]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Fast Userspace Mutexes (which I call "Futexes!"). | |
3 | * (C) Rusty Russell, IBM 2002 | |
4 | * | |
5 | * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar | |
6 | * (C) Copyright 2003 Red Hat Inc, All Rights Reserved | |
7 | * | |
8 | * Removed page pinning, fix privately mapped COW pages and other cleanups | |
9 | * (C) Copyright 2003, 2004 Jamie Lokier | |
10 | * | |
0771dfef IM |
11 | * Robust futex support started by Ingo Molnar |
12 | * (C) Copyright 2006 Red Hat Inc, All Rights Reserved | |
13 | * Thanks to Thomas Gleixner for suggestions, analysis and fixes. | |
14 | * | |
c87e2837 IM |
15 | * PI-futex support started by Ingo Molnar and Thomas Gleixner |
16 | * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <[email protected]> | |
17 | * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <[email protected]> | |
18 | * | |
34f01cc1 ED |
19 | * PRIVATE futexes by Eric Dumazet |
20 | * Copyright (C) 2007 Eric Dumazet <[email protected]> | |
21 | * | |
52400ba9 DH |
22 | * Requeue-PI support by Darren Hart <[email protected]> |
23 | * Copyright (C) IBM Corporation, 2009 | |
24 | * Thanks to Thomas Gleixner for conceptual design and careful reviews. | |
25 | * | |
1da177e4 LT |
26 | * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly |
27 | * enough at me, Linus for the original (flawed) idea, Matthew | |
28 | * Kirkwood for proof-of-concept implementation. | |
29 | * | |
30 | * "The futexes are also cursed." | |
31 | * "But they come in a choice of three flavours!" | |
32 | * | |
33 | * This program is free software; you can redistribute it and/or modify | |
34 | * it under the terms of the GNU General Public License as published by | |
35 | * the Free Software Foundation; either version 2 of the License, or | |
36 | * (at your option) any later version. | |
37 | * | |
38 | * This program is distributed in the hope that it will be useful, | |
39 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
40 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
41 | * GNU General Public License for more details. | |
42 | * | |
43 | * You should have received a copy of the GNU General Public License | |
44 | * along with this program; if not, write to the Free Software | |
45 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
46 | */ | |
47 | #include <linux/slab.h> | |
48 | #include <linux/poll.h> | |
49 | #include <linux/fs.h> | |
50 | #include <linux/file.h> | |
51 | #include <linux/jhash.h> | |
52 | #include <linux/init.h> | |
53 | #include <linux/futex.h> | |
54 | #include <linux/mount.h> | |
55 | #include <linux/pagemap.h> | |
56 | #include <linux/syscalls.h> | |
7ed20e1a | 57 | #include <linux/signal.h> |
9984de1a | 58 | #include <linux/export.h> |
fd5eea42 | 59 | #include <linux/magic.h> |
b488893a PE |
60 | #include <linux/pid.h> |
61 | #include <linux/nsproxy.h> | |
bdbb776f | 62 | #include <linux/ptrace.h> |
8bd75c77 | 63 | #include <linux/sched/rt.h> |
b488893a | 64 | |
4732efbe | 65 | #include <asm/futex.h> |
1da177e4 | 66 | |
c87e2837 IM |
67 | #include "rtmutex_common.h" |
68 | ||
a0c1e907 TG |
69 | int __read_mostly futex_cmpxchg_enabled; |
70 | ||
1da177e4 LT |
71 | #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8) |
72 | ||
b41277dc DH |
73 | /* |
74 | * Futex flags used to encode options to functions and preserve them across | |
75 | * restarts. | |
76 | */ | |
77 | #define FLAGS_SHARED 0x01 | |
78 | #define FLAGS_CLOCKRT 0x02 | |
79 | #define FLAGS_HAS_TIMEOUT 0x04 | |
80 | ||
c87e2837 IM |
81 | /* |
82 | * Priority Inheritance state: | |
83 | */ | |
84 | struct futex_pi_state { | |
85 | /* | |
86 | * list of 'owned' pi_state instances - these have to be | |
87 | * cleaned up in do_exit() if the task exits prematurely: | |
88 | */ | |
89 | struct list_head list; | |
90 | ||
91 | /* | |
92 | * The PI object: | |
93 | */ | |
94 | struct rt_mutex pi_mutex; | |
95 | ||
96 | struct task_struct *owner; | |
97 | atomic_t refcount; | |
98 | ||
99 | union futex_key key; | |
100 | }; | |
101 | ||
d8d88fbb DH |
102 | /** |
103 | * struct futex_q - The hashed futex queue entry, one per waiting task | |
fb62db2b | 104 | * @list: priority-sorted list of tasks waiting on this futex |
d8d88fbb DH |
105 | * @task: the task waiting on the futex |
106 | * @lock_ptr: the hash bucket lock | |
107 | * @key: the key the futex is hashed on | |
108 | * @pi_state: optional priority inheritance state | |
109 | * @rt_waiter: rt_waiter storage for use with requeue_pi | |
110 | * @requeue_pi_key: the requeue_pi target futex key | |
111 | * @bitset: bitset for the optional bitmasked wakeup | |
112 | * | |
113 | * We use this hashed waitqueue, instead of a normal wait_queue_t, so | |
1da177e4 LT |
114 | * we can wake only the relevant ones (hashed queues may be shared). |
115 | * | |
116 | * A futex_q has a woken state, just like tasks have TASK_RUNNING. | |
ec92d082 | 117 | * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. |
fb62db2b | 118 | * The order of wakeup is always to make the first condition true, then |
d8d88fbb DH |
119 | * the second. |
120 | * | |
121 | * PI futexes are typically woken before they are removed from the hash list via | |
122 | * the rt_mutex code. See unqueue_me_pi(). | |
1da177e4 LT |
123 | */ |
124 | struct futex_q { | |
ec92d082 | 125 | struct plist_node list; |
1da177e4 | 126 | |
d8d88fbb | 127 | struct task_struct *task; |
1da177e4 | 128 | spinlock_t *lock_ptr; |
1da177e4 | 129 | union futex_key key; |
c87e2837 | 130 | struct futex_pi_state *pi_state; |
52400ba9 | 131 | struct rt_mutex_waiter *rt_waiter; |
84bc4af5 | 132 | union futex_key *requeue_pi_key; |
cd689985 | 133 | u32 bitset; |
1da177e4 LT |
134 | }; |
135 | ||
5bdb05f9 DH |
136 | static const struct futex_q futex_q_init = { |
137 | /* list gets initialized in queue_me()*/ | |
138 | .key = FUTEX_KEY_INIT, | |
139 | .bitset = FUTEX_BITSET_MATCH_ANY | |
140 | }; | |
141 | ||
1da177e4 | 142 | /* |
b2d0994b DH |
143 | * Hash buckets are shared by all the futex_keys that hash to the same |
144 | * location. Each key may have multiple futex_q structures, one for each task | |
145 | * waiting on a futex. | |
1da177e4 LT |
146 | */ |
147 | struct futex_hash_bucket { | |
ec92d082 PP |
148 | spinlock_t lock; |
149 | struct plist_head chain; | |
1da177e4 LT |
150 | }; |
151 | ||
152 | static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS]; | |
153 | ||
1da177e4 LT |
154 | /* |
155 | * We hash on the keys returned from get_futex_key (see below). | |
156 | */ | |
157 | static struct futex_hash_bucket *hash_futex(union futex_key *key) | |
158 | { | |
159 | u32 hash = jhash2((u32*)&key->both.word, | |
160 | (sizeof(key->both.word)+sizeof(key->both.ptr))/4, | |
161 | key->both.offset); | |
162 | return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)]; | |
163 | } | |
164 | ||
165 | /* | |
166 | * Return 1 if two futex_keys are equal, 0 otherwise. | |
167 | */ | |
168 | static inline int match_futex(union futex_key *key1, union futex_key *key2) | |
169 | { | |
2bc87203 DH |
170 | return (key1 && key2 |
171 | && key1->both.word == key2->both.word | |
1da177e4 LT |
172 | && key1->both.ptr == key2->both.ptr |
173 | && key1->both.offset == key2->both.offset); | |
174 | } | |
175 | ||
38d47c1b PZ |
176 | /* |
177 | * Take a reference to the resource addressed by a key. | |
178 | * Can be called while holding spinlocks. | |
179 | * | |
180 | */ | |
181 | static void get_futex_key_refs(union futex_key *key) | |
182 | { | |
183 | if (!key->both.ptr) | |
184 | return; | |
185 | ||
186 | switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { | |
187 | case FUT_OFF_INODE: | |
7de9c6ee | 188 | ihold(key->shared.inode); |
38d47c1b PZ |
189 | break; |
190 | case FUT_OFF_MMSHARED: | |
191 | atomic_inc(&key->private.mm->mm_count); | |
192 | break; | |
193 | } | |
194 | } | |
195 | ||
196 | /* | |
197 | * Drop a reference to the resource addressed by a key. | |
198 | * The hash bucket spinlock must not be held. | |
199 | */ | |
200 | static void drop_futex_key_refs(union futex_key *key) | |
201 | { | |
90621c40 DH |
202 | if (!key->both.ptr) { |
203 | /* If we're here then we tried to put a key we failed to get */ | |
204 | WARN_ON_ONCE(1); | |
38d47c1b | 205 | return; |
90621c40 | 206 | } |
38d47c1b PZ |
207 | |
208 | switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { | |
209 | case FUT_OFF_INODE: | |
210 | iput(key->shared.inode); | |
211 | break; | |
212 | case FUT_OFF_MMSHARED: | |
213 | mmdrop(key->private.mm); | |
214 | break; | |
215 | } | |
216 | } | |
217 | ||
34f01cc1 | 218 | /** |
d96ee56c DH |
219 | * get_futex_key() - Get parameters which are the keys for a futex |
220 | * @uaddr: virtual address of the futex | |
221 | * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED | |
222 | * @key: address where result is stored. | |
9ea71503 SB |
223 | * @rw: mapping needs to be read/write (values: VERIFY_READ, |
224 | * VERIFY_WRITE) | |
34f01cc1 | 225 | * |
6c23cbbd RD |
226 | * Return: a negative error code or 0 |
227 | * | |
34f01cc1 | 228 | * The key words are stored in *key on success. |
1da177e4 | 229 | * |
6131ffaa | 230 | * For shared mappings, it's (page->index, file_inode(vma->vm_file), |
1da177e4 LT |
231 | * offset_within_page). For private mappings, it's (uaddr, current->mm). |
232 | * We can usually work out the index without swapping in the page. | |
233 | * | |
b2d0994b | 234 | * lock_page() might sleep, the caller should not hold a spinlock. |
1da177e4 | 235 | */ |
64d1304a | 236 | static int |
9ea71503 | 237 | get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw) |
1da177e4 | 238 | { |
e2970f2f | 239 | unsigned long address = (unsigned long)uaddr; |
1da177e4 | 240 | struct mm_struct *mm = current->mm; |
a5b338f2 | 241 | struct page *page, *page_head; |
9ea71503 | 242 | int err, ro = 0; |
1da177e4 LT |
243 | |
244 | /* | |
245 | * The futex address must be "naturally" aligned. | |
246 | */ | |
e2970f2f | 247 | key->both.offset = address % PAGE_SIZE; |
34f01cc1 | 248 | if (unlikely((address % sizeof(u32)) != 0)) |
1da177e4 | 249 | return -EINVAL; |
e2970f2f | 250 | address -= key->both.offset; |
1da177e4 | 251 | |
34f01cc1 ED |
252 | /* |
253 | * PROCESS_PRIVATE futexes are fast. | |
254 | * As the mm cannot disappear under us and the 'key' only needs | |
255 | * virtual address, we dont even have to find the underlying vma. | |
256 | * Note : We do have to check 'uaddr' is a valid user address, | |
257 | * but access_ok() should be faster than find_vma() | |
258 | */ | |
259 | if (!fshared) { | |
7485d0d3 | 260 | if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))) |
34f01cc1 ED |
261 | return -EFAULT; |
262 | key->private.mm = mm; | |
263 | key->private.address = address; | |
42569c39 | 264 | get_futex_key_refs(key); |
34f01cc1 ED |
265 | return 0; |
266 | } | |
1da177e4 | 267 | |
38d47c1b | 268 | again: |
7485d0d3 | 269 | err = get_user_pages_fast(address, 1, 1, &page); |
9ea71503 SB |
270 | /* |
271 | * If write access is not required (eg. FUTEX_WAIT), try | |
272 | * and get read-only access. | |
273 | */ | |
274 | if (err == -EFAULT && rw == VERIFY_READ) { | |
275 | err = get_user_pages_fast(address, 1, 0, &page); | |
276 | ro = 1; | |
277 | } | |
38d47c1b PZ |
278 | if (err < 0) |
279 | return err; | |
9ea71503 SB |
280 | else |
281 | err = 0; | |
38d47c1b | 282 | |
a5b338f2 AA |
283 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
284 | page_head = page; | |
285 | if (unlikely(PageTail(page))) { | |
38d47c1b | 286 | put_page(page); |
a5b338f2 AA |
287 | /* serialize against __split_huge_page_splitting() */ |
288 | local_irq_disable(); | |
289 | if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) { | |
290 | page_head = compound_head(page); | |
291 | /* | |
292 | * page_head is valid pointer but we must pin | |
293 | * it before taking the PG_lock and/or | |
294 | * PG_compound_lock. The moment we re-enable | |
295 | * irqs __split_huge_page_splitting() can | |
296 | * return and the head page can be freed from | |
297 | * under us. We can't take the PG_lock and/or | |
298 | * PG_compound_lock on a page that could be | |
299 | * freed from under us. | |
300 | */ | |
301 | if (page != page_head) { | |
302 | get_page(page_head); | |
303 | put_page(page); | |
304 | } | |
305 | local_irq_enable(); | |
306 | } else { | |
307 | local_irq_enable(); | |
308 | goto again; | |
309 | } | |
310 | } | |
311 | #else | |
312 | page_head = compound_head(page); | |
313 | if (page != page_head) { | |
314 | get_page(page_head); | |
315 | put_page(page); | |
316 | } | |
317 | #endif | |
318 | ||
319 | lock_page(page_head); | |
e6780f72 HD |
320 | |
321 | /* | |
322 | * If page_head->mapping is NULL, then it cannot be a PageAnon | |
323 | * page; but it might be the ZERO_PAGE or in the gate area or | |
324 | * in a special mapping (all cases which we are happy to fail); | |
325 | * or it may have been a good file page when get_user_pages_fast | |
326 | * found it, but truncated or holepunched or subjected to | |
327 | * invalidate_complete_page2 before we got the page lock (also | |
328 | * cases which we are happy to fail). And we hold a reference, | |
329 | * so refcount care in invalidate_complete_page's remove_mapping | |
330 | * prevents drop_caches from setting mapping to NULL beneath us. | |
331 | * | |
332 | * The case we do have to guard against is when memory pressure made | |
333 | * shmem_writepage move it from filecache to swapcache beneath us: | |
334 | * an unlikely race, but we do need to retry for page_head->mapping. | |
335 | */ | |
a5b338f2 | 336 | if (!page_head->mapping) { |
e6780f72 | 337 | int shmem_swizzled = PageSwapCache(page_head); |
a5b338f2 AA |
338 | unlock_page(page_head); |
339 | put_page(page_head); | |
e6780f72 HD |
340 | if (shmem_swizzled) |
341 | goto again; | |
342 | return -EFAULT; | |
38d47c1b | 343 | } |
1da177e4 LT |
344 | |
345 | /* | |
346 | * Private mappings are handled in a simple way. | |
347 | * | |
348 | * NOTE: When userspace waits on a MAP_SHARED mapping, even if | |
349 | * it's a read-only handle, it's expected that futexes attach to | |
38d47c1b | 350 | * the object not the particular process. |
1da177e4 | 351 | */ |
a5b338f2 | 352 | if (PageAnon(page_head)) { |
9ea71503 SB |
353 | /* |
354 | * A RO anonymous page will never change and thus doesn't make | |
355 | * sense for futex operations. | |
356 | */ | |
357 | if (ro) { | |
358 | err = -EFAULT; | |
359 | goto out; | |
360 | } | |
361 | ||
38d47c1b | 362 | key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */ |
1da177e4 | 363 | key->private.mm = mm; |
e2970f2f | 364 | key->private.address = address; |
38d47c1b PZ |
365 | } else { |
366 | key->both.offset |= FUT_OFF_INODE; /* inode-based key */ | |
a5b338f2 AA |
367 | key->shared.inode = page_head->mapping->host; |
368 | key->shared.pgoff = page_head->index; | |
1da177e4 LT |
369 | } |
370 | ||
38d47c1b | 371 | get_futex_key_refs(key); |
1da177e4 | 372 | |
9ea71503 | 373 | out: |
a5b338f2 AA |
374 | unlock_page(page_head); |
375 | put_page(page_head); | |
9ea71503 | 376 | return err; |
1da177e4 LT |
377 | } |
378 | ||
ae791a2d | 379 | static inline void put_futex_key(union futex_key *key) |
1da177e4 | 380 | { |
38d47c1b | 381 | drop_futex_key_refs(key); |
1da177e4 LT |
382 | } |
383 | ||
d96ee56c DH |
384 | /** |
385 | * fault_in_user_writeable() - Fault in user address and verify RW access | |
d0725992 TG |
386 | * @uaddr: pointer to faulting user space address |
387 | * | |
388 | * Slow path to fixup the fault we just took in the atomic write | |
389 | * access to @uaddr. | |
390 | * | |
fb62db2b | 391 | * We have no generic implementation of a non-destructive write to the |
d0725992 TG |
392 | * user address. We know that we faulted in the atomic pagefault |
393 | * disabled section so we can as well avoid the #PF overhead by | |
394 | * calling get_user_pages() right away. | |
395 | */ | |
396 | static int fault_in_user_writeable(u32 __user *uaddr) | |
397 | { | |
722d0172 AK |
398 | struct mm_struct *mm = current->mm; |
399 | int ret; | |
400 | ||
401 | down_read(&mm->mmap_sem); | |
2efaca92 BH |
402 | ret = fixup_user_fault(current, mm, (unsigned long)uaddr, |
403 | FAULT_FLAG_WRITE); | |
722d0172 AK |
404 | up_read(&mm->mmap_sem); |
405 | ||
d0725992 TG |
406 | return ret < 0 ? ret : 0; |
407 | } | |
408 | ||
4b1c486b DH |
409 | /** |
410 | * futex_top_waiter() - Return the highest priority waiter on a futex | |
d96ee56c DH |
411 | * @hb: the hash bucket the futex_q's reside in |
412 | * @key: the futex key (to distinguish it from other futex futex_q's) | |
4b1c486b DH |
413 | * |
414 | * Must be called with the hb lock held. | |
415 | */ | |
416 | static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, | |
417 | union futex_key *key) | |
418 | { | |
419 | struct futex_q *this; | |
420 | ||
421 | plist_for_each_entry(this, &hb->chain, list) { | |
422 | if (match_futex(&this->key, key)) | |
423 | return this; | |
424 | } | |
425 | return NULL; | |
426 | } | |
427 | ||
37a9d912 ML |
428 | static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr, |
429 | u32 uval, u32 newval) | |
36cf3b5c | 430 | { |
37a9d912 | 431 | int ret; |
36cf3b5c TG |
432 | |
433 | pagefault_disable(); | |
37a9d912 | 434 | ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval); |
36cf3b5c TG |
435 | pagefault_enable(); |
436 | ||
37a9d912 | 437 | return ret; |
36cf3b5c TG |
438 | } |
439 | ||
440 | static int get_futex_value_locked(u32 *dest, u32 __user *from) | |
1da177e4 LT |
441 | { |
442 | int ret; | |
443 | ||
a866374a | 444 | pagefault_disable(); |
e2970f2f | 445 | ret = __copy_from_user_inatomic(dest, from, sizeof(u32)); |
a866374a | 446 | pagefault_enable(); |
1da177e4 LT |
447 | |
448 | return ret ? -EFAULT : 0; | |
449 | } | |
450 | ||
c87e2837 IM |
451 | |
452 | /* | |
453 | * PI code: | |
454 | */ | |
455 | static int refill_pi_state_cache(void) | |
456 | { | |
457 | struct futex_pi_state *pi_state; | |
458 | ||
459 | if (likely(current->pi_state_cache)) | |
460 | return 0; | |
461 | ||
4668edc3 | 462 | pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL); |
c87e2837 IM |
463 | |
464 | if (!pi_state) | |
465 | return -ENOMEM; | |
466 | ||
c87e2837 IM |
467 | INIT_LIST_HEAD(&pi_state->list); |
468 | /* pi_mutex gets initialized later */ | |
469 | pi_state->owner = NULL; | |
470 | atomic_set(&pi_state->refcount, 1); | |
38d47c1b | 471 | pi_state->key = FUTEX_KEY_INIT; |
c87e2837 IM |
472 | |
473 | current->pi_state_cache = pi_state; | |
474 | ||
475 | return 0; | |
476 | } | |
477 | ||
478 | static struct futex_pi_state * alloc_pi_state(void) | |
479 | { | |
480 | struct futex_pi_state *pi_state = current->pi_state_cache; | |
481 | ||
482 | WARN_ON(!pi_state); | |
483 | current->pi_state_cache = NULL; | |
484 | ||
485 | return pi_state; | |
486 | } | |
487 | ||
488 | static void free_pi_state(struct futex_pi_state *pi_state) | |
489 | { | |
490 | if (!atomic_dec_and_test(&pi_state->refcount)) | |
491 | return; | |
492 | ||
493 | /* | |
494 | * If pi_state->owner is NULL, the owner is most probably dying | |
495 | * and has cleaned up the pi_state already | |
496 | */ | |
497 | if (pi_state->owner) { | |
1d615482 | 498 | raw_spin_lock_irq(&pi_state->owner->pi_lock); |
c87e2837 | 499 | list_del_init(&pi_state->list); |
1d615482 | 500 | raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
c87e2837 IM |
501 | |
502 | rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner); | |
503 | } | |
504 | ||
505 | if (current->pi_state_cache) | |
506 | kfree(pi_state); | |
507 | else { | |
508 | /* | |
509 | * pi_state->list is already empty. | |
510 | * clear pi_state->owner. | |
511 | * refcount is at 0 - put it back to 1. | |
512 | */ | |
513 | pi_state->owner = NULL; | |
514 | atomic_set(&pi_state->refcount, 1); | |
515 | current->pi_state_cache = pi_state; | |
516 | } | |
517 | } | |
518 | ||
519 | /* | |
520 | * Look up the task based on what TID userspace gave us. | |
521 | * We dont trust it. | |
522 | */ | |
523 | static struct task_struct * futex_find_get_task(pid_t pid) | |
524 | { | |
525 | struct task_struct *p; | |
526 | ||
d359b549 | 527 | rcu_read_lock(); |
228ebcbe | 528 | p = find_task_by_vpid(pid); |
7a0ea09a MH |
529 | if (p) |
530 | get_task_struct(p); | |
a06381fe | 531 | |
d359b549 | 532 | rcu_read_unlock(); |
c87e2837 IM |
533 | |
534 | return p; | |
535 | } | |
536 | ||
537 | /* | |
538 | * This task is holding PI mutexes at exit time => bad. | |
539 | * Kernel cleans up PI-state, but userspace is likely hosed. | |
540 | * (Robust-futex cleanup is separate and might save the day for userspace.) | |
541 | */ | |
542 | void exit_pi_state_list(struct task_struct *curr) | |
543 | { | |
c87e2837 IM |
544 | struct list_head *next, *head = &curr->pi_state_list; |
545 | struct futex_pi_state *pi_state; | |
627371d7 | 546 | struct futex_hash_bucket *hb; |
38d47c1b | 547 | union futex_key key = FUTEX_KEY_INIT; |
c87e2837 | 548 | |
a0c1e907 TG |
549 | if (!futex_cmpxchg_enabled) |
550 | return; | |
c87e2837 IM |
551 | /* |
552 | * We are a ZOMBIE and nobody can enqueue itself on | |
553 | * pi_state_list anymore, but we have to be careful | |
627371d7 | 554 | * versus waiters unqueueing themselves: |
c87e2837 | 555 | */ |
1d615482 | 556 | raw_spin_lock_irq(&curr->pi_lock); |
c87e2837 IM |
557 | while (!list_empty(head)) { |
558 | ||
559 | next = head->next; | |
560 | pi_state = list_entry(next, struct futex_pi_state, list); | |
561 | key = pi_state->key; | |
627371d7 | 562 | hb = hash_futex(&key); |
1d615482 | 563 | raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837 | 564 | |
c87e2837 IM |
565 | spin_lock(&hb->lock); |
566 | ||
1d615482 | 567 | raw_spin_lock_irq(&curr->pi_lock); |
627371d7 IM |
568 | /* |
569 | * We dropped the pi-lock, so re-check whether this | |
570 | * task still owns the PI-state: | |
571 | */ | |
c87e2837 IM |
572 | if (head->next != next) { |
573 | spin_unlock(&hb->lock); | |
574 | continue; | |
575 | } | |
576 | ||
c87e2837 | 577 | WARN_ON(pi_state->owner != curr); |
627371d7 IM |
578 | WARN_ON(list_empty(&pi_state->list)); |
579 | list_del_init(&pi_state->list); | |
c87e2837 | 580 | pi_state->owner = NULL; |
1d615482 | 581 | raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837 IM |
582 | |
583 | rt_mutex_unlock(&pi_state->pi_mutex); | |
584 | ||
585 | spin_unlock(&hb->lock); | |
586 | ||
1d615482 | 587 | raw_spin_lock_irq(&curr->pi_lock); |
c87e2837 | 588 | } |
1d615482 | 589 | raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837 IM |
590 | } |
591 | ||
592 | static int | |
d0aa7a70 PP |
593 | lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, |
594 | union futex_key *key, struct futex_pi_state **ps) | |
c87e2837 IM |
595 | { |
596 | struct futex_pi_state *pi_state = NULL; | |
597 | struct futex_q *this, *next; | |
ec92d082 | 598 | struct plist_head *head; |
c87e2837 | 599 | struct task_struct *p; |
778e9a9c | 600 | pid_t pid = uval & FUTEX_TID_MASK; |
c87e2837 IM |
601 | |
602 | head = &hb->chain; | |
603 | ||
ec92d082 | 604 | plist_for_each_entry_safe(this, next, head, list) { |
d0aa7a70 | 605 | if (match_futex(&this->key, key)) { |
c87e2837 IM |
606 | /* |
607 | * Another waiter already exists - bump up | |
608 | * the refcount and return its pi_state: | |
609 | */ | |
610 | pi_state = this->pi_state; | |
06a9ec29 | 611 | /* |
fb62db2b | 612 | * Userspace might have messed up non-PI and PI futexes |
06a9ec29 TG |
613 | */ |
614 | if (unlikely(!pi_state)) | |
615 | return -EINVAL; | |
616 | ||
627371d7 | 617 | WARN_ON(!atomic_read(&pi_state->refcount)); |
59647b6a TG |
618 | |
619 | /* | |
620 | * When pi_state->owner is NULL then the owner died | |
621 | * and another waiter is on the fly. pi_state->owner | |
622 | * is fixed up by the task which acquires | |
623 | * pi_state->rt_mutex. | |
624 | * | |
625 | * We do not check for pid == 0 which can happen when | |
626 | * the owner died and robust_list_exit() cleared the | |
627 | * TID. | |
628 | */ | |
629 | if (pid && pi_state->owner) { | |
630 | /* | |
631 | * Bail out if user space manipulated the | |
632 | * futex value. | |
633 | */ | |
634 | if (pid != task_pid_vnr(pi_state->owner)) | |
635 | return -EINVAL; | |
636 | } | |
627371d7 | 637 | |
c87e2837 | 638 | atomic_inc(&pi_state->refcount); |
d0aa7a70 | 639 | *ps = pi_state; |
c87e2837 IM |
640 | |
641 | return 0; | |
642 | } | |
643 | } | |
644 | ||
645 | /* | |
e3f2ddea | 646 | * We are the first waiter - try to look up the real owner and attach |
778e9a9c | 647 | * the new pi_state to it, but bail out when TID = 0 |
c87e2837 | 648 | */ |
778e9a9c | 649 | if (!pid) |
e3f2ddea | 650 | return -ESRCH; |
c87e2837 | 651 | p = futex_find_get_task(pid); |
7a0ea09a MH |
652 | if (!p) |
653 | return -ESRCH; | |
778e9a9c AK |
654 | |
655 | /* | |
656 | * We need to look at the task state flags to figure out, | |
657 | * whether the task is exiting. To protect against the do_exit | |
658 | * change of the task flags, we do this protected by | |
659 | * p->pi_lock: | |
660 | */ | |
1d615482 | 661 | raw_spin_lock_irq(&p->pi_lock); |
778e9a9c AK |
662 | if (unlikely(p->flags & PF_EXITING)) { |
663 | /* | |
664 | * The task is on the way out. When PF_EXITPIDONE is | |
665 | * set, we know that the task has finished the | |
666 | * cleanup: | |
667 | */ | |
668 | int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN; | |
669 | ||
1d615482 | 670 | raw_spin_unlock_irq(&p->pi_lock); |
778e9a9c AK |
671 | put_task_struct(p); |
672 | return ret; | |
673 | } | |
c87e2837 IM |
674 | |
675 | pi_state = alloc_pi_state(); | |
676 | ||
677 | /* | |
678 | * Initialize the pi_mutex in locked state and make 'p' | |
679 | * the owner of it: | |
680 | */ | |
681 | rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p); | |
682 | ||
683 | /* Store the key for possible exit cleanups: */ | |
d0aa7a70 | 684 | pi_state->key = *key; |
c87e2837 | 685 | |
627371d7 | 686 | WARN_ON(!list_empty(&pi_state->list)); |
c87e2837 IM |
687 | list_add(&pi_state->list, &p->pi_state_list); |
688 | pi_state->owner = p; | |
1d615482 | 689 | raw_spin_unlock_irq(&p->pi_lock); |
c87e2837 IM |
690 | |
691 | put_task_struct(p); | |
692 | ||
d0aa7a70 | 693 | *ps = pi_state; |
c87e2837 IM |
694 | |
695 | return 0; | |
696 | } | |
697 | ||
1a52084d | 698 | /** |
d96ee56c | 699 | * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex |
bab5bc9e DH |
700 | * @uaddr: the pi futex user address |
701 | * @hb: the pi futex hash bucket | |
702 | * @key: the futex key associated with uaddr and hb | |
703 | * @ps: the pi_state pointer where we store the result of the | |
704 | * lookup | |
705 | * @task: the task to perform the atomic lock work for. This will | |
706 | * be "current" except in the case of requeue pi. | |
707 | * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) | |
1a52084d | 708 | * |
6c23cbbd RD |
709 | * Return: |
710 | * 0 - ready to wait; | |
711 | * 1 - acquired the lock; | |
1a52084d DH |
712 | * <0 - error |
713 | * | |
714 | * The hb->lock and futex_key refs shall be held by the caller. | |
715 | */ | |
716 | static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb, | |
717 | union futex_key *key, | |
718 | struct futex_pi_state **ps, | |
bab5bc9e | 719 | struct task_struct *task, int set_waiters) |
1a52084d | 720 | { |
59fa6245 | 721 | int lock_taken, ret, force_take = 0; |
c0c9ed15 | 722 | u32 uval, newval, curval, vpid = task_pid_vnr(task); |
1a52084d DH |
723 | |
724 | retry: | |
725 | ret = lock_taken = 0; | |
726 | ||
727 | /* | |
728 | * To avoid races, we attempt to take the lock here again | |
729 | * (by doing a 0 -> TID atomic cmpxchg), while holding all | |
730 | * the locks. It will most likely not succeed. | |
731 | */ | |
c0c9ed15 | 732 | newval = vpid; |
bab5bc9e DH |
733 | if (set_waiters) |
734 | newval |= FUTEX_WAITERS; | |
1a52084d | 735 | |
37a9d912 | 736 | if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval))) |
1a52084d DH |
737 | return -EFAULT; |
738 | ||
739 | /* | |
740 | * Detect deadlocks. | |
741 | */ | |
c0c9ed15 | 742 | if ((unlikely((curval & FUTEX_TID_MASK) == vpid))) |
1a52084d DH |
743 | return -EDEADLK; |
744 | ||
745 | /* | |
746 | * Surprise - we got the lock. Just return to userspace: | |
747 | */ | |
748 | if (unlikely(!curval)) | |
749 | return 1; | |
750 | ||
751 | uval = curval; | |
752 | ||
753 | /* | |
754 | * Set the FUTEX_WAITERS flag, so the owner will know it has someone | |
755 | * to wake at the next unlock. | |
756 | */ | |
757 | newval = curval | FUTEX_WAITERS; | |
758 | ||
759 | /* | |
59fa6245 | 760 | * Should we force take the futex? See below. |
1a52084d | 761 | */ |
59fa6245 TG |
762 | if (unlikely(force_take)) { |
763 | /* | |
764 | * Keep the OWNER_DIED and the WAITERS bit and set the | |
765 | * new TID value. | |
766 | */ | |
c0c9ed15 | 767 | newval = (curval & ~FUTEX_TID_MASK) | vpid; |
59fa6245 | 768 | force_take = 0; |
1a52084d DH |
769 | lock_taken = 1; |
770 | } | |
771 | ||
37a9d912 | 772 | if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))) |
1a52084d DH |
773 | return -EFAULT; |
774 | if (unlikely(curval != uval)) | |
775 | goto retry; | |
776 | ||
777 | /* | |
59fa6245 | 778 | * We took the lock due to forced take over. |
1a52084d DH |
779 | */ |
780 | if (unlikely(lock_taken)) | |
781 | return 1; | |
782 | ||
783 | /* | |
784 | * We dont have the lock. Look up the PI state (or create it if | |
785 | * we are the first waiter): | |
786 | */ | |
787 | ret = lookup_pi_state(uval, hb, key, ps); | |
788 | ||
789 | if (unlikely(ret)) { | |
790 | switch (ret) { | |
791 | case -ESRCH: | |
792 | /* | |
59fa6245 TG |
793 | * We failed to find an owner for this |
794 | * futex. So we have no pi_state to block | |
795 | * on. This can happen in two cases: | |
796 | * | |
797 | * 1) The owner died | |
798 | * 2) A stale FUTEX_WAITERS bit | |
799 | * | |
800 | * Re-read the futex value. | |
1a52084d DH |
801 | */ |
802 | if (get_futex_value_locked(&curval, uaddr)) | |
803 | return -EFAULT; | |
804 | ||
805 | /* | |
59fa6245 TG |
806 | * If the owner died or we have a stale |
807 | * WAITERS bit the owner TID in the user space | |
808 | * futex is 0. | |
1a52084d | 809 | */ |
59fa6245 TG |
810 | if (!(curval & FUTEX_TID_MASK)) { |
811 | force_take = 1; | |
1a52084d DH |
812 | goto retry; |
813 | } | |
814 | default: | |
815 | break; | |
816 | } | |
817 | } | |
818 | ||
819 | return ret; | |
820 | } | |
821 | ||
2e12978a LJ |
822 | /** |
823 | * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket | |
824 | * @q: The futex_q to unqueue | |
825 | * | |
826 | * The q->lock_ptr must not be NULL and must be held by the caller. | |
827 | */ | |
828 | static void __unqueue_futex(struct futex_q *q) | |
829 | { | |
830 | struct futex_hash_bucket *hb; | |
831 | ||
29096202 SR |
832 | if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr)) |
833 | || WARN_ON(plist_node_empty(&q->list))) | |
2e12978a LJ |
834 | return; |
835 | ||
836 | hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock); | |
837 | plist_del(&q->list, &hb->chain); | |
838 | } | |
839 | ||
1da177e4 LT |
840 | /* |
841 | * The hash bucket lock must be held when this is called. | |
842 | * Afterwards, the futex_q must not be accessed. | |
843 | */ | |
844 | static void wake_futex(struct futex_q *q) | |
845 | { | |
f1a11e05 TG |
846 | struct task_struct *p = q->task; |
847 | ||
aa10990e DH |
848 | if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n")) |
849 | return; | |
850 | ||
1da177e4 | 851 | /* |
f1a11e05 | 852 | * We set q->lock_ptr = NULL _before_ we wake up the task. If |
fb62db2b RD |
853 | * a non-futex wake up happens on another CPU then the task |
854 | * might exit and p would dereference a non-existing task | |
f1a11e05 TG |
855 | * struct. Prevent this by holding a reference on p across the |
856 | * wake up. | |
1da177e4 | 857 | */ |
f1a11e05 TG |
858 | get_task_struct(p); |
859 | ||
2e12978a | 860 | __unqueue_futex(q); |
1da177e4 | 861 | /* |
f1a11e05 TG |
862 | * The waiting task can free the futex_q as soon as |
863 | * q->lock_ptr = NULL is written, without taking any locks. A | |
864 | * memory barrier is required here to prevent the following | |
865 | * store to lock_ptr from getting ahead of the plist_del. | |
1da177e4 | 866 | */ |
ccdea2f8 | 867 | smp_wmb(); |
1da177e4 | 868 | q->lock_ptr = NULL; |
f1a11e05 TG |
869 | |
870 | wake_up_state(p, TASK_NORMAL); | |
871 | put_task_struct(p); | |
1da177e4 LT |
872 | } |
873 | ||
c87e2837 IM |
874 | static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this) |
875 | { | |
876 | struct task_struct *new_owner; | |
877 | struct futex_pi_state *pi_state = this->pi_state; | |
7cfdaf38 | 878 | u32 uninitialized_var(curval), newval; |
c87e2837 IM |
879 | |
880 | if (!pi_state) | |
881 | return -EINVAL; | |
882 | ||
51246bfd TG |
883 | /* |
884 | * If current does not own the pi_state then the futex is | |
885 | * inconsistent and user space fiddled with the futex value. | |
886 | */ | |
887 | if (pi_state->owner != current) | |
888 | return -EINVAL; | |
889 | ||
d209d74d | 890 | raw_spin_lock(&pi_state->pi_mutex.wait_lock); |
c87e2837 IM |
891 | new_owner = rt_mutex_next_owner(&pi_state->pi_mutex); |
892 | ||
893 | /* | |
f123c98e SR |
894 | * It is possible that the next waiter (the one that brought |
895 | * this owner to the kernel) timed out and is no longer | |
896 | * waiting on the lock. | |
c87e2837 IM |
897 | */ |
898 | if (!new_owner) | |
899 | new_owner = this->task; | |
900 | ||
901 | /* | |
902 | * We pass it to the next owner. (The WAITERS bit is always | |
903 | * kept enabled while there is PI state around. We must also | |
904 | * preserve the owner died bit.) | |
905 | */ | |
e3f2ddea | 906 | if (!(uval & FUTEX_OWNER_DIED)) { |
778e9a9c AK |
907 | int ret = 0; |
908 | ||
b488893a | 909 | newval = FUTEX_WAITERS | task_pid_vnr(new_owner); |
e3f2ddea | 910 | |
37a9d912 | 911 | if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) |
778e9a9c | 912 | ret = -EFAULT; |
cde898fa | 913 | else if (curval != uval) |
778e9a9c AK |
914 | ret = -EINVAL; |
915 | if (ret) { | |
d209d74d | 916 | raw_spin_unlock(&pi_state->pi_mutex.wait_lock); |
778e9a9c AK |
917 | return ret; |
918 | } | |
e3f2ddea | 919 | } |
c87e2837 | 920 | |
1d615482 | 921 | raw_spin_lock_irq(&pi_state->owner->pi_lock); |
627371d7 IM |
922 | WARN_ON(list_empty(&pi_state->list)); |
923 | list_del_init(&pi_state->list); | |
1d615482 | 924 | raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
627371d7 | 925 | |
1d615482 | 926 | raw_spin_lock_irq(&new_owner->pi_lock); |
627371d7 | 927 | WARN_ON(!list_empty(&pi_state->list)); |
c87e2837 IM |
928 | list_add(&pi_state->list, &new_owner->pi_state_list); |
929 | pi_state->owner = new_owner; | |
1d615482 | 930 | raw_spin_unlock_irq(&new_owner->pi_lock); |
627371d7 | 931 | |
d209d74d | 932 | raw_spin_unlock(&pi_state->pi_mutex.wait_lock); |
c87e2837 IM |
933 | rt_mutex_unlock(&pi_state->pi_mutex); |
934 | ||
935 | return 0; | |
936 | } | |
937 | ||
938 | static int unlock_futex_pi(u32 __user *uaddr, u32 uval) | |
939 | { | |
7cfdaf38 | 940 | u32 uninitialized_var(oldval); |
c87e2837 IM |
941 | |
942 | /* | |
943 | * There is no waiter, so we unlock the futex. The owner died | |
944 | * bit has not to be preserved here. We are the owner: | |
945 | */ | |
37a9d912 ML |
946 | if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0)) |
947 | return -EFAULT; | |
c87e2837 IM |
948 | if (oldval != uval) |
949 | return -EAGAIN; | |
950 | ||
951 | return 0; | |
952 | } | |
953 | ||
8b8f319f IM |
954 | /* |
955 | * Express the locking dependencies for lockdep: | |
956 | */ | |
957 | static inline void | |
958 | double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | |
959 | { | |
960 | if (hb1 <= hb2) { | |
961 | spin_lock(&hb1->lock); | |
962 | if (hb1 < hb2) | |
963 | spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING); | |
964 | } else { /* hb1 > hb2 */ | |
965 | spin_lock(&hb2->lock); | |
966 | spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING); | |
967 | } | |
968 | } | |
969 | ||
5eb3dc62 DH |
970 | static inline void |
971 | double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | |
972 | { | |
f061d351 | 973 | spin_unlock(&hb1->lock); |
88f502fe IM |
974 | if (hb1 != hb2) |
975 | spin_unlock(&hb2->lock); | |
5eb3dc62 DH |
976 | } |
977 | ||
1da177e4 | 978 | /* |
b2d0994b | 979 | * Wake up waiters matching bitset queued on this futex (uaddr). |
1da177e4 | 980 | */ |
b41277dc DH |
981 | static int |
982 | futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset) | |
1da177e4 | 983 | { |
e2970f2f | 984 | struct futex_hash_bucket *hb; |
1da177e4 | 985 | struct futex_q *this, *next; |
ec92d082 | 986 | struct plist_head *head; |
38d47c1b | 987 | union futex_key key = FUTEX_KEY_INIT; |
1da177e4 LT |
988 | int ret; |
989 | ||
cd689985 TG |
990 | if (!bitset) |
991 | return -EINVAL; | |
992 | ||
9ea71503 | 993 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ); |
1da177e4 LT |
994 | if (unlikely(ret != 0)) |
995 | goto out; | |
996 | ||
e2970f2f IM |
997 | hb = hash_futex(&key); |
998 | spin_lock(&hb->lock); | |
999 | head = &hb->chain; | |
1da177e4 | 1000 | |
ec92d082 | 1001 | plist_for_each_entry_safe(this, next, head, list) { |
1da177e4 | 1002 | if (match_futex (&this->key, &key)) { |
52400ba9 | 1003 | if (this->pi_state || this->rt_waiter) { |
ed6f7b10 IM |
1004 | ret = -EINVAL; |
1005 | break; | |
1006 | } | |
cd689985 TG |
1007 | |
1008 | /* Check if one of the bits is set in both bitsets */ | |
1009 | if (!(this->bitset & bitset)) | |
1010 | continue; | |
1011 | ||
1da177e4 LT |
1012 | wake_futex(this); |
1013 | if (++ret >= nr_wake) | |
1014 | break; | |
1015 | } | |
1016 | } | |
1017 | ||
e2970f2f | 1018 | spin_unlock(&hb->lock); |
ae791a2d | 1019 | put_futex_key(&key); |
42d35d48 | 1020 | out: |
1da177e4 LT |
1021 | return ret; |
1022 | } | |
1023 | ||
4732efbe JJ |
1024 | /* |
1025 | * Wake up all waiters hashed on the physical page that is mapped | |
1026 | * to this virtual address: | |
1027 | */ | |
e2970f2f | 1028 | static int |
b41277dc | 1029 | futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, |
e2970f2f | 1030 | int nr_wake, int nr_wake2, int op) |
4732efbe | 1031 | { |
38d47c1b | 1032 | union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
e2970f2f | 1033 | struct futex_hash_bucket *hb1, *hb2; |
ec92d082 | 1034 | struct plist_head *head; |
4732efbe | 1035 | struct futex_q *this, *next; |
e4dc5b7a | 1036 | int ret, op_ret; |
4732efbe | 1037 | |
e4dc5b7a | 1038 | retry: |
9ea71503 | 1039 | ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ); |
4732efbe JJ |
1040 | if (unlikely(ret != 0)) |
1041 | goto out; | |
9ea71503 | 1042 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE); |
4732efbe | 1043 | if (unlikely(ret != 0)) |
42d35d48 | 1044 | goto out_put_key1; |
4732efbe | 1045 | |
e2970f2f IM |
1046 | hb1 = hash_futex(&key1); |
1047 | hb2 = hash_futex(&key2); | |
4732efbe | 1048 | |
e4dc5b7a | 1049 | retry_private: |
eaaea803 | 1050 | double_lock_hb(hb1, hb2); |
e2970f2f | 1051 | op_ret = futex_atomic_op_inuser(op, uaddr2); |
4732efbe | 1052 | if (unlikely(op_ret < 0)) { |
4732efbe | 1053 | |
5eb3dc62 | 1054 | double_unlock_hb(hb1, hb2); |
4732efbe | 1055 | |
7ee1dd3f | 1056 | #ifndef CONFIG_MMU |
e2970f2f IM |
1057 | /* |
1058 | * we don't get EFAULT from MMU faults if we don't have an MMU, | |
1059 | * but we might get them from range checking | |
1060 | */ | |
7ee1dd3f | 1061 | ret = op_ret; |
42d35d48 | 1062 | goto out_put_keys; |
7ee1dd3f DH |
1063 | #endif |
1064 | ||
796f8d9b DG |
1065 | if (unlikely(op_ret != -EFAULT)) { |
1066 | ret = op_ret; | |
42d35d48 | 1067 | goto out_put_keys; |
796f8d9b DG |
1068 | } |
1069 | ||
d0725992 | 1070 | ret = fault_in_user_writeable(uaddr2); |
4732efbe | 1071 | if (ret) |
de87fcc1 | 1072 | goto out_put_keys; |
4732efbe | 1073 | |
b41277dc | 1074 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a DH |
1075 | goto retry_private; |
1076 | ||
ae791a2d TG |
1077 | put_futex_key(&key2); |
1078 | put_futex_key(&key1); | |
e4dc5b7a | 1079 | goto retry; |
4732efbe JJ |
1080 | } |
1081 | ||
e2970f2f | 1082 | head = &hb1->chain; |
4732efbe | 1083 | |
ec92d082 | 1084 | plist_for_each_entry_safe(this, next, head, list) { |
4732efbe | 1085 | if (match_futex (&this->key, &key1)) { |
aa10990e DH |
1086 | if (this->pi_state || this->rt_waiter) { |
1087 | ret = -EINVAL; | |
1088 | goto out_unlock; | |
1089 | } | |
4732efbe JJ |
1090 | wake_futex(this); |
1091 | if (++ret >= nr_wake) | |
1092 | break; | |
1093 | } | |
1094 | } | |
1095 | ||
1096 | if (op_ret > 0) { | |
e2970f2f | 1097 | head = &hb2->chain; |
4732efbe JJ |
1098 | |
1099 | op_ret = 0; | |
ec92d082 | 1100 | plist_for_each_entry_safe(this, next, head, list) { |
4732efbe | 1101 | if (match_futex (&this->key, &key2)) { |
aa10990e DH |
1102 | if (this->pi_state || this->rt_waiter) { |
1103 | ret = -EINVAL; | |
1104 | goto out_unlock; | |
1105 | } | |
4732efbe JJ |
1106 | wake_futex(this); |
1107 | if (++op_ret >= nr_wake2) | |
1108 | break; | |
1109 | } | |
1110 | } | |
1111 | ret += op_ret; | |
1112 | } | |
1113 | ||
aa10990e | 1114 | out_unlock: |
5eb3dc62 | 1115 | double_unlock_hb(hb1, hb2); |
42d35d48 | 1116 | out_put_keys: |
ae791a2d | 1117 | put_futex_key(&key2); |
42d35d48 | 1118 | out_put_key1: |
ae791a2d | 1119 | put_futex_key(&key1); |
42d35d48 | 1120 | out: |
4732efbe JJ |
1121 | return ret; |
1122 | } | |
1123 | ||
9121e478 DH |
1124 | /** |
1125 | * requeue_futex() - Requeue a futex_q from one hb to another | |
1126 | * @q: the futex_q to requeue | |
1127 | * @hb1: the source hash_bucket | |
1128 | * @hb2: the target hash_bucket | |
1129 | * @key2: the new key for the requeued futex_q | |
1130 | */ | |
1131 | static inline | |
1132 | void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1, | |
1133 | struct futex_hash_bucket *hb2, union futex_key *key2) | |
1134 | { | |
1135 | ||
1136 | /* | |
1137 | * If key1 and key2 hash to the same bucket, no need to | |
1138 | * requeue. | |
1139 | */ | |
1140 | if (likely(&hb1->chain != &hb2->chain)) { | |
1141 | plist_del(&q->list, &hb1->chain); | |
1142 | plist_add(&q->list, &hb2->chain); | |
1143 | q->lock_ptr = &hb2->lock; | |
9121e478 DH |
1144 | } |
1145 | get_futex_key_refs(key2); | |
1146 | q->key = *key2; | |
1147 | } | |
1148 | ||
52400ba9 DH |
1149 | /** |
1150 | * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue | |
d96ee56c DH |
1151 | * @q: the futex_q |
1152 | * @key: the key of the requeue target futex | |
1153 | * @hb: the hash_bucket of the requeue target futex | |
52400ba9 DH |
1154 | * |
1155 | * During futex_requeue, with requeue_pi=1, it is possible to acquire the | |
1156 | * target futex if it is uncontended or via a lock steal. Set the futex_q key | |
1157 | * to the requeue target futex so the waiter can detect the wakeup on the right | |
1158 | * futex, but remove it from the hb and NULL the rt_waiter so it can detect | |
beda2c7e DH |
1159 | * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock |
1160 | * to protect access to the pi_state to fixup the owner later. Must be called | |
1161 | * with both q->lock_ptr and hb->lock held. | |
52400ba9 DH |
1162 | */ |
1163 | static inline | |
beda2c7e DH |
1164 | void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key, |
1165 | struct futex_hash_bucket *hb) | |
52400ba9 | 1166 | { |
52400ba9 DH |
1167 | get_futex_key_refs(key); |
1168 | q->key = *key; | |
1169 | ||
2e12978a | 1170 | __unqueue_futex(q); |
52400ba9 DH |
1171 | |
1172 | WARN_ON(!q->rt_waiter); | |
1173 | q->rt_waiter = NULL; | |
1174 | ||
beda2c7e | 1175 | q->lock_ptr = &hb->lock; |
beda2c7e | 1176 | |
f1a11e05 | 1177 | wake_up_state(q->task, TASK_NORMAL); |
52400ba9 DH |
1178 | } |
1179 | ||
1180 | /** | |
1181 | * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter | |
bab5bc9e DH |
1182 | * @pifutex: the user address of the to futex |
1183 | * @hb1: the from futex hash bucket, must be locked by the caller | |
1184 | * @hb2: the to futex hash bucket, must be locked by the caller | |
1185 | * @key1: the from futex key | |
1186 | * @key2: the to futex key | |
1187 | * @ps: address to store the pi_state pointer | |
1188 | * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) | |
52400ba9 DH |
1189 | * |
1190 | * Try and get the lock on behalf of the top waiter if we can do it atomically. | |
bab5bc9e DH |
1191 | * Wake the top waiter if we succeed. If the caller specified set_waiters, |
1192 | * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit. | |
1193 | * hb1 and hb2 must be held by the caller. | |
52400ba9 | 1194 | * |
6c23cbbd RD |
1195 | * Return: |
1196 | * 0 - failed to acquire the lock atomically; | |
1197 | * 1 - acquired the lock; | |
52400ba9 DH |
1198 | * <0 - error |
1199 | */ | |
1200 | static int futex_proxy_trylock_atomic(u32 __user *pifutex, | |
1201 | struct futex_hash_bucket *hb1, | |
1202 | struct futex_hash_bucket *hb2, | |
1203 | union futex_key *key1, union futex_key *key2, | |
bab5bc9e | 1204 | struct futex_pi_state **ps, int set_waiters) |
52400ba9 | 1205 | { |
bab5bc9e | 1206 | struct futex_q *top_waiter = NULL; |
52400ba9 DH |
1207 | u32 curval; |
1208 | int ret; | |
1209 | ||
1210 | if (get_futex_value_locked(&curval, pifutex)) | |
1211 | return -EFAULT; | |
1212 | ||
bab5bc9e DH |
1213 | /* |
1214 | * Find the top_waiter and determine if there are additional waiters. | |
1215 | * If the caller intends to requeue more than 1 waiter to pifutex, | |
1216 | * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now, | |
1217 | * as we have means to handle the possible fault. If not, don't set | |
1218 | * the bit unecessarily as it will force the subsequent unlock to enter | |
1219 | * the kernel. | |
1220 | */ | |
52400ba9 DH |
1221 | top_waiter = futex_top_waiter(hb1, key1); |
1222 | ||
1223 | /* There are no waiters, nothing for us to do. */ | |
1224 | if (!top_waiter) | |
1225 | return 0; | |
1226 | ||
84bc4af5 DH |
1227 | /* Ensure we requeue to the expected futex. */ |
1228 | if (!match_futex(top_waiter->requeue_pi_key, key2)) | |
1229 | return -EINVAL; | |
1230 | ||
52400ba9 | 1231 | /* |
bab5bc9e DH |
1232 | * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in |
1233 | * the contended case or if set_waiters is 1. The pi_state is returned | |
1234 | * in ps in contended cases. | |
52400ba9 | 1235 | */ |
bab5bc9e DH |
1236 | ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task, |
1237 | set_waiters); | |
52400ba9 | 1238 | if (ret == 1) |
beda2c7e | 1239 | requeue_pi_wake_futex(top_waiter, key2, hb2); |
52400ba9 DH |
1240 | |
1241 | return ret; | |
1242 | } | |
1243 | ||
1244 | /** | |
1245 | * futex_requeue() - Requeue waiters from uaddr1 to uaddr2 | |
fb62db2b | 1246 | * @uaddr1: source futex user address |
b41277dc | 1247 | * @flags: futex flags (FLAGS_SHARED, etc.) |
fb62db2b RD |
1248 | * @uaddr2: target futex user address |
1249 | * @nr_wake: number of waiters to wake (must be 1 for requeue_pi) | |
1250 | * @nr_requeue: number of waiters to requeue (0-INT_MAX) | |
1251 | * @cmpval: @uaddr1 expected value (or %NULL) | |
1252 | * @requeue_pi: if we are attempting to requeue from a non-pi futex to a | |
b41277dc | 1253 | * pi futex (pi to pi requeue is not supported) |
52400ba9 DH |
1254 | * |
1255 | * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire | |
1256 | * uaddr2 atomically on behalf of the top waiter. | |
1257 | * | |
6c23cbbd RD |
1258 | * Return: |
1259 | * >=0 - on success, the number of tasks requeued or woken; | |
52400ba9 | 1260 | * <0 - on error |
1da177e4 | 1261 | */ |
b41277dc DH |
1262 | static int futex_requeue(u32 __user *uaddr1, unsigned int flags, |
1263 | u32 __user *uaddr2, int nr_wake, int nr_requeue, | |
1264 | u32 *cmpval, int requeue_pi) | |
1da177e4 | 1265 | { |
38d47c1b | 1266 | union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
52400ba9 DH |
1267 | int drop_count = 0, task_count = 0, ret; |
1268 | struct futex_pi_state *pi_state = NULL; | |
e2970f2f | 1269 | struct futex_hash_bucket *hb1, *hb2; |
ec92d082 | 1270 | struct plist_head *head1; |
1da177e4 | 1271 | struct futex_q *this, *next; |
52400ba9 DH |
1272 | u32 curval2; |
1273 | ||
1274 | if (requeue_pi) { | |
1275 | /* | |
1276 | * requeue_pi requires a pi_state, try to allocate it now | |
1277 | * without any locks in case it fails. | |
1278 | */ | |
1279 | if (refill_pi_state_cache()) | |
1280 | return -ENOMEM; | |
1281 | /* | |
1282 | * requeue_pi must wake as many tasks as it can, up to nr_wake | |
1283 | * + nr_requeue, since it acquires the rt_mutex prior to | |
1284 | * returning to userspace, so as to not leave the rt_mutex with | |
1285 | * waiters and no owner. However, second and third wake-ups | |
1286 | * cannot be predicted as they involve race conditions with the | |
1287 | * first wake and a fault while looking up the pi_state. Both | |
1288 | * pthread_cond_signal() and pthread_cond_broadcast() should | |
1289 | * use nr_wake=1. | |
1290 | */ | |
1291 | if (nr_wake != 1) | |
1292 | return -EINVAL; | |
1293 | } | |
1da177e4 | 1294 | |
42d35d48 | 1295 | retry: |
52400ba9 DH |
1296 | if (pi_state != NULL) { |
1297 | /* | |
1298 | * We will have to lookup the pi_state again, so free this one | |
1299 | * to keep the accounting correct. | |
1300 | */ | |
1301 | free_pi_state(pi_state); | |
1302 | pi_state = NULL; | |
1303 | } | |
1304 | ||
9ea71503 | 1305 | ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ); |
1da177e4 LT |
1306 | if (unlikely(ret != 0)) |
1307 | goto out; | |
9ea71503 SB |
1308 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, |
1309 | requeue_pi ? VERIFY_WRITE : VERIFY_READ); | |
1da177e4 | 1310 | if (unlikely(ret != 0)) |
42d35d48 | 1311 | goto out_put_key1; |
1da177e4 | 1312 | |
e2970f2f IM |
1313 | hb1 = hash_futex(&key1); |
1314 | hb2 = hash_futex(&key2); | |
1da177e4 | 1315 | |
e4dc5b7a | 1316 | retry_private: |
8b8f319f | 1317 | double_lock_hb(hb1, hb2); |
1da177e4 | 1318 | |
e2970f2f IM |
1319 | if (likely(cmpval != NULL)) { |
1320 | u32 curval; | |
1da177e4 | 1321 | |
e2970f2f | 1322 | ret = get_futex_value_locked(&curval, uaddr1); |
1da177e4 LT |
1323 | |
1324 | if (unlikely(ret)) { | |
5eb3dc62 | 1325 | double_unlock_hb(hb1, hb2); |
1da177e4 | 1326 | |
e2970f2f | 1327 | ret = get_user(curval, uaddr1); |
e4dc5b7a DH |
1328 | if (ret) |
1329 | goto out_put_keys; | |
1da177e4 | 1330 | |
b41277dc | 1331 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a | 1332 | goto retry_private; |
1da177e4 | 1333 | |
ae791a2d TG |
1334 | put_futex_key(&key2); |
1335 | put_futex_key(&key1); | |
e4dc5b7a | 1336 | goto retry; |
1da177e4 | 1337 | } |
e2970f2f | 1338 | if (curval != *cmpval) { |
1da177e4 LT |
1339 | ret = -EAGAIN; |
1340 | goto out_unlock; | |
1341 | } | |
1342 | } | |
1343 | ||
52400ba9 | 1344 | if (requeue_pi && (task_count - nr_wake < nr_requeue)) { |
bab5bc9e DH |
1345 | /* |
1346 | * Attempt to acquire uaddr2 and wake the top waiter. If we | |
1347 | * intend to requeue waiters, force setting the FUTEX_WAITERS | |
1348 | * bit. We force this here where we are able to easily handle | |
1349 | * faults rather in the requeue loop below. | |
1350 | */ | |
52400ba9 | 1351 | ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1, |
bab5bc9e | 1352 | &key2, &pi_state, nr_requeue); |
52400ba9 DH |
1353 | |
1354 | /* | |
1355 | * At this point the top_waiter has either taken uaddr2 or is | |
1356 | * waiting on it. If the former, then the pi_state will not | |
1357 | * exist yet, look it up one more time to ensure we have a | |
1358 | * reference to it. | |
1359 | */ | |
1360 | if (ret == 1) { | |
1361 | WARN_ON(pi_state); | |
89061d3d | 1362 | drop_count++; |
52400ba9 DH |
1363 | task_count++; |
1364 | ret = get_futex_value_locked(&curval2, uaddr2); | |
1365 | if (!ret) | |
1366 | ret = lookup_pi_state(curval2, hb2, &key2, | |
1367 | &pi_state); | |
1368 | } | |
1369 | ||
1370 | switch (ret) { | |
1371 | case 0: | |
1372 | break; | |
1373 | case -EFAULT: | |
1374 | double_unlock_hb(hb1, hb2); | |
ae791a2d TG |
1375 | put_futex_key(&key2); |
1376 | put_futex_key(&key1); | |
d0725992 | 1377 | ret = fault_in_user_writeable(uaddr2); |
52400ba9 DH |
1378 | if (!ret) |
1379 | goto retry; | |
1380 | goto out; | |
1381 | case -EAGAIN: | |
1382 | /* The owner was exiting, try again. */ | |
1383 | double_unlock_hb(hb1, hb2); | |
ae791a2d TG |
1384 | put_futex_key(&key2); |
1385 | put_futex_key(&key1); | |
52400ba9 DH |
1386 | cond_resched(); |
1387 | goto retry; | |
1388 | default: | |
1389 | goto out_unlock; | |
1390 | } | |
1391 | } | |
1392 | ||
e2970f2f | 1393 | head1 = &hb1->chain; |
ec92d082 | 1394 | plist_for_each_entry_safe(this, next, head1, list) { |
52400ba9 DH |
1395 | if (task_count - nr_wake >= nr_requeue) |
1396 | break; | |
1397 | ||
1398 | if (!match_futex(&this->key, &key1)) | |
1da177e4 | 1399 | continue; |
52400ba9 | 1400 | |
392741e0 DH |
1401 | /* |
1402 | * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always | |
1403 | * be paired with each other and no other futex ops. | |
aa10990e DH |
1404 | * |
1405 | * We should never be requeueing a futex_q with a pi_state, | |
1406 | * which is awaiting a futex_unlock_pi(). | |
392741e0 DH |
1407 | */ |
1408 | if ((requeue_pi && !this->rt_waiter) || | |
aa10990e DH |
1409 | (!requeue_pi && this->rt_waiter) || |
1410 | this->pi_state) { | |
392741e0 DH |
1411 | ret = -EINVAL; |
1412 | break; | |
1413 | } | |
52400ba9 DH |
1414 | |
1415 | /* | |
1416 | * Wake nr_wake waiters. For requeue_pi, if we acquired the | |
1417 | * lock, we already woke the top_waiter. If not, it will be | |
1418 | * woken by futex_unlock_pi(). | |
1419 | */ | |
1420 | if (++task_count <= nr_wake && !requeue_pi) { | |
1da177e4 | 1421 | wake_futex(this); |
52400ba9 DH |
1422 | continue; |
1423 | } | |
1da177e4 | 1424 | |
84bc4af5 DH |
1425 | /* Ensure we requeue to the expected futex for requeue_pi. */ |
1426 | if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) { | |
1427 | ret = -EINVAL; | |
1428 | break; | |
1429 | } | |
1430 | ||
52400ba9 DH |
1431 | /* |
1432 | * Requeue nr_requeue waiters and possibly one more in the case | |
1433 | * of requeue_pi if we couldn't acquire the lock atomically. | |
1434 | */ | |
1435 | if (requeue_pi) { | |
1436 | /* Prepare the waiter to take the rt_mutex. */ | |
1437 | atomic_inc(&pi_state->refcount); | |
1438 | this->pi_state = pi_state; | |
1439 | ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex, | |
1440 | this->rt_waiter, | |
1441 | this->task, 1); | |
1442 | if (ret == 1) { | |
1443 | /* We got the lock. */ | |
beda2c7e | 1444 | requeue_pi_wake_futex(this, &key2, hb2); |
89061d3d | 1445 | drop_count++; |
52400ba9 DH |
1446 | continue; |
1447 | } else if (ret) { | |
1448 | /* -EDEADLK */ | |
1449 | this->pi_state = NULL; | |
1450 | free_pi_state(pi_state); | |
1451 | goto out_unlock; | |
1452 | } | |
1da177e4 | 1453 | } |
52400ba9 DH |
1454 | requeue_futex(this, hb1, hb2, &key2); |
1455 | drop_count++; | |
1da177e4 LT |
1456 | } |
1457 | ||
1458 | out_unlock: | |
5eb3dc62 | 1459 | double_unlock_hb(hb1, hb2); |
1da177e4 | 1460 | |
cd84a42f DH |
1461 | /* |
1462 | * drop_futex_key_refs() must be called outside the spinlocks. During | |
1463 | * the requeue we moved futex_q's from the hash bucket at key1 to the | |
1464 | * one at key2 and updated their key pointer. We no longer need to | |
1465 | * hold the references to key1. | |
1466 | */ | |
1da177e4 | 1467 | while (--drop_count >= 0) |
9adef58b | 1468 | drop_futex_key_refs(&key1); |
1da177e4 | 1469 | |
42d35d48 | 1470 | out_put_keys: |
ae791a2d | 1471 | put_futex_key(&key2); |
42d35d48 | 1472 | out_put_key1: |
ae791a2d | 1473 | put_futex_key(&key1); |
42d35d48 | 1474 | out: |
52400ba9 DH |
1475 | if (pi_state != NULL) |
1476 | free_pi_state(pi_state); | |
1477 | return ret ? ret : task_count; | |
1da177e4 LT |
1478 | } |
1479 | ||
1480 | /* The key must be already stored in q->key. */ | |
82af7aca | 1481 | static inline struct futex_hash_bucket *queue_lock(struct futex_q *q) |
15e408cd | 1482 | __acquires(&hb->lock) |
1da177e4 | 1483 | { |
e2970f2f | 1484 | struct futex_hash_bucket *hb; |
1da177e4 | 1485 | |
e2970f2f IM |
1486 | hb = hash_futex(&q->key); |
1487 | q->lock_ptr = &hb->lock; | |
1da177e4 | 1488 | |
e2970f2f IM |
1489 | spin_lock(&hb->lock); |
1490 | return hb; | |
1da177e4 LT |
1491 | } |
1492 | ||
d40d65c8 DH |
1493 | static inline void |
1494 | queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb) | |
15e408cd | 1495 | __releases(&hb->lock) |
d40d65c8 DH |
1496 | { |
1497 | spin_unlock(&hb->lock); | |
d40d65c8 DH |
1498 | } |
1499 | ||
1500 | /** | |
1501 | * queue_me() - Enqueue the futex_q on the futex_hash_bucket | |
1502 | * @q: The futex_q to enqueue | |
1503 | * @hb: The destination hash bucket | |
1504 | * | |
1505 | * The hb->lock must be held by the caller, and is released here. A call to | |
1506 | * queue_me() is typically paired with exactly one call to unqueue_me(). The | |
1507 | * exceptions involve the PI related operations, which may use unqueue_me_pi() | |
1508 | * or nothing if the unqueue is done as part of the wake process and the unqueue | |
1509 | * state is implicit in the state of woken task (see futex_wait_requeue_pi() for | |
1510 | * an example). | |
1511 | */ | |
82af7aca | 1512 | static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb) |
15e408cd | 1513 | __releases(&hb->lock) |
1da177e4 | 1514 | { |
ec92d082 PP |
1515 | int prio; |
1516 | ||
1517 | /* | |
1518 | * The priority used to register this element is | |
1519 | * - either the real thread-priority for the real-time threads | |
1520 | * (i.e. threads with a priority lower than MAX_RT_PRIO) | |
1521 | * - or MAX_RT_PRIO for non-RT threads. | |
1522 | * Thus, all RT-threads are woken first in priority order, and | |
1523 | * the others are woken last, in FIFO order. | |
1524 | */ | |
1525 | prio = min(current->normal_prio, MAX_RT_PRIO); | |
1526 | ||
1527 | plist_node_init(&q->list, prio); | |
ec92d082 | 1528 | plist_add(&q->list, &hb->chain); |
c87e2837 | 1529 | q->task = current; |
e2970f2f | 1530 | spin_unlock(&hb->lock); |
1da177e4 LT |
1531 | } |
1532 | ||
d40d65c8 DH |
1533 | /** |
1534 | * unqueue_me() - Remove the futex_q from its futex_hash_bucket | |
1535 | * @q: The futex_q to unqueue | |
1536 | * | |
1537 | * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must | |
1538 | * be paired with exactly one earlier call to queue_me(). | |
1539 | * | |
6c23cbbd RD |
1540 | * Return: |
1541 | * 1 - if the futex_q was still queued (and we removed unqueued it); | |
d40d65c8 | 1542 | * 0 - if the futex_q was already removed by the waking thread |
1da177e4 | 1543 | */ |
1da177e4 LT |
1544 | static int unqueue_me(struct futex_q *q) |
1545 | { | |
1da177e4 | 1546 | spinlock_t *lock_ptr; |
e2970f2f | 1547 | int ret = 0; |
1da177e4 LT |
1548 | |
1549 | /* In the common case we don't take the spinlock, which is nice. */ | |
42d35d48 | 1550 | retry: |
1da177e4 | 1551 | lock_ptr = q->lock_ptr; |
e91467ec | 1552 | barrier(); |
c80544dc | 1553 | if (lock_ptr != NULL) { |
1da177e4 LT |
1554 | spin_lock(lock_ptr); |
1555 | /* | |
1556 | * q->lock_ptr can change between reading it and | |
1557 | * spin_lock(), causing us to take the wrong lock. This | |
1558 | * corrects the race condition. | |
1559 | * | |
1560 | * Reasoning goes like this: if we have the wrong lock, | |
1561 | * q->lock_ptr must have changed (maybe several times) | |
1562 | * between reading it and the spin_lock(). It can | |
1563 | * change again after the spin_lock() but only if it was | |
1564 | * already changed before the spin_lock(). It cannot, | |
1565 | * however, change back to the original value. Therefore | |
1566 | * we can detect whether we acquired the correct lock. | |
1567 | */ | |
1568 | if (unlikely(lock_ptr != q->lock_ptr)) { | |
1569 | spin_unlock(lock_ptr); | |
1570 | goto retry; | |
1571 | } | |
2e12978a | 1572 | __unqueue_futex(q); |
c87e2837 IM |
1573 | |
1574 | BUG_ON(q->pi_state); | |
1575 | ||
1da177e4 LT |
1576 | spin_unlock(lock_ptr); |
1577 | ret = 1; | |
1578 | } | |
1579 | ||
9adef58b | 1580 | drop_futex_key_refs(&q->key); |
1da177e4 LT |
1581 | return ret; |
1582 | } | |
1583 | ||
c87e2837 IM |
1584 | /* |
1585 | * PI futexes can not be requeued and must remove themself from the | |
d0aa7a70 PP |
1586 | * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry |
1587 | * and dropped here. | |
c87e2837 | 1588 | */ |
d0aa7a70 | 1589 | static void unqueue_me_pi(struct futex_q *q) |
15e408cd | 1590 | __releases(q->lock_ptr) |
c87e2837 | 1591 | { |
2e12978a | 1592 | __unqueue_futex(q); |
c87e2837 IM |
1593 | |
1594 | BUG_ON(!q->pi_state); | |
1595 | free_pi_state(q->pi_state); | |
1596 | q->pi_state = NULL; | |
1597 | ||
d0aa7a70 | 1598 | spin_unlock(q->lock_ptr); |
c87e2837 IM |
1599 | } |
1600 | ||
d0aa7a70 | 1601 | /* |
cdf71a10 | 1602 | * Fixup the pi_state owner with the new owner. |
d0aa7a70 | 1603 | * |
778e9a9c AK |
1604 | * Must be called with hash bucket lock held and mm->sem held for non |
1605 | * private futexes. | |
d0aa7a70 | 1606 | */ |
778e9a9c | 1607 | static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, |
ae791a2d | 1608 | struct task_struct *newowner) |
d0aa7a70 | 1609 | { |
cdf71a10 | 1610 | u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS; |
d0aa7a70 | 1611 | struct futex_pi_state *pi_state = q->pi_state; |
1b7558e4 | 1612 | struct task_struct *oldowner = pi_state->owner; |
7cfdaf38 | 1613 | u32 uval, uninitialized_var(curval), newval; |
e4dc5b7a | 1614 | int ret; |
d0aa7a70 PP |
1615 | |
1616 | /* Owner died? */ | |
1b7558e4 TG |
1617 | if (!pi_state->owner) |
1618 | newtid |= FUTEX_OWNER_DIED; | |
1619 | ||
1620 | /* | |
1621 | * We are here either because we stole the rtmutex from the | |
8161239a LJ |
1622 | * previous highest priority waiter or we are the highest priority |
1623 | * waiter but failed to get the rtmutex the first time. | |
1624 | * We have to replace the newowner TID in the user space variable. | |
1625 | * This must be atomic as we have to preserve the owner died bit here. | |
1b7558e4 | 1626 | * |
b2d0994b DH |
1627 | * Note: We write the user space value _before_ changing the pi_state |
1628 | * because we can fault here. Imagine swapped out pages or a fork | |
1629 | * that marked all the anonymous memory readonly for cow. | |
1b7558e4 TG |
1630 | * |
1631 | * Modifying pi_state _before_ the user space value would | |
1632 | * leave the pi_state in an inconsistent state when we fault | |
1633 | * here, because we need to drop the hash bucket lock to | |
1634 | * handle the fault. This might be observed in the PID check | |
1635 | * in lookup_pi_state. | |
1636 | */ | |
1637 | retry: | |
1638 | if (get_futex_value_locked(&uval, uaddr)) | |
1639 | goto handle_fault; | |
1640 | ||
1641 | while (1) { | |
1642 | newval = (uval & FUTEX_OWNER_DIED) | newtid; | |
1643 | ||
37a9d912 | 1644 | if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) |
1b7558e4 TG |
1645 | goto handle_fault; |
1646 | if (curval == uval) | |
1647 | break; | |
1648 | uval = curval; | |
1649 | } | |
1650 | ||
1651 | /* | |
1652 | * We fixed up user space. Now we need to fix the pi_state | |
1653 | * itself. | |
1654 | */ | |
d0aa7a70 | 1655 | if (pi_state->owner != NULL) { |
1d615482 | 1656 | raw_spin_lock_irq(&pi_state->owner->pi_lock); |
d0aa7a70 PP |
1657 | WARN_ON(list_empty(&pi_state->list)); |
1658 | list_del_init(&pi_state->list); | |
1d615482 | 1659 | raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
1b7558e4 | 1660 | } |
d0aa7a70 | 1661 | |
cdf71a10 | 1662 | pi_state->owner = newowner; |
d0aa7a70 | 1663 | |
1d615482 | 1664 | raw_spin_lock_irq(&newowner->pi_lock); |
d0aa7a70 | 1665 | WARN_ON(!list_empty(&pi_state->list)); |
cdf71a10 | 1666 | list_add(&pi_state->list, &newowner->pi_state_list); |
1d615482 | 1667 | raw_spin_unlock_irq(&newowner->pi_lock); |
1b7558e4 | 1668 | return 0; |
d0aa7a70 | 1669 | |
d0aa7a70 | 1670 | /* |
1b7558e4 | 1671 | * To handle the page fault we need to drop the hash bucket |
8161239a LJ |
1672 | * lock here. That gives the other task (either the highest priority |
1673 | * waiter itself or the task which stole the rtmutex) the | |
1b7558e4 TG |
1674 | * chance to try the fixup of the pi_state. So once we are |
1675 | * back from handling the fault we need to check the pi_state | |
1676 | * after reacquiring the hash bucket lock and before trying to | |
1677 | * do another fixup. When the fixup has been done already we | |
1678 | * simply return. | |
d0aa7a70 | 1679 | */ |
1b7558e4 TG |
1680 | handle_fault: |
1681 | spin_unlock(q->lock_ptr); | |
778e9a9c | 1682 | |
d0725992 | 1683 | ret = fault_in_user_writeable(uaddr); |
778e9a9c | 1684 | |
1b7558e4 | 1685 | spin_lock(q->lock_ptr); |
778e9a9c | 1686 | |
1b7558e4 TG |
1687 | /* |
1688 | * Check if someone else fixed it for us: | |
1689 | */ | |
1690 | if (pi_state->owner != oldowner) | |
1691 | return 0; | |
1692 | ||
1693 | if (ret) | |
1694 | return ret; | |
1695 | ||
1696 | goto retry; | |
d0aa7a70 PP |
1697 | } |
1698 | ||
72c1bbf3 | 1699 | static long futex_wait_restart(struct restart_block *restart); |
36cf3b5c | 1700 | |
dd973998 DH |
1701 | /** |
1702 | * fixup_owner() - Post lock pi_state and corner case management | |
1703 | * @uaddr: user address of the futex | |
dd973998 DH |
1704 | * @q: futex_q (contains pi_state and access to the rt_mutex) |
1705 | * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0) | |
1706 | * | |
1707 | * After attempting to lock an rt_mutex, this function is called to cleanup | |
1708 | * the pi_state owner as well as handle race conditions that may allow us to | |
1709 | * acquire the lock. Must be called with the hb lock held. | |
1710 | * | |
6c23cbbd RD |
1711 | * Return: |
1712 | * 1 - success, lock taken; | |
1713 | * 0 - success, lock not taken; | |
dd973998 DH |
1714 | * <0 - on error (-EFAULT) |
1715 | */ | |
ae791a2d | 1716 | static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked) |
dd973998 DH |
1717 | { |
1718 | struct task_struct *owner; | |
1719 | int ret = 0; | |
1720 | ||
1721 | if (locked) { | |
1722 | /* | |
1723 | * Got the lock. We might not be the anticipated owner if we | |
1724 | * did a lock-steal - fix up the PI-state in that case: | |
1725 | */ | |
1726 | if (q->pi_state->owner != current) | |
ae791a2d | 1727 | ret = fixup_pi_state_owner(uaddr, q, current); |
dd973998 DH |
1728 | goto out; |
1729 | } | |
1730 | ||
1731 | /* | |
1732 | * Catch the rare case, where the lock was released when we were on the | |
1733 | * way back before we locked the hash bucket. | |
1734 | */ | |
1735 | if (q->pi_state->owner == current) { | |
1736 | /* | |
1737 | * Try to get the rt_mutex now. This might fail as some other | |
1738 | * task acquired the rt_mutex after we removed ourself from the | |
1739 | * rt_mutex waiters list. | |
1740 | */ | |
1741 | if (rt_mutex_trylock(&q->pi_state->pi_mutex)) { | |
1742 | locked = 1; | |
1743 | goto out; | |
1744 | } | |
1745 | ||
1746 | /* | |
1747 | * pi_state is incorrect, some other task did a lock steal and | |
1748 | * we returned due to timeout or signal without taking the | |
8161239a | 1749 | * rt_mutex. Too late. |
dd973998 | 1750 | */ |
8161239a | 1751 | raw_spin_lock(&q->pi_state->pi_mutex.wait_lock); |
dd973998 | 1752 | owner = rt_mutex_owner(&q->pi_state->pi_mutex); |
8161239a LJ |
1753 | if (!owner) |
1754 | owner = rt_mutex_next_owner(&q->pi_state->pi_mutex); | |
1755 | raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock); | |
ae791a2d | 1756 | ret = fixup_pi_state_owner(uaddr, q, owner); |
dd973998 DH |
1757 | goto out; |
1758 | } | |
1759 | ||
1760 | /* | |
1761 | * Paranoia check. If we did not take the lock, then we should not be | |
8161239a | 1762 | * the owner of the rt_mutex. |
dd973998 DH |
1763 | */ |
1764 | if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) | |
1765 | printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p " | |
1766 | "pi-state %p\n", ret, | |
1767 | q->pi_state->pi_mutex.owner, | |
1768 | q->pi_state->owner); | |
1769 | ||
1770 | out: | |
1771 | return ret ? ret : locked; | |
1772 | } | |
1773 | ||
ca5f9524 DH |
1774 | /** |
1775 | * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal | |
1776 | * @hb: the futex hash bucket, must be locked by the caller | |
1777 | * @q: the futex_q to queue up on | |
1778 | * @timeout: the prepared hrtimer_sleeper, or null for no timeout | |
ca5f9524 DH |
1779 | */ |
1780 | static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, | |
f1a11e05 | 1781 | struct hrtimer_sleeper *timeout) |
ca5f9524 | 1782 | { |
9beba3c5 DH |
1783 | /* |
1784 | * The task state is guaranteed to be set before another task can | |
1785 | * wake it. set_current_state() is implemented using set_mb() and | |
1786 | * queue_me() calls spin_unlock() upon completion, both serializing | |
1787 | * access to the hash list and forcing another memory barrier. | |
1788 | */ | |
f1a11e05 | 1789 | set_current_state(TASK_INTERRUPTIBLE); |
0729e196 | 1790 | queue_me(q, hb); |
ca5f9524 DH |
1791 | |
1792 | /* Arm the timer */ | |
1793 | if (timeout) { | |
1794 | hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS); | |
1795 | if (!hrtimer_active(&timeout->timer)) | |
1796 | timeout->task = NULL; | |
1797 | } | |
1798 | ||
1799 | /* | |
0729e196 DH |
1800 | * If we have been removed from the hash list, then another task |
1801 | * has tried to wake us, and we can skip the call to schedule(). | |
ca5f9524 DH |
1802 | */ |
1803 | if (likely(!plist_node_empty(&q->list))) { | |
1804 | /* | |
1805 | * If the timer has already expired, current will already be | |
1806 | * flagged for rescheduling. Only call schedule if there | |
1807 | * is no timeout, or if it has yet to expire. | |
1808 | */ | |
1809 | if (!timeout || timeout->task) | |
1810 | schedule(); | |
1811 | } | |
1812 | __set_current_state(TASK_RUNNING); | |
1813 | } | |
1814 | ||
f801073f DH |
1815 | /** |
1816 | * futex_wait_setup() - Prepare to wait on a futex | |
1817 | * @uaddr: the futex userspace address | |
1818 | * @val: the expected value | |
b41277dc | 1819 | * @flags: futex flags (FLAGS_SHARED, etc.) |
f801073f DH |
1820 | * @q: the associated futex_q |
1821 | * @hb: storage for hash_bucket pointer to be returned to caller | |
1822 | * | |
1823 | * Setup the futex_q and locate the hash_bucket. Get the futex value and | |
1824 | * compare it with the expected value. Handle atomic faults internally. | |
1825 | * Return with the hb lock held and a q.key reference on success, and unlocked | |
1826 | * with no q.key reference on failure. | |
1827 | * | |
6c23cbbd RD |
1828 | * Return: |
1829 | * 0 - uaddr contains val and hb has been locked; | |
ca4a04cf | 1830 | * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked |
f801073f | 1831 | */ |
b41277dc | 1832 | static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags, |
f801073f | 1833 | struct futex_q *q, struct futex_hash_bucket **hb) |
1da177e4 | 1834 | { |
e2970f2f IM |
1835 | u32 uval; |
1836 | int ret; | |
1da177e4 | 1837 | |
1da177e4 | 1838 | /* |
b2d0994b | 1839 | * Access the page AFTER the hash-bucket is locked. |
1da177e4 LT |
1840 | * Order is important: |
1841 | * | |
1842 | * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); | |
1843 | * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); } | |
1844 | * | |
1845 | * The basic logical guarantee of a futex is that it blocks ONLY | |
1846 | * if cond(var) is known to be true at the time of blocking, for | |
8fe8f545 ML |
1847 | * any cond. If we locked the hash-bucket after testing *uaddr, that |
1848 | * would open a race condition where we could block indefinitely with | |
1da177e4 LT |
1849 | * cond(var) false, which would violate the guarantee. |
1850 | * | |
8fe8f545 ML |
1851 | * On the other hand, we insert q and release the hash-bucket only |
1852 | * after testing *uaddr. This guarantees that futex_wait() will NOT | |
1853 | * absorb a wakeup if *uaddr does not match the desired values | |
1854 | * while the syscall executes. | |
1da177e4 | 1855 | */ |
f801073f | 1856 | retry: |
9ea71503 | 1857 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ); |
f801073f | 1858 | if (unlikely(ret != 0)) |
a5a2a0c7 | 1859 | return ret; |
f801073f DH |
1860 | |
1861 | retry_private: | |
1862 | *hb = queue_lock(q); | |
1863 | ||
e2970f2f | 1864 | ret = get_futex_value_locked(&uval, uaddr); |
1da177e4 | 1865 | |
f801073f DH |
1866 | if (ret) { |
1867 | queue_unlock(q, *hb); | |
1da177e4 | 1868 | |
e2970f2f | 1869 | ret = get_user(uval, uaddr); |
e4dc5b7a | 1870 | if (ret) |
f801073f | 1871 | goto out; |
1da177e4 | 1872 | |
b41277dc | 1873 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a DH |
1874 | goto retry_private; |
1875 | ||
ae791a2d | 1876 | put_futex_key(&q->key); |
e4dc5b7a | 1877 | goto retry; |
1da177e4 | 1878 | } |
ca5f9524 | 1879 | |
f801073f DH |
1880 | if (uval != val) { |
1881 | queue_unlock(q, *hb); | |
1882 | ret = -EWOULDBLOCK; | |
2fff78c7 | 1883 | } |
1da177e4 | 1884 | |
f801073f DH |
1885 | out: |
1886 | if (ret) | |
ae791a2d | 1887 | put_futex_key(&q->key); |
f801073f DH |
1888 | return ret; |
1889 | } | |
1890 | ||
b41277dc DH |
1891 | static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, |
1892 | ktime_t *abs_time, u32 bitset) | |
f801073f DH |
1893 | { |
1894 | struct hrtimer_sleeper timeout, *to = NULL; | |
f801073f DH |
1895 | struct restart_block *restart; |
1896 | struct futex_hash_bucket *hb; | |
5bdb05f9 | 1897 | struct futex_q q = futex_q_init; |
f801073f DH |
1898 | int ret; |
1899 | ||
1900 | if (!bitset) | |
1901 | return -EINVAL; | |
f801073f DH |
1902 | q.bitset = bitset; |
1903 | ||
1904 | if (abs_time) { | |
1905 | to = &timeout; | |
1906 | ||
b41277dc DH |
1907 | hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ? |
1908 | CLOCK_REALTIME : CLOCK_MONOTONIC, | |
1909 | HRTIMER_MODE_ABS); | |
f801073f DH |
1910 | hrtimer_init_sleeper(to, current); |
1911 | hrtimer_set_expires_range_ns(&to->timer, *abs_time, | |
1912 | current->timer_slack_ns); | |
1913 | } | |
1914 | ||
d58e6576 | 1915 | retry: |
7ada876a DH |
1916 | /* |
1917 | * Prepare to wait on uaddr. On success, holds hb lock and increments | |
1918 | * q.key refs. | |
1919 | */ | |
b41277dc | 1920 | ret = futex_wait_setup(uaddr, val, flags, &q, &hb); |
f801073f DH |
1921 | if (ret) |
1922 | goto out; | |
1923 | ||
ca5f9524 | 1924 | /* queue_me and wait for wakeup, timeout, or a signal. */ |
f1a11e05 | 1925 | futex_wait_queue_me(hb, &q, to); |
1da177e4 LT |
1926 | |
1927 | /* If we were woken (and unqueued), we succeeded, whatever. */ | |
2fff78c7 | 1928 | ret = 0; |
7ada876a | 1929 | /* unqueue_me() drops q.key ref */ |
1da177e4 | 1930 | if (!unqueue_me(&q)) |
7ada876a | 1931 | goto out; |
2fff78c7 | 1932 | ret = -ETIMEDOUT; |
ca5f9524 | 1933 | if (to && !to->task) |
7ada876a | 1934 | goto out; |
72c1bbf3 | 1935 | |
e2970f2f | 1936 | /* |
d58e6576 TG |
1937 | * We expect signal_pending(current), but we might be the |
1938 | * victim of a spurious wakeup as well. | |
e2970f2f | 1939 | */ |
7ada876a | 1940 | if (!signal_pending(current)) |
d58e6576 | 1941 | goto retry; |
d58e6576 | 1942 | |
2fff78c7 | 1943 | ret = -ERESTARTSYS; |
c19384b5 | 1944 | if (!abs_time) |
7ada876a | 1945 | goto out; |
1da177e4 | 1946 | |
2fff78c7 PZ |
1947 | restart = ¤t_thread_info()->restart_block; |
1948 | restart->fn = futex_wait_restart; | |
a3c74c52 | 1949 | restart->futex.uaddr = uaddr; |
2fff78c7 PZ |
1950 | restart->futex.val = val; |
1951 | restart->futex.time = abs_time->tv64; | |
1952 | restart->futex.bitset = bitset; | |
0cd9c649 | 1953 | restart->futex.flags = flags | FLAGS_HAS_TIMEOUT; |
42d35d48 | 1954 | |
2fff78c7 PZ |
1955 | ret = -ERESTART_RESTARTBLOCK; |
1956 | ||
42d35d48 | 1957 | out: |
ca5f9524 DH |
1958 | if (to) { |
1959 | hrtimer_cancel(&to->timer); | |
1960 | destroy_hrtimer_on_stack(&to->timer); | |
1961 | } | |
c87e2837 IM |
1962 | return ret; |
1963 | } | |
1964 | ||
72c1bbf3 NP |
1965 | |
1966 | static long futex_wait_restart(struct restart_block *restart) | |
1967 | { | |
a3c74c52 | 1968 | u32 __user *uaddr = restart->futex.uaddr; |
a72188d8 | 1969 | ktime_t t, *tp = NULL; |
72c1bbf3 | 1970 | |
a72188d8 DH |
1971 | if (restart->futex.flags & FLAGS_HAS_TIMEOUT) { |
1972 | t.tv64 = restart->futex.time; | |
1973 | tp = &t; | |
1974 | } | |
72c1bbf3 | 1975 | restart->fn = do_no_restart_syscall; |
b41277dc DH |
1976 | |
1977 | return (long)futex_wait(uaddr, restart->futex.flags, | |
1978 | restart->futex.val, tp, restart->futex.bitset); | |
72c1bbf3 NP |
1979 | } |
1980 | ||
1981 | ||
c87e2837 IM |
1982 | /* |
1983 | * Userspace tried a 0 -> TID atomic transition of the futex value | |
1984 | * and failed. The kernel side here does the whole locking operation: | |
1985 | * if there are waiters then it will block, it does PI, etc. (Due to | |
1986 | * races the kernel might see a 0 value of the futex too.) | |
1987 | */ | |
b41277dc DH |
1988 | static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect, |
1989 | ktime_t *time, int trylock) | |
c87e2837 | 1990 | { |
c5780e97 | 1991 | struct hrtimer_sleeper timeout, *to = NULL; |
c87e2837 | 1992 | struct futex_hash_bucket *hb; |
5bdb05f9 | 1993 | struct futex_q q = futex_q_init; |
dd973998 | 1994 | int res, ret; |
c87e2837 IM |
1995 | |
1996 | if (refill_pi_state_cache()) | |
1997 | return -ENOMEM; | |
1998 | ||
c19384b5 | 1999 | if (time) { |
c5780e97 | 2000 | to = &timeout; |
237fc6e7 TG |
2001 | hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME, |
2002 | HRTIMER_MODE_ABS); | |
c5780e97 | 2003 | hrtimer_init_sleeper(to, current); |
cc584b21 | 2004 | hrtimer_set_expires(&to->timer, *time); |
c5780e97 TG |
2005 | } |
2006 | ||
42d35d48 | 2007 | retry: |
9ea71503 | 2008 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE); |
c87e2837 | 2009 | if (unlikely(ret != 0)) |
42d35d48 | 2010 | goto out; |
c87e2837 | 2011 | |
e4dc5b7a | 2012 | retry_private: |
82af7aca | 2013 | hb = queue_lock(&q); |
c87e2837 | 2014 | |
bab5bc9e | 2015 | ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0); |
c87e2837 | 2016 | if (unlikely(ret)) { |
778e9a9c | 2017 | switch (ret) { |
1a52084d DH |
2018 | case 1: |
2019 | /* We got the lock. */ | |
2020 | ret = 0; | |
2021 | goto out_unlock_put_key; | |
2022 | case -EFAULT: | |
2023 | goto uaddr_faulted; | |
778e9a9c AK |
2024 | case -EAGAIN: |
2025 | /* | |
2026 | * Task is exiting and we just wait for the | |
2027 | * exit to complete. | |
2028 | */ | |
2029 | queue_unlock(&q, hb); | |
ae791a2d | 2030 | put_futex_key(&q.key); |
778e9a9c AK |
2031 | cond_resched(); |
2032 | goto retry; | |
778e9a9c | 2033 | default: |
42d35d48 | 2034 | goto out_unlock_put_key; |
c87e2837 | 2035 | } |
c87e2837 IM |
2036 | } |
2037 | ||
2038 | /* | |
2039 | * Only actually queue now that the atomic ops are done: | |
2040 | */ | |
82af7aca | 2041 | queue_me(&q, hb); |
c87e2837 | 2042 | |
c87e2837 IM |
2043 | WARN_ON(!q.pi_state); |
2044 | /* | |
2045 | * Block on the PI mutex: | |
2046 | */ | |
2047 | if (!trylock) | |
2048 | ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1); | |
2049 | else { | |
2050 | ret = rt_mutex_trylock(&q.pi_state->pi_mutex); | |
2051 | /* Fixup the trylock return value: */ | |
2052 | ret = ret ? 0 : -EWOULDBLOCK; | |
2053 | } | |
2054 | ||
a99e4e41 | 2055 | spin_lock(q.lock_ptr); |
dd973998 DH |
2056 | /* |
2057 | * Fixup the pi_state owner and possibly acquire the lock if we | |
2058 | * haven't already. | |
2059 | */ | |
ae791a2d | 2060 | res = fixup_owner(uaddr, &q, !ret); |
dd973998 DH |
2061 | /* |
2062 | * If fixup_owner() returned an error, proprogate that. If it acquired | |
2063 | * the lock, clear our -ETIMEDOUT or -EINTR. | |
2064 | */ | |
2065 | if (res) | |
2066 | ret = (res < 0) ? res : 0; | |
c87e2837 | 2067 | |
e8f6386c | 2068 | /* |
dd973998 DH |
2069 | * If fixup_owner() faulted and was unable to handle the fault, unlock |
2070 | * it and return the fault to userspace. | |
e8f6386c DH |
2071 | */ |
2072 | if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) | |
2073 | rt_mutex_unlock(&q.pi_state->pi_mutex); | |
2074 | ||
778e9a9c AK |
2075 | /* Unqueue and drop the lock */ |
2076 | unqueue_me_pi(&q); | |
c87e2837 | 2077 | |
5ecb01cf | 2078 | goto out_put_key; |
c87e2837 | 2079 | |
42d35d48 | 2080 | out_unlock_put_key: |
c87e2837 IM |
2081 | queue_unlock(&q, hb); |
2082 | ||
42d35d48 | 2083 | out_put_key: |
ae791a2d | 2084 | put_futex_key(&q.key); |
42d35d48 | 2085 | out: |
237fc6e7 TG |
2086 | if (to) |
2087 | destroy_hrtimer_on_stack(&to->timer); | |
dd973998 | 2088 | return ret != -EINTR ? ret : -ERESTARTNOINTR; |
c87e2837 | 2089 | |
42d35d48 | 2090 | uaddr_faulted: |
778e9a9c AK |
2091 | queue_unlock(&q, hb); |
2092 | ||
d0725992 | 2093 | ret = fault_in_user_writeable(uaddr); |
e4dc5b7a DH |
2094 | if (ret) |
2095 | goto out_put_key; | |
c87e2837 | 2096 | |
b41277dc | 2097 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a DH |
2098 | goto retry_private; |
2099 | ||
ae791a2d | 2100 | put_futex_key(&q.key); |
e4dc5b7a | 2101 | goto retry; |
c87e2837 IM |
2102 | } |
2103 | ||
c87e2837 IM |
2104 | /* |
2105 | * Userspace attempted a TID -> 0 atomic transition, and failed. | |
2106 | * This is the in-kernel slowpath: we look up the PI state (if any), | |
2107 | * and do the rt-mutex unlock. | |
2108 | */ | |
b41277dc | 2109 | static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags) |
c87e2837 IM |
2110 | { |
2111 | struct futex_hash_bucket *hb; | |
2112 | struct futex_q *this, *next; | |
ec92d082 | 2113 | struct plist_head *head; |
38d47c1b | 2114 | union futex_key key = FUTEX_KEY_INIT; |
c0c9ed15 | 2115 | u32 uval, vpid = task_pid_vnr(current); |
e4dc5b7a | 2116 | int ret; |
c87e2837 IM |
2117 | |
2118 | retry: | |
2119 | if (get_user(uval, uaddr)) | |
2120 | return -EFAULT; | |
2121 | /* | |
2122 | * We release only a lock we actually own: | |
2123 | */ | |
c0c9ed15 | 2124 | if ((uval & FUTEX_TID_MASK) != vpid) |
c87e2837 | 2125 | return -EPERM; |
c87e2837 | 2126 | |
9ea71503 | 2127 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE); |
c87e2837 IM |
2128 | if (unlikely(ret != 0)) |
2129 | goto out; | |
2130 | ||
2131 | hb = hash_futex(&key); | |
2132 | spin_lock(&hb->lock); | |
2133 | ||
c87e2837 IM |
2134 | /* |
2135 | * To avoid races, try to do the TID -> 0 atomic transition | |
2136 | * again. If it succeeds then we can return without waking | |
2137 | * anyone else up: | |
2138 | */ | |
37a9d912 ML |
2139 | if (!(uval & FUTEX_OWNER_DIED) && |
2140 | cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0)) | |
c87e2837 IM |
2141 | goto pi_faulted; |
2142 | /* | |
2143 | * Rare case: we managed to release the lock atomically, | |
2144 | * no need to wake anyone else up: | |
2145 | */ | |
c0c9ed15 | 2146 | if (unlikely(uval == vpid)) |
c87e2837 IM |
2147 | goto out_unlock; |
2148 | ||
2149 | /* | |
2150 | * Ok, other tasks may need to be woken up - check waiters | |
2151 | * and do the wakeup if necessary: | |
2152 | */ | |
2153 | head = &hb->chain; | |
2154 | ||
ec92d082 | 2155 | plist_for_each_entry_safe(this, next, head, list) { |
c87e2837 IM |
2156 | if (!match_futex (&this->key, &key)) |
2157 | continue; | |
2158 | ret = wake_futex_pi(uaddr, uval, this); | |
2159 | /* | |
2160 | * The atomic access to the futex value | |
2161 | * generated a pagefault, so retry the | |
2162 | * user-access and the wakeup: | |
2163 | */ | |
2164 | if (ret == -EFAULT) | |
2165 | goto pi_faulted; | |
2166 | goto out_unlock; | |
2167 | } | |
2168 | /* | |
2169 | * No waiters - kernel unlocks the futex: | |
2170 | */ | |
e3f2ddea IM |
2171 | if (!(uval & FUTEX_OWNER_DIED)) { |
2172 | ret = unlock_futex_pi(uaddr, uval); | |
2173 | if (ret == -EFAULT) | |
2174 | goto pi_faulted; | |
2175 | } | |
c87e2837 IM |
2176 | |
2177 | out_unlock: | |
2178 | spin_unlock(&hb->lock); | |
ae791a2d | 2179 | put_futex_key(&key); |
c87e2837 | 2180 | |
42d35d48 | 2181 | out: |
c87e2837 IM |
2182 | return ret; |
2183 | ||
2184 | pi_faulted: | |
778e9a9c | 2185 | spin_unlock(&hb->lock); |
ae791a2d | 2186 | put_futex_key(&key); |
c87e2837 | 2187 | |
d0725992 | 2188 | ret = fault_in_user_writeable(uaddr); |
b5686363 | 2189 | if (!ret) |
c87e2837 IM |
2190 | goto retry; |
2191 | ||
1da177e4 LT |
2192 | return ret; |
2193 | } | |
2194 | ||
52400ba9 DH |
2195 | /** |
2196 | * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex | |
2197 | * @hb: the hash_bucket futex_q was original enqueued on | |
2198 | * @q: the futex_q woken while waiting to be requeued | |
2199 | * @key2: the futex_key of the requeue target futex | |
2200 | * @timeout: the timeout associated with the wait (NULL if none) | |
2201 | * | |
2202 | * Detect if the task was woken on the initial futex as opposed to the requeue | |
2203 | * target futex. If so, determine if it was a timeout or a signal that caused | |
2204 | * the wakeup and return the appropriate error code to the caller. Must be | |
2205 | * called with the hb lock held. | |
2206 | * | |
6c23cbbd RD |
2207 | * Return: |
2208 | * 0 = no early wakeup detected; | |
2209 | * <0 = -ETIMEDOUT or -ERESTARTNOINTR | |
52400ba9 DH |
2210 | */ |
2211 | static inline | |
2212 | int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb, | |
2213 | struct futex_q *q, union futex_key *key2, | |
2214 | struct hrtimer_sleeper *timeout) | |
2215 | { | |
2216 | int ret = 0; | |
2217 | ||
2218 | /* | |
2219 | * With the hb lock held, we avoid races while we process the wakeup. | |
2220 | * We only need to hold hb (and not hb2) to ensure atomicity as the | |
2221 | * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb. | |
2222 | * It can't be requeued from uaddr2 to something else since we don't | |
2223 | * support a PI aware source futex for requeue. | |
2224 | */ | |
2225 | if (!match_futex(&q->key, key2)) { | |
2226 | WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr)); | |
2227 | /* | |
2228 | * We were woken prior to requeue by a timeout or a signal. | |
2229 | * Unqueue the futex_q and determine which it was. | |
2230 | */ | |
2e12978a | 2231 | plist_del(&q->list, &hb->chain); |
52400ba9 | 2232 | |
d58e6576 | 2233 | /* Handle spurious wakeups gracefully */ |
11df6ddd | 2234 | ret = -EWOULDBLOCK; |
52400ba9 DH |
2235 | if (timeout && !timeout->task) |
2236 | ret = -ETIMEDOUT; | |
d58e6576 | 2237 | else if (signal_pending(current)) |
1c840c14 | 2238 | ret = -ERESTARTNOINTR; |
52400ba9 DH |
2239 | } |
2240 | return ret; | |
2241 | } | |
2242 | ||
2243 | /** | |
2244 | * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2 | |
56ec1607 | 2245 | * @uaddr: the futex we initially wait on (non-pi) |
b41277dc | 2246 | * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be |
52400ba9 DH |
2247 | * the same type, no requeueing from private to shared, etc. |
2248 | * @val: the expected value of uaddr | |
2249 | * @abs_time: absolute timeout | |
56ec1607 | 2250 | * @bitset: 32 bit wakeup bitset set by userspace, defaults to all |
52400ba9 DH |
2251 | * @uaddr2: the pi futex we will take prior to returning to user-space |
2252 | * | |
2253 | * The caller will wait on uaddr and will be requeued by futex_requeue() to | |
6f7b0a2a DH |
2254 | * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake |
2255 | * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to | |
2256 | * userspace. This ensures the rt_mutex maintains an owner when it has waiters; | |
2257 | * without one, the pi logic would not know which task to boost/deboost, if | |
2258 | * there was a need to. | |
52400ba9 DH |
2259 | * |
2260 | * We call schedule in futex_wait_queue_me() when we enqueue and return there | |
6c23cbbd | 2261 | * via the following-- |
52400ba9 | 2262 | * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue() |
cc6db4e6 DH |
2263 | * 2) wakeup on uaddr2 after a requeue |
2264 | * 3) signal | |
2265 | * 4) timeout | |
52400ba9 | 2266 | * |
cc6db4e6 | 2267 | * If 3, cleanup and return -ERESTARTNOINTR. |
52400ba9 DH |
2268 | * |
2269 | * If 2, we may then block on trying to take the rt_mutex and return via: | |
2270 | * 5) successful lock | |
2271 | * 6) signal | |
2272 | * 7) timeout | |
2273 | * 8) other lock acquisition failure | |
2274 | * | |
cc6db4e6 | 2275 | * If 6, return -EWOULDBLOCK (restarting the syscall would do the same). |
52400ba9 DH |
2276 | * |
2277 | * If 4 or 7, we cleanup and return with -ETIMEDOUT. | |
2278 | * | |
6c23cbbd RD |
2279 | * Return: |
2280 | * 0 - On success; | |
52400ba9 DH |
2281 | * <0 - On error |
2282 | */ | |
b41277dc | 2283 | static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, |
52400ba9 | 2284 | u32 val, ktime_t *abs_time, u32 bitset, |
b41277dc | 2285 | u32 __user *uaddr2) |
52400ba9 DH |
2286 | { |
2287 | struct hrtimer_sleeper timeout, *to = NULL; | |
2288 | struct rt_mutex_waiter rt_waiter; | |
2289 | struct rt_mutex *pi_mutex = NULL; | |
52400ba9 | 2290 | struct futex_hash_bucket *hb; |
5bdb05f9 DH |
2291 | union futex_key key2 = FUTEX_KEY_INIT; |
2292 | struct futex_q q = futex_q_init; | |
52400ba9 | 2293 | int res, ret; |
52400ba9 | 2294 | |
6f7b0a2a DH |
2295 | if (uaddr == uaddr2) |
2296 | return -EINVAL; | |
2297 | ||
52400ba9 DH |
2298 | if (!bitset) |
2299 | return -EINVAL; | |
2300 | ||
2301 | if (abs_time) { | |
2302 | to = &timeout; | |
b41277dc DH |
2303 | hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ? |
2304 | CLOCK_REALTIME : CLOCK_MONOTONIC, | |
2305 | HRTIMER_MODE_ABS); | |
52400ba9 DH |
2306 | hrtimer_init_sleeper(to, current); |
2307 | hrtimer_set_expires_range_ns(&to->timer, *abs_time, | |
2308 | current->timer_slack_ns); | |
2309 | } | |
2310 | ||
2311 | /* | |
2312 | * The waiter is allocated on our stack, manipulated by the requeue | |
2313 | * code while we sleep on uaddr. | |
2314 | */ | |
2315 | debug_rt_mutex_init_waiter(&rt_waiter); | |
2316 | rt_waiter.task = NULL; | |
2317 | ||
9ea71503 | 2318 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE); |
52400ba9 DH |
2319 | if (unlikely(ret != 0)) |
2320 | goto out; | |
2321 | ||
84bc4af5 DH |
2322 | q.bitset = bitset; |
2323 | q.rt_waiter = &rt_waiter; | |
2324 | q.requeue_pi_key = &key2; | |
2325 | ||
7ada876a DH |
2326 | /* |
2327 | * Prepare to wait on uaddr. On success, increments q.key (key1) ref | |
2328 | * count. | |
2329 | */ | |
b41277dc | 2330 | ret = futex_wait_setup(uaddr, val, flags, &q, &hb); |
c8b15a70 TG |
2331 | if (ret) |
2332 | goto out_key2; | |
52400ba9 DH |
2333 | |
2334 | /* Queue the futex_q, drop the hb lock, wait for wakeup. */ | |
f1a11e05 | 2335 | futex_wait_queue_me(hb, &q, to); |
52400ba9 DH |
2336 | |
2337 | spin_lock(&hb->lock); | |
2338 | ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to); | |
2339 | spin_unlock(&hb->lock); | |
2340 | if (ret) | |
2341 | goto out_put_keys; | |
2342 | ||
2343 | /* | |
2344 | * In order for us to be here, we know our q.key == key2, and since | |
2345 | * we took the hb->lock above, we also know that futex_requeue() has | |
2346 | * completed and we no longer have to concern ourselves with a wakeup | |
7ada876a DH |
2347 | * race with the atomic proxy lock acquisition by the requeue code. The |
2348 | * futex_requeue dropped our key1 reference and incremented our key2 | |
2349 | * reference count. | |
52400ba9 DH |
2350 | */ |
2351 | ||
2352 | /* Check if the requeue code acquired the second futex for us. */ | |
2353 | if (!q.rt_waiter) { | |
2354 | /* | |
2355 | * Got the lock. We might not be the anticipated owner if we | |
2356 | * did a lock-steal - fix up the PI-state in that case. | |
2357 | */ | |
2358 | if (q.pi_state && (q.pi_state->owner != current)) { | |
2359 | spin_lock(q.lock_ptr); | |
ae791a2d | 2360 | ret = fixup_pi_state_owner(uaddr2, &q, current); |
52400ba9 DH |
2361 | spin_unlock(q.lock_ptr); |
2362 | } | |
2363 | } else { | |
2364 | /* | |
2365 | * We have been woken up by futex_unlock_pi(), a timeout, or a | |
2366 | * signal. futex_unlock_pi() will not destroy the lock_ptr nor | |
2367 | * the pi_state. | |
2368 | */ | |
f27071cb | 2369 | WARN_ON(!q.pi_state); |
52400ba9 DH |
2370 | pi_mutex = &q.pi_state->pi_mutex; |
2371 | ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1); | |
2372 | debug_rt_mutex_free_waiter(&rt_waiter); | |
2373 | ||
2374 | spin_lock(q.lock_ptr); | |
2375 | /* | |
2376 | * Fixup the pi_state owner and possibly acquire the lock if we | |
2377 | * haven't already. | |
2378 | */ | |
ae791a2d | 2379 | res = fixup_owner(uaddr2, &q, !ret); |
52400ba9 DH |
2380 | /* |
2381 | * If fixup_owner() returned an error, proprogate that. If it | |
56ec1607 | 2382 | * acquired the lock, clear -ETIMEDOUT or -EINTR. |
52400ba9 DH |
2383 | */ |
2384 | if (res) | |
2385 | ret = (res < 0) ? res : 0; | |
2386 | ||
2387 | /* Unqueue and drop the lock. */ | |
2388 | unqueue_me_pi(&q); | |
2389 | } | |
2390 | ||
2391 | /* | |
2392 | * If fixup_pi_state_owner() faulted and was unable to handle the | |
2393 | * fault, unlock the rt_mutex and return the fault to userspace. | |
2394 | */ | |
2395 | if (ret == -EFAULT) { | |
b6070a8d | 2396 | if (pi_mutex && rt_mutex_owner(pi_mutex) == current) |
52400ba9 DH |
2397 | rt_mutex_unlock(pi_mutex); |
2398 | } else if (ret == -EINTR) { | |
52400ba9 | 2399 | /* |
cc6db4e6 DH |
2400 | * We've already been requeued, but cannot restart by calling |
2401 | * futex_lock_pi() directly. We could restart this syscall, but | |
2402 | * it would detect that the user space "val" changed and return | |
2403 | * -EWOULDBLOCK. Save the overhead of the restart and return | |
2404 | * -EWOULDBLOCK directly. | |
52400ba9 | 2405 | */ |
2070887f | 2406 | ret = -EWOULDBLOCK; |
52400ba9 DH |
2407 | } |
2408 | ||
2409 | out_put_keys: | |
ae791a2d | 2410 | put_futex_key(&q.key); |
c8b15a70 | 2411 | out_key2: |
ae791a2d | 2412 | put_futex_key(&key2); |
52400ba9 DH |
2413 | |
2414 | out: | |
2415 | if (to) { | |
2416 | hrtimer_cancel(&to->timer); | |
2417 | destroy_hrtimer_on_stack(&to->timer); | |
2418 | } | |
2419 | return ret; | |
2420 | } | |
2421 | ||
0771dfef IM |
2422 | /* |
2423 | * Support for robust futexes: the kernel cleans up held futexes at | |
2424 | * thread exit time. | |
2425 | * | |
2426 | * Implementation: user-space maintains a per-thread list of locks it | |
2427 | * is holding. Upon do_exit(), the kernel carefully walks this list, | |
2428 | * and marks all locks that are owned by this thread with the | |
c87e2837 | 2429 | * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is |
0771dfef IM |
2430 | * always manipulated with the lock held, so the list is private and |
2431 | * per-thread. Userspace also maintains a per-thread 'list_op_pending' | |
2432 | * field, to allow the kernel to clean up if the thread dies after | |
2433 | * acquiring the lock, but just before it could have added itself to | |
2434 | * the list. There can only be one such pending lock. | |
2435 | */ | |
2436 | ||
2437 | /** | |
d96ee56c DH |
2438 | * sys_set_robust_list() - Set the robust-futex list head of a task |
2439 | * @head: pointer to the list-head | |
2440 | * @len: length of the list-head, as userspace expects | |
0771dfef | 2441 | */ |
836f92ad HC |
2442 | SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head, |
2443 | size_t, len) | |
0771dfef | 2444 | { |
a0c1e907 TG |
2445 | if (!futex_cmpxchg_enabled) |
2446 | return -ENOSYS; | |
0771dfef IM |
2447 | /* |
2448 | * The kernel knows only one size for now: | |
2449 | */ | |
2450 | if (unlikely(len != sizeof(*head))) | |
2451 | return -EINVAL; | |
2452 | ||
2453 | current->robust_list = head; | |
2454 | ||
2455 | return 0; | |
2456 | } | |
2457 | ||
2458 | /** | |
d96ee56c DH |
2459 | * sys_get_robust_list() - Get the robust-futex list head of a task |
2460 | * @pid: pid of the process [zero for current task] | |
2461 | * @head_ptr: pointer to a list-head pointer, the kernel fills it in | |
2462 | * @len_ptr: pointer to a length field, the kernel fills in the header size | |
0771dfef | 2463 | */ |
836f92ad HC |
2464 | SYSCALL_DEFINE3(get_robust_list, int, pid, |
2465 | struct robust_list_head __user * __user *, head_ptr, | |
2466 | size_t __user *, len_ptr) | |
0771dfef | 2467 | { |
ba46df98 | 2468 | struct robust_list_head __user *head; |
0771dfef | 2469 | unsigned long ret; |
bdbb776f | 2470 | struct task_struct *p; |
0771dfef | 2471 | |
a0c1e907 TG |
2472 | if (!futex_cmpxchg_enabled) |
2473 | return -ENOSYS; | |
2474 | ||
bdbb776f KC |
2475 | rcu_read_lock(); |
2476 | ||
2477 | ret = -ESRCH; | |
0771dfef | 2478 | if (!pid) |
bdbb776f | 2479 | p = current; |
0771dfef | 2480 | else { |
228ebcbe | 2481 | p = find_task_by_vpid(pid); |
0771dfef IM |
2482 | if (!p) |
2483 | goto err_unlock; | |
0771dfef IM |
2484 | } |
2485 | ||
bdbb776f KC |
2486 | ret = -EPERM; |
2487 | if (!ptrace_may_access(p, PTRACE_MODE_READ)) | |
2488 | goto err_unlock; | |
2489 | ||
2490 | head = p->robust_list; | |
2491 | rcu_read_unlock(); | |
2492 | ||
0771dfef IM |
2493 | if (put_user(sizeof(*head), len_ptr)) |
2494 | return -EFAULT; | |
2495 | return put_user(head, head_ptr); | |
2496 | ||
2497 | err_unlock: | |
aaa2a97e | 2498 | rcu_read_unlock(); |
0771dfef IM |
2499 | |
2500 | return ret; | |
2501 | } | |
2502 | ||
2503 | /* | |
2504 | * Process a futex-list entry, check whether it's owned by the | |
2505 | * dying task, and do notification if so: | |
2506 | */ | |
e3f2ddea | 2507 | int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi) |
0771dfef | 2508 | { |
7cfdaf38 | 2509 | u32 uval, uninitialized_var(nval), mval; |
0771dfef | 2510 | |
8f17d3a5 IM |
2511 | retry: |
2512 | if (get_user(uval, uaddr)) | |
0771dfef IM |
2513 | return -1; |
2514 | ||
b488893a | 2515 | if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) { |
0771dfef IM |
2516 | /* |
2517 | * Ok, this dying thread is truly holding a futex | |
2518 | * of interest. Set the OWNER_DIED bit atomically | |
2519 | * via cmpxchg, and if the value had FUTEX_WAITERS | |
2520 | * set, wake up a waiter (if any). (We have to do a | |
2521 | * futex_wake() even if OWNER_DIED is already set - | |
2522 | * to handle the rare but possible case of recursive | |
2523 | * thread-death.) The rest of the cleanup is done in | |
2524 | * userspace. | |
2525 | */ | |
e3f2ddea | 2526 | mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED; |
6e0aa9f8 TG |
2527 | /* |
2528 | * We are not holding a lock here, but we want to have | |
2529 | * the pagefault_disable/enable() protection because | |
2530 | * we want to handle the fault gracefully. If the | |
2531 | * access fails we try to fault in the futex with R/W | |
2532 | * verification via get_user_pages. get_user() above | |
2533 | * does not guarantee R/W access. If that fails we | |
2534 | * give up and leave the futex locked. | |
2535 | */ | |
2536 | if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) { | |
2537 | if (fault_in_user_writeable(uaddr)) | |
2538 | return -1; | |
2539 | goto retry; | |
2540 | } | |
c87e2837 | 2541 | if (nval != uval) |
8f17d3a5 | 2542 | goto retry; |
0771dfef | 2543 | |
e3f2ddea IM |
2544 | /* |
2545 | * Wake robust non-PI futexes here. The wakeup of | |
2546 | * PI futexes happens in exit_pi_state(): | |
2547 | */ | |
36cf3b5c | 2548 | if (!pi && (uval & FUTEX_WAITERS)) |
c2f9f201 | 2549 | futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY); |
0771dfef IM |
2550 | } |
2551 | return 0; | |
2552 | } | |
2553 | ||
e3f2ddea IM |
2554 | /* |
2555 | * Fetch a robust-list pointer. Bit 0 signals PI futexes: | |
2556 | */ | |
2557 | static inline int fetch_robust_entry(struct robust_list __user **entry, | |
ba46df98 | 2558 | struct robust_list __user * __user *head, |
1dcc41bb | 2559 | unsigned int *pi) |
e3f2ddea IM |
2560 | { |
2561 | unsigned long uentry; | |
2562 | ||
ba46df98 | 2563 | if (get_user(uentry, (unsigned long __user *)head)) |
e3f2ddea IM |
2564 | return -EFAULT; |
2565 | ||
ba46df98 | 2566 | *entry = (void __user *)(uentry & ~1UL); |
e3f2ddea IM |
2567 | *pi = uentry & 1; |
2568 | ||
2569 | return 0; | |
2570 | } | |
2571 | ||
0771dfef IM |
2572 | /* |
2573 | * Walk curr->robust_list (very carefully, it's a userspace list!) | |
2574 | * and mark any locks found there dead, and notify any waiters. | |
2575 | * | |
2576 | * We silently return on any sign of list-walking problem. | |
2577 | */ | |
2578 | void exit_robust_list(struct task_struct *curr) | |
2579 | { | |
2580 | struct robust_list_head __user *head = curr->robust_list; | |
9f96cb1e | 2581 | struct robust_list __user *entry, *next_entry, *pending; |
4c115e95 DH |
2582 | unsigned int limit = ROBUST_LIST_LIMIT, pi, pip; |
2583 | unsigned int uninitialized_var(next_pi); | |
0771dfef | 2584 | unsigned long futex_offset; |
9f96cb1e | 2585 | int rc; |
0771dfef | 2586 | |
a0c1e907 TG |
2587 | if (!futex_cmpxchg_enabled) |
2588 | return; | |
2589 | ||
0771dfef IM |
2590 | /* |
2591 | * Fetch the list head (which was registered earlier, via | |
2592 | * sys_set_robust_list()): | |
2593 | */ | |
e3f2ddea | 2594 | if (fetch_robust_entry(&entry, &head->list.next, &pi)) |
0771dfef IM |
2595 | return; |
2596 | /* | |
2597 | * Fetch the relative futex offset: | |
2598 | */ | |
2599 | if (get_user(futex_offset, &head->futex_offset)) | |
2600 | return; | |
2601 | /* | |
2602 | * Fetch any possibly pending lock-add first, and handle it | |
2603 | * if it exists: | |
2604 | */ | |
e3f2ddea | 2605 | if (fetch_robust_entry(&pending, &head->list_op_pending, &pip)) |
0771dfef | 2606 | return; |
e3f2ddea | 2607 | |
9f96cb1e | 2608 | next_entry = NULL; /* avoid warning with gcc */ |
0771dfef | 2609 | while (entry != &head->list) { |
9f96cb1e MS |
2610 | /* |
2611 | * Fetch the next entry in the list before calling | |
2612 | * handle_futex_death: | |
2613 | */ | |
2614 | rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi); | |
0771dfef IM |
2615 | /* |
2616 | * A pending lock might already be on the list, so | |
c87e2837 | 2617 | * don't process it twice: |
0771dfef IM |
2618 | */ |
2619 | if (entry != pending) | |
ba46df98 | 2620 | if (handle_futex_death((void __user *)entry + futex_offset, |
e3f2ddea | 2621 | curr, pi)) |
0771dfef | 2622 | return; |
9f96cb1e | 2623 | if (rc) |
0771dfef | 2624 | return; |
9f96cb1e MS |
2625 | entry = next_entry; |
2626 | pi = next_pi; | |
0771dfef IM |
2627 | /* |
2628 | * Avoid excessively long or circular lists: | |
2629 | */ | |
2630 | if (!--limit) | |
2631 | break; | |
2632 | ||
2633 | cond_resched(); | |
2634 | } | |
9f96cb1e MS |
2635 | |
2636 | if (pending) | |
2637 | handle_futex_death((void __user *)pending + futex_offset, | |
2638 | curr, pip); | |
0771dfef IM |
2639 | } |
2640 | ||
c19384b5 | 2641 | long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout, |
e2970f2f | 2642 | u32 __user *uaddr2, u32 val2, u32 val3) |
1da177e4 | 2643 | { |
81b40539 | 2644 | int cmd = op & FUTEX_CMD_MASK; |
b41277dc | 2645 | unsigned int flags = 0; |
34f01cc1 ED |
2646 | |
2647 | if (!(op & FUTEX_PRIVATE_FLAG)) | |
b41277dc | 2648 | flags |= FLAGS_SHARED; |
1da177e4 | 2649 | |
b41277dc DH |
2650 | if (op & FUTEX_CLOCK_REALTIME) { |
2651 | flags |= FLAGS_CLOCKRT; | |
2652 | if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI) | |
2653 | return -ENOSYS; | |
2654 | } | |
1da177e4 | 2655 | |
59263b51 TG |
2656 | switch (cmd) { |
2657 | case FUTEX_LOCK_PI: | |
2658 | case FUTEX_UNLOCK_PI: | |
2659 | case FUTEX_TRYLOCK_PI: | |
2660 | case FUTEX_WAIT_REQUEUE_PI: | |
2661 | case FUTEX_CMP_REQUEUE_PI: | |
2662 | if (!futex_cmpxchg_enabled) | |
2663 | return -ENOSYS; | |
2664 | } | |
2665 | ||
34f01cc1 | 2666 | switch (cmd) { |
1da177e4 | 2667 | case FUTEX_WAIT: |
cd689985 TG |
2668 | val3 = FUTEX_BITSET_MATCH_ANY; |
2669 | case FUTEX_WAIT_BITSET: | |
81b40539 | 2670 | return futex_wait(uaddr, flags, val, timeout, val3); |
1da177e4 | 2671 | case FUTEX_WAKE: |
cd689985 TG |
2672 | val3 = FUTEX_BITSET_MATCH_ANY; |
2673 | case FUTEX_WAKE_BITSET: | |
81b40539 | 2674 | return futex_wake(uaddr, flags, val, val3); |
1da177e4 | 2675 | case FUTEX_REQUEUE: |
81b40539 | 2676 | return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0); |
1da177e4 | 2677 | case FUTEX_CMP_REQUEUE: |
81b40539 | 2678 | return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0); |
4732efbe | 2679 | case FUTEX_WAKE_OP: |
81b40539 | 2680 | return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3); |
c87e2837 | 2681 | case FUTEX_LOCK_PI: |
81b40539 | 2682 | return futex_lock_pi(uaddr, flags, val, timeout, 0); |
c87e2837 | 2683 | case FUTEX_UNLOCK_PI: |
81b40539 | 2684 | return futex_unlock_pi(uaddr, flags); |
c87e2837 | 2685 | case FUTEX_TRYLOCK_PI: |
81b40539 | 2686 | return futex_lock_pi(uaddr, flags, 0, timeout, 1); |
52400ba9 DH |
2687 | case FUTEX_WAIT_REQUEUE_PI: |
2688 | val3 = FUTEX_BITSET_MATCH_ANY; | |
81b40539 TG |
2689 | return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3, |
2690 | uaddr2); | |
52400ba9 | 2691 | case FUTEX_CMP_REQUEUE_PI: |
81b40539 | 2692 | return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1); |
1da177e4 | 2693 | } |
81b40539 | 2694 | return -ENOSYS; |
1da177e4 LT |
2695 | } |
2696 | ||
2697 | ||
17da2bd9 HC |
2698 | SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val, |
2699 | struct timespec __user *, utime, u32 __user *, uaddr2, | |
2700 | u32, val3) | |
1da177e4 | 2701 | { |
c19384b5 PP |
2702 | struct timespec ts; |
2703 | ktime_t t, *tp = NULL; | |
e2970f2f | 2704 | u32 val2 = 0; |
34f01cc1 | 2705 | int cmd = op & FUTEX_CMD_MASK; |
1da177e4 | 2706 | |
cd689985 | 2707 | if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI || |
52400ba9 DH |
2708 | cmd == FUTEX_WAIT_BITSET || |
2709 | cmd == FUTEX_WAIT_REQUEUE_PI)) { | |
c19384b5 | 2710 | if (copy_from_user(&ts, utime, sizeof(ts)) != 0) |
1da177e4 | 2711 | return -EFAULT; |
c19384b5 | 2712 | if (!timespec_valid(&ts)) |
9741ef96 | 2713 | return -EINVAL; |
c19384b5 PP |
2714 | |
2715 | t = timespec_to_ktime(ts); | |
34f01cc1 | 2716 | if (cmd == FUTEX_WAIT) |
5a7780e7 | 2717 | t = ktime_add_safe(ktime_get(), t); |
c19384b5 | 2718 | tp = &t; |
1da177e4 LT |
2719 | } |
2720 | /* | |
52400ba9 | 2721 | * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*. |
f54f0986 | 2722 | * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP. |
1da177e4 | 2723 | */ |
f54f0986 | 2724 | if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE || |
ba9c22f2 | 2725 | cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP) |
e2970f2f | 2726 | val2 = (u32) (unsigned long) utime; |
1da177e4 | 2727 | |
c19384b5 | 2728 | return do_futex(uaddr, op, val, tp, uaddr2, val2, val3); |
1da177e4 LT |
2729 | } |
2730 | ||
f6d107fb | 2731 | static int __init futex_init(void) |
1da177e4 | 2732 | { |
a0c1e907 | 2733 | u32 curval; |
3e4ab747 | 2734 | int i; |
95362fa9 | 2735 | |
a0c1e907 TG |
2736 | /* |
2737 | * This will fail and we want it. Some arch implementations do | |
2738 | * runtime detection of the futex_atomic_cmpxchg_inatomic() | |
2739 | * functionality. We want to know that before we call in any | |
2740 | * of the complex code paths. Also we want to prevent | |
2741 | * registration of robust lists in that case. NULL is | |
2742 | * guaranteed to fault and we get -EFAULT on functional | |
fb62db2b | 2743 | * implementation, the non-functional ones will return |
a0c1e907 TG |
2744 | * -ENOSYS. |
2745 | */ | |
37a9d912 | 2746 | if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT) |
a0c1e907 TG |
2747 | futex_cmpxchg_enabled = 1; |
2748 | ||
3e4ab747 | 2749 | for (i = 0; i < ARRAY_SIZE(futex_queues); i++) { |
732375c6 | 2750 | plist_head_init(&futex_queues[i].chain); |
3e4ab747 TG |
2751 | spin_lock_init(&futex_queues[i].lock); |
2752 | } | |
2753 | ||
1da177e4 LT |
2754 | return 0; |
2755 | } | |
f6d107fb | 2756 | __initcall(futex_init); |