]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Generic hugetlb support. | |
3 | * (C) William Irwin, April 2004 | |
4 | */ | |
5 | #include <linux/gfp.h> | |
6 | #include <linux/list.h> | |
7 | #include <linux/init.h> | |
8 | #include <linux/module.h> | |
9 | #include <linux/mm.h> | |
1da177e4 LT |
10 | #include <linux/sysctl.h> |
11 | #include <linux/highmem.h> | |
cddb8a5c | 12 | #include <linux/mmu_notifier.h> |
1da177e4 | 13 | #include <linux/nodemask.h> |
63551ae0 | 14 | #include <linux/pagemap.h> |
5da7ca86 | 15 | #include <linux/mempolicy.h> |
aea47ff3 | 16 | #include <linux/cpuset.h> |
3935baa9 | 17 | #include <linux/mutex.h> |
aa888a74 | 18 | #include <linux/bootmem.h> |
a3437870 | 19 | #include <linux/sysfs.h> |
d6606683 | 20 | |
63551ae0 DG |
21 | #include <asm/page.h> |
22 | #include <asm/pgtable.h> | |
78a34ae2 | 23 | #include <asm/io.h> |
63551ae0 DG |
24 | |
25 | #include <linux/hugetlb.h> | |
7835e98b | 26 | #include "internal.h" |
1da177e4 LT |
27 | |
28 | const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; | |
396faf03 MG |
29 | static gfp_t htlb_alloc_mask = GFP_HIGHUSER; |
30 | unsigned long hugepages_treat_as_movable; | |
a5516438 | 31 | |
e5ff2159 AK |
32 | static int max_hstate; |
33 | unsigned int default_hstate_idx; | |
34 | struct hstate hstates[HUGE_MAX_HSTATE]; | |
35 | ||
53ba51d2 JT |
36 | __initdata LIST_HEAD(huge_boot_pages); |
37 | ||
e5ff2159 AK |
38 | /* for command line parsing */ |
39 | static struct hstate * __initdata parsed_hstate; | |
40 | static unsigned long __initdata default_hstate_max_huge_pages; | |
e11bfbfc | 41 | static unsigned long __initdata default_hstate_size; |
e5ff2159 AK |
42 | |
43 | #define for_each_hstate(h) \ | |
44 | for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++) | |
396faf03 | 45 | |
3935baa9 DG |
46 | /* |
47 | * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages | |
48 | */ | |
49 | static DEFINE_SPINLOCK(hugetlb_lock); | |
0bd0f9fb | 50 | |
96822904 AW |
51 | /* |
52 | * Region tracking -- allows tracking of reservations and instantiated pages | |
53 | * across the pages in a mapping. | |
84afd99b AW |
54 | * |
55 | * The region data structures are protected by a combination of the mmap_sem | |
56 | * and the hugetlb_instantion_mutex. To access or modify a region the caller | |
57 | * must either hold the mmap_sem for write, or the mmap_sem for read and | |
58 | * the hugetlb_instantiation mutex: | |
59 | * | |
60 | * down_write(&mm->mmap_sem); | |
61 | * or | |
62 | * down_read(&mm->mmap_sem); | |
63 | * mutex_lock(&hugetlb_instantiation_mutex); | |
96822904 AW |
64 | */ |
65 | struct file_region { | |
66 | struct list_head link; | |
67 | long from; | |
68 | long to; | |
69 | }; | |
70 | ||
71 | static long region_add(struct list_head *head, long f, long t) | |
72 | { | |
73 | struct file_region *rg, *nrg, *trg; | |
74 | ||
75 | /* Locate the region we are either in or before. */ | |
76 | list_for_each_entry(rg, head, link) | |
77 | if (f <= rg->to) | |
78 | break; | |
79 | ||
80 | /* Round our left edge to the current segment if it encloses us. */ | |
81 | if (f > rg->from) | |
82 | f = rg->from; | |
83 | ||
84 | /* Check for and consume any regions we now overlap with. */ | |
85 | nrg = rg; | |
86 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | |
87 | if (&rg->link == head) | |
88 | break; | |
89 | if (rg->from > t) | |
90 | break; | |
91 | ||
92 | /* If this area reaches higher then extend our area to | |
93 | * include it completely. If this is not the first area | |
94 | * which we intend to reuse, free it. */ | |
95 | if (rg->to > t) | |
96 | t = rg->to; | |
97 | if (rg != nrg) { | |
98 | list_del(&rg->link); | |
99 | kfree(rg); | |
100 | } | |
101 | } | |
102 | nrg->from = f; | |
103 | nrg->to = t; | |
104 | return 0; | |
105 | } | |
106 | ||
107 | static long region_chg(struct list_head *head, long f, long t) | |
108 | { | |
109 | struct file_region *rg, *nrg; | |
110 | long chg = 0; | |
111 | ||
112 | /* Locate the region we are before or in. */ | |
113 | list_for_each_entry(rg, head, link) | |
114 | if (f <= rg->to) | |
115 | break; | |
116 | ||
117 | /* If we are below the current region then a new region is required. | |
118 | * Subtle, allocate a new region at the position but make it zero | |
119 | * size such that we can guarantee to record the reservation. */ | |
120 | if (&rg->link == head || t < rg->from) { | |
121 | nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); | |
122 | if (!nrg) | |
123 | return -ENOMEM; | |
124 | nrg->from = f; | |
125 | nrg->to = f; | |
126 | INIT_LIST_HEAD(&nrg->link); | |
127 | list_add(&nrg->link, rg->link.prev); | |
128 | ||
129 | return t - f; | |
130 | } | |
131 | ||
132 | /* Round our left edge to the current segment if it encloses us. */ | |
133 | if (f > rg->from) | |
134 | f = rg->from; | |
135 | chg = t - f; | |
136 | ||
137 | /* Check for and consume any regions we now overlap with. */ | |
138 | list_for_each_entry(rg, rg->link.prev, link) { | |
139 | if (&rg->link == head) | |
140 | break; | |
141 | if (rg->from > t) | |
142 | return chg; | |
143 | ||
144 | /* We overlap with this area, if it extends futher than | |
145 | * us then we must extend ourselves. Account for its | |
146 | * existing reservation. */ | |
147 | if (rg->to > t) { | |
148 | chg += rg->to - t; | |
149 | t = rg->to; | |
150 | } | |
151 | chg -= rg->to - rg->from; | |
152 | } | |
153 | return chg; | |
154 | } | |
155 | ||
156 | static long region_truncate(struct list_head *head, long end) | |
157 | { | |
158 | struct file_region *rg, *trg; | |
159 | long chg = 0; | |
160 | ||
161 | /* Locate the region we are either in or before. */ | |
162 | list_for_each_entry(rg, head, link) | |
163 | if (end <= rg->to) | |
164 | break; | |
165 | if (&rg->link == head) | |
166 | return 0; | |
167 | ||
168 | /* If we are in the middle of a region then adjust it. */ | |
169 | if (end > rg->from) { | |
170 | chg = rg->to - end; | |
171 | rg->to = end; | |
172 | rg = list_entry(rg->link.next, typeof(*rg), link); | |
173 | } | |
174 | ||
175 | /* Drop any remaining regions. */ | |
176 | list_for_each_entry_safe(rg, trg, rg->link.prev, link) { | |
177 | if (&rg->link == head) | |
178 | break; | |
179 | chg += rg->to - rg->from; | |
180 | list_del(&rg->link); | |
181 | kfree(rg); | |
182 | } | |
183 | return chg; | |
184 | } | |
185 | ||
84afd99b AW |
186 | static long region_count(struct list_head *head, long f, long t) |
187 | { | |
188 | struct file_region *rg; | |
189 | long chg = 0; | |
190 | ||
191 | /* Locate each segment we overlap with, and count that overlap. */ | |
192 | list_for_each_entry(rg, head, link) { | |
193 | int seg_from; | |
194 | int seg_to; | |
195 | ||
196 | if (rg->to <= f) | |
197 | continue; | |
198 | if (rg->from >= t) | |
199 | break; | |
200 | ||
201 | seg_from = max(rg->from, f); | |
202 | seg_to = min(rg->to, t); | |
203 | ||
204 | chg += seg_to - seg_from; | |
205 | } | |
206 | ||
207 | return chg; | |
208 | } | |
209 | ||
e7c4b0bf AW |
210 | /* |
211 | * Convert the address within this vma to the page offset within | |
212 | * the mapping, in pagecache page units; huge pages here. | |
213 | */ | |
a5516438 AK |
214 | static pgoff_t vma_hugecache_offset(struct hstate *h, |
215 | struct vm_area_struct *vma, unsigned long address) | |
e7c4b0bf | 216 | { |
a5516438 AK |
217 | return ((address - vma->vm_start) >> huge_page_shift(h)) + |
218 | (vma->vm_pgoff >> huge_page_order(h)); | |
e7c4b0bf AW |
219 | } |
220 | ||
84afd99b AW |
221 | /* |
222 | * Flags for MAP_PRIVATE reservations. These are stored in the bottom | |
223 | * bits of the reservation map pointer, which are always clear due to | |
224 | * alignment. | |
225 | */ | |
226 | #define HPAGE_RESV_OWNER (1UL << 0) | |
227 | #define HPAGE_RESV_UNMAPPED (1UL << 1) | |
04f2cbe3 | 228 | #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) |
84afd99b | 229 | |
a1e78772 MG |
230 | /* |
231 | * These helpers are used to track how many pages are reserved for | |
232 | * faults in a MAP_PRIVATE mapping. Only the process that called mmap() | |
233 | * is guaranteed to have their future faults succeed. | |
234 | * | |
235 | * With the exception of reset_vma_resv_huge_pages() which is called at fork(), | |
236 | * the reserve counters are updated with the hugetlb_lock held. It is safe | |
237 | * to reset the VMA at fork() time as it is not in use yet and there is no | |
238 | * chance of the global counters getting corrupted as a result of the values. | |
84afd99b AW |
239 | * |
240 | * The private mapping reservation is represented in a subtly different | |
241 | * manner to a shared mapping. A shared mapping has a region map associated | |
242 | * with the underlying file, this region map represents the backing file | |
243 | * pages which have ever had a reservation assigned which this persists even | |
244 | * after the page is instantiated. A private mapping has a region map | |
245 | * associated with the original mmap which is attached to all VMAs which | |
246 | * reference it, this region map represents those offsets which have consumed | |
247 | * reservation ie. where pages have been instantiated. | |
a1e78772 | 248 | */ |
e7c4b0bf AW |
249 | static unsigned long get_vma_private_data(struct vm_area_struct *vma) |
250 | { | |
251 | return (unsigned long)vma->vm_private_data; | |
252 | } | |
253 | ||
254 | static void set_vma_private_data(struct vm_area_struct *vma, | |
255 | unsigned long value) | |
256 | { | |
257 | vma->vm_private_data = (void *)value; | |
258 | } | |
259 | ||
84afd99b AW |
260 | struct resv_map { |
261 | struct kref refs; | |
262 | struct list_head regions; | |
263 | }; | |
264 | ||
265 | struct resv_map *resv_map_alloc(void) | |
266 | { | |
267 | struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); | |
268 | if (!resv_map) | |
269 | return NULL; | |
270 | ||
271 | kref_init(&resv_map->refs); | |
272 | INIT_LIST_HEAD(&resv_map->regions); | |
273 | ||
274 | return resv_map; | |
275 | } | |
276 | ||
277 | void resv_map_release(struct kref *ref) | |
278 | { | |
279 | struct resv_map *resv_map = container_of(ref, struct resv_map, refs); | |
280 | ||
281 | /* Clear out any active regions before we release the map. */ | |
282 | region_truncate(&resv_map->regions, 0); | |
283 | kfree(resv_map); | |
284 | } | |
285 | ||
286 | static struct resv_map *vma_resv_map(struct vm_area_struct *vma) | |
a1e78772 MG |
287 | { |
288 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | |
289 | if (!(vma->vm_flags & VM_SHARED)) | |
84afd99b AW |
290 | return (struct resv_map *)(get_vma_private_data(vma) & |
291 | ~HPAGE_RESV_MASK); | |
a1e78772 MG |
292 | return 0; |
293 | } | |
294 | ||
84afd99b | 295 | static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map) |
a1e78772 MG |
296 | { |
297 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | |
298 | VM_BUG_ON(vma->vm_flags & VM_SHARED); | |
299 | ||
84afd99b AW |
300 | set_vma_private_data(vma, (get_vma_private_data(vma) & |
301 | HPAGE_RESV_MASK) | (unsigned long)map); | |
04f2cbe3 MG |
302 | } |
303 | ||
304 | static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) | |
305 | { | |
04f2cbe3 | 306 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); |
e7c4b0bf AW |
307 | VM_BUG_ON(vma->vm_flags & VM_SHARED); |
308 | ||
309 | set_vma_private_data(vma, get_vma_private_data(vma) | flags); | |
04f2cbe3 MG |
310 | } |
311 | ||
312 | static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) | |
313 | { | |
314 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | |
e7c4b0bf AW |
315 | |
316 | return (get_vma_private_data(vma) & flag) != 0; | |
a1e78772 MG |
317 | } |
318 | ||
319 | /* Decrement the reserved pages in the hugepage pool by one */ | |
a5516438 AK |
320 | static void decrement_hugepage_resv_vma(struct hstate *h, |
321 | struct vm_area_struct *vma) | |
a1e78772 | 322 | { |
c37f9fb1 AW |
323 | if (vma->vm_flags & VM_NORESERVE) |
324 | return; | |
325 | ||
a1e78772 MG |
326 | if (vma->vm_flags & VM_SHARED) { |
327 | /* Shared mappings always use reserves */ | |
a5516438 | 328 | h->resv_huge_pages--; |
84afd99b | 329 | } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { |
a1e78772 MG |
330 | /* |
331 | * Only the process that called mmap() has reserves for | |
332 | * private mappings. | |
333 | */ | |
a5516438 | 334 | h->resv_huge_pages--; |
a1e78772 MG |
335 | } |
336 | } | |
337 | ||
04f2cbe3 | 338 | /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ |
a1e78772 MG |
339 | void reset_vma_resv_huge_pages(struct vm_area_struct *vma) |
340 | { | |
341 | VM_BUG_ON(!is_vm_hugetlb_page(vma)); | |
342 | if (!(vma->vm_flags & VM_SHARED)) | |
343 | vma->vm_private_data = (void *)0; | |
344 | } | |
345 | ||
346 | /* Returns true if the VMA has associated reserve pages */ | |
7f09ca51 | 347 | static int vma_has_reserves(struct vm_area_struct *vma) |
a1e78772 MG |
348 | { |
349 | if (vma->vm_flags & VM_SHARED) | |
7f09ca51 MG |
350 | return 1; |
351 | if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) | |
352 | return 1; | |
353 | return 0; | |
a1e78772 MG |
354 | } |
355 | ||
a5516438 AK |
356 | static void clear_huge_page(struct page *page, |
357 | unsigned long addr, unsigned long sz) | |
79ac6ba4 DG |
358 | { |
359 | int i; | |
360 | ||
361 | might_sleep(); | |
a5516438 | 362 | for (i = 0; i < sz/PAGE_SIZE; i++) { |
79ac6ba4 | 363 | cond_resched(); |
281e0e3b | 364 | clear_user_highpage(page + i, addr + i * PAGE_SIZE); |
79ac6ba4 DG |
365 | } |
366 | } | |
367 | ||
368 | static void copy_huge_page(struct page *dst, struct page *src, | |
9de455b2 | 369 | unsigned long addr, struct vm_area_struct *vma) |
79ac6ba4 DG |
370 | { |
371 | int i; | |
a5516438 | 372 | struct hstate *h = hstate_vma(vma); |
79ac6ba4 DG |
373 | |
374 | might_sleep(); | |
a5516438 | 375 | for (i = 0; i < pages_per_huge_page(h); i++) { |
79ac6ba4 | 376 | cond_resched(); |
9de455b2 | 377 | copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); |
79ac6ba4 DG |
378 | } |
379 | } | |
380 | ||
a5516438 | 381 | static void enqueue_huge_page(struct hstate *h, struct page *page) |
1da177e4 LT |
382 | { |
383 | int nid = page_to_nid(page); | |
a5516438 AK |
384 | list_add(&page->lru, &h->hugepage_freelists[nid]); |
385 | h->free_huge_pages++; | |
386 | h->free_huge_pages_node[nid]++; | |
1da177e4 LT |
387 | } |
388 | ||
a5516438 | 389 | static struct page *dequeue_huge_page(struct hstate *h) |
348e1e04 NA |
390 | { |
391 | int nid; | |
392 | struct page *page = NULL; | |
393 | ||
394 | for (nid = 0; nid < MAX_NUMNODES; ++nid) { | |
a5516438 AK |
395 | if (!list_empty(&h->hugepage_freelists[nid])) { |
396 | page = list_entry(h->hugepage_freelists[nid].next, | |
348e1e04 NA |
397 | struct page, lru); |
398 | list_del(&page->lru); | |
a5516438 AK |
399 | h->free_huge_pages--; |
400 | h->free_huge_pages_node[nid]--; | |
348e1e04 NA |
401 | break; |
402 | } | |
403 | } | |
404 | return page; | |
405 | } | |
406 | ||
a5516438 AK |
407 | static struct page *dequeue_huge_page_vma(struct hstate *h, |
408 | struct vm_area_struct *vma, | |
04f2cbe3 | 409 | unsigned long address, int avoid_reserve) |
1da177e4 | 410 | { |
31a5c6e4 | 411 | int nid; |
1da177e4 | 412 | struct page *page = NULL; |
480eccf9 | 413 | struct mempolicy *mpol; |
19770b32 | 414 | nodemask_t *nodemask; |
396faf03 | 415 | struct zonelist *zonelist = huge_zonelist(vma, address, |
19770b32 | 416 | htlb_alloc_mask, &mpol, &nodemask); |
dd1a239f MG |
417 | struct zone *zone; |
418 | struct zoneref *z; | |
1da177e4 | 419 | |
a1e78772 MG |
420 | /* |
421 | * A child process with MAP_PRIVATE mappings created by their parent | |
422 | * have no page reserves. This check ensures that reservations are | |
423 | * not "stolen". The child may still get SIGKILLed | |
424 | */ | |
7f09ca51 | 425 | if (!vma_has_reserves(vma) && |
a5516438 | 426 | h->free_huge_pages - h->resv_huge_pages == 0) |
a1e78772 MG |
427 | return NULL; |
428 | ||
04f2cbe3 | 429 | /* If reserves cannot be used, ensure enough pages are in the pool */ |
a5516438 | 430 | if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) |
04f2cbe3 MG |
431 | return NULL; |
432 | ||
19770b32 MG |
433 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
434 | MAX_NR_ZONES - 1, nodemask) { | |
54a6eb5c MG |
435 | nid = zone_to_nid(zone); |
436 | if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) && | |
a5516438 AK |
437 | !list_empty(&h->hugepage_freelists[nid])) { |
438 | page = list_entry(h->hugepage_freelists[nid].next, | |
3abf7afd AM |
439 | struct page, lru); |
440 | list_del(&page->lru); | |
a5516438 AK |
441 | h->free_huge_pages--; |
442 | h->free_huge_pages_node[nid]--; | |
04f2cbe3 MG |
443 | |
444 | if (!avoid_reserve) | |
a5516438 | 445 | decrement_hugepage_resv_vma(h, vma); |
a1e78772 | 446 | |
5ab3ee7b | 447 | break; |
3abf7afd | 448 | } |
1da177e4 | 449 | } |
52cd3b07 | 450 | mpol_cond_put(mpol); |
1da177e4 LT |
451 | return page; |
452 | } | |
453 | ||
a5516438 | 454 | static void update_and_free_page(struct hstate *h, struct page *page) |
6af2acb6 AL |
455 | { |
456 | int i; | |
a5516438 AK |
457 | |
458 | h->nr_huge_pages--; | |
459 | h->nr_huge_pages_node[page_to_nid(page)]--; | |
460 | for (i = 0; i < pages_per_huge_page(h); i++) { | |
6af2acb6 AL |
461 | page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced | |
462 | 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved | | |
463 | 1 << PG_private | 1<< PG_writeback); | |
464 | } | |
465 | set_compound_page_dtor(page, NULL); | |
466 | set_page_refcounted(page); | |
7f2e9525 | 467 | arch_release_hugepage(page); |
a5516438 | 468 | __free_pages(page, huge_page_order(h)); |
6af2acb6 AL |
469 | } |
470 | ||
e5ff2159 AK |
471 | struct hstate *size_to_hstate(unsigned long size) |
472 | { | |
473 | struct hstate *h; | |
474 | ||
475 | for_each_hstate(h) { | |
476 | if (huge_page_size(h) == size) | |
477 | return h; | |
478 | } | |
479 | return NULL; | |
480 | } | |
481 | ||
27a85ef1 DG |
482 | static void free_huge_page(struct page *page) |
483 | { | |
a5516438 AK |
484 | /* |
485 | * Can't pass hstate in here because it is called from the | |
486 | * compound page destructor. | |
487 | */ | |
e5ff2159 | 488 | struct hstate *h = page_hstate(page); |
7893d1d5 | 489 | int nid = page_to_nid(page); |
c79fb75e | 490 | struct address_space *mapping; |
27a85ef1 | 491 | |
c79fb75e | 492 | mapping = (struct address_space *) page_private(page); |
e5df70ab | 493 | set_page_private(page, 0); |
7893d1d5 | 494 | BUG_ON(page_count(page)); |
27a85ef1 DG |
495 | INIT_LIST_HEAD(&page->lru); |
496 | ||
497 | spin_lock(&hugetlb_lock); | |
aa888a74 | 498 | if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { |
a5516438 AK |
499 | update_and_free_page(h, page); |
500 | h->surplus_huge_pages--; | |
501 | h->surplus_huge_pages_node[nid]--; | |
7893d1d5 | 502 | } else { |
a5516438 | 503 | enqueue_huge_page(h, page); |
7893d1d5 | 504 | } |
27a85ef1 | 505 | spin_unlock(&hugetlb_lock); |
c79fb75e | 506 | if (mapping) |
9a119c05 | 507 | hugetlb_put_quota(mapping, 1); |
27a85ef1 DG |
508 | } |
509 | ||
7893d1d5 AL |
510 | /* |
511 | * Increment or decrement surplus_huge_pages. Keep node-specific counters | |
512 | * balanced by operating on them in a round-robin fashion. | |
513 | * Returns 1 if an adjustment was made. | |
514 | */ | |
a5516438 | 515 | static int adjust_pool_surplus(struct hstate *h, int delta) |
7893d1d5 AL |
516 | { |
517 | static int prev_nid; | |
518 | int nid = prev_nid; | |
519 | int ret = 0; | |
520 | ||
521 | VM_BUG_ON(delta != -1 && delta != 1); | |
522 | do { | |
523 | nid = next_node(nid, node_online_map); | |
524 | if (nid == MAX_NUMNODES) | |
525 | nid = first_node(node_online_map); | |
526 | ||
527 | /* To shrink on this node, there must be a surplus page */ | |
a5516438 | 528 | if (delta < 0 && !h->surplus_huge_pages_node[nid]) |
7893d1d5 AL |
529 | continue; |
530 | /* Surplus cannot exceed the total number of pages */ | |
a5516438 AK |
531 | if (delta > 0 && h->surplus_huge_pages_node[nid] >= |
532 | h->nr_huge_pages_node[nid]) | |
7893d1d5 AL |
533 | continue; |
534 | ||
a5516438 AK |
535 | h->surplus_huge_pages += delta; |
536 | h->surplus_huge_pages_node[nid] += delta; | |
7893d1d5 AL |
537 | ret = 1; |
538 | break; | |
539 | } while (nid != prev_nid); | |
540 | ||
541 | prev_nid = nid; | |
542 | return ret; | |
543 | } | |
544 | ||
a5516438 | 545 | static void prep_new_huge_page(struct hstate *h, struct page *page, int nid) |
b7ba30c6 AK |
546 | { |
547 | set_compound_page_dtor(page, free_huge_page); | |
548 | spin_lock(&hugetlb_lock); | |
a5516438 AK |
549 | h->nr_huge_pages++; |
550 | h->nr_huge_pages_node[nid]++; | |
b7ba30c6 AK |
551 | spin_unlock(&hugetlb_lock); |
552 | put_page(page); /* free it into the hugepage allocator */ | |
553 | } | |
554 | ||
a5516438 | 555 | static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) |
1da177e4 | 556 | { |
1da177e4 | 557 | struct page *page; |
f96efd58 | 558 | |
aa888a74 AK |
559 | if (h->order >= MAX_ORDER) |
560 | return NULL; | |
561 | ||
63b4613c | 562 | page = alloc_pages_node(nid, |
551883ae NA |
563 | htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| |
564 | __GFP_REPEAT|__GFP_NOWARN, | |
a5516438 | 565 | huge_page_order(h)); |
1da177e4 | 566 | if (page) { |
7f2e9525 | 567 | if (arch_prepare_hugepage(page)) { |
caff3a2c | 568 | __free_pages(page, huge_page_order(h)); |
7b8ee84d | 569 | return NULL; |
7f2e9525 | 570 | } |
a5516438 | 571 | prep_new_huge_page(h, page, nid); |
1da177e4 | 572 | } |
63b4613c NA |
573 | |
574 | return page; | |
575 | } | |
576 | ||
5ced66c9 AK |
577 | /* |
578 | * Use a helper variable to find the next node and then | |
579 | * copy it back to hugetlb_next_nid afterwards: | |
580 | * otherwise there's a window in which a racer might | |
581 | * pass invalid nid MAX_NUMNODES to alloc_pages_node. | |
582 | * But we don't need to use a spin_lock here: it really | |
583 | * doesn't matter if occasionally a racer chooses the | |
584 | * same nid as we do. Move nid forward in the mask even | |
585 | * if we just successfully allocated a hugepage so that | |
586 | * the next caller gets hugepages on the next node. | |
587 | */ | |
588 | static int hstate_next_node(struct hstate *h) | |
589 | { | |
590 | int next_nid; | |
591 | next_nid = next_node(h->hugetlb_next_nid, node_online_map); | |
592 | if (next_nid == MAX_NUMNODES) | |
593 | next_nid = first_node(node_online_map); | |
594 | h->hugetlb_next_nid = next_nid; | |
595 | return next_nid; | |
596 | } | |
597 | ||
a5516438 | 598 | static int alloc_fresh_huge_page(struct hstate *h) |
63b4613c NA |
599 | { |
600 | struct page *page; | |
601 | int start_nid; | |
602 | int next_nid; | |
603 | int ret = 0; | |
604 | ||
a5516438 | 605 | start_nid = h->hugetlb_next_nid; |
63b4613c NA |
606 | |
607 | do { | |
a5516438 | 608 | page = alloc_fresh_huge_page_node(h, h->hugetlb_next_nid); |
63b4613c NA |
609 | if (page) |
610 | ret = 1; | |
5ced66c9 | 611 | next_nid = hstate_next_node(h); |
a5516438 | 612 | } while (!page && h->hugetlb_next_nid != start_nid); |
63b4613c | 613 | |
3b116300 AL |
614 | if (ret) |
615 | count_vm_event(HTLB_BUDDY_PGALLOC); | |
616 | else | |
617 | count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); | |
618 | ||
63b4613c | 619 | return ret; |
1da177e4 LT |
620 | } |
621 | ||
a5516438 AK |
622 | static struct page *alloc_buddy_huge_page(struct hstate *h, |
623 | struct vm_area_struct *vma, unsigned long address) | |
7893d1d5 AL |
624 | { |
625 | struct page *page; | |
d1c3fb1f | 626 | unsigned int nid; |
7893d1d5 | 627 | |
aa888a74 AK |
628 | if (h->order >= MAX_ORDER) |
629 | return NULL; | |
630 | ||
d1c3fb1f NA |
631 | /* |
632 | * Assume we will successfully allocate the surplus page to | |
633 | * prevent racing processes from causing the surplus to exceed | |
634 | * overcommit | |
635 | * | |
636 | * This however introduces a different race, where a process B | |
637 | * tries to grow the static hugepage pool while alloc_pages() is | |
638 | * called by process A. B will only examine the per-node | |
639 | * counters in determining if surplus huge pages can be | |
640 | * converted to normal huge pages in adjust_pool_surplus(). A | |
641 | * won't be able to increment the per-node counter, until the | |
642 | * lock is dropped by B, but B doesn't drop hugetlb_lock until | |
643 | * no more huge pages can be converted from surplus to normal | |
644 | * state (and doesn't try to convert again). Thus, we have a | |
645 | * case where a surplus huge page exists, the pool is grown, and | |
646 | * the surplus huge page still exists after, even though it | |
647 | * should just have been converted to a normal huge page. This | |
648 | * does not leak memory, though, as the hugepage will be freed | |
649 | * once it is out of use. It also does not allow the counters to | |
650 | * go out of whack in adjust_pool_surplus() as we don't modify | |
651 | * the node values until we've gotten the hugepage and only the | |
652 | * per-node value is checked there. | |
653 | */ | |
654 | spin_lock(&hugetlb_lock); | |
a5516438 | 655 | if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { |
d1c3fb1f NA |
656 | spin_unlock(&hugetlb_lock); |
657 | return NULL; | |
658 | } else { | |
a5516438 AK |
659 | h->nr_huge_pages++; |
660 | h->surplus_huge_pages++; | |
d1c3fb1f NA |
661 | } |
662 | spin_unlock(&hugetlb_lock); | |
663 | ||
551883ae NA |
664 | page = alloc_pages(htlb_alloc_mask|__GFP_COMP| |
665 | __GFP_REPEAT|__GFP_NOWARN, | |
a5516438 | 666 | huge_page_order(h)); |
d1c3fb1f | 667 | |
caff3a2c GS |
668 | if (page && arch_prepare_hugepage(page)) { |
669 | __free_pages(page, huge_page_order(h)); | |
670 | return NULL; | |
671 | } | |
672 | ||
d1c3fb1f | 673 | spin_lock(&hugetlb_lock); |
7893d1d5 | 674 | if (page) { |
2668db91 AL |
675 | /* |
676 | * This page is now managed by the hugetlb allocator and has | |
677 | * no users -- drop the buddy allocator's reference. | |
678 | */ | |
679 | put_page_testzero(page); | |
680 | VM_BUG_ON(page_count(page)); | |
d1c3fb1f | 681 | nid = page_to_nid(page); |
7893d1d5 | 682 | set_compound_page_dtor(page, free_huge_page); |
d1c3fb1f NA |
683 | /* |
684 | * We incremented the global counters already | |
685 | */ | |
a5516438 AK |
686 | h->nr_huge_pages_node[nid]++; |
687 | h->surplus_huge_pages_node[nid]++; | |
3b116300 | 688 | __count_vm_event(HTLB_BUDDY_PGALLOC); |
d1c3fb1f | 689 | } else { |
a5516438 AK |
690 | h->nr_huge_pages--; |
691 | h->surplus_huge_pages--; | |
3b116300 | 692 | __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); |
7893d1d5 | 693 | } |
d1c3fb1f | 694 | spin_unlock(&hugetlb_lock); |
7893d1d5 AL |
695 | |
696 | return page; | |
697 | } | |
698 | ||
e4e574b7 AL |
699 | /* |
700 | * Increase the hugetlb pool such that it can accomodate a reservation | |
701 | * of size 'delta'. | |
702 | */ | |
a5516438 | 703 | static int gather_surplus_pages(struct hstate *h, int delta) |
e4e574b7 AL |
704 | { |
705 | struct list_head surplus_list; | |
706 | struct page *page, *tmp; | |
707 | int ret, i; | |
708 | int needed, allocated; | |
709 | ||
a5516438 | 710 | needed = (h->resv_huge_pages + delta) - h->free_huge_pages; |
ac09b3a1 | 711 | if (needed <= 0) { |
a5516438 | 712 | h->resv_huge_pages += delta; |
e4e574b7 | 713 | return 0; |
ac09b3a1 | 714 | } |
e4e574b7 AL |
715 | |
716 | allocated = 0; | |
717 | INIT_LIST_HEAD(&surplus_list); | |
718 | ||
719 | ret = -ENOMEM; | |
720 | retry: | |
721 | spin_unlock(&hugetlb_lock); | |
722 | for (i = 0; i < needed; i++) { | |
a5516438 | 723 | page = alloc_buddy_huge_page(h, NULL, 0); |
e4e574b7 AL |
724 | if (!page) { |
725 | /* | |
726 | * We were not able to allocate enough pages to | |
727 | * satisfy the entire reservation so we free what | |
728 | * we've allocated so far. | |
729 | */ | |
730 | spin_lock(&hugetlb_lock); | |
731 | needed = 0; | |
732 | goto free; | |
733 | } | |
734 | ||
735 | list_add(&page->lru, &surplus_list); | |
736 | } | |
737 | allocated += needed; | |
738 | ||
739 | /* | |
740 | * After retaking hugetlb_lock, we need to recalculate 'needed' | |
741 | * because either resv_huge_pages or free_huge_pages may have changed. | |
742 | */ | |
743 | spin_lock(&hugetlb_lock); | |
a5516438 AK |
744 | needed = (h->resv_huge_pages + delta) - |
745 | (h->free_huge_pages + allocated); | |
e4e574b7 AL |
746 | if (needed > 0) |
747 | goto retry; | |
748 | ||
749 | /* | |
750 | * The surplus_list now contains _at_least_ the number of extra pages | |
751 | * needed to accomodate the reservation. Add the appropriate number | |
752 | * of pages to the hugetlb pool and free the extras back to the buddy | |
ac09b3a1 AL |
753 | * allocator. Commit the entire reservation here to prevent another |
754 | * process from stealing the pages as they are added to the pool but | |
755 | * before they are reserved. | |
e4e574b7 AL |
756 | */ |
757 | needed += allocated; | |
a5516438 | 758 | h->resv_huge_pages += delta; |
e4e574b7 AL |
759 | ret = 0; |
760 | free: | |
19fc3f0a | 761 | /* Free the needed pages to the hugetlb pool */ |
e4e574b7 | 762 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { |
19fc3f0a AL |
763 | if ((--needed) < 0) |
764 | break; | |
e4e574b7 | 765 | list_del(&page->lru); |
a5516438 | 766 | enqueue_huge_page(h, page); |
19fc3f0a AL |
767 | } |
768 | ||
769 | /* Free unnecessary surplus pages to the buddy allocator */ | |
770 | if (!list_empty(&surplus_list)) { | |
771 | spin_unlock(&hugetlb_lock); | |
772 | list_for_each_entry_safe(page, tmp, &surplus_list, lru) { | |
773 | list_del(&page->lru); | |
af767cbd | 774 | /* |
2668db91 AL |
775 | * The page has a reference count of zero already, so |
776 | * call free_huge_page directly instead of using | |
777 | * put_page. This must be done with hugetlb_lock | |
af767cbd AL |
778 | * unlocked which is safe because free_huge_page takes |
779 | * hugetlb_lock before deciding how to free the page. | |
780 | */ | |
2668db91 | 781 | free_huge_page(page); |
af767cbd | 782 | } |
19fc3f0a | 783 | spin_lock(&hugetlb_lock); |
e4e574b7 AL |
784 | } |
785 | ||
786 | return ret; | |
787 | } | |
788 | ||
789 | /* | |
790 | * When releasing a hugetlb pool reservation, any surplus pages that were | |
791 | * allocated to satisfy the reservation must be explicitly freed if they were | |
792 | * never used. | |
793 | */ | |
a5516438 AK |
794 | static void return_unused_surplus_pages(struct hstate *h, |
795 | unsigned long unused_resv_pages) | |
e4e574b7 AL |
796 | { |
797 | static int nid = -1; | |
798 | struct page *page; | |
799 | unsigned long nr_pages; | |
800 | ||
11320d17 NA |
801 | /* |
802 | * We want to release as many surplus pages as possible, spread | |
803 | * evenly across all nodes. Iterate across all nodes until we | |
804 | * can no longer free unreserved surplus pages. This occurs when | |
805 | * the nodes with surplus pages have no free pages. | |
806 | */ | |
807 | unsigned long remaining_iterations = num_online_nodes(); | |
808 | ||
ac09b3a1 | 809 | /* Uncommit the reservation */ |
a5516438 | 810 | h->resv_huge_pages -= unused_resv_pages; |
ac09b3a1 | 811 | |
aa888a74 AK |
812 | /* Cannot return gigantic pages currently */ |
813 | if (h->order >= MAX_ORDER) | |
814 | return; | |
815 | ||
a5516438 | 816 | nr_pages = min(unused_resv_pages, h->surplus_huge_pages); |
e4e574b7 | 817 | |
11320d17 | 818 | while (remaining_iterations-- && nr_pages) { |
e4e574b7 AL |
819 | nid = next_node(nid, node_online_map); |
820 | if (nid == MAX_NUMNODES) | |
821 | nid = first_node(node_online_map); | |
822 | ||
a5516438 | 823 | if (!h->surplus_huge_pages_node[nid]) |
e4e574b7 AL |
824 | continue; |
825 | ||
a5516438 AK |
826 | if (!list_empty(&h->hugepage_freelists[nid])) { |
827 | page = list_entry(h->hugepage_freelists[nid].next, | |
e4e574b7 AL |
828 | struct page, lru); |
829 | list_del(&page->lru); | |
a5516438 AK |
830 | update_and_free_page(h, page); |
831 | h->free_huge_pages--; | |
832 | h->free_huge_pages_node[nid]--; | |
833 | h->surplus_huge_pages--; | |
834 | h->surplus_huge_pages_node[nid]--; | |
e4e574b7 | 835 | nr_pages--; |
11320d17 | 836 | remaining_iterations = num_online_nodes(); |
e4e574b7 AL |
837 | } |
838 | } | |
839 | } | |
840 | ||
c37f9fb1 AW |
841 | /* |
842 | * Determine if the huge page at addr within the vma has an associated | |
843 | * reservation. Where it does not we will need to logically increase | |
844 | * reservation and actually increase quota before an allocation can occur. | |
845 | * Where any new reservation would be required the reservation change is | |
846 | * prepared, but not committed. Once the page has been quota'd allocated | |
847 | * an instantiated the change should be committed via vma_commit_reservation. | |
848 | * No action is required on failure. | |
849 | */ | |
a5516438 AK |
850 | static int vma_needs_reservation(struct hstate *h, |
851 | struct vm_area_struct *vma, unsigned long addr) | |
c37f9fb1 AW |
852 | { |
853 | struct address_space *mapping = vma->vm_file->f_mapping; | |
854 | struct inode *inode = mapping->host; | |
855 | ||
856 | if (vma->vm_flags & VM_SHARED) { | |
a5516438 | 857 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
c37f9fb1 AW |
858 | return region_chg(&inode->i_mapping->private_list, |
859 | idx, idx + 1); | |
860 | ||
84afd99b AW |
861 | } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { |
862 | return 1; | |
c37f9fb1 | 863 | |
84afd99b AW |
864 | } else { |
865 | int err; | |
a5516438 | 866 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
84afd99b AW |
867 | struct resv_map *reservations = vma_resv_map(vma); |
868 | ||
869 | err = region_chg(&reservations->regions, idx, idx + 1); | |
870 | if (err < 0) | |
871 | return err; | |
872 | return 0; | |
873 | } | |
c37f9fb1 | 874 | } |
a5516438 AK |
875 | static void vma_commit_reservation(struct hstate *h, |
876 | struct vm_area_struct *vma, unsigned long addr) | |
c37f9fb1 AW |
877 | { |
878 | struct address_space *mapping = vma->vm_file->f_mapping; | |
879 | struct inode *inode = mapping->host; | |
880 | ||
881 | if (vma->vm_flags & VM_SHARED) { | |
a5516438 | 882 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
c37f9fb1 | 883 | region_add(&inode->i_mapping->private_list, idx, idx + 1); |
84afd99b AW |
884 | |
885 | } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { | |
a5516438 | 886 | pgoff_t idx = vma_hugecache_offset(h, vma, addr); |
84afd99b AW |
887 | struct resv_map *reservations = vma_resv_map(vma); |
888 | ||
889 | /* Mark this page used in the map. */ | |
890 | region_add(&reservations->regions, idx, idx + 1); | |
c37f9fb1 AW |
891 | } |
892 | } | |
893 | ||
a1e78772 | 894 | static struct page *alloc_huge_page(struct vm_area_struct *vma, |
04f2cbe3 | 895 | unsigned long addr, int avoid_reserve) |
1da177e4 | 896 | { |
a5516438 | 897 | struct hstate *h = hstate_vma(vma); |
348ea204 | 898 | struct page *page; |
a1e78772 MG |
899 | struct address_space *mapping = vma->vm_file->f_mapping; |
900 | struct inode *inode = mapping->host; | |
c37f9fb1 | 901 | unsigned int chg; |
a1e78772 MG |
902 | |
903 | /* | |
904 | * Processes that did not create the mapping will have no reserves and | |
905 | * will not have accounted against quota. Check that the quota can be | |
906 | * made before satisfying the allocation | |
c37f9fb1 AW |
907 | * MAP_NORESERVE mappings may also need pages and quota allocated |
908 | * if no reserve mapping overlaps. | |
a1e78772 | 909 | */ |
a5516438 | 910 | chg = vma_needs_reservation(h, vma, addr); |
c37f9fb1 AW |
911 | if (chg < 0) |
912 | return ERR_PTR(chg); | |
913 | if (chg) | |
a1e78772 MG |
914 | if (hugetlb_get_quota(inode->i_mapping, chg)) |
915 | return ERR_PTR(-ENOSPC); | |
1da177e4 LT |
916 | |
917 | spin_lock(&hugetlb_lock); | |
a5516438 | 918 | page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); |
1da177e4 | 919 | spin_unlock(&hugetlb_lock); |
b45b5bd6 | 920 | |
68842c9b | 921 | if (!page) { |
a5516438 | 922 | page = alloc_buddy_huge_page(h, vma, addr); |
68842c9b | 923 | if (!page) { |
a1e78772 | 924 | hugetlb_put_quota(inode->i_mapping, chg); |
68842c9b KC |
925 | return ERR_PTR(-VM_FAULT_OOM); |
926 | } | |
927 | } | |
348ea204 | 928 | |
a1e78772 MG |
929 | set_page_refcounted(page); |
930 | set_page_private(page, (unsigned long) mapping); | |
90d8b7e6 | 931 | |
a5516438 | 932 | vma_commit_reservation(h, vma, addr); |
c37f9fb1 | 933 | |
90d8b7e6 | 934 | return page; |
b45b5bd6 DG |
935 | } |
936 | ||
53ba51d2 | 937 | __attribute__((weak)) int alloc_bootmem_huge_page(struct hstate *h) |
aa888a74 AK |
938 | { |
939 | struct huge_bootmem_page *m; | |
940 | int nr_nodes = nodes_weight(node_online_map); | |
941 | ||
942 | while (nr_nodes) { | |
943 | void *addr; | |
944 | ||
945 | addr = __alloc_bootmem_node_nopanic( | |
946 | NODE_DATA(h->hugetlb_next_nid), | |
947 | huge_page_size(h), huge_page_size(h), 0); | |
948 | ||
949 | if (addr) { | |
950 | /* | |
951 | * Use the beginning of the huge page to store the | |
952 | * huge_bootmem_page struct (until gather_bootmem | |
953 | * puts them into the mem_map). | |
954 | */ | |
955 | m = addr; | |
956 | if (m) | |
957 | goto found; | |
958 | } | |
959 | hstate_next_node(h); | |
960 | nr_nodes--; | |
961 | } | |
962 | return 0; | |
963 | ||
964 | found: | |
965 | BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1)); | |
966 | /* Put them into a private list first because mem_map is not up yet */ | |
967 | list_add(&m->list, &huge_boot_pages); | |
968 | m->hstate = h; | |
969 | return 1; | |
970 | } | |
971 | ||
972 | /* Put bootmem huge pages into the standard lists after mem_map is up */ | |
973 | static void __init gather_bootmem_prealloc(void) | |
974 | { | |
975 | struct huge_bootmem_page *m; | |
976 | ||
977 | list_for_each_entry(m, &huge_boot_pages, list) { | |
978 | struct page *page = virt_to_page(m); | |
979 | struct hstate *h = m->hstate; | |
980 | __ClearPageReserved(page); | |
981 | WARN_ON(page_count(page) != 1); | |
982 | prep_compound_page(page, h->order); | |
983 | prep_new_huge_page(h, page, page_to_nid(page)); | |
984 | } | |
985 | } | |
986 | ||
8faa8b07 | 987 | static void __init hugetlb_hstate_alloc_pages(struct hstate *h) |
1da177e4 LT |
988 | { |
989 | unsigned long i; | |
a5516438 | 990 | |
e5ff2159 | 991 | for (i = 0; i < h->max_huge_pages; ++i) { |
aa888a74 AK |
992 | if (h->order >= MAX_ORDER) { |
993 | if (!alloc_bootmem_huge_page(h)) | |
994 | break; | |
995 | } else if (!alloc_fresh_huge_page(h)) | |
1da177e4 | 996 | break; |
1da177e4 | 997 | } |
8faa8b07 | 998 | h->max_huge_pages = i; |
e5ff2159 AK |
999 | } |
1000 | ||
1001 | static void __init hugetlb_init_hstates(void) | |
1002 | { | |
1003 | struct hstate *h; | |
1004 | ||
1005 | for_each_hstate(h) { | |
8faa8b07 AK |
1006 | /* oversize hugepages were init'ed in early boot */ |
1007 | if (h->order < MAX_ORDER) | |
1008 | hugetlb_hstate_alloc_pages(h); | |
e5ff2159 AK |
1009 | } |
1010 | } | |
1011 | ||
4abd32db AK |
1012 | static char * __init memfmt(char *buf, unsigned long n) |
1013 | { | |
1014 | if (n >= (1UL << 30)) | |
1015 | sprintf(buf, "%lu GB", n >> 30); | |
1016 | else if (n >= (1UL << 20)) | |
1017 | sprintf(buf, "%lu MB", n >> 20); | |
1018 | else | |
1019 | sprintf(buf, "%lu KB", n >> 10); | |
1020 | return buf; | |
1021 | } | |
1022 | ||
e5ff2159 AK |
1023 | static void __init report_hugepages(void) |
1024 | { | |
1025 | struct hstate *h; | |
1026 | ||
1027 | for_each_hstate(h) { | |
4abd32db AK |
1028 | char buf[32]; |
1029 | printk(KERN_INFO "HugeTLB registered %s page size, " | |
1030 | "pre-allocated %ld pages\n", | |
1031 | memfmt(buf, huge_page_size(h)), | |
1032 | h->free_huge_pages); | |
e5ff2159 AK |
1033 | } |
1034 | } | |
1035 | ||
1da177e4 | 1036 | #ifdef CONFIG_HIGHMEM |
a5516438 | 1037 | static void try_to_free_low(struct hstate *h, unsigned long count) |
1da177e4 | 1038 | { |
4415cc8d CL |
1039 | int i; |
1040 | ||
aa888a74 AK |
1041 | if (h->order >= MAX_ORDER) |
1042 | return; | |
1043 | ||
1da177e4 LT |
1044 | for (i = 0; i < MAX_NUMNODES; ++i) { |
1045 | struct page *page, *next; | |
a5516438 AK |
1046 | struct list_head *freel = &h->hugepage_freelists[i]; |
1047 | list_for_each_entry_safe(page, next, freel, lru) { | |
1048 | if (count >= h->nr_huge_pages) | |
6b0c880d | 1049 | return; |
1da177e4 LT |
1050 | if (PageHighMem(page)) |
1051 | continue; | |
1052 | list_del(&page->lru); | |
e5ff2159 | 1053 | update_and_free_page(h, page); |
a5516438 AK |
1054 | h->free_huge_pages--; |
1055 | h->free_huge_pages_node[page_to_nid(page)]--; | |
1da177e4 LT |
1056 | } |
1057 | } | |
1058 | } | |
1059 | #else | |
a5516438 | 1060 | static inline void try_to_free_low(struct hstate *h, unsigned long count) |
1da177e4 LT |
1061 | { |
1062 | } | |
1063 | #endif | |
1064 | ||
a5516438 | 1065 | #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) |
e5ff2159 | 1066 | static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count) |
1da177e4 | 1067 | { |
7893d1d5 | 1068 | unsigned long min_count, ret; |
1da177e4 | 1069 | |
aa888a74 AK |
1070 | if (h->order >= MAX_ORDER) |
1071 | return h->max_huge_pages; | |
1072 | ||
7893d1d5 AL |
1073 | /* |
1074 | * Increase the pool size | |
1075 | * First take pages out of surplus state. Then make up the | |
1076 | * remaining difference by allocating fresh huge pages. | |
d1c3fb1f NA |
1077 | * |
1078 | * We might race with alloc_buddy_huge_page() here and be unable | |
1079 | * to convert a surplus huge page to a normal huge page. That is | |
1080 | * not critical, though, it just means the overall size of the | |
1081 | * pool might be one hugepage larger than it needs to be, but | |
1082 | * within all the constraints specified by the sysctls. | |
7893d1d5 | 1083 | */ |
1da177e4 | 1084 | spin_lock(&hugetlb_lock); |
a5516438 AK |
1085 | while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { |
1086 | if (!adjust_pool_surplus(h, -1)) | |
7893d1d5 AL |
1087 | break; |
1088 | } | |
1089 | ||
a5516438 | 1090 | while (count > persistent_huge_pages(h)) { |
7893d1d5 AL |
1091 | /* |
1092 | * If this allocation races such that we no longer need the | |
1093 | * page, free_huge_page will handle it by freeing the page | |
1094 | * and reducing the surplus. | |
1095 | */ | |
1096 | spin_unlock(&hugetlb_lock); | |
a5516438 | 1097 | ret = alloc_fresh_huge_page(h); |
7893d1d5 AL |
1098 | spin_lock(&hugetlb_lock); |
1099 | if (!ret) | |
1100 | goto out; | |
1101 | ||
1102 | } | |
7893d1d5 AL |
1103 | |
1104 | /* | |
1105 | * Decrease the pool size | |
1106 | * First return free pages to the buddy allocator (being careful | |
1107 | * to keep enough around to satisfy reservations). Then place | |
1108 | * pages into surplus state as needed so the pool will shrink | |
1109 | * to the desired size as pages become free. | |
d1c3fb1f NA |
1110 | * |
1111 | * By placing pages into the surplus state independent of the | |
1112 | * overcommit value, we are allowing the surplus pool size to | |
1113 | * exceed overcommit. There are few sane options here. Since | |
1114 | * alloc_buddy_huge_page() is checking the global counter, | |
1115 | * though, we'll note that we're not allowed to exceed surplus | |
1116 | * and won't grow the pool anywhere else. Not until one of the | |
1117 | * sysctls are changed, or the surplus pages go out of use. | |
7893d1d5 | 1118 | */ |
a5516438 | 1119 | min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages; |
6b0c880d | 1120 | min_count = max(count, min_count); |
a5516438 AK |
1121 | try_to_free_low(h, min_count); |
1122 | while (min_count < persistent_huge_pages(h)) { | |
1123 | struct page *page = dequeue_huge_page(h); | |
1da177e4 LT |
1124 | if (!page) |
1125 | break; | |
a5516438 | 1126 | update_and_free_page(h, page); |
1da177e4 | 1127 | } |
a5516438 AK |
1128 | while (count < persistent_huge_pages(h)) { |
1129 | if (!adjust_pool_surplus(h, 1)) | |
7893d1d5 AL |
1130 | break; |
1131 | } | |
1132 | out: | |
a5516438 | 1133 | ret = persistent_huge_pages(h); |
1da177e4 | 1134 | spin_unlock(&hugetlb_lock); |
7893d1d5 | 1135 | return ret; |
1da177e4 LT |
1136 | } |
1137 | ||
a3437870 NA |
1138 | #define HSTATE_ATTR_RO(_name) \ |
1139 | static struct kobj_attribute _name##_attr = __ATTR_RO(_name) | |
1140 | ||
1141 | #define HSTATE_ATTR(_name) \ | |
1142 | static struct kobj_attribute _name##_attr = \ | |
1143 | __ATTR(_name, 0644, _name##_show, _name##_store) | |
1144 | ||
1145 | static struct kobject *hugepages_kobj; | |
1146 | static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE]; | |
1147 | ||
1148 | static struct hstate *kobj_to_hstate(struct kobject *kobj) | |
1149 | { | |
1150 | int i; | |
1151 | for (i = 0; i < HUGE_MAX_HSTATE; i++) | |
1152 | if (hstate_kobjs[i] == kobj) | |
1153 | return &hstates[i]; | |
1154 | BUG(); | |
1155 | return NULL; | |
1156 | } | |
1157 | ||
1158 | static ssize_t nr_hugepages_show(struct kobject *kobj, | |
1159 | struct kobj_attribute *attr, char *buf) | |
1160 | { | |
1161 | struct hstate *h = kobj_to_hstate(kobj); | |
1162 | return sprintf(buf, "%lu\n", h->nr_huge_pages); | |
1163 | } | |
1164 | static ssize_t nr_hugepages_store(struct kobject *kobj, | |
1165 | struct kobj_attribute *attr, const char *buf, size_t count) | |
1166 | { | |
1167 | int err; | |
1168 | unsigned long input; | |
1169 | struct hstate *h = kobj_to_hstate(kobj); | |
1170 | ||
1171 | err = strict_strtoul(buf, 10, &input); | |
1172 | if (err) | |
1173 | return 0; | |
1174 | ||
1175 | h->max_huge_pages = set_max_huge_pages(h, input); | |
1176 | ||
1177 | return count; | |
1178 | } | |
1179 | HSTATE_ATTR(nr_hugepages); | |
1180 | ||
1181 | static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj, | |
1182 | struct kobj_attribute *attr, char *buf) | |
1183 | { | |
1184 | struct hstate *h = kobj_to_hstate(kobj); | |
1185 | return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages); | |
1186 | } | |
1187 | static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, | |
1188 | struct kobj_attribute *attr, const char *buf, size_t count) | |
1189 | { | |
1190 | int err; | |
1191 | unsigned long input; | |
1192 | struct hstate *h = kobj_to_hstate(kobj); | |
1193 | ||
1194 | err = strict_strtoul(buf, 10, &input); | |
1195 | if (err) | |
1196 | return 0; | |
1197 | ||
1198 | spin_lock(&hugetlb_lock); | |
1199 | h->nr_overcommit_huge_pages = input; | |
1200 | spin_unlock(&hugetlb_lock); | |
1201 | ||
1202 | return count; | |
1203 | } | |
1204 | HSTATE_ATTR(nr_overcommit_hugepages); | |
1205 | ||
1206 | static ssize_t free_hugepages_show(struct kobject *kobj, | |
1207 | struct kobj_attribute *attr, char *buf) | |
1208 | { | |
1209 | struct hstate *h = kobj_to_hstate(kobj); | |
1210 | return sprintf(buf, "%lu\n", h->free_huge_pages); | |
1211 | } | |
1212 | HSTATE_ATTR_RO(free_hugepages); | |
1213 | ||
1214 | static ssize_t resv_hugepages_show(struct kobject *kobj, | |
1215 | struct kobj_attribute *attr, char *buf) | |
1216 | { | |
1217 | struct hstate *h = kobj_to_hstate(kobj); | |
1218 | return sprintf(buf, "%lu\n", h->resv_huge_pages); | |
1219 | } | |
1220 | HSTATE_ATTR_RO(resv_hugepages); | |
1221 | ||
1222 | static ssize_t surplus_hugepages_show(struct kobject *kobj, | |
1223 | struct kobj_attribute *attr, char *buf) | |
1224 | { | |
1225 | struct hstate *h = kobj_to_hstate(kobj); | |
1226 | return sprintf(buf, "%lu\n", h->surplus_huge_pages); | |
1227 | } | |
1228 | HSTATE_ATTR_RO(surplus_hugepages); | |
1229 | ||
1230 | static struct attribute *hstate_attrs[] = { | |
1231 | &nr_hugepages_attr.attr, | |
1232 | &nr_overcommit_hugepages_attr.attr, | |
1233 | &free_hugepages_attr.attr, | |
1234 | &resv_hugepages_attr.attr, | |
1235 | &surplus_hugepages_attr.attr, | |
1236 | NULL, | |
1237 | }; | |
1238 | ||
1239 | static struct attribute_group hstate_attr_group = { | |
1240 | .attrs = hstate_attrs, | |
1241 | }; | |
1242 | ||
1243 | static int __init hugetlb_sysfs_add_hstate(struct hstate *h) | |
1244 | { | |
1245 | int retval; | |
1246 | ||
1247 | hstate_kobjs[h - hstates] = kobject_create_and_add(h->name, | |
1248 | hugepages_kobj); | |
1249 | if (!hstate_kobjs[h - hstates]) | |
1250 | return -ENOMEM; | |
1251 | ||
1252 | retval = sysfs_create_group(hstate_kobjs[h - hstates], | |
1253 | &hstate_attr_group); | |
1254 | if (retval) | |
1255 | kobject_put(hstate_kobjs[h - hstates]); | |
1256 | ||
1257 | return retval; | |
1258 | } | |
1259 | ||
1260 | static void __init hugetlb_sysfs_init(void) | |
1261 | { | |
1262 | struct hstate *h; | |
1263 | int err; | |
1264 | ||
1265 | hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj); | |
1266 | if (!hugepages_kobj) | |
1267 | return; | |
1268 | ||
1269 | for_each_hstate(h) { | |
1270 | err = hugetlb_sysfs_add_hstate(h); | |
1271 | if (err) | |
1272 | printk(KERN_ERR "Hugetlb: Unable to add hstate %s", | |
1273 | h->name); | |
1274 | } | |
1275 | } | |
1276 | ||
1277 | static void __exit hugetlb_exit(void) | |
1278 | { | |
1279 | struct hstate *h; | |
1280 | ||
1281 | for_each_hstate(h) { | |
1282 | kobject_put(hstate_kobjs[h - hstates]); | |
1283 | } | |
1284 | ||
1285 | kobject_put(hugepages_kobj); | |
1286 | } | |
1287 | module_exit(hugetlb_exit); | |
1288 | ||
1289 | static int __init hugetlb_init(void) | |
1290 | { | |
0ef89d25 BH |
1291 | /* Some platform decide whether they support huge pages at boot |
1292 | * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when | |
1293 | * there is no such support | |
1294 | */ | |
1295 | if (HPAGE_SHIFT == 0) | |
1296 | return 0; | |
a3437870 | 1297 | |
e11bfbfc NP |
1298 | if (!size_to_hstate(default_hstate_size)) { |
1299 | default_hstate_size = HPAGE_SIZE; | |
1300 | if (!size_to_hstate(default_hstate_size)) | |
1301 | hugetlb_add_hstate(HUGETLB_PAGE_ORDER); | |
a3437870 | 1302 | } |
e11bfbfc NP |
1303 | default_hstate_idx = size_to_hstate(default_hstate_size) - hstates; |
1304 | if (default_hstate_max_huge_pages) | |
1305 | default_hstate.max_huge_pages = default_hstate_max_huge_pages; | |
a3437870 NA |
1306 | |
1307 | hugetlb_init_hstates(); | |
1308 | ||
aa888a74 AK |
1309 | gather_bootmem_prealloc(); |
1310 | ||
a3437870 NA |
1311 | report_hugepages(); |
1312 | ||
1313 | hugetlb_sysfs_init(); | |
1314 | ||
1315 | return 0; | |
1316 | } | |
1317 | module_init(hugetlb_init); | |
1318 | ||
1319 | /* Should be called on processing a hugepagesz=... option */ | |
1320 | void __init hugetlb_add_hstate(unsigned order) | |
1321 | { | |
1322 | struct hstate *h; | |
8faa8b07 AK |
1323 | unsigned long i; |
1324 | ||
a3437870 NA |
1325 | if (size_to_hstate(PAGE_SIZE << order)) { |
1326 | printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n"); | |
1327 | return; | |
1328 | } | |
1329 | BUG_ON(max_hstate >= HUGE_MAX_HSTATE); | |
1330 | BUG_ON(order == 0); | |
1331 | h = &hstates[max_hstate++]; | |
1332 | h->order = order; | |
1333 | h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1); | |
8faa8b07 AK |
1334 | h->nr_huge_pages = 0; |
1335 | h->free_huge_pages = 0; | |
1336 | for (i = 0; i < MAX_NUMNODES; ++i) | |
1337 | INIT_LIST_HEAD(&h->hugepage_freelists[i]); | |
1338 | h->hugetlb_next_nid = first_node(node_online_map); | |
a3437870 NA |
1339 | snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", |
1340 | huge_page_size(h)/1024); | |
8faa8b07 | 1341 | |
a3437870 NA |
1342 | parsed_hstate = h; |
1343 | } | |
1344 | ||
e11bfbfc | 1345 | static int __init hugetlb_nrpages_setup(char *s) |
a3437870 NA |
1346 | { |
1347 | unsigned long *mhp; | |
8faa8b07 | 1348 | static unsigned long *last_mhp; |
a3437870 NA |
1349 | |
1350 | /* | |
1351 | * !max_hstate means we haven't parsed a hugepagesz= parameter yet, | |
1352 | * so this hugepages= parameter goes to the "default hstate". | |
1353 | */ | |
1354 | if (!max_hstate) | |
1355 | mhp = &default_hstate_max_huge_pages; | |
1356 | else | |
1357 | mhp = &parsed_hstate->max_huge_pages; | |
1358 | ||
8faa8b07 AK |
1359 | if (mhp == last_mhp) { |
1360 | printk(KERN_WARNING "hugepages= specified twice without " | |
1361 | "interleaving hugepagesz=, ignoring\n"); | |
1362 | return 1; | |
1363 | } | |
1364 | ||
a3437870 NA |
1365 | if (sscanf(s, "%lu", mhp) <= 0) |
1366 | *mhp = 0; | |
1367 | ||
8faa8b07 AK |
1368 | /* |
1369 | * Global state is always initialized later in hugetlb_init. | |
1370 | * But we need to allocate >= MAX_ORDER hstates here early to still | |
1371 | * use the bootmem allocator. | |
1372 | */ | |
1373 | if (max_hstate && parsed_hstate->order >= MAX_ORDER) | |
1374 | hugetlb_hstate_alloc_pages(parsed_hstate); | |
1375 | ||
1376 | last_mhp = mhp; | |
1377 | ||
a3437870 NA |
1378 | return 1; |
1379 | } | |
e11bfbfc NP |
1380 | __setup("hugepages=", hugetlb_nrpages_setup); |
1381 | ||
1382 | static int __init hugetlb_default_setup(char *s) | |
1383 | { | |
1384 | default_hstate_size = memparse(s, &s); | |
1385 | return 1; | |
1386 | } | |
1387 | __setup("default_hugepagesz=", hugetlb_default_setup); | |
a3437870 | 1388 | |
8a213460 NA |
1389 | static unsigned int cpuset_mems_nr(unsigned int *array) |
1390 | { | |
1391 | int node; | |
1392 | unsigned int nr = 0; | |
1393 | ||
1394 | for_each_node_mask(node, cpuset_current_mems_allowed) | |
1395 | nr += array[node]; | |
1396 | ||
1397 | return nr; | |
1398 | } | |
1399 | ||
1400 | #ifdef CONFIG_SYSCTL | |
1da177e4 LT |
1401 | int hugetlb_sysctl_handler(struct ctl_table *table, int write, |
1402 | struct file *file, void __user *buffer, | |
1403 | size_t *length, loff_t *ppos) | |
1404 | { | |
e5ff2159 AK |
1405 | struct hstate *h = &default_hstate; |
1406 | unsigned long tmp; | |
1407 | ||
1408 | if (!write) | |
1409 | tmp = h->max_huge_pages; | |
1410 | ||
1411 | table->data = &tmp; | |
1412 | table->maxlen = sizeof(unsigned long); | |
1da177e4 | 1413 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); |
e5ff2159 AK |
1414 | |
1415 | if (write) | |
1416 | h->max_huge_pages = set_max_huge_pages(h, tmp); | |
1417 | ||
1da177e4 LT |
1418 | return 0; |
1419 | } | |
396faf03 MG |
1420 | |
1421 | int hugetlb_treat_movable_handler(struct ctl_table *table, int write, | |
1422 | struct file *file, void __user *buffer, | |
1423 | size_t *length, loff_t *ppos) | |
1424 | { | |
1425 | proc_dointvec(table, write, file, buffer, length, ppos); | |
1426 | if (hugepages_treat_as_movable) | |
1427 | htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; | |
1428 | else | |
1429 | htlb_alloc_mask = GFP_HIGHUSER; | |
1430 | return 0; | |
1431 | } | |
1432 | ||
a3d0c6aa NA |
1433 | int hugetlb_overcommit_handler(struct ctl_table *table, int write, |
1434 | struct file *file, void __user *buffer, | |
1435 | size_t *length, loff_t *ppos) | |
1436 | { | |
a5516438 | 1437 | struct hstate *h = &default_hstate; |
e5ff2159 AK |
1438 | unsigned long tmp; |
1439 | ||
1440 | if (!write) | |
1441 | tmp = h->nr_overcommit_huge_pages; | |
1442 | ||
1443 | table->data = &tmp; | |
1444 | table->maxlen = sizeof(unsigned long); | |
a3d0c6aa | 1445 | proc_doulongvec_minmax(table, write, file, buffer, length, ppos); |
e5ff2159 AK |
1446 | |
1447 | if (write) { | |
1448 | spin_lock(&hugetlb_lock); | |
1449 | h->nr_overcommit_huge_pages = tmp; | |
1450 | spin_unlock(&hugetlb_lock); | |
1451 | } | |
1452 | ||
a3d0c6aa NA |
1453 | return 0; |
1454 | } | |
1455 | ||
1da177e4 LT |
1456 | #endif /* CONFIG_SYSCTL */ |
1457 | ||
1458 | int hugetlb_report_meminfo(char *buf) | |
1459 | { | |
a5516438 | 1460 | struct hstate *h = &default_hstate; |
1da177e4 | 1461 | return sprintf(buf, |
4f98a2fe RR |
1462 | "HugePages_Total: %5lu\n" |
1463 | "HugePages_Free: %5lu\n" | |
1464 | "HugePages_Rsvd: %5lu\n" | |
1465 | "HugePages_Surp: %5lu\n" | |
1466 | "Hugepagesize: %8lu kB\n", | |
a5516438 AK |
1467 | h->nr_huge_pages, |
1468 | h->free_huge_pages, | |
1469 | h->resv_huge_pages, | |
1470 | h->surplus_huge_pages, | |
1471 | 1UL << (huge_page_order(h) + PAGE_SHIFT - 10)); | |
1da177e4 LT |
1472 | } |
1473 | ||
1474 | int hugetlb_report_node_meminfo(int nid, char *buf) | |
1475 | { | |
a5516438 | 1476 | struct hstate *h = &default_hstate; |
1da177e4 LT |
1477 | return sprintf(buf, |
1478 | "Node %d HugePages_Total: %5u\n" | |
a1de0919 NA |
1479 | "Node %d HugePages_Free: %5u\n" |
1480 | "Node %d HugePages_Surp: %5u\n", | |
a5516438 AK |
1481 | nid, h->nr_huge_pages_node[nid], |
1482 | nid, h->free_huge_pages_node[nid], | |
1483 | nid, h->surplus_huge_pages_node[nid]); | |
1da177e4 LT |
1484 | } |
1485 | ||
1da177e4 LT |
1486 | /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ |
1487 | unsigned long hugetlb_total_pages(void) | |
1488 | { | |
a5516438 AK |
1489 | struct hstate *h = &default_hstate; |
1490 | return h->nr_huge_pages * pages_per_huge_page(h); | |
1da177e4 | 1491 | } |
1da177e4 | 1492 | |
a5516438 | 1493 | static int hugetlb_acct_memory(struct hstate *h, long delta) |
fc1b8a73 MG |
1494 | { |
1495 | int ret = -ENOMEM; | |
1496 | ||
1497 | spin_lock(&hugetlb_lock); | |
1498 | /* | |
1499 | * When cpuset is configured, it breaks the strict hugetlb page | |
1500 | * reservation as the accounting is done on a global variable. Such | |
1501 | * reservation is completely rubbish in the presence of cpuset because | |
1502 | * the reservation is not checked against page availability for the | |
1503 | * current cpuset. Application can still potentially OOM'ed by kernel | |
1504 | * with lack of free htlb page in cpuset that the task is in. | |
1505 | * Attempt to enforce strict accounting with cpuset is almost | |
1506 | * impossible (or too ugly) because cpuset is too fluid that | |
1507 | * task or memory node can be dynamically moved between cpusets. | |
1508 | * | |
1509 | * The change of semantics for shared hugetlb mapping with cpuset is | |
1510 | * undesirable. However, in order to preserve some of the semantics, | |
1511 | * we fall back to check against current free page availability as | |
1512 | * a best attempt and hopefully to minimize the impact of changing | |
1513 | * semantics that cpuset has. | |
1514 | */ | |
1515 | if (delta > 0) { | |
a5516438 | 1516 | if (gather_surplus_pages(h, delta) < 0) |
fc1b8a73 MG |
1517 | goto out; |
1518 | ||
a5516438 AK |
1519 | if (delta > cpuset_mems_nr(h->free_huge_pages_node)) { |
1520 | return_unused_surplus_pages(h, delta); | |
fc1b8a73 MG |
1521 | goto out; |
1522 | } | |
1523 | } | |
1524 | ||
1525 | ret = 0; | |
1526 | if (delta < 0) | |
a5516438 | 1527 | return_unused_surplus_pages(h, (unsigned long) -delta); |
fc1b8a73 MG |
1528 | |
1529 | out: | |
1530 | spin_unlock(&hugetlb_lock); | |
1531 | return ret; | |
1532 | } | |
1533 | ||
84afd99b AW |
1534 | static void hugetlb_vm_op_open(struct vm_area_struct *vma) |
1535 | { | |
1536 | struct resv_map *reservations = vma_resv_map(vma); | |
1537 | ||
1538 | /* | |
1539 | * This new VMA should share its siblings reservation map if present. | |
1540 | * The VMA will only ever have a valid reservation map pointer where | |
1541 | * it is being copied for another still existing VMA. As that VMA | |
1542 | * has a reference to the reservation map it cannot dissappear until | |
1543 | * after this open call completes. It is therefore safe to take a | |
1544 | * new reference here without additional locking. | |
1545 | */ | |
1546 | if (reservations) | |
1547 | kref_get(&reservations->refs); | |
1548 | } | |
1549 | ||
a1e78772 MG |
1550 | static void hugetlb_vm_op_close(struct vm_area_struct *vma) |
1551 | { | |
a5516438 | 1552 | struct hstate *h = hstate_vma(vma); |
84afd99b AW |
1553 | struct resv_map *reservations = vma_resv_map(vma); |
1554 | unsigned long reserve; | |
1555 | unsigned long start; | |
1556 | unsigned long end; | |
1557 | ||
1558 | if (reservations) { | |
a5516438 AK |
1559 | start = vma_hugecache_offset(h, vma, vma->vm_start); |
1560 | end = vma_hugecache_offset(h, vma, vma->vm_end); | |
84afd99b AW |
1561 | |
1562 | reserve = (end - start) - | |
1563 | region_count(&reservations->regions, start, end); | |
1564 | ||
1565 | kref_put(&reservations->refs, resv_map_release); | |
1566 | ||
7251ff78 | 1567 | if (reserve) { |
a5516438 | 1568 | hugetlb_acct_memory(h, -reserve); |
7251ff78 AL |
1569 | hugetlb_put_quota(vma->vm_file->f_mapping, reserve); |
1570 | } | |
84afd99b | 1571 | } |
a1e78772 MG |
1572 | } |
1573 | ||
1da177e4 LT |
1574 | /* |
1575 | * We cannot handle pagefaults against hugetlb pages at all. They cause | |
1576 | * handle_mm_fault() to try to instantiate regular-sized pages in the | |
1577 | * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get | |
1578 | * this far. | |
1579 | */ | |
d0217ac0 | 1580 | static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
1da177e4 LT |
1581 | { |
1582 | BUG(); | |
d0217ac0 | 1583 | return 0; |
1da177e4 LT |
1584 | } |
1585 | ||
1586 | struct vm_operations_struct hugetlb_vm_ops = { | |
d0217ac0 | 1587 | .fault = hugetlb_vm_op_fault, |
84afd99b | 1588 | .open = hugetlb_vm_op_open, |
a1e78772 | 1589 | .close = hugetlb_vm_op_close, |
1da177e4 LT |
1590 | }; |
1591 | ||
1e8f889b DG |
1592 | static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page, |
1593 | int writable) | |
63551ae0 DG |
1594 | { |
1595 | pte_t entry; | |
1596 | ||
1e8f889b | 1597 | if (writable) { |
63551ae0 DG |
1598 | entry = |
1599 | pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot))); | |
1600 | } else { | |
7f2e9525 | 1601 | entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot)); |
63551ae0 DG |
1602 | } |
1603 | entry = pte_mkyoung(entry); | |
1604 | entry = pte_mkhuge(entry); | |
1605 | ||
1606 | return entry; | |
1607 | } | |
1608 | ||
1e8f889b DG |
1609 | static void set_huge_ptep_writable(struct vm_area_struct *vma, |
1610 | unsigned long address, pte_t *ptep) | |
1611 | { | |
1612 | pte_t entry; | |
1613 | ||
7f2e9525 GS |
1614 | entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep))); |
1615 | if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) { | |
8dab5241 | 1616 | update_mmu_cache(vma, address, entry); |
8dab5241 | 1617 | } |
1e8f889b DG |
1618 | } |
1619 | ||
1620 | ||
63551ae0 DG |
1621 | int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, |
1622 | struct vm_area_struct *vma) | |
1623 | { | |
1624 | pte_t *src_pte, *dst_pte, entry; | |
1625 | struct page *ptepage; | |
1c59827d | 1626 | unsigned long addr; |
1e8f889b | 1627 | int cow; |
a5516438 AK |
1628 | struct hstate *h = hstate_vma(vma); |
1629 | unsigned long sz = huge_page_size(h); | |
1e8f889b DG |
1630 | |
1631 | cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; | |
63551ae0 | 1632 | |
a5516438 | 1633 | for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) { |
c74df32c HD |
1634 | src_pte = huge_pte_offset(src, addr); |
1635 | if (!src_pte) | |
1636 | continue; | |
a5516438 | 1637 | dst_pte = huge_pte_alloc(dst, addr, sz); |
63551ae0 DG |
1638 | if (!dst_pte) |
1639 | goto nomem; | |
c5c99429 LW |
1640 | |
1641 | /* If the pagetables are shared don't copy or take references */ | |
1642 | if (dst_pte == src_pte) | |
1643 | continue; | |
1644 | ||
c74df32c | 1645 | spin_lock(&dst->page_table_lock); |
46478758 | 1646 | spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING); |
7f2e9525 | 1647 | if (!huge_pte_none(huge_ptep_get(src_pte))) { |
1e8f889b | 1648 | if (cow) |
7f2e9525 GS |
1649 | huge_ptep_set_wrprotect(src, addr, src_pte); |
1650 | entry = huge_ptep_get(src_pte); | |
1c59827d HD |
1651 | ptepage = pte_page(entry); |
1652 | get_page(ptepage); | |
1c59827d HD |
1653 | set_huge_pte_at(dst, addr, dst_pte, entry); |
1654 | } | |
1655 | spin_unlock(&src->page_table_lock); | |
c74df32c | 1656 | spin_unlock(&dst->page_table_lock); |
63551ae0 DG |
1657 | } |
1658 | return 0; | |
1659 | ||
1660 | nomem: | |
1661 | return -ENOMEM; | |
1662 | } | |
1663 | ||
502717f4 | 1664 | void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
04f2cbe3 | 1665 | unsigned long end, struct page *ref_page) |
63551ae0 DG |
1666 | { |
1667 | struct mm_struct *mm = vma->vm_mm; | |
1668 | unsigned long address; | |
c7546f8f | 1669 | pte_t *ptep; |
63551ae0 DG |
1670 | pte_t pte; |
1671 | struct page *page; | |
fe1668ae | 1672 | struct page *tmp; |
a5516438 AK |
1673 | struct hstate *h = hstate_vma(vma); |
1674 | unsigned long sz = huge_page_size(h); | |
1675 | ||
c0a499c2 KC |
1676 | /* |
1677 | * A page gathering list, protected by per file i_mmap_lock. The | |
1678 | * lock is used to avoid list corruption from multiple unmapping | |
1679 | * of the same page since we are using page->lru. | |
1680 | */ | |
fe1668ae | 1681 | LIST_HEAD(page_list); |
63551ae0 DG |
1682 | |
1683 | WARN_ON(!is_vm_hugetlb_page(vma)); | |
a5516438 AK |
1684 | BUG_ON(start & ~huge_page_mask(h)); |
1685 | BUG_ON(end & ~huge_page_mask(h)); | |
63551ae0 | 1686 | |
cddb8a5c | 1687 | mmu_notifier_invalidate_range_start(mm, start, end); |
508034a3 | 1688 | spin_lock(&mm->page_table_lock); |
a5516438 | 1689 | for (address = start; address < end; address += sz) { |
c7546f8f | 1690 | ptep = huge_pte_offset(mm, address); |
4c887265 | 1691 | if (!ptep) |
c7546f8f DG |
1692 | continue; |
1693 | ||
39dde65c KC |
1694 | if (huge_pmd_unshare(mm, &address, ptep)) |
1695 | continue; | |
1696 | ||
04f2cbe3 MG |
1697 | /* |
1698 | * If a reference page is supplied, it is because a specific | |
1699 | * page is being unmapped, not a range. Ensure the page we | |
1700 | * are about to unmap is the actual page of interest. | |
1701 | */ | |
1702 | if (ref_page) { | |
1703 | pte = huge_ptep_get(ptep); | |
1704 | if (huge_pte_none(pte)) | |
1705 | continue; | |
1706 | page = pte_page(pte); | |
1707 | if (page != ref_page) | |
1708 | continue; | |
1709 | ||
1710 | /* | |
1711 | * Mark the VMA as having unmapped its page so that | |
1712 | * future faults in this VMA will fail rather than | |
1713 | * looking like data was lost | |
1714 | */ | |
1715 | set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); | |
1716 | } | |
1717 | ||
c7546f8f | 1718 | pte = huge_ptep_get_and_clear(mm, address, ptep); |
7f2e9525 | 1719 | if (huge_pte_none(pte)) |
63551ae0 | 1720 | continue; |
c7546f8f | 1721 | |
63551ae0 | 1722 | page = pte_page(pte); |
6649a386 KC |
1723 | if (pte_dirty(pte)) |
1724 | set_page_dirty(page); | |
fe1668ae | 1725 | list_add(&page->lru, &page_list); |
63551ae0 | 1726 | } |
1da177e4 | 1727 | spin_unlock(&mm->page_table_lock); |
508034a3 | 1728 | flush_tlb_range(vma, start, end); |
cddb8a5c | 1729 | mmu_notifier_invalidate_range_end(mm, start, end); |
fe1668ae KC |
1730 | list_for_each_entry_safe(page, tmp, &page_list, lru) { |
1731 | list_del(&page->lru); | |
1732 | put_page(page); | |
1733 | } | |
1da177e4 | 1734 | } |
63551ae0 | 1735 | |
502717f4 | 1736 | void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, |
04f2cbe3 | 1737 | unsigned long end, struct page *ref_page) |
502717f4 | 1738 | { |
a137e1cc AK |
1739 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); |
1740 | __unmap_hugepage_range(vma, start, end, ref_page); | |
1741 | spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); | |
502717f4 KC |
1742 | } |
1743 | ||
04f2cbe3 MG |
1744 | /* |
1745 | * This is called when the original mapper is failing to COW a MAP_PRIVATE | |
1746 | * mappping it owns the reserve page for. The intention is to unmap the page | |
1747 | * from other VMAs and let the children be SIGKILLed if they are faulting the | |
1748 | * same region. | |
1749 | */ | |
1750 | int unmap_ref_private(struct mm_struct *mm, | |
1751 | struct vm_area_struct *vma, | |
1752 | struct page *page, | |
1753 | unsigned long address) | |
1754 | { | |
1755 | struct vm_area_struct *iter_vma; | |
1756 | struct address_space *mapping; | |
1757 | struct prio_tree_iter iter; | |
1758 | pgoff_t pgoff; | |
1759 | ||
1760 | /* | |
1761 | * vm_pgoff is in PAGE_SIZE units, hence the different calculation | |
1762 | * from page cache lookup which is in HPAGE_SIZE units. | |
1763 | */ | |
1764 | address = address & huge_page_mask(hstate_vma(vma)); | |
1765 | pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) | |
1766 | + (vma->vm_pgoff >> PAGE_SHIFT); | |
1767 | mapping = (struct address_space *)page_private(page); | |
1768 | ||
1769 | vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
1770 | /* Do not unmap the current VMA */ | |
1771 | if (iter_vma == vma) | |
1772 | continue; | |
1773 | ||
1774 | /* | |
1775 | * Unmap the page from other VMAs without their own reserves. | |
1776 | * They get marked to be SIGKILLed if they fault in these | |
1777 | * areas. This is because a future no-page fault on this VMA | |
1778 | * could insert a zeroed page instead of the data existing | |
1779 | * from the time of fork. This would look like data corruption | |
1780 | */ | |
1781 | if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) | |
1782 | unmap_hugepage_range(iter_vma, | |
1783 | address, address + HPAGE_SIZE, | |
1784 | page); | |
1785 | } | |
1786 | ||
1787 | return 1; | |
1788 | } | |
1789 | ||
1e8f889b | 1790 | static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, |
04f2cbe3 MG |
1791 | unsigned long address, pte_t *ptep, pte_t pte, |
1792 | struct page *pagecache_page) | |
1e8f889b | 1793 | { |
a5516438 | 1794 | struct hstate *h = hstate_vma(vma); |
1e8f889b | 1795 | struct page *old_page, *new_page; |
79ac6ba4 | 1796 | int avoidcopy; |
04f2cbe3 | 1797 | int outside_reserve = 0; |
1e8f889b DG |
1798 | |
1799 | old_page = pte_page(pte); | |
1800 | ||
04f2cbe3 | 1801 | retry_avoidcopy: |
1e8f889b DG |
1802 | /* If no-one else is actually using this page, avoid the copy |
1803 | * and just make the page writable */ | |
1804 | avoidcopy = (page_count(old_page) == 1); | |
1805 | if (avoidcopy) { | |
1806 | set_huge_ptep_writable(vma, address, ptep); | |
83c54070 | 1807 | return 0; |
1e8f889b DG |
1808 | } |
1809 | ||
04f2cbe3 MG |
1810 | /* |
1811 | * If the process that created a MAP_PRIVATE mapping is about to | |
1812 | * perform a COW due to a shared page count, attempt to satisfy | |
1813 | * the allocation without using the existing reserves. The pagecache | |
1814 | * page is used to determine if the reserve at this address was | |
1815 | * consumed or not. If reserves were used, a partial faulted mapping | |
1816 | * at the time of fork() could consume its reserves on COW instead | |
1817 | * of the full address range. | |
1818 | */ | |
1819 | if (!(vma->vm_flags & VM_SHARED) && | |
1820 | is_vma_resv_set(vma, HPAGE_RESV_OWNER) && | |
1821 | old_page != pagecache_page) | |
1822 | outside_reserve = 1; | |
1823 | ||
1e8f889b | 1824 | page_cache_get(old_page); |
04f2cbe3 | 1825 | new_page = alloc_huge_page(vma, address, outside_reserve); |
1e8f889b | 1826 | |
2fc39cec | 1827 | if (IS_ERR(new_page)) { |
1e8f889b | 1828 | page_cache_release(old_page); |
04f2cbe3 MG |
1829 | |
1830 | /* | |
1831 | * If a process owning a MAP_PRIVATE mapping fails to COW, | |
1832 | * it is due to references held by a child and an insufficient | |
1833 | * huge page pool. To guarantee the original mappers | |
1834 | * reliability, unmap the page from child processes. The child | |
1835 | * may get SIGKILLed if it later faults. | |
1836 | */ | |
1837 | if (outside_reserve) { | |
1838 | BUG_ON(huge_pte_none(pte)); | |
1839 | if (unmap_ref_private(mm, vma, old_page, address)) { | |
1840 | BUG_ON(page_count(old_page) != 1); | |
1841 | BUG_ON(huge_pte_none(pte)); | |
1842 | goto retry_avoidcopy; | |
1843 | } | |
1844 | WARN_ON_ONCE(1); | |
1845 | } | |
1846 | ||
2fc39cec | 1847 | return -PTR_ERR(new_page); |
1e8f889b DG |
1848 | } |
1849 | ||
1850 | spin_unlock(&mm->page_table_lock); | |
9de455b2 | 1851 | copy_huge_page(new_page, old_page, address, vma); |
0ed361de | 1852 | __SetPageUptodate(new_page); |
1e8f889b DG |
1853 | spin_lock(&mm->page_table_lock); |
1854 | ||
a5516438 | 1855 | ptep = huge_pte_offset(mm, address & huge_page_mask(h)); |
7f2e9525 | 1856 | if (likely(pte_same(huge_ptep_get(ptep), pte))) { |
1e8f889b | 1857 | /* Break COW */ |
8fe627ec | 1858 | huge_ptep_clear_flush(vma, address, ptep); |
1e8f889b DG |
1859 | set_huge_pte_at(mm, address, ptep, |
1860 | make_huge_pte(vma, new_page, 1)); | |
1861 | /* Make the old page be freed below */ | |
1862 | new_page = old_page; | |
1863 | } | |
1864 | page_cache_release(new_page); | |
1865 | page_cache_release(old_page); | |
83c54070 | 1866 | return 0; |
1e8f889b DG |
1867 | } |
1868 | ||
04f2cbe3 | 1869 | /* Return the pagecache page at a given address within a VMA */ |
a5516438 AK |
1870 | static struct page *hugetlbfs_pagecache_page(struct hstate *h, |
1871 | struct vm_area_struct *vma, unsigned long address) | |
04f2cbe3 MG |
1872 | { |
1873 | struct address_space *mapping; | |
e7c4b0bf | 1874 | pgoff_t idx; |
04f2cbe3 MG |
1875 | |
1876 | mapping = vma->vm_file->f_mapping; | |
a5516438 | 1877 | idx = vma_hugecache_offset(h, vma, address); |
04f2cbe3 MG |
1878 | |
1879 | return find_lock_page(mapping, idx); | |
1880 | } | |
1881 | ||
a1ed3dda | 1882 | static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma, |
1e8f889b | 1883 | unsigned long address, pte_t *ptep, int write_access) |
ac9b9c66 | 1884 | { |
a5516438 | 1885 | struct hstate *h = hstate_vma(vma); |
ac9b9c66 | 1886 | int ret = VM_FAULT_SIGBUS; |
e7c4b0bf | 1887 | pgoff_t idx; |
4c887265 | 1888 | unsigned long size; |
4c887265 AL |
1889 | struct page *page; |
1890 | struct address_space *mapping; | |
1e8f889b | 1891 | pte_t new_pte; |
4c887265 | 1892 | |
04f2cbe3 MG |
1893 | /* |
1894 | * Currently, we are forced to kill the process in the event the | |
1895 | * original mapper has unmapped pages from the child due to a failed | |
1896 | * COW. Warn that such a situation has occured as it may not be obvious | |
1897 | */ | |
1898 | if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { | |
1899 | printk(KERN_WARNING | |
1900 | "PID %d killed due to inadequate hugepage pool\n", | |
1901 | current->pid); | |
1902 | return ret; | |
1903 | } | |
1904 | ||
4c887265 | 1905 | mapping = vma->vm_file->f_mapping; |
a5516438 | 1906 | idx = vma_hugecache_offset(h, vma, address); |
4c887265 AL |
1907 | |
1908 | /* | |
1909 | * Use page lock to guard against racing truncation | |
1910 | * before we get page_table_lock. | |
1911 | */ | |
6bda666a CL |
1912 | retry: |
1913 | page = find_lock_page(mapping, idx); | |
1914 | if (!page) { | |
a5516438 | 1915 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
ebed4bfc HD |
1916 | if (idx >= size) |
1917 | goto out; | |
04f2cbe3 | 1918 | page = alloc_huge_page(vma, address, 0); |
2fc39cec AL |
1919 | if (IS_ERR(page)) { |
1920 | ret = -PTR_ERR(page); | |
6bda666a CL |
1921 | goto out; |
1922 | } | |
a5516438 | 1923 | clear_huge_page(page, address, huge_page_size(h)); |
0ed361de | 1924 | __SetPageUptodate(page); |
ac9b9c66 | 1925 | |
6bda666a CL |
1926 | if (vma->vm_flags & VM_SHARED) { |
1927 | int err; | |
45c682a6 | 1928 | struct inode *inode = mapping->host; |
6bda666a CL |
1929 | |
1930 | err = add_to_page_cache(page, mapping, idx, GFP_KERNEL); | |
1931 | if (err) { | |
1932 | put_page(page); | |
6bda666a CL |
1933 | if (err == -EEXIST) |
1934 | goto retry; | |
1935 | goto out; | |
1936 | } | |
45c682a6 KC |
1937 | |
1938 | spin_lock(&inode->i_lock); | |
a5516438 | 1939 | inode->i_blocks += blocks_per_huge_page(h); |
45c682a6 | 1940 | spin_unlock(&inode->i_lock); |
6bda666a CL |
1941 | } else |
1942 | lock_page(page); | |
1943 | } | |
1e8f889b | 1944 | |
57303d80 AW |
1945 | /* |
1946 | * If we are going to COW a private mapping later, we examine the | |
1947 | * pending reservations for this page now. This will ensure that | |
1948 | * any allocations necessary to record that reservation occur outside | |
1949 | * the spinlock. | |
1950 | */ | |
1951 | if (write_access && !(vma->vm_flags & VM_SHARED)) | |
2b26736c AW |
1952 | if (vma_needs_reservation(h, vma, address) < 0) { |
1953 | ret = VM_FAULT_OOM; | |
1954 | goto backout_unlocked; | |
1955 | } | |
57303d80 | 1956 | |
ac9b9c66 | 1957 | spin_lock(&mm->page_table_lock); |
a5516438 | 1958 | size = i_size_read(mapping->host) >> huge_page_shift(h); |
4c887265 AL |
1959 | if (idx >= size) |
1960 | goto backout; | |
1961 | ||
83c54070 | 1962 | ret = 0; |
7f2e9525 | 1963 | if (!huge_pte_none(huge_ptep_get(ptep))) |
4c887265 AL |
1964 | goto backout; |
1965 | ||
1e8f889b DG |
1966 | new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) |
1967 | && (vma->vm_flags & VM_SHARED))); | |
1968 | set_huge_pte_at(mm, address, ptep, new_pte); | |
1969 | ||
1970 | if (write_access && !(vma->vm_flags & VM_SHARED)) { | |
1971 | /* Optimization, do the COW without a second fault */ | |
04f2cbe3 | 1972 | ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page); |
1e8f889b DG |
1973 | } |
1974 | ||
ac9b9c66 | 1975 | spin_unlock(&mm->page_table_lock); |
4c887265 AL |
1976 | unlock_page(page); |
1977 | out: | |
ac9b9c66 | 1978 | return ret; |
4c887265 AL |
1979 | |
1980 | backout: | |
1981 | spin_unlock(&mm->page_table_lock); | |
2b26736c | 1982 | backout_unlocked: |
4c887265 AL |
1983 | unlock_page(page); |
1984 | put_page(page); | |
1985 | goto out; | |
ac9b9c66 HD |
1986 | } |
1987 | ||
86e5216f AL |
1988 | int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
1989 | unsigned long address, int write_access) | |
1990 | { | |
1991 | pte_t *ptep; | |
1992 | pte_t entry; | |
1e8f889b | 1993 | int ret; |
57303d80 | 1994 | struct page *pagecache_page = NULL; |
3935baa9 | 1995 | static DEFINE_MUTEX(hugetlb_instantiation_mutex); |
a5516438 | 1996 | struct hstate *h = hstate_vma(vma); |
86e5216f | 1997 | |
a5516438 | 1998 | ptep = huge_pte_alloc(mm, address, huge_page_size(h)); |
86e5216f AL |
1999 | if (!ptep) |
2000 | return VM_FAULT_OOM; | |
2001 | ||
3935baa9 DG |
2002 | /* |
2003 | * Serialize hugepage allocation and instantiation, so that we don't | |
2004 | * get spurious allocation failures if two CPUs race to instantiate | |
2005 | * the same page in the page cache. | |
2006 | */ | |
2007 | mutex_lock(&hugetlb_instantiation_mutex); | |
7f2e9525 GS |
2008 | entry = huge_ptep_get(ptep); |
2009 | if (huge_pte_none(entry)) { | |
3935baa9 | 2010 | ret = hugetlb_no_page(mm, vma, address, ptep, write_access); |
b4d1d99f | 2011 | goto out_mutex; |
3935baa9 | 2012 | } |
86e5216f | 2013 | |
83c54070 | 2014 | ret = 0; |
1e8f889b | 2015 | |
57303d80 AW |
2016 | /* |
2017 | * If we are going to COW the mapping later, we examine the pending | |
2018 | * reservations for this page now. This will ensure that any | |
2019 | * allocations necessary to record that reservation occur outside the | |
2020 | * spinlock. For private mappings, we also lookup the pagecache | |
2021 | * page now as it is used to determine if a reservation has been | |
2022 | * consumed. | |
2023 | */ | |
2024 | if (write_access && !pte_write(entry)) { | |
2b26736c AW |
2025 | if (vma_needs_reservation(h, vma, address) < 0) { |
2026 | ret = VM_FAULT_OOM; | |
b4d1d99f | 2027 | goto out_mutex; |
2b26736c | 2028 | } |
57303d80 AW |
2029 | |
2030 | if (!(vma->vm_flags & VM_SHARED)) | |
2031 | pagecache_page = hugetlbfs_pagecache_page(h, | |
2032 | vma, address); | |
2033 | } | |
2034 | ||
1e8f889b DG |
2035 | spin_lock(&mm->page_table_lock); |
2036 | /* Check for a racing update before calling hugetlb_cow */ | |
b4d1d99f DG |
2037 | if (unlikely(!pte_same(entry, huge_ptep_get(ptep)))) |
2038 | goto out_page_table_lock; | |
2039 | ||
2040 | ||
2041 | if (write_access) { | |
2042 | if (!pte_write(entry)) { | |
57303d80 AW |
2043 | ret = hugetlb_cow(mm, vma, address, ptep, entry, |
2044 | pagecache_page); | |
b4d1d99f DG |
2045 | goto out_page_table_lock; |
2046 | } | |
2047 | entry = pte_mkdirty(entry); | |
2048 | } | |
2049 | entry = pte_mkyoung(entry); | |
2050 | if (huge_ptep_set_access_flags(vma, address, ptep, entry, write_access)) | |
2051 | update_mmu_cache(vma, address, entry); | |
2052 | ||
2053 | out_page_table_lock: | |
1e8f889b | 2054 | spin_unlock(&mm->page_table_lock); |
57303d80 AW |
2055 | |
2056 | if (pagecache_page) { | |
2057 | unlock_page(pagecache_page); | |
2058 | put_page(pagecache_page); | |
2059 | } | |
2060 | ||
b4d1d99f | 2061 | out_mutex: |
3935baa9 | 2062 | mutex_unlock(&hugetlb_instantiation_mutex); |
1e8f889b DG |
2063 | |
2064 | return ret; | |
86e5216f AL |
2065 | } |
2066 | ||
ceb86879 AK |
2067 | /* Can be overriden by architectures */ |
2068 | __attribute__((weak)) struct page * | |
2069 | follow_huge_pud(struct mm_struct *mm, unsigned long address, | |
2070 | pud_t *pud, int write) | |
2071 | { | |
2072 | BUG(); | |
2073 | return NULL; | |
2074 | } | |
2075 | ||
63551ae0 DG |
2076 | int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2077 | struct page **pages, struct vm_area_struct **vmas, | |
5b23dbe8 AL |
2078 | unsigned long *position, int *length, int i, |
2079 | int write) | |
63551ae0 | 2080 | { |
d5d4b0aa KC |
2081 | unsigned long pfn_offset; |
2082 | unsigned long vaddr = *position; | |
63551ae0 | 2083 | int remainder = *length; |
a5516438 | 2084 | struct hstate *h = hstate_vma(vma); |
63551ae0 | 2085 | |
1c59827d | 2086 | spin_lock(&mm->page_table_lock); |
63551ae0 | 2087 | while (vaddr < vma->vm_end && remainder) { |
4c887265 AL |
2088 | pte_t *pte; |
2089 | struct page *page; | |
63551ae0 | 2090 | |
4c887265 AL |
2091 | /* |
2092 | * Some archs (sparc64, sh*) have multiple pte_ts to | |
2093 | * each hugepage. We have to make * sure we get the | |
2094 | * first, for the page indexing below to work. | |
2095 | */ | |
a5516438 | 2096 | pte = huge_pte_offset(mm, vaddr & huge_page_mask(h)); |
63551ae0 | 2097 | |
7f2e9525 GS |
2098 | if (!pte || huge_pte_none(huge_ptep_get(pte)) || |
2099 | (write && !pte_write(huge_ptep_get(pte)))) { | |
4c887265 | 2100 | int ret; |
63551ae0 | 2101 | |
4c887265 | 2102 | spin_unlock(&mm->page_table_lock); |
5b23dbe8 | 2103 | ret = hugetlb_fault(mm, vma, vaddr, write); |
4c887265 | 2104 | spin_lock(&mm->page_table_lock); |
a89182c7 | 2105 | if (!(ret & VM_FAULT_ERROR)) |
4c887265 | 2106 | continue; |
63551ae0 | 2107 | |
4c887265 AL |
2108 | remainder = 0; |
2109 | if (!i) | |
2110 | i = -EFAULT; | |
2111 | break; | |
2112 | } | |
2113 | ||
a5516438 | 2114 | pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT; |
7f2e9525 | 2115 | page = pte_page(huge_ptep_get(pte)); |
d5d4b0aa | 2116 | same_page: |
d6692183 KC |
2117 | if (pages) { |
2118 | get_page(page); | |
d5d4b0aa | 2119 | pages[i] = page + pfn_offset; |
d6692183 | 2120 | } |
63551ae0 DG |
2121 | |
2122 | if (vmas) | |
2123 | vmas[i] = vma; | |
2124 | ||
2125 | vaddr += PAGE_SIZE; | |
d5d4b0aa | 2126 | ++pfn_offset; |
63551ae0 DG |
2127 | --remainder; |
2128 | ++i; | |
d5d4b0aa | 2129 | if (vaddr < vma->vm_end && remainder && |
a5516438 | 2130 | pfn_offset < pages_per_huge_page(h)) { |
d5d4b0aa KC |
2131 | /* |
2132 | * We use pfn_offset to avoid touching the pageframes | |
2133 | * of this compound page. | |
2134 | */ | |
2135 | goto same_page; | |
2136 | } | |
63551ae0 | 2137 | } |
1c59827d | 2138 | spin_unlock(&mm->page_table_lock); |
63551ae0 DG |
2139 | *length = remainder; |
2140 | *position = vaddr; | |
2141 | ||
2142 | return i; | |
2143 | } | |
8f860591 ZY |
2144 | |
2145 | void hugetlb_change_protection(struct vm_area_struct *vma, | |
2146 | unsigned long address, unsigned long end, pgprot_t newprot) | |
2147 | { | |
2148 | struct mm_struct *mm = vma->vm_mm; | |
2149 | unsigned long start = address; | |
2150 | pte_t *ptep; | |
2151 | pte_t pte; | |
a5516438 | 2152 | struct hstate *h = hstate_vma(vma); |
8f860591 ZY |
2153 | |
2154 | BUG_ON(address >= end); | |
2155 | flush_cache_range(vma, address, end); | |
2156 | ||
39dde65c | 2157 | spin_lock(&vma->vm_file->f_mapping->i_mmap_lock); |
8f860591 | 2158 | spin_lock(&mm->page_table_lock); |
a5516438 | 2159 | for (; address < end; address += huge_page_size(h)) { |
8f860591 ZY |
2160 | ptep = huge_pte_offset(mm, address); |
2161 | if (!ptep) | |
2162 | continue; | |
39dde65c KC |
2163 | if (huge_pmd_unshare(mm, &address, ptep)) |
2164 | continue; | |
7f2e9525 | 2165 | if (!huge_pte_none(huge_ptep_get(ptep))) { |
8f860591 ZY |
2166 | pte = huge_ptep_get_and_clear(mm, address, ptep); |
2167 | pte = pte_mkhuge(pte_modify(pte, newprot)); | |
2168 | set_huge_pte_at(mm, address, ptep, pte); | |
8f860591 ZY |
2169 | } |
2170 | } | |
2171 | spin_unlock(&mm->page_table_lock); | |
39dde65c | 2172 | spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock); |
8f860591 ZY |
2173 | |
2174 | flush_tlb_range(vma, start, end); | |
2175 | } | |
2176 | ||
a1e78772 MG |
2177 | int hugetlb_reserve_pages(struct inode *inode, |
2178 | long from, long to, | |
2179 | struct vm_area_struct *vma) | |
e4e574b7 AL |
2180 | { |
2181 | long ret, chg; | |
a5516438 | 2182 | struct hstate *h = hstate_inode(inode); |
e4e574b7 | 2183 | |
c37f9fb1 AW |
2184 | if (vma && vma->vm_flags & VM_NORESERVE) |
2185 | return 0; | |
2186 | ||
a1e78772 MG |
2187 | /* |
2188 | * Shared mappings base their reservation on the number of pages that | |
2189 | * are already allocated on behalf of the file. Private mappings need | |
2190 | * to reserve the full area even if read-only as mprotect() may be | |
2191 | * called to make the mapping read-write. Assume !vma is a shm mapping | |
2192 | */ | |
2193 | if (!vma || vma->vm_flags & VM_SHARED) | |
2194 | chg = region_chg(&inode->i_mapping->private_list, from, to); | |
2195 | else { | |
84afd99b AW |
2196 | struct resv_map *resv_map = resv_map_alloc(); |
2197 | if (!resv_map) | |
2198 | return -ENOMEM; | |
2199 | ||
a1e78772 | 2200 | chg = to - from; |
84afd99b AW |
2201 | |
2202 | set_vma_resv_map(vma, resv_map); | |
04f2cbe3 | 2203 | set_vma_resv_flags(vma, HPAGE_RESV_OWNER); |
a1e78772 MG |
2204 | } |
2205 | ||
e4e574b7 AL |
2206 | if (chg < 0) |
2207 | return chg; | |
8a630112 | 2208 | |
90d8b7e6 AL |
2209 | if (hugetlb_get_quota(inode->i_mapping, chg)) |
2210 | return -ENOSPC; | |
a5516438 | 2211 | ret = hugetlb_acct_memory(h, chg); |
68842c9b KC |
2212 | if (ret < 0) { |
2213 | hugetlb_put_quota(inode->i_mapping, chg); | |
a43a8c39 | 2214 | return ret; |
68842c9b | 2215 | } |
a1e78772 MG |
2216 | if (!vma || vma->vm_flags & VM_SHARED) |
2217 | region_add(&inode->i_mapping->private_list, from, to); | |
a43a8c39 KC |
2218 | return 0; |
2219 | } | |
2220 | ||
2221 | void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed) | |
2222 | { | |
a5516438 | 2223 | struct hstate *h = hstate_inode(inode); |
a43a8c39 | 2224 | long chg = region_truncate(&inode->i_mapping->private_list, offset); |
45c682a6 KC |
2225 | |
2226 | spin_lock(&inode->i_lock); | |
a5516438 | 2227 | inode->i_blocks -= blocks_per_huge_page(h); |
45c682a6 KC |
2228 | spin_unlock(&inode->i_lock); |
2229 | ||
90d8b7e6 | 2230 | hugetlb_put_quota(inode->i_mapping, (chg - freed)); |
a5516438 | 2231 | hugetlb_acct_memory(h, -(chg - freed)); |
a43a8c39 | 2232 | } |