]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/slab.c | |
3 | * Written by Mark Hemment, 1996/97. | |
4 | * ([email protected]) | |
5 | * | |
6 | * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli | |
7 | * | |
8 | * Major cleanup, different bufctl logic, per-cpu arrays | |
9 | * (c) 2000 Manfred Spraul | |
10 | * | |
11 | * Cleanup, make the head arrays unconditional, preparation for NUMA | |
12 | * (c) 2002 Manfred Spraul | |
13 | * | |
14 | * An implementation of the Slab Allocator as described in outline in; | |
15 | * UNIX Internals: The New Frontiers by Uresh Vahalia | |
16 | * Pub: Prentice Hall ISBN 0-13-101908-2 | |
17 | * or with a little more detail in; | |
18 | * The Slab Allocator: An Object-Caching Kernel Memory Allocator | |
19 | * Jeff Bonwick (Sun Microsystems). | |
20 | * Presented at: USENIX Summer 1994 Technical Conference | |
21 | * | |
22 | * The memory is organized in caches, one cache for each object type. | |
23 | * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) | |
24 | * Each cache consists out of many slabs (they are small (usually one | |
25 | * page long) and always contiguous), and each slab contains multiple | |
26 | * initialized objects. | |
27 | * | |
28 | * This means, that your constructor is used only for newly allocated | |
183ff22b | 29 | * slabs and you must pass objects with the same initializations to |
1da177e4 LT |
30 | * kmem_cache_free. |
31 | * | |
32 | * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, | |
33 | * normal). If you need a special memory type, then must create a new | |
34 | * cache for that memory type. | |
35 | * | |
36 | * In order to reduce fragmentation, the slabs are sorted in 3 groups: | |
37 | * full slabs with 0 free objects | |
38 | * partial slabs | |
39 | * empty slabs with no allocated objects | |
40 | * | |
41 | * If partial slabs exist, then new allocations come from these slabs, | |
42 | * otherwise from empty slabs or new slabs are allocated. | |
43 | * | |
44 | * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache | |
45 | * during kmem_cache_destroy(). The caller must prevent concurrent allocs. | |
46 | * | |
47 | * Each cache has a short per-cpu head array, most allocs | |
48 | * and frees go into that array, and if that array overflows, then 1/2 | |
49 | * of the entries in the array are given back into the global cache. | |
50 | * The head array is strictly LIFO and should improve the cache hit rates. | |
51 | * On SMP, it additionally reduces the spinlock operations. | |
52 | * | |
a737b3e2 | 53 | * The c_cpuarray may not be read with enabled local interrupts - |
1da177e4 LT |
54 | * it's changed with a smp_call_function(). |
55 | * | |
56 | * SMP synchronization: | |
57 | * constructors and destructors are called without any locking. | |
343e0d7a | 58 | * Several members in struct kmem_cache and struct slab never change, they |
1da177e4 LT |
59 | * are accessed without any locking. |
60 | * The per-cpu arrays are never accessed from the wrong cpu, no locking, | |
61 | * and local interrupts are disabled so slab code is preempt-safe. | |
62 | * The non-constant members are protected with a per-cache irq spinlock. | |
63 | * | |
64 | * Many thanks to Mark Hemment, who wrote another per-cpu slab patch | |
65 | * in 2000 - many ideas in the current implementation are derived from | |
66 | * his patch. | |
67 | * | |
68 | * Further notes from the original documentation: | |
69 | * | |
70 | * 11 April '97. Started multi-threading - markhe | |
fc0abb14 | 71 | * The global cache-chain is protected by the mutex 'cache_chain_mutex'. |
1da177e4 LT |
72 | * The sem is only needed when accessing/extending the cache-chain, which |
73 | * can never happen inside an interrupt (kmem_cache_create(), | |
74 | * kmem_cache_shrink() and kmem_cache_reap()). | |
75 | * | |
76 | * At present, each engine can be growing a cache. This should be blocked. | |
77 | * | |
e498be7d CL |
78 | * 15 March 2005. NUMA slab allocator. |
79 | * Shai Fultheim <[email protected]>. | |
80 | * Shobhit Dayal <[email protected]> | |
81 | * Alok N Kataria <[email protected]> | |
82 | * Christoph Lameter <[email protected]> | |
83 | * | |
84 | * Modified the slab allocator to be node aware on NUMA systems. | |
85 | * Each node has its own list of partial, free and full slabs. | |
86 | * All object allocations for a node occur from node specific slab lists. | |
1da177e4 LT |
87 | */ |
88 | ||
1da177e4 LT |
89 | #include <linux/slab.h> |
90 | #include <linux/mm.h> | |
c9cf5528 | 91 | #include <linux/poison.h> |
1da177e4 LT |
92 | #include <linux/swap.h> |
93 | #include <linux/cache.h> | |
94 | #include <linux/interrupt.h> | |
95 | #include <linux/init.h> | |
96 | #include <linux/compiler.h> | |
101a5001 | 97 | #include <linux/cpuset.h> |
a0ec95a8 | 98 | #include <linux/proc_fs.h> |
1da177e4 LT |
99 | #include <linux/seq_file.h> |
100 | #include <linux/notifier.h> | |
101 | #include <linux/kallsyms.h> | |
102 | #include <linux/cpu.h> | |
103 | #include <linux/sysctl.h> | |
104 | #include <linux/module.h> | |
02af61bb | 105 | #include <linux/kmemtrace.h> |
1da177e4 | 106 | #include <linux/rcupdate.h> |
543537bd | 107 | #include <linux/string.h> |
138ae663 | 108 | #include <linux/uaccess.h> |
e498be7d | 109 | #include <linux/nodemask.h> |
d5cff635 | 110 | #include <linux/kmemleak.h> |
dc85da15 | 111 | #include <linux/mempolicy.h> |
fc0abb14 | 112 | #include <linux/mutex.h> |
8a8b6502 | 113 | #include <linux/fault-inject.h> |
e7eebaf6 | 114 | #include <linux/rtmutex.h> |
6a2d7a95 | 115 | #include <linux/reciprocal_div.h> |
3ac7fe5a | 116 | #include <linux/debugobjects.h> |
c175eea4 | 117 | #include <linux/kmemcheck.h> |
1da177e4 | 118 | |
1da177e4 LT |
119 | #include <asm/cacheflush.h> |
120 | #include <asm/tlbflush.h> | |
121 | #include <asm/page.h> | |
122 | ||
123 | /* | |
50953fe9 | 124 | * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. |
1da177e4 LT |
125 | * 0 for faster, smaller code (especially in the critical paths). |
126 | * | |
127 | * STATS - 1 to collect stats for /proc/slabinfo. | |
128 | * 0 for faster, smaller code (especially in the critical paths). | |
129 | * | |
130 | * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) | |
131 | */ | |
132 | ||
133 | #ifdef CONFIG_DEBUG_SLAB | |
134 | #define DEBUG 1 | |
135 | #define STATS 1 | |
136 | #define FORCED_DEBUG 1 | |
137 | #else | |
138 | #define DEBUG 0 | |
139 | #define STATS 0 | |
140 | #define FORCED_DEBUG 0 | |
141 | #endif | |
142 | ||
1da177e4 LT |
143 | /* Shouldn't this be in a header file somewhere? */ |
144 | #define BYTES_PER_WORD sizeof(void *) | |
87a927c7 | 145 | #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) |
1da177e4 | 146 | |
1da177e4 LT |
147 | #ifndef ARCH_KMALLOC_MINALIGN |
148 | /* | |
149 | * Enforce a minimum alignment for the kmalloc caches. | |
150 | * Usually, the kmalloc caches are cache_line_size() aligned, except when | |
151 | * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned. | |
152 | * Some archs want to perform DMA into kmalloc caches and need a guaranteed | |
b46b8f19 DW |
153 | * alignment larger than the alignment of a 64-bit integer. |
154 | * ARCH_KMALLOC_MINALIGN allows that. | |
155 | * Note that increasing this value may disable some debug features. | |
1da177e4 | 156 | */ |
b46b8f19 | 157 | #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) |
1da177e4 LT |
158 | #endif |
159 | ||
160 | #ifndef ARCH_SLAB_MINALIGN | |
161 | /* | |
162 | * Enforce a minimum alignment for all caches. | |
163 | * Intended for archs that get misalignment faults even for BYTES_PER_WORD | |
164 | * aligned buffers. Includes ARCH_KMALLOC_MINALIGN. | |
165 | * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables | |
166 | * some debug features. | |
167 | */ | |
168 | #define ARCH_SLAB_MINALIGN 0 | |
169 | #endif | |
170 | ||
171 | #ifndef ARCH_KMALLOC_FLAGS | |
172 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | |
173 | #endif | |
174 | ||
175 | /* Legal flag mask for kmem_cache_create(). */ | |
176 | #if DEBUG | |
50953fe9 | 177 | # define CREATE_MASK (SLAB_RED_ZONE | \ |
1da177e4 | 178 | SLAB_POISON | SLAB_HWCACHE_ALIGN | \ |
ac2b898c | 179 | SLAB_CACHE_DMA | \ |
5af60839 | 180 | SLAB_STORE_USER | \ |
1da177e4 | 181 | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ |
3ac7fe5a | 182 | SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ |
c175eea4 | 183 | SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK) |
1da177e4 | 184 | #else |
ac2b898c | 185 | # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \ |
5af60839 | 186 | SLAB_CACHE_DMA | \ |
1da177e4 | 187 | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ |
3ac7fe5a | 188 | SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ |
c175eea4 | 189 | SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK) |
1da177e4 LT |
190 | #endif |
191 | ||
192 | /* | |
193 | * kmem_bufctl_t: | |
194 | * | |
195 | * Bufctl's are used for linking objs within a slab | |
196 | * linked offsets. | |
197 | * | |
198 | * This implementation relies on "struct page" for locating the cache & | |
199 | * slab an object belongs to. | |
200 | * This allows the bufctl structure to be small (one int), but limits | |
201 | * the number of objects a slab (not a cache) can contain when off-slab | |
202 | * bufctls are used. The limit is the size of the largest general cache | |
203 | * that does not use off-slab slabs. | |
204 | * For 32bit archs with 4 kB pages, is this 56. | |
205 | * This is not serious, as it is only for large objects, when it is unwise | |
206 | * to have too many per slab. | |
207 | * Note: This limit can be raised by introducing a general cache whose size | |
208 | * is less than 512 (PAGE_SIZE<<3), but greater than 256. | |
209 | */ | |
210 | ||
fa5b08d5 | 211 | typedef unsigned int kmem_bufctl_t; |
1da177e4 LT |
212 | #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) |
213 | #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) | |
871751e2 AV |
214 | #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2) |
215 | #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3) | |
1da177e4 | 216 | |
1da177e4 LT |
217 | /* |
218 | * struct slab | |
219 | * | |
220 | * Manages the objs in a slab. Placed either at the beginning of mem allocated | |
221 | * for a slab, or allocated from an general cache. | |
222 | * Slabs are chained into three list: fully used, partial, fully free slabs. | |
223 | */ | |
224 | struct slab { | |
b28a02de PE |
225 | struct list_head list; |
226 | unsigned long colouroff; | |
227 | void *s_mem; /* including colour offset */ | |
228 | unsigned int inuse; /* num of objs active in slab */ | |
229 | kmem_bufctl_t free; | |
230 | unsigned short nodeid; | |
1da177e4 LT |
231 | }; |
232 | ||
233 | /* | |
234 | * struct slab_rcu | |
235 | * | |
236 | * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to | |
237 | * arrange for kmem_freepages to be called via RCU. This is useful if | |
238 | * we need to approach a kernel structure obliquely, from its address | |
239 | * obtained without the usual locking. We can lock the structure to | |
240 | * stabilize it and check it's still at the given address, only if we | |
241 | * can be sure that the memory has not been meanwhile reused for some | |
242 | * other kind of object (which our subsystem's lock might corrupt). | |
243 | * | |
244 | * rcu_read_lock before reading the address, then rcu_read_unlock after | |
245 | * taking the spinlock within the structure expected at that address. | |
246 | * | |
247 | * We assume struct slab_rcu can overlay struct slab when destroying. | |
248 | */ | |
249 | struct slab_rcu { | |
b28a02de | 250 | struct rcu_head head; |
343e0d7a | 251 | struct kmem_cache *cachep; |
b28a02de | 252 | void *addr; |
1da177e4 LT |
253 | }; |
254 | ||
255 | /* | |
256 | * struct array_cache | |
257 | * | |
1da177e4 LT |
258 | * Purpose: |
259 | * - LIFO ordering, to hand out cache-warm objects from _alloc | |
260 | * - reduce the number of linked list operations | |
261 | * - reduce spinlock operations | |
262 | * | |
263 | * The limit is stored in the per-cpu structure to reduce the data cache | |
264 | * footprint. | |
265 | * | |
266 | */ | |
267 | struct array_cache { | |
268 | unsigned int avail; | |
269 | unsigned int limit; | |
270 | unsigned int batchcount; | |
271 | unsigned int touched; | |
e498be7d | 272 | spinlock_t lock; |
bda5b655 | 273 | void *entry[]; /* |
a737b3e2 AM |
274 | * Must have this definition in here for the proper |
275 | * alignment of array_cache. Also simplifies accessing | |
276 | * the entries. | |
a737b3e2 | 277 | */ |
1da177e4 LT |
278 | }; |
279 | ||
a737b3e2 AM |
280 | /* |
281 | * bootstrap: The caches do not work without cpuarrays anymore, but the | |
282 | * cpuarrays are allocated from the generic caches... | |
1da177e4 LT |
283 | */ |
284 | #define BOOT_CPUCACHE_ENTRIES 1 | |
285 | struct arraycache_init { | |
286 | struct array_cache cache; | |
b28a02de | 287 | void *entries[BOOT_CPUCACHE_ENTRIES]; |
1da177e4 LT |
288 | }; |
289 | ||
290 | /* | |
e498be7d | 291 | * The slab lists for all objects. |
1da177e4 LT |
292 | */ |
293 | struct kmem_list3 { | |
b28a02de PE |
294 | struct list_head slabs_partial; /* partial list first, better asm code */ |
295 | struct list_head slabs_full; | |
296 | struct list_head slabs_free; | |
297 | unsigned long free_objects; | |
b28a02de | 298 | unsigned int free_limit; |
2e1217cf | 299 | unsigned int colour_next; /* Per-node cache coloring */ |
b28a02de PE |
300 | spinlock_t list_lock; |
301 | struct array_cache *shared; /* shared per node */ | |
302 | struct array_cache **alien; /* on other nodes */ | |
35386e3b CL |
303 | unsigned long next_reap; /* updated without locking */ |
304 | int free_touched; /* updated without locking */ | |
1da177e4 LT |
305 | }; |
306 | ||
7e85ee0c PE |
307 | /* |
308 | * The slab allocator is initialized with interrupts disabled. Therefore, make | |
309 | * sure early boot allocations don't accidentally enable interrupts. | |
310 | */ | |
311 | static gfp_t slab_gfp_mask __read_mostly = SLAB_GFP_BOOT_MASK; | |
312 | ||
e498be7d CL |
313 | /* |
314 | * Need this for bootstrapping a per node allocator. | |
315 | */ | |
556a169d | 316 | #define NUM_INIT_LISTS (3 * MAX_NUMNODES) |
e498be7d CL |
317 | struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; |
318 | #define CACHE_CACHE 0 | |
556a169d PE |
319 | #define SIZE_AC MAX_NUMNODES |
320 | #define SIZE_L3 (2 * MAX_NUMNODES) | |
e498be7d | 321 | |
ed11d9eb CL |
322 | static int drain_freelist(struct kmem_cache *cache, |
323 | struct kmem_list3 *l3, int tofree); | |
324 | static void free_block(struct kmem_cache *cachep, void **objpp, int len, | |
325 | int node); | |
83b519e8 | 326 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); |
65f27f38 | 327 | static void cache_reap(struct work_struct *unused); |
ed11d9eb | 328 | |
e498be7d | 329 | /* |
a737b3e2 AM |
330 | * This function must be completely optimized away if a constant is passed to |
331 | * it. Mostly the same as what is in linux/slab.h except it returns an index. | |
e498be7d | 332 | */ |
7243cc05 | 333 | static __always_inline int index_of(const size_t size) |
e498be7d | 334 | { |
5ec8a847 SR |
335 | extern void __bad_size(void); |
336 | ||
e498be7d CL |
337 | if (__builtin_constant_p(size)) { |
338 | int i = 0; | |
339 | ||
340 | #define CACHE(x) \ | |
341 | if (size <=x) \ | |
342 | return i; \ | |
343 | else \ | |
344 | i++; | |
1c61fc40 | 345 | #include <linux/kmalloc_sizes.h> |
e498be7d | 346 | #undef CACHE |
5ec8a847 | 347 | __bad_size(); |
7243cc05 | 348 | } else |
5ec8a847 | 349 | __bad_size(); |
e498be7d CL |
350 | return 0; |
351 | } | |
352 | ||
e0a42726 IM |
353 | static int slab_early_init = 1; |
354 | ||
e498be7d CL |
355 | #define INDEX_AC index_of(sizeof(struct arraycache_init)) |
356 | #define INDEX_L3 index_of(sizeof(struct kmem_list3)) | |
1da177e4 | 357 | |
5295a74c | 358 | static void kmem_list3_init(struct kmem_list3 *parent) |
e498be7d CL |
359 | { |
360 | INIT_LIST_HEAD(&parent->slabs_full); | |
361 | INIT_LIST_HEAD(&parent->slabs_partial); | |
362 | INIT_LIST_HEAD(&parent->slabs_free); | |
363 | parent->shared = NULL; | |
364 | parent->alien = NULL; | |
2e1217cf | 365 | parent->colour_next = 0; |
e498be7d CL |
366 | spin_lock_init(&parent->list_lock); |
367 | parent->free_objects = 0; | |
368 | parent->free_touched = 0; | |
369 | } | |
370 | ||
a737b3e2 AM |
371 | #define MAKE_LIST(cachep, listp, slab, nodeid) \ |
372 | do { \ | |
373 | INIT_LIST_HEAD(listp); \ | |
374 | list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ | |
e498be7d CL |
375 | } while (0) |
376 | ||
a737b3e2 AM |
377 | #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ |
378 | do { \ | |
e498be7d CL |
379 | MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ |
380 | MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ | |
381 | MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ | |
382 | } while (0) | |
1da177e4 | 383 | |
1da177e4 LT |
384 | #define CFLGS_OFF_SLAB (0x80000000UL) |
385 | #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) | |
386 | ||
387 | #define BATCHREFILL_LIMIT 16 | |
a737b3e2 AM |
388 | /* |
389 | * Optimization question: fewer reaps means less probability for unnessary | |
390 | * cpucache drain/refill cycles. | |
1da177e4 | 391 | * |
dc6f3f27 | 392 | * OTOH the cpuarrays can contain lots of objects, |
1da177e4 LT |
393 | * which could lock up otherwise freeable slabs. |
394 | */ | |
395 | #define REAPTIMEOUT_CPUC (2*HZ) | |
396 | #define REAPTIMEOUT_LIST3 (4*HZ) | |
397 | ||
398 | #if STATS | |
399 | #define STATS_INC_ACTIVE(x) ((x)->num_active++) | |
400 | #define STATS_DEC_ACTIVE(x) ((x)->num_active--) | |
401 | #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) | |
402 | #define STATS_INC_GROWN(x) ((x)->grown++) | |
ed11d9eb | 403 | #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) |
a737b3e2 AM |
404 | #define STATS_SET_HIGH(x) \ |
405 | do { \ | |
406 | if ((x)->num_active > (x)->high_mark) \ | |
407 | (x)->high_mark = (x)->num_active; \ | |
408 | } while (0) | |
1da177e4 LT |
409 | #define STATS_INC_ERR(x) ((x)->errors++) |
410 | #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) | |
e498be7d | 411 | #define STATS_INC_NODEFREES(x) ((x)->node_frees++) |
fb7faf33 | 412 | #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) |
a737b3e2 AM |
413 | #define STATS_SET_FREEABLE(x, i) \ |
414 | do { \ | |
415 | if ((x)->max_freeable < i) \ | |
416 | (x)->max_freeable = i; \ | |
417 | } while (0) | |
1da177e4 LT |
418 | #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) |
419 | #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) | |
420 | #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) | |
421 | #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) | |
422 | #else | |
423 | #define STATS_INC_ACTIVE(x) do { } while (0) | |
424 | #define STATS_DEC_ACTIVE(x) do { } while (0) | |
425 | #define STATS_INC_ALLOCED(x) do { } while (0) | |
426 | #define STATS_INC_GROWN(x) do { } while (0) | |
ed11d9eb | 427 | #define STATS_ADD_REAPED(x,y) do { } while (0) |
1da177e4 LT |
428 | #define STATS_SET_HIGH(x) do { } while (0) |
429 | #define STATS_INC_ERR(x) do { } while (0) | |
430 | #define STATS_INC_NODEALLOCS(x) do { } while (0) | |
e498be7d | 431 | #define STATS_INC_NODEFREES(x) do { } while (0) |
fb7faf33 | 432 | #define STATS_INC_ACOVERFLOW(x) do { } while (0) |
a737b3e2 | 433 | #define STATS_SET_FREEABLE(x, i) do { } while (0) |
1da177e4 LT |
434 | #define STATS_INC_ALLOCHIT(x) do { } while (0) |
435 | #define STATS_INC_ALLOCMISS(x) do { } while (0) | |
436 | #define STATS_INC_FREEHIT(x) do { } while (0) | |
437 | #define STATS_INC_FREEMISS(x) do { } while (0) | |
438 | #endif | |
439 | ||
440 | #if DEBUG | |
1da177e4 | 441 | |
a737b3e2 AM |
442 | /* |
443 | * memory layout of objects: | |
1da177e4 | 444 | * 0 : objp |
3dafccf2 | 445 | * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that |
1da177e4 LT |
446 | * the end of an object is aligned with the end of the real |
447 | * allocation. Catches writes behind the end of the allocation. | |
3dafccf2 | 448 | * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: |
1da177e4 | 449 | * redzone word. |
3dafccf2 MS |
450 | * cachep->obj_offset: The real object. |
451 | * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] | |
a737b3e2 AM |
452 | * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address |
453 | * [BYTES_PER_WORD long] | |
1da177e4 | 454 | */ |
343e0d7a | 455 | static int obj_offset(struct kmem_cache *cachep) |
1da177e4 | 456 | { |
3dafccf2 | 457 | return cachep->obj_offset; |
1da177e4 LT |
458 | } |
459 | ||
343e0d7a | 460 | static int obj_size(struct kmem_cache *cachep) |
1da177e4 | 461 | { |
3dafccf2 | 462 | return cachep->obj_size; |
1da177e4 LT |
463 | } |
464 | ||
b46b8f19 | 465 | static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
466 | { |
467 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
b46b8f19 DW |
468 | return (unsigned long long*) (objp + obj_offset(cachep) - |
469 | sizeof(unsigned long long)); | |
1da177e4 LT |
470 | } |
471 | ||
b46b8f19 | 472 | static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
473 | { |
474 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
475 | if (cachep->flags & SLAB_STORE_USER) | |
b46b8f19 DW |
476 | return (unsigned long long *)(objp + cachep->buffer_size - |
477 | sizeof(unsigned long long) - | |
87a927c7 | 478 | REDZONE_ALIGN); |
b46b8f19 DW |
479 | return (unsigned long long *) (objp + cachep->buffer_size - |
480 | sizeof(unsigned long long)); | |
1da177e4 LT |
481 | } |
482 | ||
343e0d7a | 483 | static void **dbg_userword(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
484 | { |
485 | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | |
3dafccf2 | 486 | return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD); |
1da177e4 LT |
487 | } |
488 | ||
489 | #else | |
490 | ||
3dafccf2 MS |
491 | #define obj_offset(x) 0 |
492 | #define obj_size(cachep) (cachep->buffer_size) | |
b46b8f19 DW |
493 | #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) |
494 | #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) | |
1da177e4 LT |
495 | #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) |
496 | ||
497 | #endif | |
498 | ||
36555751 EGM |
499 | #ifdef CONFIG_KMEMTRACE |
500 | size_t slab_buffer_size(struct kmem_cache *cachep) | |
501 | { | |
502 | return cachep->buffer_size; | |
503 | } | |
504 | EXPORT_SYMBOL(slab_buffer_size); | |
505 | #endif | |
506 | ||
1da177e4 LT |
507 | /* |
508 | * Do not go above this order unless 0 objects fit into the slab. | |
509 | */ | |
510 | #define BREAK_GFP_ORDER_HI 1 | |
511 | #define BREAK_GFP_ORDER_LO 0 | |
512 | static int slab_break_gfp_order = BREAK_GFP_ORDER_LO; | |
513 | ||
a737b3e2 AM |
514 | /* |
515 | * Functions for storing/retrieving the cachep and or slab from the page | |
516 | * allocator. These are used to find the slab an obj belongs to. With kfree(), | |
517 | * these are used to find the cache which an obj belongs to. | |
1da177e4 | 518 | */ |
065d41cb PE |
519 | static inline void page_set_cache(struct page *page, struct kmem_cache *cache) |
520 | { | |
521 | page->lru.next = (struct list_head *)cache; | |
522 | } | |
523 | ||
524 | static inline struct kmem_cache *page_get_cache(struct page *page) | |
525 | { | |
d85f3385 | 526 | page = compound_head(page); |
ddc2e812 | 527 | BUG_ON(!PageSlab(page)); |
065d41cb PE |
528 | return (struct kmem_cache *)page->lru.next; |
529 | } | |
530 | ||
531 | static inline void page_set_slab(struct page *page, struct slab *slab) | |
532 | { | |
533 | page->lru.prev = (struct list_head *)slab; | |
534 | } | |
535 | ||
536 | static inline struct slab *page_get_slab(struct page *page) | |
537 | { | |
ddc2e812 | 538 | BUG_ON(!PageSlab(page)); |
065d41cb PE |
539 | return (struct slab *)page->lru.prev; |
540 | } | |
1da177e4 | 541 | |
6ed5eb22 PE |
542 | static inline struct kmem_cache *virt_to_cache(const void *obj) |
543 | { | |
b49af68f | 544 | struct page *page = virt_to_head_page(obj); |
6ed5eb22 PE |
545 | return page_get_cache(page); |
546 | } | |
547 | ||
548 | static inline struct slab *virt_to_slab(const void *obj) | |
549 | { | |
b49af68f | 550 | struct page *page = virt_to_head_page(obj); |
6ed5eb22 PE |
551 | return page_get_slab(page); |
552 | } | |
553 | ||
8fea4e96 PE |
554 | static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab, |
555 | unsigned int idx) | |
556 | { | |
557 | return slab->s_mem + cache->buffer_size * idx; | |
558 | } | |
559 | ||
6a2d7a95 ED |
560 | /* |
561 | * We want to avoid an expensive divide : (offset / cache->buffer_size) | |
562 | * Using the fact that buffer_size is a constant for a particular cache, | |
563 | * we can replace (offset / cache->buffer_size) by | |
564 | * reciprocal_divide(offset, cache->reciprocal_buffer_size) | |
565 | */ | |
566 | static inline unsigned int obj_to_index(const struct kmem_cache *cache, | |
567 | const struct slab *slab, void *obj) | |
8fea4e96 | 568 | { |
6a2d7a95 ED |
569 | u32 offset = (obj - slab->s_mem); |
570 | return reciprocal_divide(offset, cache->reciprocal_buffer_size); | |
8fea4e96 PE |
571 | } |
572 | ||
a737b3e2 AM |
573 | /* |
574 | * These are the default caches for kmalloc. Custom caches can have other sizes. | |
575 | */ | |
1da177e4 LT |
576 | struct cache_sizes malloc_sizes[] = { |
577 | #define CACHE(x) { .cs_size = (x) }, | |
578 | #include <linux/kmalloc_sizes.h> | |
579 | CACHE(ULONG_MAX) | |
580 | #undef CACHE | |
581 | }; | |
582 | EXPORT_SYMBOL(malloc_sizes); | |
583 | ||
584 | /* Must match cache_sizes above. Out of line to keep cache footprint low. */ | |
585 | struct cache_names { | |
586 | char *name; | |
587 | char *name_dma; | |
588 | }; | |
589 | ||
590 | static struct cache_names __initdata cache_names[] = { | |
591 | #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, | |
592 | #include <linux/kmalloc_sizes.h> | |
b28a02de | 593 | {NULL,} |
1da177e4 LT |
594 | #undef CACHE |
595 | }; | |
596 | ||
597 | static struct arraycache_init initarray_cache __initdata = | |
b28a02de | 598 | { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; |
1da177e4 | 599 | static struct arraycache_init initarray_generic = |
b28a02de | 600 | { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; |
1da177e4 LT |
601 | |
602 | /* internal cache of cache description objs */ | |
343e0d7a | 603 | static struct kmem_cache cache_cache = { |
b28a02de PE |
604 | .batchcount = 1, |
605 | .limit = BOOT_CPUCACHE_ENTRIES, | |
606 | .shared = 1, | |
343e0d7a | 607 | .buffer_size = sizeof(struct kmem_cache), |
b28a02de | 608 | .name = "kmem_cache", |
1da177e4 LT |
609 | }; |
610 | ||
056c6241 RT |
611 | #define BAD_ALIEN_MAGIC 0x01020304ul |
612 | ||
f1aaee53 AV |
613 | #ifdef CONFIG_LOCKDEP |
614 | ||
615 | /* | |
616 | * Slab sometimes uses the kmalloc slabs to store the slab headers | |
617 | * for other slabs "off slab". | |
618 | * The locking for this is tricky in that it nests within the locks | |
619 | * of all other slabs in a few places; to deal with this special | |
620 | * locking we put on-slab caches into a separate lock-class. | |
056c6241 RT |
621 | * |
622 | * We set lock class for alien array caches which are up during init. | |
623 | * The lock annotation will be lost if all cpus of a node goes down and | |
624 | * then comes back up during hotplug | |
f1aaee53 | 625 | */ |
056c6241 RT |
626 | static struct lock_class_key on_slab_l3_key; |
627 | static struct lock_class_key on_slab_alc_key; | |
628 | ||
629 | static inline void init_lock_keys(void) | |
f1aaee53 | 630 | |
f1aaee53 AV |
631 | { |
632 | int q; | |
056c6241 RT |
633 | struct cache_sizes *s = malloc_sizes; |
634 | ||
635 | while (s->cs_size != ULONG_MAX) { | |
636 | for_each_node(q) { | |
637 | struct array_cache **alc; | |
638 | int r; | |
639 | struct kmem_list3 *l3 = s->cs_cachep->nodelists[q]; | |
640 | if (!l3 || OFF_SLAB(s->cs_cachep)) | |
641 | continue; | |
642 | lockdep_set_class(&l3->list_lock, &on_slab_l3_key); | |
643 | alc = l3->alien; | |
644 | /* | |
645 | * FIXME: This check for BAD_ALIEN_MAGIC | |
646 | * should go away when common slab code is taught to | |
647 | * work even without alien caches. | |
648 | * Currently, non NUMA code returns BAD_ALIEN_MAGIC | |
649 | * for alloc_alien_cache, | |
650 | */ | |
651 | if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) | |
652 | continue; | |
653 | for_each_node(r) { | |
654 | if (alc[r]) | |
655 | lockdep_set_class(&alc[r]->lock, | |
656 | &on_slab_alc_key); | |
657 | } | |
658 | } | |
659 | s++; | |
f1aaee53 AV |
660 | } |
661 | } | |
f1aaee53 | 662 | #else |
056c6241 | 663 | static inline void init_lock_keys(void) |
f1aaee53 AV |
664 | { |
665 | } | |
666 | #endif | |
667 | ||
8f5be20b | 668 | /* |
95402b38 | 669 | * Guard access to the cache-chain. |
8f5be20b | 670 | */ |
fc0abb14 | 671 | static DEFINE_MUTEX(cache_chain_mutex); |
1da177e4 LT |
672 | static struct list_head cache_chain; |
673 | ||
1da177e4 LT |
674 | /* |
675 | * chicken and egg problem: delay the per-cpu array allocation | |
676 | * until the general caches are up. | |
677 | */ | |
678 | static enum { | |
679 | NONE, | |
e498be7d CL |
680 | PARTIAL_AC, |
681 | PARTIAL_L3, | |
8429db5c | 682 | EARLY, |
1da177e4 LT |
683 | FULL |
684 | } g_cpucache_up; | |
685 | ||
39d24e64 MK |
686 | /* |
687 | * used by boot code to determine if it can use slab based allocator | |
688 | */ | |
689 | int slab_is_available(void) | |
690 | { | |
8429db5c | 691 | return g_cpucache_up >= EARLY; |
39d24e64 MK |
692 | } |
693 | ||
52bad64d | 694 | static DEFINE_PER_CPU(struct delayed_work, reap_work); |
1da177e4 | 695 | |
343e0d7a | 696 | static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) |
1da177e4 LT |
697 | { |
698 | return cachep->array[smp_processor_id()]; | |
699 | } | |
700 | ||
a737b3e2 AM |
701 | static inline struct kmem_cache *__find_general_cachep(size_t size, |
702 | gfp_t gfpflags) | |
1da177e4 LT |
703 | { |
704 | struct cache_sizes *csizep = malloc_sizes; | |
705 | ||
706 | #if DEBUG | |
707 | /* This happens if someone tries to call | |
b28a02de PE |
708 | * kmem_cache_create(), or __kmalloc(), before |
709 | * the generic caches are initialized. | |
710 | */ | |
c7e43c78 | 711 | BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); |
1da177e4 | 712 | #endif |
6cb8f913 CL |
713 | if (!size) |
714 | return ZERO_SIZE_PTR; | |
715 | ||
1da177e4 LT |
716 | while (size > csizep->cs_size) |
717 | csizep++; | |
718 | ||
719 | /* | |
0abf40c1 | 720 | * Really subtle: The last entry with cs->cs_size==ULONG_MAX |
1da177e4 LT |
721 | * has cs_{dma,}cachep==NULL. Thus no special case |
722 | * for large kmalloc calls required. | |
723 | */ | |
4b51d669 | 724 | #ifdef CONFIG_ZONE_DMA |
1da177e4 LT |
725 | if (unlikely(gfpflags & GFP_DMA)) |
726 | return csizep->cs_dmacachep; | |
4b51d669 | 727 | #endif |
1da177e4 LT |
728 | return csizep->cs_cachep; |
729 | } | |
730 | ||
b221385b | 731 | static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) |
97e2bde4 MS |
732 | { |
733 | return __find_general_cachep(size, gfpflags); | |
734 | } | |
97e2bde4 | 735 | |
fbaccacf | 736 | static size_t slab_mgmt_size(size_t nr_objs, size_t align) |
1da177e4 | 737 | { |
fbaccacf SR |
738 | return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); |
739 | } | |
1da177e4 | 740 | |
a737b3e2 AM |
741 | /* |
742 | * Calculate the number of objects and left-over bytes for a given buffer size. | |
743 | */ | |
fbaccacf SR |
744 | static void cache_estimate(unsigned long gfporder, size_t buffer_size, |
745 | size_t align, int flags, size_t *left_over, | |
746 | unsigned int *num) | |
747 | { | |
748 | int nr_objs; | |
749 | size_t mgmt_size; | |
750 | size_t slab_size = PAGE_SIZE << gfporder; | |
1da177e4 | 751 | |
fbaccacf SR |
752 | /* |
753 | * The slab management structure can be either off the slab or | |
754 | * on it. For the latter case, the memory allocated for a | |
755 | * slab is used for: | |
756 | * | |
757 | * - The struct slab | |
758 | * - One kmem_bufctl_t for each object | |
759 | * - Padding to respect alignment of @align | |
760 | * - @buffer_size bytes for each object | |
761 | * | |
762 | * If the slab management structure is off the slab, then the | |
763 | * alignment will already be calculated into the size. Because | |
764 | * the slabs are all pages aligned, the objects will be at the | |
765 | * correct alignment when allocated. | |
766 | */ | |
767 | if (flags & CFLGS_OFF_SLAB) { | |
768 | mgmt_size = 0; | |
769 | nr_objs = slab_size / buffer_size; | |
770 | ||
771 | if (nr_objs > SLAB_LIMIT) | |
772 | nr_objs = SLAB_LIMIT; | |
773 | } else { | |
774 | /* | |
775 | * Ignore padding for the initial guess. The padding | |
776 | * is at most @align-1 bytes, and @buffer_size is at | |
777 | * least @align. In the worst case, this result will | |
778 | * be one greater than the number of objects that fit | |
779 | * into the memory allocation when taking the padding | |
780 | * into account. | |
781 | */ | |
782 | nr_objs = (slab_size - sizeof(struct slab)) / | |
783 | (buffer_size + sizeof(kmem_bufctl_t)); | |
784 | ||
785 | /* | |
786 | * This calculated number will be either the right | |
787 | * amount, or one greater than what we want. | |
788 | */ | |
789 | if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size | |
790 | > slab_size) | |
791 | nr_objs--; | |
792 | ||
793 | if (nr_objs > SLAB_LIMIT) | |
794 | nr_objs = SLAB_LIMIT; | |
795 | ||
796 | mgmt_size = slab_mgmt_size(nr_objs, align); | |
797 | } | |
798 | *num = nr_objs; | |
799 | *left_over = slab_size - nr_objs*buffer_size - mgmt_size; | |
1da177e4 LT |
800 | } |
801 | ||
d40cee24 | 802 | #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) |
1da177e4 | 803 | |
a737b3e2 AM |
804 | static void __slab_error(const char *function, struct kmem_cache *cachep, |
805 | char *msg) | |
1da177e4 LT |
806 | { |
807 | printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", | |
b28a02de | 808 | function, cachep->name, msg); |
1da177e4 LT |
809 | dump_stack(); |
810 | } | |
811 | ||
3395ee05 PM |
812 | /* |
813 | * By default on NUMA we use alien caches to stage the freeing of | |
814 | * objects allocated from other nodes. This causes massive memory | |
815 | * inefficiencies when using fake NUMA setup to split memory into a | |
816 | * large number of small nodes, so it can be disabled on the command | |
817 | * line | |
818 | */ | |
819 | ||
820 | static int use_alien_caches __read_mostly = 1; | |
821 | static int __init noaliencache_setup(char *s) | |
822 | { | |
823 | use_alien_caches = 0; | |
824 | return 1; | |
825 | } | |
826 | __setup("noaliencache", noaliencache_setup); | |
827 | ||
8fce4d8e CL |
828 | #ifdef CONFIG_NUMA |
829 | /* | |
830 | * Special reaping functions for NUMA systems called from cache_reap(). | |
831 | * These take care of doing round robin flushing of alien caches (containing | |
832 | * objects freed on different nodes from which they were allocated) and the | |
833 | * flushing of remote pcps by calling drain_node_pages. | |
834 | */ | |
835 | static DEFINE_PER_CPU(unsigned long, reap_node); | |
836 | ||
837 | static void init_reap_node(int cpu) | |
838 | { | |
839 | int node; | |
840 | ||
841 | node = next_node(cpu_to_node(cpu), node_online_map); | |
842 | if (node == MAX_NUMNODES) | |
442295c9 | 843 | node = first_node(node_online_map); |
8fce4d8e | 844 | |
7f6b8876 | 845 | per_cpu(reap_node, cpu) = node; |
8fce4d8e CL |
846 | } |
847 | ||
848 | static void next_reap_node(void) | |
849 | { | |
850 | int node = __get_cpu_var(reap_node); | |
851 | ||
8fce4d8e CL |
852 | node = next_node(node, node_online_map); |
853 | if (unlikely(node >= MAX_NUMNODES)) | |
854 | node = first_node(node_online_map); | |
855 | __get_cpu_var(reap_node) = node; | |
856 | } | |
857 | ||
858 | #else | |
859 | #define init_reap_node(cpu) do { } while (0) | |
860 | #define next_reap_node(void) do { } while (0) | |
861 | #endif | |
862 | ||
1da177e4 LT |
863 | /* |
864 | * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz | |
865 | * via the workqueue/eventd. | |
866 | * Add the CPU number into the expiration time to minimize the possibility of | |
867 | * the CPUs getting into lockstep and contending for the global cache chain | |
868 | * lock. | |
869 | */ | |
897e679b | 870 | static void __cpuinit start_cpu_timer(int cpu) |
1da177e4 | 871 | { |
52bad64d | 872 | struct delayed_work *reap_work = &per_cpu(reap_work, cpu); |
1da177e4 LT |
873 | |
874 | /* | |
875 | * When this gets called from do_initcalls via cpucache_init(), | |
876 | * init_workqueues() has already run, so keventd will be setup | |
877 | * at that time. | |
878 | */ | |
52bad64d | 879 | if (keventd_up() && reap_work->work.func == NULL) { |
8fce4d8e | 880 | init_reap_node(cpu); |
65f27f38 | 881 | INIT_DELAYED_WORK(reap_work, cache_reap); |
2b284214 AV |
882 | schedule_delayed_work_on(cpu, reap_work, |
883 | __round_jiffies_relative(HZ, cpu)); | |
1da177e4 LT |
884 | } |
885 | } | |
886 | ||
e498be7d | 887 | static struct array_cache *alloc_arraycache(int node, int entries, |
83b519e8 | 888 | int batchcount, gfp_t gfp) |
1da177e4 | 889 | { |
b28a02de | 890 | int memsize = sizeof(void *) * entries + sizeof(struct array_cache); |
1da177e4 LT |
891 | struct array_cache *nc = NULL; |
892 | ||
83b519e8 | 893 | nc = kmalloc_node(memsize, gfp, node); |
d5cff635 CM |
894 | /* |
895 | * The array_cache structures contain pointers to free object. | |
896 | * However, when such objects are allocated or transfered to another | |
897 | * cache the pointers are not cleared and they could be counted as | |
898 | * valid references during a kmemleak scan. Therefore, kmemleak must | |
899 | * not scan such objects. | |
900 | */ | |
901 | kmemleak_no_scan(nc); | |
1da177e4 LT |
902 | if (nc) { |
903 | nc->avail = 0; | |
904 | nc->limit = entries; | |
905 | nc->batchcount = batchcount; | |
906 | nc->touched = 0; | |
e498be7d | 907 | spin_lock_init(&nc->lock); |
1da177e4 LT |
908 | } |
909 | return nc; | |
910 | } | |
911 | ||
3ded175a CL |
912 | /* |
913 | * Transfer objects in one arraycache to another. | |
914 | * Locking must be handled by the caller. | |
915 | * | |
916 | * Return the number of entries transferred. | |
917 | */ | |
918 | static int transfer_objects(struct array_cache *to, | |
919 | struct array_cache *from, unsigned int max) | |
920 | { | |
921 | /* Figure out how many entries to transfer */ | |
922 | int nr = min(min(from->avail, max), to->limit - to->avail); | |
923 | ||
924 | if (!nr) | |
925 | return 0; | |
926 | ||
927 | memcpy(to->entry + to->avail, from->entry + from->avail -nr, | |
928 | sizeof(void *) *nr); | |
929 | ||
930 | from->avail -= nr; | |
931 | to->avail += nr; | |
932 | to->touched = 1; | |
933 | return nr; | |
934 | } | |
935 | ||
765c4507 CL |
936 | #ifndef CONFIG_NUMA |
937 | ||
938 | #define drain_alien_cache(cachep, alien) do { } while (0) | |
939 | #define reap_alien(cachep, l3) do { } while (0) | |
940 | ||
83b519e8 | 941 | static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) |
765c4507 CL |
942 | { |
943 | return (struct array_cache **)BAD_ALIEN_MAGIC; | |
944 | } | |
945 | ||
946 | static inline void free_alien_cache(struct array_cache **ac_ptr) | |
947 | { | |
948 | } | |
949 | ||
950 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |
951 | { | |
952 | return 0; | |
953 | } | |
954 | ||
955 | static inline void *alternate_node_alloc(struct kmem_cache *cachep, | |
956 | gfp_t flags) | |
957 | { | |
958 | return NULL; | |
959 | } | |
960 | ||
8b98c169 | 961 | static inline void *____cache_alloc_node(struct kmem_cache *cachep, |
765c4507 CL |
962 | gfp_t flags, int nodeid) |
963 | { | |
964 | return NULL; | |
965 | } | |
966 | ||
967 | #else /* CONFIG_NUMA */ | |
968 | ||
8b98c169 | 969 | static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); |
c61afb18 | 970 | static void *alternate_node_alloc(struct kmem_cache *, gfp_t); |
dc85da15 | 971 | |
83b519e8 | 972 | static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) |
e498be7d CL |
973 | { |
974 | struct array_cache **ac_ptr; | |
8ef82866 | 975 | int memsize = sizeof(void *) * nr_node_ids; |
e498be7d CL |
976 | int i; |
977 | ||
978 | if (limit > 1) | |
979 | limit = 12; | |
83b519e8 | 980 | ac_ptr = kmalloc_node(memsize, gfp, node); |
e498be7d CL |
981 | if (ac_ptr) { |
982 | for_each_node(i) { | |
983 | if (i == node || !node_online(i)) { | |
984 | ac_ptr[i] = NULL; | |
985 | continue; | |
986 | } | |
83b519e8 | 987 | ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp); |
e498be7d | 988 | if (!ac_ptr[i]) { |
cc550def | 989 | for (i--; i >= 0; i--) |
e498be7d CL |
990 | kfree(ac_ptr[i]); |
991 | kfree(ac_ptr); | |
992 | return NULL; | |
993 | } | |
994 | } | |
995 | } | |
996 | return ac_ptr; | |
997 | } | |
998 | ||
5295a74c | 999 | static void free_alien_cache(struct array_cache **ac_ptr) |
e498be7d CL |
1000 | { |
1001 | int i; | |
1002 | ||
1003 | if (!ac_ptr) | |
1004 | return; | |
e498be7d | 1005 | for_each_node(i) |
b28a02de | 1006 | kfree(ac_ptr[i]); |
e498be7d CL |
1007 | kfree(ac_ptr); |
1008 | } | |
1009 | ||
343e0d7a | 1010 | static void __drain_alien_cache(struct kmem_cache *cachep, |
5295a74c | 1011 | struct array_cache *ac, int node) |
e498be7d CL |
1012 | { |
1013 | struct kmem_list3 *rl3 = cachep->nodelists[node]; | |
1014 | ||
1015 | if (ac->avail) { | |
1016 | spin_lock(&rl3->list_lock); | |
e00946fe CL |
1017 | /* |
1018 | * Stuff objects into the remote nodes shared array first. | |
1019 | * That way we could avoid the overhead of putting the objects | |
1020 | * into the free lists and getting them back later. | |
1021 | */ | |
693f7d36 JS |
1022 | if (rl3->shared) |
1023 | transfer_objects(rl3->shared, ac, ac->limit); | |
e00946fe | 1024 | |
ff69416e | 1025 | free_block(cachep, ac->entry, ac->avail, node); |
e498be7d CL |
1026 | ac->avail = 0; |
1027 | spin_unlock(&rl3->list_lock); | |
1028 | } | |
1029 | } | |
1030 | ||
8fce4d8e CL |
1031 | /* |
1032 | * Called from cache_reap() to regularly drain alien caches round robin. | |
1033 | */ | |
1034 | static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) | |
1035 | { | |
1036 | int node = __get_cpu_var(reap_node); | |
1037 | ||
1038 | if (l3->alien) { | |
1039 | struct array_cache *ac = l3->alien[node]; | |
e00946fe CL |
1040 | |
1041 | if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { | |
8fce4d8e CL |
1042 | __drain_alien_cache(cachep, ac, node); |
1043 | spin_unlock_irq(&ac->lock); | |
1044 | } | |
1045 | } | |
1046 | } | |
1047 | ||
a737b3e2 AM |
1048 | static void drain_alien_cache(struct kmem_cache *cachep, |
1049 | struct array_cache **alien) | |
e498be7d | 1050 | { |
b28a02de | 1051 | int i = 0; |
e498be7d CL |
1052 | struct array_cache *ac; |
1053 | unsigned long flags; | |
1054 | ||
1055 | for_each_online_node(i) { | |
4484ebf1 | 1056 | ac = alien[i]; |
e498be7d CL |
1057 | if (ac) { |
1058 | spin_lock_irqsave(&ac->lock, flags); | |
1059 | __drain_alien_cache(cachep, ac, i); | |
1060 | spin_unlock_irqrestore(&ac->lock, flags); | |
1061 | } | |
1062 | } | |
1063 | } | |
729bd0b7 | 1064 | |
873623df | 1065 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) |
729bd0b7 PE |
1066 | { |
1067 | struct slab *slabp = virt_to_slab(objp); | |
1068 | int nodeid = slabp->nodeid; | |
1069 | struct kmem_list3 *l3; | |
1070 | struct array_cache *alien = NULL; | |
1ca4cb24 PE |
1071 | int node; |
1072 | ||
1073 | node = numa_node_id(); | |
729bd0b7 PE |
1074 | |
1075 | /* | |
1076 | * Make sure we are not freeing a object from another node to the array | |
1077 | * cache on this cpu. | |
1078 | */ | |
62918a03 | 1079 | if (likely(slabp->nodeid == node)) |
729bd0b7 PE |
1080 | return 0; |
1081 | ||
1ca4cb24 | 1082 | l3 = cachep->nodelists[node]; |
729bd0b7 PE |
1083 | STATS_INC_NODEFREES(cachep); |
1084 | if (l3->alien && l3->alien[nodeid]) { | |
1085 | alien = l3->alien[nodeid]; | |
873623df | 1086 | spin_lock(&alien->lock); |
729bd0b7 PE |
1087 | if (unlikely(alien->avail == alien->limit)) { |
1088 | STATS_INC_ACOVERFLOW(cachep); | |
1089 | __drain_alien_cache(cachep, alien, nodeid); | |
1090 | } | |
1091 | alien->entry[alien->avail++] = objp; | |
1092 | spin_unlock(&alien->lock); | |
1093 | } else { | |
1094 | spin_lock(&(cachep->nodelists[nodeid])->list_lock); | |
1095 | free_block(cachep, &objp, 1, nodeid); | |
1096 | spin_unlock(&(cachep->nodelists[nodeid])->list_lock); | |
1097 | } | |
1098 | return 1; | |
1099 | } | |
e498be7d CL |
1100 | #endif |
1101 | ||
fbf1e473 AM |
1102 | static void __cpuinit cpuup_canceled(long cpu) |
1103 | { | |
1104 | struct kmem_cache *cachep; | |
1105 | struct kmem_list3 *l3 = NULL; | |
1106 | int node = cpu_to_node(cpu); | |
a70f7302 | 1107 | const struct cpumask *mask = cpumask_of_node(node); |
fbf1e473 AM |
1108 | |
1109 | list_for_each_entry(cachep, &cache_chain, next) { | |
1110 | struct array_cache *nc; | |
1111 | struct array_cache *shared; | |
1112 | struct array_cache **alien; | |
fbf1e473 | 1113 | |
fbf1e473 AM |
1114 | /* cpu is dead; no one can alloc from it. */ |
1115 | nc = cachep->array[cpu]; | |
1116 | cachep->array[cpu] = NULL; | |
1117 | l3 = cachep->nodelists[node]; | |
1118 | ||
1119 | if (!l3) | |
1120 | goto free_array_cache; | |
1121 | ||
1122 | spin_lock_irq(&l3->list_lock); | |
1123 | ||
1124 | /* Free limit for this kmem_list3 */ | |
1125 | l3->free_limit -= cachep->batchcount; | |
1126 | if (nc) | |
1127 | free_block(cachep, nc->entry, nc->avail, node); | |
1128 | ||
c5f59f08 | 1129 | if (!cpus_empty(*mask)) { |
fbf1e473 AM |
1130 | spin_unlock_irq(&l3->list_lock); |
1131 | goto free_array_cache; | |
1132 | } | |
1133 | ||
1134 | shared = l3->shared; | |
1135 | if (shared) { | |
1136 | free_block(cachep, shared->entry, | |
1137 | shared->avail, node); | |
1138 | l3->shared = NULL; | |
1139 | } | |
1140 | ||
1141 | alien = l3->alien; | |
1142 | l3->alien = NULL; | |
1143 | ||
1144 | spin_unlock_irq(&l3->list_lock); | |
1145 | ||
1146 | kfree(shared); | |
1147 | if (alien) { | |
1148 | drain_alien_cache(cachep, alien); | |
1149 | free_alien_cache(alien); | |
1150 | } | |
1151 | free_array_cache: | |
1152 | kfree(nc); | |
1153 | } | |
1154 | /* | |
1155 | * In the previous loop, all the objects were freed to | |
1156 | * the respective cache's slabs, now we can go ahead and | |
1157 | * shrink each nodelist to its limit. | |
1158 | */ | |
1159 | list_for_each_entry(cachep, &cache_chain, next) { | |
1160 | l3 = cachep->nodelists[node]; | |
1161 | if (!l3) | |
1162 | continue; | |
1163 | drain_freelist(cachep, l3, l3->free_objects); | |
1164 | } | |
1165 | } | |
1166 | ||
1167 | static int __cpuinit cpuup_prepare(long cpu) | |
1da177e4 | 1168 | { |
343e0d7a | 1169 | struct kmem_cache *cachep; |
e498be7d CL |
1170 | struct kmem_list3 *l3 = NULL; |
1171 | int node = cpu_to_node(cpu); | |
ea02e3dd | 1172 | const int memsize = sizeof(struct kmem_list3); |
1da177e4 | 1173 | |
fbf1e473 AM |
1174 | /* |
1175 | * We need to do this right in the beginning since | |
1176 | * alloc_arraycache's are going to use this list. | |
1177 | * kmalloc_node allows us to add the slab to the right | |
1178 | * kmem_list3 and not this cpu's kmem_list3 | |
1179 | */ | |
1180 | ||
1181 | list_for_each_entry(cachep, &cache_chain, next) { | |
a737b3e2 | 1182 | /* |
fbf1e473 AM |
1183 | * Set up the size64 kmemlist for cpu before we can |
1184 | * begin anything. Make sure some other cpu on this | |
1185 | * node has not already allocated this | |
e498be7d | 1186 | */ |
fbf1e473 AM |
1187 | if (!cachep->nodelists[node]) { |
1188 | l3 = kmalloc_node(memsize, GFP_KERNEL, node); | |
1189 | if (!l3) | |
1190 | goto bad; | |
1191 | kmem_list3_init(l3); | |
1192 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | |
1193 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | |
e498be7d | 1194 | |
a737b3e2 | 1195 | /* |
fbf1e473 AM |
1196 | * The l3s don't come and go as CPUs come and |
1197 | * go. cache_chain_mutex is sufficient | |
1198 | * protection here. | |
e498be7d | 1199 | */ |
fbf1e473 | 1200 | cachep->nodelists[node] = l3; |
e498be7d CL |
1201 | } |
1202 | ||
fbf1e473 AM |
1203 | spin_lock_irq(&cachep->nodelists[node]->list_lock); |
1204 | cachep->nodelists[node]->free_limit = | |
1205 | (1 + nr_cpus_node(node)) * | |
1206 | cachep->batchcount + cachep->num; | |
1207 | spin_unlock_irq(&cachep->nodelists[node]->list_lock); | |
1208 | } | |
1209 | ||
1210 | /* | |
1211 | * Now we can go ahead with allocating the shared arrays and | |
1212 | * array caches | |
1213 | */ | |
1214 | list_for_each_entry(cachep, &cache_chain, next) { | |
1215 | struct array_cache *nc; | |
1216 | struct array_cache *shared = NULL; | |
1217 | struct array_cache **alien = NULL; | |
1218 | ||
1219 | nc = alloc_arraycache(node, cachep->limit, | |
83b519e8 | 1220 | cachep->batchcount, GFP_KERNEL); |
fbf1e473 AM |
1221 | if (!nc) |
1222 | goto bad; | |
1223 | if (cachep->shared) { | |
1224 | shared = alloc_arraycache(node, | |
1225 | cachep->shared * cachep->batchcount, | |
83b519e8 | 1226 | 0xbaadf00d, GFP_KERNEL); |
12d00f6a AM |
1227 | if (!shared) { |
1228 | kfree(nc); | |
1da177e4 | 1229 | goto bad; |
12d00f6a | 1230 | } |
fbf1e473 AM |
1231 | } |
1232 | if (use_alien_caches) { | |
83b519e8 | 1233 | alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL); |
12d00f6a AM |
1234 | if (!alien) { |
1235 | kfree(shared); | |
1236 | kfree(nc); | |
fbf1e473 | 1237 | goto bad; |
12d00f6a | 1238 | } |
fbf1e473 AM |
1239 | } |
1240 | cachep->array[cpu] = nc; | |
1241 | l3 = cachep->nodelists[node]; | |
1242 | BUG_ON(!l3); | |
1243 | ||
1244 | spin_lock_irq(&l3->list_lock); | |
1245 | if (!l3->shared) { | |
1246 | /* | |
1247 | * We are serialised from CPU_DEAD or | |
1248 | * CPU_UP_CANCELLED by the cpucontrol lock | |
1249 | */ | |
1250 | l3->shared = shared; | |
1251 | shared = NULL; | |
1252 | } | |
4484ebf1 | 1253 | #ifdef CONFIG_NUMA |
fbf1e473 AM |
1254 | if (!l3->alien) { |
1255 | l3->alien = alien; | |
1256 | alien = NULL; | |
1da177e4 | 1257 | } |
fbf1e473 AM |
1258 | #endif |
1259 | spin_unlock_irq(&l3->list_lock); | |
1260 | kfree(shared); | |
1261 | free_alien_cache(alien); | |
1262 | } | |
1263 | return 0; | |
1264 | bad: | |
12d00f6a | 1265 | cpuup_canceled(cpu); |
fbf1e473 AM |
1266 | return -ENOMEM; |
1267 | } | |
1268 | ||
1269 | static int __cpuinit cpuup_callback(struct notifier_block *nfb, | |
1270 | unsigned long action, void *hcpu) | |
1271 | { | |
1272 | long cpu = (long)hcpu; | |
1273 | int err = 0; | |
1274 | ||
1275 | switch (action) { | |
fbf1e473 AM |
1276 | case CPU_UP_PREPARE: |
1277 | case CPU_UP_PREPARE_FROZEN: | |
95402b38 | 1278 | mutex_lock(&cache_chain_mutex); |
fbf1e473 | 1279 | err = cpuup_prepare(cpu); |
95402b38 | 1280 | mutex_unlock(&cache_chain_mutex); |
1da177e4 LT |
1281 | break; |
1282 | case CPU_ONLINE: | |
8bb78442 | 1283 | case CPU_ONLINE_FROZEN: |
1da177e4 LT |
1284 | start_cpu_timer(cpu); |
1285 | break; | |
1286 | #ifdef CONFIG_HOTPLUG_CPU | |
5830c590 | 1287 | case CPU_DOWN_PREPARE: |
8bb78442 | 1288 | case CPU_DOWN_PREPARE_FROZEN: |
5830c590 CL |
1289 | /* |
1290 | * Shutdown cache reaper. Note that the cache_chain_mutex is | |
1291 | * held so that if cache_reap() is invoked it cannot do | |
1292 | * anything expensive but will only modify reap_work | |
1293 | * and reschedule the timer. | |
1294 | */ | |
1295 | cancel_rearming_delayed_work(&per_cpu(reap_work, cpu)); | |
1296 | /* Now the cache_reaper is guaranteed to be not running. */ | |
1297 | per_cpu(reap_work, cpu).work.func = NULL; | |
1298 | break; | |
1299 | case CPU_DOWN_FAILED: | |
8bb78442 | 1300 | case CPU_DOWN_FAILED_FROZEN: |
5830c590 CL |
1301 | start_cpu_timer(cpu); |
1302 | break; | |
1da177e4 | 1303 | case CPU_DEAD: |
8bb78442 | 1304 | case CPU_DEAD_FROZEN: |
4484ebf1 RT |
1305 | /* |
1306 | * Even if all the cpus of a node are down, we don't free the | |
1307 | * kmem_list3 of any cache. This to avoid a race between | |
1308 | * cpu_down, and a kmalloc allocation from another cpu for | |
1309 | * memory from the node of the cpu going down. The list3 | |
1310 | * structure is usually allocated from kmem_cache_create() and | |
1311 | * gets destroyed at kmem_cache_destroy(). | |
1312 | */ | |
183ff22b | 1313 | /* fall through */ |
8f5be20b | 1314 | #endif |
1da177e4 | 1315 | case CPU_UP_CANCELED: |
8bb78442 | 1316 | case CPU_UP_CANCELED_FROZEN: |
95402b38 | 1317 | mutex_lock(&cache_chain_mutex); |
fbf1e473 | 1318 | cpuup_canceled(cpu); |
fc0abb14 | 1319 | mutex_unlock(&cache_chain_mutex); |
1da177e4 | 1320 | break; |
1da177e4 | 1321 | } |
fbf1e473 | 1322 | return err ? NOTIFY_BAD : NOTIFY_OK; |
1da177e4 LT |
1323 | } |
1324 | ||
74b85f37 CS |
1325 | static struct notifier_block __cpuinitdata cpucache_notifier = { |
1326 | &cpuup_callback, NULL, 0 | |
1327 | }; | |
1da177e4 | 1328 | |
e498be7d CL |
1329 | /* |
1330 | * swap the static kmem_list3 with kmalloced memory | |
1331 | */ | |
a737b3e2 AM |
1332 | static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, |
1333 | int nodeid) | |
e498be7d CL |
1334 | { |
1335 | struct kmem_list3 *ptr; | |
1336 | ||
83b519e8 | 1337 | ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid); |
e498be7d CL |
1338 | BUG_ON(!ptr); |
1339 | ||
e498be7d | 1340 | memcpy(ptr, list, sizeof(struct kmem_list3)); |
2b2d5493 IM |
1341 | /* |
1342 | * Do not assume that spinlocks can be initialized via memcpy: | |
1343 | */ | |
1344 | spin_lock_init(&ptr->list_lock); | |
1345 | ||
e498be7d CL |
1346 | MAKE_ALL_LISTS(cachep, ptr, nodeid); |
1347 | cachep->nodelists[nodeid] = ptr; | |
e498be7d CL |
1348 | } |
1349 | ||
556a169d PE |
1350 | /* |
1351 | * For setting up all the kmem_list3s for cache whose buffer_size is same as | |
1352 | * size of kmem_list3. | |
1353 | */ | |
1354 | static void __init set_up_list3s(struct kmem_cache *cachep, int index) | |
1355 | { | |
1356 | int node; | |
1357 | ||
1358 | for_each_online_node(node) { | |
1359 | cachep->nodelists[node] = &initkmem_list3[index + node]; | |
1360 | cachep->nodelists[node]->next_reap = jiffies + | |
1361 | REAPTIMEOUT_LIST3 + | |
1362 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | |
1363 | } | |
1364 | } | |
1365 | ||
a737b3e2 AM |
1366 | /* |
1367 | * Initialisation. Called after the page allocator have been initialised and | |
1368 | * before smp_init(). | |
1da177e4 LT |
1369 | */ |
1370 | void __init kmem_cache_init(void) | |
1371 | { | |
1372 | size_t left_over; | |
1373 | struct cache_sizes *sizes; | |
1374 | struct cache_names *names; | |
e498be7d | 1375 | int i; |
07ed76b2 | 1376 | int order; |
1ca4cb24 | 1377 | int node; |
e498be7d | 1378 | |
b6e68bc1 | 1379 | if (num_possible_nodes() == 1) |
62918a03 SS |
1380 | use_alien_caches = 0; |
1381 | ||
e498be7d CL |
1382 | for (i = 0; i < NUM_INIT_LISTS; i++) { |
1383 | kmem_list3_init(&initkmem_list3[i]); | |
1384 | if (i < MAX_NUMNODES) | |
1385 | cache_cache.nodelists[i] = NULL; | |
1386 | } | |
556a169d | 1387 | set_up_list3s(&cache_cache, CACHE_CACHE); |
1da177e4 LT |
1388 | |
1389 | /* | |
1390 | * Fragmentation resistance on low memory - only use bigger | |
1391 | * page orders on machines with more than 32MB of memory. | |
1392 | */ | |
1393 | if (num_physpages > (32 << 20) >> PAGE_SHIFT) | |
1394 | slab_break_gfp_order = BREAK_GFP_ORDER_HI; | |
1395 | ||
1da177e4 LT |
1396 | /* Bootstrap is tricky, because several objects are allocated |
1397 | * from caches that do not exist yet: | |
a737b3e2 AM |
1398 | * 1) initialize the cache_cache cache: it contains the struct |
1399 | * kmem_cache structures of all caches, except cache_cache itself: | |
1400 | * cache_cache is statically allocated. | |
e498be7d CL |
1401 | * Initially an __init data area is used for the head array and the |
1402 | * kmem_list3 structures, it's replaced with a kmalloc allocated | |
1403 | * array at the end of the bootstrap. | |
1da177e4 | 1404 | * 2) Create the first kmalloc cache. |
343e0d7a | 1405 | * The struct kmem_cache for the new cache is allocated normally. |
e498be7d CL |
1406 | * An __init data area is used for the head array. |
1407 | * 3) Create the remaining kmalloc caches, with minimally sized | |
1408 | * head arrays. | |
1da177e4 LT |
1409 | * 4) Replace the __init data head arrays for cache_cache and the first |
1410 | * kmalloc cache with kmalloc allocated arrays. | |
e498be7d CL |
1411 | * 5) Replace the __init data for kmem_list3 for cache_cache and |
1412 | * the other cache's with kmalloc allocated memory. | |
1413 | * 6) Resize the head arrays of the kmalloc caches to their final sizes. | |
1da177e4 LT |
1414 | */ |
1415 | ||
1ca4cb24 PE |
1416 | node = numa_node_id(); |
1417 | ||
1da177e4 | 1418 | /* 1) create the cache_cache */ |
1da177e4 LT |
1419 | INIT_LIST_HEAD(&cache_chain); |
1420 | list_add(&cache_cache.next, &cache_chain); | |
1421 | cache_cache.colour_off = cache_line_size(); | |
1422 | cache_cache.array[smp_processor_id()] = &initarray_cache.cache; | |
ec1f5eee | 1423 | cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node]; |
1da177e4 | 1424 | |
8da3430d ED |
1425 | /* |
1426 | * struct kmem_cache size depends on nr_node_ids, which | |
1427 | * can be less than MAX_NUMNODES. | |
1428 | */ | |
1429 | cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) + | |
1430 | nr_node_ids * sizeof(struct kmem_list3 *); | |
1431 | #if DEBUG | |
1432 | cache_cache.obj_size = cache_cache.buffer_size; | |
1433 | #endif | |
a737b3e2 AM |
1434 | cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, |
1435 | cache_line_size()); | |
6a2d7a95 ED |
1436 | cache_cache.reciprocal_buffer_size = |
1437 | reciprocal_value(cache_cache.buffer_size); | |
1da177e4 | 1438 | |
07ed76b2 JS |
1439 | for (order = 0; order < MAX_ORDER; order++) { |
1440 | cache_estimate(order, cache_cache.buffer_size, | |
1441 | cache_line_size(), 0, &left_over, &cache_cache.num); | |
1442 | if (cache_cache.num) | |
1443 | break; | |
1444 | } | |
40094fa6 | 1445 | BUG_ON(!cache_cache.num); |
07ed76b2 | 1446 | cache_cache.gfporder = order; |
b28a02de | 1447 | cache_cache.colour = left_over / cache_cache.colour_off; |
b28a02de PE |
1448 | cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + |
1449 | sizeof(struct slab), cache_line_size()); | |
1da177e4 LT |
1450 | |
1451 | /* 2+3) create the kmalloc caches */ | |
1452 | sizes = malloc_sizes; | |
1453 | names = cache_names; | |
1454 | ||
a737b3e2 AM |
1455 | /* |
1456 | * Initialize the caches that provide memory for the array cache and the | |
1457 | * kmem_list3 structures first. Without this, further allocations will | |
1458 | * bug. | |
e498be7d CL |
1459 | */ |
1460 | ||
1461 | sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name, | |
a737b3e2 AM |
1462 | sizes[INDEX_AC].cs_size, |
1463 | ARCH_KMALLOC_MINALIGN, | |
1464 | ARCH_KMALLOC_FLAGS|SLAB_PANIC, | |
20c2df83 | 1465 | NULL); |
e498be7d | 1466 | |
a737b3e2 | 1467 | if (INDEX_AC != INDEX_L3) { |
e498be7d | 1468 | sizes[INDEX_L3].cs_cachep = |
a737b3e2 AM |
1469 | kmem_cache_create(names[INDEX_L3].name, |
1470 | sizes[INDEX_L3].cs_size, | |
1471 | ARCH_KMALLOC_MINALIGN, | |
1472 | ARCH_KMALLOC_FLAGS|SLAB_PANIC, | |
20c2df83 | 1473 | NULL); |
a737b3e2 | 1474 | } |
e498be7d | 1475 | |
e0a42726 IM |
1476 | slab_early_init = 0; |
1477 | ||
1da177e4 | 1478 | while (sizes->cs_size != ULONG_MAX) { |
e498be7d CL |
1479 | /* |
1480 | * For performance, all the general caches are L1 aligned. | |
1da177e4 LT |
1481 | * This should be particularly beneficial on SMP boxes, as it |
1482 | * eliminates "false sharing". | |
1483 | * Note for systems short on memory removing the alignment will | |
e498be7d CL |
1484 | * allow tighter packing of the smaller caches. |
1485 | */ | |
a737b3e2 | 1486 | if (!sizes->cs_cachep) { |
e498be7d | 1487 | sizes->cs_cachep = kmem_cache_create(names->name, |
a737b3e2 AM |
1488 | sizes->cs_size, |
1489 | ARCH_KMALLOC_MINALIGN, | |
1490 | ARCH_KMALLOC_FLAGS|SLAB_PANIC, | |
20c2df83 | 1491 | NULL); |
a737b3e2 | 1492 | } |
4b51d669 CL |
1493 | #ifdef CONFIG_ZONE_DMA |
1494 | sizes->cs_dmacachep = kmem_cache_create( | |
1495 | names->name_dma, | |
a737b3e2 AM |
1496 | sizes->cs_size, |
1497 | ARCH_KMALLOC_MINALIGN, | |
1498 | ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| | |
1499 | SLAB_PANIC, | |
20c2df83 | 1500 | NULL); |
4b51d669 | 1501 | #endif |
1da177e4 LT |
1502 | sizes++; |
1503 | names++; | |
1504 | } | |
1505 | /* 4) Replace the bootstrap head arrays */ | |
1506 | { | |
2b2d5493 | 1507 | struct array_cache *ptr; |
e498be7d | 1508 | |
83b519e8 | 1509 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); |
e498be7d | 1510 | |
9a2dba4b PE |
1511 | BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache); |
1512 | memcpy(ptr, cpu_cache_get(&cache_cache), | |
b28a02de | 1513 | sizeof(struct arraycache_init)); |
2b2d5493 IM |
1514 | /* |
1515 | * Do not assume that spinlocks can be initialized via memcpy: | |
1516 | */ | |
1517 | spin_lock_init(&ptr->lock); | |
1518 | ||
1da177e4 | 1519 | cache_cache.array[smp_processor_id()] = ptr; |
e498be7d | 1520 | |
83b519e8 | 1521 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); |
e498be7d | 1522 | |
9a2dba4b | 1523 | BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) |
b28a02de | 1524 | != &initarray_generic.cache); |
9a2dba4b | 1525 | memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), |
b28a02de | 1526 | sizeof(struct arraycache_init)); |
2b2d5493 IM |
1527 | /* |
1528 | * Do not assume that spinlocks can be initialized via memcpy: | |
1529 | */ | |
1530 | spin_lock_init(&ptr->lock); | |
1531 | ||
e498be7d | 1532 | malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = |
b28a02de | 1533 | ptr; |
1da177e4 | 1534 | } |
e498be7d CL |
1535 | /* 5) Replace the bootstrap kmem_list3's */ |
1536 | { | |
1ca4cb24 PE |
1537 | int nid; |
1538 | ||
9c09a95c | 1539 | for_each_online_node(nid) { |
ec1f5eee | 1540 | init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid); |
556a169d | 1541 | |
e498be7d | 1542 | init_list(malloc_sizes[INDEX_AC].cs_cachep, |
1ca4cb24 | 1543 | &initkmem_list3[SIZE_AC + nid], nid); |
e498be7d CL |
1544 | |
1545 | if (INDEX_AC != INDEX_L3) { | |
1546 | init_list(malloc_sizes[INDEX_L3].cs_cachep, | |
1ca4cb24 | 1547 | &initkmem_list3[SIZE_L3 + nid], nid); |
e498be7d CL |
1548 | } |
1549 | } | |
1550 | } | |
1da177e4 | 1551 | |
8429db5c | 1552 | g_cpucache_up = EARLY; |
1da177e4 | 1553 | |
056c6241 RT |
1554 | /* Annotate slab for lockdep -- annotate the malloc caches */ |
1555 | init_lock_keys(); | |
8429db5c PE |
1556 | } |
1557 | ||
1558 | void __init kmem_cache_init_late(void) | |
1559 | { | |
1560 | struct kmem_cache *cachep; | |
1561 | ||
1562 | /* | |
1563 | * Interrupts are enabled now so all GFP allocations are safe. | |
1564 | */ | |
1565 | slab_gfp_mask = __GFP_BITS_MASK; | |
056c6241 | 1566 | |
8429db5c PE |
1567 | /* 6) resize the head arrays to their final sizes */ |
1568 | mutex_lock(&cache_chain_mutex); | |
1569 | list_for_each_entry(cachep, &cache_chain, next) | |
1570 | if (enable_cpucache(cachep, GFP_NOWAIT)) | |
1571 | BUG(); | |
1572 | mutex_unlock(&cache_chain_mutex); | |
056c6241 | 1573 | |
1da177e4 LT |
1574 | /* Done! */ |
1575 | g_cpucache_up = FULL; | |
1576 | ||
a737b3e2 AM |
1577 | /* |
1578 | * Register a cpu startup notifier callback that initializes | |
1579 | * cpu_cache_get for all new cpus | |
1da177e4 LT |
1580 | */ |
1581 | register_cpu_notifier(&cpucache_notifier); | |
1da177e4 | 1582 | |
a737b3e2 AM |
1583 | /* |
1584 | * The reap timers are started later, with a module init call: That part | |
1585 | * of the kernel is not yet operational. | |
1da177e4 LT |
1586 | */ |
1587 | } | |
1588 | ||
1589 | static int __init cpucache_init(void) | |
1590 | { | |
1591 | int cpu; | |
1592 | ||
a737b3e2 AM |
1593 | /* |
1594 | * Register the timers that return unneeded pages to the page allocator | |
1da177e4 | 1595 | */ |
e498be7d | 1596 | for_each_online_cpu(cpu) |
a737b3e2 | 1597 | start_cpu_timer(cpu); |
1da177e4 LT |
1598 | return 0; |
1599 | } | |
1da177e4 LT |
1600 | __initcall(cpucache_init); |
1601 | ||
1602 | /* | |
1603 | * Interface to system's page allocator. No need to hold the cache-lock. | |
1604 | * | |
1605 | * If we requested dmaable memory, we will get it. Even if we | |
1606 | * did not request dmaable memory, we might get it, but that | |
1607 | * would be relatively rare and ignorable. | |
1608 | */ | |
343e0d7a | 1609 | static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
1da177e4 LT |
1610 | { |
1611 | struct page *page; | |
e1b6aa6f | 1612 | int nr_pages; |
1da177e4 LT |
1613 | int i; |
1614 | ||
d6fef9da | 1615 | #ifndef CONFIG_MMU |
e1b6aa6f CH |
1616 | /* |
1617 | * Nommu uses slab's for process anonymous memory allocations, and thus | |
1618 | * requires __GFP_COMP to properly refcount higher order allocations | |
d6fef9da | 1619 | */ |
e1b6aa6f | 1620 | flags |= __GFP_COMP; |
d6fef9da | 1621 | #endif |
765c4507 | 1622 | |
3c517a61 | 1623 | flags |= cachep->gfpflags; |
e12ba74d MG |
1624 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
1625 | flags |= __GFP_RECLAIMABLE; | |
e1b6aa6f | 1626 | |
517d0869 | 1627 | page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); |
1da177e4 LT |
1628 | if (!page) |
1629 | return NULL; | |
1da177e4 | 1630 | |
e1b6aa6f | 1631 | nr_pages = (1 << cachep->gfporder); |
1da177e4 | 1632 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
972d1a7b CL |
1633 | add_zone_page_state(page_zone(page), |
1634 | NR_SLAB_RECLAIMABLE, nr_pages); | |
1635 | else | |
1636 | add_zone_page_state(page_zone(page), | |
1637 | NR_SLAB_UNRECLAIMABLE, nr_pages); | |
e1b6aa6f CH |
1638 | for (i = 0; i < nr_pages; i++) |
1639 | __SetPageSlab(page + i); | |
c175eea4 | 1640 | |
b1eeab67 VN |
1641 | if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { |
1642 | kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); | |
1643 | ||
1644 | if (cachep->ctor) | |
1645 | kmemcheck_mark_uninitialized_pages(page, nr_pages); | |
1646 | else | |
1647 | kmemcheck_mark_unallocated_pages(page, nr_pages); | |
1648 | } | |
c175eea4 | 1649 | |
e1b6aa6f | 1650 | return page_address(page); |
1da177e4 LT |
1651 | } |
1652 | ||
1653 | /* | |
1654 | * Interface to system's page release. | |
1655 | */ | |
343e0d7a | 1656 | static void kmem_freepages(struct kmem_cache *cachep, void *addr) |
1da177e4 | 1657 | { |
b28a02de | 1658 | unsigned long i = (1 << cachep->gfporder); |
1da177e4 LT |
1659 | struct page *page = virt_to_page(addr); |
1660 | const unsigned long nr_freed = i; | |
1661 | ||
b1eeab67 | 1662 | kmemcheck_free_shadow(page, cachep->gfporder); |
c175eea4 | 1663 | |
972d1a7b CL |
1664 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
1665 | sub_zone_page_state(page_zone(page), | |
1666 | NR_SLAB_RECLAIMABLE, nr_freed); | |
1667 | else | |
1668 | sub_zone_page_state(page_zone(page), | |
1669 | NR_SLAB_UNRECLAIMABLE, nr_freed); | |
1da177e4 | 1670 | while (i--) { |
f205b2fe NP |
1671 | BUG_ON(!PageSlab(page)); |
1672 | __ClearPageSlab(page); | |
1da177e4 LT |
1673 | page++; |
1674 | } | |
1da177e4 LT |
1675 | if (current->reclaim_state) |
1676 | current->reclaim_state->reclaimed_slab += nr_freed; | |
1677 | free_pages((unsigned long)addr, cachep->gfporder); | |
1da177e4 LT |
1678 | } |
1679 | ||
1680 | static void kmem_rcu_free(struct rcu_head *head) | |
1681 | { | |
b28a02de | 1682 | struct slab_rcu *slab_rcu = (struct slab_rcu *)head; |
343e0d7a | 1683 | struct kmem_cache *cachep = slab_rcu->cachep; |
1da177e4 LT |
1684 | |
1685 | kmem_freepages(cachep, slab_rcu->addr); | |
1686 | if (OFF_SLAB(cachep)) | |
1687 | kmem_cache_free(cachep->slabp_cache, slab_rcu); | |
1688 | } | |
1689 | ||
1690 | #if DEBUG | |
1691 | ||
1692 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
343e0d7a | 1693 | static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, |
b28a02de | 1694 | unsigned long caller) |
1da177e4 | 1695 | { |
3dafccf2 | 1696 | int size = obj_size(cachep); |
1da177e4 | 1697 | |
3dafccf2 | 1698 | addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; |
1da177e4 | 1699 | |
b28a02de | 1700 | if (size < 5 * sizeof(unsigned long)) |
1da177e4 LT |
1701 | return; |
1702 | ||
b28a02de PE |
1703 | *addr++ = 0x12345678; |
1704 | *addr++ = caller; | |
1705 | *addr++ = smp_processor_id(); | |
1706 | size -= 3 * sizeof(unsigned long); | |
1da177e4 LT |
1707 | { |
1708 | unsigned long *sptr = &caller; | |
1709 | unsigned long svalue; | |
1710 | ||
1711 | while (!kstack_end(sptr)) { | |
1712 | svalue = *sptr++; | |
1713 | if (kernel_text_address(svalue)) { | |
b28a02de | 1714 | *addr++ = svalue; |
1da177e4 LT |
1715 | size -= sizeof(unsigned long); |
1716 | if (size <= sizeof(unsigned long)) | |
1717 | break; | |
1718 | } | |
1719 | } | |
1720 | ||
1721 | } | |
b28a02de | 1722 | *addr++ = 0x87654321; |
1da177e4 LT |
1723 | } |
1724 | #endif | |
1725 | ||
343e0d7a | 1726 | static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) |
1da177e4 | 1727 | { |
3dafccf2 MS |
1728 | int size = obj_size(cachep); |
1729 | addr = &((char *)addr)[obj_offset(cachep)]; | |
1da177e4 LT |
1730 | |
1731 | memset(addr, val, size); | |
b28a02de | 1732 | *(unsigned char *)(addr + size - 1) = POISON_END; |
1da177e4 LT |
1733 | } |
1734 | ||
1735 | static void dump_line(char *data, int offset, int limit) | |
1736 | { | |
1737 | int i; | |
aa83aa40 DJ |
1738 | unsigned char error = 0; |
1739 | int bad_count = 0; | |
1740 | ||
1da177e4 | 1741 | printk(KERN_ERR "%03x:", offset); |
aa83aa40 DJ |
1742 | for (i = 0; i < limit; i++) { |
1743 | if (data[offset + i] != POISON_FREE) { | |
1744 | error = data[offset + i]; | |
1745 | bad_count++; | |
1746 | } | |
b28a02de | 1747 | printk(" %02x", (unsigned char)data[offset + i]); |
aa83aa40 | 1748 | } |
1da177e4 | 1749 | printk("\n"); |
aa83aa40 DJ |
1750 | |
1751 | if (bad_count == 1) { | |
1752 | error ^= POISON_FREE; | |
1753 | if (!(error & (error - 1))) { | |
1754 | printk(KERN_ERR "Single bit error detected. Probably " | |
1755 | "bad RAM.\n"); | |
1756 | #ifdef CONFIG_X86 | |
1757 | printk(KERN_ERR "Run memtest86+ or a similar memory " | |
1758 | "test tool.\n"); | |
1759 | #else | |
1760 | printk(KERN_ERR "Run a memory test tool.\n"); | |
1761 | #endif | |
1762 | } | |
1763 | } | |
1da177e4 LT |
1764 | } |
1765 | #endif | |
1766 | ||
1767 | #if DEBUG | |
1768 | ||
343e0d7a | 1769 | static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) |
1da177e4 LT |
1770 | { |
1771 | int i, size; | |
1772 | char *realobj; | |
1773 | ||
1774 | if (cachep->flags & SLAB_RED_ZONE) { | |
b46b8f19 | 1775 | printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", |
a737b3e2 AM |
1776 | *dbg_redzone1(cachep, objp), |
1777 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
1778 | } |
1779 | ||
1780 | if (cachep->flags & SLAB_STORE_USER) { | |
1781 | printk(KERN_ERR "Last user: [<%p>]", | |
a737b3e2 | 1782 | *dbg_userword(cachep, objp)); |
1da177e4 | 1783 | print_symbol("(%s)", |
a737b3e2 | 1784 | (unsigned long)*dbg_userword(cachep, objp)); |
1da177e4 LT |
1785 | printk("\n"); |
1786 | } | |
3dafccf2 MS |
1787 | realobj = (char *)objp + obj_offset(cachep); |
1788 | size = obj_size(cachep); | |
b28a02de | 1789 | for (i = 0; i < size && lines; i += 16, lines--) { |
1da177e4 LT |
1790 | int limit; |
1791 | limit = 16; | |
b28a02de PE |
1792 | if (i + limit > size) |
1793 | limit = size - i; | |
1da177e4 LT |
1794 | dump_line(realobj, i, limit); |
1795 | } | |
1796 | } | |
1797 | ||
343e0d7a | 1798 | static void check_poison_obj(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
1799 | { |
1800 | char *realobj; | |
1801 | int size, i; | |
1802 | int lines = 0; | |
1803 | ||
3dafccf2 MS |
1804 | realobj = (char *)objp + obj_offset(cachep); |
1805 | size = obj_size(cachep); | |
1da177e4 | 1806 | |
b28a02de | 1807 | for (i = 0; i < size; i++) { |
1da177e4 | 1808 | char exp = POISON_FREE; |
b28a02de | 1809 | if (i == size - 1) |
1da177e4 LT |
1810 | exp = POISON_END; |
1811 | if (realobj[i] != exp) { | |
1812 | int limit; | |
1813 | /* Mismatch ! */ | |
1814 | /* Print header */ | |
1815 | if (lines == 0) { | |
b28a02de | 1816 | printk(KERN_ERR |
e94a40c5 DH |
1817 | "Slab corruption: %s start=%p, len=%d\n", |
1818 | cachep->name, realobj, size); | |
1da177e4 LT |
1819 | print_objinfo(cachep, objp, 0); |
1820 | } | |
1821 | /* Hexdump the affected line */ | |
b28a02de | 1822 | i = (i / 16) * 16; |
1da177e4 | 1823 | limit = 16; |
b28a02de PE |
1824 | if (i + limit > size) |
1825 | limit = size - i; | |
1da177e4 LT |
1826 | dump_line(realobj, i, limit); |
1827 | i += 16; | |
1828 | lines++; | |
1829 | /* Limit to 5 lines */ | |
1830 | if (lines > 5) | |
1831 | break; | |
1832 | } | |
1833 | } | |
1834 | if (lines != 0) { | |
1835 | /* Print some data about the neighboring objects, if they | |
1836 | * exist: | |
1837 | */ | |
6ed5eb22 | 1838 | struct slab *slabp = virt_to_slab(objp); |
8fea4e96 | 1839 | unsigned int objnr; |
1da177e4 | 1840 | |
8fea4e96 | 1841 | objnr = obj_to_index(cachep, slabp, objp); |
1da177e4 | 1842 | if (objnr) { |
8fea4e96 | 1843 | objp = index_to_obj(cachep, slabp, objnr - 1); |
3dafccf2 | 1844 | realobj = (char *)objp + obj_offset(cachep); |
1da177e4 | 1845 | printk(KERN_ERR "Prev obj: start=%p, len=%d\n", |
b28a02de | 1846 | realobj, size); |
1da177e4 LT |
1847 | print_objinfo(cachep, objp, 2); |
1848 | } | |
b28a02de | 1849 | if (objnr + 1 < cachep->num) { |
8fea4e96 | 1850 | objp = index_to_obj(cachep, slabp, objnr + 1); |
3dafccf2 | 1851 | realobj = (char *)objp + obj_offset(cachep); |
1da177e4 | 1852 | printk(KERN_ERR "Next obj: start=%p, len=%d\n", |
b28a02de | 1853 | realobj, size); |
1da177e4 LT |
1854 | print_objinfo(cachep, objp, 2); |
1855 | } | |
1856 | } | |
1857 | } | |
1858 | #endif | |
1859 | ||
12dd36fa | 1860 | #if DEBUG |
e79aec29 | 1861 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) |
1da177e4 | 1862 | { |
1da177e4 LT |
1863 | int i; |
1864 | for (i = 0; i < cachep->num; i++) { | |
8fea4e96 | 1865 | void *objp = index_to_obj(cachep, slabp, i); |
1da177e4 LT |
1866 | |
1867 | if (cachep->flags & SLAB_POISON) { | |
1868 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
a737b3e2 AM |
1869 | if (cachep->buffer_size % PAGE_SIZE == 0 && |
1870 | OFF_SLAB(cachep)) | |
b28a02de | 1871 | kernel_map_pages(virt_to_page(objp), |
a737b3e2 | 1872 | cachep->buffer_size / PAGE_SIZE, 1); |
1da177e4 LT |
1873 | else |
1874 | check_poison_obj(cachep, objp); | |
1875 | #else | |
1876 | check_poison_obj(cachep, objp); | |
1877 | #endif | |
1878 | } | |
1879 | if (cachep->flags & SLAB_RED_ZONE) { | |
1880 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | |
1881 | slab_error(cachep, "start of a freed object " | |
b28a02de | 1882 | "was overwritten"); |
1da177e4 LT |
1883 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) |
1884 | slab_error(cachep, "end of a freed object " | |
b28a02de | 1885 | "was overwritten"); |
1da177e4 | 1886 | } |
1da177e4 | 1887 | } |
12dd36fa | 1888 | } |
1da177e4 | 1889 | #else |
e79aec29 | 1890 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) |
12dd36fa | 1891 | { |
12dd36fa | 1892 | } |
1da177e4 LT |
1893 | #endif |
1894 | ||
911851e6 RD |
1895 | /** |
1896 | * slab_destroy - destroy and release all objects in a slab | |
1897 | * @cachep: cache pointer being destroyed | |
1898 | * @slabp: slab pointer being destroyed | |
1899 | * | |
12dd36fa | 1900 | * Destroy all the objs in a slab, and release the mem back to the system. |
a737b3e2 AM |
1901 | * Before calling the slab must have been unlinked from the cache. The |
1902 | * cache-lock is not held/needed. | |
12dd36fa | 1903 | */ |
343e0d7a | 1904 | static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) |
12dd36fa MD |
1905 | { |
1906 | void *addr = slabp->s_mem - slabp->colouroff; | |
1907 | ||
e79aec29 | 1908 | slab_destroy_debugcheck(cachep, slabp); |
1da177e4 LT |
1909 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { |
1910 | struct slab_rcu *slab_rcu; | |
1911 | ||
b28a02de | 1912 | slab_rcu = (struct slab_rcu *)slabp; |
1da177e4 LT |
1913 | slab_rcu->cachep = cachep; |
1914 | slab_rcu->addr = addr; | |
1915 | call_rcu(&slab_rcu->head, kmem_rcu_free); | |
1916 | } else { | |
1917 | kmem_freepages(cachep, addr); | |
873623df IM |
1918 | if (OFF_SLAB(cachep)) |
1919 | kmem_cache_free(cachep->slabp_cache, slabp); | |
1da177e4 LT |
1920 | } |
1921 | } | |
1922 | ||
117f6eb1 CL |
1923 | static void __kmem_cache_destroy(struct kmem_cache *cachep) |
1924 | { | |
1925 | int i; | |
1926 | struct kmem_list3 *l3; | |
1927 | ||
1928 | for_each_online_cpu(i) | |
1929 | kfree(cachep->array[i]); | |
1930 | ||
1931 | /* NUMA: free the list3 structures */ | |
1932 | for_each_online_node(i) { | |
1933 | l3 = cachep->nodelists[i]; | |
1934 | if (l3) { | |
1935 | kfree(l3->shared); | |
1936 | free_alien_cache(l3->alien); | |
1937 | kfree(l3); | |
1938 | } | |
1939 | } | |
1940 | kmem_cache_free(&cache_cache, cachep); | |
1941 | } | |
1942 | ||
1943 | ||
4d268eba | 1944 | /** |
a70773dd RD |
1945 | * calculate_slab_order - calculate size (page order) of slabs |
1946 | * @cachep: pointer to the cache that is being created | |
1947 | * @size: size of objects to be created in this cache. | |
1948 | * @align: required alignment for the objects. | |
1949 | * @flags: slab allocation flags | |
1950 | * | |
1951 | * Also calculates the number of objects per slab. | |
4d268eba PE |
1952 | * |
1953 | * This could be made much more intelligent. For now, try to avoid using | |
1954 | * high order pages for slabs. When the gfp() functions are more friendly | |
1955 | * towards high-order requests, this should be changed. | |
1956 | */ | |
a737b3e2 | 1957 | static size_t calculate_slab_order(struct kmem_cache *cachep, |
ee13d785 | 1958 | size_t size, size_t align, unsigned long flags) |
4d268eba | 1959 | { |
b1ab41c4 | 1960 | unsigned long offslab_limit; |
4d268eba | 1961 | size_t left_over = 0; |
9888e6fa | 1962 | int gfporder; |
4d268eba | 1963 | |
0aa817f0 | 1964 | for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { |
4d268eba PE |
1965 | unsigned int num; |
1966 | size_t remainder; | |
1967 | ||
9888e6fa | 1968 | cache_estimate(gfporder, size, align, flags, &remainder, &num); |
4d268eba PE |
1969 | if (!num) |
1970 | continue; | |
9888e6fa | 1971 | |
b1ab41c4 IM |
1972 | if (flags & CFLGS_OFF_SLAB) { |
1973 | /* | |
1974 | * Max number of objs-per-slab for caches which | |
1975 | * use off-slab slabs. Needed to avoid a possible | |
1976 | * looping condition in cache_grow(). | |
1977 | */ | |
1978 | offslab_limit = size - sizeof(struct slab); | |
1979 | offslab_limit /= sizeof(kmem_bufctl_t); | |
1980 | ||
1981 | if (num > offslab_limit) | |
1982 | break; | |
1983 | } | |
4d268eba | 1984 | |
9888e6fa | 1985 | /* Found something acceptable - save it away */ |
4d268eba | 1986 | cachep->num = num; |
9888e6fa | 1987 | cachep->gfporder = gfporder; |
4d268eba PE |
1988 | left_over = remainder; |
1989 | ||
f78bb8ad LT |
1990 | /* |
1991 | * A VFS-reclaimable slab tends to have most allocations | |
1992 | * as GFP_NOFS and we really don't want to have to be allocating | |
1993 | * higher-order pages when we are unable to shrink dcache. | |
1994 | */ | |
1995 | if (flags & SLAB_RECLAIM_ACCOUNT) | |
1996 | break; | |
1997 | ||
4d268eba PE |
1998 | /* |
1999 | * Large number of objects is good, but very large slabs are | |
2000 | * currently bad for the gfp()s. | |
2001 | */ | |
9888e6fa | 2002 | if (gfporder >= slab_break_gfp_order) |
4d268eba PE |
2003 | break; |
2004 | ||
9888e6fa LT |
2005 | /* |
2006 | * Acceptable internal fragmentation? | |
2007 | */ | |
a737b3e2 | 2008 | if (left_over * 8 <= (PAGE_SIZE << gfporder)) |
4d268eba PE |
2009 | break; |
2010 | } | |
2011 | return left_over; | |
2012 | } | |
2013 | ||
83b519e8 | 2014 | static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) |
f30cf7d1 | 2015 | { |
2ed3a4ef | 2016 | if (g_cpucache_up == FULL) |
83b519e8 | 2017 | return enable_cpucache(cachep, gfp); |
2ed3a4ef | 2018 | |
f30cf7d1 PE |
2019 | if (g_cpucache_up == NONE) { |
2020 | /* | |
2021 | * Note: the first kmem_cache_create must create the cache | |
2022 | * that's used by kmalloc(24), otherwise the creation of | |
2023 | * further caches will BUG(). | |
2024 | */ | |
2025 | cachep->array[smp_processor_id()] = &initarray_generic.cache; | |
2026 | ||
2027 | /* | |
2028 | * If the cache that's used by kmalloc(sizeof(kmem_list3)) is | |
2029 | * the first cache, then we need to set up all its list3s, | |
2030 | * otherwise the creation of further caches will BUG(). | |
2031 | */ | |
2032 | set_up_list3s(cachep, SIZE_AC); | |
2033 | if (INDEX_AC == INDEX_L3) | |
2034 | g_cpucache_up = PARTIAL_L3; | |
2035 | else | |
2036 | g_cpucache_up = PARTIAL_AC; | |
2037 | } else { | |
2038 | cachep->array[smp_processor_id()] = | |
83b519e8 | 2039 | kmalloc(sizeof(struct arraycache_init), gfp); |
f30cf7d1 PE |
2040 | |
2041 | if (g_cpucache_up == PARTIAL_AC) { | |
2042 | set_up_list3s(cachep, SIZE_L3); | |
2043 | g_cpucache_up = PARTIAL_L3; | |
2044 | } else { | |
2045 | int node; | |
556a169d | 2046 | for_each_online_node(node) { |
f30cf7d1 PE |
2047 | cachep->nodelists[node] = |
2048 | kmalloc_node(sizeof(struct kmem_list3), | |
eb91f1d0 | 2049 | gfp, node); |
f30cf7d1 PE |
2050 | BUG_ON(!cachep->nodelists[node]); |
2051 | kmem_list3_init(cachep->nodelists[node]); | |
2052 | } | |
2053 | } | |
2054 | } | |
2055 | cachep->nodelists[numa_node_id()]->next_reap = | |
2056 | jiffies + REAPTIMEOUT_LIST3 + | |
2057 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | |
2058 | ||
2059 | cpu_cache_get(cachep)->avail = 0; | |
2060 | cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | |
2061 | cpu_cache_get(cachep)->batchcount = 1; | |
2062 | cpu_cache_get(cachep)->touched = 0; | |
2063 | cachep->batchcount = 1; | |
2064 | cachep->limit = BOOT_CPUCACHE_ENTRIES; | |
2ed3a4ef | 2065 | return 0; |
f30cf7d1 PE |
2066 | } |
2067 | ||
1da177e4 LT |
2068 | /** |
2069 | * kmem_cache_create - Create a cache. | |
2070 | * @name: A string which is used in /proc/slabinfo to identify this cache. | |
2071 | * @size: The size of objects to be created in this cache. | |
2072 | * @align: The required alignment for the objects. | |
2073 | * @flags: SLAB flags | |
2074 | * @ctor: A constructor for the objects. | |
1da177e4 LT |
2075 | * |
2076 | * Returns a ptr to the cache on success, NULL on failure. | |
2077 | * Cannot be called within a int, but can be interrupted. | |
20c2df83 | 2078 | * The @ctor is run when new pages are allocated by the cache. |
1da177e4 LT |
2079 | * |
2080 | * @name must be valid until the cache is destroyed. This implies that | |
a737b3e2 | 2081 | * the module calling this has to destroy the cache before getting unloaded. |
249da166 CM |
2082 | * Note that kmem_cache_name() is not guaranteed to return the same pointer, |
2083 | * therefore applications must manage it themselves. | |
a737b3e2 | 2084 | * |
1da177e4 LT |
2085 | * The flags are |
2086 | * | |
2087 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
2088 | * to catch references to uninitialised memory. | |
2089 | * | |
2090 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
2091 | * for buffer overruns. | |
2092 | * | |
1da177e4 LT |
2093 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware |
2094 | * cacheline. This can be beneficial if you're counting cycles as closely | |
2095 | * as davem. | |
2096 | */ | |
343e0d7a | 2097 | struct kmem_cache * |
1da177e4 | 2098 | kmem_cache_create (const char *name, size_t size, size_t align, |
51cc5068 | 2099 | unsigned long flags, void (*ctor)(void *)) |
1da177e4 LT |
2100 | { |
2101 | size_t left_over, slab_size, ralign; | |
7a7c381d | 2102 | struct kmem_cache *cachep = NULL, *pc; |
83b519e8 | 2103 | gfp_t gfp; |
1da177e4 LT |
2104 | |
2105 | /* | |
2106 | * Sanity checks... these are all serious usage bugs. | |
2107 | */ | |
a737b3e2 | 2108 | if (!name || in_interrupt() || (size < BYTES_PER_WORD) || |
20c2df83 | 2109 | size > KMALLOC_MAX_SIZE) { |
d40cee24 | 2110 | printk(KERN_ERR "%s: Early error in slab %s\n", __func__, |
a737b3e2 | 2111 | name); |
b28a02de PE |
2112 | BUG(); |
2113 | } | |
1da177e4 | 2114 | |
f0188f47 | 2115 | /* |
8f5be20b | 2116 | * We use cache_chain_mutex to ensure a consistent view of |
174596a0 | 2117 | * cpu_online_mask as well. Please see cpuup_callback |
f0188f47 | 2118 | */ |
83b519e8 PE |
2119 | if (slab_is_available()) { |
2120 | get_online_cpus(); | |
2121 | mutex_lock(&cache_chain_mutex); | |
2122 | } | |
4f12bb4f | 2123 | |
7a7c381d | 2124 | list_for_each_entry(pc, &cache_chain, next) { |
4f12bb4f AM |
2125 | char tmp; |
2126 | int res; | |
2127 | ||
2128 | /* | |
2129 | * This happens when the module gets unloaded and doesn't | |
2130 | * destroy its slab cache and no-one else reuses the vmalloc | |
2131 | * area of the module. Print a warning. | |
2132 | */ | |
138ae663 | 2133 | res = probe_kernel_address(pc->name, tmp); |
4f12bb4f | 2134 | if (res) { |
b4169525 | 2135 | printk(KERN_ERR |
2136 | "SLAB: cache with size %d has lost its name\n", | |
3dafccf2 | 2137 | pc->buffer_size); |
4f12bb4f AM |
2138 | continue; |
2139 | } | |
2140 | ||
b28a02de | 2141 | if (!strcmp(pc->name, name)) { |
b4169525 | 2142 | printk(KERN_ERR |
2143 | "kmem_cache_create: duplicate cache %s\n", name); | |
4f12bb4f AM |
2144 | dump_stack(); |
2145 | goto oops; | |
2146 | } | |
2147 | } | |
2148 | ||
1da177e4 LT |
2149 | #if DEBUG |
2150 | WARN_ON(strchr(name, ' ')); /* It confuses parsers */ | |
1da177e4 LT |
2151 | #if FORCED_DEBUG |
2152 | /* | |
2153 | * Enable redzoning and last user accounting, except for caches with | |
2154 | * large objects, if the increased size would increase the object size | |
2155 | * above the next power of two: caches with object sizes just above a | |
2156 | * power of two have a significant amount of internal fragmentation. | |
2157 | */ | |
87a927c7 DW |
2158 | if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + |
2159 | 2 * sizeof(unsigned long long))) | |
b28a02de | 2160 | flags |= SLAB_RED_ZONE | SLAB_STORE_USER; |
1da177e4 LT |
2161 | if (!(flags & SLAB_DESTROY_BY_RCU)) |
2162 | flags |= SLAB_POISON; | |
2163 | #endif | |
2164 | if (flags & SLAB_DESTROY_BY_RCU) | |
2165 | BUG_ON(flags & SLAB_POISON); | |
2166 | #endif | |
1da177e4 | 2167 | /* |
a737b3e2 AM |
2168 | * Always checks flags, a caller might be expecting debug support which |
2169 | * isn't available. | |
1da177e4 | 2170 | */ |
40094fa6 | 2171 | BUG_ON(flags & ~CREATE_MASK); |
1da177e4 | 2172 | |
a737b3e2 AM |
2173 | /* |
2174 | * Check that size is in terms of words. This is needed to avoid | |
1da177e4 LT |
2175 | * unaligned accesses for some archs when redzoning is used, and makes |
2176 | * sure any on-slab bufctl's are also correctly aligned. | |
2177 | */ | |
b28a02de PE |
2178 | if (size & (BYTES_PER_WORD - 1)) { |
2179 | size += (BYTES_PER_WORD - 1); | |
2180 | size &= ~(BYTES_PER_WORD - 1); | |
1da177e4 LT |
2181 | } |
2182 | ||
a737b3e2 AM |
2183 | /* calculate the final buffer alignment: */ |
2184 | ||
1da177e4 LT |
2185 | /* 1) arch recommendation: can be overridden for debug */ |
2186 | if (flags & SLAB_HWCACHE_ALIGN) { | |
a737b3e2 AM |
2187 | /* |
2188 | * Default alignment: as specified by the arch code. Except if | |
2189 | * an object is really small, then squeeze multiple objects into | |
2190 | * one cacheline. | |
1da177e4 LT |
2191 | */ |
2192 | ralign = cache_line_size(); | |
b28a02de | 2193 | while (size <= ralign / 2) |
1da177e4 LT |
2194 | ralign /= 2; |
2195 | } else { | |
2196 | ralign = BYTES_PER_WORD; | |
2197 | } | |
ca5f9703 PE |
2198 | |
2199 | /* | |
87a927c7 DW |
2200 | * Redzoning and user store require word alignment or possibly larger. |
2201 | * Note this will be overridden by architecture or caller mandated | |
2202 | * alignment if either is greater than BYTES_PER_WORD. | |
ca5f9703 | 2203 | */ |
87a927c7 DW |
2204 | if (flags & SLAB_STORE_USER) |
2205 | ralign = BYTES_PER_WORD; | |
2206 | ||
2207 | if (flags & SLAB_RED_ZONE) { | |
2208 | ralign = REDZONE_ALIGN; | |
2209 | /* If redzoning, ensure that the second redzone is suitably | |
2210 | * aligned, by adjusting the object size accordingly. */ | |
2211 | size += REDZONE_ALIGN - 1; | |
2212 | size &= ~(REDZONE_ALIGN - 1); | |
2213 | } | |
ca5f9703 | 2214 | |
a44b56d3 | 2215 | /* 2) arch mandated alignment */ |
1da177e4 LT |
2216 | if (ralign < ARCH_SLAB_MINALIGN) { |
2217 | ralign = ARCH_SLAB_MINALIGN; | |
1da177e4 | 2218 | } |
a44b56d3 | 2219 | /* 3) caller mandated alignment */ |
1da177e4 LT |
2220 | if (ralign < align) { |
2221 | ralign = align; | |
1da177e4 | 2222 | } |
a44b56d3 | 2223 | /* disable debug if necessary */ |
b46b8f19 | 2224 | if (ralign > __alignof__(unsigned long long)) |
a44b56d3 | 2225 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); |
a737b3e2 | 2226 | /* |
ca5f9703 | 2227 | * 4) Store it. |
1da177e4 LT |
2228 | */ |
2229 | align = ralign; | |
2230 | ||
83b519e8 PE |
2231 | if (slab_is_available()) |
2232 | gfp = GFP_KERNEL; | |
2233 | else | |
2234 | gfp = GFP_NOWAIT; | |
2235 | ||
1da177e4 | 2236 | /* Get cache's description obj. */ |
83b519e8 | 2237 | cachep = kmem_cache_zalloc(&cache_cache, gfp); |
1da177e4 | 2238 | if (!cachep) |
4f12bb4f | 2239 | goto oops; |
1da177e4 LT |
2240 | |
2241 | #if DEBUG | |
3dafccf2 | 2242 | cachep->obj_size = size; |
1da177e4 | 2243 | |
ca5f9703 PE |
2244 | /* |
2245 | * Both debugging options require word-alignment which is calculated | |
2246 | * into align above. | |
2247 | */ | |
1da177e4 | 2248 | if (flags & SLAB_RED_ZONE) { |
1da177e4 | 2249 | /* add space for red zone words */ |
b46b8f19 DW |
2250 | cachep->obj_offset += sizeof(unsigned long long); |
2251 | size += 2 * sizeof(unsigned long long); | |
1da177e4 LT |
2252 | } |
2253 | if (flags & SLAB_STORE_USER) { | |
ca5f9703 | 2254 | /* user store requires one word storage behind the end of |
87a927c7 DW |
2255 | * the real object. But if the second red zone needs to be |
2256 | * aligned to 64 bits, we must allow that much space. | |
1da177e4 | 2257 | */ |
87a927c7 DW |
2258 | if (flags & SLAB_RED_ZONE) |
2259 | size += REDZONE_ALIGN; | |
2260 | else | |
2261 | size += BYTES_PER_WORD; | |
1da177e4 LT |
2262 | } |
2263 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | |
b28a02de | 2264 | if (size >= malloc_sizes[INDEX_L3 + 1].cs_size |
3dafccf2 MS |
2265 | && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) { |
2266 | cachep->obj_offset += PAGE_SIZE - size; | |
1da177e4 LT |
2267 | size = PAGE_SIZE; |
2268 | } | |
2269 | #endif | |
2270 | #endif | |
2271 | ||
e0a42726 IM |
2272 | /* |
2273 | * Determine if the slab management is 'on' or 'off' slab. | |
2274 | * (bootstrapping cannot cope with offslab caches so don't do | |
2275 | * it too early on.) | |
2276 | */ | |
2277 | if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init) | |
1da177e4 LT |
2278 | /* |
2279 | * Size is large, assume best to place the slab management obj | |
2280 | * off-slab (should allow better packing of objs). | |
2281 | */ | |
2282 | flags |= CFLGS_OFF_SLAB; | |
2283 | ||
2284 | size = ALIGN(size, align); | |
2285 | ||
f78bb8ad | 2286 | left_over = calculate_slab_order(cachep, size, align, flags); |
1da177e4 LT |
2287 | |
2288 | if (!cachep->num) { | |
b4169525 | 2289 | printk(KERN_ERR |
2290 | "kmem_cache_create: couldn't create cache %s.\n", name); | |
1da177e4 LT |
2291 | kmem_cache_free(&cache_cache, cachep); |
2292 | cachep = NULL; | |
4f12bb4f | 2293 | goto oops; |
1da177e4 | 2294 | } |
b28a02de PE |
2295 | slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) |
2296 | + sizeof(struct slab), align); | |
1da177e4 LT |
2297 | |
2298 | /* | |
2299 | * If the slab has been placed off-slab, and we have enough space then | |
2300 | * move it on-slab. This is at the expense of any extra colouring. | |
2301 | */ | |
2302 | if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { | |
2303 | flags &= ~CFLGS_OFF_SLAB; | |
2304 | left_over -= slab_size; | |
2305 | } | |
2306 | ||
2307 | if (flags & CFLGS_OFF_SLAB) { | |
2308 | /* really off slab. No need for manual alignment */ | |
b28a02de PE |
2309 | slab_size = |
2310 | cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab); | |
67461365 RL |
2311 | |
2312 | #ifdef CONFIG_PAGE_POISONING | |
2313 | /* If we're going to use the generic kernel_map_pages() | |
2314 | * poisoning, then it's going to smash the contents of | |
2315 | * the redzone and userword anyhow, so switch them off. | |
2316 | */ | |
2317 | if (size % PAGE_SIZE == 0 && flags & SLAB_POISON) | |
2318 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); | |
2319 | #endif | |
1da177e4 LT |
2320 | } |
2321 | ||
2322 | cachep->colour_off = cache_line_size(); | |
2323 | /* Offset must be a multiple of the alignment. */ | |
2324 | if (cachep->colour_off < align) | |
2325 | cachep->colour_off = align; | |
b28a02de | 2326 | cachep->colour = left_over / cachep->colour_off; |
1da177e4 LT |
2327 | cachep->slab_size = slab_size; |
2328 | cachep->flags = flags; | |
2329 | cachep->gfpflags = 0; | |
4b51d669 | 2330 | if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) |
1da177e4 | 2331 | cachep->gfpflags |= GFP_DMA; |
3dafccf2 | 2332 | cachep->buffer_size = size; |
6a2d7a95 | 2333 | cachep->reciprocal_buffer_size = reciprocal_value(size); |
1da177e4 | 2334 | |
e5ac9c5a | 2335 | if (flags & CFLGS_OFF_SLAB) { |
b2d55073 | 2336 | cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); |
e5ac9c5a RT |
2337 | /* |
2338 | * This is a possibility for one of the malloc_sizes caches. | |
2339 | * But since we go off slab only for object size greater than | |
2340 | * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, | |
2341 | * this should not happen at all. | |
2342 | * But leave a BUG_ON for some lucky dude. | |
2343 | */ | |
6cb8f913 | 2344 | BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache)); |
e5ac9c5a | 2345 | } |
1da177e4 | 2346 | cachep->ctor = ctor; |
1da177e4 LT |
2347 | cachep->name = name; |
2348 | ||
83b519e8 | 2349 | if (setup_cpu_cache(cachep, gfp)) { |
2ed3a4ef CL |
2350 | __kmem_cache_destroy(cachep); |
2351 | cachep = NULL; | |
2352 | goto oops; | |
2353 | } | |
1da177e4 | 2354 | |
1da177e4 LT |
2355 | /* cache setup completed, link it into the list */ |
2356 | list_add(&cachep->next, &cache_chain); | |
a737b3e2 | 2357 | oops: |
1da177e4 LT |
2358 | if (!cachep && (flags & SLAB_PANIC)) |
2359 | panic("kmem_cache_create(): failed to create slab `%s'\n", | |
b28a02de | 2360 | name); |
83b519e8 PE |
2361 | if (slab_is_available()) { |
2362 | mutex_unlock(&cache_chain_mutex); | |
2363 | put_online_cpus(); | |
2364 | } | |
1da177e4 LT |
2365 | return cachep; |
2366 | } | |
2367 | EXPORT_SYMBOL(kmem_cache_create); | |
2368 | ||
2369 | #if DEBUG | |
2370 | static void check_irq_off(void) | |
2371 | { | |
2372 | BUG_ON(!irqs_disabled()); | |
2373 | } | |
2374 | ||
2375 | static void check_irq_on(void) | |
2376 | { | |
2377 | BUG_ON(irqs_disabled()); | |
2378 | } | |
2379 | ||
343e0d7a | 2380 | static void check_spinlock_acquired(struct kmem_cache *cachep) |
1da177e4 LT |
2381 | { |
2382 | #ifdef CONFIG_SMP | |
2383 | check_irq_off(); | |
e498be7d | 2384 | assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock); |
1da177e4 LT |
2385 | #endif |
2386 | } | |
e498be7d | 2387 | |
343e0d7a | 2388 | static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) |
e498be7d CL |
2389 | { |
2390 | #ifdef CONFIG_SMP | |
2391 | check_irq_off(); | |
2392 | assert_spin_locked(&cachep->nodelists[node]->list_lock); | |
2393 | #endif | |
2394 | } | |
2395 | ||
1da177e4 LT |
2396 | #else |
2397 | #define check_irq_off() do { } while(0) | |
2398 | #define check_irq_on() do { } while(0) | |
2399 | #define check_spinlock_acquired(x) do { } while(0) | |
e498be7d | 2400 | #define check_spinlock_acquired_node(x, y) do { } while(0) |
1da177e4 LT |
2401 | #endif |
2402 | ||
aab2207c CL |
2403 | static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, |
2404 | struct array_cache *ac, | |
2405 | int force, int node); | |
2406 | ||
1da177e4 LT |
2407 | static void do_drain(void *arg) |
2408 | { | |
a737b3e2 | 2409 | struct kmem_cache *cachep = arg; |
1da177e4 | 2410 | struct array_cache *ac; |
ff69416e | 2411 | int node = numa_node_id(); |
1da177e4 LT |
2412 | |
2413 | check_irq_off(); | |
9a2dba4b | 2414 | ac = cpu_cache_get(cachep); |
ff69416e CL |
2415 | spin_lock(&cachep->nodelists[node]->list_lock); |
2416 | free_block(cachep, ac->entry, ac->avail, node); | |
2417 | spin_unlock(&cachep->nodelists[node]->list_lock); | |
1da177e4 LT |
2418 | ac->avail = 0; |
2419 | } | |
2420 | ||
343e0d7a | 2421 | static void drain_cpu_caches(struct kmem_cache *cachep) |
1da177e4 | 2422 | { |
e498be7d CL |
2423 | struct kmem_list3 *l3; |
2424 | int node; | |
2425 | ||
15c8b6c1 | 2426 | on_each_cpu(do_drain, cachep, 1); |
1da177e4 | 2427 | check_irq_on(); |
b28a02de | 2428 | for_each_online_node(node) { |
e498be7d | 2429 | l3 = cachep->nodelists[node]; |
a4523a8b RD |
2430 | if (l3 && l3->alien) |
2431 | drain_alien_cache(cachep, l3->alien); | |
2432 | } | |
2433 | ||
2434 | for_each_online_node(node) { | |
2435 | l3 = cachep->nodelists[node]; | |
2436 | if (l3) | |
aab2207c | 2437 | drain_array(cachep, l3, l3->shared, 1, node); |
e498be7d | 2438 | } |
1da177e4 LT |
2439 | } |
2440 | ||
ed11d9eb CL |
2441 | /* |
2442 | * Remove slabs from the list of free slabs. | |
2443 | * Specify the number of slabs to drain in tofree. | |
2444 | * | |
2445 | * Returns the actual number of slabs released. | |
2446 | */ | |
2447 | static int drain_freelist(struct kmem_cache *cache, | |
2448 | struct kmem_list3 *l3, int tofree) | |
1da177e4 | 2449 | { |
ed11d9eb CL |
2450 | struct list_head *p; |
2451 | int nr_freed; | |
1da177e4 | 2452 | struct slab *slabp; |
1da177e4 | 2453 | |
ed11d9eb CL |
2454 | nr_freed = 0; |
2455 | while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { | |
1da177e4 | 2456 | |
ed11d9eb | 2457 | spin_lock_irq(&l3->list_lock); |
e498be7d | 2458 | p = l3->slabs_free.prev; |
ed11d9eb CL |
2459 | if (p == &l3->slabs_free) { |
2460 | spin_unlock_irq(&l3->list_lock); | |
2461 | goto out; | |
2462 | } | |
1da177e4 | 2463 | |
ed11d9eb | 2464 | slabp = list_entry(p, struct slab, list); |
1da177e4 | 2465 | #if DEBUG |
40094fa6 | 2466 | BUG_ON(slabp->inuse); |
1da177e4 LT |
2467 | #endif |
2468 | list_del(&slabp->list); | |
ed11d9eb CL |
2469 | /* |
2470 | * Safe to drop the lock. The slab is no longer linked | |
2471 | * to the cache. | |
2472 | */ | |
2473 | l3->free_objects -= cache->num; | |
e498be7d | 2474 | spin_unlock_irq(&l3->list_lock); |
ed11d9eb CL |
2475 | slab_destroy(cache, slabp); |
2476 | nr_freed++; | |
1da177e4 | 2477 | } |
ed11d9eb CL |
2478 | out: |
2479 | return nr_freed; | |
1da177e4 LT |
2480 | } |
2481 | ||
8f5be20b | 2482 | /* Called with cache_chain_mutex held to protect against cpu hotplug */ |
343e0d7a | 2483 | static int __cache_shrink(struct kmem_cache *cachep) |
e498be7d CL |
2484 | { |
2485 | int ret = 0, i = 0; | |
2486 | struct kmem_list3 *l3; | |
2487 | ||
2488 | drain_cpu_caches(cachep); | |
2489 | ||
2490 | check_irq_on(); | |
2491 | for_each_online_node(i) { | |
2492 | l3 = cachep->nodelists[i]; | |
ed11d9eb CL |
2493 | if (!l3) |
2494 | continue; | |
2495 | ||
2496 | drain_freelist(cachep, l3, l3->free_objects); | |
2497 | ||
2498 | ret += !list_empty(&l3->slabs_full) || | |
2499 | !list_empty(&l3->slabs_partial); | |
e498be7d CL |
2500 | } |
2501 | return (ret ? 1 : 0); | |
2502 | } | |
2503 | ||
1da177e4 LT |
2504 | /** |
2505 | * kmem_cache_shrink - Shrink a cache. | |
2506 | * @cachep: The cache to shrink. | |
2507 | * | |
2508 | * Releases as many slabs as possible for a cache. | |
2509 | * To help debugging, a zero exit status indicates all slabs were released. | |
2510 | */ | |
343e0d7a | 2511 | int kmem_cache_shrink(struct kmem_cache *cachep) |
1da177e4 | 2512 | { |
8f5be20b | 2513 | int ret; |
40094fa6 | 2514 | BUG_ON(!cachep || in_interrupt()); |
1da177e4 | 2515 | |
95402b38 | 2516 | get_online_cpus(); |
8f5be20b RT |
2517 | mutex_lock(&cache_chain_mutex); |
2518 | ret = __cache_shrink(cachep); | |
2519 | mutex_unlock(&cache_chain_mutex); | |
95402b38 | 2520 | put_online_cpus(); |
8f5be20b | 2521 | return ret; |
1da177e4 LT |
2522 | } |
2523 | EXPORT_SYMBOL(kmem_cache_shrink); | |
2524 | ||
2525 | /** | |
2526 | * kmem_cache_destroy - delete a cache | |
2527 | * @cachep: the cache to destroy | |
2528 | * | |
72fd4a35 | 2529 | * Remove a &struct kmem_cache object from the slab cache. |
1da177e4 LT |
2530 | * |
2531 | * It is expected this function will be called by a module when it is | |
2532 | * unloaded. This will remove the cache completely, and avoid a duplicate | |
2533 | * cache being allocated each time a module is loaded and unloaded, if the | |
2534 | * module doesn't have persistent in-kernel storage across loads and unloads. | |
2535 | * | |
2536 | * The cache must be empty before calling this function. | |
2537 | * | |
2538 | * The caller must guarantee that noone will allocate memory from the cache | |
2539 | * during the kmem_cache_destroy(). | |
2540 | */ | |
133d205a | 2541 | void kmem_cache_destroy(struct kmem_cache *cachep) |
1da177e4 | 2542 | { |
40094fa6 | 2543 | BUG_ON(!cachep || in_interrupt()); |
1da177e4 | 2544 | |
1da177e4 | 2545 | /* Find the cache in the chain of caches. */ |
95402b38 | 2546 | get_online_cpus(); |
fc0abb14 | 2547 | mutex_lock(&cache_chain_mutex); |
1da177e4 LT |
2548 | /* |
2549 | * the chain is never empty, cache_cache is never destroyed | |
2550 | */ | |
2551 | list_del(&cachep->next); | |
1da177e4 LT |
2552 | if (__cache_shrink(cachep)) { |
2553 | slab_error(cachep, "Can't free all objects"); | |
b28a02de | 2554 | list_add(&cachep->next, &cache_chain); |
fc0abb14 | 2555 | mutex_unlock(&cache_chain_mutex); |
95402b38 | 2556 | put_online_cpus(); |
133d205a | 2557 | return; |
1da177e4 LT |
2558 | } |
2559 | ||
2560 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) | |
fbd568a3 | 2561 | synchronize_rcu(); |
1da177e4 | 2562 | |
117f6eb1 | 2563 | __kmem_cache_destroy(cachep); |
8f5be20b | 2564 | mutex_unlock(&cache_chain_mutex); |
95402b38 | 2565 | put_online_cpus(); |
1da177e4 LT |
2566 | } |
2567 | EXPORT_SYMBOL(kmem_cache_destroy); | |
2568 | ||
e5ac9c5a RT |
2569 | /* |
2570 | * Get the memory for a slab management obj. | |
2571 | * For a slab cache when the slab descriptor is off-slab, slab descriptors | |
2572 | * always come from malloc_sizes caches. The slab descriptor cannot | |
2573 | * come from the same cache which is getting created because, | |
2574 | * when we are searching for an appropriate cache for these | |
2575 | * descriptors in kmem_cache_create, we search through the malloc_sizes array. | |
2576 | * If we are creating a malloc_sizes cache here it would not be visible to | |
2577 | * kmem_find_general_cachep till the initialization is complete. | |
2578 | * Hence we cannot have slabp_cache same as the original cache. | |
2579 | */ | |
343e0d7a | 2580 | static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, |
5b74ada7 RT |
2581 | int colour_off, gfp_t local_flags, |
2582 | int nodeid) | |
1da177e4 LT |
2583 | { |
2584 | struct slab *slabp; | |
b28a02de | 2585 | |
1da177e4 LT |
2586 | if (OFF_SLAB(cachep)) { |
2587 | /* Slab management obj is off-slab. */ | |
5b74ada7 | 2588 | slabp = kmem_cache_alloc_node(cachep->slabp_cache, |
8759ec50 | 2589 | local_flags, nodeid); |
d5cff635 CM |
2590 | /* |
2591 | * If the first object in the slab is leaked (it's allocated | |
2592 | * but no one has a reference to it), we want to make sure | |
2593 | * kmemleak does not treat the ->s_mem pointer as a reference | |
2594 | * to the object. Otherwise we will not report the leak. | |
2595 | */ | |
2596 | kmemleak_scan_area(slabp, offsetof(struct slab, list), | |
2597 | sizeof(struct list_head), local_flags); | |
1da177e4 LT |
2598 | if (!slabp) |
2599 | return NULL; | |
2600 | } else { | |
b28a02de | 2601 | slabp = objp + colour_off; |
1da177e4 LT |
2602 | colour_off += cachep->slab_size; |
2603 | } | |
2604 | slabp->inuse = 0; | |
2605 | slabp->colouroff = colour_off; | |
b28a02de | 2606 | slabp->s_mem = objp + colour_off; |
5b74ada7 | 2607 | slabp->nodeid = nodeid; |
e51bfd0a | 2608 | slabp->free = 0; |
1da177e4 LT |
2609 | return slabp; |
2610 | } | |
2611 | ||
2612 | static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) | |
2613 | { | |
b28a02de | 2614 | return (kmem_bufctl_t *) (slabp + 1); |
1da177e4 LT |
2615 | } |
2616 | ||
343e0d7a | 2617 | static void cache_init_objs(struct kmem_cache *cachep, |
a35afb83 | 2618 | struct slab *slabp) |
1da177e4 LT |
2619 | { |
2620 | int i; | |
2621 | ||
2622 | for (i = 0; i < cachep->num; i++) { | |
8fea4e96 | 2623 | void *objp = index_to_obj(cachep, slabp, i); |
1da177e4 LT |
2624 | #if DEBUG |
2625 | /* need to poison the objs? */ | |
2626 | if (cachep->flags & SLAB_POISON) | |
2627 | poison_obj(cachep, objp, POISON_FREE); | |
2628 | if (cachep->flags & SLAB_STORE_USER) | |
2629 | *dbg_userword(cachep, objp) = NULL; | |
2630 | ||
2631 | if (cachep->flags & SLAB_RED_ZONE) { | |
2632 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | |
2633 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2634 | } | |
2635 | /* | |
a737b3e2 AM |
2636 | * Constructors are not allowed to allocate memory from the same |
2637 | * cache which they are a constructor for. Otherwise, deadlock. | |
2638 | * They must also be threaded. | |
1da177e4 LT |
2639 | */ |
2640 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) | |
51cc5068 | 2641 | cachep->ctor(objp + obj_offset(cachep)); |
1da177e4 LT |
2642 | |
2643 | if (cachep->flags & SLAB_RED_ZONE) { | |
2644 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | |
2645 | slab_error(cachep, "constructor overwrote the" | |
b28a02de | 2646 | " end of an object"); |
1da177e4 LT |
2647 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) |
2648 | slab_error(cachep, "constructor overwrote the" | |
b28a02de | 2649 | " start of an object"); |
1da177e4 | 2650 | } |
a737b3e2 AM |
2651 | if ((cachep->buffer_size % PAGE_SIZE) == 0 && |
2652 | OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) | |
b28a02de | 2653 | kernel_map_pages(virt_to_page(objp), |
3dafccf2 | 2654 | cachep->buffer_size / PAGE_SIZE, 0); |
1da177e4 LT |
2655 | #else |
2656 | if (cachep->ctor) | |
51cc5068 | 2657 | cachep->ctor(objp); |
1da177e4 | 2658 | #endif |
b28a02de | 2659 | slab_bufctl(slabp)[i] = i + 1; |
1da177e4 | 2660 | } |
b28a02de | 2661 | slab_bufctl(slabp)[i - 1] = BUFCTL_END; |
1da177e4 LT |
2662 | } |
2663 | ||
343e0d7a | 2664 | static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 2665 | { |
4b51d669 CL |
2666 | if (CONFIG_ZONE_DMA_FLAG) { |
2667 | if (flags & GFP_DMA) | |
2668 | BUG_ON(!(cachep->gfpflags & GFP_DMA)); | |
2669 | else | |
2670 | BUG_ON(cachep->gfpflags & GFP_DMA); | |
2671 | } | |
1da177e4 LT |
2672 | } |
2673 | ||
a737b3e2 AM |
2674 | static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, |
2675 | int nodeid) | |
78d382d7 | 2676 | { |
8fea4e96 | 2677 | void *objp = index_to_obj(cachep, slabp, slabp->free); |
78d382d7 MD |
2678 | kmem_bufctl_t next; |
2679 | ||
2680 | slabp->inuse++; | |
2681 | next = slab_bufctl(slabp)[slabp->free]; | |
2682 | #if DEBUG | |
2683 | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | |
2684 | WARN_ON(slabp->nodeid != nodeid); | |
2685 | #endif | |
2686 | slabp->free = next; | |
2687 | ||
2688 | return objp; | |
2689 | } | |
2690 | ||
a737b3e2 AM |
2691 | static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, |
2692 | void *objp, int nodeid) | |
78d382d7 | 2693 | { |
8fea4e96 | 2694 | unsigned int objnr = obj_to_index(cachep, slabp, objp); |
78d382d7 MD |
2695 | |
2696 | #if DEBUG | |
2697 | /* Verify that the slab belongs to the intended node */ | |
2698 | WARN_ON(slabp->nodeid != nodeid); | |
2699 | ||
871751e2 | 2700 | if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) { |
78d382d7 | 2701 | printk(KERN_ERR "slab: double free detected in cache " |
a737b3e2 | 2702 | "'%s', objp %p\n", cachep->name, objp); |
78d382d7 MD |
2703 | BUG(); |
2704 | } | |
2705 | #endif | |
2706 | slab_bufctl(slabp)[objnr] = slabp->free; | |
2707 | slabp->free = objnr; | |
2708 | slabp->inuse--; | |
2709 | } | |
2710 | ||
4776874f PE |
2711 | /* |
2712 | * Map pages beginning at addr to the given cache and slab. This is required | |
2713 | * for the slab allocator to be able to lookup the cache and slab of a | |
2714 | * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging. | |
2715 | */ | |
2716 | static void slab_map_pages(struct kmem_cache *cache, struct slab *slab, | |
2717 | void *addr) | |
1da177e4 | 2718 | { |
4776874f | 2719 | int nr_pages; |
1da177e4 LT |
2720 | struct page *page; |
2721 | ||
4776874f | 2722 | page = virt_to_page(addr); |
84097518 | 2723 | |
4776874f | 2724 | nr_pages = 1; |
84097518 | 2725 | if (likely(!PageCompound(page))) |
4776874f PE |
2726 | nr_pages <<= cache->gfporder; |
2727 | ||
1da177e4 | 2728 | do { |
4776874f PE |
2729 | page_set_cache(page, cache); |
2730 | page_set_slab(page, slab); | |
1da177e4 | 2731 | page++; |
4776874f | 2732 | } while (--nr_pages); |
1da177e4 LT |
2733 | } |
2734 | ||
2735 | /* | |
2736 | * Grow (by 1) the number of slabs within a cache. This is called by | |
2737 | * kmem_cache_alloc() when there are no active objs left in a cache. | |
2738 | */ | |
3c517a61 CL |
2739 | static int cache_grow(struct kmem_cache *cachep, |
2740 | gfp_t flags, int nodeid, void *objp) | |
1da177e4 | 2741 | { |
b28a02de | 2742 | struct slab *slabp; |
b28a02de PE |
2743 | size_t offset; |
2744 | gfp_t local_flags; | |
e498be7d | 2745 | struct kmem_list3 *l3; |
1da177e4 | 2746 | |
a737b3e2 AM |
2747 | /* |
2748 | * Be lazy and only check for valid flags here, keeping it out of the | |
2749 | * critical path in kmem_cache_alloc(). | |
1da177e4 | 2750 | */ |
6cb06229 CL |
2751 | BUG_ON(flags & GFP_SLAB_BUG_MASK); |
2752 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); | |
1da177e4 | 2753 | |
2e1217cf | 2754 | /* Take the l3 list lock to change the colour_next on this node */ |
1da177e4 | 2755 | check_irq_off(); |
2e1217cf RT |
2756 | l3 = cachep->nodelists[nodeid]; |
2757 | spin_lock(&l3->list_lock); | |
1da177e4 LT |
2758 | |
2759 | /* Get colour for the slab, and cal the next value. */ | |
2e1217cf RT |
2760 | offset = l3->colour_next; |
2761 | l3->colour_next++; | |
2762 | if (l3->colour_next >= cachep->colour) | |
2763 | l3->colour_next = 0; | |
2764 | spin_unlock(&l3->list_lock); | |
1da177e4 | 2765 | |
2e1217cf | 2766 | offset *= cachep->colour_off; |
1da177e4 LT |
2767 | |
2768 | if (local_flags & __GFP_WAIT) | |
2769 | local_irq_enable(); | |
2770 | ||
2771 | /* | |
2772 | * The test for missing atomic flag is performed here, rather than | |
2773 | * the more obvious place, simply to reduce the critical path length | |
2774 | * in kmem_cache_alloc(). If a caller is seriously mis-behaving they | |
2775 | * will eventually be caught here (where it matters). | |
2776 | */ | |
2777 | kmem_flagcheck(cachep, flags); | |
2778 | ||
a737b3e2 AM |
2779 | /* |
2780 | * Get mem for the objs. Attempt to allocate a physical page from | |
2781 | * 'nodeid'. | |
e498be7d | 2782 | */ |
3c517a61 | 2783 | if (!objp) |
b8c1c5da | 2784 | objp = kmem_getpages(cachep, local_flags, nodeid); |
a737b3e2 | 2785 | if (!objp) |
1da177e4 LT |
2786 | goto failed; |
2787 | ||
2788 | /* Get slab management. */ | |
3c517a61 | 2789 | slabp = alloc_slabmgmt(cachep, objp, offset, |
6cb06229 | 2790 | local_flags & ~GFP_CONSTRAINT_MASK, nodeid); |
a737b3e2 | 2791 | if (!slabp) |
1da177e4 LT |
2792 | goto opps1; |
2793 | ||
4776874f | 2794 | slab_map_pages(cachep, slabp, objp); |
1da177e4 | 2795 | |
a35afb83 | 2796 | cache_init_objs(cachep, slabp); |
1da177e4 LT |
2797 | |
2798 | if (local_flags & __GFP_WAIT) | |
2799 | local_irq_disable(); | |
2800 | check_irq_off(); | |
e498be7d | 2801 | spin_lock(&l3->list_lock); |
1da177e4 LT |
2802 | |
2803 | /* Make slab active. */ | |
e498be7d | 2804 | list_add_tail(&slabp->list, &(l3->slabs_free)); |
1da177e4 | 2805 | STATS_INC_GROWN(cachep); |
e498be7d CL |
2806 | l3->free_objects += cachep->num; |
2807 | spin_unlock(&l3->list_lock); | |
1da177e4 | 2808 | return 1; |
a737b3e2 | 2809 | opps1: |
1da177e4 | 2810 | kmem_freepages(cachep, objp); |
a737b3e2 | 2811 | failed: |
1da177e4 LT |
2812 | if (local_flags & __GFP_WAIT) |
2813 | local_irq_disable(); | |
2814 | return 0; | |
2815 | } | |
2816 | ||
2817 | #if DEBUG | |
2818 | ||
2819 | /* | |
2820 | * Perform extra freeing checks: | |
2821 | * - detect bad pointers. | |
2822 | * - POISON/RED_ZONE checking | |
1da177e4 LT |
2823 | */ |
2824 | static void kfree_debugcheck(const void *objp) | |
2825 | { | |
1da177e4 LT |
2826 | if (!virt_addr_valid(objp)) { |
2827 | printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", | |
b28a02de PE |
2828 | (unsigned long)objp); |
2829 | BUG(); | |
1da177e4 | 2830 | } |
1da177e4 LT |
2831 | } |
2832 | ||
58ce1fd5 PE |
2833 | static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) |
2834 | { | |
b46b8f19 | 2835 | unsigned long long redzone1, redzone2; |
58ce1fd5 PE |
2836 | |
2837 | redzone1 = *dbg_redzone1(cache, obj); | |
2838 | redzone2 = *dbg_redzone2(cache, obj); | |
2839 | ||
2840 | /* | |
2841 | * Redzone is ok. | |
2842 | */ | |
2843 | if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) | |
2844 | return; | |
2845 | ||
2846 | if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) | |
2847 | slab_error(cache, "double free detected"); | |
2848 | else | |
2849 | slab_error(cache, "memory outside object was overwritten"); | |
2850 | ||
b46b8f19 | 2851 | printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", |
58ce1fd5 PE |
2852 | obj, redzone1, redzone2); |
2853 | } | |
2854 | ||
343e0d7a | 2855 | static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, |
b28a02de | 2856 | void *caller) |
1da177e4 LT |
2857 | { |
2858 | struct page *page; | |
2859 | unsigned int objnr; | |
2860 | struct slab *slabp; | |
2861 | ||
80cbd911 MW |
2862 | BUG_ON(virt_to_cache(objp) != cachep); |
2863 | ||
3dafccf2 | 2864 | objp -= obj_offset(cachep); |
1da177e4 | 2865 | kfree_debugcheck(objp); |
b49af68f | 2866 | page = virt_to_head_page(objp); |
1da177e4 | 2867 | |
065d41cb | 2868 | slabp = page_get_slab(page); |
1da177e4 LT |
2869 | |
2870 | if (cachep->flags & SLAB_RED_ZONE) { | |
58ce1fd5 | 2871 | verify_redzone_free(cachep, objp); |
1da177e4 LT |
2872 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; |
2873 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2874 | } | |
2875 | if (cachep->flags & SLAB_STORE_USER) | |
2876 | *dbg_userword(cachep, objp) = caller; | |
2877 | ||
8fea4e96 | 2878 | objnr = obj_to_index(cachep, slabp, objp); |
1da177e4 LT |
2879 | |
2880 | BUG_ON(objnr >= cachep->num); | |
8fea4e96 | 2881 | BUG_ON(objp != index_to_obj(cachep, slabp, objnr)); |
1da177e4 | 2882 | |
871751e2 AV |
2883 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
2884 | slab_bufctl(slabp)[objnr] = BUFCTL_FREE; | |
2885 | #endif | |
1da177e4 LT |
2886 | if (cachep->flags & SLAB_POISON) { |
2887 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
a737b3e2 | 2888 | if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { |
1da177e4 | 2889 | store_stackinfo(cachep, objp, (unsigned long)caller); |
b28a02de | 2890 | kernel_map_pages(virt_to_page(objp), |
3dafccf2 | 2891 | cachep->buffer_size / PAGE_SIZE, 0); |
1da177e4 LT |
2892 | } else { |
2893 | poison_obj(cachep, objp, POISON_FREE); | |
2894 | } | |
2895 | #else | |
2896 | poison_obj(cachep, objp, POISON_FREE); | |
2897 | #endif | |
2898 | } | |
2899 | return objp; | |
2900 | } | |
2901 | ||
343e0d7a | 2902 | static void check_slabp(struct kmem_cache *cachep, struct slab *slabp) |
1da177e4 LT |
2903 | { |
2904 | kmem_bufctl_t i; | |
2905 | int entries = 0; | |
b28a02de | 2906 | |
1da177e4 LT |
2907 | /* Check slab's freelist to see if this obj is there. */ |
2908 | for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { | |
2909 | entries++; | |
2910 | if (entries > cachep->num || i >= cachep->num) | |
2911 | goto bad; | |
2912 | } | |
2913 | if (entries != cachep->num - slabp->inuse) { | |
a737b3e2 AM |
2914 | bad: |
2915 | printk(KERN_ERR "slab: Internal list corruption detected in " | |
2916 | "cache '%s'(%d), slabp %p(%d). Hexdump:\n", | |
2917 | cachep->name, cachep->num, slabp, slabp->inuse); | |
b28a02de | 2918 | for (i = 0; |
264132bc | 2919 | i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t); |
b28a02de | 2920 | i++) { |
a737b3e2 | 2921 | if (i % 16 == 0) |
1da177e4 | 2922 | printk("\n%03x:", i); |
b28a02de | 2923 | printk(" %02x", ((unsigned char *)slabp)[i]); |
1da177e4 LT |
2924 | } |
2925 | printk("\n"); | |
2926 | BUG(); | |
2927 | } | |
2928 | } | |
2929 | #else | |
2930 | #define kfree_debugcheck(x) do { } while(0) | |
2931 | #define cache_free_debugcheck(x,objp,z) (objp) | |
2932 | #define check_slabp(x,y) do { } while(0) | |
2933 | #endif | |
2934 | ||
343e0d7a | 2935 | static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 LT |
2936 | { |
2937 | int batchcount; | |
2938 | struct kmem_list3 *l3; | |
2939 | struct array_cache *ac; | |
1ca4cb24 PE |
2940 | int node; |
2941 | ||
6d2144d3 | 2942 | retry: |
1da177e4 | 2943 | check_irq_off(); |
6d2144d3 | 2944 | node = numa_node_id(); |
9a2dba4b | 2945 | ac = cpu_cache_get(cachep); |
1da177e4 LT |
2946 | batchcount = ac->batchcount; |
2947 | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | |
a737b3e2 AM |
2948 | /* |
2949 | * If there was little recent activity on this cache, then | |
2950 | * perform only a partial refill. Otherwise we could generate | |
2951 | * refill bouncing. | |
1da177e4 LT |
2952 | */ |
2953 | batchcount = BATCHREFILL_LIMIT; | |
2954 | } | |
1ca4cb24 | 2955 | l3 = cachep->nodelists[node]; |
e498be7d CL |
2956 | |
2957 | BUG_ON(ac->avail > 0 || !l3); | |
2958 | spin_lock(&l3->list_lock); | |
1da177e4 | 2959 | |
3ded175a CL |
2960 | /* See if we can refill from the shared array */ |
2961 | if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) | |
2962 | goto alloc_done; | |
2963 | ||
1da177e4 LT |
2964 | while (batchcount > 0) { |
2965 | struct list_head *entry; | |
2966 | struct slab *slabp; | |
2967 | /* Get slab alloc is to come from. */ | |
2968 | entry = l3->slabs_partial.next; | |
2969 | if (entry == &l3->slabs_partial) { | |
2970 | l3->free_touched = 1; | |
2971 | entry = l3->slabs_free.next; | |
2972 | if (entry == &l3->slabs_free) | |
2973 | goto must_grow; | |
2974 | } | |
2975 | ||
2976 | slabp = list_entry(entry, struct slab, list); | |
2977 | check_slabp(cachep, slabp); | |
2978 | check_spinlock_acquired(cachep); | |
714b8171 PE |
2979 | |
2980 | /* | |
2981 | * The slab was either on partial or free list so | |
2982 | * there must be at least one object available for | |
2983 | * allocation. | |
2984 | */ | |
249b9f33 | 2985 | BUG_ON(slabp->inuse >= cachep->num); |
714b8171 | 2986 | |
1da177e4 | 2987 | while (slabp->inuse < cachep->num && batchcount--) { |
1da177e4 LT |
2988 | STATS_INC_ALLOCED(cachep); |
2989 | STATS_INC_ACTIVE(cachep); | |
2990 | STATS_SET_HIGH(cachep); | |
2991 | ||
78d382d7 | 2992 | ac->entry[ac->avail++] = slab_get_obj(cachep, slabp, |
1ca4cb24 | 2993 | node); |
1da177e4 LT |
2994 | } |
2995 | check_slabp(cachep, slabp); | |
2996 | ||
2997 | /* move slabp to correct slabp list: */ | |
2998 | list_del(&slabp->list); | |
2999 | if (slabp->free == BUFCTL_END) | |
3000 | list_add(&slabp->list, &l3->slabs_full); | |
3001 | else | |
3002 | list_add(&slabp->list, &l3->slabs_partial); | |
3003 | } | |
3004 | ||
a737b3e2 | 3005 | must_grow: |
1da177e4 | 3006 | l3->free_objects -= ac->avail; |
a737b3e2 | 3007 | alloc_done: |
e498be7d | 3008 | spin_unlock(&l3->list_lock); |
1da177e4 LT |
3009 | |
3010 | if (unlikely(!ac->avail)) { | |
3011 | int x; | |
3c517a61 | 3012 | x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); |
e498be7d | 3013 | |
a737b3e2 | 3014 | /* cache_grow can reenable interrupts, then ac could change. */ |
9a2dba4b | 3015 | ac = cpu_cache_get(cachep); |
a737b3e2 | 3016 | if (!x && ac->avail == 0) /* no objects in sight? abort */ |
1da177e4 LT |
3017 | return NULL; |
3018 | ||
a737b3e2 | 3019 | if (!ac->avail) /* objects refilled by interrupt? */ |
1da177e4 LT |
3020 | goto retry; |
3021 | } | |
3022 | ac->touched = 1; | |
e498be7d | 3023 | return ac->entry[--ac->avail]; |
1da177e4 LT |
3024 | } |
3025 | ||
a737b3e2 AM |
3026 | static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, |
3027 | gfp_t flags) | |
1da177e4 LT |
3028 | { |
3029 | might_sleep_if(flags & __GFP_WAIT); | |
3030 | #if DEBUG | |
3031 | kmem_flagcheck(cachep, flags); | |
3032 | #endif | |
3033 | } | |
3034 | ||
3035 | #if DEBUG | |
a737b3e2 AM |
3036 | static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, |
3037 | gfp_t flags, void *objp, void *caller) | |
1da177e4 | 3038 | { |
b28a02de | 3039 | if (!objp) |
1da177e4 | 3040 | return objp; |
b28a02de | 3041 | if (cachep->flags & SLAB_POISON) { |
1da177e4 | 3042 | #ifdef CONFIG_DEBUG_PAGEALLOC |
3dafccf2 | 3043 | if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) |
b28a02de | 3044 | kernel_map_pages(virt_to_page(objp), |
3dafccf2 | 3045 | cachep->buffer_size / PAGE_SIZE, 1); |
1da177e4 LT |
3046 | else |
3047 | check_poison_obj(cachep, objp); | |
3048 | #else | |
3049 | check_poison_obj(cachep, objp); | |
3050 | #endif | |
3051 | poison_obj(cachep, objp, POISON_INUSE); | |
3052 | } | |
3053 | if (cachep->flags & SLAB_STORE_USER) | |
3054 | *dbg_userword(cachep, objp) = caller; | |
3055 | ||
3056 | if (cachep->flags & SLAB_RED_ZONE) { | |
a737b3e2 AM |
3057 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || |
3058 | *dbg_redzone2(cachep, objp) != RED_INACTIVE) { | |
3059 | slab_error(cachep, "double free, or memory outside" | |
3060 | " object was overwritten"); | |
b28a02de | 3061 | printk(KERN_ERR |
b46b8f19 | 3062 | "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", |
a737b3e2 AM |
3063 | objp, *dbg_redzone1(cachep, objp), |
3064 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
3065 | } |
3066 | *dbg_redzone1(cachep, objp) = RED_ACTIVE; | |
3067 | *dbg_redzone2(cachep, objp) = RED_ACTIVE; | |
3068 | } | |
871751e2 AV |
3069 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
3070 | { | |
3071 | struct slab *slabp; | |
3072 | unsigned objnr; | |
3073 | ||
b49af68f | 3074 | slabp = page_get_slab(virt_to_head_page(objp)); |
871751e2 AV |
3075 | objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size; |
3076 | slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE; | |
3077 | } | |
3078 | #endif | |
3dafccf2 | 3079 | objp += obj_offset(cachep); |
4f104934 | 3080 | if (cachep->ctor && cachep->flags & SLAB_POISON) |
51cc5068 | 3081 | cachep->ctor(objp); |
a44b56d3 KH |
3082 | #if ARCH_SLAB_MINALIGN |
3083 | if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) { | |
3084 | printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", | |
3085 | objp, ARCH_SLAB_MINALIGN); | |
3086 | } | |
3087 | #endif | |
1da177e4 LT |
3088 | return objp; |
3089 | } | |
3090 | #else | |
3091 | #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) | |
3092 | #endif | |
3093 | ||
773ff60e | 3094 | static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags) |
8a8b6502 AM |
3095 | { |
3096 | if (cachep == &cache_cache) | |
773ff60e | 3097 | return false; |
8a8b6502 | 3098 | |
773ff60e | 3099 | return should_failslab(obj_size(cachep), flags); |
8a8b6502 AM |
3100 | } |
3101 | ||
343e0d7a | 3102 | static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3103 | { |
b28a02de | 3104 | void *objp; |
1da177e4 LT |
3105 | struct array_cache *ac; |
3106 | ||
5c382300 | 3107 | check_irq_off(); |
8a8b6502 | 3108 | |
9a2dba4b | 3109 | ac = cpu_cache_get(cachep); |
1da177e4 LT |
3110 | if (likely(ac->avail)) { |
3111 | STATS_INC_ALLOCHIT(cachep); | |
3112 | ac->touched = 1; | |
e498be7d | 3113 | objp = ac->entry[--ac->avail]; |
1da177e4 LT |
3114 | } else { |
3115 | STATS_INC_ALLOCMISS(cachep); | |
3116 | objp = cache_alloc_refill(cachep, flags); | |
3117 | } | |
d5cff635 CM |
3118 | /* |
3119 | * To avoid a false negative, if an object that is in one of the | |
3120 | * per-CPU caches is leaked, we need to make sure kmemleak doesn't | |
3121 | * treat the array pointers as a reference to the object. | |
3122 | */ | |
3123 | kmemleak_erase(&ac->entry[ac->avail]); | |
5c382300 AK |
3124 | return objp; |
3125 | } | |
3126 | ||
e498be7d | 3127 | #ifdef CONFIG_NUMA |
c61afb18 | 3128 | /* |
b2455396 | 3129 | * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY. |
c61afb18 PJ |
3130 | * |
3131 | * If we are in_interrupt, then process context, including cpusets and | |
3132 | * mempolicy, may not apply and should not be used for allocation policy. | |
3133 | */ | |
3134 | static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3135 | { | |
3136 | int nid_alloc, nid_here; | |
3137 | ||
765c4507 | 3138 | if (in_interrupt() || (flags & __GFP_THISNODE)) |
c61afb18 PJ |
3139 | return NULL; |
3140 | nid_alloc = nid_here = numa_node_id(); | |
3141 | if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) | |
3142 | nid_alloc = cpuset_mem_spread_node(); | |
3143 | else if (current->mempolicy) | |
3144 | nid_alloc = slab_node(current->mempolicy); | |
3145 | if (nid_alloc != nid_here) | |
8b98c169 | 3146 | return ____cache_alloc_node(cachep, flags, nid_alloc); |
c61afb18 PJ |
3147 | return NULL; |
3148 | } | |
3149 | ||
765c4507 CL |
3150 | /* |
3151 | * Fallback function if there was no memory available and no objects on a | |
3c517a61 CL |
3152 | * certain node and fall back is permitted. First we scan all the |
3153 | * available nodelists for available objects. If that fails then we | |
3154 | * perform an allocation without specifying a node. This allows the page | |
3155 | * allocator to do its reclaim / fallback magic. We then insert the | |
3156 | * slab into the proper nodelist and then allocate from it. | |
765c4507 | 3157 | */ |
8c8cc2c1 | 3158 | static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) |
765c4507 | 3159 | { |
8c8cc2c1 PE |
3160 | struct zonelist *zonelist; |
3161 | gfp_t local_flags; | |
dd1a239f | 3162 | struct zoneref *z; |
54a6eb5c MG |
3163 | struct zone *zone; |
3164 | enum zone_type high_zoneidx = gfp_zone(flags); | |
765c4507 | 3165 | void *obj = NULL; |
3c517a61 | 3166 | int nid; |
8c8cc2c1 PE |
3167 | |
3168 | if (flags & __GFP_THISNODE) | |
3169 | return NULL; | |
3170 | ||
0e88460d | 3171 | zonelist = node_zonelist(slab_node(current->mempolicy), flags); |
6cb06229 | 3172 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); |
765c4507 | 3173 | |
3c517a61 CL |
3174 | retry: |
3175 | /* | |
3176 | * Look through allowed nodes for objects available | |
3177 | * from existing per node queues. | |
3178 | */ | |
54a6eb5c MG |
3179 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
3180 | nid = zone_to_nid(zone); | |
aedb0eb1 | 3181 | |
54a6eb5c | 3182 | if (cpuset_zone_allowed_hardwall(zone, flags) && |
3c517a61 | 3183 | cache->nodelists[nid] && |
481c5346 | 3184 | cache->nodelists[nid]->free_objects) { |
3c517a61 CL |
3185 | obj = ____cache_alloc_node(cache, |
3186 | flags | GFP_THISNODE, nid); | |
481c5346 CL |
3187 | if (obj) |
3188 | break; | |
3189 | } | |
3c517a61 CL |
3190 | } |
3191 | ||
cfce6604 | 3192 | if (!obj) { |
3c517a61 CL |
3193 | /* |
3194 | * This allocation will be performed within the constraints | |
3195 | * of the current cpuset / memory policy requirements. | |
3196 | * We may trigger various forms of reclaim on the allowed | |
3197 | * set and go into memory reserves if necessary. | |
3198 | */ | |
dd47ea75 CL |
3199 | if (local_flags & __GFP_WAIT) |
3200 | local_irq_enable(); | |
3201 | kmem_flagcheck(cache, flags); | |
6484eb3e | 3202 | obj = kmem_getpages(cache, local_flags, numa_node_id()); |
dd47ea75 CL |
3203 | if (local_flags & __GFP_WAIT) |
3204 | local_irq_disable(); | |
3c517a61 CL |
3205 | if (obj) { |
3206 | /* | |
3207 | * Insert into the appropriate per node queues | |
3208 | */ | |
3209 | nid = page_to_nid(virt_to_page(obj)); | |
3210 | if (cache_grow(cache, flags, nid, obj)) { | |
3211 | obj = ____cache_alloc_node(cache, | |
3212 | flags | GFP_THISNODE, nid); | |
3213 | if (!obj) | |
3214 | /* | |
3215 | * Another processor may allocate the | |
3216 | * objects in the slab since we are | |
3217 | * not holding any locks. | |
3218 | */ | |
3219 | goto retry; | |
3220 | } else { | |
b6a60451 | 3221 | /* cache_grow already freed obj */ |
3c517a61 CL |
3222 | obj = NULL; |
3223 | } | |
3224 | } | |
aedb0eb1 | 3225 | } |
765c4507 CL |
3226 | return obj; |
3227 | } | |
3228 | ||
e498be7d CL |
3229 | /* |
3230 | * A interface to enable slab creation on nodeid | |
1da177e4 | 3231 | */ |
8b98c169 | 3232 | static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, |
a737b3e2 | 3233 | int nodeid) |
e498be7d CL |
3234 | { |
3235 | struct list_head *entry; | |
b28a02de PE |
3236 | struct slab *slabp; |
3237 | struct kmem_list3 *l3; | |
3238 | void *obj; | |
b28a02de PE |
3239 | int x; |
3240 | ||
3241 | l3 = cachep->nodelists[nodeid]; | |
3242 | BUG_ON(!l3); | |
3243 | ||
a737b3e2 | 3244 | retry: |
ca3b9b91 | 3245 | check_irq_off(); |
b28a02de PE |
3246 | spin_lock(&l3->list_lock); |
3247 | entry = l3->slabs_partial.next; | |
3248 | if (entry == &l3->slabs_partial) { | |
3249 | l3->free_touched = 1; | |
3250 | entry = l3->slabs_free.next; | |
3251 | if (entry == &l3->slabs_free) | |
3252 | goto must_grow; | |
3253 | } | |
3254 | ||
3255 | slabp = list_entry(entry, struct slab, list); | |
3256 | check_spinlock_acquired_node(cachep, nodeid); | |
3257 | check_slabp(cachep, slabp); | |
3258 | ||
3259 | STATS_INC_NODEALLOCS(cachep); | |
3260 | STATS_INC_ACTIVE(cachep); | |
3261 | STATS_SET_HIGH(cachep); | |
3262 | ||
3263 | BUG_ON(slabp->inuse == cachep->num); | |
3264 | ||
78d382d7 | 3265 | obj = slab_get_obj(cachep, slabp, nodeid); |
b28a02de PE |
3266 | check_slabp(cachep, slabp); |
3267 | l3->free_objects--; | |
3268 | /* move slabp to correct slabp list: */ | |
3269 | list_del(&slabp->list); | |
3270 | ||
a737b3e2 | 3271 | if (slabp->free == BUFCTL_END) |
b28a02de | 3272 | list_add(&slabp->list, &l3->slabs_full); |
a737b3e2 | 3273 | else |
b28a02de | 3274 | list_add(&slabp->list, &l3->slabs_partial); |
e498be7d | 3275 | |
b28a02de PE |
3276 | spin_unlock(&l3->list_lock); |
3277 | goto done; | |
e498be7d | 3278 | |
a737b3e2 | 3279 | must_grow: |
b28a02de | 3280 | spin_unlock(&l3->list_lock); |
3c517a61 | 3281 | x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); |
765c4507 CL |
3282 | if (x) |
3283 | goto retry; | |
1da177e4 | 3284 | |
8c8cc2c1 | 3285 | return fallback_alloc(cachep, flags); |
e498be7d | 3286 | |
a737b3e2 | 3287 | done: |
b28a02de | 3288 | return obj; |
e498be7d | 3289 | } |
8c8cc2c1 PE |
3290 | |
3291 | /** | |
3292 | * kmem_cache_alloc_node - Allocate an object on the specified node | |
3293 | * @cachep: The cache to allocate from. | |
3294 | * @flags: See kmalloc(). | |
3295 | * @nodeid: node number of the target node. | |
3296 | * @caller: return address of caller, used for debug information | |
3297 | * | |
3298 | * Identical to kmem_cache_alloc but it will allocate memory on the given | |
3299 | * node, which can improve the performance for cpu bound structures. | |
3300 | * | |
3301 | * Fallback to other node is possible if __GFP_THISNODE is not set. | |
3302 | */ | |
3303 | static __always_inline void * | |
3304 | __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, | |
3305 | void *caller) | |
3306 | { | |
3307 | unsigned long save_flags; | |
3308 | void *ptr; | |
3309 | ||
7e85ee0c PE |
3310 | flags &= slab_gfp_mask; |
3311 | ||
cf40bd16 NP |
3312 | lockdep_trace_alloc(flags); |
3313 | ||
773ff60e | 3314 | if (slab_should_failslab(cachep, flags)) |
824ebef1 AM |
3315 | return NULL; |
3316 | ||
8c8cc2c1 PE |
3317 | cache_alloc_debugcheck_before(cachep, flags); |
3318 | local_irq_save(save_flags); | |
3319 | ||
3320 | if (unlikely(nodeid == -1)) | |
3321 | nodeid = numa_node_id(); | |
3322 | ||
3323 | if (unlikely(!cachep->nodelists[nodeid])) { | |
3324 | /* Node not bootstrapped yet */ | |
3325 | ptr = fallback_alloc(cachep, flags); | |
3326 | goto out; | |
3327 | } | |
3328 | ||
3329 | if (nodeid == numa_node_id()) { | |
3330 | /* | |
3331 | * Use the locally cached objects if possible. | |
3332 | * However ____cache_alloc does not allow fallback | |
3333 | * to other nodes. It may fail while we still have | |
3334 | * objects on other nodes available. | |
3335 | */ | |
3336 | ptr = ____cache_alloc(cachep, flags); | |
3337 | if (ptr) | |
3338 | goto out; | |
3339 | } | |
3340 | /* ___cache_alloc_node can fall back to other nodes */ | |
3341 | ptr = ____cache_alloc_node(cachep, flags, nodeid); | |
3342 | out: | |
3343 | local_irq_restore(save_flags); | |
3344 | ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); | |
d5cff635 CM |
3345 | kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags, |
3346 | flags); | |
8c8cc2c1 | 3347 | |
c175eea4 PE |
3348 | if (likely(ptr)) |
3349 | kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep)); | |
3350 | ||
d07dbea4 CL |
3351 | if (unlikely((flags & __GFP_ZERO) && ptr)) |
3352 | memset(ptr, 0, obj_size(cachep)); | |
3353 | ||
8c8cc2c1 PE |
3354 | return ptr; |
3355 | } | |
3356 | ||
3357 | static __always_inline void * | |
3358 | __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) | |
3359 | { | |
3360 | void *objp; | |
3361 | ||
3362 | if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) { | |
3363 | objp = alternate_node_alloc(cache, flags); | |
3364 | if (objp) | |
3365 | goto out; | |
3366 | } | |
3367 | objp = ____cache_alloc(cache, flags); | |
3368 | ||
3369 | /* | |
3370 | * We may just have run out of memory on the local node. | |
3371 | * ____cache_alloc_node() knows how to locate memory on other nodes | |
3372 | */ | |
3373 | if (!objp) | |
3374 | objp = ____cache_alloc_node(cache, flags, numa_node_id()); | |
3375 | ||
3376 | out: | |
3377 | return objp; | |
3378 | } | |
3379 | #else | |
3380 | ||
3381 | static __always_inline void * | |
3382 | __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3383 | { | |
3384 | return ____cache_alloc(cachep, flags); | |
3385 | } | |
3386 | ||
3387 | #endif /* CONFIG_NUMA */ | |
3388 | ||
3389 | static __always_inline void * | |
3390 | __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller) | |
3391 | { | |
3392 | unsigned long save_flags; | |
3393 | void *objp; | |
3394 | ||
7e85ee0c PE |
3395 | flags &= slab_gfp_mask; |
3396 | ||
cf40bd16 NP |
3397 | lockdep_trace_alloc(flags); |
3398 | ||
773ff60e | 3399 | if (slab_should_failslab(cachep, flags)) |
824ebef1 AM |
3400 | return NULL; |
3401 | ||
8c8cc2c1 PE |
3402 | cache_alloc_debugcheck_before(cachep, flags); |
3403 | local_irq_save(save_flags); | |
3404 | objp = __do_cache_alloc(cachep, flags); | |
3405 | local_irq_restore(save_flags); | |
3406 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); | |
d5cff635 CM |
3407 | kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags, |
3408 | flags); | |
8c8cc2c1 PE |
3409 | prefetchw(objp); |
3410 | ||
c175eea4 PE |
3411 | if (likely(objp)) |
3412 | kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep)); | |
3413 | ||
d07dbea4 CL |
3414 | if (unlikely((flags & __GFP_ZERO) && objp)) |
3415 | memset(objp, 0, obj_size(cachep)); | |
3416 | ||
8c8cc2c1 PE |
3417 | return objp; |
3418 | } | |
e498be7d CL |
3419 | |
3420 | /* | |
3421 | * Caller needs to acquire correct kmem_list's list_lock | |
3422 | */ | |
343e0d7a | 3423 | static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, |
b28a02de | 3424 | int node) |
1da177e4 LT |
3425 | { |
3426 | int i; | |
e498be7d | 3427 | struct kmem_list3 *l3; |
1da177e4 LT |
3428 | |
3429 | for (i = 0; i < nr_objects; i++) { | |
3430 | void *objp = objpp[i]; | |
3431 | struct slab *slabp; | |
1da177e4 | 3432 | |
6ed5eb22 | 3433 | slabp = virt_to_slab(objp); |
ff69416e | 3434 | l3 = cachep->nodelists[node]; |
1da177e4 | 3435 | list_del(&slabp->list); |
ff69416e | 3436 | check_spinlock_acquired_node(cachep, node); |
1da177e4 | 3437 | check_slabp(cachep, slabp); |
78d382d7 | 3438 | slab_put_obj(cachep, slabp, objp, node); |
1da177e4 | 3439 | STATS_DEC_ACTIVE(cachep); |
e498be7d | 3440 | l3->free_objects++; |
1da177e4 LT |
3441 | check_slabp(cachep, slabp); |
3442 | ||
3443 | /* fixup slab chains */ | |
3444 | if (slabp->inuse == 0) { | |
e498be7d CL |
3445 | if (l3->free_objects > l3->free_limit) { |
3446 | l3->free_objects -= cachep->num; | |
e5ac9c5a RT |
3447 | /* No need to drop any previously held |
3448 | * lock here, even if we have a off-slab slab | |
3449 | * descriptor it is guaranteed to come from | |
3450 | * a different cache, refer to comments before | |
3451 | * alloc_slabmgmt. | |
3452 | */ | |
1da177e4 LT |
3453 | slab_destroy(cachep, slabp); |
3454 | } else { | |
e498be7d | 3455 | list_add(&slabp->list, &l3->slabs_free); |
1da177e4 LT |
3456 | } |
3457 | } else { | |
3458 | /* Unconditionally move a slab to the end of the | |
3459 | * partial list on free - maximum time for the | |
3460 | * other objects to be freed, too. | |
3461 | */ | |
e498be7d | 3462 | list_add_tail(&slabp->list, &l3->slabs_partial); |
1da177e4 LT |
3463 | } |
3464 | } | |
3465 | } | |
3466 | ||
343e0d7a | 3467 | static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) |
1da177e4 LT |
3468 | { |
3469 | int batchcount; | |
e498be7d | 3470 | struct kmem_list3 *l3; |
ff69416e | 3471 | int node = numa_node_id(); |
1da177e4 LT |
3472 | |
3473 | batchcount = ac->batchcount; | |
3474 | #if DEBUG | |
3475 | BUG_ON(!batchcount || batchcount > ac->avail); | |
3476 | #endif | |
3477 | check_irq_off(); | |
ff69416e | 3478 | l3 = cachep->nodelists[node]; |
873623df | 3479 | spin_lock(&l3->list_lock); |
e498be7d CL |
3480 | if (l3->shared) { |
3481 | struct array_cache *shared_array = l3->shared; | |
b28a02de | 3482 | int max = shared_array->limit - shared_array->avail; |
1da177e4 LT |
3483 | if (max) { |
3484 | if (batchcount > max) | |
3485 | batchcount = max; | |
e498be7d | 3486 | memcpy(&(shared_array->entry[shared_array->avail]), |
b28a02de | 3487 | ac->entry, sizeof(void *) * batchcount); |
1da177e4 LT |
3488 | shared_array->avail += batchcount; |
3489 | goto free_done; | |
3490 | } | |
3491 | } | |
3492 | ||
ff69416e | 3493 | free_block(cachep, ac->entry, batchcount, node); |
a737b3e2 | 3494 | free_done: |
1da177e4 LT |
3495 | #if STATS |
3496 | { | |
3497 | int i = 0; | |
3498 | struct list_head *p; | |
3499 | ||
e498be7d CL |
3500 | p = l3->slabs_free.next; |
3501 | while (p != &(l3->slabs_free)) { | |
1da177e4 LT |
3502 | struct slab *slabp; |
3503 | ||
3504 | slabp = list_entry(p, struct slab, list); | |
3505 | BUG_ON(slabp->inuse); | |
3506 | ||
3507 | i++; | |
3508 | p = p->next; | |
3509 | } | |
3510 | STATS_SET_FREEABLE(cachep, i); | |
3511 | } | |
3512 | #endif | |
e498be7d | 3513 | spin_unlock(&l3->list_lock); |
1da177e4 | 3514 | ac->avail -= batchcount; |
a737b3e2 | 3515 | memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); |
1da177e4 LT |
3516 | } |
3517 | ||
3518 | /* | |
a737b3e2 AM |
3519 | * Release an obj back to its cache. If the obj has a constructed state, it must |
3520 | * be in this state _before_ it is released. Called with disabled ints. | |
1da177e4 | 3521 | */ |
873623df | 3522 | static inline void __cache_free(struct kmem_cache *cachep, void *objp) |
1da177e4 | 3523 | { |
9a2dba4b | 3524 | struct array_cache *ac = cpu_cache_get(cachep); |
1da177e4 LT |
3525 | |
3526 | check_irq_off(); | |
d5cff635 | 3527 | kmemleak_free_recursive(objp, cachep->flags); |
1da177e4 LT |
3528 | objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0)); |
3529 | ||
c175eea4 PE |
3530 | kmemcheck_slab_free(cachep, objp, obj_size(cachep)); |
3531 | ||
1807a1aa SS |
3532 | /* |
3533 | * Skip calling cache_free_alien() when the platform is not numa. | |
3534 | * This will avoid cache misses that happen while accessing slabp (which | |
3535 | * is per page memory reference) to get nodeid. Instead use a global | |
3536 | * variable to skip the call, which is mostly likely to be present in | |
3537 | * the cache. | |
3538 | */ | |
b6e68bc1 | 3539 | if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) |
729bd0b7 PE |
3540 | return; |
3541 | ||
1da177e4 LT |
3542 | if (likely(ac->avail < ac->limit)) { |
3543 | STATS_INC_FREEHIT(cachep); | |
e498be7d | 3544 | ac->entry[ac->avail++] = objp; |
1da177e4 LT |
3545 | return; |
3546 | } else { | |
3547 | STATS_INC_FREEMISS(cachep); | |
3548 | cache_flusharray(cachep, ac); | |
e498be7d | 3549 | ac->entry[ac->avail++] = objp; |
1da177e4 LT |
3550 | } |
3551 | } | |
3552 | ||
3553 | /** | |
3554 | * kmem_cache_alloc - Allocate an object | |
3555 | * @cachep: The cache to allocate from. | |
3556 | * @flags: See kmalloc(). | |
3557 | * | |
3558 | * Allocate an object from this cache. The flags are only relevant | |
3559 | * if the cache has no available objects. | |
3560 | */ | |
343e0d7a | 3561 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3562 | { |
36555751 EGM |
3563 | void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0)); |
3564 | ||
ca2b84cb EGM |
3565 | trace_kmem_cache_alloc(_RET_IP_, ret, |
3566 | obj_size(cachep), cachep->buffer_size, flags); | |
36555751 EGM |
3567 | |
3568 | return ret; | |
1da177e4 LT |
3569 | } |
3570 | EXPORT_SYMBOL(kmem_cache_alloc); | |
3571 | ||
36555751 EGM |
3572 | #ifdef CONFIG_KMEMTRACE |
3573 | void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags) | |
3574 | { | |
3575 | return __cache_alloc(cachep, flags, __builtin_return_address(0)); | |
3576 | } | |
3577 | EXPORT_SYMBOL(kmem_cache_alloc_notrace); | |
3578 | #endif | |
3579 | ||
1da177e4 | 3580 | /** |
7682486b | 3581 | * kmem_ptr_validate - check if an untrusted pointer might be a slab entry. |
1da177e4 LT |
3582 | * @cachep: the cache we're checking against |
3583 | * @ptr: pointer to validate | |
3584 | * | |
7682486b | 3585 | * This verifies that the untrusted pointer looks sane; |
1da177e4 LT |
3586 | * it is _not_ a guarantee that the pointer is actually |
3587 | * part of the slab cache in question, but it at least | |
3588 | * validates that the pointer can be dereferenced and | |
3589 | * looks half-way sane. | |
3590 | * | |
3591 | * Currently only used for dentry validation. | |
3592 | */ | |
b7f869a2 | 3593 | int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr) |
1da177e4 | 3594 | { |
b28a02de | 3595 | unsigned long addr = (unsigned long)ptr; |
1da177e4 | 3596 | unsigned long min_addr = PAGE_OFFSET; |
b28a02de | 3597 | unsigned long align_mask = BYTES_PER_WORD - 1; |
3dafccf2 | 3598 | unsigned long size = cachep->buffer_size; |
1da177e4 LT |
3599 | struct page *page; |
3600 | ||
3601 | if (unlikely(addr < min_addr)) | |
3602 | goto out; | |
3603 | if (unlikely(addr > (unsigned long)high_memory - size)) | |
3604 | goto out; | |
3605 | if (unlikely(addr & align_mask)) | |
3606 | goto out; | |
3607 | if (unlikely(!kern_addr_valid(addr))) | |
3608 | goto out; | |
3609 | if (unlikely(!kern_addr_valid(addr + size - 1))) | |
3610 | goto out; | |
3611 | page = virt_to_page(ptr); | |
3612 | if (unlikely(!PageSlab(page))) | |
3613 | goto out; | |
065d41cb | 3614 | if (unlikely(page_get_cache(page) != cachep)) |
1da177e4 LT |
3615 | goto out; |
3616 | return 1; | |
a737b3e2 | 3617 | out: |
1da177e4 LT |
3618 | return 0; |
3619 | } | |
3620 | ||
3621 | #ifdef CONFIG_NUMA | |
8b98c169 CH |
3622 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
3623 | { | |
36555751 EGM |
3624 | void *ret = __cache_alloc_node(cachep, flags, nodeid, |
3625 | __builtin_return_address(0)); | |
3626 | ||
ca2b84cb EGM |
3627 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
3628 | obj_size(cachep), cachep->buffer_size, | |
3629 | flags, nodeid); | |
36555751 EGM |
3630 | |
3631 | return ret; | |
8b98c169 | 3632 | } |
1da177e4 LT |
3633 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
3634 | ||
36555751 EGM |
3635 | #ifdef CONFIG_KMEMTRACE |
3636 | void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep, | |
3637 | gfp_t flags, | |
3638 | int nodeid) | |
3639 | { | |
3640 | return __cache_alloc_node(cachep, flags, nodeid, | |
3641 | __builtin_return_address(0)); | |
3642 | } | |
3643 | EXPORT_SYMBOL(kmem_cache_alloc_node_notrace); | |
3644 | #endif | |
3645 | ||
8b98c169 CH |
3646 | static __always_inline void * |
3647 | __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller) | |
97e2bde4 | 3648 | { |
343e0d7a | 3649 | struct kmem_cache *cachep; |
36555751 | 3650 | void *ret; |
97e2bde4 MS |
3651 | |
3652 | cachep = kmem_find_general_cachep(size, flags); | |
6cb8f913 CL |
3653 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3654 | return cachep; | |
36555751 EGM |
3655 | ret = kmem_cache_alloc_node_notrace(cachep, flags, node); |
3656 | ||
ca2b84cb EGM |
3657 | trace_kmalloc_node((unsigned long) caller, ret, |
3658 | size, cachep->buffer_size, flags, node); | |
36555751 EGM |
3659 | |
3660 | return ret; | |
97e2bde4 | 3661 | } |
8b98c169 | 3662 | |
36555751 | 3663 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE) |
8b98c169 CH |
3664 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3665 | { | |
3666 | return __do_kmalloc_node(size, flags, node, | |
3667 | __builtin_return_address(0)); | |
3668 | } | |
dbe5e69d | 3669 | EXPORT_SYMBOL(__kmalloc_node); |
8b98c169 CH |
3670 | |
3671 | void *__kmalloc_node_track_caller(size_t size, gfp_t flags, | |
ce71e27c | 3672 | int node, unsigned long caller) |
8b98c169 | 3673 | { |
ce71e27c | 3674 | return __do_kmalloc_node(size, flags, node, (void *)caller); |
8b98c169 CH |
3675 | } |
3676 | EXPORT_SYMBOL(__kmalloc_node_track_caller); | |
3677 | #else | |
3678 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | |
3679 | { | |
3680 | return __do_kmalloc_node(size, flags, node, NULL); | |
3681 | } | |
3682 | EXPORT_SYMBOL(__kmalloc_node); | |
3683 | #endif /* CONFIG_DEBUG_SLAB */ | |
3684 | #endif /* CONFIG_NUMA */ | |
1da177e4 LT |
3685 | |
3686 | /** | |
800590f5 | 3687 | * __do_kmalloc - allocate memory |
1da177e4 | 3688 | * @size: how many bytes of memory are required. |
800590f5 | 3689 | * @flags: the type of memory to allocate (see kmalloc). |
911851e6 | 3690 | * @caller: function caller for debug tracking of the caller |
1da177e4 | 3691 | */ |
7fd6b141 PE |
3692 | static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, |
3693 | void *caller) | |
1da177e4 | 3694 | { |
343e0d7a | 3695 | struct kmem_cache *cachep; |
36555751 | 3696 | void *ret; |
1da177e4 | 3697 | |
97e2bde4 MS |
3698 | /* If you want to save a few bytes .text space: replace |
3699 | * __ with kmem_. | |
3700 | * Then kmalloc uses the uninlined functions instead of the inline | |
3701 | * functions. | |
3702 | */ | |
3703 | cachep = __find_general_cachep(size, flags); | |
a5c96d8a LT |
3704 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3705 | return cachep; | |
36555751 EGM |
3706 | ret = __cache_alloc(cachep, flags, caller); |
3707 | ||
ca2b84cb EGM |
3708 | trace_kmalloc((unsigned long) caller, ret, |
3709 | size, cachep->buffer_size, flags); | |
36555751 EGM |
3710 | |
3711 | return ret; | |
7fd6b141 PE |
3712 | } |
3713 | ||
7fd6b141 | 3714 | |
36555751 | 3715 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE) |
7fd6b141 PE |
3716 | void *__kmalloc(size_t size, gfp_t flags) |
3717 | { | |
871751e2 | 3718 | return __do_kmalloc(size, flags, __builtin_return_address(0)); |
1da177e4 LT |
3719 | } |
3720 | EXPORT_SYMBOL(__kmalloc); | |
3721 | ||
ce71e27c | 3722 | void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) |
7fd6b141 | 3723 | { |
ce71e27c | 3724 | return __do_kmalloc(size, flags, (void *)caller); |
7fd6b141 PE |
3725 | } |
3726 | EXPORT_SYMBOL(__kmalloc_track_caller); | |
1d2c8eea CH |
3727 | |
3728 | #else | |
3729 | void *__kmalloc(size_t size, gfp_t flags) | |
3730 | { | |
3731 | return __do_kmalloc(size, flags, NULL); | |
3732 | } | |
3733 | EXPORT_SYMBOL(__kmalloc); | |
7fd6b141 PE |
3734 | #endif |
3735 | ||
1da177e4 LT |
3736 | /** |
3737 | * kmem_cache_free - Deallocate an object | |
3738 | * @cachep: The cache the allocation was from. | |
3739 | * @objp: The previously allocated object. | |
3740 | * | |
3741 | * Free an object which was previously allocated from this | |
3742 | * cache. | |
3743 | */ | |
343e0d7a | 3744 | void kmem_cache_free(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
3745 | { |
3746 | unsigned long flags; | |
3747 | ||
3748 | local_irq_save(flags); | |
898552c9 | 3749 | debug_check_no_locks_freed(objp, obj_size(cachep)); |
3ac7fe5a TG |
3750 | if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) |
3751 | debug_check_no_obj_freed(objp, obj_size(cachep)); | |
873623df | 3752 | __cache_free(cachep, objp); |
1da177e4 | 3753 | local_irq_restore(flags); |
36555751 | 3754 | |
ca2b84cb | 3755 | trace_kmem_cache_free(_RET_IP_, objp); |
1da177e4 LT |
3756 | } |
3757 | EXPORT_SYMBOL(kmem_cache_free); | |
3758 | ||
1da177e4 LT |
3759 | /** |
3760 | * kfree - free previously allocated memory | |
3761 | * @objp: pointer returned by kmalloc. | |
3762 | * | |
80e93eff PE |
3763 | * If @objp is NULL, no operation is performed. |
3764 | * | |
1da177e4 LT |
3765 | * Don't free memory not originally allocated by kmalloc() |
3766 | * or you will run into trouble. | |
3767 | */ | |
3768 | void kfree(const void *objp) | |
3769 | { | |
343e0d7a | 3770 | struct kmem_cache *c; |
1da177e4 LT |
3771 | unsigned long flags; |
3772 | ||
2121db74 PE |
3773 | trace_kfree(_RET_IP_, objp); |
3774 | ||
6cb8f913 | 3775 | if (unlikely(ZERO_OR_NULL_PTR(objp))) |
1da177e4 LT |
3776 | return; |
3777 | local_irq_save(flags); | |
3778 | kfree_debugcheck(objp); | |
6ed5eb22 | 3779 | c = virt_to_cache(objp); |
f9b8404c | 3780 | debug_check_no_locks_freed(objp, obj_size(c)); |
3ac7fe5a | 3781 | debug_check_no_obj_freed(objp, obj_size(c)); |
873623df | 3782 | __cache_free(c, (void *)objp); |
1da177e4 LT |
3783 | local_irq_restore(flags); |
3784 | } | |
3785 | EXPORT_SYMBOL(kfree); | |
3786 | ||
343e0d7a | 3787 | unsigned int kmem_cache_size(struct kmem_cache *cachep) |
1da177e4 | 3788 | { |
3dafccf2 | 3789 | return obj_size(cachep); |
1da177e4 LT |
3790 | } |
3791 | EXPORT_SYMBOL(kmem_cache_size); | |
3792 | ||
343e0d7a | 3793 | const char *kmem_cache_name(struct kmem_cache *cachep) |
1944972d ACM |
3794 | { |
3795 | return cachep->name; | |
3796 | } | |
3797 | EXPORT_SYMBOL_GPL(kmem_cache_name); | |
3798 | ||
e498be7d | 3799 | /* |
183ff22b | 3800 | * This initializes kmem_list3 or resizes various caches for all nodes. |
e498be7d | 3801 | */ |
83b519e8 | 3802 | static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp) |
e498be7d CL |
3803 | { |
3804 | int node; | |
3805 | struct kmem_list3 *l3; | |
cafeb02e | 3806 | struct array_cache *new_shared; |
3395ee05 | 3807 | struct array_cache **new_alien = NULL; |
e498be7d | 3808 | |
9c09a95c | 3809 | for_each_online_node(node) { |
cafeb02e | 3810 | |
3395ee05 | 3811 | if (use_alien_caches) { |
83b519e8 | 3812 | new_alien = alloc_alien_cache(node, cachep->limit, gfp); |
3395ee05 PM |
3813 | if (!new_alien) |
3814 | goto fail; | |
3815 | } | |
cafeb02e | 3816 | |
63109846 ED |
3817 | new_shared = NULL; |
3818 | if (cachep->shared) { | |
3819 | new_shared = alloc_arraycache(node, | |
0718dc2a | 3820 | cachep->shared*cachep->batchcount, |
83b519e8 | 3821 | 0xbaadf00d, gfp); |
63109846 ED |
3822 | if (!new_shared) { |
3823 | free_alien_cache(new_alien); | |
3824 | goto fail; | |
3825 | } | |
0718dc2a | 3826 | } |
cafeb02e | 3827 | |
a737b3e2 AM |
3828 | l3 = cachep->nodelists[node]; |
3829 | if (l3) { | |
cafeb02e CL |
3830 | struct array_cache *shared = l3->shared; |
3831 | ||
e498be7d CL |
3832 | spin_lock_irq(&l3->list_lock); |
3833 | ||
cafeb02e | 3834 | if (shared) |
0718dc2a CL |
3835 | free_block(cachep, shared->entry, |
3836 | shared->avail, node); | |
e498be7d | 3837 | |
cafeb02e CL |
3838 | l3->shared = new_shared; |
3839 | if (!l3->alien) { | |
e498be7d CL |
3840 | l3->alien = new_alien; |
3841 | new_alien = NULL; | |
3842 | } | |
b28a02de | 3843 | l3->free_limit = (1 + nr_cpus_node(node)) * |
a737b3e2 | 3844 | cachep->batchcount + cachep->num; |
e498be7d | 3845 | spin_unlock_irq(&l3->list_lock); |
cafeb02e | 3846 | kfree(shared); |
e498be7d CL |
3847 | free_alien_cache(new_alien); |
3848 | continue; | |
3849 | } | |
83b519e8 | 3850 | l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node); |
0718dc2a CL |
3851 | if (!l3) { |
3852 | free_alien_cache(new_alien); | |
3853 | kfree(new_shared); | |
e498be7d | 3854 | goto fail; |
0718dc2a | 3855 | } |
e498be7d CL |
3856 | |
3857 | kmem_list3_init(l3); | |
3858 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | |
a737b3e2 | 3859 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; |
cafeb02e | 3860 | l3->shared = new_shared; |
e498be7d | 3861 | l3->alien = new_alien; |
b28a02de | 3862 | l3->free_limit = (1 + nr_cpus_node(node)) * |
a737b3e2 | 3863 | cachep->batchcount + cachep->num; |
e498be7d CL |
3864 | cachep->nodelists[node] = l3; |
3865 | } | |
cafeb02e | 3866 | return 0; |
0718dc2a | 3867 | |
a737b3e2 | 3868 | fail: |
0718dc2a CL |
3869 | if (!cachep->next.next) { |
3870 | /* Cache is not active yet. Roll back what we did */ | |
3871 | node--; | |
3872 | while (node >= 0) { | |
3873 | if (cachep->nodelists[node]) { | |
3874 | l3 = cachep->nodelists[node]; | |
3875 | ||
3876 | kfree(l3->shared); | |
3877 | free_alien_cache(l3->alien); | |
3878 | kfree(l3); | |
3879 | cachep->nodelists[node] = NULL; | |
3880 | } | |
3881 | node--; | |
3882 | } | |
3883 | } | |
cafeb02e | 3884 | return -ENOMEM; |
e498be7d CL |
3885 | } |
3886 | ||
1da177e4 | 3887 | struct ccupdate_struct { |
343e0d7a | 3888 | struct kmem_cache *cachep; |
1da177e4 LT |
3889 | struct array_cache *new[NR_CPUS]; |
3890 | }; | |
3891 | ||
3892 | static void do_ccupdate_local(void *info) | |
3893 | { | |
a737b3e2 | 3894 | struct ccupdate_struct *new = info; |
1da177e4 LT |
3895 | struct array_cache *old; |
3896 | ||
3897 | check_irq_off(); | |
9a2dba4b | 3898 | old = cpu_cache_get(new->cachep); |
e498be7d | 3899 | |
1da177e4 LT |
3900 | new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; |
3901 | new->new[smp_processor_id()] = old; | |
3902 | } | |
3903 | ||
b5d8ca7c | 3904 | /* Always called with the cache_chain_mutex held */ |
a737b3e2 | 3905 | static int do_tune_cpucache(struct kmem_cache *cachep, int limit, |
83b519e8 | 3906 | int batchcount, int shared, gfp_t gfp) |
1da177e4 | 3907 | { |
d2e7b7d0 | 3908 | struct ccupdate_struct *new; |
2ed3a4ef | 3909 | int i; |
1da177e4 | 3910 | |
83b519e8 | 3911 | new = kzalloc(sizeof(*new), gfp); |
d2e7b7d0 SS |
3912 | if (!new) |
3913 | return -ENOMEM; | |
3914 | ||
e498be7d | 3915 | for_each_online_cpu(i) { |
d2e7b7d0 | 3916 | new->new[i] = alloc_arraycache(cpu_to_node(i), limit, |
83b519e8 | 3917 | batchcount, gfp); |
d2e7b7d0 | 3918 | if (!new->new[i]) { |
b28a02de | 3919 | for (i--; i >= 0; i--) |
d2e7b7d0 SS |
3920 | kfree(new->new[i]); |
3921 | kfree(new); | |
e498be7d | 3922 | return -ENOMEM; |
1da177e4 LT |
3923 | } |
3924 | } | |
d2e7b7d0 | 3925 | new->cachep = cachep; |
1da177e4 | 3926 | |
15c8b6c1 | 3927 | on_each_cpu(do_ccupdate_local, (void *)new, 1); |
e498be7d | 3928 | |
1da177e4 | 3929 | check_irq_on(); |
1da177e4 LT |
3930 | cachep->batchcount = batchcount; |
3931 | cachep->limit = limit; | |
e498be7d | 3932 | cachep->shared = shared; |
1da177e4 | 3933 | |
e498be7d | 3934 | for_each_online_cpu(i) { |
d2e7b7d0 | 3935 | struct array_cache *ccold = new->new[i]; |
1da177e4 LT |
3936 | if (!ccold) |
3937 | continue; | |
e498be7d | 3938 | spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); |
ff69416e | 3939 | free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i)); |
e498be7d | 3940 | spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock); |
1da177e4 LT |
3941 | kfree(ccold); |
3942 | } | |
d2e7b7d0 | 3943 | kfree(new); |
83b519e8 | 3944 | return alloc_kmemlist(cachep, gfp); |
1da177e4 LT |
3945 | } |
3946 | ||
b5d8ca7c | 3947 | /* Called with cache_chain_mutex held always */ |
83b519e8 | 3948 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) |
1da177e4 LT |
3949 | { |
3950 | int err; | |
3951 | int limit, shared; | |
3952 | ||
a737b3e2 AM |
3953 | /* |
3954 | * The head array serves three purposes: | |
1da177e4 LT |
3955 | * - create a LIFO ordering, i.e. return objects that are cache-warm |
3956 | * - reduce the number of spinlock operations. | |
a737b3e2 | 3957 | * - reduce the number of linked list operations on the slab and |
1da177e4 LT |
3958 | * bufctl chains: array operations are cheaper. |
3959 | * The numbers are guessed, we should auto-tune as described by | |
3960 | * Bonwick. | |
3961 | */ | |
3dafccf2 | 3962 | if (cachep->buffer_size > 131072) |
1da177e4 | 3963 | limit = 1; |
3dafccf2 | 3964 | else if (cachep->buffer_size > PAGE_SIZE) |
1da177e4 | 3965 | limit = 8; |
3dafccf2 | 3966 | else if (cachep->buffer_size > 1024) |
1da177e4 | 3967 | limit = 24; |
3dafccf2 | 3968 | else if (cachep->buffer_size > 256) |
1da177e4 LT |
3969 | limit = 54; |
3970 | else | |
3971 | limit = 120; | |
3972 | ||
a737b3e2 AM |
3973 | /* |
3974 | * CPU bound tasks (e.g. network routing) can exhibit cpu bound | |
1da177e4 LT |
3975 | * allocation behaviour: Most allocs on one cpu, most free operations |
3976 | * on another cpu. For these cases, an efficient object passing between | |
3977 | * cpus is necessary. This is provided by a shared array. The array | |
3978 | * replaces Bonwick's magazine layer. | |
3979 | * On uniprocessor, it's functionally equivalent (but less efficient) | |
3980 | * to a larger limit. Thus disabled by default. | |
3981 | */ | |
3982 | shared = 0; | |
364fbb29 | 3983 | if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1) |
1da177e4 | 3984 | shared = 8; |
1da177e4 LT |
3985 | |
3986 | #if DEBUG | |
a737b3e2 AM |
3987 | /* |
3988 | * With debugging enabled, large batchcount lead to excessively long | |
3989 | * periods with disabled local interrupts. Limit the batchcount | |
1da177e4 LT |
3990 | */ |
3991 | if (limit > 32) | |
3992 | limit = 32; | |
3993 | #endif | |
83b519e8 | 3994 | err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp); |
1da177e4 LT |
3995 | if (err) |
3996 | printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", | |
b28a02de | 3997 | cachep->name, -err); |
2ed3a4ef | 3998 | return err; |
1da177e4 LT |
3999 | } |
4000 | ||
1b55253a CL |
4001 | /* |
4002 | * Drain an array if it contains any elements taking the l3 lock only if | |
b18e7e65 CL |
4003 | * necessary. Note that the l3 listlock also protects the array_cache |
4004 | * if drain_array() is used on the shared array. | |
1b55253a CL |
4005 | */ |
4006 | void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, | |
4007 | struct array_cache *ac, int force, int node) | |
1da177e4 LT |
4008 | { |
4009 | int tofree; | |
4010 | ||
1b55253a CL |
4011 | if (!ac || !ac->avail) |
4012 | return; | |
1da177e4 LT |
4013 | if (ac->touched && !force) { |
4014 | ac->touched = 0; | |
b18e7e65 | 4015 | } else { |
1b55253a | 4016 | spin_lock_irq(&l3->list_lock); |
b18e7e65 CL |
4017 | if (ac->avail) { |
4018 | tofree = force ? ac->avail : (ac->limit + 4) / 5; | |
4019 | if (tofree > ac->avail) | |
4020 | tofree = (ac->avail + 1) / 2; | |
4021 | free_block(cachep, ac->entry, tofree, node); | |
4022 | ac->avail -= tofree; | |
4023 | memmove(ac->entry, &(ac->entry[tofree]), | |
4024 | sizeof(void *) * ac->avail); | |
4025 | } | |
1b55253a | 4026 | spin_unlock_irq(&l3->list_lock); |
1da177e4 LT |
4027 | } |
4028 | } | |
4029 | ||
4030 | /** | |
4031 | * cache_reap - Reclaim memory from caches. | |
05fb6bf0 | 4032 | * @w: work descriptor |
1da177e4 LT |
4033 | * |
4034 | * Called from workqueue/eventd every few seconds. | |
4035 | * Purpose: | |
4036 | * - clear the per-cpu caches for this CPU. | |
4037 | * - return freeable pages to the main free memory pool. | |
4038 | * | |
a737b3e2 AM |
4039 | * If we cannot acquire the cache chain mutex then just give up - we'll try |
4040 | * again on the next iteration. | |
1da177e4 | 4041 | */ |
7c5cae36 | 4042 | static void cache_reap(struct work_struct *w) |
1da177e4 | 4043 | { |
7a7c381d | 4044 | struct kmem_cache *searchp; |
e498be7d | 4045 | struct kmem_list3 *l3; |
aab2207c | 4046 | int node = numa_node_id(); |
bf6aede7 | 4047 | struct delayed_work *work = to_delayed_work(w); |
1da177e4 | 4048 | |
7c5cae36 | 4049 | if (!mutex_trylock(&cache_chain_mutex)) |
1da177e4 | 4050 | /* Give up. Setup the next iteration. */ |
7c5cae36 | 4051 | goto out; |
1da177e4 | 4052 | |
7a7c381d | 4053 | list_for_each_entry(searchp, &cache_chain, next) { |
1da177e4 LT |
4054 | check_irq_on(); |
4055 | ||
35386e3b CL |
4056 | /* |
4057 | * We only take the l3 lock if absolutely necessary and we | |
4058 | * have established with reasonable certainty that | |
4059 | * we can do some work if the lock was obtained. | |
4060 | */ | |
aab2207c | 4061 | l3 = searchp->nodelists[node]; |
35386e3b | 4062 | |
8fce4d8e | 4063 | reap_alien(searchp, l3); |
1da177e4 | 4064 | |
aab2207c | 4065 | drain_array(searchp, l3, cpu_cache_get(searchp), 0, node); |
1da177e4 | 4066 | |
35386e3b CL |
4067 | /* |
4068 | * These are racy checks but it does not matter | |
4069 | * if we skip one check or scan twice. | |
4070 | */ | |
e498be7d | 4071 | if (time_after(l3->next_reap, jiffies)) |
35386e3b | 4072 | goto next; |
1da177e4 | 4073 | |
e498be7d | 4074 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3; |
1da177e4 | 4075 | |
aab2207c | 4076 | drain_array(searchp, l3, l3->shared, 0, node); |
1da177e4 | 4077 | |
ed11d9eb | 4078 | if (l3->free_touched) |
e498be7d | 4079 | l3->free_touched = 0; |
ed11d9eb CL |
4080 | else { |
4081 | int freed; | |
1da177e4 | 4082 | |
ed11d9eb CL |
4083 | freed = drain_freelist(searchp, l3, (l3->free_limit + |
4084 | 5 * searchp->num - 1) / (5 * searchp->num)); | |
4085 | STATS_ADD_REAPED(searchp, freed); | |
4086 | } | |
35386e3b | 4087 | next: |
1da177e4 LT |
4088 | cond_resched(); |
4089 | } | |
4090 | check_irq_on(); | |
fc0abb14 | 4091 | mutex_unlock(&cache_chain_mutex); |
8fce4d8e | 4092 | next_reap_node(); |
7c5cae36 | 4093 | out: |
a737b3e2 | 4094 | /* Set up the next iteration */ |
7c5cae36 | 4095 | schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC)); |
1da177e4 LT |
4096 | } |
4097 | ||
158a9624 | 4098 | #ifdef CONFIG_SLABINFO |
1da177e4 | 4099 | |
85289f98 | 4100 | static void print_slabinfo_header(struct seq_file *m) |
1da177e4 | 4101 | { |
85289f98 PE |
4102 | /* |
4103 | * Output format version, so at least we can change it | |
4104 | * without _too_ many complaints. | |
4105 | */ | |
1da177e4 | 4106 | #if STATS |
85289f98 | 4107 | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); |
1da177e4 | 4108 | #else |
85289f98 | 4109 | seq_puts(m, "slabinfo - version: 2.1\n"); |
1da177e4 | 4110 | #endif |
85289f98 PE |
4111 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> " |
4112 | "<objperslab> <pagesperslab>"); | |
4113 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | |
4114 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
1da177e4 | 4115 | #if STATS |
85289f98 | 4116 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " |
fb7faf33 | 4117 | "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); |
85289f98 | 4118 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); |
1da177e4 | 4119 | #endif |
85289f98 PE |
4120 | seq_putc(m, '\n'); |
4121 | } | |
4122 | ||
4123 | static void *s_start(struct seq_file *m, loff_t *pos) | |
4124 | { | |
4125 | loff_t n = *pos; | |
85289f98 | 4126 | |
fc0abb14 | 4127 | mutex_lock(&cache_chain_mutex); |
85289f98 PE |
4128 | if (!n) |
4129 | print_slabinfo_header(m); | |
b92151ba PE |
4130 | |
4131 | return seq_list_start(&cache_chain, *pos); | |
1da177e4 LT |
4132 | } |
4133 | ||
4134 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
4135 | { | |
b92151ba | 4136 | return seq_list_next(p, &cache_chain, pos); |
1da177e4 LT |
4137 | } |
4138 | ||
4139 | static void s_stop(struct seq_file *m, void *p) | |
4140 | { | |
fc0abb14 | 4141 | mutex_unlock(&cache_chain_mutex); |
1da177e4 LT |
4142 | } |
4143 | ||
4144 | static int s_show(struct seq_file *m, void *p) | |
4145 | { | |
b92151ba | 4146 | struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); |
b28a02de PE |
4147 | struct slab *slabp; |
4148 | unsigned long active_objs; | |
4149 | unsigned long num_objs; | |
4150 | unsigned long active_slabs = 0; | |
4151 | unsigned long num_slabs, free_objects = 0, shared_avail = 0; | |
e498be7d | 4152 | const char *name; |
1da177e4 | 4153 | char *error = NULL; |
e498be7d CL |
4154 | int node; |
4155 | struct kmem_list3 *l3; | |
1da177e4 | 4156 | |
1da177e4 LT |
4157 | active_objs = 0; |
4158 | num_slabs = 0; | |
e498be7d CL |
4159 | for_each_online_node(node) { |
4160 | l3 = cachep->nodelists[node]; | |
4161 | if (!l3) | |
4162 | continue; | |
4163 | ||
ca3b9b91 RT |
4164 | check_irq_on(); |
4165 | spin_lock_irq(&l3->list_lock); | |
e498be7d | 4166 | |
7a7c381d | 4167 | list_for_each_entry(slabp, &l3->slabs_full, list) { |
e498be7d CL |
4168 | if (slabp->inuse != cachep->num && !error) |
4169 | error = "slabs_full accounting error"; | |
4170 | active_objs += cachep->num; | |
4171 | active_slabs++; | |
4172 | } | |
7a7c381d | 4173 | list_for_each_entry(slabp, &l3->slabs_partial, list) { |
e498be7d CL |
4174 | if (slabp->inuse == cachep->num && !error) |
4175 | error = "slabs_partial inuse accounting error"; | |
4176 | if (!slabp->inuse && !error) | |
4177 | error = "slabs_partial/inuse accounting error"; | |
4178 | active_objs += slabp->inuse; | |
4179 | active_slabs++; | |
4180 | } | |
7a7c381d | 4181 | list_for_each_entry(slabp, &l3->slabs_free, list) { |
e498be7d CL |
4182 | if (slabp->inuse && !error) |
4183 | error = "slabs_free/inuse accounting error"; | |
4184 | num_slabs++; | |
4185 | } | |
4186 | free_objects += l3->free_objects; | |
4484ebf1 RT |
4187 | if (l3->shared) |
4188 | shared_avail += l3->shared->avail; | |
e498be7d | 4189 | |
ca3b9b91 | 4190 | spin_unlock_irq(&l3->list_lock); |
1da177e4 | 4191 | } |
b28a02de PE |
4192 | num_slabs += active_slabs; |
4193 | num_objs = num_slabs * cachep->num; | |
e498be7d | 4194 | if (num_objs - active_objs != free_objects && !error) |
1da177e4 LT |
4195 | error = "free_objects accounting error"; |
4196 | ||
b28a02de | 4197 | name = cachep->name; |
1da177e4 LT |
4198 | if (error) |
4199 | printk(KERN_ERR "slab: cache %s error: %s\n", name, error); | |
4200 | ||
4201 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", | |
3dafccf2 | 4202 | name, active_objs, num_objs, cachep->buffer_size, |
b28a02de | 4203 | cachep->num, (1 << cachep->gfporder)); |
1da177e4 | 4204 | seq_printf(m, " : tunables %4u %4u %4u", |
b28a02de | 4205 | cachep->limit, cachep->batchcount, cachep->shared); |
e498be7d | 4206 | seq_printf(m, " : slabdata %6lu %6lu %6lu", |
b28a02de | 4207 | active_slabs, num_slabs, shared_avail); |
1da177e4 | 4208 | #if STATS |
b28a02de | 4209 | { /* list3 stats */ |
1da177e4 LT |
4210 | unsigned long high = cachep->high_mark; |
4211 | unsigned long allocs = cachep->num_allocations; | |
4212 | unsigned long grown = cachep->grown; | |
4213 | unsigned long reaped = cachep->reaped; | |
4214 | unsigned long errors = cachep->errors; | |
4215 | unsigned long max_freeable = cachep->max_freeable; | |
1da177e4 | 4216 | unsigned long node_allocs = cachep->node_allocs; |
e498be7d | 4217 | unsigned long node_frees = cachep->node_frees; |
fb7faf33 | 4218 | unsigned long overflows = cachep->node_overflow; |
1da177e4 | 4219 | |
e498be7d | 4220 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \ |
fb7faf33 | 4221 | %4lu %4lu %4lu %4lu %4lu", allocs, high, grown, |
a737b3e2 | 4222 | reaped, errors, max_freeable, node_allocs, |
fb7faf33 | 4223 | node_frees, overflows); |
1da177e4 LT |
4224 | } |
4225 | /* cpu stats */ | |
4226 | { | |
4227 | unsigned long allochit = atomic_read(&cachep->allochit); | |
4228 | unsigned long allocmiss = atomic_read(&cachep->allocmiss); | |
4229 | unsigned long freehit = atomic_read(&cachep->freehit); | |
4230 | unsigned long freemiss = atomic_read(&cachep->freemiss); | |
4231 | ||
4232 | seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", | |
b28a02de | 4233 | allochit, allocmiss, freehit, freemiss); |
1da177e4 LT |
4234 | } |
4235 | #endif | |
4236 | seq_putc(m, '\n'); | |
1da177e4 LT |
4237 | return 0; |
4238 | } | |
4239 | ||
4240 | /* | |
4241 | * slabinfo_op - iterator that generates /proc/slabinfo | |
4242 | * | |
4243 | * Output layout: | |
4244 | * cache-name | |
4245 | * num-active-objs | |
4246 | * total-objs | |
4247 | * object size | |
4248 | * num-active-slabs | |
4249 | * total-slabs | |
4250 | * num-pages-per-slab | |
4251 | * + further values on SMP and with statistics enabled | |
4252 | */ | |
4253 | ||
7b3c3a50 | 4254 | static const struct seq_operations slabinfo_op = { |
b28a02de PE |
4255 | .start = s_start, |
4256 | .next = s_next, | |
4257 | .stop = s_stop, | |
4258 | .show = s_show, | |
1da177e4 LT |
4259 | }; |
4260 | ||
4261 | #define MAX_SLABINFO_WRITE 128 | |
4262 | /** | |
4263 | * slabinfo_write - Tuning for the slab allocator | |
4264 | * @file: unused | |
4265 | * @buffer: user buffer | |
4266 | * @count: data length | |
4267 | * @ppos: unused | |
4268 | */ | |
b28a02de PE |
4269 | ssize_t slabinfo_write(struct file *file, const char __user * buffer, |
4270 | size_t count, loff_t *ppos) | |
1da177e4 | 4271 | { |
b28a02de | 4272 | char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; |
1da177e4 | 4273 | int limit, batchcount, shared, res; |
7a7c381d | 4274 | struct kmem_cache *cachep; |
b28a02de | 4275 | |
1da177e4 LT |
4276 | if (count > MAX_SLABINFO_WRITE) |
4277 | return -EINVAL; | |
4278 | if (copy_from_user(&kbuf, buffer, count)) | |
4279 | return -EFAULT; | |
b28a02de | 4280 | kbuf[MAX_SLABINFO_WRITE] = '\0'; |
1da177e4 LT |
4281 | |
4282 | tmp = strchr(kbuf, ' '); | |
4283 | if (!tmp) | |
4284 | return -EINVAL; | |
4285 | *tmp = '\0'; | |
4286 | tmp++; | |
4287 | if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) | |
4288 | return -EINVAL; | |
4289 | ||
4290 | /* Find the cache in the chain of caches. */ | |
fc0abb14 | 4291 | mutex_lock(&cache_chain_mutex); |
1da177e4 | 4292 | res = -EINVAL; |
7a7c381d | 4293 | list_for_each_entry(cachep, &cache_chain, next) { |
1da177e4 | 4294 | if (!strcmp(cachep->name, kbuf)) { |
a737b3e2 AM |
4295 | if (limit < 1 || batchcount < 1 || |
4296 | batchcount > limit || shared < 0) { | |
e498be7d | 4297 | res = 0; |
1da177e4 | 4298 | } else { |
e498be7d | 4299 | res = do_tune_cpucache(cachep, limit, |
83b519e8 PE |
4300 | batchcount, shared, |
4301 | GFP_KERNEL); | |
1da177e4 LT |
4302 | } |
4303 | break; | |
4304 | } | |
4305 | } | |
fc0abb14 | 4306 | mutex_unlock(&cache_chain_mutex); |
1da177e4 LT |
4307 | if (res >= 0) |
4308 | res = count; | |
4309 | return res; | |
4310 | } | |
871751e2 | 4311 | |
7b3c3a50 AD |
4312 | static int slabinfo_open(struct inode *inode, struct file *file) |
4313 | { | |
4314 | return seq_open(file, &slabinfo_op); | |
4315 | } | |
4316 | ||
4317 | static const struct file_operations proc_slabinfo_operations = { | |
4318 | .open = slabinfo_open, | |
4319 | .read = seq_read, | |
4320 | .write = slabinfo_write, | |
4321 | .llseek = seq_lseek, | |
4322 | .release = seq_release, | |
4323 | }; | |
4324 | ||
871751e2 AV |
4325 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
4326 | ||
4327 | static void *leaks_start(struct seq_file *m, loff_t *pos) | |
4328 | { | |
871751e2 | 4329 | mutex_lock(&cache_chain_mutex); |
b92151ba | 4330 | return seq_list_start(&cache_chain, *pos); |
871751e2 AV |
4331 | } |
4332 | ||
4333 | static inline int add_caller(unsigned long *n, unsigned long v) | |
4334 | { | |
4335 | unsigned long *p; | |
4336 | int l; | |
4337 | if (!v) | |
4338 | return 1; | |
4339 | l = n[1]; | |
4340 | p = n + 2; | |
4341 | while (l) { | |
4342 | int i = l/2; | |
4343 | unsigned long *q = p + 2 * i; | |
4344 | if (*q == v) { | |
4345 | q[1]++; | |
4346 | return 1; | |
4347 | } | |
4348 | if (*q > v) { | |
4349 | l = i; | |
4350 | } else { | |
4351 | p = q + 2; | |
4352 | l -= i + 1; | |
4353 | } | |
4354 | } | |
4355 | if (++n[1] == n[0]) | |
4356 | return 0; | |
4357 | memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); | |
4358 | p[0] = v; | |
4359 | p[1] = 1; | |
4360 | return 1; | |
4361 | } | |
4362 | ||
4363 | static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s) | |
4364 | { | |
4365 | void *p; | |
4366 | int i; | |
4367 | if (n[0] == n[1]) | |
4368 | return; | |
4369 | for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) { | |
4370 | if (slab_bufctl(s)[i] != BUFCTL_ACTIVE) | |
4371 | continue; | |
4372 | if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) | |
4373 | return; | |
4374 | } | |
4375 | } | |
4376 | ||
4377 | static void show_symbol(struct seq_file *m, unsigned long address) | |
4378 | { | |
4379 | #ifdef CONFIG_KALLSYMS | |
871751e2 | 4380 | unsigned long offset, size; |
9281acea | 4381 | char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; |
871751e2 | 4382 | |
a5c43dae | 4383 | if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { |
871751e2 | 4384 | seq_printf(m, "%s+%#lx/%#lx", name, offset, size); |
a5c43dae | 4385 | if (modname[0]) |
871751e2 AV |
4386 | seq_printf(m, " [%s]", modname); |
4387 | return; | |
4388 | } | |
4389 | #endif | |
4390 | seq_printf(m, "%p", (void *)address); | |
4391 | } | |
4392 | ||
4393 | static int leaks_show(struct seq_file *m, void *p) | |
4394 | { | |
b92151ba | 4395 | struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next); |
871751e2 AV |
4396 | struct slab *slabp; |
4397 | struct kmem_list3 *l3; | |
4398 | const char *name; | |
4399 | unsigned long *n = m->private; | |
4400 | int node; | |
4401 | int i; | |
4402 | ||
4403 | if (!(cachep->flags & SLAB_STORE_USER)) | |
4404 | return 0; | |
4405 | if (!(cachep->flags & SLAB_RED_ZONE)) | |
4406 | return 0; | |
4407 | ||
4408 | /* OK, we can do it */ | |
4409 | ||
4410 | n[1] = 0; | |
4411 | ||
4412 | for_each_online_node(node) { | |
4413 | l3 = cachep->nodelists[node]; | |
4414 | if (!l3) | |
4415 | continue; | |
4416 | ||
4417 | check_irq_on(); | |
4418 | spin_lock_irq(&l3->list_lock); | |
4419 | ||
7a7c381d | 4420 | list_for_each_entry(slabp, &l3->slabs_full, list) |
871751e2 | 4421 | handle_slab(n, cachep, slabp); |
7a7c381d | 4422 | list_for_each_entry(slabp, &l3->slabs_partial, list) |
871751e2 | 4423 | handle_slab(n, cachep, slabp); |
871751e2 AV |
4424 | spin_unlock_irq(&l3->list_lock); |
4425 | } | |
4426 | name = cachep->name; | |
4427 | if (n[0] == n[1]) { | |
4428 | /* Increase the buffer size */ | |
4429 | mutex_unlock(&cache_chain_mutex); | |
4430 | m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL); | |
4431 | if (!m->private) { | |
4432 | /* Too bad, we are really out */ | |
4433 | m->private = n; | |
4434 | mutex_lock(&cache_chain_mutex); | |
4435 | return -ENOMEM; | |
4436 | } | |
4437 | *(unsigned long *)m->private = n[0] * 2; | |
4438 | kfree(n); | |
4439 | mutex_lock(&cache_chain_mutex); | |
4440 | /* Now make sure this entry will be retried */ | |
4441 | m->count = m->size; | |
4442 | return 0; | |
4443 | } | |
4444 | for (i = 0; i < n[1]; i++) { | |
4445 | seq_printf(m, "%s: %lu ", name, n[2*i+3]); | |
4446 | show_symbol(m, n[2*i+2]); | |
4447 | seq_putc(m, '\n'); | |
4448 | } | |
d2e7b7d0 | 4449 | |
871751e2 AV |
4450 | return 0; |
4451 | } | |
4452 | ||
a0ec95a8 | 4453 | static const struct seq_operations slabstats_op = { |
871751e2 AV |
4454 | .start = leaks_start, |
4455 | .next = s_next, | |
4456 | .stop = s_stop, | |
4457 | .show = leaks_show, | |
4458 | }; | |
a0ec95a8 AD |
4459 | |
4460 | static int slabstats_open(struct inode *inode, struct file *file) | |
4461 | { | |
4462 | unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL); | |
4463 | int ret = -ENOMEM; | |
4464 | if (n) { | |
4465 | ret = seq_open(file, &slabstats_op); | |
4466 | if (!ret) { | |
4467 | struct seq_file *m = file->private_data; | |
4468 | *n = PAGE_SIZE / (2 * sizeof(unsigned long)); | |
4469 | m->private = n; | |
4470 | n = NULL; | |
4471 | } | |
4472 | kfree(n); | |
4473 | } | |
4474 | return ret; | |
4475 | } | |
4476 | ||
4477 | static const struct file_operations proc_slabstats_operations = { | |
4478 | .open = slabstats_open, | |
4479 | .read = seq_read, | |
4480 | .llseek = seq_lseek, | |
4481 | .release = seq_release_private, | |
4482 | }; | |
4483 | #endif | |
4484 | ||
4485 | static int __init slab_proc_init(void) | |
4486 | { | |
7b3c3a50 | 4487 | proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations); |
a0ec95a8 AD |
4488 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
4489 | proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); | |
871751e2 | 4490 | #endif |
a0ec95a8 AD |
4491 | return 0; |
4492 | } | |
4493 | module_init(slab_proc_init); | |
1da177e4 LT |
4494 | #endif |
4495 | ||
00e145b6 MS |
4496 | /** |
4497 | * ksize - get the actual amount of memory allocated for a given object | |
4498 | * @objp: Pointer to the object | |
4499 | * | |
4500 | * kmalloc may internally round up allocations and return more memory | |
4501 | * than requested. ksize() can be used to determine the actual amount of | |
4502 | * memory allocated. The caller may use this additional memory, even though | |
4503 | * a smaller amount of memory was initially specified with the kmalloc call. | |
4504 | * The caller must guarantee that objp points to a valid object previously | |
4505 | * allocated with either kmalloc() or kmem_cache_alloc(). The object | |
4506 | * must not be freed during the duration of the call. | |
4507 | */ | |
fd76bab2 | 4508 | size_t ksize(const void *objp) |
1da177e4 | 4509 | { |
ef8b4520 CL |
4510 | BUG_ON(!objp); |
4511 | if (unlikely(objp == ZERO_SIZE_PTR)) | |
00e145b6 | 4512 | return 0; |
1da177e4 | 4513 | |
6ed5eb22 | 4514 | return obj_size(virt_to_cache(objp)); |
1da177e4 | 4515 | } |
b1aabecd | 4516 | EXPORT_SYMBOL(ksize); |