]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/vmalloc.c | |
3 | * | |
4 | * Copyright (C) 1993 Linus Torvalds | |
5 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
6 | * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <[email protected]>, May 2000 | |
7 | * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 | |
930fc45a | 8 | * Numa awareness, Christoph Lameter, SGI, June 2005 |
1da177e4 LT |
9 | */ |
10 | ||
db64fe02 | 11 | #include <linux/vmalloc.h> |
1da177e4 LT |
12 | #include <linux/mm.h> |
13 | #include <linux/module.h> | |
14 | #include <linux/highmem.h> | |
d43c36dc | 15 | #include <linux/sched.h> |
1da177e4 LT |
16 | #include <linux/slab.h> |
17 | #include <linux/spinlock.h> | |
18 | #include <linux/interrupt.h> | |
5f6a6a9c | 19 | #include <linux/proc_fs.h> |
a10aa579 | 20 | #include <linux/seq_file.h> |
3ac7fe5a | 21 | #include <linux/debugobjects.h> |
23016969 | 22 | #include <linux/kallsyms.h> |
db64fe02 NP |
23 | #include <linux/list.h> |
24 | #include <linux/rbtree.h> | |
25 | #include <linux/radix-tree.h> | |
26 | #include <linux/rcupdate.h> | |
f0aa6617 | 27 | #include <linux/pfn.h> |
89219d37 | 28 | #include <linux/kmemleak.h> |
60063497 | 29 | #include <linux/atomic.h> |
3b32123d | 30 | #include <linux/compiler.h> |
32fcfd40 | 31 | #include <linux/llist.h> |
3b32123d | 32 | |
1da177e4 LT |
33 | #include <asm/uaccess.h> |
34 | #include <asm/tlbflush.h> | |
2dca6999 | 35 | #include <asm/shmparam.h> |
1da177e4 | 36 | |
32fcfd40 AV |
37 | struct vfree_deferred { |
38 | struct llist_head list; | |
39 | struct work_struct wq; | |
40 | }; | |
41 | static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred); | |
42 | ||
43 | static void __vunmap(const void *, int); | |
44 | ||
45 | static void free_work(struct work_struct *w) | |
46 | { | |
47 | struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq); | |
48 | struct llist_node *llnode = llist_del_all(&p->list); | |
49 | while (llnode) { | |
50 | void *p = llnode; | |
51 | llnode = llist_next(llnode); | |
52 | __vunmap(p, 1); | |
53 | } | |
54 | } | |
55 | ||
db64fe02 | 56 | /*** Page table manipulation functions ***/ |
b221385b | 57 | |
1da177e4 LT |
58 | static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) |
59 | { | |
60 | pte_t *pte; | |
61 | ||
62 | pte = pte_offset_kernel(pmd, addr); | |
63 | do { | |
64 | pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); | |
65 | WARN_ON(!pte_none(ptent) && !pte_present(ptent)); | |
66 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
67 | } | |
68 | ||
db64fe02 | 69 | static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end) |
1da177e4 LT |
70 | { |
71 | pmd_t *pmd; | |
72 | unsigned long next; | |
73 | ||
74 | pmd = pmd_offset(pud, addr); | |
75 | do { | |
76 | next = pmd_addr_end(addr, end); | |
77 | if (pmd_none_or_clear_bad(pmd)) | |
78 | continue; | |
79 | vunmap_pte_range(pmd, addr, next); | |
80 | } while (pmd++, addr = next, addr != end); | |
81 | } | |
82 | ||
db64fe02 | 83 | static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end) |
1da177e4 LT |
84 | { |
85 | pud_t *pud; | |
86 | unsigned long next; | |
87 | ||
88 | pud = pud_offset(pgd, addr); | |
89 | do { | |
90 | next = pud_addr_end(addr, end); | |
91 | if (pud_none_or_clear_bad(pud)) | |
92 | continue; | |
93 | vunmap_pmd_range(pud, addr, next); | |
94 | } while (pud++, addr = next, addr != end); | |
95 | } | |
96 | ||
db64fe02 | 97 | static void vunmap_page_range(unsigned long addr, unsigned long end) |
1da177e4 LT |
98 | { |
99 | pgd_t *pgd; | |
100 | unsigned long next; | |
1da177e4 LT |
101 | |
102 | BUG_ON(addr >= end); | |
103 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
104 | do { |
105 | next = pgd_addr_end(addr, end); | |
106 | if (pgd_none_or_clear_bad(pgd)) | |
107 | continue; | |
108 | vunmap_pud_range(pgd, addr, next); | |
109 | } while (pgd++, addr = next, addr != end); | |
1da177e4 LT |
110 | } |
111 | ||
112 | static int vmap_pte_range(pmd_t *pmd, unsigned long addr, | |
db64fe02 | 113 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) |
1da177e4 LT |
114 | { |
115 | pte_t *pte; | |
116 | ||
db64fe02 NP |
117 | /* |
118 | * nr is a running index into the array which helps higher level | |
119 | * callers keep track of where we're up to. | |
120 | */ | |
121 | ||
872fec16 | 122 | pte = pte_alloc_kernel(pmd, addr); |
1da177e4 LT |
123 | if (!pte) |
124 | return -ENOMEM; | |
125 | do { | |
db64fe02 NP |
126 | struct page *page = pages[*nr]; |
127 | ||
128 | if (WARN_ON(!pte_none(*pte))) | |
129 | return -EBUSY; | |
130 | if (WARN_ON(!page)) | |
1da177e4 LT |
131 | return -ENOMEM; |
132 | set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); | |
db64fe02 | 133 | (*nr)++; |
1da177e4 LT |
134 | } while (pte++, addr += PAGE_SIZE, addr != end); |
135 | return 0; | |
136 | } | |
137 | ||
db64fe02 NP |
138 | static int vmap_pmd_range(pud_t *pud, unsigned long addr, |
139 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | |
1da177e4 LT |
140 | { |
141 | pmd_t *pmd; | |
142 | unsigned long next; | |
143 | ||
144 | pmd = pmd_alloc(&init_mm, pud, addr); | |
145 | if (!pmd) | |
146 | return -ENOMEM; | |
147 | do { | |
148 | next = pmd_addr_end(addr, end); | |
db64fe02 | 149 | if (vmap_pte_range(pmd, addr, next, prot, pages, nr)) |
1da177e4 LT |
150 | return -ENOMEM; |
151 | } while (pmd++, addr = next, addr != end); | |
152 | return 0; | |
153 | } | |
154 | ||
db64fe02 NP |
155 | static int vmap_pud_range(pgd_t *pgd, unsigned long addr, |
156 | unsigned long end, pgprot_t prot, struct page **pages, int *nr) | |
1da177e4 LT |
157 | { |
158 | pud_t *pud; | |
159 | unsigned long next; | |
160 | ||
161 | pud = pud_alloc(&init_mm, pgd, addr); | |
162 | if (!pud) | |
163 | return -ENOMEM; | |
164 | do { | |
165 | next = pud_addr_end(addr, end); | |
db64fe02 | 166 | if (vmap_pmd_range(pud, addr, next, prot, pages, nr)) |
1da177e4 LT |
167 | return -ENOMEM; |
168 | } while (pud++, addr = next, addr != end); | |
169 | return 0; | |
170 | } | |
171 | ||
db64fe02 NP |
172 | /* |
173 | * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and | |
174 | * will have pfns corresponding to the "pages" array. | |
175 | * | |
176 | * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N] | |
177 | */ | |
8fc48985 TH |
178 | static int vmap_page_range_noflush(unsigned long start, unsigned long end, |
179 | pgprot_t prot, struct page **pages) | |
1da177e4 LT |
180 | { |
181 | pgd_t *pgd; | |
182 | unsigned long next; | |
2e4e27c7 | 183 | unsigned long addr = start; |
db64fe02 NP |
184 | int err = 0; |
185 | int nr = 0; | |
1da177e4 LT |
186 | |
187 | BUG_ON(addr >= end); | |
188 | pgd = pgd_offset_k(addr); | |
1da177e4 LT |
189 | do { |
190 | next = pgd_addr_end(addr, end); | |
db64fe02 | 191 | err = vmap_pud_range(pgd, addr, next, prot, pages, &nr); |
1da177e4 | 192 | if (err) |
bf88c8c8 | 193 | return err; |
1da177e4 | 194 | } while (pgd++, addr = next, addr != end); |
db64fe02 | 195 | |
db64fe02 | 196 | return nr; |
1da177e4 LT |
197 | } |
198 | ||
8fc48985 TH |
199 | static int vmap_page_range(unsigned long start, unsigned long end, |
200 | pgprot_t prot, struct page **pages) | |
201 | { | |
202 | int ret; | |
203 | ||
204 | ret = vmap_page_range_noflush(start, end, prot, pages); | |
205 | flush_cache_vmap(start, end); | |
206 | return ret; | |
207 | } | |
208 | ||
81ac3ad9 | 209 | int is_vmalloc_or_module_addr(const void *x) |
73bdf0a6 LT |
210 | { |
211 | /* | |
ab4f2ee1 | 212 | * ARM, x86-64 and sparc64 put modules in a special place, |
73bdf0a6 LT |
213 | * and fall back on vmalloc() if that fails. Others |
214 | * just put it in the vmalloc space. | |
215 | */ | |
216 | #if defined(CONFIG_MODULES) && defined(MODULES_VADDR) | |
217 | unsigned long addr = (unsigned long)x; | |
218 | if (addr >= MODULES_VADDR && addr < MODULES_END) | |
219 | return 1; | |
220 | #endif | |
221 | return is_vmalloc_addr(x); | |
222 | } | |
223 | ||
48667e7a | 224 | /* |
add688fb | 225 | * Walk a vmap address to the struct page it maps. |
48667e7a | 226 | */ |
add688fb | 227 | struct page *vmalloc_to_page(const void *vmalloc_addr) |
48667e7a CL |
228 | { |
229 | unsigned long addr = (unsigned long) vmalloc_addr; | |
add688fb | 230 | struct page *page = NULL; |
48667e7a | 231 | pgd_t *pgd = pgd_offset_k(addr); |
48667e7a | 232 | |
7aa413de IM |
233 | /* |
234 | * XXX we might need to change this if we add VIRTUAL_BUG_ON for | |
235 | * architectures that do not vmalloc module space | |
236 | */ | |
73bdf0a6 | 237 | VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr)); |
59ea7463 | 238 | |
48667e7a | 239 | if (!pgd_none(*pgd)) { |
db64fe02 | 240 | pud_t *pud = pud_offset(pgd, addr); |
48667e7a | 241 | if (!pud_none(*pud)) { |
db64fe02 | 242 | pmd_t *pmd = pmd_offset(pud, addr); |
48667e7a | 243 | if (!pmd_none(*pmd)) { |
db64fe02 NP |
244 | pte_t *ptep, pte; |
245 | ||
48667e7a CL |
246 | ptep = pte_offset_map(pmd, addr); |
247 | pte = *ptep; | |
248 | if (pte_present(pte)) | |
add688fb | 249 | page = pte_page(pte); |
48667e7a CL |
250 | pte_unmap(ptep); |
251 | } | |
252 | } | |
253 | } | |
add688fb | 254 | return page; |
48667e7a | 255 | } |
add688fb | 256 | EXPORT_SYMBOL(vmalloc_to_page); |
48667e7a CL |
257 | |
258 | /* | |
add688fb | 259 | * Map a vmalloc()-space virtual address to the physical page frame number. |
48667e7a | 260 | */ |
add688fb | 261 | unsigned long vmalloc_to_pfn(const void *vmalloc_addr) |
48667e7a | 262 | { |
add688fb | 263 | return page_to_pfn(vmalloc_to_page(vmalloc_addr)); |
48667e7a | 264 | } |
add688fb | 265 | EXPORT_SYMBOL(vmalloc_to_pfn); |
48667e7a | 266 | |
db64fe02 NP |
267 | |
268 | /*** Global kva allocator ***/ | |
269 | ||
270 | #define VM_LAZY_FREE 0x01 | |
271 | #define VM_LAZY_FREEING 0x02 | |
272 | #define VM_VM_AREA 0x04 | |
273 | ||
db64fe02 | 274 | static DEFINE_SPINLOCK(vmap_area_lock); |
f1c4069e JK |
275 | /* Export for kexec only */ |
276 | LIST_HEAD(vmap_area_list); | |
89699605 NP |
277 | static struct rb_root vmap_area_root = RB_ROOT; |
278 | ||
279 | /* The vmap cache globals are protected by vmap_area_lock */ | |
280 | static struct rb_node *free_vmap_cache; | |
281 | static unsigned long cached_hole_size; | |
282 | static unsigned long cached_vstart; | |
283 | static unsigned long cached_align; | |
284 | ||
ca23e405 | 285 | static unsigned long vmap_area_pcpu_hole; |
db64fe02 NP |
286 | |
287 | static struct vmap_area *__find_vmap_area(unsigned long addr) | |
1da177e4 | 288 | { |
db64fe02 NP |
289 | struct rb_node *n = vmap_area_root.rb_node; |
290 | ||
291 | while (n) { | |
292 | struct vmap_area *va; | |
293 | ||
294 | va = rb_entry(n, struct vmap_area, rb_node); | |
295 | if (addr < va->va_start) | |
296 | n = n->rb_left; | |
cef2ac3f | 297 | else if (addr >= va->va_end) |
db64fe02 NP |
298 | n = n->rb_right; |
299 | else | |
300 | return va; | |
301 | } | |
302 | ||
303 | return NULL; | |
304 | } | |
305 | ||
306 | static void __insert_vmap_area(struct vmap_area *va) | |
307 | { | |
308 | struct rb_node **p = &vmap_area_root.rb_node; | |
309 | struct rb_node *parent = NULL; | |
310 | struct rb_node *tmp; | |
311 | ||
312 | while (*p) { | |
170168d0 | 313 | struct vmap_area *tmp_va; |
db64fe02 NP |
314 | |
315 | parent = *p; | |
170168d0 NK |
316 | tmp_va = rb_entry(parent, struct vmap_area, rb_node); |
317 | if (va->va_start < tmp_va->va_end) | |
db64fe02 | 318 | p = &(*p)->rb_left; |
170168d0 | 319 | else if (va->va_end > tmp_va->va_start) |
db64fe02 NP |
320 | p = &(*p)->rb_right; |
321 | else | |
322 | BUG(); | |
323 | } | |
324 | ||
325 | rb_link_node(&va->rb_node, parent, p); | |
326 | rb_insert_color(&va->rb_node, &vmap_area_root); | |
327 | ||
4341fa45 | 328 | /* address-sort this list */ |
db64fe02 NP |
329 | tmp = rb_prev(&va->rb_node); |
330 | if (tmp) { | |
331 | struct vmap_area *prev; | |
332 | prev = rb_entry(tmp, struct vmap_area, rb_node); | |
333 | list_add_rcu(&va->list, &prev->list); | |
334 | } else | |
335 | list_add_rcu(&va->list, &vmap_area_list); | |
336 | } | |
337 | ||
338 | static void purge_vmap_area_lazy(void); | |
339 | ||
340 | /* | |
341 | * Allocate a region of KVA of the specified size and alignment, within the | |
342 | * vstart and vend. | |
343 | */ | |
344 | static struct vmap_area *alloc_vmap_area(unsigned long size, | |
345 | unsigned long align, | |
346 | unsigned long vstart, unsigned long vend, | |
347 | int node, gfp_t gfp_mask) | |
348 | { | |
349 | struct vmap_area *va; | |
350 | struct rb_node *n; | |
1da177e4 | 351 | unsigned long addr; |
db64fe02 | 352 | int purged = 0; |
89699605 | 353 | struct vmap_area *first; |
db64fe02 | 354 | |
7766970c | 355 | BUG_ON(!size); |
db64fe02 | 356 | BUG_ON(size & ~PAGE_MASK); |
89699605 | 357 | BUG_ON(!is_power_of_2(align)); |
db64fe02 | 358 | |
db64fe02 NP |
359 | va = kmalloc_node(sizeof(struct vmap_area), |
360 | gfp_mask & GFP_RECLAIM_MASK, node); | |
361 | if (unlikely(!va)) | |
362 | return ERR_PTR(-ENOMEM); | |
363 | ||
7f88f88f CM |
364 | /* |
365 | * Only scan the relevant parts containing pointers to other objects | |
366 | * to avoid false negatives. | |
367 | */ | |
368 | kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK); | |
369 | ||
db64fe02 NP |
370 | retry: |
371 | spin_lock(&vmap_area_lock); | |
89699605 NP |
372 | /* |
373 | * Invalidate cache if we have more permissive parameters. | |
374 | * cached_hole_size notes the largest hole noticed _below_ | |
375 | * the vmap_area cached in free_vmap_cache: if size fits | |
376 | * into that hole, we want to scan from vstart to reuse | |
377 | * the hole instead of allocating above free_vmap_cache. | |
378 | * Note that __free_vmap_area may update free_vmap_cache | |
379 | * without updating cached_hole_size or cached_align. | |
380 | */ | |
381 | if (!free_vmap_cache || | |
382 | size < cached_hole_size || | |
383 | vstart < cached_vstart || | |
384 | align < cached_align) { | |
385 | nocache: | |
386 | cached_hole_size = 0; | |
387 | free_vmap_cache = NULL; | |
388 | } | |
389 | /* record if we encounter less permissive parameters */ | |
390 | cached_vstart = vstart; | |
391 | cached_align = align; | |
392 | ||
393 | /* find starting point for our search */ | |
394 | if (free_vmap_cache) { | |
395 | first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); | |
248ac0e1 | 396 | addr = ALIGN(first->va_end, align); |
89699605 NP |
397 | if (addr < vstart) |
398 | goto nocache; | |
bcb615a8 | 399 | if (addr + size < addr) |
89699605 NP |
400 | goto overflow; |
401 | ||
402 | } else { | |
403 | addr = ALIGN(vstart, align); | |
bcb615a8 | 404 | if (addr + size < addr) |
89699605 NP |
405 | goto overflow; |
406 | ||
407 | n = vmap_area_root.rb_node; | |
408 | first = NULL; | |
409 | ||
410 | while (n) { | |
db64fe02 NP |
411 | struct vmap_area *tmp; |
412 | tmp = rb_entry(n, struct vmap_area, rb_node); | |
413 | if (tmp->va_end >= addr) { | |
db64fe02 | 414 | first = tmp; |
89699605 NP |
415 | if (tmp->va_start <= addr) |
416 | break; | |
417 | n = n->rb_left; | |
418 | } else | |
db64fe02 | 419 | n = n->rb_right; |
89699605 | 420 | } |
db64fe02 NP |
421 | |
422 | if (!first) | |
423 | goto found; | |
db64fe02 | 424 | } |
89699605 NP |
425 | |
426 | /* from the starting point, walk areas until a suitable hole is found */ | |
248ac0e1 | 427 | while (addr + size > first->va_start && addr + size <= vend) { |
89699605 NP |
428 | if (addr + cached_hole_size < first->va_start) |
429 | cached_hole_size = first->va_start - addr; | |
248ac0e1 | 430 | addr = ALIGN(first->va_end, align); |
bcb615a8 | 431 | if (addr + size < addr) |
89699605 NP |
432 | goto overflow; |
433 | ||
92ca922f | 434 | if (list_is_last(&first->list, &vmap_area_list)) |
89699605 | 435 | goto found; |
92ca922f H |
436 | |
437 | first = list_entry(first->list.next, | |
438 | struct vmap_area, list); | |
db64fe02 NP |
439 | } |
440 | ||
89699605 NP |
441 | found: |
442 | if (addr + size > vend) | |
443 | goto overflow; | |
db64fe02 NP |
444 | |
445 | va->va_start = addr; | |
446 | va->va_end = addr + size; | |
447 | va->flags = 0; | |
448 | __insert_vmap_area(va); | |
89699605 | 449 | free_vmap_cache = &va->rb_node; |
db64fe02 NP |
450 | spin_unlock(&vmap_area_lock); |
451 | ||
89699605 NP |
452 | BUG_ON(va->va_start & (align-1)); |
453 | BUG_ON(va->va_start < vstart); | |
454 | BUG_ON(va->va_end > vend); | |
455 | ||
db64fe02 | 456 | return va; |
89699605 NP |
457 | |
458 | overflow: | |
459 | spin_unlock(&vmap_area_lock); | |
460 | if (!purged) { | |
461 | purge_vmap_area_lazy(); | |
462 | purged = 1; | |
463 | goto retry; | |
464 | } | |
465 | if (printk_ratelimit()) | |
0cbc8533 | 466 | pr_warn("vmap allocation for size %lu failed: " |
89699605 NP |
467 | "use vmalloc=<size> to increase size.\n", size); |
468 | kfree(va); | |
469 | return ERR_PTR(-EBUSY); | |
db64fe02 NP |
470 | } |
471 | ||
db64fe02 NP |
472 | static void __free_vmap_area(struct vmap_area *va) |
473 | { | |
474 | BUG_ON(RB_EMPTY_NODE(&va->rb_node)); | |
89699605 NP |
475 | |
476 | if (free_vmap_cache) { | |
477 | if (va->va_end < cached_vstart) { | |
478 | free_vmap_cache = NULL; | |
479 | } else { | |
480 | struct vmap_area *cache; | |
481 | cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node); | |
482 | if (va->va_start <= cache->va_start) { | |
483 | free_vmap_cache = rb_prev(&va->rb_node); | |
484 | /* | |
485 | * We don't try to update cached_hole_size or | |
486 | * cached_align, but it won't go very wrong. | |
487 | */ | |
488 | } | |
489 | } | |
490 | } | |
db64fe02 NP |
491 | rb_erase(&va->rb_node, &vmap_area_root); |
492 | RB_CLEAR_NODE(&va->rb_node); | |
493 | list_del_rcu(&va->list); | |
494 | ||
ca23e405 TH |
495 | /* |
496 | * Track the highest possible candidate for pcpu area | |
497 | * allocation. Areas outside of vmalloc area can be returned | |
498 | * here too, consider only end addresses which fall inside | |
499 | * vmalloc area proper. | |
500 | */ | |
501 | if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END) | |
502 | vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end); | |
503 | ||
14769de9 | 504 | kfree_rcu(va, rcu_head); |
db64fe02 NP |
505 | } |
506 | ||
507 | /* | |
508 | * Free a region of KVA allocated by alloc_vmap_area | |
509 | */ | |
510 | static void free_vmap_area(struct vmap_area *va) | |
511 | { | |
512 | spin_lock(&vmap_area_lock); | |
513 | __free_vmap_area(va); | |
514 | spin_unlock(&vmap_area_lock); | |
515 | } | |
516 | ||
517 | /* | |
518 | * Clear the pagetable entries of a given vmap_area | |
519 | */ | |
520 | static void unmap_vmap_area(struct vmap_area *va) | |
521 | { | |
522 | vunmap_page_range(va->va_start, va->va_end); | |
523 | } | |
524 | ||
cd52858c NP |
525 | static void vmap_debug_free_range(unsigned long start, unsigned long end) |
526 | { | |
527 | /* | |
528 | * Unmap page tables and force a TLB flush immediately if | |
529 | * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free | |
530 | * bugs similarly to those in linear kernel virtual address | |
531 | * space after a page has been freed. | |
532 | * | |
533 | * All the lazy freeing logic is still retained, in order to | |
534 | * minimise intrusiveness of this debugging feature. | |
535 | * | |
536 | * This is going to be *slow* (linear kernel virtual address | |
537 | * debugging doesn't do a broadcast TLB flush so it is a lot | |
538 | * faster). | |
539 | */ | |
540 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
541 | vunmap_page_range(start, end); | |
542 | flush_tlb_kernel_range(start, end); | |
543 | #endif | |
544 | } | |
545 | ||
db64fe02 NP |
546 | /* |
547 | * lazy_max_pages is the maximum amount of virtual address space we gather up | |
548 | * before attempting to purge with a TLB flush. | |
549 | * | |
550 | * There is a tradeoff here: a larger number will cover more kernel page tables | |
551 | * and take slightly longer to purge, but it will linearly reduce the number of | |
552 | * global TLB flushes that must be performed. It would seem natural to scale | |
553 | * this number up linearly with the number of CPUs (because vmapping activity | |
554 | * could also scale linearly with the number of CPUs), however it is likely | |
555 | * that in practice, workloads might be constrained in other ways that mean | |
556 | * vmap activity will not scale linearly with CPUs. Also, I want to be | |
557 | * conservative and not introduce a big latency on huge systems, so go with | |
558 | * a less aggressive log scale. It will still be an improvement over the old | |
559 | * code, and it will be simple to change the scale factor if we find that it | |
560 | * becomes a problem on bigger systems. | |
561 | */ | |
562 | static unsigned long lazy_max_pages(void) | |
563 | { | |
564 | unsigned int log; | |
565 | ||
566 | log = fls(num_online_cpus()); | |
567 | ||
568 | return log * (32UL * 1024 * 1024 / PAGE_SIZE); | |
569 | } | |
570 | ||
571 | static atomic_t vmap_lazy_nr = ATOMIC_INIT(0); | |
572 | ||
02b709df NP |
573 | /* for per-CPU blocks */ |
574 | static void purge_fragmented_blocks_allcpus(void); | |
575 | ||
3ee48b6a CW |
576 | /* |
577 | * called before a call to iounmap() if the caller wants vm_area_struct's | |
578 | * immediately freed. | |
579 | */ | |
580 | void set_iounmap_nonlazy(void) | |
581 | { | |
582 | atomic_set(&vmap_lazy_nr, lazy_max_pages()+1); | |
583 | } | |
584 | ||
db64fe02 NP |
585 | /* |
586 | * Purges all lazily-freed vmap areas. | |
587 | * | |
588 | * If sync is 0 then don't purge if there is already a purge in progress. | |
589 | * If force_flush is 1, then flush kernel TLBs between *start and *end even | |
590 | * if we found no lazy vmap areas to unmap (callers can use this to optimise | |
591 | * their own TLB flushing). | |
592 | * Returns with *start = min(*start, lowest purged address) | |
593 | * *end = max(*end, highest purged address) | |
594 | */ | |
595 | static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end, | |
596 | int sync, int force_flush) | |
597 | { | |
46666d8a | 598 | static DEFINE_SPINLOCK(purge_lock); |
db64fe02 NP |
599 | LIST_HEAD(valist); |
600 | struct vmap_area *va; | |
cbb76676 | 601 | struct vmap_area *n_va; |
db64fe02 NP |
602 | int nr = 0; |
603 | ||
604 | /* | |
605 | * If sync is 0 but force_flush is 1, we'll go sync anyway but callers | |
606 | * should not expect such behaviour. This just simplifies locking for | |
607 | * the case that isn't actually used at the moment anyway. | |
608 | */ | |
609 | if (!sync && !force_flush) { | |
46666d8a | 610 | if (!spin_trylock(&purge_lock)) |
db64fe02 NP |
611 | return; |
612 | } else | |
46666d8a | 613 | spin_lock(&purge_lock); |
db64fe02 | 614 | |
02b709df NP |
615 | if (sync) |
616 | purge_fragmented_blocks_allcpus(); | |
617 | ||
db64fe02 NP |
618 | rcu_read_lock(); |
619 | list_for_each_entry_rcu(va, &vmap_area_list, list) { | |
620 | if (va->flags & VM_LAZY_FREE) { | |
621 | if (va->va_start < *start) | |
622 | *start = va->va_start; | |
623 | if (va->va_end > *end) | |
624 | *end = va->va_end; | |
625 | nr += (va->va_end - va->va_start) >> PAGE_SHIFT; | |
db64fe02 NP |
626 | list_add_tail(&va->purge_list, &valist); |
627 | va->flags |= VM_LAZY_FREEING; | |
628 | va->flags &= ~VM_LAZY_FREE; | |
629 | } | |
630 | } | |
631 | rcu_read_unlock(); | |
632 | ||
88f50044 | 633 | if (nr) |
db64fe02 | 634 | atomic_sub(nr, &vmap_lazy_nr); |
db64fe02 NP |
635 | |
636 | if (nr || force_flush) | |
637 | flush_tlb_kernel_range(*start, *end); | |
638 | ||
639 | if (nr) { | |
640 | spin_lock(&vmap_area_lock); | |
cbb76676 | 641 | list_for_each_entry_safe(va, n_va, &valist, purge_list) |
db64fe02 NP |
642 | __free_vmap_area(va); |
643 | spin_unlock(&vmap_area_lock); | |
644 | } | |
46666d8a | 645 | spin_unlock(&purge_lock); |
db64fe02 NP |
646 | } |
647 | ||
496850e5 NP |
648 | /* |
649 | * Kick off a purge of the outstanding lazy areas. Don't bother if somebody | |
650 | * is already purging. | |
651 | */ | |
652 | static void try_purge_vmap_area_lazy(void) | |
653 | { | |
654 | unsigned long start = ULONG_MAX, end = 0; | |
655 | ||
656 | __purge_vmap_area_lazy(&start, &end, 0, 0); | |
657 | } | |
658 | ||
db64fe02 NP |
659 | /* |
660 | * Kick off a purge of the outstanding lazy areas. | |
661 | */ | |
662 | static void purge_vmap_area_lazy(void) | |
663 | { | |
664 | unsigned long start = ULONG_MAX, end = 0; | |
665 | ||
496850e5 | 666 | __purge_vmap_area_lazy(&start, &end, 1, 0); |
db64fe02 NP |
667 | } |
668 | ||
669 | /* | |
64141da5 JF |
670 | * Free a vmap area, caller ensuring that the area has been unmapped |
671 | * and flush_cache_vunmap had been called for the correct range | |
672 | * previously. | |
db64fe02 | 673 | */ |
64141da5 | 674 | static void free_vmap_area_noflush(struct vmap_area *va) |
db64fe02 NP |
675 | { |
676 | va->flags |= VM_LAZY_FREE; | |
677 | atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr); | |
678 | if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages())) | |
496850e5 | 679 | try_purge_vmap_area_lazy(); |
db64fe02 NP |
680 | } |
681 | ||
64141da5 JF |
682 | /* |
683 | * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been | |
684 | * called for the correct range previously. | |
685 | */ | |
686 | static void free_unmap_vmap_area_noflush(struct vmap_area *va) | |
687 | { | |
688 | unmap_vmap_area(va); | |
689 | free_vmap_area_noflush(va); | |
690 | } | |
691 | ||
b29acbdc NP |
692 | /* |
693 | * Free and unmap a vmap area | |
694 | */ | |
695 | static void free_unmap_vmap_area(struct vmap_area *va) | |
696 | { | |
697 | flush_cache_vunmap(va->va_start, va->va_end); | |
698 | free_unmap_vmap_area_noflush(va); | |
699 | } | |
700 | ||
db64fe02 NP |
701 | static struct vmap_area *find_vmap_area(unsigned long addr) |
702 | { | |
703 | struct vmap_area *va; | |
704 | ||
705 | spin_lock(&vmap_area_lock); | |
706 | va = __find_vmap_area(addr); | |
707 | spin_unlock(&vmap_area_lock); | |
708 | ||
709 | return va; | |
710 | } | |
711 | ||
712 | static void free_unmap_vmap_area_addr(unsigned long addr) | |
713 | { | |
714 | struct vmap_area *va; | |
715 | ||
716 | va = find_vmap_area(addr); | |
717 | BUG_ON(!va); | |
718 | free_unmap_vmap_area(va); | |
719 | } | |
720 | ||
721 | ||
722 | /*** Per cpu kva allocator ***/ | |
723 | ||
724 | /* | |
725 | * vmap space is limited especially on 32 bit architectures. Ensure there is | |
726 | * room for at least 16 percpu vmap blocks per CPU. | |
727 | */ | |
728 | /* | |
729 | * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able | |
730 | * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess | |
731 | * instead (we just need a rough idea) | |
732 | */ | |
733 | #if BITS_PER_LONG == 32 | |
734 | #define VMALLOC_SPACE (128UL*1024*1024) | |
735 | #else | |
736 | #define VMALLOC_SPACE (128UL*1024*1024*1024) | |
737 | #endif | |
738 | ||
739 | #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE) | |
740 | #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */ | |
741 | #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */ | |
742 | #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2) | |
743 | #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */ | |
744 | #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */ | |
f982f915 CL |
745 | #define VMAP_BBMAP_BITS \ |
746 | VMAP_MIN(VMAP_BBMAP_BITS_MAX, \ | |
747 | VMAP_MAX(VMAP_BBMAP_BITS_MIN, \ | |
748 | VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16)) | |
db64fe02 NP |
749 | |
750 | #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE) | |
751 | ||
9b463334 JF |
752 | static bool vmap_initialized __read_mostly = false; |
753 | ||
db64fe02 NP |
754 | struct vmap_block_queue { |
755 | spinlock_t lock; | |
756 | struct list_head free; | |
db64fe02 NP |
757 | }; |
758 | ||
759 | struct vmap_block { | |
760 | spinlock_t lock; | |
761 | struct vmap_area *va; | |
db64fe02 | 762 | unsigned long free, dirty; |
db64fe02 | 763 | DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); |
de560423 NP |
764 | struct list_head free_list; |
765 | struct rcu_head rcu_head; | |
02b709df | 766 | struct list_head purge; |
db64fe02 NP |
767 | }; |
768 | ||
769 | /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */ | |
770 | static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue); | |
771 | ||
772 | /* | |
773 | * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block | |
774 | * in the free path. Could get rid of this if we change the API to return a | |
775 | * "cookie" from alloc, to be passed to free. But no big deal yet. | |
776 | */ | |
777 | static DEFINE_SPINLOCK(vmap_block_tree_lock); | |
778 | static RADIX_TREE(vmap_block_tree, GFP_ATOMIC); | |
779 | ||
780 | /* | |
781 | * We should probably have a fallback mechanism to allocate virtual memory | |
782 | * out of partially filled vmap blocks. However vmap block sizing should be | |
783 | * fairly reasonable according to the vmalloc size, so it shouldn't be a | |
784 | * big problem. | |
785 | */ | |
786 | ||
787 | static unsigned long addr_to_vb_idx(unsigned long addr) | |
788 | { | |
789 | addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1); | |
790 | addr /= VMAP_BLOCK_SIZE; | |
791 | return addr; | |
792 | } | |
793 | ||
794 | static struct vmap_block *new_vmap_block(gfp_t gfp_mask) | |
795 | { | |
796 | struct vmap_block_queue *vbq; | |
797 | struct vmap_block *vb; | |
798 | struct vmap_area *va; | |
799 | unsigned long vb_idx; | |
800 | int node, err; | |
801 | ||
802 | node = numa_node_id(); | |
803 | ||
804 | vb = kmalloc_node(sizeof(struct vmap_block), | |
805 | gfp_mask & GFP_RECLAIM_MASK, node); | |
806 | if (unlikely(!vb)) | |
807 | return ERR_PTR(-ENOMEM); | |
808 | ||
809 | va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE, | |
810 | VMALLOC_START, VMALLOC_END, | |
811 | node, gfp_mask); | |
ddf9c6d4 | 812 | if (IS_ERR(va)) { |
db64fe02 | 813 | kfree(vb); |
e7d86340 | 814 | return ERR_CAST(va); |
db64fe02 NP |
815 | } |
816 | ||
817 | err = radix_tree_preload(gfp_mask); | |
818 | if (unlikely(err)) { | |
819 | kfree(vb); | |
820 | free_vmap_area(va); | |
821 | return ERR_PTR(err); | |
822 | } | |
823 | ||
824 | spin_lock_init(&vb->lock); | |
825 | vb->va = va; | |
826 | vb->free = VMAP_BBMAP_BITS; | |
827 | vb->dirty = 0; | |
db64fe02 NP |
828 | bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS); |
829 | INIT_LIST_HEAD(&vb->free_list); | |
db64fe02 NP |
830 | |
831 | vb_idx = addr_to_vb_idx(va->va_start); | |
832 | spin_lock(&vmap_block_tree_lock); | |
833 | err = radix_tree_insert(&vmap_block_tree, vb_idx, vb); | |
834 | spin_unlock(&vmap_block_tree_lock); | |
835 | BUG_ON(err); | |
836 | radix_tree_preload_end(); | |
837 | ||
838 | vbq = &get_cpu_var(vmap_block_queue); | |
db64fe02 | 839 | spin_lock(&vbq->lock); |
de560423 | 840 | list_add_rcu(&vb->free_list, &vbq->free); |
db64fe02 | 841 | spin_unlock(&vbq->lock); |
3f04ba85 | 842 | put_cpu_var(vmap_block_queue); |
db64fe02 NP |
843 | |
844 | return vb; | |
845 | } | |
846 | ||
db64fe02 NP |
847 | static void free_vmap_block(struct vmap_block *vb) |
848 | { | |
849 | struct vmap_block *tmp; | |
850 | unsigned long vb_idx; | |
851 | ||
db64fe02 NP |
852 | vb_idx = addr_to_vb_idx(vb->va->va_start); |
853 | spin_lock(&vmap_block_tree_lock); | |
854 | tmp = radix_tree_delete(&vmap_block_tree, vb_idx); | |
855 | spin_unlock(&vmap_block_tree_lock); | |
856 | BUG_ON(tmp != vb); | |
857 | ||
64141da5 | 858 | free_vmap_area_noflush(vb->va); |
22a3c7d1 | 859 | kfree_rcu(vb, rcu_head); |
db64fe02 NP |
860 | } |
861 | ||
02b709df NP |
862 | static void purge_fragmented_blocks(int cpu) |
863 | { | |
864 | LIST_HEAD(purge); | |
865 | struct vmap_block *vb; | |
866 | struct vmap_block *n_vb; | |
867 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
868 | ||
869 | rcu_read_lock(); | |
870 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
871 | ||
872 | if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS)) | |
873 | continue; | |
874 | ||
875 | spin_lock(&vb->lock); | |
876 | if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) { | |
877 | vb->free = 0; /* prevent further allocs after releasing lock */ | |
878 | vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */ | |
02b709df NP |
879 | bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS); |
880 | spin_lock(&vbq->lock); | |
881 | list_del_rcu(&vb->free_list); | |
882 | spin_unlock(&vbq->lock); | |
883 | spin_unlock(&vb->lock); | |
884 | list_add_tail(&vb->purge, &purge); | |
885 | } else | |
886 | spin_unlock(&vb->lock); | |
887 | } | |
888 | rcu_read_unlock(); | |
889 | ||
890 | list_for_each_entry_safe(vb, n_vb, &purge, purge) { | |
891 | list_del(&vb->purge); | |
892 | free_vmap_block(vb); | |
893 | } | |
894 | } | |
895 | ||
02b709df NP |
896 | static void purge_fragmented_blocks_allcpus(void) |
897 | { | |
898 | int cpu; | |
899 | ||
900 | for_each_possible_cpu(cpu) | |
901 | purge_fragmented_blocks(cpu); | |
902 | } | |
903 | ||
db64fe02 NP |
904 | static void *vb_alloc(unsigned long size, gfp_t gfp_mask) |
905 | { | |
906 | struct vmap_block_queue *vbq; | |
907 | struct vmap_block *vb; | |
908 | unsigned long addr = 0; | |
909 | unsigned int order; | |
910 | ||
911 | BUG_ON(size & ~PAGE_MASK); | |
912 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | |
aa91c4d8 JK |
913 | if (WARN_ON(size == 0)) { |
914 | /* | |
915 | * Allocating 0 bytes isn't what caller wants since | |
916 | * get_order(0) returns funny result. Just warn and terminate | |
917 | * early. | |
918 | */ | |
919 | return NULL; | |
920 | } | |
db64fe02 NP |
921 | order = get_order(size); |
922 | ||
923 | again: | |
924 | rcu_read_lock(); | |
925 | vbq = &get_cpu_var(vmap_block_queue); | |
926 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
927 | int i; | |
928 | ||
929 | spin_lock(&vb->lock); | |
02b709df NP |
930 | if (vb->free < 1UL << order) |
931 | goto next; | |
932 | ||
3fcd76e8 | 933 | i = VMAP_BBMAP_BITS - vb->free; |
02b709df NP |
934 | addr = vb->va->va_start + (i << PAGE_SHIFT); |
935 | BUG_ON(addr_to_vb_idx(addr) != | |
936 | addr_to_vb_idx(vb->va->va_start)); | |
937 | vb->free -= 1UL << order; | |
938 | if (vb->free == 0) { | |
939 | spin_lock(&vbq->lock); | |
940 | list_del_rcu(&vb->free_list); | |
941 | spin_unlock(&vbq->lock); | |
942 | } | |
943 | spin_unlock(&vb->lock); | |
944 | break; | |
945 | next: | |
db64fe02 NP |
946 | spin_unlock(&vb->lock); |
947 | } | |
02b709df | 948 | |
3f04ba85 | 949 | put_cpu_var(vmap_block_queue); |
db64fe02 NP |
950 | rcu_read_unlock(); |
951 | ||
952 | if (!addr) { | |
953 | vb = new_vmap_block(gfp_mask); | |
954 | if (IS_ERR(vb)) | |
955 | return vb; | |
956 | goto again; | |
957 | } | |
958 | ||
959 | return (void *)addr; | |
960 | } | |
961 | ||
962 | static void vb_free(const void *addr, unsigned long size) | |
963 | { | |
964 | unsigned long offset; | |
965 | unsigned long vb_idx; | |
966 | unsigned int order; | |
967 | struct vmap_block *vb; | |
968 | ||
969 | BUG_ON(size & ~PAGE_MASK); | |
970 | BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC); | |
b29acbdc NP |
971 | |
972 | flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size); | |
973 | ||
db64fe02 NP |
974 | order = get_order(size); |
975 | ||
976 | offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1); | |
977 | ||
978 | vb_idx = addr_to_vb_idx((unsigned long)addr); | |
979 | rcu_read_lock(); | |
980 | vb = radix_tree_lookup(&vmap_block_tree, vb_idx); | |
981 | rcu_read_unlock(); | |
982 | BUG_ON(!vb); | |
983 | ||
64141da5 JF |
984 | vunmap_page_range((unsigned long)addr, (unsigned long)addr + size); |
985 | ||
db64fe02 | 986 | spin_lock(&vb->lock); |
de560423 | 987 | BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order)); |
d086817d | 988 | |
db64fe02 NP |
989 | vb->dirty += 1UL << order; |
990 | if (vb->dirty == VMAP_BBMAP_BITS) { | |
de560423 | 991 | BUG_ON(vb->free); |
db64fe02 NP |
992 | spin_unlock(&vb->lock); |
993 | free_vmap_block(vb); | |
994 | } else | |
995 | spin_unlock(&vb->lock); | |
996 | } | |
997 | ||
998 | /** | |
999 | * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer | |
1000 | * | |
1001 | * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily | |
1002 | * to amortize TLB flushing overheads. What this means is that any page you | |
1003 | * have now, may, in a former life, have been mapped into kernel virtual | |
1004 | * address by the vmap layer and so there might be some CPUs with TLB entries | |
1005 | * still referencing that page (additional to the regular 1:1 kernel mapping). | |
1006 | * | |
1007 | * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can | |
1008 | * be sure that none of the pages we have control over will have any aliases | |
1009 | * from the vmap layer. | |
1010 | */ | |
1011 | void vm_unmap_aliases(void) | |
1012 | { | |
1013 | unsigned long start = ULONG_MAX, end = 0; | |
1014 | int cpu; | |
1015 | int flush = 0; | |
1016 | ||
9b463334 JF |
1017 | if (unlikely(!vmap_initialized)) |
1018 | return; | |
1019 | ||
db64fe02 NP |
1020 | for_each_possible_cpu(cpu) { |
1021 | struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu); | |
1022 | struct vmap_block *vb; | |
1023 | ||
1024 | rcu_read_lock(); | |
1025 | list_for_each_entry_rcu(vb, &vbq->free, free_list) { | |
b136be5e | 1026 | int i, j; |
db64fe02 NP |
1027 | |
1028 | spin_lock(&vb->lock); | |
1029 | i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); | |
b136be5e | 1030 | if (i < VMAP_BBMAP_BITS) { |
db64fe02 | 1031 | unsigned long s, e; |
b136be5e JK |
1032 | |
1033 | j = find_last_bit(vb->dirty_map, | |
1034 | VMAP_BBMAP_BITS); | |
1035 | j = j + 1; /* need exclusive index */ | |
db64fe02 NP |
1036 | |
1037 | s = vb->va->va_start + (i << PAGE_SHIFT); | |
1038 | e = vb->va->va_start + (j << PAGE_SHIFT); | |
db64fe02 NP |
1039 | flush = 1; |
1040 | ||
1041 | if (s < start) | |
1042 | start = s; | |
1043 | if (e > end) | |
1044 | end = e; | |
db64fe02 NP |
1045 | } |
1046 | spin_unlock(&vb->lock); | |
1047 | } | |
1048 | rcu_read_unlock(); | |
1049 | } | |
1050 | ||
1051 | __purge_vmap_area_lazy(&start, &end, 1, flush); | |
1052 | } | |
1053 | EXPORT_SYMBOL_GPL(vm_unmap_aliases); | |
1054 | ||
1055 | /** | |
1056 | * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram | |
1057 | * @mem: the pointer returned by vm_map_ram | |
1058 | * @count: the count passed to that vm_map_ram call (cannot unmap partial) | |
1059 | */ | |
1060 | void vm_unmap_ram(const void *mem, unsigned int count) | |
1061 | { | |
1062 | unsigned long size = count << PAGE_SHIFT; | |
1063 | unsigned long addr = (unsigned long)mem; | |
1064 | ||
1065 | BUG_ON(!addr); | |
1066 | BUG_ON(addr < VMALLOC_START); | |
1067 | BUG_ON(addr > VMALLOC_END); | |
1068 | BUG_ON(addr & (PAGE_SIZE-1)); | |
1069 | ||
1070 | debug_check_no_locks_freed(mem, size); | |
cd52858c | 1071 | vmap_debug_free_range(addr, addr+size); |
db64fe02 NP |
1072 | |
1073 | if (likely(count <= VMAP_MAX_ALLOC)) | |
1074 | vb_free(mem, size); | |
1075 | else | |
1076 | free_unmap_vmap_area_addr(addr); | |
1077 | } | |
1078 | EXPORT_SYMBOL(vm_unmap_ram); | |
1079 | ||
1080 | /** | |
1081 | * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space) | |
1082 | * @pages: an array of pointers to the pages to be mapped | |
1083 | * @count: number of pages | |
1084 | * @node: prefer to allocate data structures on this node | |
1085 | * @prot: memory protection to use. PAGE_KERNEL for regular RAM | |
e99c97ad | 1086 | * |
36437638 GK |
1087 | * If you use this function for less than VMAP_MAX_ALLOC pages, it could be |
1088 | * faster than vmap so it's good. But if you mix long-life and short-life | |
1089 | * objects with vm_map_ram(), it could consume lots of address space through | |
1090 | * fragmentation (especially on a 32bit machine). You could see failures in | |
1091 | * the end. Please use this function for short-lived objects. | |
1092 | * | |
e99c97ad | 1093 | * Returns: a pointer to the address that has been mapped, or %NULL on failure |
db64fe02 NP |
1094 | */ |
1095 | void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot) | |
1096 | { | |
1097 | unsigned long size = count << PAGE_SHIFT; | |
1098 | unsigned long addr; | |
1099 | void *mem; | |
1100 | ||
1101 | if (likely(count <= VMAP_MAX_ALLOC)) { | |
1102 | mem = vb_alloc(size, GFP_KERNEL); | |
1103 | if (IS_ERR(mem)) | |
1104 | return NULL; | |
1105 | addr = (unsigned long)mem; | |
1106 | } else { | |
1107 | struct vmap_area *va; | |
1108 | va = alloc_vmap_area(size, PAGE_SIZE, | |
1109 | VMALLOC_START, VMALLOC_END, node, GFP_KERNEL); | |
1110 | if (IS_ERR(va)) | |
1111 | return NULL; | |
1112 | ||
1113 | addr = va->va_start; | |
1114 | mem = (void *)addr; | |
1115 | } | |
1116 | if (vmap_page_range(addr, addr + size, prot, pages) < 0) { | |
1117 | vm_unmap_ram(mem, count); | |
1118 | return NULL; | |
1119 | } | |
1120 | return mem; | |
1121 | } | |
1122 | EXPORT_SYMBOL(vm_map_ram); | |
1123 | ||
4341fa45 | 1124 | static struct vm_struct *vmlist __initdata; |
be9b7335 NP |
1125 | /** |
1126 | * vm_area_add_early - add vmap area early during boot | |
1127 | * @vm: vm_struct to add | |
1128 | * | |
1129 | * This function is used to add fixed kernel vm area to vmlist before | |
1130 | * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags | |
1131 | * should contain proper values and the other fields should be zero. | |
1132 | * | |
1133 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
1134 | */ | |
1135 | void __init vm_area_add_early(struct vm_struct *vm) | |
1136 | { | |
1137 | struct vm_struct *tmp, **p; | |
1138 | ||
1139 | BUG_ON(vmap_initialized); | |
1140 | for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) { | |
1141 | if (tmp->addr >= vm->addr) { | |
1142 | BUG_ON(tmp->addr < vm->addr + vm->size); | |
1143 | break; | |
1144 | } else | |
1145 | BUG_ON(tmp->addr + tmp->size > vm->addr); | |
1146 | } | |
1147 | vm->next = *p; | |
1148 | *p = vm; | |
1149 | } | |
1150 | ||
f0aa6617 TH |
1151 | /** |
1152 | * vm_area_register_early - register vmap area early during boot | |
1153 | * @vm: vm_struct to register | |
c0c0a293 | 1154 | * @align: requested alignment |
f0aa6617 TH |
1155 | * |
1156 | * This function is used to register kernel vm area before | |
1157 | * vmalloc_init() is called. @vm->size and @vm->flags should contain | |
1158 | * proper values on entry and other fields should be zero. On return, | |
1159 | * vm->addr contains the allocated address. | |
1160 | * | |
1161 | * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING. | |
1162 | */ | |
c0c0a293 | 1163 | void __init vm_area_register_early(struct vm_struct *vm, size_t align) |
f0aa6617 TH |
1164 | { |
1165 | static size_t vm_init_off __initdata; | |
c0c0a293 TH |
1166 | unsigned long addr; |
1167 | ||
1168 | addr = ALIGN(VMALLOC_START + vm_init_off, align); | |
1169 | vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START; | |
f0aa6617 | 1170 | |
c0c0a293 | 1171 | vm->addr = (void *)addr; |
f0aa6617 | 1172 | |
be9b7335 | 1173 | vm_area_add_early(vm); |
f0aa6617 TH |
1174 | } |
1175 | ||
db64fe02 NP |
1176 | void __init vmalloc_init(void) |
1177 | { | |
822c18f2 IK |
1178 | struct vmap_area *va; |
1179 | struct vm_struct *tmp; | |
db64fe02 NP |
1180 | int i; |
1181 | ||
1182 | for_each_possible_cpu(i) { | |
1183 | struct vmap_block_queue *vbq; | |
32fcfd40 | 1184 | struct vfree_deferred *p; |
db64fe02 NP |
1185 | |
1186 | vbq = &per_cpu(vmap_block_queue, i); | |
1187 | spin_lock_init(&vbq->lock); | |
1188 | INIT_LIST_HEAD(&vbq->free); | |
32fcfd40 AV |
1189 | p = &per_cpu(vfree_deferred, i); |
1190 | init_llist_head(&p->list); | |
1191 | INIT_WORK(&p->wq, free_work); | |
db64fe02 | 1192 | } |
9b463334 | 1193 | |
822c18f2 IK |
1194 | /* Import existing vmlist entries. */ |
1195 | for (tmp = vmlist; tmp; tmp = tmp->next) { | |
43ebdac4 | 1196 | va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT); |
dbda591d | 1197 | va->flags = VM_VM_AREA; |
822c18f2 IK |
1198 | va->va_start = (unsigned long)tmp->addr; |
1199 | va->va_end = va->va_start + tmp->size; | |
dbda591d | 1200 | va->vm = tmp; |
822c18f2 IK |
1201 | __insert_vmap_area(va); |
1202 | } | |
ca23e405 TH |
1203 | |
1204 | vmap_area_pcpu_hole = VMALLOC_END; | |
1205 | ||
9b463334 | 1206 | vmap_initialized = true; |
db64fe02 NP |
1207 | } |
1208 | ||
8fc48985 TH |
1209 | /** |
1210 | * map_kernel_range_noflush - map kernel VM area with the specified pages | |
1211 | * @addr: start of the VM area to map | |
1212 | * @size: size of the VM area to map | |
1213 | * @prot: page protection flags to use | |
1214 | * @pages: pages to map | |
1215 | * | |
1216 | * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size | |
1217 | * specify should have been allocated using get_vm_area() and its | |
1218 | * friends. | |
1219 | * | |
1220 | * NOTE: | |
1221 | * This function does NOT do any cache flushing. The caller is | |
1222 | * responsible for calling flush_cache_vmap() on to-be-mapped areas | |
1223 | * before calling this function. | |
1224 | * | |
1225 | * RETURNS: | |
1226 | * The number of pages mapped on success, -errno on failure. | |
1227 | */ | |
1228 | int map_kernel_range_noflush(unsigned long addr, unsigned long size, | |
1229 | pgprot_t prot, struct page **pages) | |
1230 | { | |
1231 | return vmap_page_range_noflush(addr, addr + size, prot, pages); | |
1232 | } | |
1233 | ||
1234 | /** | |
1235 | * unmap_kernel_range_noflush - unmap kernel VM area | |
1236 | * @addr: start of the VM area to unmap | |
1237 | * @size: size of the VM area to unmap | |
1238 | * | |
1239 | * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size | |
1240 | * specify should have been allocated using get_vm_area() and its | |
1241 | * friends. | |
1242 | * | |
1243 | * NOTE: | |
1244 | * This function does NOT do any cache flushing. The caller is | |
1245 | * responsible for calling flush_cache_vunmap() on to-be-mapped areas | |
1246 | * before calling this function and flush_tlb_kernel_range() after. | |
1247 | */ | |
1248 | void unmap_kernel_range_noflush(unsigned long addr, unsigned long size) | |
1249 | { | |
1250 | vunmap_page_range(addr, addr + size); | |
1251 | } | |
81e88fdc | 1252 | EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush); |
8fc48985 TH |
1253 | |
1254 | /** | |
1255 | * unmap_kernel_range - unmap kernel VM area and flush cache and TLB | |
1256 | * @addr: start of the VM area to unmap | |
1257 | * @size: size of the VM area to unmap | |
1258 | * | |
1259 | * Similar to unmap_kernel_range_noflush() but flushes vcache before | |
1260 | * the unmapping and tlb after. | |
1261 | */ | |
db64fe02 NP |
1262 | void unmap_kernel_range(unsigned long addr, unsigned long size) |
1263 | { | |
1264 | unsigned long end = addr + size; | |
f6fcba70 TH |
1265 | |
1266 | flush_cache_vunmap(addr, end); | |
db64fe02 NP |
1267 | vunmap_page_range(addr, end); |
1268 | flush_tlb_kernel_range(addr, end); | |
1269 | } | |
93ef6d6c | 1270 | EXPORT_SYMBOL_GPL(unmap_kernel_range); |
db64fe02 | 1271 | |
f6f8ed47 | 1272 | int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages) |
db64fe02 NP |
1273 | { |
1274 | unsigned long addr = (unsigned long)area->addr; | |
762216ab | 1275 | unsigned long end = addr + get_vm_area_size(area); |
db64fe02 NP |
1276 | int err; |
1277 | ||
f6f8ed47 | 1278 | err = vmap_page_range(addr, end, prot, pages); |
db64fe02 | 1279 | |
f6f8ed47 | 1280 | return err > 0 ? 0 : err; |
db64fe02 NP |
1281 | } |
1282 | EXPORT_SYMBOL_GPL(map_vm_area); | |
1283 | ||
f5252e00 | 1284 | static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va, |
5e6cafc8 | 1285 | unsigned long flags, const void *caller) |
cf88c790 | 1286 | { |
c69480ad | 1287 | spin_lock(&vmap_area_lock); |
cf88c790 TH |
1288 | vm->flags = flags; |
1289 | vm->addr = (void *)va->va_start; | |
1290 | vm->size = va->va_end - va->va_start; | |
1291 | vm->caller = caller; | |
db1aecaf | 1292 | va->vm = vm; |
cf88c790 | 1293 | va->flags |= VM_VM_AREA; |
c69480ad | 1294 | spin_unlock(&vmap_area_lock); |
f5252e00 | 1295 | } |
cf88c790 | 1296 | |
20fc02b4 | 1297 | static void clear_vm_uninitialized_flag(struct vm_struct *vm) |
f5252e00 | 1298 | { |
d4033afd | 1299 | /* |
20fc02b4 | 1300 | * Before removing VM_UNINITIALIZED, |
d4033afd JK |
1301 | * we should make sure that vm has proper values. |
1302 | * Pair with smp_rmb() in show_numa_info(). | |
1303 | */ | |
1304 | smp_wmb(); | |
20fc02b4 | 1305 | vm->flags &= ~VM_UNINITIALIZED; |
cf88c790 TH |
1306 | } |
1307 | ||
db64fe02 | 1308 | static struct vm_struct *__get_vm_area_node(unsigned long size, |
2dca6999 | 1309 | unsigned long align, unsigned long flags, unsigned long start, |
5e6cafc8 | 1310 | unsigned long end, int node, gfp_t gfp_mask, const void *caller) |
db64fe02 | 1311 | { |
0006526d | 1312 | struct vmap_area *va; |
db64fe02 | 1313 | struct vm_struct *area; |
1da177e4 | 1314 | |
52fd24ca | 1315 | BUG_ON(in_interrupt()); |
0f2d4a8e ZY |
1316 | if (flags & VM_IOREMAP) |
1317 | align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER); | |
db64fe02 | 1318 | |
1da177e4 | 1319 | size = PAGE_ALIGN(size); |
31be8309 OH |
1320 | if (unlikely(!size)) |
1321 | return NULL; | |
1da177e4 | 1322 | |
cf88c790 | 1323 | area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); |
1da177e4 LT |
1324 | if (unlikely(!area)) |
1325 | return NULL; | |
1326 | ||
71394fe5 AR |
1327 | if (!(flags & VM_NO_GUARD)) |
1328 | size += PAGE_SIZE; | |
1da177e4 | 1329 | |
db64fe02 NP |
1330 | va = alloc_vmap_area(size, align, start, end, node, gfp_mask); |
1331 | if (IS_ERR(va)) { | |
1332 | kfree(area); | |
1333 | return NULL; | |
1da177e4 | 1334 | } |
1da177e4 | 1335 | |
d82b1d85 | 1336 | setup_vmalloc_vm(area, va, flags, caller); |
f5252e00 | 1337 | |
1da177e4 | 1338 | return area; |
1da177e4 LT |
1339 | } |
1340 | ||
930fc45a CL |
1341 | struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, |
1342 | unsigned long start, unsigned long end) | |
1343 | { | |
00ef2d2f DR |
1344 | return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, |
1345 | GFP_KERNEL, __builtin_return_address(0)); | |
930fc45a | 1346 | } |
5992b6da | 1347 | EXPORT_SYMBOL_GPL(__get_vm_area); |
930fc45a | 1348 | |
c2968612 BH |
1349 | struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags, |
1350 | unsigned long start, unsigned long end, | |
5e6cafc8 | 1351 | const void *caller) |
c2968612 | 1352 | { |
00ef2d2f DR |
1353 | return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE, |
1354 | GFP_KERNEL, caller); | |
c2968612 BH |
1355 | } |
1356 | ||
1da177e4 | 1357 | /** |
183ff22b | 1358 | * get_vm_area - reserve a contiguous kernel virtual area |
1da177e4 LT |
1359 | * @size: size of the area |
1360 | * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC | |
1361 | * | |
1362 | * Search an area of @size in the kernel virtual mapping area, | |
1363 | * and reserved it for out purposes. Returns the area descriptor | |
1364 | * on success or %NULL on failure. | |
1365 | */ | |
1366 | struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) | |
1367 | { | |
2dca6999 | 1368 | return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, |
00ef2d2f DR |
1369 | NUMA_NO_NODE, GFP_KERNEL, |
1370 | __builtin_return_address(0)); | |
23016969 CL |
1371 | } |
1372 | ||
1373 | struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags, | |
5e6cafc8 | 1374 | const void *caller) |
23016969 | 1375 | { |
2dca6999 | 1376 | return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END, |
00ef2d2f | 1377 | NUMA_NO_NODE, GFP_KERNEL, caller); |
1da177e4 LT |
1378 | } |
1379 | ||
e9da6e99 MS |
1380 | /** |
1381 | * find_vm_area - find a continuous kernel virtual area | |
1382 | * @addr: base address | |
1383 | * | |
1384 | * Search for the kernel VM area starting at @addr, and return it. | |
1385 | * It is up to the caller to do all required locking to keep the returned | |
1386 | * pointer valid. | |
1387 | */ | |
1388 | struct vm_struct *find_vm_area(const void *addr) | |
83342314 | 1389 | { |
db64fe02 | 1390 | struct vmap_area *va; |
83342314 | 1391 | |
db64fe02 NP |
1392 | va = find_vmap_area((unsigned long)addr); |
1393 | if (va && va->flags & VM_VM_AREA) | |
db1aecaf | 1394 | return va->vm; |
1da177e4 | 1395 | |
1da177e4 | 1396 | return NULL; |
1da177e4 LT |
1397 | } |
1398 | ||
7856dfeb | 1399 | /** |
183ff22b | 1400 | * remove_vm_area - find and remove a continuous kernel virtual area |
7856dfeb AK |
1401 | * @addr: base address |
1402 | * | |
1403 | * Search for the kernel VM area starting at @addr, and remove it. | |
1404 | * This function returns the found VM area, but using it is NOT safe | |
1405 | * on SMP machines, except for its size or flags. | |
1406 | */ | |
b3bdda02 | 1407 | struct vm_struct *remove_vm_area(const void *addr) |
7856dfeb | 1408 | { |
db64fe02 NP |
1409 | struct vmap_area *va; |
1410 | ||
1411 | va = find_vmap_area((unsigned long)addr); | |
1412 | if (va && va->flags & VM_VM_AREA) { | |
db1aecaf | 1413 | struct vm_struct *vm = va->vm; |
f5252e00 | 1414 | |
c69480ad JK |
1415 | spin_lock(&vmap_area_lock); |
1416 | va->vm = NULL; | |
1417 | va->flags &= ~VM_VM_AREA; | |
1418 | spin_unlock(&vmap_area_lock); | |
1419 | ||
dd32c279 KH |
1420 | vmap_debug_free_range(va->va_start, va->va_end); |
1421 | free_unmap_vmap_area(va); | |
1422 | vm->size -= PAGE_SIZE; | |
1423 | ||
db64fe02 NP |
1424 | return vm; |
1425 | } | |
1426 | return NULL; | |
7856dfeb AK |
1427 | } |
1428 | ||
b3bdda02 | 1429 | static void __vunmap(const void *addr, int deallocate_pages) |
1da177e4 LT |
1430 | { |
1431 | struct vm_struct *area; | |
1432 | ||
1433 | if (!addr) | |
1434 | return; | |
1435 | ||
e69e9d4a | 1436 | if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n", |
ab15d9b4 | 1437 | addr)) |
1da177e4 | 1438 | return; |
1da177e4 LT |
1439 | |
1440 | area = remove_vm_area(addr); | |
1441 | if (unlikely(!area)) { | |
4c8573e2 | 1442 | WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", |
1da177e4 | 1443 | addr); |
1da177e4 LT |
1444 | return; |
1445 | } | |
1446 | ||
9a11b49a | 1447 | debug_check_no_locks_freed(addr, area->size); |
3ac7fe5a | 1448 | debug_check_no_obj_freed(addr, area->size); |
9a11b49a | 1449 | |
1da177e4 LT |
1450 | if (deallocate_pages) { |
1451 | int i; | |
1452 | ||
1453 | for (i = 0; i < area->nr_pages; i++) { | |
bf53d6f8 CL |
1454 | struct page *page = area->pages[i]; |
1455 | ||
1456 | BUG_ON(!page); | |
1457 | __free_page(page); | |
1da177e4 LT |
1458 | } |
1459 | ||
8757d5fa | 1460 | if (area->flags & VM_VPAGES) |
1da177e4 LT |
1461 | vfree(area->pages); |
1462 | else | |
1463 | kfree(area->pages); | |
1464 | } | |
1465 | ||
1466 | kfree(area); | |
1467 | return; | |
1468 | } | |
32fcfd40 | 1469 | |
1da177e4 LT |
1470 | /** |
1471 | * vfree - release memory allocated by vmalloc() | |
1da177e4 LT |
1472 | * @addr: memory base address |
1473 | * | |
183ff22b | 1474 | * Free the virtually continuous memory area starting at @addr, as |
80e93eff PE |
1475 | * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is |
1476 | * NULL, no operation is performed. | |
1da177e4 | 1477 | * |
32fcfd40 AV |
1478 | * Must not be called in NMI context (strictly speaking, only if we don't |
1479 | * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling | |
1480 | * conventions for vfree() arch-depenedent would be a really bad idea) | |
c9fcee51 AM |
1481 | * |
1482 | * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node) | |
1da177e4 | 1483 | */ |
b3bdda02 | 1484 | void vfree(const void *addr) |
1da177e4 | 1485 | { |
32fcfd40 | 1486 | BUG_ON(in_nmi()); |
89219d37 CM |
1487 | |
1488 | kmemleak_free(addr); | |
1489 | ||
32fcfd40 AV |
1490 | if (!addr) |
1491 | return; | |
1492 | if (unlikely(in_interrupt())) { | |
7c8e0181 | 1493 | struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred); |
59d3132f ON |
1494 | if (llist_add((struct llist_node *)addr, &p->list)) |
1495 | schedule_work(&p->wq); | |
32fcfd40 AV |
1496 | } else |
1497 | __vunmap(addr, 1); | |
1da177e4 | 1498 | } |
1da177e4 LT |
1499 | EXPORT_SYMBOL(vfree); |
1500 | ||
1501 | /** | |
1502 | * vunmap - release virtual mapping obtained by vmap() | |
1da177e4 LT |
1503 | * @addr: memory base address |
1504 | * | |
1505 | * Free the virtually contiguous memory area starting at @addr, | |
1506 | * which was created from the page array passed to vmap(). | |
1507 | * | |
80e93eff | 1508 | * Must not be called in interrupt context. |
1da177e4 | 1509 | */ |
b3bdda02 | 1510 | void vunmap(const void *addr) |
1da177e4 LT |
1511 | { |
1512 | BUG_ON(in_interrupt()); | |
34754b69 | 1513 | might_sleep(); |
32fcfd40 AV |
1514 | if (addr) |
1515 | __vunmap(addr, 0); | |
1da177e4 | 1516 | } |
1da177e4 LT |
1517 | EXPORT_SYMBOL(vunmap); |
1518 | ||
1519 | /** | |
1520 | * vmap - map an array of pages into virtually contiguous space | |
1da177e4 LT |
1521 | * @pages: array of page pointers |
1522 | * @count: number of pages to map | |
1523 | * @flags: vm_area->flags | |
1524 | * @prot: page protection for the mapping | |
1525 | * | |
1526 | * Maps @count pages from @pages into contiguous kernel virtual | |
1527 | * space. | |
1528 | */ | |
1529 | void *vmap(struct page **pages, unsigned int count, | |
1530 | unsigned long flags, pgprot_t prot) | |
1531 | { | |
1532 | struct vm_struct *area; | |
1533 | ||
34754b69 PZ |
1534 | might_sleep(); |
1535 | ||
4481374c | 1536 | if (count > totalram_pages) |
1da177e4 LT |
1537 | return NULL; |
1538 | ||
23016969 CL |
1539 | area = get_vm_area_caller((count << PAGE_SHIFT), flags, |
1540 | __builtin_return_address(0)); | |
1da177e4 LT |
1541 | if (!area) |
1542 | return NULL; | |
23016969 | 1543 | |
f6f8ed47 | 1544 | if (map_vm_area(area, prot, pages)) { |
1da177e4 LT |
1545 | vunmap(area->addr); |
1546 | return NULL; | |
1547 | } | |
1548 | ||
1549 | return area->addr; | |
1550 | } | |
1da177e4 LT |
1551 | EXPORT_SYMBOL(vmap); |
1552 | ||
2dca6999 DM |
1553 | static void *__vmalloc_node(unsigned long size, unsigned long align, |
1554 | gfp_t gfp_mask, pgprot_t prot, | |
5e6cafc8 | 1555 | int node, const void *caller); |
e31d9eb5 | 1556 | static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, |
3722e13c | 1557 | pgprot_t prot, int node) |
1da177e4 | 1558 | { |
22943ab1 | 1559 | const int order = 0; |
1da177e4 LT |
1560 | struct page **pages; |
1561 | unsigned int nr_pages, array_size, i; | |
930f036b DR |
1562 | const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; |
1563 | const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN; | |
1da177e4 | 1564 | |
762216ab | 1565 | nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; |
1da177e4 LT |
1566 | array_size = (nr_pages * sizeof(struct page *)); |
1567 | ||
1568 | area->nr_pages = nr_pages; | |
1569 | /* Please note that the recursion is strictly bounded. */ | |
8757d5fa | 1570 | if (array_size > PAGE_SIZE) { |
976d6dfb | 1571 | pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, |
3722e13c | 1572 | PAGE_KERNEL, node, area->caller); |
8757d5fa | 1573 | area->flags |= VM_VPAGES; |
286e1ea3 | 1574 | } else { |
976d6dfb | 1575 | pages = kmalloc_node(array_size, nested_gfp, node); |
286e1ea3 | 1576 | } |
1da177e4 LT |
1577 | area->pages = pages; |
1578 | if (!area->pages) { | |
1579 | remove_vm_area(area->addr); | |
1580 | kfree(area); | |
1581 | return NULL; | |
1582 | } | |
1da177e4 LT |
1583 | |
1584 | for (i = 0; i < area->nr_pages; i++) { | |
bf53d6f8 CL |
1585 | struct page *page; |
1586 | ||
4b90951c | 1587 | if (node == NUMA_NO_NODE) |
930f036b | 1588 | page = alloc_page(alloc_mask); |
930fc45a | 1589 | else |
930f036b | 1590 | page = alloc_pages_node(node, alloc_mask, order); |
bf53d6f8 CL |
1591 | |
1592 | if (unlikely(!page)) { | |
1da177e4 LT |
1593 | /* Successfully allocated i pages, free them in __vunmap() */ |
1594 | area->nr_pages = i; | |
1595 | goto fail; | |
1596 | } | |
bf53d6f8 | 1597 | area->pages[i] = page; |
660654f9 ED |
1598 | if (gfp_mask & __GFP_WAIT) |
1599 | cond_resched(); | |
1da177e4 LT |
1600 | } |
1601 | ||
f6f8ed47 | 1602 | if (map_vm_area(area, prot, pages)) |
1da177e4 LT |
1603 | goto fail; |
1604 | return area->addr; | |
1605 | ||
1606 | fail: | |
3ee9a4f0 JP |
1607 | warn_alloc_failed(gfp_mask, order, |
1608 | "vmalloc: allocation failure, allocated %ld of %ld bytes\n", | |
22943ab1 | 1609 | (area->nr_pages*PAGE_SIZE), area->size); |
1da177e4 LT |
1610 | vfree(area->addr); |
1611 | return NULL; | |
1612 | } | |
1613 | ||
1614 | /** | |
d0a21265 | 1615 | * __vmalloc_node_range - allocate virtually contiguous memory |
1da177e4 | 1616 | * @size: allocation size |
2dca6999 | 1617 | * @align: desired alignment |
d0a21265 DR |
1618 | * @start: vm area range start |
1619 | * @end: vm area range end | |
1da177e4 LT |
1620 | * @gfp_mask: flags for the page level allocator |
1621 | * @prot: protection mask for the allocated pages | |
cb9e3c29 | 1622 | * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD) |
00ef2d2f | 1623 | * @node: node to use for allocation or NUMA_NO_NODE |
c85d194b | 1624 | * @caller: caller's return address |
1da177e4 LT |
1625 | * |
1626 | * Allocate enough pages to cover @size from the page level | |
1627 | * allocator with @gfp_mask flags. Map them into contiguous | |
1628 | * kernel virtual space, using a pagetable protection of @prot. | |
1629 | */ | |
d0a21265 DR |
1630 | void *__vmalloc_node_range(unsigned long size, unsigned long align, |
1631 | unsigned long start, unsigned long end, gfp_t gfp_mask, | |
cb9e3c29 AR |
1632 | pgprot_t prot, unsigned long vm_flags, int node, |
1633 | const void *caller) | |
1da177e4 LT |
1634 | { |
1635 | struct vm_struct *area; | |
89219d37 CM |
1636 | void *addr; |
1637 | unsigned long real_size = size; | |
1da177e4 LT |
1638 | |
1639 | size = PAGE_ALIGN(size); | |
4481374c | 1640 | if (!size || (size >> PAGE_SHIFT) > totalram_pages) |
de7d2b56 | 1641 | goto fail; |
1da177e4 | 1642 | |
cb9e3c29 AR |
1643 | area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED | |
1644 | vm_flags, start, end, node, gfp_mask, caller); | |
1da177e4 | 1645 | if (!area) |
de7d2b56 | 1646 | goto fail; |
1da177e4 | 1647 | |
3722e13c | 1648 | addr = __vmalloc_area_node(area, gfp_mask, prot, node); |
1368edf0 | 1649 | if (!addr) |
b82225f3 | 1650 | return NULL; |
89219d37 | 1651 | |
f5252e00 | 1652 | /* |
20fc02b4 ZY |
1653 | * In this function, newly allocated vm_struct has VM_UNINITIALIZED |
1654 | * flag. It means that vm_struct is not fully initialized. | |
4341fa45 | 1655 | * Now, it is fully initialized, so remove this flag here. |
f5252e00 | 1656 | */ |
20fc02b4 | 1657 | clear_vm_uninitialized_flag(area); |
f5252e00 | 1658 | |
89219d37 | 1659 | /* |
7f88f88f CM |
1660 | * A ref_count = 2 is needed because vm_struct allocated in |
1661 | * __get_vm_area_node() contains a reference to the virtual address of | |
1662 | * the vmalloc'ed block. | |
89219d37 | 1663 | */ |
7f88f88f | 1664 | kmemleak_alloc(addr, real_size, 2, gfp_mask); |
89219d37 CM |
1665 | |
1666 | return addr; | |
de7d2b56 JP |
1667 | |
1668 | fail: | |
1669 | warn_alloc_failed(gfp_mask, 0, | |
1670 | "vmalloc: allocation failure: %lu bytes\n", | |
1671 | real_size); | |
1672 | return NULL; | |
1da177e4 LT |
1673 | } |
1674 | ||
d0a21265 DR |
1675 | /** |
1676 | * __vmalloc_node - allocate virtually contiguous memory | |
1677 | * @size: allocation size | |
1678 | * @align: desired alignment | |
1679 | * @gfp_mask: flags for the page level allocator | |
1680 | * @prot: protection mask for the allocated pages | |
00ef2d2f | 1681 | * @node: node to use for allocation or NUMA_NO_NODE |
d0a21265 DR |
1682 | * @caller: caller's return address |
1683 | * | |
1684 | * Allocate enough pages to cover @size from the page level | |
1685 | * allocator with @gfp_mask flags. Map them into contiguous | |
1686 | * kernel virtual space, using a pagetable protection of @prot. | |
1687 | */ | |
1688 | static void *__vmalloc_node(unsigned long size, unsigned long align, | |
1689 | gfp_t gfp_mask, pgprot_t prot, | |
5e6cafc8 | 1690 | int node, const void *caller) |
d0a21265 DR |
1691 | { |
1692 | return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, | |
cb9e3c29 | 1693 | gfp_mask, prot, 0, node, caller); |
d0a21265 DR |
1694 | } |
1695 | ||
930fc45a CL |
1696 | void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) |
1697 | { | |
00ef2d2f | 1698 | return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE, |
23016969 | 1699 | __builtin_return_address(0)); |
930fc45a | 1700 | } |
1da177e4 LT |
1701 | EXPORT_SYMBOL(__vmalloc); |
1702 | ||
e1ca7788 DY |
1703 | static inline void *__vmalloc_node_flags(unsigned long size, |
1704 | int node, gfp_t flags) | |
1705 | { | |
1706 | return __vmalloc_node(size, 1, flags, PAGE_KERNEL, | |
1707 | node, __builtin_return_address(0)); | |
1708 | } | |
1709 | ||
1da177e4 LT |
1710 | /** |
1711 | * vmalloc - allocate virtually contiguous memory | |
1da177e4 | 1712 | * @size: allocation size |
1da177e4 LT |
1713 | * Allocate enough pages to cover @size from the page level |
1714 | * allocator and map them into contiguous kernel virtual space. | |
1715 | * | |
c1c8897f | 1716 | * For tight control over page level allocator and protection flags |
1da177e4 LT |
1717 | * use __vmalloc() instead. |
1718 | */ | |
1719 | void *vmalloc(unsigned long size) | |
1720 | { | |
00ef2d2f DR |
1721 | return __vmalloc_node_flags(size, NUMA_NO_NODE, |
1722 | GFP_KERNEL | __GFP_HIGHMEM); | |
1da177e4 | 1723 | } |
1da177e4 LT |
1724 | EXPORT_SYMBOL(vmalloc); |
1725 | ||
e1ca7788 DY |
1726 | /** |
1727 | * vzalloc - allocate virtually contiguous memory with zero fill | |
1728 | * @size: allocation size | |
1729 | * Allocate enough pages to cover @size from the page level | |
1730 | * allocator and map them into contiguous kernel virtual space. | |
1731 | * The memory allocated is set to zero. | |
1732 | * | |
1733 | * For tight control over page level allocator and protection flags | |
1734 | * use __vmalloc() instead. | |
1735 | */ | |
1736 | void *vzalloc(unsigned long size) | |
1737 | { | |
00ef2d2f | 1738 | return __vmalloc_node_flags(size, NUMA_NO_NODE, |
e1ca7788 DY |
1739 | GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); |
1740 | } | |
1741 | EXPORT_SYMBOL(vzalloc); | |
1742 | ||
83342314 | 1743 | /** |
ead04089 REB |
1744 | * vmalloc_user - allocate zeroed virtually contiguous memory for userspace |
1745 | * @size: allocation size | |
83342314 | 1746 | * |
ead04089 REB |
1747 | * The resulting memory area is zeroed so it can be mapped to userspace |
1748 | * without leaking data. | |
83342314 NP |
1749 | */ |
1750 | void *vmalloc_user(unsigned long size) | |
1751 | { | |
1752 | struct vm_struct *area; | |
1753 | void *ret; | |
1754 | ||
2dca6999 DM |
1755 | ret = __vmalloc_node(size, SHMLBA, |
1756 | GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, | |
00ef2d2f DR |
1757 | PAGE_KERNEL, NUMA_NO_NODE, |
1758 | __builtin_return_address(0)); | |
2b4ac44e | 1759 | if (ret) { |
db64fe02 | 1760 | area = find_vm_area(ret); |
2b4ac44e | 1761 | area->flags |= VM_USERMAP; |
2b4ac44e | 1762 | } |
83342314 NP |
1763 | return ret; |
1764 | } | |
1765 | EXPORT_SYMBOL(vmalloc_user); | |
1766 | ||
930fc45a CL |
1767 | /** |
1768 | * vmalloc_node - allocate memory on a specific node | |
930fc45a | 1769 | * @size: allocation size |
d44e0780 | 1770 | * @node: numa node |
930fc45a CL |
1771 | * |
1772 | * Allocate enough pages to cover @size from the page level | |
1773 | * allocator and map them into contiguous kernel virtual space. | |
1774 | * | |
c1c8897f | 1775 | * For tight control over page level allocator and protection flags |
930fc45a CL |
1776 | * use __vmalloc() instead. |
1777 | */ | |
1778 | void *vmalloc_node(unsigned long size, int node) | |
1779 | { | |
2dca6999 | 1780 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, |
23016969 | 1781 | node, __builtin_return_address(0)); |
930fc45a CL |
1782 | } |
1783 | EXPORT_SYMBOL(vmalloc_node); | |
1784 | ||
e1ca7788 DY |
1785 | /** |
1786 | * vzalloc_node - allocate memory on a specific node with zero fill | |
1787 | * @size: allocation size | |
1788 | * @node: numa node | |
1789 | * | |
1790 | * Allocate enough pages to cover @size from the page level | |
1791 | * allocator and map them into contiguous kernel virtual space. | |
1792 | * The memory allocated is set to zero. | |
1793 | * | |
1794 | * For tight control over page level allocator and protection flags | |
1795 | * use __vmalloc_node() instead. | |
1796 | */ | |
1797 | void *vzalloc_node(unsigned long size, int node) | |
1798 | { | |
1799 | return __vmalloc_node_flags(size, node, | |
1800 | GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO); | |
1801 | } | |
1802 | EXPORT_SYMBOL(vzalloc_node); | |
1803 | ||
4dc3b16b PP |
1804 | #ifndef PAGE_KERNEL_EXEC |
1805 | # define PAGE_KERNEL_EXEC PAGE_KERNEL | |
1806 | #endif | |
1807 | ||
1da177e4 LT |
1808 | /** |
1809 | * vmalloc_exec - allocate virtually contiguous, executable memory | |
1da177e4 LT |
1810 | * @size: allocation size |
1811 | * | |
1812 | * Kernel-internal function to allocate enough pages to cover @size | |
1813 | * the page level allocator and map them into contiguous and | |
1814 | * executable kernel virtual space. | |
1815 | * | |
c1c8897f | 1816 | * For tight control over page level allocator and protection flags |
1da177e4 LT |
1817 | * use __vmalloc() instead. |
1818 | */ | |
1819 | ||
1da177e4 LT |
1820 | void *vmalloc_exec(unsigned long size) |
1821 | { | |
2dca6999 | 1822 | return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC, |
00ef2d2f | 1823 | NUMA_NO_NODE, __builtin_return_address(0)); |
1da177e4 LT |
1824 | } |
1825 | ||
0d08e0d3 | 1826 | #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32) |
7ac674f5 | 1827 | #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL |
0d08e0d3 | 1828 | #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA) |
7ac674f5 | 1829 | #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL |
0d08e0d3 AK |
1830 | #else |
1831 | #define GFP_VMALLOC32 GFP_KERNEL | |
1832 | #endif | |
1833 | ||
1da177e4 LT |
1834 | /** |
1835 | * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) | |
1da177e4 LT |
1836 | * @size: allocation size |
1837 | * | |
1838 | * Allocate enough 32bit PA addressable pages to cover @size from the | |
1839 | * page level allocator and map them into contiguous kernel virtual space. | |
1840 | */ | |
1841 | void *vmalloc_32(unsigned long size) | |
1842 | { | |
2dca6999 | 1843 | return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL, |
00ef2d2f | 1844 | NUMA_NO_NODE, __builtin_return_address(0)); |
1da177e4 | 1845 | } |
1da177e4 LT |
1846 | EXPORT_SYMBOL(vmalloc_32); |
1847 | ||
83342314 | 1848 | /** |
ead04089 | 1849 | * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory |
83342314 | 1850 | * @size: allocation size |
ead04089 REB |
1851 | * |
1852 | * The resulting memory area is 32bit addressable and zeroed so it can be | |
1853 | * mapped to userspace without leaking data. | |
83342314 NP |
1854 | */ |
1855 | void *vmalloc_32_user(unsigned long size) | |
1856 | { | |
1857 | struct vm_struct *area; | |
1858 | void *ret; | |
1859 | ||
2dca6999 | 1860 | ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL, |
00ef2d2f | 1861 | NUMA_NO_NODE, __builtin_return_address(0)); |
2b4ac44e | 1862 | if (ret) { |
db64fe02 | 1863 | area = find_vm_area(ret); |
2b4ac44e | 1864 | area->flags |= VM_USERMAP; |
2b4ac44e | 1865 | } |
83342314 NP |
1866 | return ret; |
1867 | } | |
1868 | EXPORT_SYMBOL(vmalloc_32_user); | |
1869 | ||
d0107eb0 KH |
1870 | /* |
1871 | * small helper routine , copy contents to buf from addr. | |
1872 | * If the page is not present, fill zero. | |
1873 | */ | |
1874 | ||
1875 | static int aligned_vread(char *buf, char *addr, unsigned long count) | |
1876 | { | |
1877 | struct page *p; | |
1878 | int copied = 0; | |
1879 | ||
1880 | while (count) { | |
1881 | unsigned long offset, length; | |
1882 | ||
1883 | offset = (unsigned long)addr & ~PAGE_MASK; | |
1884 | length = PAGE_SIZE - offset; | |
1885 | if (length > count) | |
1886 | length = count; | |
1887 | p = vmalloc_to_page(addr); | |
1888 | /* | |
1889 | * To do safe access to this _mapped_ area, we need | |
1890 | * lock. But adding lock here means that we need to add | |
1891 | * overhead of vmalloc()/vfree() calles for this _debug_ | |
1892 | * interface, rarely used. Instead of that, we'll use | |
1893 | * kmap() and get small overhead in this access function. | |
1894 | */ | |
1895 | if (p) { | |
1896 | /* | |
1897 | * we can expect USER0 is not used (see vread/vwrite's | |
1898 | * function description) | |
1899 | */ | |
9b04c5fe | 1900 | void *map = kmap_atomic(p); |
d0107eb0 | 1901 | memcpy(buf, map + offset, length); |
9b04c5fe | 1902 | kunmap_atomic(map); |
d0107eb0 KH |
1903 | } else |
1904 | memset(buf, 0, length); | |
1905 | ||
1906 | addr += length; | |
1907 | buf += length; | |
1908 | copied += length; | |
1909 | count -= length; | |
1910 | } | |
1911 | return copied; | |
1912 | } | |
1913 | ||
1914 | static int aligned_vwrite(char *buf, char *addr, unsigned long count) | |
1915 | { | |
1916 | struct page *p; | |
1917 | int copied = 0; | |
1918 | ||
1919 | while (count) { | |
1920 | unsigned long offset, length; | |
1921 | ||
1922 | offset = (unsigned long)addr & ~PAGE_MASK; | |
1923 | length = PAGE_SIZE - offset; | |
1924 | if (length > count) | |
1925 | length = count; | |
1926 | p = vmalloc_to_page(addr); | |
1927 | /* | |
1928 | * To do safe access to this _mapped_ area, we need | |
1929 | * lock. But adding lock here means that we need to add | |
1930 | * overhead of vmalloc()/vfree() calles for this _debug_ | |
1931 | * interface, rarely used. Instead of that, we'll use | |
1932 | * kmap() and get small overhead in this access function. | |
1933 | */ | |
1934 | if (p) { | |
1935 | /* | |
1936 | * we can expect USER0 is not used (see vread/vwrite's | |
1937 | * function description) | |
1938 | */ | |
9b04c5fe | 1939 | void *map = kmap_atomic(p); |
d0107eb0 | 1940 | memcpy(map + offset, buf, length); |
9b04c5fe | 1941 | kunmap_atomic(map); |
d0107eb0 KH |
1942 | } |
1943 | addr += length; | |
1944 | buf += length; | |
1945 | copied += length; | |
1946 | count -= length; | |
1947 | } | |
1948 | return copied; | |
1949 | } | |
1950 | ||
1951 | /** | |
1952 | * vread() - read vmalloc area in a safe way. | |
1953 | * @buf: buffer for reading data | |
1954 | * @addr: vm address. | |
1955 | * @count: number of bytes to be read. | |
1956 | * | |
1957 | * Returns # of bytes which addr and buf should be increased. | |
1958 | * (same number to @count). Returns 0 if [addr...addr+count) doesn't | |
1959 | * includes any intersect with alive vmalloc area. | |
1960 | * | |
1961 | * This function checks that addr is a valid vmalloc'ed area, and | |
1962 | * copy data from that area to a given buffer. If the given memory range | |
1963 | * of [addr...addr+count) includes some valid address, data is copied to | |
1964 | * proper area of @buf. If there are memory holes, they'll be zero-filled. | |
1965 | * IOREMAP area is treated as memory hole and no copy is done. | |
1966 | * | |
1967 | * If [addr...addr+count) doesn't includes any intersects with alive | |
a8e5202d | 1968 | * vm_struct area, returns 0. @buf should be kernel's buffer. |
d0107eb0 KH |
1969 | * |
1970 | * Note: In usual ops, vread() is never necessary because the caller | |
1971 | * should know vmalloc() area is valid and can use memcpy(). | |
1972 | * This is for routines which have to access vmalloc area without | |
1973 | * any informaion, as /dev/kmem. | |
1974 | * | |
1975 | */ | |
1976 | ||
1da177e4 LT |
1977 | long vread(char *buf, char *addr, unsigned long count) |
1978 | { | |
e81ce85f JK |
1979 | struct vmap_area *va; |
1980 | struct vm_struct *vm; | |
1da177e4 | 1981 | char *vaddr, *buf_start = buf; |
d0107eb0 | 1982 | unsigned long buflen = count; |
1da177e4 LT |
1983 | unsigned long n; |
1984 | ||
1985 | /* Don't allow overflow */ | |
1986 | if ((unsigned long) addr + count < count) | |
1987 | count = -(unsigned long) addr; | |
1988 | ||
e81ce85f JK |
1989 | spin_lock(&vmap_area_lock); |
1990 | list_for_each_entry(va, &vmap_area_list, list) { | |
1991 | if (!count) | |
1992 | break; | |
1993 | ||
1994 | if (!(va->flags & VM_VM_AREA)) | |
1995 | continue; | |
1996 | ||
1997 | vm = va->vm; | |
1998 | vaddr = (char *) vm->addr; | |
762216ab | 1999 | if (addr >= vaddr + get_vm_area_size(vm)) |
1da177e4 LT |
2000 | continue; |
2001 | while (addr < vaddr) { | |
2002 | if (count == 0) | |
2003 | goto finished; | |
2004 | *buf = '\0'; | |
2005 | buf++; | |
2006 | addr++; | |
2007 | count--; | |
2008 | } | |
762216ab | 2009 | n = vaddr + get_vm_area_size(vm) - addr; |
d0107eb0 KH |
2010 | if (n > count) |
2011 | n = count; | |
e81ce85f | 2012 | if (!(vm->flags & VM_IOREMAP)) |
d0107eb0 KH |
2013 | aligned_vread(buf, addr, n); |
2014 | else /* IOREMAP area is treated as memory hole */ | |
2015 | memset(buf, 0, n); | |
2016 | buf += n; | |
2017 | addr += n; | |
2018 | count -= n; | |
1da177e4 LT |
2019 | } |
2020 | finished: | |
e81ce85f | 2021 | spin_unlock(&vmap_area_lock); |
d0107eb0 KH |
2022 | |
2023 | if (buf == buf_start) | |
2024 | return 0; | |
2025 | /* zero-fill memory holes */ | |
2026 | if (buf != buf_start + buflen) | |
2027 | memset(buf, 0, buflen - (buf - buf_start)); | |
2028 | ||
2029 | return buflen; | |
1da177e4 LT |
2030 | } |
2031 | ||
d0107eb0 KH |
2032 | /** |
2033 | * vwrite() - write vmalloc area in a safe way. | |
2034 | * @buf: buffer for source data | |
2035 | * @addr: vm address. | |
2036 | * @count: number of bytes to be read. | |
2037 | * | |
2038 | * Returns # of bytes which addr and buf should be incresed. | |
2039 | * (same number to @count). | |
2040 | * If [addr...addr+count) doesn't includes any intersect with valid | |
2041 | * vmalloc area, returns 0. | |
2042 | * | |
2043 | * This function checks that addr is a valid vmalloc'ed area, and | |
2044 | * copy data from a buffer to the given addr. If specified range of | |
2045 | * [addr...addr+count) includes some valid address, data is copied from | |
2046 | * proper area of @buf. If there are memory holes, no copy to hole. | |
2047 | * IOREMAP area is treated as memory hole and no copy is done. | |
2048 | * | |
2049 | * If [addr...addr+count) doesn't includes any intersects with alive | |
a8e5202d | 2050 | * vm_struct area, returns 0. @buf should be kernel's buffer. |
d0107eb0 KH |
2051 | * |
2052 | * Note: In usual ops, vwrite() is never necessary because the caller | |
2053 | * should know vmalloc() area is valid and can use memcpy(). | |
2054 | * This is for routines which have to access vmalloc area without | |
2055 | * any informaion, as /dev/kmem. | |
d0107eb0 KH |
2056 | */ |
2057 | ||
1da177e4 LT |
2058 | long vwrite(char *buf, char *addr, unsigned long count) |
2059 | { | |
e81ce85f JK |
2060 | struct vmap_area *va; |
2061 | struct vm_struct *vm; | |
d0107eb0 KH |
2062 | char *vaddr; |
2063 | unsigned long n, buflen; | |
2064 | int copied = 0; | |
1da177e4 LT |
2065 | |
2066 | /* Don't allow overflow */ | |
2067 | if ((unsigned long) addr + count < count) | |
2068 | count = -(unsigned long) addr; | |
d0107eb0 | 2069 | buflen = count; |
1da177e4 | 2070 | |
e81ce85f JK |
2071 | spin_lock(&vmap_area_lock); |
2072 | list_for_each_entry(va, &vmap_area_list, list) { | |
2073 | if (!count) | |
2074 | break; | |
2075 | ||
2076 | if (!(va->flags & VM_VM_AREA)) | |
2077 | continue; | |
2078 | ||
2079 | vm = va->vm; | |
2080 | vaddr = (char *) vm->addr; | |
762216ab | 2081 | if (addr >= vaddr + get_vm_area_size(vm)) |
1da177e4 LT |
2082 | continue; |
2083 | while (addr < vaddr) { | |
2084 | if (count == 0) | |
2085 | goto finished; | |
2086 | buf++; | |
2087 | addr++; | |
2088 | count--; | |
2089 | } | |
762216ab | 2090 | n = vaddr + get_vm_area_size(vm) - addr; |
d0107eb0 KH |
2091 | if (n > count) |
2092 | n = count; | |
e81ce85f | 2093 | if (!(vm->flags & VM_IOREMAP)) { |
d0107eb0 KH |
2094 | aligned_vwrite(buf, addr, n); |
2095 | copied++; | |
2096 | } | |
2097 | buf += n; | |
2098 | addr += n; | |
2099 | count -= n; | |
1da177e4 LT |
2100 | } |
2101 | finished: | |
e81ce85f | 2102 | spin_unlock(&vmap_area_lock); |
d0107eb0 KH |
2103 | if (!copied) |
2104 | return 0; | |
2105 | return buflen; | |
1da177e4 | 2106 | } |
83342314 NP |
2107 | |
2108 | /** | |
e69e9d4a HD |
2109 | * remap_vmalloc_range_partial - map vmalloc pages to userspace |
2110 | * @vma: vma to cover | |
2111 | * @uaddr: target user address to start at | |
2112 | * @kaddr: virtual address of vmalloc kernel memory | |
2113 | * @size: size of map area | |
7682486b RD |
2114 | * |
2115 | * Returns: 0 for success, -Exxx on failure | |
83342314 | 2116 | * |
e69e9d4a HD |
2117 | * This function checks that @kaddr is a valid vmalloc'ed area, |
2118 | * and that it is big enough to cover the range starting at | |
2119 | * @uaddr in @vma. Will return failure if that criteria isn't | |
2120 | * met. | |
83342314 | 2121 | * |
72fd4a35 | 2122 | * Similar to remap_pfn_range() (see mm/memory.c) |
83342314 | 2123 | */ |
e69e9d4a HD |
2124 | int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr, |
2125 | void *kaddr, unsigned long size) | |
83342314 NP |
2126 | { |
2127 | struct vm_struct *area; | |
83342314 | 2128 | |
e69e9d4a HD |
2129 | size = PAGE_ALIGN(size); |
2130 | ||
2131 | if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr)) | |
83342314 NP |
2132 | return -EINVAL; |
2133 | ||
e69e9d4a | 2134 | area = find_vm_area(kaddr); |
83342314 | 2135 | if (!area) |
db64fe02 | 2136 | return -EINVAL; |
83342314 NP |
2137 | |
2138 | if (!(area->flags & VM_USERMAP)) | |
db64fe02 | 2139 | return -EINVAL; |
83342314 | 2140 | |
e69e9d4a | 2141 | if (kaddr + size > area->addr + area->size) |
db64fe02 | 2142 | return -EINVAL; |
83342314 | 2143 | |
83342314 | 2144 | do { |
e69e9d4a | 2145 | struct page *page = vmalloc_to_page(kaddr); |
db64fe02 NP |
2146 | int ret; |
2147 | ||
83342314 NP |
2148 | ret = vm_insert_page(vma, uaddr, page); |
2149 | if (ret) | |
2150 | return ret; | |
2151 | ||
2152 | uaddr += PAGE_SIZE; | |
e69e9d4a HD |
2153 | kaddr += PAGE_SIZE; |
2154 | size -= PAGE_SIZE; | |
2155 | } while (size > 0); | |
83342314 | 2156 | |
314e51b9 | 2157 | vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; |
83342314 | 2158 | |
db64fe02 | 2159 | return 0; |
83342314 | 2160 | } |
e69e9d4a HD |
2161 | EXPORT_SYMBOL(remap_vmalloc_range_partial); |
2162 | ||
2163 | /** | |
2164 | * remap_vmalloc_range - map vmalloc pages to userspace | |
2165 | * @vma: vma to cover (map full range of vma) | |
2166 | * @addr: vmalloc memory | |
2167 | * @pgoff: number of pages into addr before first page to map | |
2168 | * | |
2169 | * Returns: 0 for success, -Exxx on failure | |
2170 | * | |
2171 | * This function checks that addr is a valid vmalloc'ed area, and | |
2172 | * that it is big enough to cover the vma. Will return failure if | |
2173 | * that criteria isn't met. | |
2174 | * | |
2175 | * Similar to remap_pfn_range() (see mm/memory.c) | |
2176 | */ | |
2177 | int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, | |
2178 | unsigned long pgoff) | |
2179 | { | |
2180 | return remap_vmalloc_range_partial(vma, vma->vm_start, | |
2181 | addr + (pgoff << PAGE_SHIFT), | |
2182 | vma->vm_end - vma->vm_start); | |
2183 | } | |
83342314 NP |
2184 | EXPORT_SYMBOL(remap_vmalloc_range); |
2185 | ||
1eeb66a1 CH |
2186 | /* |
2187 | * Implement a stub for vmalloc_sync_all() if the architecture chose not to | |
2188 | * have one. | |
2189 | */ | |
3b32123d | 2190 | void __weak vmalloc_sync_all(void) |
1eeb66a1 CH |
2191 | { |
2192 | } | |
5f4352fb JF |
2193 | |
2194 | ||
2f569afd | 2195 | static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data) |
5f4352fb | 2196 | { |
cd12909c DV |
2197 | pte_t ***p = data; |
2198 | ||
2199 | if (p) { | |
2200 | *(*p) = pte; | |
2201 | (*p)++; | |
2202 | } | |
5f4352fb JF |
2203 | return 0; |
2204 | } | |
2205 | ||
2206 | /** | |
2207 | * alloc_vm_area - allocate a range of kernel address space | |
2208 | * @size: size of the area | |
cd12909c | 2209 | * @ptes: returns the PTEs for the address space |
7682486b RD |
2210 | * |
2211 | * Returns: NULL on failure, vm_struct on success | |
5f4352fb JF |
2212 | * |
2213 | * This function reserves a range of kernel address space, and | |
2214 | * allocates pagetables to map that range. No actual mappings | |
cd12909c DV |
2215 | * are created. |
2216 | * | |
2217 | * If @ptes is non-NULL, pointers to the PTEs (in init_mm) | |
2218 | * allocated for the VM area are returned. | |
5f4352fb | 2219 | */ |
cd12909c | 2220 | struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes) |
5f4352fb JF |
2221 | { |
2222 | struct vm_struct *area; | |
2223 | ||
23016969 CL |
2224 | area = get_vm_area_caller(size, VM_IOREMAP, |
2225 | __builtin_return_address(0)); | |
5f4352fb JF |
2226 | if (area == NULL) |
2227 | return NULL; | |
2228 | ||
2229 | /* | |
2230 | * This ensures that page tables are constructed for this region | |
2231 | * of kernel virtual address space and mapped into init_mm. | |
2232 | */ | |
2233 | if (apply_to_page_range(&init_mm, (unsigned long)area->addr, | |
cd12909c | 2234 | size, f, ptes ? &ptes : NULL)) { |
5f4352fb JF |
2235 | free_vm_area(area); |
2236 | return NULL; | |
2237 | } | |
2238 | ||
5f4352fb JF |
2239 | return area; |
2240 | } | |
2241 | EXPORT_SYMBOL_GPL(alloc_vm_area); | |
2242 | ||
2243 | void free_vm_area(struct vm_struct *area) | |
2244 | { | |
2245 | struct vm_struct *ret; | |
2246 | ret = remove_vm_area(area->addr); | |
2247 | BUG_ON(ret != area); | |
2248 | kfree(area); | |
2249 | } | |
2250 | EXPORT_SYMBOL_GPL(free_vm_area); | |
a10aa579 | 2251 | |
4f8b02b4 | 2252 | #ifdef CONFIG_SMP |
ca23e405 TH |
2253 | static struct vmap_area *node_to_va(struct rb_node *n) |
2254 | { | |
2255 | return n ? rb_entry(n, struct vmap_area, rb_node) : NULL; | |
2256 | } | |
2257 | ||
2258 | /** | |
2259 | * pvm_find_next_prev - find the next and prev vmap_area surrounding @end | |
2260 | * @end: target address | |
2261 | * @pnext: out arg for the next vmap_area | |
2262 | * @pprev: out arg for the previous vmap_area | |
2263 | * | |
2264 | * Returns: %true if either or both of next and prev are found, | |
2265 | * %false if no vmap_area exists | |
2266 | * | |
2267 | * Find vmap_areas end addresses of which enclose @end. ie. if not | |
2268 | * NULL, *pnext->va_end > @end and *pprev->va_end <= @end. | |
2269 | */ | |
2270 | static bool pvm_find_next_prev(unsigned long end, | |
2271 | struct vmap_area **pnext, | |
2272 | struct vmap_area **pprev) | |
2273 | { | |
2274 | struct rb_node *n = vmap_area_root.rb_node; | |
2275 | struct vmap_area *va = NULL; | |
2276 | ||
2277 | while (n) { | |
2278 | va = rb_entry(n, struct vmap_area, rb_node); | |
2279 | if (end < va->va_end) | |
2280 | n = n->rb_left; | |
2281 | else if (end > va->va_end) | |
2282 | n = n->rb_right; | |
2283 | else | |
2284 | break; | |
2285 | } | |
2286 | ||
2287 | if (!va) | |
2288 | return false; | |
2289 | ||
2290 | if (va->va_end > end) { | |
2291 | *pnext = va; | |
2292 | *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); | |
2293 | } else { | |
2294 | *pprev = va; | |
2295 | *pnext = node_to_va(rb_next(&(*pprev)->rb_node)); | |
2296 | } | |
2297 | return true; | |
2298 | } | |
2299 | ||
2300 | /** | |
2301 | * pvm_determine_end - find the highest aligned address between two vmap_areas | |
2302 | * @pnext: in/out arg for the next vmap_area | |
2303 | * @pprev: in/out arg for the previous vmap_area | |
2304 | * @align: alignment | |
2305 | * | |
2306 | * Returns: determined end address | |
2307 | * | |
2308 | * Find the highest aligned address between *@pnext and *@pprev below | |
2309 | * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned | |
2310 | * down address is between the end addresses of the two vmap_areas. | |
2311 | * | |
2312 | * Please note that the address returned by this function may fall | |
2313 | * inside *@pnext vmap_area. The caller is responsible for checking | |
2314 | * that. | |
2315 | */ | |
2316 | static unsigned long pvm_determine_end(struct vmap_area **pnext, | |
2317 | struct vmap_area **pprev, | |
2318 | unsigned long align) | |
2319 | { | |
2320 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | |
2321 | unsigned long addr; | |
2322 | ||
2323 | if (*pnext) | |
2324 | addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end); | |
2325 | else | |
2326 | addr = vmalloc_end; | |
2327 | ||
2328 | while (*pprev && (*pprev)->va_end > addr) { | |
2329 | *pnext = *pprev; | |
2330 | *pprev = node_to_va(rb_prev(&(*pnext)->rb_node)); | |
2331 | } | |
2332 | ||
2333 | return addr; | |
2334 | } | |
2335 | ||
2336 | /** | |
2337 | * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator | |
2338 | * @offsets: array containing offset of each area | |
2339 | * @sizes: array containing size of each area | |
2340 | * @nr_vms: the number of areas to allocate | |
2341 | * @align: alignment, all entries in @offsets and @sizes must be aligned to this | |
ca23e405 TH |
2342 | * |
2343 | * Returns: kmalloc'd vm_struct pointer array pointing to allocated | |
2344 | * vm_structs on success, %NULL on failure | |
2345 | * | |
2346 | * Percpu allocator wants to use congruent vm areas so that it can | |
2347 | * maintain the offsets among percpu areas. This function allocates | |
ec3f64fc DR |
2348 | * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to |
2349 | * be scattered pretty far, distance between two areas easily going up | |
2350 | * to gigabytes. To avoid interacting with regular vmallocs, these | |
2351 | * areas are allocated from top. | |
ca23e405 TH |
2352 | * |
2353 | * Despite its complicated look, this allocator is rather simple. It | |
2354 | * does everything top-down and scans areas from the end looking for | |
2355 | * matching slot. While scanning, if any of the areas overlaps with | |
2356 | * existing vmap_area, the base address is pulled down to fit the | |
2357 | * area. Scanning is repeated till all the areas fit and then all | |
2358 | * necessary data structres are inserted and the result is returned. | |
2359 | */ | |
2360 | struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets, | |
2361 | const size_t *sizes, int nr_vms, | |
ec3f64fc | 2362 | size_t align) |
ca23e405 TH |
2363 | { |
2364 | const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align); | |
2365 | const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1); | |
2366 | struct vmap_area **vas, *prev, *next; | |
2367 | struct vm_struct **vms; | |
2368 | int area, area2, last_area, term_area; | |
2369 | unsigned long base, start, end, last_end; | |
2370 | bool purged = false; | |
2371 | ||
ca23e405 TH |
2372 | /* verify parameters and allocate data structures */ |
2373 | BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align)); | |
2374 | for (last_area = 0, area = 0; area < nr_vms; area++) { | |
2375 | start = offsets[area]; | |
2376 | end = start + sizes[area]; | |
2377 | ||
2378 | /* is everything aligned properly? */ | |
2379 | BUG_ON(!IS_ALIGNED(offsets[area], align)); | |
2380 | BUG_ON(!IS_ALIGNED(sizes[area], align)); | |
2381 | ||
2382 | /* detect the area with the highest address */ | |
2383 | if (start > offsets[last_area]) | |
2384 | last_area = area; | |
2385 | ||
2386 | for (area2 = 0; area2 < nr_vms; area2++) { | |
2387 | unsigned long start2 = offsets[area2]; | |
2388 | unsigned long end2 = start2 + sizes[area2]; | |
2389 | ||
2390 | if (area2 == area) | |
2391 | continue; | |
2392 | ||
2393 | BUG_ON(start2 >= start && start2 < end); | |
2394 | BUG_ON(end2 <= end && end2 > start); | |
2395 | } | |
2396 | } | |
2397 | last_end = offsets[last_area] + sizes[last_area]; | |
2398 | ||
2399 | if (vmalloc_end - vmalloc_start < last_end) { | |
2400 | WARN_ON(true); | |
2401 | return NULL; | |
2402 | } | |
2403 | ||
4d67d860 TM |
2404 | vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL); |
2405 | vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL); | |
ca23e405 | 2406 | if (!vas || !vms) |
f1db7afd | 2407 | goto err_free2; |
ca23e405 TH |
2408 | |
2409 | for (area = 0; area < nr_vms; area++) { | |
ec3f64fc DR |
2410 | vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL); |
2411 | vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL); | |
ca23e405 TH |
2412 | if (!vas[area] || !vms[area]) |
2413 | goto err_free; | |
2414 | } | |
2415 | retry: | |
2416 | spin_lock(&vmap_area_lock); | |
2417 | ||
2418 | /* start scanning - we scan from the top, begin with the last area */ | |
2419 | area = term_area = last_area; | |
2420 | start = offsets[area]; | |
2421 | end = start + sizes[area]; | |
2422 | ||
2423 | if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) { | |
2424 | base = vmalloc_end - last_end; | |
2425 | goto found; | |
2426 | } | |
2427 | base = pvm_determine_end(&next, &prev, align) - end; | |
2428 | ||
2429 | while (true) { | |
2430 | BUG_ON(next && next->va_end <= base + end); | |
2431 | BUG_ON(prev && prev->va_end > base + end); | |
2432 | ||
2433 | /* | |
2434 | * base might have underflowed, add last_end before | |
2435 | * comparing. | |
2436 | */ | |
2437 | if (base + last_end < vmalloc_start + last_end) { | |
2438 | spin_unlock(&vmap_area_lock); | |
2439 | if (!purged) { | |
2440 | purge_vmap_area_lazy(); | |
2441 | purged = true; | |
2442 | goto retry; | |
2443 | } | |
2444 | goto err_free; | |
2445 | } | |
2446 | ||
2447 | /* | |
2448 | * If next overlaps, move base downwards so that it's | |
2449 | * right below next and then recheck. | |
2450 | */ | |
2451 | if (next && next->va_start < base + end) { | |
2452 | base = pvm_determine_end(&next, &prev, align) - end; | |
2453 | term_area = area; | |
2454 | continue; | |
2455 | } | |
2456 | ||
2457 | /* | |
2458 | * If prev overlaps, shift down next and prev and move | |
2459 | * base so that it's right below new next and then | |
2460 | * recheck. | |
2461 | */ | |
2462 | if (prev && prev->va_end > base + start) { | |
2463 | next = prev; | |
2464 | prev = node_to_va(rb_prev(&next->rb_node)); | |
2465 | base = pvm_determine_end(&next, &prev, align) - end; | |
2466 | term_area = area; | |
2467 | continue; | |
2468 | } | |
2469 | ||
2470 | /* | |
2471 | * This area fits, move on to the previous one. If | |
2472 | * the previous one is the terminal one, we're done. | |
2473 | */ | |
2474 | area = (area + nr_vms - 1) % nr_vms; | |
2475 | if (area == term_area) | |
2476 | break; | |
2477 | start = offsets[area]; | |
2478 | end = start + sizes[area]; | |
2479 | pvm_find_next_prev(base + end, &next, &prev); | |
2480 | } | |
2481 | found: | |
2482 | /* we've found a fitting base, insert all va's */ | |
2483 | for (area = 0; area < nr_vms; area++) { | |
2484 | struct vmap_area *va = vas[area]; | |
2485 | ||
2486 | va->va_start = base + offsets[area]; | |
2487 | va->va_end = va->va_start + sizes[area]; | |
2488 | __insert_vmap_area(va); | |
2489 | } | |
2490 | ||
2491 | vmap_area_pcpu_hole = base + offsets[last_area]; | |
2492 | ||
2493 | spin_unlock(&vmap_area_lock); | |
2494 | ||
2495 | /* insert all vm's */ | |
2496 | for (area = 0; area < nr_vms; area++) | |
3645cb4a ZY |
2497 | setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC, |
2498 | pcpu_get_vm_areas); | |
ca23e405 TH |
2499 | |
2500 | kfree(vas); | |
2501 | return vms; | |
2502 | ||
2503 | err_free: | |
2504 | for (area = 0; area < nr_vms; area++) { | |
f1db7afd KC |
2505 | kfree(vas[area]); |
2506 | kfree(vms[area]); | |
ca23e405 | 2507 | } |
f1db7afd | 2508 | err_free2: |
ca23e405 TH |
2509 | kfree(vas); |
2510 | kfree(vms); | |
2511 | return NULL; | |
2512 | } | |
2513 | ||
2514 | /** | |
2515 | * pcpu_free_vm_areas - free vmalloc areas for percpu allocator | |
2516 | * @vms: vm_struct pointer array returned by pcpu_get_vm_areas() | |
2517 | * @nr_vms: the number of allocated areas | |
2518 | * | |
2519 | * Free vm_structs and the array allocated by pcpu_get_vm_areas(). | |
2520 | */ | |
2521 | void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms) | |
2522 | { | |
2523 | int i; | |
2524 | ||
2525 | for (i = 0; i < nr_vms; i++) | |
2526 | free_vm_area(vms[i]); | |
2527 | kfree(vms); | |
2528 | } | |
4f8b02b4 | 2529 | #endif /* CONFIG_SMP */ |
a10aa579 CL |
2530 | |
2531 | #ifdef CONFIG_PROC_FS | |
2532 | static void *s_start(struct seq_file *m, loff_t *pos) | |
d4033afd | 2533 | __acquires(&vmap_area_lock) |
a10aa579 CL |
2534 | { |
2535 | loff_t n = *pos; | |
d4033afd | 2536 | struct vmap_area *va; |
a10aa579 | 2537 | |
d4033afd JK |
2538 | spin_lock(&vmap_area_lock); |
2539 | va = list_entry((&vmap_area_list)->next, typeof(*va), list); | |
2540 | while (n > 0 && &va->list != &vmap_area_list) { | |
a10aa579 | 2541 | n--; |
d4033afd | 2542 | va = list_entry(va->list.next, typeof(*va), list); |
a10aa579 | 2543 | } |
d4033afd JK |
2544 | if (!n && &va->list != &vmap_area_list) |
2545 | return va; | |
a10aa579 CL |
2546 | |
2547 | return NULL; | |
2548 | ||
2549 | } | |
2550 | ||
2551 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
2552 | { | |
d4033afd | 2553 | struct vmap_area *va = p, *next; |
a10aa579 CL |
2554 | |
2555 | ++*pos; | |
d4033afd JK |
2556 | next = list_entry(va->list.next, typeof(*va), list); |
2557 | if (&next->list != &vmap_area_list) | |
2558 | return next; | |
2559 | ||
2560 | return NULL; | |
a10aa579 CL |
2561 | } |
2562 | ||
2563 | static void s_stop(struct seq_file *m, void *p) | |
d4033afd | 2564 | __releases(&vmap_area_lock) |
a10aa579 | 2565 | { |
d4033afd | 2566 | spin_unlock(&vmap_area_lock); |
a10aa579 CL |
2567 | } |
2568 | ||
a47a126a ED |
2569 | static void show_numa_info(struct seq_file *m, struct vm_struct *v) |
2570 | { | |
e5adfffc | 2571 | if (IS_ENABLED(CONFIG_NUMA)) { |
a47a126a ED |
2572 | unsigned int nr, *counters = m->private; |
2573 | ||
2574 | if (!counters) | |
2575 | return; | |
2576 | ||
af12346c WL |
2577 | if (v->flags & VM_UNINITIALIZED) |
2578 | return; | |
7e5b528b DV |
2579 | /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */ |
2580 | smp_rmb(); | |
af12346c | 2581 | |
a47a126a ED |
2582 | memset(counters, 0, nr_node_ids * sizeof(unsigned int)); |
2583 | ||
2584 | for (nr = 0; nr < v->nr_pages; nr++) | |
2585 | counters[page_to_nid(v->pages[nr])]++; | |
2586 | ||
2587 | for_each_node_state(nr, N_HIGH_MEMORY) | |
2588 | if (counters[nr]) | |
2589 | seq_printf(m, " N%u=%u", nr, counters[nr]); | |
2590 | } | |
2591 | } | |
2592 | ||
a10aa579 CL |
2593 | static int s_show(struct seq_file *m, void *p) |
2594 | { | |
d4033afd JK |
2595 | struct vmap_area *va = p; |
2596 | struct vm_struct *v; | |
2597 | ||
c2ce8c14 WL |
2598 | /* |
2599 | * s_show can encounter race with remove_vm_area, !VM_VM_AREA on | |
2600 | * behalf of vmap area is being tear down or vm_map_ram allocation. | |
2601 | */ | |
2602 | if (!(va->flags & VM_VM_AREA)) | |
d4033afd | 2603 | return 0; |
d4033afd JK |
2604 | |
2605 | v = va->vm; | |
a10aa579 | 2606 | |
45ec1690 | 2607 | seq_printf(m, "0x%pK-0x%pK %7ld", |
a10aa579 CL |
2608 | v->addr, v->addr + v->size, v->size); |
2609 | ||
62c70bce JP |
2610 | if (v->caller) |
2611 | seq_printf(m, " %pS", v->caller); | |
23016969 | 2612 | |
a10aa579 CL |
2613 | if (v->nr_pages) |
2614 | seq_printf(m, " pages=%d", v->nr_pages); | |
2615 | ||
2616 | if (v->phys_addr) | |
ffa71f33 | 2617 | seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr); |
a10aa579 CL |
2618 | |
2619 | if (v->flags & VM_IOREMAP) | |
f4527c90 | 2620 | seq_puts(m, " ioremap"); |
a10aa579 CL |
2621 | |
2622 | if (v->flags & VM_ALLOC) | |
f4527c90 | 2623 | seq_puts(m, " vmalloc"); |
a10aa579 CL |
2624 | |
2625 | if (v->flags & VM_MAP) | |
f4527c90 | 2626 | seq_puts(m, " vmap"); |
a10aa579 CL |
2627 | |
2628 | if (v->flags & VM_USERMAP) | |
f4527c90 | 2629 | seq_puts(m, " user"); |
a10aa579 CL |
2630 | |
2631 | if (v->flags & VM_VPAGES) | |
f4527c90 | 2632 | seq_puts(m, " vpages"); |
a10aa579 | 2633 | |
a47a126a | 2634 | show_numa_info(m, v); |
a10aa579 CL |
2635 | seq_putc(m, '\n'); |
2636 | return 0; | |
2637 | } | |
2638 | ||
5f6a6a9c | 2639 | static const struct seq_operations vmalloc_op = { |
a10aa579 CL |
2640 | .start = s_start, |
2641 | .next = s_next, | |
2642 | .stop = s_stop, | |
2643 | .show = s_show, | |
2644 | }; | |
5f6a6a9c AD |
2645 | |
2646 | static int vmalloc_open(struct inode *inode, struct file *file) | |
2647 | { | |
703394c1 RJ |
2648 | if (IS_ENABLED(CONFIG_NUMA)) |
2649 | return seq_open_private(file, &vmalloc_op, | |
2650 | nr_node_ids * sizeof(unsigned int)); | |
2651 | else | |
2652 | return seq_open(file, &vmalloc_op); | |
5f6a6a9c AD |
2653 | } |
2654 | ||
2655 | static const struct file_operations proc_vmalloc_operations = { | |
2656 | .open = vmalloc_open, | |
2657 | .read = seq_read, | |
2658 | .llseek = seq_lseek, | |
2659 | .release = seq_release_private, | |
2660 | }; | |
2661 | ||
2662 | static int __init proc_vmalloc_init(void) | |
2663 | { | |
2664 | proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations); | |
2665 | return 0; | |
2666 | } | |
2667 | module_init(proc_vmalloc_init); | |
db3808c1 JK |
2668 | |
2669 | void get_vmalloc_info(struct vmalloc_info *vmi) | |
2670 | { | |
f98782dd | 2671 | struct vmap_area *va; |
db3808c1 JK |
2672 | unsigned long free_area_size; |
2673 | unsigned long prev_end; | |
2674 | ||
2675 | vmi->used = 0; | |
f98782dd | 2676 | vmi->largest_chunk = 0; |
db3808c1 | 2677 | |
f98782dd | 2678 | prev_end = VMALLOC_START; |
db3808c1 | 2679 | |
474750ab | 2680 | rcu_read_lock(); |
db3808c1 | 2681 | |
f98782dd JK |
2682 | if (list_empty(&vmap_area_list)) { |
2683 | vmi->largest_chunk = VMALLOC_TOTAL; | |
2684 | goto out; | |
2685 | } | |
db3808c1 | 2686 | |
474750ab | 2687 | list_for_each_entry_rcu(va, &vmap_area_list, list) { |
f98782dd | 2688 | unsigned long addr = va->va_start; |
db3808c1 | 2689 | |
f98782dd JK |
2690 | /* |
2691 | * Some archs keep another range for modules in vmalloc space | |
2692 | */ | |
2693 | if (addr < VMALLOC_START) | |
2694 | continue; | |
2695 | if (addr >= VMALLOC_END) | |
2696 | break; | |
db3808c1 | 2697 | |
f98782dd JK |
2698 | if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING)) |
2699 | continue; | |
db3808c1 | 2700 | |
f98782dd | 2701 | vmi->used += (va->va_end - va->va_start); |
db3808c1 | 2702 | |
f98782dd JK |
2703 | free_area_size = addr - prev_end; |
2704 | if (vmi->largest_chunk < free_area_size) | |
2705 | vmi->largest_chunk = free_area_size; | |
db3808c1 | 2706 | |
f98782dd | 2707 | prev_end = va->va_end; |
db3808c1 | 2708 | } |
f98782dd JK |
2709 | |
2710 | if (VMALLOC_END - prev_end > vmi->largest_chunk) | |
2711 | vmi->largest_chunk = VMALLOC_END - prev_end; | |
2712 | ||
2713 | out: | |
474750ab | 2714 | rcu_read_unlock(); |
db3808c1 | 2715 | } |
a10aa579 CL |
2716 | #endif |
2717 |