(__per_cpu_offset); | |
2181 | ||
c8826dd5 TH |
2182 | static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, |
2183 | size_t align) | |
2184 | { | |
999c17e3 SS |
2185 | return memblock_virt_alloc_from_nopanic( |
2186 | size, align, __pa(MAX_DMA_ADDRESS)); | |
c8826dd5 | 2187 | } |
66c3a757 | 2188 | |
c8826dd5 TH |
2189 | static void __init pcpu_dfl_fc_free(void *ptr, size_t size) |
2190 | { | |
999c17e3 | 2191 | memblock_free_early(__pa(ptr), size); |
c8826dd5 TH |
2192 | } |
2193 | ||
e74e3962 TH |
2194 | void __init setup_per_cpu_areas(void) |
2195 | { | |
e74e3962 TH |
2196 | unsigned long delta; |
2197 | unsigned int cpu; | |
fb435d52 | 2198 | int rc; |
e74e3962 TH |
2199 | |
2200 | /* | |
2201 | * Always reserve area for module percpu variables. That's | |
2202 | * what the legacy allocator did. | |
2203 | */ | |
fb435d52 | 2204 | rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, |
c8826dd5 TH |
2205 | PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, |
2206 | pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); | |
fb435d52 | 2207 | if (rc < 0) |
bbddff05 | 2208 | panic("Failed to initialize percpu areas."); |
e74e3962 TH |
2209 | |
2210 | delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; | |
2211 | for_each_possible_cpu(cpu) | |
fb435d52 | 2212 | __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; |
66c3a757 | 2213 | } |
bbddff05 TH |
2214 | #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ |
2215 | ||
2216 | #else /* CONFIG_SMP */ | |
2217 | ||
2218 | /* | |
2219 | * UP percpu area setup. | |
2220 | * | |
2221 | * UP always uses km-based percpu allocator with identity mapping. | |
2222 | * Static percpu variables are indistinguishable from the usual static | |
2223 | * variables and don't require any special preparation. | |
2224 | */ | |
2225 | void __init setup_per_cpu_areas(void) | |
2226 | { | |
2227 | const size_t unit_size = | |
2228 | roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, | |
2229 | PERCPU_DYNAMIC_RESERVE)); | |
2230 | struct pcpu_alloc_info *ai; | |
2231 | void *fc; | |
2232 | ||
2233 | ai = pcpu_alloc_alloc_info(1, 1); | |
999c17e3 SS |
2234 | fc = memblock_virt_alloc_from_nopanic(unit_size, |
2235 | PAGE_SIZE, | |
2236 | __pa(MAX_DMA_ADDRESS)); | |
bbddff05 TH |
2237 | if (!ai || !fc) |
2238 | panic("Failed to allocate memory for percpu areas."); | |
100d13c3 CM |
2239 | /* kmemleak tracks the percpu allocations separately */ |
2240 | kmemleak_free(fc); | |
bbddff05 TH |
2241 | |
2242 | ai->dyn_size = unit_size; | |
2243 | ai->unit_size = unit_size; | |
2244 | ai->atom_size = unit_size; | |
2245 | ai->alloc_size = unit_size; | |
2246 | ai->groups[0].nr_units = 1; | |
2247 | ai->groups[0].cpu_map[0] = 0; | |
2248 | ||
2249 | if (pcpu_setup_first_chunk(ai, fc) < 0) | |
2250 | panic("Failed to initialize percpu areas."); | |
2251 | } | |
2252 | ||
2253 | #endif /* CONFIG_SMP */ | |
099a19d9 TH |
2254 | |
2255 | /* | |
2256 | * First and reserved chunks are initialized with temporary allocation | |
2257 | * map in initdata so that they can be used before slab is online. | |
2258 | * This function is called after slab is brought up and replaces those | |
2259 | * with properly allocated maps. | |
2260 | */ | |
2261 | void __init percpu_init_late(void) | |
2262 | { | |
2263 | struct pcpu_chunk *target_chunks[] = | |
2264 | { pcpu_first_chunk, pcpu_reserved_chunk, NULL }; | |
2265 | struct pcpu_chunk *chunk; | |
2266 | unsigned long flags; | |
2267 | int i; | |
2268 | ||
2269 | for (i = 0; (chunk = target_chunks[i]); i++) { | |
2270 | int *map; | |
2271 | const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]); | |
2272 | ||
2273 | BUILD_BUG_ON(size > PAGE_SIZE); | |
2274 | ||
90459ce0 | 2275 | map = pcpu_mem_zalloc(size); |
099a19d9 TH |
2276 | BUG_ON(!map); |
2277 | ||
2278 | spin_lock_irqsave(&pcpu_lock, flags); | |
2279 | memcpy(map, chunk->map, size); | |
2280 | chunk->map = map; | |
2281 | spin_unlock_irqrestore(&pcpu_lock, flags); | |
2282 | } | |
2283 | } | |
1a4d7607 TH |
2284 | |
2285 | /* | |
2286 | * Percpu allocator is initialized early during boot when neither slab or | |
2287 | * workqueue is available. Plug async management until everything is up | |
2288 | * and running. | |
2289 | */ | |
2290 | static int __init percpu_enable_async(void) | |
2291 | { | |
2292 | pcpu_async_enabled = true; | |
2293 | return 0; | |
2294 | } | |
2295 | subsys_initcall(percpu_enable_async); |