]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/slab.c | |
3 | * Written by Mark Hemment, 1996/97. | |
4 | * ([email protected]) | |
5 | * | |
6 | * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli | |
7 | * | |
8 | * Major cleanup, different bufctl logic, per-cpu arrays | |
9 | * (c) 2000 Manfred Spraul | |
10 | * | |
11 | * Cleanup, make the head arrays unconditional, preparation for NUMA | |
12 | * (c) 2002 Manfred Spraul | |
13 | * | |
14 | * An implementation of the Slab Allocator as described in outline in; | |
15 | * UNIX Internals: The New Frontiers by Uresh Vahalia | |
16 | * Pub: Prentice Hall ISBN 0-13-101908-2 | |
17 | * or with a little more detail in; | |
18 | * The Slab Allocator: An Object-Caching Kernel Memory Allocator | |
19 | * Jeff Bonwick (Sun Microsystems). | |
20 | * Presented at: USENIX Summer 1994 Technical Conference | |
21 | * | |
22 | * The memory is organized in caches, one cache for each object type. | |
23 | * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct) | |
24 | * Each cache consists out of many slabs (they are small (usually one | |
25 | * page long) and always contiguous), and each slab contains multiple | |
26 | * initialized objects. | |
27 | * | |
28 | * This means, that your constructor is used only for newly allocated | |
183ff22b | 29 | * slabs and you must pass objects with the same initializations to |
1da177e4 LT |
30 | * kmem_cache_free. |
31 | * | |
32 | * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM, | |
33 | * normal). If you need a special memory type, then must create a new | |
34 | * cache for that memory type. | |
35 | * | |
36 | * In order to reduce fragmentation, the slabs are sorted in 3 groups: | |
37 | * full slabs with 0 free objects | |
38 | * partial slabs | |
39 | * empty slabs with no allocated objects | |
40 | * | |
41 | * If partial slabs exist, then new allocations come from these slabs, | |
42 | * otherwise from empty slabs or new slabs are allocated. | |
43 | * | |
44 | * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache | |
45 | * during kmem_cache_destroy(). The caller must prevent concurrent allocs. | |
46 | * | |
47 | * Each cache has a short per-cpu head array, most allocs | |
48 | * and frees go into that array, and if that array overflows, then 1/2 | |
49 | * of the entries in the array are given back into the global cache. | |
50 | * The head array is strictly LIFO and should improve the cache hit rates. | |
51 | * On SMP, it additionally reduces the spinlock operations. | |
52 | * | |
a737b3e2 | 53 | * The c_cpuarray may not be read with enabled local interrupts - |
1da177e4 LT |
54 | * it's changed with a smp_call_function(). |
55 | * | |
56 | * SMP synchronization: | |
57 | * constructors and destructors are called without any locking. | |
343e0d7a | 58 | * Several members in struct kmem_cache and struct slab never change, they |
1da177e4 LT |
59 | * are accessed without any locking. |
60 | * The per-cpu arrays are never accessed from the wrong cpu, no locking, | |
61 | * and local interrupts are disabled so slab code is preempt-safe. | |
62 | * The non-constant members are protected with a per-cache irq spinlock. | |
63 | * | |
64 | * Many thanks to Mark Hemment, who wrote another per-cpu slab patch | |
65 | * in 2000 - many ideas in the current implementation are derived from | |
66 | * his patch. | |
67 | * | |
68 | * Further notes from the original documentation: | |
69 | * | |
70 | * 11 April '97. Started multi-threading - markhe | |
18004c5d | 71 | * The global cache-chain is protected by the mutex 'slab_mutex'. |
1da177e4 LT |
72 | * The sem is only needed when accessing/extending the cache-chain, which |
73 | * can never happen inside an interrupt (kmem_cache_create(), | |
74 | * kmem_cache_shrink() and kmem_cache_reap()). | |
75 | * | |
76 | * At present, each engine can be growing a cache. This should be blocked. | |
77 | * | |
e498be7d CL |
78 | * 15 March 2005. NUMA slab allocator. |
79 | * Shai Fultheim <[email protected]>. | |
80 | * Shobhit Dayal <[email protected]> | |
81 | * Alok N Kataria <[email protected]> | |
82 | * Christoph Lameter <[email protected]> | |
83 | * | |
84 | * Modified the slab allocator to be node aware on NUMA systems. | |
85 | * Each node has its own list of partial, free and full slabs. | |
86 | * All object allocations for a node occur from node specific slab lists. | |
1da177e4 LT |
87 | */ |
88 | ||
1da177e4 | 89 | #include <linux/slab.h> |
97d06609 | 90 | #include "slab.h" |
1da177e4 | 91 | #include <linux/mm.h> |
c9cf5528 | 92 | #include <linux/poison.h> |
1da177e4 LT |
93 | #include <linux/swap.h> |
94 | #include <linux/cache.h> | |
95 | #include <linux/interrupt.h> | |
96 | #include <linux/init.h> | |
97 | #include <linux/compiler.h> | |
101a5001 | 98 | #include <linux/cpuset.h> |
a0ec95a8 | 99 | #include <linux/proc_fs.h> |
1da177e4 LT |
100 | #include <linux/seq_file.h> |
101 | #include <linux/notifier.h> | |
102 | #include <linux/kallsyms.h> | |
103 | #include <linux/cpu.h> | |
104 | #include <linux/sysctl.h> | |
105 | #include <linux/module.h> | |
106 | #include <linux/rcupdate.h> | |
543537bd | 107 | #include <linux/string.h> |
138ae663 | 108 | #include <linux/uaccess.h> |
e498be7d | 109 | #include <linux/nodemask.h> |
d5cff635 | 110 | #include <linux/kmemleak.h> |
dc85da15 | 111 | #include <linux/mempolicy.h> |
fc0abb14 | 112 | #include <linux/mutex.h> |
8a8b6502 | 113 | #include <linux/fault-inject.h> |
e7eebaf6 | 114 | #include <linux/rtmutex.h> |
6a2d7a95 | 115 | #include <linux/reciprocal_div.h> |
3ac7fe5a | 116 | #include <linux/debugobjects.h> |
c175eea4 | 117 | #include <linux/kmemcheck.h> |
8f9f8d9e | 118 | #include <linux/memory.h> |
268bb0ce | 119 | #include <linux/prefetch.h> |
1da177e4 | 120 | |
1da177e4 LT |
121 | #include <asm/cacheflush.h> |
122 | #include <asm/tlbflush.h> | |
123 | #include <asm/page.h> | |
124 | ||
4dee6b64 SR |
125 | #include <trace/events/kmem.h> |
126 | ||
1da177e4 | 127 | /* |
50953fe9 | 128 | * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON. |
1da177e4 LT |
129 | * 0 for faster, smaller code (especially in the critical paths). |
130 | * | |
131 | * STATS - 1 to collect stats for /proc/slabinfo. | |
132 | * 0 for faster, smaller code (especially in the critical paths). | |
133 | * | |
134 | * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible) | |
135 | */ | |
136 | ||
137 | #ifdef CONFIG_DEBUG_SLAB | |
138 | #define DEBUG 1 | |
139 | #define STATS 1 | |
140 | #define FORCED_DEBUG 1 | |
141 | #else | |
142 | #define DEBUG 0 | |
143 | #define STATS 0 | |
144 | #define FORCED_DEBUG 0 | |
145 | #endif | |
146 | ||
1da177e4 LT |
147 | /* Shouldn't this be in a header file somewhere? */ |
148 | #define BYTES_PER_WORD sizeof(void *) | |
87a927c7 | 149 | #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long)) |
1da177e4 | 150 | |
1da177e4 LT |
151 | #ifndef ARCH_KMALLOC_FLAGS |
152 | #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN | |
153 | #endif | |
154 | ||
155 | /* Legal flag mask for kmem_cache_create(). */ | |
156 | #if DEBUG | |
50953fe9 | 157 | # define CREATE_MASK (SLAB_RED_ZONE | \ |
1da177e4 | 158 | SLAB_POISON | SLAB_HWCACHE_ALIGN | \ |
ac2b898c | 159 | SLAB_CACHE_DMA | \ |
5af60839 | 160 | SLAB_STORE_USER | \ |
1da177e4 | 161 | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ |
3ac7fe5a | 162 | SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ |
c175eea4 | 163 | SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK) |
1da177e4 | 164 | #else |
ac2b898c | 165 | # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \ |
5af60839 | 166 | SLAB_CACHE_DMA | \ |
1da177e4 | 167 | SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \ |
3ac7fe5a | 168 | SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \ |
c175eea4 | 169 | SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK) |
1da177e4 LT |
170 | #endif |
171 | ||
172 | /* | |
173 | * kmem_bufctl_t: | |
174 | * | |
175 | * Bufctl's are used for linking objs within a slab | |
176 | * linked offsets. | |
177 | * | |
178 | * This implementation relies on "struct page" for locating the cache & | |
179 | * slab an object belongs to. | |
180 | * This allows the bufctl structure to be small (one int), but limits | |
181 | * the number of objects a slab (not a cache) can contain when off-slab | |
182 | * bufctls are used. The limit is the size of the largest general cache | |
183 | * that does not use off-slab slabs. | |
184 | * For 32bit archs with 4 kB pages, is this 56. | |
185 | * This is not serious, as it is only for large objects, when it is unwise | |
186 | * to have too many per slab. | |
187 | * Note: This limit can be raised by introducing a general cache whose size | |
188 | * is less than 512 (PAGE_SIZE<<3), but greater than 256. | |
189 | */ | |
190 | ||
fa5b08d5 | 191 | typedef unsigned int kmem_bufctl_t; |
1da177e4 LT |
192 | #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0) |
193 | #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1) | |
871751e2 AV |
194 | #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2) |
195 | #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3) | |
1da177e4 | 196 | |
1da177e4 LT |
197 | /* |
198 | * struct slab_rcu | |
199 | * | |
200 | * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to | |
201 | * arrange for kmem_freepages to be called via RCU. This is useful if | |
202 | * we need to approach a kernel structure obliquely, from its address | |
203 | * obtained without the usual locking. We can lock the structure to | |
204 | * stabilize it and check it's still at the given address, only if we | |
205 | * can be sure that the memory has not been meanwhile reused for some | |
206 | * other kind of object (which our subsystem's lock might corrupt). | |
207 | * | |
208 | * rcu_read_lock before reading the address, then rcu_read_unlock after | |
209 | * taking the spinlock within the structure expected at that address. | |
1da177e4 LT |
210 | */ |
211 | struct slab_rcu { | |
b28a02de | 212 | struct rcu_head head; |
343e0d7a | 213 | struct kmem_cache *cachep; |
b28a02de | 214 | void *addr; |
1da177e4 LT |
215 | }; |
216 | ||
5bfe53a7 LJ |
217 | /* |
218 | * struct slab | |
219 | * | |
220 | * Manages the objs in a slab. Placed either at the beginning of mem allocated | |
221 | * for a slab, or allocated from an general cache. | |
222 | * Slabs are chained into three list: fully used, partial, fully free slabs. | |
223 | */ | |
224 | struct slab { | |
225 | union { | |
226 | struct { | |
227 | struct list_head list; | |
228 | unsigned long colouroff; | |
229 | void *s_mem; /* including colour offset */ | |
230 | unsigned int inuse; /* num of objs active in slab */ | |
231 | kmem_bufctl_t free; | |
232 | unsigned short nodeid; | |
233 | }; | |
234 | struct slab_rcu __slab_cover_slab_rcu; | |
235 | }; | |
236 | }; | |
237 | ||
1da177e4 LT |
238 | /* |
239 | * struct array_cache | |
240 | * | |
1da177e4 LT |
241 | * Purpose: |
242 | * - LIFO ordering, to hand out cache-warm objects from _alloc | |
243 | * - reduce the number of linked list operations | |
244 | * - reduce spinlock operations | |
245 | * | |
246 | * The limit is stored in the per-cpu structure to reduce the data cache | |
247 | * footprint. | |
248 | * | |
249 | */ | |
250 | struct array_cache { | |
251 | unsigned int avail; | |
252 | unsigned int limit; | |
253 | unsigned int batchcount; | |
254 | unsigned int touched; | |
e498be7d | 255 | spinlock_t lock; |
bda5b655 | 256 | void *entry[]; /* |
a737b3e2 AM |
257 | * Must have this definition in here for the proper |
258 | * alignment of array_cache. Also simplifies accessing | |
259 | * the entries. | |
a737b3e2 | 260 | */ |
1da177e4 LT |
261 | }; |
262 | ||
a737b3e2 AM |
263 | /* |
264 | * bootstrap: The caches do not work without cpuarrays anymore, but the | |
265 | * cpuarrays are allocated from the generic caches... | |
1da177e4 LT |
266 | */ |
267 | #define BOOT_CPUCACHE_ENTRIES 1 | |
268 | struct arraycache_init { | |
269 | struct array_cache cache; | |
b28a02de | 270 | void *entries[BOOT_CPUCACHE_ENTRIES]; |
1da177e4 LT |
271 | }; |
272 | ||
273 | /* | |
e498be7d | 274 | * The slab lists for all objects. |
1da177e4 LT |
275 | */ |
276 | struct kmem_list3 { | |
b28a02de PE |
277 | struct list_head slabs_partial; /* partial list first, better asm code */ |
278 | struct list_head slabs_full; | |
279 | struct list_head slabs_free; | |
280 | unsigned long free_objects; | |
b28a02de | 281 | unsigned int free_limit; |
2e1217cf | 282 | unsigned int colour_next; /* Per-node cache coloring */ |
b28a02de PE |
283 | spinlock_t list_lock; |
284 | struct array_cache *shared; /* shared per node */ | |
285 | struct array_cache **alien; /* on other nodes */ | |
35386e3b CL |
286 | unsigned long next_reap; /* updated without locking */ |
287 | int free_touched; /* updated without locking */ | |
1da177e4 LT |
288 | }; |
289 | ||
e498be7d CL |
290 | /* |
291 | * Need this for bootstrapping a per node allocator. | |
292 | */ | |
556a169d | 293 | #define NUM_INIT_LISTS (3 * MAX_NUMNODES) |
68a1b195 | 294 | static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS]; |
e498be7d | 295 | #define CACHE_CACHE 0 |
556a169d PE |
296 | #define SIZE_AC MAX_NUMNODES |
297 | #define SIZE_L3 (2 * MAX_NUMNODES) | |
e498be7d | 298 | |
ed11d9eb CL |
299 | static int drain_freelist(struct kmem_cache *cache, |
300 | struct kmem_list3 *l3, int tofree); | |
301 | static void free_block(struct kmem_cache *cachep, void **objpp, int len, | |
302 | int node); | |
83b519e8 | 303 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp); |
65f27f38 | 304 | static void cache_reap(struct work_struct *unused); |
ed11d9eb | 305 | |
e498be7d | 306 | /* |
a737b3e2 AM |
307 | * This function must be completely optimized away if a constant is passed to |
308 | * it. Mostly the same as what is in linux/slab.h except it returns an index. | |
e498be7d | 309 | */ |
7243cc05 | 310 | static __always_inline int index_of(const size_t size) |
e498be7d | 311 | { |
5ec8a847 SR |
312 | extern void __bad_size(void); |
313 | ||
e498be7d CL |
314 | if (__builtin_constant_p(size)) { |
315 | int i = 0; | |
316 | ||
317 | #define CACHE(x) \ | |
318 | if (size <=x) \ | |
319 | return i; \ | |
320 | else \ | |
321 | i++; | |
1c61fc40 | 322 | #include <linux/kmalloc_sizes.h> |
e498be7d | 323 | #undef CACHE |
5ec8a847 | 324 | __bad_size(); |
7243cc05 | 325 | } else |
5ec8a847 | 326 | __bad_size(); |
e498be7d CL |
327 | return 0; |
328 | } | |
329 | ||
e0a42726 IM |
330 | static int slab_early_init = 1; |
331 | ||
e498be7d CL |
332 | #define INDEX_AC index_of(sizeof(struct arraycache_init)) |
333 | #define INDEX_L3 index_of(sizeof(struct kmem_list3)) | |
1da177e4 | 334 | |
5295a74c | 335 | static void kmem_list3_init(struct kmem_list3 *parent) |
e498be7d CL |
336 | { |
337 | INIT_LIST_HEAD(&parent->slabs_full); | |
338 | INIT_LIST_HEAD(&parent->slabs_partial); | |
339 | INIT_LIST_HEAD(&parent->slabs_free); | |
340 | parent->shared = NULL; | |
341 | parent->alien = NULL; | |
2e1217cf | 342 | parent->colour_next = 0; |
e498be7d CL |
343 | spin_lock_init(&parent->list_lock); |
344 | parent->free_objects = 0; | |
345 | parent->free_touched = 0; | |
346 | } | |
347 | ||
a737b3e2 AM |
348 | #define MAKE_LIST(cachep, listp, slab, nodeid) \ |
349 | do { \ | |
350 | INIT_LIST_HEAD(listp); \ | |
351 | list_splice(&(cachep->nodelists[nodeid]->slab), listp); \ | |
e498be7d CL |
352 | } while (0) |
353 | ||
a737b3e2 AM |
354 | #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \ |
355 | do { \ | |
e498be7d CL |
356 | MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \ |
357 | MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \ | |
358 | MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \ | |
359 | } while (0) | |
1da177e4 | 360 | |
1da177e4 LT |
361 | #define CFLGS_OFF_SLAB (0x80000000UL) |
362 | #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB) | |
363 | ||
364 | #define BATCHREFILL_LIMIT 16 | |
a737b3e2 AM |
365 | /* |
366 | * Optimization question: fewer reaps means less probability for unnessary | |
367 | * cpucache drain/refill cycles. | |
1da177e4 | 368 | * |
dc6f3f27 | 369 | * OTOH the cpuarrays can contain lots of objects, |
1da177e4 LT |
370 | * which could lock up otherwise freeable slabs. |
371 | */ | |
372 | #define REAPTIMEOUT_CPUC (2*HZ) | |
373 | #define REAPTIMEOUT_LIST3 (4*HZ) | |
374 | ||
375 | #if STATS | |
376 | #define STATS_INC_ACTIVE(x) ((x)->num_active++) | |
377 | #define STATS_DEC_ACTIVE(x) ((x)->num_active--) | |
378 | #define STATS_INC_ALLOCED(x) ((x)->num_allocations++) | |
379 | #define STATS_INC_GROWN(x) ((x)->grown++) | |
ed11d9eb | 380 | #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y)) |
a737b3e2 AM |
381 | #define STATS_SET_HIGH(x) \ |
382 | do { \ | |
383 | if ((x)->num_active > (x)->high_mark) \ | |
384 | (x)->high_mark = (x)->num_active; \ | |
385 | } while (0) | |
1da177e4 LT |
386 | #define STATS_INC_ERR(x) ((x)->errors++) |
387 | #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++) | |
e498be7d | 388 | #define STATS_INC_NODEFREES(x) ((x)->node_frees++) |
fb7faf33 | 389 | #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++) |
a737b3e2 AM |
390 | #define STATS_SET_FREEABLE(x, i) \ |
391 | do { \ | |
392 | if ((x)->max_freeable < i) \ | |
393 | (x)->max_freeable = i; \ | |
394 | } while (0) | |
1da177e4 LT |
395 | #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit) |
396 | #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss) | |
397 | #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit) | |
398 | #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss) | |
399 | #else | |
400 | #define STATS_INC_ACTIVE(x) do { } while (0) | |
401 | #define STATS_DEC_ACTIVE(x) do { } while (0) | |
402 | #define STATS_INC_ALLOCED(x) do { } while (0) | |
403 | #define STATS_INC_GROWN(x) do { } while (0) | |
4e60c86b | 404 | #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0) |
1da177e4 LT |
405 | #define STATS_SET_HIGH(x) do { } while (0) |
406 | #define STATS_INC_ERR(x) do { } while (0) | |
407 | #define STATS_INC_NODEALLOCS(x) do { } while (0) | |
e498be7d | 408 | #define STATS_INC_NODEFREES(x) do { } while (0) |
fb7faf33 | 409 | #define STATS_INC_ACOVERFLOW(x) do { } while (0) |
a737b3e2 | 410 | #define STATS_SET_FREEABLE(x, i) do { } while (0) |
1da177e4 LT |
411 | #define STATS_INC_ALLOCHIT(x) do { } while (0) |
412 | #define STATS_INC_ALLOCMISS(x) do { } while (0) | |
413 | #define STATS_INC_FREEHIT(x) do { } while (0) | |
414 | #define STATS_INC_FREEMISS(x) do { } while (0) | |
415 | #endif | |
416 | ||
417 | #if DEBUG | |
1da177e4 | 418 | |
a737b3e2 AM |
419 | /* |
420 | * memory layout of objects: | |
1da177e4 | 421 | * 0 : objp |
3dafccf2 | 422 | * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that |
1da177e4 LT |
423 | * the end of an object is aligned with the end of the real |
424 | * allocation. Catches writes behind the end of the allocation. | |
3dafccf2 | 425 | * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1: |
1da177e4 | 426 | * redzone word. |
3dafccf2 | 427 | * cachep->obj_offset: The real object. |
3b0efdfa CL |
428 | * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long] |
429 | * cachep->size - 1* BYTES_PER_WORD: last caller address | |
a737b3e2 | 430 | * [BYTES_PER_WORD long] |
1da177e4 | 431 | */ |
343e0d7a | 432 | static int obj_offset(struct kmem_cache *cachep) |
1da177e4 | 433 | { |
3dafccf2 | 434 | return cachep->obj_offset; |
1da177e4 LT |
435 | } |
436 | ||
b46b8f19 | 437 | static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
438 | { |
439 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
b46b8f19 DW |
440 | return (unsigned long long*) (objp + obj_offset(cachep) - |
441 | sizeof(unsigned long long)); | |
1da177e4 LT |
442 | } |
443 | ||
b46b8f19 | 444 | static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
445 | { |
446 | BUG_ON(!(cachep->flags & SLAB_RED_ZONE)); | |
447 | if (cachep->flags & SLAB_STORE_USER) | |
3b0efdfa | 448 | return (unsigned long long *)(objp + cachep->size - |
b46b8f19 | 449 | sizeof(unsigned long long) - |
87a927c7 | 450 | REDZONE_ALIGN); |
3b0efdfa | 451 | return (unsigned long long *) (objp + cachep->size - |
b46b8f19 | 452 | sizeof(unsigned long long)); |
1da177e4 LT |
453 | } |
454 | ||
343e0d7a | 455 | static void **dbg_userword(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
456 | { |
457 | BUG_ON(!(cachep->flags & SLAB_STORE_USER)); | |
3b0efdfa | 458 | return (void **)(objp + cachep->size - BYTES_PER_WORD); |
1da177e4 LT |
459 | } |
460 | ||
461 | #else | |
462 | ||
3dafccf2 | 463 | #define obj_offset(x) 0 |
b46b8f19 DW |
464 | #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) |
465 | #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;}) | |
1da177e4 LT |
466 | #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;}) |
467 | ||
468 | #endif | |
469 | ||
0f24f128 | 470 | #ifdef CONFIG_TRACING |
36555751 EGM |
471 | size_t slab_buffer_size(struct kmem_cache *cachep) |
472 | { | |
3b0efdfa | 473 | return cachep->size; |
36555751 EGM |
474 | } |
475 | EXPORT_SYMBOL(slab_buffer_size); | |
476 | #endif | |
477 | ||
1da177e4 | 478 | /* |
3df1cccd DR |
479 | * Do not go above this order unless 0 objects fit into the slab or |
480 | * overridden on the command line. | |
1da177e4 | 481 | */ |
543585cc DR |
482 | #define SLAB_MAX_ORDER_HI 1 |
483 | #define SLAB_MAX_ORDER_LO 0 | |
484 | static int slab_max_order = SLAB_MAX_ORDER_LO; | |
3df1cccd | 485 | static bool slab_max_order_set __initdata; |
1da177e4 | 486 | |
065d41cb PE |
487 | static inline struct kmem_cache *page_get_cache(struct page *page) |
488 | { | |
d85f3385 | 489 | page = compound_head(page); |
ddc2e812 | 490 | BUG_ON(!PageSlab(page)); |
e571b0ad | 491 | return page->slab_cache; |
065d41cb PE |
492 | } |
493 | ||
6ed5eb22 PE |
494 | static inline struct kmem_cache *virt_to_cache(const void *obj) |
495 | { | |
b49af68f | 496 | struct page *page = virt_to_head_page(obj); |
35026088 | 497 | return page->slab_cache; |
6ed5eb22 PE |
498 | } |
499 | ||
500 | static inline struct slab *virt_to_slab(const void *obj) | |
501 | { | |
b49af68f | 502 | struct page *page = virt_to_head_page(obj); |
35026088 CL |
503 | |
504 | VM_BUG_ON(!PageSlab(page)); | |
505 | return page->slab_page; | |
6ed5eb22 PE |
506 | } |
507 | ||
8fea4e96 PE |
508 | static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab, |
509 | unsigned int idx) | |
510 | { | |
3b0efdfa | 511 | return slab->s_mem + cache->size * idx; |
8fea4e96 PE |
512 | } |
513 | ||
6a2d7a95 | 514 | /* |
3b0efdfa CL |
515 | * We want to avoid an expensive divide : (offset / cache->size) |
516 | * Using the fact that size is a constant for a particular cache, | |
517 | * we can replace (offset / cache->size) by | |
6a2d7a95 ED |
518 | * reciprocal_divide(offset, cache->reciprocal_buffer_size) |
519 | */ | |
520 | static inline unsigned int obj_to_index(const struct kmem_cache *cache, | |
521 | const struct slab *slab, void *obj) | |
8fea4e96 | 522 | { |
6a2d7a95 ED |
523 | u32 offset = (obj - slab->s_mem); |
524 | return reciprocal_divide(offset, cache->reciprocal_buffer_size); | |
8fea4e96 PE |
525 | } |
526 | ||
a737b3e2 AM |
527 | /* |
528 | * These are the default caches for kmalloc. Custom caches can have other sizes. | |
529 | */ | |
1da177e4 LT |
530 | struct cache_sizes malloc_sizes[] = { |
531 | #define CACHE(x) { .cs_size = (x) }, | |
532 | #include <linux/kmalloc_sizes.h> | |
533 | CACHE(ULONG_MAX) | |
534 | #undef CACHE | |
535 | }; | |
536 | EXPORT_SYMBOL(malloc_sizes); | |
537 | ||
538 | /* Must match cache_sizes above. Out of line to keep cache footprint low. */ | |
539 | struct cache_names { | |
540 | char *name; | |
541 | char *name_dma; | |
542 | }; | |
543 | ||
544 | static struct cache_names __initdata cache_names[] = { | |
545 | #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" }, | |
546 | #include <linux/kmalloc_sizes.h> | |
b28a02de | 547 | {NULL,} |
1da177e4 LT |
548 | #undef CACHE |
549 | }; | |
550 | ||
551 | static struct arraycache_init initarray_cache __initdata = | |
b28a02de | 552 | { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; |
1da177e4 | 553 | static struct arraycache_init initarray_generic = |
b28a02de | 554 | { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} }; |
1da177e4 LT |
555 | |
556 | /* internal cache of cache description objs */ | |
b56efcf0 | 557 | static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES]; |
343e0d7a | 558 | static struct kmem_cache cache_cache = { |
b56efcf0 | 559 | .nodelists = cache_cache_nodelists, |
b28a02de PE |
560 | .batchcount = 1, |
561 | .limit = BOOT_CPUCACHE_ENTRIES, | |
562 | .shared = 1, | |
3b0efdfa | 563 | .size = sizeof(struct kmem_cache), |
b28a02de | 564 | .name = "kmem_cache", |
1da177e4 LT |
565 | }; |
566 | ||
056c6241 RT |
567 | #define BAD_ALIEN_MAGIC 0x01020304ul |
568 | ||
f1aaee53 AV |
569 | #ifdef CONFIG_LOCKDEP |
570 | ||
571 | /* | |
572 | * Slab sometimes uses the kmalloc slabs to store the slab headers | |
573 | * for other slabs "off slab". | |
574 | * The locking for this is tricky in that it nests within the locks | |
575 | * of all other slabs in a few places; to deal with this special | |
576 | * locking we put on-slab caches into a separate lock-class. | |
056c6241 RT |
577 | * |
578 | * We set lock class for alien array caches which are up during init. | |
579 | * The lock annotation will be lost if all cpus of a node goes down and | |
580 | * then comes back up during hotplug | |
f1aaee53 | 581 | */ |
056c6241 RT |
582 | static struct lock_class_key on_slab_l3_key; |
583 | static struct lock_class_key on_slab_alc_key; | |
584 | ||
83835b3d PZ |
585 | static struct lock_class_key debugobj_l3_key; |
586 | static struct lock_class_key debugobj_alc_key; | |
587 | ||
588 | static void slab_set_lock_classes(struct kmem_cache *cachep, | |
589 | struct lock_class_key *l3_key, struct lock_class_key *alc_key, | |
590 | int q) | |
591 | { | |
592 | struct array_cache **alc; | |
593 | struct kmem_list3 *l3; | |
594 | int r; | |
595 | ||
596 | l3 = cachep->nodelists[q]; | |
597 | if (!l3) | |
598 | return; | |
599 | ||
600 | lockdep_set_class(&l3->list_lock, l3_key); | |
601 | alc = l3->alien; | |
602 | /* | |
603 | * FIXME: This check for BAD_ALIEN_MAGIC | |
604 | * should go away when common slab code is taught to | |
605 | * work even without alien caches. | |
606 | * Currently, non NUMA code returns BAD_ALIEN_MAGIC | |
607 | * for alloc_alien_cache, | |
608 | */ | |
609 | if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC) | |
610 | return; | |
611 | for_each_node(r) { | |
612 | if (alc[r]) | |
613 | lockdep_set_class(&alc[r]->lock, alc_key); | |
614 | } | |
615 | } | |
616 | ||
617 | static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) | |
618 | { | |
619 | slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node); | |
620 | } | |
621 | ||
622 | static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) | |
623 | { | |
624 | int node; | |
625 | ||
626 | for_each_online_node(node) | |
627 | slab_set_debugobj_lock_classes_node(cachep, node); | |
628 | } | |
629 | ||
ce79ddc8 | 630 | static void init_node_lock_keys(int q) |
f1aaee53 | 631 | { |
056c6241 RT |
632 | struct cache_sizes *s = malloc_sizes; |
633 | ||
97d06609 | 634 | if (slab_state < UP) |
ce79ddc8 PE |
635 | return; |
636 | ||
637 | for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) { | |
ce79ddc8 | 638 | struct kmem_list3 *l3; |
ce79ddc8 PE |
639 | |
640 | l3 = s->cs_cachep->nodelists[q]; | |
641 | if (!l3 || OFF_SLAB(s->cs_cachep)) | |
00afa758 | 642 | continue; |
83835b3d PZ |
643 | |
644 | slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key, | |
645 | &on_slab_alc_key, q); | |
f1aaee53 AV |
646 | } |
647 | } | |
ce79ddc8 PE |
648 | |
649 | static inline void init_lock_keys(void) | |
650 | { | |
651 | int node; | |
652 | ||
653 | for_each_node(node) | |
654 | init_node_lock_keys(node); | |
655 | } | |
f1aaee53 | 656 | #else |
ce79ddc8 PE |
657 | static void init_node_lock_keys(int q) |
658 | { | |
659 | } | |
660 | ||
056c6241 | 661 | static inline void init_lock_keys(void) |
f1aaee53 AV |
662 | { |
663 | } | |
83835b3d PZ |
664 | |
665 | static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node) | |
666 | { | |
667 | } | |
668 | ||
669 | static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep) | |
670 | { | |
671 | } | |
f1aaee53 AV |
672 | #endif |
673 | ||
1871e52c | 674 | static DEFINE_PER_CPU(struct delayed_work, slab_reap_work); |
1da177e4 | 675 | |
343e0d7a | 676 | static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep) |
1da177e4 LT |
677 | { |
678 | return cachep->array[smp_processor_id()]; | |
679 | } | |
680 | ||
a737b3e2 AM |
681 | static inline struct kmem_cache *__find_general_cachep(size_t size, |
682 | gfp_t gfpflags) | |
1da177e4 LT |
683 | { |
684 | struct cache_sizes *csizep = malloc_sizes; | |
685 | ||
686 | #if DEBUG | |
687 | /* This happens if someone tries to call | |
b28a02de PE |
688 | * kmem_cache_create(), or __kmalloc(), before |
689 | * the generic caches are initialized. | |
690 | */ | |
c7e43c78 | 691 | BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL); |
1da177e4 | 692 | #endif |
6cb8f913 CL |
693 | if (!size) |
694 | return ZERO_SIZE_PTR; | |
695 | ||
1da177e4 LT |
696 | while (size > csizep->cs_size) |
697 | csizep++; | |
698 | ||
699 | /* | |
0abf40c1 | 700 | * Really subtle: The last entry with cs->cs_size==ULONG_MAX |
1da177e4 LT |
701 | * has cs_{dma,}cachep==NULL. Thus no special case |
702 | * for large kmalloc calls required. | |
703 | */ | |
4b51d669 | 704 | #ifdef CONFIG_ZONE_DMA |
1da177e4 LT |
705 | if (unlikely(gfpflags & GFP_DMA)) |
706 | return csizep->cs_dmacachep; | |
4b51d669 | 707 | #endif |
1da177e4 LT |
708 | return csizep->cs_cachep; |
709 | } | |
710 | ||
b221385b | 711 | static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags) |
97e2bde4 MS |
712 | { |
713 | return __find_general_cachep(size, gfpflags); | |
714 | } | |
97e2bde4 | 715 | |
fbaccacf | 716 | static size_t slab_mgmt_size(size_t nr_objs, size_t align) |
1da177e4 | 717 | { |
fbaccacf SR |
718 | return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align); |
719 | } | |
1da177e4 | 720 | |
a737b3e2 AM |
721 | /* |
722 | * Calculate the number of objects and left-over bytes for a given buffer size. | |
723 | */ | |
fbaccacf SR |
724 | static void cache_estimate(unsigned long gfporder, size_t buffer_size, |
725 | size_t align, int flags, size_t *left_over, | |
726 | unsigned int *num) | |
727 | { | |
728 | int nr_objs; | |
729 | size_t mgmt_size; | |
730 | size_t slab_size = PAGE_SIZE << gfporder; | |
1da177e4 | 731 | |
fbaccacf SR |
732 | /* |
733 | * The slab management structure can be either off the slab or | |
734 | * on it. For the latter case, the memory allocated for a | |
735 | * slab is used for: | |
736 | * | |
737 | * - The struct slab | |
738 | * - One kmem_bufctl_t for each object | |
739 | * - Padding to respect alignment of @align | |
740 | * - @buffer_size bytes for each object | |
741 | * | |
742 | * If the slab management structure is off the slab, then the | |
743 | * alignment will already be calculated into the size. Because | |
744 | * the slabs are all pages aligned, the objects will be at the | |
745 | * correct alignment when allocated. | |
746 | */ | |
747 | if (flags & CFLGS_OFF_SLAB) { | |
748 | mgmt_size = 0; | |
749 | nr_objs = slab_size / buffer_size; | |
750 | ||
751 | if (nr_objs > SLAB_LIMIT) | |
752 | nr_objs = SLAB_LIMIT; | |
753 | } else { | |
754 | /* | |
755 | * Ignore padding for the initial guess. The padding | |
756 | * is at most @align-1 bytes, and @buffer_size is at | |
757 | * least @align. In the worst case, this result will | |
758 | * be one greater than the number of objects that fit | |
759 | * into the memory allocation when taking the padding | |
760 | * into account. | |
761 | */ | |
762 | nr_objs = (slab_size - sizeof(struct slab)) / | |
763 | (buffer_size + sizeof(kmem_bufctl_t)); | |
764 | ||
765 | /* | |
766 | * This calculated number will be either the right | |
767 | * amount, or one greater than what we want. | |
768 | */ | |
769 | if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size | |
770 | > slab_size) | |
771 | nr_objs--; | |
772 | ||
773 | if (nr_objs > SLAB_LIMIT) | |
774 | nr_objs = SLAB_LIMIT; | |
775 | ||
776 | mgmt_size = slab_mgmt_size(nr_objs, align); | |
777 | } | |
778 | *num = nr_objs; | |
779 | *left_over = slab_size - nr_objs*buffer_size - mgmt_size; | |
1da177e4 LT |
780 | } |
781 | ||
d40cee24 | 782 | #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg) |
1da177e4 | 783 | |
a737b3e2 AM |
784 | static void __slab_error(const char *function, struct kmem_cache *cachep, |
785 | char *msg) | |
1da177e4 LT |
786 | { |
787 | printk(KERN_ERR "slab error in %s(): cache `%s': %s\n", | |
b28a02de | 788 | function, cachep->name, msg); |
1da177e4 LT |
789 | dump_stack(); |
790 | } | |
791 | ||
3395ee05 PM |
792 | /* |
793 | * By default on NUMA we use alien caches to stage the freeing of | |
794 | * objects allocated from other nodes. This causes massive memory | |
795 | * inefficiencies when using fake NUMA setup to split memory into a | |
796 | * large number of small nodes, so it can be disabled on the command | |
797 | * line | |
798 | */ | |
799 | ||
800 | static int use_alien_caches __read_mostly = 1; | |
801 | static int __init noaliencache_setup(char *s) | |
802 | { | |
803 | use_alien_caches = 0; | |
804 | return 1; | |
805 | } | |
806 | __setup("noaliencache", noaliencache_setup); | |
807 | ||
3df1cccd DR |
808 | static int __init slab_max_order_setup(char *str) |
809 | { | |
810 | get_option(&str, &slab_max_order); | |
811 | slab_max_order = slab_max_order < 0 ? 0 : | |
812 | min(slab_max_order, MAX_ORDER - 1); | |
813 | slab_max_order_set = true; | |
814 | ||
815 | return 1; | |
816 | } | |
817 | __setup("slab_max_order=", slab_max_order_setup); | |
818 | ||
8fce4d8e CL |
819 | #ifdef CONFIG_NUMA |
820 | /* | |
821 | * Special reaping functions for NUMA systems called from cache_reap(). | |
822 | * These take care of doing round robin flushing of alien caches (containing | |
823 | * objects freed on different nodes from which they were allocated) and the | |
824 | * flushing of remote pcps by calling drain_node_pages. | |
825 | */ | |
1871e52c | 826 | static DEFINE_PER_CPU(unsigned long, slab_reap_node); |
8fce4d8e CL |
827 | |
828 | static void init_reap_node(int cpu) | |
829 | { | |
830 | int node; | |
831 | ||
7d6e6d09 | 832 | node = next_node(cpu_to_mem(cpu), node_online_map); |
8fce4d8e | 833 | if (node == MAX_NUMNODES) |
442295c9 | 834 | node = first_node(node_online_map); |
8fce4d8e | 835 | |
1871e52c | 836 | per_cpu(slab_reap_node, cpu) = node; |
8fce4d8e CL |
837 | } |
838 | ||
839 | static void next_reap_node(void) | |
840 | { | |
909ea964 | 841 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e | 842 | |
8fce4d8e CL |
843 | node = next_node(node, node_online_map); |
844 | if (unlikely(node >= MAX_NUMNODES)) | |
845 | node = first_node(node_online_map); | |
909ea964 | 846 | __this_cpu_write(slab_reap_node, node); |
8fce4d8e CL |
847 | } |
848 | ||
849 | #else | |
850 | #define init_reap_node(cpu) do { } while (0) | |
851 | #define next_reap_node(void) do { } while (0) | |
852 | #endif | |
853 | ||
1da177e4 LT |
854 | /* |
855 | * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz | |
856 | * via the workqueue/eventd. | |
857 | * Add the CPU number into the expiration time to minimize the possibility of | |
858 | * the CPUs getting into lockstep and contending for the global cache chain | |
859 | * lock. | |
860 | */ | |
897e679b | 861 | static void __cpuinit start_cpu_timer(int cpu) |
1da177e4 | 862 | { |
1871e52c | 863 | struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); |
1da177e4 LT |
864 | |
865 | /* | |
866 | * When this gets called from do_initcalls via cpucache_init(), | |
867 | * init_workqueues() has already run, so keventd will be setup | |
868 | * at that time. | |
869 | */ | |
52bad64d | 870 | if (keventd_up() && reap_work->work.func == NULL) { |
8fce4d8e | 871 | init_reap_node(cpu); |
78b43536 | 872 | INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap); |
2b284214 AV |
873 | schedule_delayed_work_on(cpu, reap_work, |
874 | __round_jiffies_relative(HZ, cpu)); | |
1da177e4 LT |
875 | } |
876 | } | |
877 | ||
e498be7d | 878 | static struct array_cache *alloc_arraycache(int node, int entries, |
83b519e8 | 879 | int batchcount, gfp_t gfp) |
1da177e4 | 880 | { |
b28a02de | 881 | int memsize = sizeof(void *) * entries + sizeof(struct array_cache); |
1da177e4 LT |
882 | struct array_cache *nc = NULL; |
883 | ||
83b519e8 | 884 | nc = kmalloc_node(memsize, gfp, node); |
d5cff635 CM |
885 | /* |
886 | * The array_cache structures contain pointers to free object. | |
25985edc | 887 | * However, when such objects are allocated or transferred to another |
d5cff635 CM |
888 | * cache the pointers are not cleared and they could be counted as |
889 | * valid references during a kmemleak scan. Therefore, kmemleak must | |
890 | * not scan such objects. | |
891 | */ | |
892 | kmemleak_no_scan(nc); | |
1da177e4 LT |
893 | if (nc) { |
894 | nc->avail = 0; | |
895 | nc->limit = entries; | |
896 | nc->batchcount = batchcount; | |
897 | nc->touched = 0; | |
e498be7d | 898 | spin_lock_init(&nc->lock); |
1da177e4 LT |
899 | } |
900 | return nc; | |
901 | } | |
902 | ||
3ded175a CL |
903 | /* |
904 | * Transfer objects in one arraycache to another. | |
905 | * Locking must be handled by the caller. | |
906 | * | |
907 | * Return the number of entries transferred. | |
908 | */ | |
909 | static int transfer_objects(struct array_cache *to, | |
910 | struct array_cache *from, unsigned int max) | |
911 | { | |
912 | /* Figure out how many entries to transfer */ | |
732eacc0 | 913 | int nr = min3(from->avail, max, to->limit - to->avail); |
3ded175a CL |
914 | |
915 | if (!nr) | |
916 | return 0; | |
917 | ||
918 | memcpy(to->entry + to->avail, from->entry + from->avail -nr, | |
919 | sizeof(void *) *nr); | |
920 | ||
921 | from->avail -= nr; | |
922 | to->avail += nr; | |
3ded175a CL |
923 | return nr; |
924 | } | |
925 | ||
765c4507 CL |
926 | #ifndef CONFIG_NUMA |
927 | ||
928 | #define drain_alien_cache(cachep, alien) do { } while (0) | |
929 | #define reap_alien(cachep, l3) do { } while (0) | |
930 | ||
83b519e8 | 931 | static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) |
765c4507 CL |
932 | { |
933 | return (struct array_cache **)BAD_ALIEN_MAGIC; | |
934 | } | |
935 | ||
936 | static inline void free_alien_cache(struct array_cache **ac_ptr) | |
937 | { | |
938 | } | |
939 | ||
940 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) | |
941 | { | |
942 | return 0; | |
943 | } | |
944 | ||
945 | static inline void *alternate_node_alloc(struct kmem_cache *cachep, | |
946 | gfp_t flags) | |
947 | { | |
948 | return NULL; | |
949 | } | |
950 | ||
8b98c169 | 951 | static inline void *____cache_alloc_node(struct kmem_cache *cachep, |
765c4507 CL |
952 | gfp_t flags, int nodeid) |
953 | { | |
954 | return NULL; | |
955 | } | |
956 | ||
957 | #else /* CONFIG_NUMA */ | |
958 | ||
8b98c169 | 959 | static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int); |
c61afb18 | 960 | static void *alternate_node_alloc(struct kmem_cache *, gfp_t); |
dc85da15 | 961 | |
83b519e8 | 962 | static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp) |
e498be7d CL |
963 | { |
964 | struct array_cache **ac_ptr; | |
8ef82866 | 965 | int memsize = sizeof(void *) * nr_node_ids; |
e498be7d CL |
966 | int i; |
967 | ||
968 | if (limit > 1) | |
969 | limit = 12; | |
f3186a9c | 970 | ac_ptr = kzalloc_node(memsize, gfp, node); |
e498be7d CL |
971 | if (ac_ptr) { |
972 | for_each_node(i) { | |
f3186a9c | 973 | if (i == node || !node_online(i)) |
e498be7d | 974 | continue; |
83b519e8 | 975 | ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp); |
e498be7d | 976 | if (!ac_ptr[i]) { |
cc550def | 977 | for (i--; i >= 0; i--) |
e498be7d CL |
978 | kfree(ac_ptr[i]); |
979 | kfree(ac_ptr); | |
980 | return NULL; | |
981 | } | |
982 | } | |
983 | } | |
984 | return ac_ptr; | |
985 | } | |
986 | ||
5295a74c | 987 | static void free_alien_cache(struct array_cache **ac_ptr) |
e498be7d CL |
988 | { |
989 | int i; | |
990 | ||
991 | if (!ac_ptr) | |
992 | return; | |
e498be7d | 993 | for_each_node(i) |
b28a02de | 994 | kfree(ac_ptr[i]); |
e498be7d CL |
995 | kfree(ac_ptr); |
996 | } | |
997 | ||
343e0d7a | 998 | static void __drain_alien_cache(struct kmem_cache *cachep, |
5295a74c | 999 | struct array_cache *ac, int node) |
e498be7d CL |
1000 | { |
1001 | struct kmem_list3 *rl3 = cachep->nodelists[node]; | |
1002 | ||
1003 | if (ac->avail) { | |
1004 | spin_lock(&rl3->list_lock); | |
e00946fe CL |
1005 | /* |
1006 | * Stuff objects into the remote nodes shared array first. | |
1007 | * That way we could avoid the overhead of putting the objects | |
1008 | * into the free lists and getting them back later. | |
1009 | */ | |
693f7d36 JS |
1010 | if (rl3->shared) |
1011 | transfer_objects(rl3->shared, ac, ac->limit); | |
e00946fe | 1012 | |
ff69416e | 1013 | free_block(cachep, ac->entry, ac->avail, node); |
e498be7d CL |
1014 | ac->avail = 0; |
1015 | spin_unlock(&rl3->list_lock); | |
1016 | } | |
1017 | } | |
1018 | ||
8fce4d8e CL |
1019 | /* |
1020 | * Called from cache_reap() to regularly drain alien caches round robin. | |
1021 | */ | |
1022 | static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3) | |
1023 | { | |
909ea964 | 1024 | int node = __this_cpu_read(slab_reap_node); |
8fce4d8e CL |
1025 | |
1026 | if (l3->alien) { | |
1027 | struct array_cache *ac = l3->alien[node]; | |
e00946fe CL |
1028 | |
1029 | if (ac && ac->avail && spin_trylock_irq(&ac->lock)) { | |
8fce4d8e CL |
1030 | __drain_alien_cache(cachep, ac, node); |
1031 | spin_unlock_irq(&ac->lock); | |
1032 | } | |
1033 | } | |
1034 | } | |
1035 | ||
a737b3e2 AM |
1036 | static void drain_alien_cache(struct kmem_cache *cachep, |
1037 | struct array_cache **alien) | |
e498be7d | 1038 | { |
b28a02de | 1039 | int i = 0; |
e498be7d CL |
1040 | struct array_cache *ac; |
1041 | unsigned long flags; | |
1042 | ||
1043 | for_each_online_node(i) { | |
4484ebf1 | 1044 | ac = alien[i]; |
e498be7d CL |
1045 | if (ac) { |
1046 | spin_lock_irqsave(&ac->lock, flags); | |
1047 | __drain_alien_cache(cachep, ac, i); | |
1048 | spin_unlock_irqrestore(&ac->lock, flags); | |
1049 | } | |
1050 | } | |
1051 | } | |
729bd0b7 | 1052 | |
873623df | 1053 | static inline int cache_free_alien(struct kmem_cache *cachep, void *objp) |
729bd0b7 PE |
1054 | { |
1055 | struct slab *slabp = virt_to_slab(objp); | |
1056 | int nodeid = slabp->nodeid; | |
1057 | struct kmem_list3 *l3; | |
1058 | struct array_cache *alien = NULL; | |
1ca4cb24 PE |
1059 | int node; |
1060 | ||
7d6e6d09 | 1061 | node = numa_mem_id(); |
729bd0b7 PE |
1062 | |
1063 | /* | |
1064 | * Make sure we are not freeing a object from another node to the array | |
1065 | * cache on this cpu. | |
1066 | */ | |
62918a03 | 1067 | if (likely(slabp->nodeid == node)) |
729bd0b7 PE |
1068 | return 0; |
1069 | ||
1ca4cb24 | 1070 | l3 = cachep->nodelists[node]; |
729bd0b7 PE |
1071 | STATS_INC_NODEFREES(cachep); |
1072 | if (l3->alien && l3->alien[nodeid]) { | |
1073 | alien = l3->alien[nodeid]; | |
873623df | 1074 | spin_lock(&alien->lock); |
729bd0b7 PE |
1075 | if (unlikely(alien->avail == alien->limit)) { |
1076 | STATS_INC_ACOVERFLOW(cachep); | |
1077 | __drain_alien_cache(cachep, alien, nodeid); | |
1078 | } | |
1079 | alien->entry[alien->avail++] = objp; | |
1080 | spin_unlock(&alien->lock); | |
1081 | } else { | |
1082 | spin_lock(&(cachep->nodelists[nodeid])->list_lock); | |
1083 | free_block(cachep, &objp, 1, nodeid); | |
1084 | spin_unlock(&(cachep->nodelists[nodeid])->list_lock); | |
1085 | } | |
1086 | return 1; | |
1087 | } | |
e498be7d CL |
1088 | #endif |
1089 | ||
8f9f8d9e DR |
1090 | /* |
1091 | * Allocates and initializes nodelists for a node on each slab cache, used for | |
1092 | * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3 | |
1093 | * will be allocated off-node since memory is not yet online for the new node. | |
1094 | * When hotplugging memory or a cpu, existing nodelists are not replaced if | |
1095 | * already in use. | |
1096 | * | |
18004c5d | 1097 | * Must hold slab_mutex. |
8f9f8d9e DR |
1098 | */ |
1099 | static int init_cache_nodelists_node(int node) | |
1100 | { | |
1101 | struct kmem_cache *cachep; | |
1102 | struct kmem_list3 *l3; | |
1103 | const int memsize = sizeof(struct kmem_list3); | |
1104 | ||
18004c5d | 1105 | list_for_each_entry(cachep, &slab_caches, list) { |
8f9f8d9e DR |
1106 | /* |
1107 | * Set up the size64 kmemlist for cpu before we can | |
1108 | * begin anything. Make sure some other cpu on this | |
1109 | * node has not already allocated this | |
1110 | */ | |
1111 | if (!cachep->nodelists[node]) { | |
1112 | l3 = kmalloc_node(memsize, GFP_KERNEL, node); | |
1113 | if (!l3) | |
1114 | return -ENOMEM; | |
1115 | kmem_list3_init(l3); | |
1116 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | |
1117 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | |
1118 | ||
1119 | /* | |
1120 | * The l3s don't come and go as CPUs come and | |
18004c5d | 1121 | * go. slab_mutex is sufficient |
8f9f8d9e DR |
1122 | * protection here. |
1123 | */ | |
1124 | cachep->nodelists[node] = l3; | |
1125 | } | |
1126 | ||
1127 | spin_lock_irq(&cachep->nodelists[node]->list_lock); | |
1128 | cachep->nodelists[node]->free_limit = | |
1129 | (1 + nr_cpus_node(node)) * | |
1130 | cachep->batchcount + cachep->num; | |
1131 | spin_unlock_irq(&cachep->nodelists[node]->list_lock); | |
1132 | } | |
1133 | return 0; | |
1134 | } | |
1135 | ||
fbf1e473 AM |
1136 | static void __cpuinit cpuup_canceled(long cpu) |
1137 | { | |
1138 | struct kmem_cache *cachep; | |
1139 | struct kmem_list3 *l3 = NULL; | |
7d6e6d09 | 1140 | int node = cpu_to_mem(cpu); |
a70f7302 | 1141 | const struct cpumask *mask = cpumask_of_node(node); |
fbf1e473 | 1142 | |
18004c5d | 1143 | list_for_each_entry(cachep, &slab_caches, list) { |
fbf1e473 AM |
1144 | struct array_cache *nc; |
1145 | struct array_cache *shared; | |
1146 | struct array_cache **alien; | |
fbf1e473 | 1147 | |
fbf1e473 AM |
1148 | /* cpu is dead; no one can alloc from it. */ |
1149 | nc = cachep->array[cpu]; | |
1150 | cachep->array[cpu] = NULL; | |
1151 | l3 = cachep->nodelists[node]; | |
1152 | ||
1153 | if (!l3) | |
1154 | goto free_array_cache; | |
1155 | ||
1156 | spin_lock_irq(&l3->list_lock); | |
1157 | ||
1158 | /* Free limit for this kmem_list3 */ | |
1159 | l3->free_limit -= cachep->batchcount; | |
1160 | if (nc) | |
1161 | free_block(cachep, nc->entry, nc->avail, node); | |
1162 | ||
58463c1f | 1163 | if (!cpumask_empty(mask)) { |
fbf1e473 AM |
1164 | spin_unlock_irq(&l3->list_lock); |
1165 | goto free_array_cache; | |
1166 | } | |
1167 | ||
1168 | shared = l3->shared; | |
1169 | if (shared) { | |
1170 | free_block(cachep, shared->entry, | |
1171 | shared->avail, node); | |
1172 | l3->shared = NULL; | |
1173 | } | |
1174 | ||
1175 | alien = l3->alien; | |
1176 | l3->alien = NULL; | |
1177 | ||
1178 | spin_unlock_irq(&l3->list_lock); | |
1179 | ||
1180 | kfree(shared); | |
1181 | if (alien) { | |
1182 | drain_alien_cache(cachep, alien); | |
1183 | free_alien_cache(alien); | |
1184 | } | |
1185 | free_array_cache: | |
1186 | kfree(nc); | |
1187 | } | |
1188 | /* | |
1189 | * In the previous loop, all the objects were freed to | |
1190 | * the respective cache's slabs, now we can go ahead and | |
1191 | * shrink each nodelist to its limit. | |
1192 | */ | |
18004c5d | 1193 | list_for_each_entry(cachep, &slab_caches, list) { |
fbf1e473 AM |
1194 | l3 = cachep->nodelists[node]; |
1195 | if (!l3) | |
1196 | continue; | |
1197 | drain_freelist(cachep, l3, l3->free_objects); | |
1198 | } | |
1199 | } | |
1200 | ||
1201 | static int __cpuinit cpuup_prepare(long cpu) | |
1da177e4 | 1202 | { |
343e0d7a | 1203 | struct kmem_cache *cachep; |
e498be7d | 1204 | struct kmem_list3 *l3 = NULL; |
7d6e6d09 | 1205 | int node = cpu_to_mem(cpu); |
8f9f8d9e | 1206 | int err; |
1da177e4 | 1207 | |
fbf1e473 AM |
1208 | /* |
1209 | * We need to do this right in the beginning since | |
1210 | * alloc_arraycache's are going to use this list. | |
1211 | * kmalloc_node allows us to add the slab to the right | |
1212 | * kmem_list3 and not this cpu's kmem_list3 | |
1213 | */ | |
8f9f8d9e DR |
1214 | err = init_cache_nodelists_node(node); |
1215 | if (err < 0) | |
1216 | goto bad; | |
fbf1e473 AM |
1217 | |
1218 | /* | |
1219 | * Now we can go ahead with allocating the shared arrays and | |
1220 | * array caches | |
1221 | */ | |
18004c5d | 1222 | list_for_each_entry(cachep, &slab_caches, list) { |
fbf1e473 AM |
1223 | struct array_cache *nc; |
1224 | struct array_cache *shared = NULL; | |
1225 | struct array_cache **alien = NULL; | |
1226 | ||
1227 | nc = alloc_arraycache(node, cachep->limit, | |
83b519e8 | 1228 | cachep->batchcount, GFP_KERNEL); |
fbf1e473 AM |
1229 | if (!nc) |
1230 | goto bad; | |
1231 | if (cachep->shared) { | |
1232 | shared = alloc_arraycache(node, | |
1233 | cachep->shared * cachep->batchcount, | |
83b519e8 | 1234 | 0xbaadf00d, GFP_KERNEL); |
12d00f6a AM |
1235 | if (!shared) { |
1236 | kfree(nc); | |
1da177e4 | 1237 | goto bad; |
12d00f6a | 1238 | } |
fbf1e473 AM |
1239 | } |
1240 | if (use_alien_caches) { | |
83b519e8 | 1241 | alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL); |
12d00f6a AM |
1242 | if (!alien) { |
1243 | kfree(shared); | |
1244 | kfree(nc); | |
fbf1e473 | 1245 | goto bad; |
12d00f6a | 1246 | } |
fbf1e473 AM |
1247 | } |
1248 | cachep->array[cpu] = nc; | |
1249 | l3 = cachep->nodelists[node]; | |
1250 | BUG_ON(!l3); | |
1251 | ||
1252 | spin_lock_irq(&l3->list_lock); | |
1253 | if (!l3->shared) { | |
1254 | /* | |
1255 | * We are serialised from CPU_DEAD or | |
1256 | * CPU_UP_CANCELLED by the cpucontrol lock | |
1257 | */ | |
1258 | l3->shared = shared; | |
1259 | shared = NULL; | |
1260 | } | |
4484ebf1 | 1261 | #ifdef CONFIG_NUMA |
fbf1e473 AM |
1262 | if (!l3->alien) { |
1263 | l3->alien = alien; | |
1264 | alien = NULL; | |
1da177e4 | 1265 | } |
fbf1e473 AM |
1266 | #endif |
1267 | spin_unlock_irq(&l3->list_lock); | |
1268 | kfree(shared); | |
1269 | free_alien_cache(alien); | |
83835b3d PZ |
1270 | if (cachep->flags & SLAB_DEBUG_OBJECTS) |
1271 | slab_set_debugobj_lock_classes_node(cachep, node); | |
fbf1e473 | 1272 | } |
ce79ddc8 PE |
1273 | init_node_lock_keys(node); |
1274 | ||
fbf1e473 AM |
1275 | return 0; |
1276 | bad: | |
12d00f6a | 1277 | cpuup_canceled(cpu); |
fbf1e473 AM |
1278 | return -ENOMEM; |
1279 | } | |
1280 | ||
1281 | static int __cpuinit cpuup_callback(struct notifier_block *nfb, | |
1282 | unsigned long action, void *hcpu) | |
1283 | { | |
1284 | long cpu = (long)hcpu; | |
1285 | int err = 0; | |
1286 | ||
1287 | switch (action) { | |
fbf1e473 AM |
1288 | case CPU_UP_PREPARE: |
1289 | case CPU_UP_PREPARE_FROZEN: | |
18004c5d | 1290 | mutex_lock(&slab_mutex); |
fbf1e473 | 1291 | err = cpuup_prepare(cpu); |
18004c5d | 1292 | mutex_unlock(&slab_mutex); |
1da177e4 LT |
1293 | break; |
1294 | case CPU_ONLINE: | |
8bb78442 | 1295 | case CPU_ONLINE_FROZEN: |
1da177e4 LT |
1296 | start_cpu_timer(cpu); |
1297 | break; | |
1298 | #ifdef CONFIG_HOTPLUG_CPU | |
5830c590 | 1299 | case CPU_DOWN_PREPARE: |
8bb78442 | 1300 | case CPU_DOWN_PREPARE_FROZEN: |
5830c590 | 1301 | /* |
18004c5d | 1302 | * Shutdown cache reaper. Note that the slab_mutex is |
5830c590 CL |
1303 | * held so that if cache_reap() is invoked it cannot do |
1304 | * anything expensive but will only modify reap_work | |
1305 | * and reschedule the timer. | |
1306 | */ | |
afe2c511 | 1307 | cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu)); |
5830c590 | 1308 | /* Now the cache_reaper is guaranteed to be not running. */ |
1871e52c | 1309 | per_cpu(slab_reap_work, cpu).work.func = NULL; |
5830c590 CL |
1310 | break; |
1311 | case CPU_DOWN_FAILED: | |
8bb78442 | 1312 | case CPU_DOWN_FAILED_FROZEN: |
5830c590 CL |
1313 | start_cpu_timer(cpu); |
1314 | break; | |
1da177e4 | 1315 | case CPU_DEAD: |
8bb78442 | 1316 | case CPU_DEAD_FROZEN: |
4484ebf1 RT |
1317 | /* |
1318 | * Even if all the cpus of a node are down, we don't free the | |
1319 | * kmem_list3 of any cache. This to avoid a race between | |
1320 | * cpu_down, and a kmalloc allocation from another cpu for | |
1321 | * memory from the node of the cpu going down. The list3 | |
1322 | * structure is usually allocated from kmem_cache_create() and | |
1323 | * gets destroyed at kmem_cache_destroy(). | |
1324 | */ | |
183ff22b | 1325 | /* fall through */ |
8f5be20b | 1326 | #endif |
1da177e4 | 1327 | case CPU_UP_CANCELED: |
8bb78442 | 1328 | case CPU_UP_CANCELED_FROZEN: |
18004c5d | 1329 | mutex_lock(&slab_mutex); |
fbf1e473 | 1330 | cpuup_canceled(cpu); |
18004c5d | 1331 | mutex_unlock(&slab_mutex); |
1da177e4 | 1332 | break; |
1da177e4 | 1333 | } |
eac40680 | 1334 | return notifier_from_errno(err); |
1da177e4 LT |
1335 | } |
1336 | ||
74b85f37 CS |
1337 | static struct notifier_block __cpuinitdata cpucache_notifier = { |
1338 | &cpuup_callback, NULL, 0 | |
1339 | }; | |
1da177e4 | 1340 | |
8f9f8d9e DR |
1341 | #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) |
1342 | /* | |
1343 | * Drains freelist for a node on each slab cache, used for memory hot-remove. | |
1344 | * Returns -EBUSY if all objects cannot be drained so that the node is not | |
1345 | * removed. | |
1346 | * | |
18004c5d | 1347 | * Must hold slab_mutex. |
8f9f8d9e DR |
1348 | */ |
1349 | static int __meminit drain_cache_nodelists_node(int node) | |
1350 | { | |
1351 | struct kmem_cache *cachep; | |
1352 | int ret = 0; | |
1353 | ||
18004c5d | 1354 | list_for_each_entry(cachep, &slab_caches, list) { |
8f9f8d9e DR |
1355 | struct kmem_list3 *l3; |
1356 | ||
1357 | l3 = cachep->nodelists[node]; | |
1358 | if (!l3) | |
1359 | continue; | |
1360 | ||
1361 | drain_freelist(cachep, l3, l3->free_objects); | |
1362 | ||
1363 | if (!list_empty(&l3->slabs_full) || | |
1364 | !list_empty(&l3->slabs_partial)) { | |
1365 | ret = -EBUSY; | |
1366 | break; | |
1367 | } | |
1368 | } | |
1369 | return ret; | |
1370 | } | |
1371 | ||
1372 | static int __meminit slab_memory_callback(struct notifier_block *self, | |
1373 | unsigned long action, void *arg) | |
1374 | { | |
1375 | struct memory_notify *mnb = arg; | |
1376 | int ret = 0; | |
1377 | int nid; | |
1378 | ||
1379 | nid = mnb->status_change_nid; | |
1380 | if (nid < 0) | |
1381 | goto out; | |
1382 | ||
1383 | switch (action) { | |
1384 | case MEM_GOING_ONLINE: | |
18004c5d | 1385 | mutex_lock(&slab_mutex); |
8f9f8d9e | 1386 | ret = init_cache_nodelists_node(nid); |
18004c5d | 1387 | mutex_unlock(&slab_mutex); |
8f9f8d9e DR |
1388 | break; |
1389 | case MEM_GOING_OFFLINE: | |
18004c5d | 1390 | mutex_lock(&slab_mutex); |
8f9f8d9e | 1391 | ret = drain_cache_nodelists_node(nid); |
18004c5d | 1392 | mutex_unlock(&slab_mutex); |
8f9f8d9e DR |
1393 | break; |
1394 | case MEM_ONLINE: | |
1395 | case MEM_OFFLINE: | |
1396 | case MEM_CANCEL_ONLINE: | |
1397 | case MEM_CANCEL_OFFLINE: | |
1398 | break; | |
1399 | } | |
1400 | out: | |
5fda1bd5 | 1401 | return notifier_from_errno(ret); |
8f9f8d9e DR |
1402 | } |
1403 | #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */ | |
1404 | ||
e498be7d CL |
1405 | /* |
1406 | * swap the static kmem_list3 with kmalloced memory | |
1407 | */ | |
8f9f8d9e DR |
1408 | static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list, |
1409 | int nodeid) | |
e498be7d CL |
1410 | { |
1411 | struct kmem_list3 *ptr; | |
1412 | ||
83b519e8 | 1413 | ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid); |
e498be7d CL |
1414 | BUG_ON(!ptr); |
1415 | ||
e498be7d | 1416 | memcpy(ptr, list, sizeof(struct kmem_list3)); |
2b2d5493 IM |
1417 | /* |
1418 | * Do not assume that spinlocks can be initialized via memcpy: | |
1419 | */ | |
1420 | spin_lock_init(&ptr->list_lock); | |
1421 | ||
e498be7d CL |
1422 | MAKE_ALL_LISTS(cachep, ptr, nodeid); |
1423 | cachep->nodelists[nodeid] = ptr; | |
e498be7d CL |
1424 | } |
1425 | ||
556a169d PE |
1426 | /* |
1427 | * For setting up all the kmem_list3s for cache whose buffer_size is same as | |
1428 | * size of kmem_list3. | |
1429 | */ | |
1430 | static void __init set_up_list3s(struct kmem_cache *cachep, int index) | |
1431 | { | |
1432 | int node; | |
1433 | ||
1434 | for_each_online_node(node) { | |
1435 | cachep->nodelists[node] = &initkmem_list3[index + node]; | |
1436 | cachep->nodelists[node]->next_reap = jiffies + | |
1437 | REAPTIMEOUT_LIST3 + | |
1438 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | |
1439 | } | |
1440 | } | |
1441 | ||
a737b3e2 AM |
1442 | /* |
1443 | * Initialisation. Called after the page allocator have been initialised and | |
1444 | * before smp_init(). | |
1da177e4 LT |
1445 | */ |
1446 | void __init kmem_cache_init(void) | |
1447 | { | |
1448 | size_t left_over; | |
1449 | struct cache_sizes *sizes; | |
1450 | struct cache_names *names; | |
e498be7d | 1451 | int i; |
07ed76b2 | 1452 | int order; |
1ca4cb24 | 1453 | int node; |
e498be7d | 1454 | |
b6e68bc1 | 1455 | if (num_possible_nodes() == 1) |
62918a03 SS |
1456 | use_alien_caches = 0; |
1457 | ||
e498be7d CL |
1458 | for (i = 0; i < NUM_INIT_LISTS; i++) { |
1459 | kmem_list3_init(&initkmem_list3[i]); | |
1460 | if (i < MAX_NUMNODES) | |
1461 | cache_cache.nodelists[i] = NULL; | |
1462 | } | |
556a169d | 1463 | set_up_list3s(&cache_cache, CACHE_CACHE); |
1da177e4 LT |
1464 | |
1465 | /* | |
1466 | * Fragmentation resistance on low memory - only use bigger | |
3df1cccd DR |
1467 | * page orders on machines with more than 32MB of memory if |
1468 | * not overridden on the command line. | |
1da177e4 | 1469 | */ |
3df1cccd | 1470 | if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT) |
543585cc | 1471 | slab_max_order = SLAB_MAX_ORDER_HI; |
1da177e4 | 1472 | |
1da177e4 LT |
1473 | /* Bootstrap is tricky, because several objects are allocated |
1474 | * from caches that do not exist yet: | |
a737b3e2 AM |
1475 | * 1) initialize the cache_cache cache: it contains the struct |
1476 | * kmem_cache structures of all caches, except cache_cache itself: | |
1477 | * cache_cache is statically allocated. | |
e498be7d CL |
1478 | * Initially an __init data area is used for the head array and the |
1479 | * kmem_list3 structures, it's replaced with a kmalloc allocated | |
1480 | * array at the end of the bootstrap. | |
1da177e4 | 1481 | * 2) Create the first kmalloc cache. |
343e0d7a | 1482 | * The struct kmem_cache for the new cache is allocated normally. |
e498be7d CL |
1483 | * An __init data area is used for the head array. |
1484 | * 3) Create the remaining kmalloc caches, with minimally sized | |
1485 | * head arrays. | |
1da177e4 LT |
1486 | * 4) Replace the __init data head arrays for cache_cache and the first |
1487 | * kmalloc cache with kmalloc allocated arrays. | |
e498be7d CL |
1488 | * 5) Replace the __init data for kmem_list3 for cache_cache and |
1489 | * the other cache's with kmalloc allocated memory. | |
1490 | * 6) Resize the head arrays of the kmalloc caches to their final sizes. | |
1da177e4 LT |
1491 | */ |
1492 | ||
7d6e6d09 | 1493 | node = numa_mem_id(); |
1ca4cb24 | 1494 | |
1da177e4 | 1495 | /* 1) create the cache_cache */ |
18004c5d CL |
1496 | INIT_LIST_HEAD(&slab_caches); |
1497 | list_add(&cache_cache.list, &slab_caches); | |
1da177e4 LT |
1498 | cache_cache.colour_off = cache_line_size(); |
1499 | cache_cache.array[smp_processor_id()] = &initarray_cache.cache; | |
ec1f5eee | 1500 | cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node]; |
1da177e4 | 1501 | |
8da3430d | 1502 | /* |
b56efcf0 | 1503 | * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids |
8da3430d | 1504 | */ |
3b0efdfa | 1505 | cache_cache.size = offsetof(struct kmem_cache, array[nr_cpu_ids]) + |
b56efcf0 | 1506 | nr_node_ids * sizeof(struct kmem_list3 *); |
3b0efdfa CL |
1507 | cache_cache.object_size = cache_cache.size; |
1508 | cache_cache.size = ALIGN(cache_cache.size, | |
a737b3e2 | 1509 | cache_line_size()); |
6a2d7a95 | 1510 | cache_cache.reciprocal_buffer_size = |
3b0efdfa | 1511 | reciprocal_value(cache_cache.size); |
1da177e4 | 1512 | |
07ed76b2 | 1513 | for (order = 0; order < MAX_ORDER; order++) { |
3b0efdfa | 1514 | cache_estimate(order, cache_cache.size, |
07ed76b2 JS |
1515 | cache_line_size(), 0, &left_over, &cache_cache.num); |
1516 | if (cache_cache.num) | |
1517 | break; | |
1518 | } | |
40094fa6 | 1519 | BUG_ON(!cache_cache.num); |
07ed76b2 | 1520 | cache_cache.gfporder = order; |
b28a02de | 1521 | cache_cache.colour = left_over / cache_cache.colour_off; |
b28a02de PE |
1522 | cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) + |
1523 | sizeof(struct slab), cache_line_size()); | |
1da177e4 LT |
1524 | |
1525 | /* 2+3) create the kmalloc caches */ | |
1526 | sizes = malloc_sizes; | |
1527 | names = cache_names; | |
1528 | ||
a737b3e2 AM |
1529 | /* |
1530 | * Initialize the caches that provide memory for the array cache and the | |
1531 | * kmem_list3 structures first. Without this, further allocations will | |
1532 | * bug. | |
e498be7d CL |
1533 | */ |
1534 | ||
039363f3 | 1535 | sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name, |
a737b3e2 AM |
1536 | sizes[INDEX_AC].cs_size, |
1537 | ARCH_KMALLOC_MINALIGN, | |
1538 | ARCH_KMALLOC_FLAGS|SLAB_PANIC, | |
20c2df83 | 1539 | NULL); |
e498be7d | 1540 | |
a737b3e2 | 1541 | if (INDEX_AC != INDEX_L3) { |
e498be7d | 1542 | sizes[INDEX_L3].cs_cachep = |
039363f3 | 1543 | __kmem_cache_create(names[INDEX_L3].name, |
a737b3e2 AM |
1544 | sizes[INDEX_L3].cs_size, |
1545 | ARCH_KMALLOC_MINALIGN, | |
1546 | ARCH_KMALLOC_FLAGS|SLAB_PANIC, | |
20c2df83 | 1547 | NULL); |
a737b3e2 | 1548 | } |
e498be7d | 1549 | |
e0a42726 IM |
1550 | slab_early_init = 0; |
1551 | ||
1da177e4 | 1552 | while (sizes->cs_size != ULONG_MAX) { |
e498be7d CL |
1553 | /* |
1554 | * For performance, all the general caches are L1 aligned. | |
1da177e4 LT |
1555 | * This should be particularly beneficial on SMP boxes, as it |
1556 | * eliminates "false sharing". | |
1557 | * Note for systems short on memory removing the alignment will | |
e498be7d CL |
1558 | * allow tighter packing of the smaller caches. |
1559 | */ | |
a737b3e2 | 1560 | if (!sizes->cs_cachep) { |
039363f3 | 1561 | sizes->cs_cachep = __kmem_cache_create(names->name, |
a737b3e2 AM |
1562 | sizes->cs_size, |
1563 | ARCH_KMALLOC_MINALIGN, | |
1564 | ARCH_KMALLOC_FLAGS|SLAB_PANIC, | |
20c2df83 | 1565 | NULL); |
a737b3e2 | 1566 | } |
4b51d669 | 1567 | #ifdef CONFIG_ZONE_DMA |
039363f3 | 1568 | sizes->cs_dmacachep = __kmem_cache_create( |
4b51d669 | 1569 | names->name_dma, |
a737b3e2 AM |
1570 | sizes->cs_size, |
1571 | ARCH_KMALLOC_MINALIGN, | |
1572 | ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA| | |
1573 | SLAB_PANIC, | |
20c2df83 | 1574 | NULL); |
4b51d669 | 1575 | #endif |
1da177e4 LT |
1576 | sizes++; |
1577 | names++; | |
1578 | } | |
1579 | /* 4) Replace the bootstrap head arrays */ | |
1580 | { | |
2b2d5493 | 1581 | struct array_cache *ptr; |
e498be7d | 1582 | |
83b519e8 | 1583 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); |
e498be7d | 1584 | |
9a2dba4b PE |
1585 | BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache); |
1586 | memcpy(ptr, cpu_cache_get(&cache_cache), | |
b28a02de | 1587 | sizeof(struct arraycache_init)); |
2b2d5493 IM |
1588 | /* |
1589 | * Do not assume that spinlocks can be initialized via memcpy: | |
1590 | */ | |
1591 | spin_lock_init(&ptr->lock); | |
1592 | ||
1da177e4 | 1593 | cache_cache.array[smp_processor_id()] = ptr; |
e498be7d | 1594 | |
83b519e8 | 1595 | ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT); |
e498be7d | 1596 | |
9a2dba4b | 1597 | BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep) |
b28a02de | 1598 | != &initarray_generic.cache); |
9a2dba4b | 1599 | memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep), |
b28a02de | 1600 | sizeof(struct arraycache_init)); |
2b2d5493 IM |
1601 | /* |
1602 | * Do not assume that spinlocks can be initialized via memcpy: | |
1603 | */ | |
1604 | spin_lock_init(&ptr->lock); | |
1605 | ||
e498be7d | 1606 | malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] = |
b28a02de | 1607 | ptr; |
1da177e4 | 1608 | } |
e498be7d CL |
1609 | /* 5) Replace the bootstrap kmem_list3's */ |
1610 | { | |
1ca4cb24 PE |
1611 | int nid; |
1612 | ||
9c09a95c | 1613 | for_each_online_node(nid) { |
ec1f5eee | 1614 | init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid); |
556a169d | 1615 | |
e498be7d | 1616 | init_list(malloc_sizes[INDEX_AC].cs_cachep, |
1ca4cb24 | 1617 | &initkmem_list3[SIZE_AC + nid], nid); |
e498be7d CL |
1618 | |
1619 | if (INDEX_AC != INDEX_L3) { | |
1620 | init_list(malloc_sizes[INDEX_L3].cs_cachep, | |
1ca4cb24 | 1621 | &initkmem_list3[SIZE_L3 + nid], nid); |
e498be7d CL |
1622 | } |
1623 | } | |
1624 | } | |
1da177e4 | 1625 | |
97d06609 | 1626 | slab_state = UP; |
8429db5c PE |
1627 | } |
1628 | ||
1629 | void __init kmem_cache_init_late(void) | |
1630 | { | |
1631 | struct kmem_cache *cachep; | |
1632 | ||
97d06609 | 1633 | slab_state = UP; |
52cef189 | 1634 | |
30765b92 PZ |
1635 | /* Annotate slab for lockdep -- annotate the malloc caches */ |
1636 | init_lock_keys(); | |
1637 | ||
8429db5c | 1638 | /* 6) resize the head arrays to their final sizes */ |
18004c5d CL |
1639 | mutex_lock(&slab_mutex); |
1640 | list_for_each_entry(cachep, &slab_caches, list) | |
8429db5c PE |
1641 | if (enable_cpucache(cachep, GFP_NOWAIT)) |
1642 | BUG(); | |
18004c5d | 1643 | mutex_unlock(&slab_mutex); |
056c6241 | 1644 | |
97d06609 CL |
1645 | /* Done! */ |
1646 | slab_state = FULL; | |
1647 | ||
a737b3e2 AM |
1648 | /* |
1649 | * Register a cpu startup notifier callback that initializes | |
1650 | * cpu_cache_get for all new cpus | |
1da177e4 LT |
1651 | */ |
1652 | register_cpu_notifier(&cpucache_notifier); | |
1da177e4 | 1653 | |
8f9f8d9e DR |
1654 | #ifdef CONFIG_NUMA |
1655 | /* | |
1656 | * Register a memory hotplug callback that initializes and frees | |
1657 | * nodelists. | |
1658 | */ | |
1659 | hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | |
1660 | #endif | |
1661 | ||
a737b3e2 AM |
1662 | /* |
1663 | * The reap timers are started later, with a module init call: That part | |
1664 | * of the kernel is not yet operational. | |
1da177e4 LT |
1665 | */ |
1666 | } | |
1667 | ||
1668 | static int __init cpucache_init(void) | |
1669 | { | |
1670 | int cpu; | |
1671 | ||
a737b3e2 AM |
1672 | /* |
1673 | * Register the timers that return unneeded pages to the page allocator | |
1da177e4 | 1674 | */ |
e498be7d | 1675 | for_each_online_cpu(cpu) |
a737b3e2 | 1676 | start_cpu_timer(cpu); |
a164f896 GC |
1677 | |
1678 | /* Done! */ | |
97d06609 | 1679 | slab_state = FULL; |
1da177e4 LT |
1680 | return 0; |
1681 | } | |
1da177e4 LT |
1682 | __initcall(cpucache_init); |
1683 | ||
8bdec192 RA |
1684 | static noinline void |
1685 | slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid) | |
1686 | { | |
1687 | struct kmem_list3 *l3; | |
1688 | struct slab *slabp; | |
1689 | unsigned long flags; | |
1690 | int node; | |
1691 | ||
1692 | printk(KERN_WARNING | |
1693 | "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n", | |
1694 | nodeid, gfpflags); | |
1695 | printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n", | |
3b0efdfa | 1696 | cachep->name, cachep->size, cachep->gfporder); |
8bdec192 RA |
1697 | |
1698 | for_each_online_node(node) { | |
1699 | unsigned long active_objs = 0, num_objs = 0, free_objects = 0; | |
1700 | unsigned long active_slabs = 0, num_slabs = 0; | |
1701 | ||
1702 | l3 = cachep->nodelists[node]; | |
1703 | if (!l3) | |
1704 | continue; | |
1705 | ||
1706 | spin_lock_irqsave(&l3->list_lock, flags); | |
1707 | list_for_each_entry(slabp, &l3->slabs_full, list) { | |
1708 | active_objs += cachep->num; | |
1709 | active_slabs++; | |
1710 | } | |
1711 | list_for_each_entry(slabp, &l3->slabs_partial, list) { | |
1712 | active_objs += slabp->inuse; | |
1713 | active_slabs++; | |
1714 | } | |
1715 | list_for_each_entry(slabp, &l3->slabs_free, list) | |
1716 | num_slabs++; | |
1717 | ||
1718 | free_objects += l3->free_objects; | |
1719 | spin_unlock_irqrestore(&l3->list_lock, flags); | |
1720 | ||
1721 | num_slabs += active_slabs; | |
1722 | num_objs = num_slabs * cachep->num; | |
1723 | printk(KERN_WARNING | |
1724 | " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n", | |
1725 | node, active_slabs, num_slabs, active_objs, num_objs, | |
1726 | free_objects); | |
1727 | } | |
1728 | } | |
1729 | ||
1da177e4 LT |
1730 | /* |
1731 | * Interface to system's page allocator. No need to hold the cache-lock. | |
1732 | * | |
1733 | * If we requested dmaable memory, we will get it. Even if we | |
1734 | * did not request dmaable memory, we might get it, but that | |
1735 | * would be relatively rare and ignorable. | |
1736 | */ | |
343e0d7a | 1737 | static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
1da177e4 LT |
1738 | { |
1739 | struct page *page; | |
e1b6aa6f | 1740 | int nr_pages; |
1da177e4 LT |
1741 | int i; |
1742 | ||
d6fef9da | 1743 | #ifndef CONFIG_MMU |
e1b6aa6f CH |
1744 | /* |
1745 | * Nommu uses slab's for process anonymous memory allocations, and thus | |
1746 | * requires __GFP_COMP to properly refcount higher order allocations | |
d6fef9da | 1747 | */ |
e1b6aa6f | 1748 | flags |= __GFP_COMP; |
d6fef9da | 1749 | #endif |
765c4507 | 1750 | |
a618e89f | 1751 | flags |= cachep->allocflags; |
e12ba74d MG |
1752 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
1753 | flags |= __GFP_RECLAIMABLE; | |
e1b6aa6f | 1754 | |
517d0869 | 1755 | page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder); |
8bdec192 RA |
1756 | if (!page) { |
1757 | if (!(flags & __GFP_NOWARN) && printk_ratelimit()) | |
1758 | slab_out_of_memory(cachep, flags, nodeid); | |
1da177e4 | 1759 | return NULL; |
8bdec192 | 1760 | } |
1da177e4 | 1761 | |
e1b6aa6f | 1762 | nr_pages = (1 << cachep->gfporder); |
1da177e4 | 1763 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
972d1a7b CL |
1764 | add_zone_page_state(page_zone(page), |
1765 | NR_SLAB_RECLAIMABLE, nr_pages); | |
1766 | else | |
1767 | add_zone_page_state(page_zone(page), | |
1768 | NR_SLAB_UNRECLAIMABLE, nr_pages); | |
e1b6aa6f CH |
1769 | for (i = 0; i < nr_pages; i++) |
1770 | __SetPageSlab(page + i); | |
c175eea4 | 1771 | |
b1eeab67 VN |
1772 | if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) { |
1773 | kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid); | |
1774 | ||
1775 | if (cachep->ctor) | |
1776 | kmemcheck_mark_uninitialized_pages(page, nr_pages); | |
1777 | else | |
1778 | kmemcheck_mark_unallocated_pages(page, nr_pages); | |
1779 | } | |
c175eea4 | 1780 | |
e1b6aa6f | 1781 | return page_address(page); |
1da177e4 LT |
1782 | } |
1783 | ||
1784 | /* | |
1785 | * Interface to system's page release. | |
1786 | */ | |
343e0d7a | 1787 | static void kmem_freepages(struct kmem_cache *cachep, void *addr) |
1da177e4 | 1788 | { |
b28a02de | 1789 | unsigned long i = (1 << cachep->gfporder); |
1da177e4 LT |
1790 | struct page *page = virt_to_page(addr); |
1791 | const unsigned long nr_freed = i; | |
1792 | ||
b1eeab67 | 1793 | kmemcheck_free_shadow(page, cachep->gfporder); |
c175eea4 | 1794 | |
972d1a7b CL |
1795 | if (cachep->flags & SLAB_RECLAIM_ACCOUNT) |
1796 | sub_zone_page_state(page_zone(page), | |
1797 | NR_SLAB_RECLAIMABLE, nr_freed); | |
1798 | else | |
1799 | sub_zone_page_state(page_zone(page), | |
1800 | NR_SLAB_UNRECLAIMABLE, nr_freed); | |
1da177e4 | 1801 | while (i--) { |
f205b2fe NP |
1802 | BUG_ON(!PageSlab(page)); |
1803 | __ClearPageSlab(page); | |
1da177e4 LT |
1804 | page++; |
1805 | } | |
1da177e4 LT |
1806 | if (current->reclaim_state) |
1807 | current->reclaim_state->reclaimed_slab += nr_freed; | |
1808 | free_pages((unsigned long)addr, cachep->gfporder); | |
1da177e4 LT |
1809 | } |
1810 | ||
1811 | static void kmem_rcu_free(struct rcu_head *head) | |
1812 | { | |
b28a02de | 1813 | struct slab_rcu *slab_rcu = (struct slab_rcu *)head; |
343e0d7a | 1814 | struct kmem_cache *cachep = slab_rcu->cachep; |
1da177e4 LT |
1815 | |
1816 | kmem_freepages(cachep, slab_rcu->addr); | |
1817 | if (OFF_SLAB(cachep)) | |
1818 | kmem_cache_free(cachep->slabp_cache, slab_rcu); | |
1819 | } | |
1820 | ||
1821 | #if DEBUG | |
1822 | ||
1823 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
343e0d7a | 1824 | static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr, |
b28a02de | 1825 | unsigned long caller) |
1da177e4 | 1826 | { |
8c138bc0 | 1827 | int size = cachep->object_size; |
1da177e4 | 1828 | |
3dafccf2 | 1829 | addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)]; |
1da177e4 | 1830 | |
b28a02de | 1831 | if (size < 5 * sizeof(unsigned long)) |
1da177e4 LT |
1832 | return; |
1833 | ||
b28a02de PE |
1834 | *addr++ = 0x12345678; |
1835 | *addr++ = caller; | |
1836 | *addr++ = smp_processor_id(); | |
1837 | size -= 3 * sizeof(unsigned long); | |
1da177e4 LT |
1838 | { |
1839 | unsigned long *sptr = &caller; | |
1840 | unsigned long svalue; | |
1841 | ||
1842 | while (!kstack_end(sptr)) { | |
1843 | svalue = *sptr++; | |
1844 | if (kernel_text_address(svalue)) { | |
b28a02de | 1845 | *addr++ = svalue; |
1da177e4 LT |
1846 | size -= sizeof(unsigned long); |
1847 | if (size <= sizeof(unsigned long)) | |
1848 | break; | |
1849 | } | |
1850 | } | |
1851 | ||
1852 | } | |
b28a02de | 1853 | *addr++ = 0x87654321; |
1da177e4 LT |
1854 | } |
1855 | #endif | |
1856 | ||
343e0d7a | 1857 | static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val) |
1da177e4 | 1858 | { |
8c138bc0 | 1859 | int size = cachep->object_size; |
3dafccf2 | 1860 | addr = &((char *)addr)[obj_offset(cachep)]; |
1da177e4 LT |
1861 | |
1862 | memset(addr, val, size); | |
b28a02de | 1863 | *(unsigned char *)(addr + size - 1) = POISON_END; |
1da177e4 LT |
1864 | } |
1865 | ||
1866 | static void dump_line(char *data, int offset, int limit) | |
1867 | { | |
1868 | int i; | |
aa83aa40 DJ |
1869 | unsigned char error = 0; |
1870 | int bad_count = 0; | |
1871 | ||
fdde6abb | 1872 | printk(KERN_ERR "%03x: ", offset); |
aa83aa40 DJ |
1873 | for (i = 0; i < limit; i++) { |
1874 | if (data[offset + i] != POISON_FREE) { | |
1875 | error = data[offset + i]; | |
1876 | bad_count++; | |
1877 | } | |
aa83aa40 | 1878 | } |
fdde6abb SAS |
1879 | print_hex_dump(KERN_CONT, "", 0, 16, 1, |
1880 | &data[offset], limit, 1); | |
aa83aa40 DJ |
1881 | |
1882 | if (bad_count == 1) { | |
1883 | error ^= POISON_FREE; | |
1884 | if (!(error & (error - 1))) { | |
1885 | printk(KERN_ERR "Single bit error detected. Probably " | |
1886 | "bad RAM.\n"); | |
1887 | #ifdef CONFIG_X86 | |
1888 | printk(KERN_ERR "Run memtest86+ or a similar memory " | |
1889 | "test tool.\n"); | |
1890 | #else | |
1891 | printk(KERN_ERR "Run a memory test tool.\n"); | |
1892 | #endif | |
1893 | } | |
1894 | } | |
1da177e4 LT |
1895 | } |
1896 | #endif | |
1897 | ||
1898 | #if DEBUG | |
1899 | ||
343e0d7a | 1900 | static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines) |
1da177e4 LT |
1901 | { |
1902 | int i, size; | |
1903 | char *realobj; | |
1904 | ||
1905 | if (cachep->flags & SLAB_RED_ZONE) { | |
b46b8f19 | 1906 | printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n", |
a737b3e2 AM |
1907 | *dbg_redzone1(cachep, objp), |
1908 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
1909 | } |
1910 | ||
1911 | if (cachep->flags & SLAB_STORE_USER) { | |
1912 | printk(KERN_ERR "Last user: [<%p>]", | |
a737b3e2 | 1913 | *dbg_userword(cachep, objp)); |
1da177e4 | 1914 | print_symbol("(%s)", |
a737b3e2 | 1915 | (unsigned long)*dbg_userword(cachep, objp)); |
1da177e4 LT |
1916 | printk("\n"); |
1917 | } | |
3dafccf2 | 1918 | realobj = (char *)objp + obj_offset(cachep); |
8c138bc0 | 1919 | size = cachep->object_size; |
b28a02de | 1920 | for (i = 0; i < size && lines; i += 16, lines--) { |
1da177e4 LT |
1921 | int limit; |
1922 | limit = 16; | |
b28a02de PE |
1923 | if (i + limit > size) |
1924 | limit = size - i; | |
1da177e4 LT |
1925 | dump_line(realobj, i, limit); |
1926 | } | |
1927 | } | |
1928 | ||
343e0d7a | 1929 | static void check_poison_obj(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
1930 | { |
1931 | char *realobj; | |
1932 | int size, i; | |
1933 | int lines = 0; | |
1934 | ||
3dafccf2 | 1935 | realobj = (char *)objp + obj_offset(cachep); |
8c138bc0 | 1936 | size = cachep->object_size; |
1da177e4 | 1937 | |
b28a02de | 1938 | for (i = 0; i < size; i++) { |
1da177e4 | 1939 | char exp = POISON_FREE; |
b28a02de | 1940 | if (i == size - 1) |
1da177e4 LT |
1941 | exp = POISON_END; |
1942 | if (realobj[i] != exp) { | |
1943 | int limit; | |
1944 | /* Mismatch ! */ | |
1945 | /* Print header */ | |
1946 | if (lines == 0) { | |
b28a02de | 1947 | printk(KERN_ERR |
face37f5 DJ |
1948 | "Slab corruption (%s): %s start=%p, len=%d\n", |
1949 | print_tainted(), cachep->name, realobj, size); | |
1da177e4 LT |
1950 | print_objinfo(cachep, objp, 0); |
1951 | } | |
1952 | /* Hexdump the affected line */ | |
b28a02de | 1953 | i = (i / 16) * 16; |
1da177e4 | 1954 | limit = 16; |
b28a02de PE |
1955 | if (i + limit > size) |
1956 | limit = size - i; | |
1da177e4 LT |
1957 | dump_line(realobj, i, limit); |
1958 | i += 16; | |
1959 | lines++; | |
1960 | /* Limit to 5 lines */ | |
1961 | if (lines > 5) | |
1962 | break; | |
1963 | } | |
1964 | } | |
1965 | if (lines != 0) { | |
1966 | /* Print some data about the neighboring objects, if they | |
1967 | * exist: | |
1968 | */ | |
6ed5eb22 | 1969 | struct slab *slabp = virt_to_slab(objp); |
8fea4e96 | 1970 | unsigned int objnr; |
1da177e4 | 1971 | |
8fea4e96 | 1972 | objnr = obj_to_index(cachep, slabp, objp); |
1da177e4 | 1973 | if (objnr) { |
8fea4e96 | 1974 | objp = index_to_obj(cachep, slabp, objnr - 1); |
3dafccf2 | 1975 | realobj = (char *)objp + obj_offset(cachep); |
1da177e4 | 1976 | printk(KERN_ERR "Prev obj: start=%p, len=%d\n", |
b28a02de | 1977 | realobj, size); |
1da177e4 LT |
1978 | print_objinfo(cachep, objp, 2); |
1979 | } | |
b28a02de | 1980 | if (objnr + 1 < cachep->num) { |
8fea4e96 | 1981 | objp = index_to_obj(cachep, slabp, objnr + 1); |
3dafccf2 | 1982 | realobj = (char *)objp + obj_offset(cachep); |
1da177e4 | 1983 | printk(KERN_ERR "Next obj: start=%p, len=%d\n", |
b28a02de | 1984 | realobj, size); |
1da177e4 LT |
1985 | print_objinfo(cachep, objp, 2); |
1986 | } | |
1987 | } | |
1988 | } | |
1989 | #endif | |
1990 | ||
12dd36fa | 1991 | #if DEBUG |
e79aec29 | 1992 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) |
1da177e4 | 1993 | { |
1da177e4 LT |
1994 | int i; |
1995 | for (i = 0; i < cachep->num; i++) { | |
8fea4e96 | 1996 | void *objp = index_to_obj(cachep, slabp, i); |
1da177e4 LT |
1997 | |
1998 | if (cachep->flags & SLAB_POISON) { | |
1999 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
3b0efdfa | 2000 | if (cachep->size % PAGE_SIZE == 0 && |
a737b3e2 | 2001 | OFF_SLAB(cachep)) |
b28a02de | 2002 | kernel_map_pages(virt_to_page(objp), |
3b0efdfa | 2003 | cachep->size / PAGE_SIZE, 1); |
1da177e4 LT |
2004 | else |
2005 | check_poison_obj(cachep, objp); | |
2006 | #else | |
2007 | check_poison_obj(cachep, objp); | |
2008 | #endif | |
2009 | } | |
2010 | if (cachep->flags & SLAB_RED_ZONE) { | |
2011 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) | |
2012 | slab_error(cachep, "start of a freed object " | |
b28a02de | 2013 | "was overwritten"); |
1da177e4 LT |
2014 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) |
2015 | slab_error(cachep, "end of a freed object " | |
b28a02de | 2016 | "was overwritten"); |
1da177e4 | 2017 | } |
1da177e4 | 2018 | } |
12dd36fa | 2019 | } |
1da177e4 | 2020 | #else |
e79aec29 | 2021 | static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp) |
12dd36fa | 2022 | { |
12dd36fa | 2023 | } |
1da177e4 LT |
2024 | #endif |
2025 | ||
911851e6 RD |
2026 | /** |
2027 | * slab_destroy - destroy and release all objects in a slab | |
2028 | * @cachep: cache pointer being destroyed | |
2029 | * @slabp: slab pointer being destroyed | |
2030 | * | |
12dd36fa | 2031 | * Destroy all the objs in a slab, and release the mem back to the system. |
a737b3e2 AM |
2032 | * Before calling the slab must have been unlinked from the cache. The |
2033 | * cache-lock is not held/needed. | |
12dd36fa | 2034 | */ |
343e0d7a | 2035 | static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp) |
12dd36fa MD |
2036 | { |
2037 | void *addr = slabp->s_mem - slabp->colouroff; | |
2038 | ||
e79aec29 | 2039 | slab_destroy_debugcheck(cachep, slabp); |
1da177e4 LT |
2040 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) { |
2041 | struct slab_rcu *slab_rcu; | |
2042 | ||
b28a02de | 2043 | slab_rcu = (struct slab_rcu *)slabp; |
1da177e4 LT |
2044 | slab_rcu->cachep = cachep; |
2045 | slab_rcu->addr = addr; | |
2046 | call_rcu(&slab_rcu->head, kmem_rcu_free); | |
2047 | } else { | |
2048 | kmem_freepages(cachep, addr); | |
873623df IM |
2049 | if (OFF_SLAB(cachep)) |
2050 | kmem_cache_free(cachep->slabp_cache, slabp); | |
1da177e4 LT |
2051 | } |
2052 | } | |
2053 | ||
117f6eb1 CL |
2054 | static void __kmem_cache_destroy(struct kmem_cache *cachep) |
2055 | { | |
2056 | int i; | |
2057 | struct kmem_list3 *l3; | |
2058 | ||
2059 | for_each_online_cpu(i) | |
2060 | kfree(cachep->array[i]); | |
2061 | ||
2062 | /* NUMA: free the list3 structures */ | |
2063 | for_each_online_node(i) { | |
2064 | l3 = cachep->nodelists[i]; | |
2065 | if (l3) { | |
2066 | kfree(l3->shared); | |
2067 | free_alien_cache(l3->alien); | |
2068 | kfree(l3); | |
2069 | } | |
2070 | } | |
2071 | kmem_cache_free(&cache_cache, cachep); | |
2072 | } | |
2073 | ||
2074 | ||
4d268eba | 2075 | /** |
a70773dd RD |
2076 | * calculate_slab_order - calculate size (page order) of slabs |
2077 | * @cachep: pointer to the cache that is being created | |
2078 | * @size: size of objects to be created in this cache. | |
2079 | * @align: required alignment for the objects. | |
2080 | * @flags: slab allocation flags | |
2081 | * | |
2082 | * Also calculates the number of objects per slab. | |
4d268eba PE |
2083 | * |
2084 | * This could be made much more intelligent. For now, try to avoid using | |
2085 | * high order pages for slabs. When the gfp() functions are more friendly | |
2086 | * towards high-order requests, this should be changed. | |
2087 | */ | |
a737b3e2 | 2088 | static size_t calculate_slab_order(struct kmem_cache *cachep, |
ee13d785 | 2089 | size_t size, size_t align, unsigned long flags) |
4d268eba | 2090 | { |
b1ab41c4 | 2091 | unsigned long offslab_limit; |
4d268eba | 2092 | size_t left_over = 0; |
9888e6fa | 2093 | int gfporder; |
4d268eba | 2094 | |
0aa817f0 | 2095 | for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) { |
4d268eba PE |
2096 | unsigned int num; |
2097 | size_t remainder; | |
2098 | ||
9888e6fa | 2099 | cache_estimate(gfporder, size, align, flags, &remainder, &num); |
4d268eba PE |
2100 | if (!num) |
2101 | continue; | |
9888e6fa | 2102 | |
b1ab41c4 IM |
2103 | if (flags & CFLGS_OFF_SLAB) { |
2104 | /* | |
2105 | * Max number of objs-per-slab for caches which | |
2106 | * use off-slab slabs. Needed to avoid a possible | |
2107 | * looping condition in cache_grow(). | |
2108 | */ | |
2109 | offslab_limit = size - sizeof(struct slab); | |
2110 | offslab_limit /= sizeof(kmem_bufctl_t); | |
2111 | ||
2112 | if (num > offslab_limit) | |
2113 | break; | |
2114 | } | |
4d268eba | 2115 | |
9888e6fa | 2116 | /* Found something acceptable - save it away */ |
4d268eba | 2117 | cachep->num = num; |
9888e6fa | 2118 | cachep->gfporder = gfporder; |
4d268eba PE |
2119 | left_over = remainder; |
2120 | ||
f78bb8ad LT |
2121 | /* |
2122 | * A VFS-reclaimable slab tends to have most allocations | |
2123 | * as GFP_NOFS and we really don't want to have to be allocating | |
2124 | * higher-order pages when we are unable to shrink dcache. | |
2125 | */ | |
2126 | if (flags & SLAB_RECLAIM_ACCOUNT) | |
2127 | break; | |
2128 | ||
4d268eba PE |
2129 | /* |
2130 | * Large number of objects is good, but very large slabs are | |
2131 | * currently bad for the gfp()s. | |
2132 | */ | |
543585cc | 2133 | if (gfporder >= slab_max_order) |
4d268eba PE |
2134 | break; |
2135 | ||
9888e6fa LT |
2136 | /* |
2137 | * Acceptable internal fragmentation? | |
2138 | */ | |
a737b3e2 | 2139 | if (left_over * 8 <= (PAGE_SIZE << gfporder)) |
4d268eba PE |
2140 | break; |
2141 | } | |
2142 | return left_over; | |
2143 | } | |
2144 | ||
83b519e8 | 2145 | static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp) |
f30cf7d1 | 2146 | { |
97d06609 | 2147 | if (slab_state >= FULL) |
83b519e8 | 2148 | return enable_cpucache(cachep, gfp); |
2ed3a4ef | 2149 | |
97d06609 | 2150 | if (slab_state == DOWN) { |
f30cf7d1 PE |
2151 | /* |
2152 | * Note: the first kmem_cache_create must create the cache | |
2153 | * that's used by kmalloc(24), otherwise the creation of | |
2154 | * further caches will BUG(). | |
2155 | */ | |
2156 | cachep->array[smp_processor_id()] = &initarray_generic.cache; | |
2157 | ||
2158 | /* | |
2159 | * If the cache that's used by kmalloc(sizeof(kmem_list3)) is | |
2160 | * the first cache, then we need to set up all its list3s, | |
2161 | * otherwise the creation of further caches will BUG(). | |
2162 | */ | |
2163 | set_up_list3s(cachep, SIZE_AC); | |
2164 | if (INDEX_AC == INDEX_L3) | |
97d06609 | 2165 | slab_state = PARTIAL_L3; |
f30cf7d1 | 2166 | else |
97d06609 | 2167 | slab_state = PARTIAL_ARRAYCACHE; |
f30cf7d1 PE |
2168 | } else { |
2169 | cachep->array[smp_processor_id()] = | |
83b519e8 | 2170 | kmalloc(sizeof(struct arraycache_init), gfp); |
f30cf7d1 | 2171 | |
97d06609 | 2172 | if (slab_state == PARTIAL_ARRAYCACHE) { |
f30cf7d1 | 2173 | set_up_list3s(cachep, SIZE_L3); |
97d06609 | 2174 | slab_state = PARTIAL_L3; |
f30cf7d1 PE |
2175 | } else { |
2176 | int node; | |
556a169d | 2177 | for_each_online_node(node) { |
f30cf7d1 PE |
2178 | cachep->nodelists[node] = |
2179 | kmalloc_node(sizeof(struct kmem_list3), | |
eb91f1d0 | 2180 | gfp, node); |
f30cf7d1 PE |
2181 | BUG_ON(!cachep->nodelists[node]); |
2182 | kmem_list3_init(cachep->nodelists[node]); | |
2183 | } | |
2184 | } | |
2185 | } | |
7d6e6d09 | 2186 | cachep->nodelists[numa_mem_id()]->next_reap = |
f30cf7d1 PE |
2187 | jiffies + REAPTIMEOUT_LIST3 + |
2188 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; | |
2189 | ||
2190 | cpu_cache_get(cachep)->avail = 0; | |
2191 | cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES; | |
2192 | cpu_cache_get(cachep)->batchcount = 1; | |
2193 | cpu_cache_get(cachep)->touched = 0; | |
2194 | cachep->batchcount = 1; | |
2195 | cachep->limit = BOOT_CPUCACHE_ENTRIES; | |
2ed3a4ef | 2196 | return 0; |
f30cf7d1 PE |
2197 | } |
2198 | ||
1da177e4 | 2199 | /** |
039363f3 | 2200 | * __kmem_cache_create - Create a cache. |
1da177e4 LT |
2201 | * @name: A string which is used in /proc/slabinfo to identify this cache. |
2202 | * @size: The size of objects to be created in this cache. | |
2203 | * @align: The required alignment for the objects. | |
2204 | * @flags: SLAB flags | |
2205 | * @ctor: A constructor for the objects. | |
1da177e4 LT |
2206 | * |
2207 | * Returns a ptr to the cache on success, NULL on failure. | |
2208 | * Cannot be called within a int, but can be interrupted. | |
20c2df83 | 2209 | * The @ctor is run when new pages are allocated by the cache. |
1da177e4 LT |
2210 | * |
2211 | * @name must be valid until the cache is destroyed. This implies that | |
a737b3e2 AM |
2212 | * the module calling this has to destroy the cache before getting unloaded. |
2213 | * | |
1da177e4 LT |
2214 | * The flags are |
2215 | * | |
2216 | * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) | |
2217 | * to catch references to uninitialised memory. | |
2218 | * | |
2219 | * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check | |
2220 | * for buffer overruns. | |
2221 | * | |
1da177e4 LT |
2222 | * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware |
2223 | * cacheline. This can be beneficial if you're counting cycles as closely | |
2224 | * as davem. | |
2225 | */ | |
343e0d7a | 2226 | struct kmem_cache * |
039363f3 | 2227 | __kmem_cache_create (const char *name, size_t size, size_t align, |
51cc5068 | 2228 | unsigned long flags, void (*ctor)(void *)) |
1da177e4 LT |
2229 | { |
2230 | size_t left_over, slab_size, ralign; | |
20cea968 | 2231 | struct kmem_cache *cachep = NULL; |
83b519e8 | 2232 | gfp_t gfp; |
1da177e4 | 2233 | |
1da177e4 | 2234 | #if DEBUG |
1da177e4 LT |
2235 | #if FORCED_DEBUG |
2236 | /* | |
2237 | * Enable redzoning and last user accounting, except for caches with | |
2238 | * large objects, if the increased size would increase the object size | |
2239 | * above the next power of two: caches with object sizes just above a | |
2240 | * power of two have a significant amount of internal fragmentation. | |
2241 | */ | |
87a927c7 DW |
2242 | if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN + |
2243 | 2 * sizeof(unsigned long long))) | |
b28a02de | 2244 | flags |= SLAB_RED_ZONE | SLAB_STORE_USER; |
1da177e4 LT |
2245 | if (!(flags & SLAB_DESTROY_BY_RCU)) |
2246 | flags |= SLAB_POISON; | |
2247 | #endif | |
2248 | if (flags & SLAB_DESTROY_BY_RCU) | |
2249 | BUG_ON(flags & SLAB_POISON); | |
2250 | #endif | |
1da177e4 | 2251 | /* |
a737b3e2 AM |
2252 | * Always checks flags, a caller might be expecting debug support which |
2253 | * isn't available. | |
1da177e4 | 2254 | */ |
40094fa6 | 2255 | BUG_ON(flags & ~CREATE_MASK); |
1da177e4 | 2256 | |
a737b3e2 AM |
2257 | /* |
2258 | * Check that size is in terms of words. This is needed to avoid | |
1da177e4 LT |
2259 | * unaligned accesses for some archs when redzoning is used, and makes |
2260 | * sure any on-slab bufctl's are also correctly aligned. | |
2261 | */ | |
b28a02de PE |
2262 | if (size & (BYTES_PER_WORD - 1)) { |
2263 | size += (BYTES_PER_WORD - 1); | |
2264 | size &= ~(BYTES_PER_WORD - 1); | |
1da177e4 LT |
2265 | } |
2266 | ||
a737b3e2 AM |
2267 | /* calculate the final buffer alignment: */ |
2268 | ||
1da177e4 LT |
2269 | /* 1) arch recommendation: can be overridden for debug */ |
2270 | if (flags & SLAB_HWCACHE_ALIGN) { | |
a737b3e2 AM |
2271 | /* |
2272 | * Default alignment: as specified by the arch code. Except if | |
2273 | * an object is really small, then squeeze multiple objects into | |
2274 | * one cacheline. | |
1da177e4 LT |
2275 | */ |
2276 | ralign = cache_line_size(); | |
b28a02de | 2277 | while (size <= ralign / 2) |
1da177e4 LT |
2278 | ralign /= 2; |
2279 | } else { | |
2280 | ralign = BYTES_PER_WORD; | |
2281 | } | |
ca5f9703 PE |
2282 | |
2283 | /* | |
87a927c7 DW |
2284 | * Redzoning and user store require word alignment or possibly larger. |
2285 | * Note this will be overridden by architecture or caller mandated | |
2286 | * alignment if either is greater than BYTES_PER_WORD. | |
ca5f9703 | 2287 | */ |
87a927c7 DW |
2288 | if (flags & SLAB_STORE_USER) |
2289 | ralign = BYTES_PER_WORD; | |
2290 | ||
2291 | if (flags & SLAB_RED_ZONE) { | |
2292 | ralign = REDZONE_ALIGN; | |
2293 | /* If redzoning, ensure that the second redzone is suitably | |
2294 | * aligned, by adjusting the object size accordingly. */ | |
2295 | size += REDZONE_ALIGN - 1; | |
2296 | size &= ~(REDZONE_ALIGN - 1); | |
2297 | } | |
ca5f9703 | 2298 | |
a44b56d3 | 2299 | /* 2) arch mandated alignment */ |
1da177e4 LT |
2300 | if (ralign < ARCH_SLAB_MINALIGN) { |
2301 | ralign = ARCH_SLAB_MINALIGN; | |
1da177e4 | 2302 | } |
a44b56d3 | 2303 | /* 3) caller mandated alignment */ |
1da177e4 LT |
2304 | if (ralign < align) { |
2305 | ralign = align; | |
1da177e4 | 2306 | } |
3ff84a7f PE |
2307 | /* disable debug if necessary */ |
2308 | if (ralign > __alignof__(unsigned long long)) | |
a44b56d3 | 2309 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); |
a737b3e2 | 2310 | /* |
ca5f9703 | 2311 | * 4) Store it. |
1da177e4 LT |
2312 | */ |
2313 | align = ralign; | |
2314 | ||
83b519e8 PE |
2315 | if (slab_is_available()) |
2316 | gfp = GFP_KERNEL; | |
2317 | else | |
2318 | gfp = GFP_NOWAIT; | |
2319 | ||
1da177e4 | 2320 | /* Get cache's description obj. */ |
83b519e8 | 2321 | cachep = kmem_cache_zalloc(&cache_cache, gfp); |
1da177e4 | 2322 | if (!cachep) |
039363f3 | 2323 | return NULL; |
1da177e4 | 2324 | |
b56efcf0 | 2325 | cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids]; |
3b0efdfa CL |
2326 | cachep->object_size = size; |
2327 | cachep->align = align; | |
1da177e4 | 2328 | #if DEBUG |
1da177e4 | 2329 | |
ca5f9703 PE |
2330 | /* |
2331 | * Both debugging options require word-alignment which is calculated | |
2332 | * into align above. | |
2333 | */ | |
1da177e4 | 2334 | if (flags & SLAB_RED_ZONE) { |
1da177e4 | 2335 | /* add space for red zone words */ |
3ff84a7f PE |
2336 | cachep->obj_offset += sizeof(unsigned long long); |
2337 | size += 2 * sizeof(unsigned long long); | |
1da177e4 LT |
2338 | } |
2339 | if (flags & SLAB_STORE_USER) { | |
ca5f9703 | 2340 | /* user store requires one word storage behind the end of |
87a927c7 DW |
2341 | * the real object. But if the second red zone needs to be |
2342 | * aligned to 64 bits, we must allow that much space. | |
1da177e4 | 2343 | */ |
87a927c7 DW |
2344 | if (flags & SLAB_RED_ZONE) |
2345 | size += REDZONE_ALIGN; | |
2346 | else | |
2347 | size += BYTES_PER_WORD; | |
1da177e4 LT |
2348 | } |
2349 | #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC) | |
b28a02de | 2350 | if (size >= malloc_sizes[INDEX_L3 + 1].cs_size |
3b0efdfa | 2351 | && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) { |
1ab335d8 | 2352 | cachep->obj_offset += PAGE_SIZE - ALIGN(size, align); |
1da177e4 LT |
2353 | size = PAGE_SIZE; |
2354 | } | |
2355 | #endif | |
2356 | #endif | |
2357 | ||
e0a42726 IM |
2358 | /* |
2359 | * Determine if the slab management is 'on' or 'off' slab. | |
2360 | * (bootstrapping cannot cope with offslab caches so don't do | |
e7cb55b9 CM |
2361 | * it too early on. Always use on-slab management when |
2362 | * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak) | |
e0a42726 | 2363 | */ |
e7cb55b9 CM |
2364 | if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init && |
2365 | !(flags & SLAB_NOLEAKTRACE)) | |
1da177e4 LT |
2366 | /* |
2367 | * Size is large, assume best to place the slab management obj | |
2368 | * off-slab (should allow better packing of objs). | |
2369 | */ | |
2370 | flags |= CFLGS_OFF_SLAB; | |
2371 | ||
2372 | size = ALIGN(size, align); | |
2373 | ||
f78bb8ad | 2374 | left_over = calculate_slab_order(cachep, size, align, flags); |
1da177e4 LT |
2375 | |
2376 | if (!cachep->num) { | |
b4169525 | 2377 | printk(KERN_ERR |
2378 | "kmem_cache_create: couldn't create cache %s.\n", name); | |
1da177e4 | 2379 | kmem_cache_free(&cache_cache, cachep); |
039363f3 | 2380 | return NULL; |
1da177e4 | 2381 | } |
b28a02de PE |
2382 | slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t) |
2383 | + sizeof(struct slab), align); | |
1da177e4 LT |
2384 | |
2385 | /* | |
2386 | * If the slab has been placed off-slab, and we have enough space then | |
2387 | * move it on-slab. This is at the expense of any extra colouring. | |
2388 | */ | |
2389 | if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) { | |
2390 | flags &= ~CFLGS_OFF_SLAB; | |
2391 | left_over -= slab_size; | |
2392 | } | |
2393 | ||
2394 | if (flags & CFLGS_OFF_SLAB) { | |
2395 | /* really off slab. No need for manual alignment */ | |
b28a02de PE |
2396 | slab_size = |
2397 | cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab); | |
67461365 RL |
2398 | |
2399 | #ifdef CONFIG_PAGE_POISONING | |
2400 | /* If we're going to use the generic kernel_map_pages() | |
2401 | * poisoning, then it's going to smash the contents of | |
2402 | * the redzone and userword anyhow, so switch them off. | |
2403 | */ | |
2404 | if (size % PAGE_SIZE == 0 && flags & SLAB_POISON) | |
2405 | flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER); | |
2406 | #endif | |
1da177e4 LT |
2407 | } |
2408 | ||
2409 | cachep->colour_off = cache_line_size(); | |
2410 | /* Offset must be a multiple of the alignment. */ | |
2411 | if (cachep->colour_off < align) | |
2412 | cachep->colour_off = align; | |
b28a02de | 2413 | cachep->colour = left_over / cachep->colour_off; |
1da177e4 LT |
2414 | cachep->slab_size = slab_size; |
2415 | cachep->flags = flags; | |
a618e89f | 2416 | cachep->allocflags = 0; |
4b51d669 | 2417 | if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA)) |
a618e89f | 2418 | cachep->allocflags |= GFP_DMA; |
3b0efdfa | 2419 | cachep->size = size; |
6a2d7a95 | 2420 | cachep->reciprocal_buffer_size = reciprocal_value(size); |
1da177e4 | 2421 | |
e5ac9c5a | 2422 | if (flags & CFLGS_OFF_SLAB) { |
b2d55073 | 2423 | cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u); |
e5ac9c5a RT |
2424 | /* |
2425 | * This is a possibility for one of the malloc_sizes caches. | |
2426 | * But since we go off slab only for object size greater than | |
2427 | * PAGE_SIZE/8, and malloc_sizes gets created in ascending order, | |
2428 | * this should not happen at all. | |
2429 | * But leave a BUG_ON for some lucky dude. | |
2430 | */ | |
6cb8f913 | 2431 | BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache)); |
e5ac9c5a | 2432 | } |
1da177e4 | 2433 | cachep->ctor = ctor; |
1da177e4 LT |
2434 | cachep->name = name; |
2435 | ||
83b519e8 | 2436 | if (setup_cpu_cache(cachep, gfp)) { |
2ed3a4ef | 2437 | __kmem_cache_destroy(cachep); |
039363f3 | 2438 | return NULL; |
2ed3a4ef | 2439 | } |
1da177e4 | 2440 | |
83835b3d PZ |
2441 | if (flags & SLAB_DEBUG_OBJECTS) { |
2442 | /* | |
2443 | * Would deadlock through slab_destroy()->call_rcu()-> | |
2444 | * debug_object_activate()->kmem_cache_alloc(). | |
2445 | */ | |
2446 | WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU); | |
2447 | ||
2448 | slab_set_debugobj_lock_classes(cachep); | |
2449 | } | |
2450 | ||
1da177e4 | 2451 | /* cache setup completed, link it into the list */ |
18004c5d | 2452 | list_add(&cachep->list, &slab_caches); |
1da177e4 LT |
2453 | return cachep; |
2454 | } | |
1da177e4 LT |
2455 | |
2456 | #if DEBUG | |
2457 | static void check_irq_off(void) | |
2458 | { | |
2459 | BUG_ON(!irqs_disabled()); | |
2460 | } | |
2461 | ||
2462 | static void check_irq_on(void) | |
2463 | { | |
2464 | BUG_ON(irqs_disabled()); | |
2465 | } | |
2466 | ||
343e0d7a | 2467 | static void check_spinlock_acquired(struct kmem_cache *cachep) |
1da177e4 LT |
2468 | { |
2469 | #ifdef CONFIG_SMP | |
2470 | check_irq_off(); | |
7d6e6d09 | 2471 | assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock); |
1da177e4 LT |
2472 | #endif |
2473 | } | |
e498be7d | 2474 | |
343e0d7a | 2475 | static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node) |
e498be7d CL |
2476 | { |
2477 | #ifdef CONFIG_SMP | |
2478 | check_irq_off(); | |
2479 | assert_spin_locked(&cachep->nodelists[node]->list_lock); | |
2480 | #endif | |
2481 | } | |
2482 | ||
1da177e4 LT |
2483 | #else |
2484 | #define check_irq_off() do { } while(0) | |
2485 | #define check_irq_on() do { } while(0) | |
2486 | #define check_spinlock_acquired(x) do { } while(0) | |
e498be7d | 2487 | #define check_spinlock_acquired_node(x, y) do { } while(0) |
1da177e4 LT |
2488 | #endif |
2489 | ||
aab2207c CL |
2490 | static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, |
2491 | struct array_cache *ac, | |
2492 | int force, int node); | |
2493 | ||
1da177e4 LT |
2494 | static void do_drain(void *arg) |
2495 | { | |
a737b3e2 | 2496 | struct kmem_cache *cachep = arg; |
1da177e4 | 2497 | struct array_cache *ac; |
7d6e6d09 | 2498 | int node = numa_mem_id(); |
1da177e4 LT |
2499 | |
2500 | check_irq_off(); | |
9a2dba4b | 2501 | ac = cpu_cache_get(cachep); |
ff69416e CL |
2502 | spin_lock(&cachep->nodelists[node]->list_lock); |
2503 | free_block(cachep, ac->entry, ac->avail, node); | |
2504 | spin_unlock(&cachep->nodelists[node]->list_lock); | |
1da177e4 LT |
2505 | ac->avail = 0; |
2506 | } | |
2507 | ||
343e0d7a | 2508 | static void drain_cpu_caches(struct kmem_cache *cachep) |
1da177e4 | 2509 | { |
e498be7d CL |
2510 | struct kmem_list3 *l3; |
2511 | int node; | |
2512 | ||
15c8b6c1 | 2513 | on_each_cpu(do_drain, cachep, 1); |
1da177e4 | 2514 | check_irq_on(); |
b28a02de | 2515 | for_each_online_node(node) { |
e498be7d | 2516 | l3 = cachep->nodelists[node]; |
a4523a8b RD |
2517 | if (l3 && l3->alien) |
2518 | drain_alien_cache(cachep, l3->alien); | |
2519 | } | |
2520 | ||
2521 | for_each_online_node(node) { | |
2522 | l3 = cachep->nodelists[node]; | |
2523 | if (l3) | |
aab2207c | 2524 | drain_array(cachep, l3, l3->shared, 1, node); |
e498be7d | 2525 | } |
1da177e4 LT |
2526 | } |
2527 | ||
ed11d9eb CL |
2528 | /* |
2529 | * Remove slabs from the list of free slabs. | |
2530 | * Specify the number of slabs to drain in tofree. | |
2531 | * | |
2532 | * Returns the actual number of slabs released. | |
2533 | */ | |
2534 | static int drain_freelist(struct kmem_cache *cache, | |
2535 | struct kmem_list3 *l3, int tofree) | |
1da177e4 | 2536 | { |
ed11d9eb CL |
2537 | struct list_head *p; |
2538 | int nr_freed; | |
1da177e4 | 2539 | struct slab *slabp; |
1da177e4 | 2540 | |
ed11d9eb CL |
2541 | nr_freed = 0; |
2542 | while (nr_freed < tofree && !list_empty(&l3->slabs_free)) { | |
1da177e4 | 2543 | |
ed11d9eb | 2544 | spin_lock_irq(&l3->list_lock); |
e498be7d | 2545 | p = l3->slabs_free.prev; |
ed11d9eb CL |
2546 | if (p == &l3->slabs_free) { |
2547 | spin_unlock_irq(&l3->list_lock); | |
2548 | goto out; | |
2549 | } | |
1da177e4 | 2550 | |
ed11d9eb | 2551 | slabp = list_entry(p, struct slab, list); |
1da177e4 | 2552 | #if DEBUG |
40094fa6 | 2553 | BUG_ON(slabp->inuse); |
1da177e4 LT |
2554 | #endif |
2555 | list_del(&slabp->list); | |
ed11d9eb CL |
2556 | /* |
2557 | * Safe to drop the lock. The slab is no longer linked | |
2558 | * to the cache. | |
2559 | */ | |
2560 | l3->free_objects -= cache->num; | |
e498be7d | 2561 | spin_unlock_irq(&l3->list_lock); |
ed11d9eb CL |
2562 | slab_destroy(cache, slabp); |
2563 | nr_freed++; | |
1da177e4 | 2564 | } |
ed11d9eb CL |
2565 | out: |
2566 | return nr_freed; | |
1da177e4 LT |
2567 | } |
2568 | ||
18004c5d | 2569 | /* Called with slab_mutex held to protect against cpu hotplug */ |
343e0d7a | 2570 | static int __cache_shrink(struct kmem_cache *cachep) |
e498be7d CL |
2571 | { |
2572 | int ret = 0, i = 0; | |
2573 | struct kmem_list3 *l3; | |
2574 | ||
2575 | drain_cpu_caches(cachep); | |
2576 | ||
2577 | check_irq_on(); | |
2578 | for_each_online_node(i) { | |
2579 | l3 = cachep->nodelists[i]; | |
ed11d9eb CL |
2580 | if (!l3) |
2581 | continue; | |
2582 | ||
2583 | drain_freelist(cachep, l3, l3->free_objects); | |
2584 | ||
2585 | ret += !list_empty(&l3->slabs_full) || | |
2586 | !list_empty(&l3->slabs_partial); | |
e498be7d CL |
2587 | } |
2588 | return (ret ? 1 : 0); | |
2589 | } | |
2590 | ||
1da177e4 LT |
2591 | /** |
2592 | * kmem_cache_shrink - Shrink a cache. | |
2593 | * @cachep: The cache to shrink. | |
2594 | * | |
2595 | * Releases as many slabs as possible for a cache. | |
2596 | * To help debugging, a zero exit status indicates all slabs were released. | |
2597 | */ | |
343e0d7a | 2598 | int kmem_cache_shrink(struct kmem_cache *cachep) |
1da177e4 | 2599 | { |
8f5be20b | 2600 | int ret; |
40094fa6 | 2601 | BUG_ON(!cachep || in_interrupt()); |
1da177e4 | 2602 | |
95402b38 | 2603 | get_online_cpus(); |
18004c5d | 2604 | mutex_lock(&slab_mutex); |
8f5be20b | 2605 | ret = __cache_shrink(cachep); |
18004c5d | 2606 | mutex_unlock(&slab_mutex); |
95402b38 | 2607 | put_online_cpus(); |
8f5be20b | 2608 | return ret; |
1da177e4 LT |
2609 | } |
2610 | EXPORT_SYMBOL(kmem_cache_shrink); | |
2611 | ||
2612 | /** | |
2613 | * kmem_cache_destroy - delete a cache | |
2614 | * @cachep: the cache to destroy | |
2615 | * | |
72fd4a35 | 2616 | * Remove a &struct kmem_cache object from the slab cache. |
1da177e4 LT |
2617 | * |
2618 | * It is expected this function will be called by a module when it is | |
2619 | * unloaded. This will remove the cache completely, and avoid a duplicate | |
2620 | * cache being allocated each time a module is loaded and unloaded, if the | |
2621 | * module doesn't have persistent in-kernel storage across loads and unloads. | |
2622 | * | |
2623 | * The cache must be empty before calling this function. | |
2624 | * | |
25985edc | 2625 | * The caller must guarantee that no one will allocate memory from the cache |
1da177e4 LT |
2626 | * during the kmem_cache_destroy(). |
2627 | */ | |
133d205a | 2628 | void kmem_cache_destroy(struct kmem_cache *cachep) |
1da177e4 | 2629 | { |
40094fa6 | 2630 | BUG_ON(!cachep || in_interrupt()); |
1da177e4 | 2631 | |
1da177e4 | 2632 | /* Find the cache in the chain of caches. */ |
95402b38 | 2633 | get_online_cpus(); |
18004c5d | 2634 | mutex_lock(&slab_mutex); |
1da177e4 LT |
2635 | /* |
2636 | * the chain is never empty, cache_cache is never destroyed | |
2637 | */ | |
3b0efdfa | 2638 | list_del(&cachep->list); |
1da177e4 LT |
2639 | if (__cache_shrink(cachep)) { |
2640 | slab_error(cachep, "Can't free all objects"); | |
18004c5d CL |
2641 | list_add(&cachep->list, &slab_caches); |
2642 | mutex_unlock(&slab_mutex); | |
95402b38 | 2643 | put_online_cpus(); |
133d205a | 2644 | return; |
1da177e4 LT |
2645 | } |
2646 | ||
2647 | if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) | |
7ed9f7e5 | 2648 | rcu_barrier(); |
1da177e4 | 2649 | |
117f6eb1 | 2650 | __kmem_cache_destroy(cachep); |
18004c5d | 2651 | mutex_unlock(&slab_mutex); |
95402b38 | 2652 | put_online_cpus(); |
1da177e4 LT |
2653 | } |
2654 | EXPORT_SYMBOL(kmem_cache_destroy); | |
2655 | ||
e5ac9c5a RT |
2656 | /* |
2657 | * Get the memory for a slab management obj. | |
2658 | * For a slab cache when the slab descriptor is off-slab, slab descriptors | |
2659 | * always come from malloc_sizes caches. The slab descriptor cannot | |
2660 | * come from the same cache which is getting created because, | |
2661 | * when we are searching for an appropriate cache for these | |
2662 | * descriptors in kmem_cache_create, we search through the malloc_sizes array. | |
2663 | * If we are creating a malloc_sizes cache here it would not be visible to | |
2664 | * kmem_find_general_cachep till the initialization is complete. | |
2665 | * Hence we cannot have slabp_cache same as the original cache. | |
2666 | */ | |
343e0d7a | 2667 | static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp, |
5b74ada7 RT |
2668 | int colour_off, gfp_t local_flags, |
2669 | int nodeid) | |
1da177e4 LT |
2670 | { |
2671 | struct slab *slabp; | |
b28a02de | 2672 | |
1da177e4 LT |
2673 | if (OFF_SLAB(cachep)) { |
2674 | /* Slab management obj is off-slab. */ | |
5b74ada7 | 2675 | slabp = kmem_cache_alloc_node(cachep->slabp_cache, |
8759ec50 | 2676 | local_flags, nodeid); |
d5cff635 CM |
2677 | /* |
2678 | * If the first object in the slab is leaked (it's allocated | |
2679 | * but no one has a reference to it), we want to make sure | |
2680 | * kmemleak does not treat the ->s_mem pointer as a reference | |
2681 | * to the object. Otherwise we will not report the leak. | |
2682 | */ | |
c017b4be CM |
2683 | kmemleak_scan_area(&slabp->list, sizeof(struct list_head), |
2684 | local_flags); | |
1da177e4 LT |
2685 | if (!slabp) |
2686 | return NULL; | |
2687 | } else { | |
b28a02de | 2688 | slabp = objp + colour_off; |
1da177e4 LT |
2689 | colour_off += cachep->slab_size; |
2690 | } | |
2691 | slabp->inuse = 0; | |
2692 | slabp->colouroff = colour_off; | |
b28a02de | 2693 | slabp->s_mem = objp + colour_off; |
5b74ada7 | 2694 | slabp->nodeid = nodeid; |
e51bfd0a | 2695 | slabp->free = 0; |
1da177e4 LT |
2696 | return slabp; |
2697 | } | |
2698 | ||
2699 | static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp) | |
2700 | { | |
b28a02de | 2701 | return (kmem_bufctl_t *) (slabp + 1); |
1da177e4 LT |
2702 | } |
2703 | ||
343e0d7a | 2704 | static void cache_init_objs(struct kmem_cache *cachep, |
a35afb83 | 2705 | struct slab *slabp) |
1da177e4 LT |
2706 | { |
2707 | int i; | |
2708 | ||
2709 | for (i = 0; i < cachep->num; i++) { | |
8fea4e96 | 2710 | void *objp = index_to_obj(cachep, slabp, i); |
1da177e4 LT |
2711 | #if DEBUG |
2712 | /* need to poison the objs? */ | |
2713 | if (cachep->flags & SLAB_POISON) | |
2714 | poison_obj(cachep, objp, POISON_FREE); | |
2715 | if (cachep->flags & SLAB_STORE_USER) | |
2716 | *dbg_userword(cachep, objp) = NULL; | |
2717 | ||
2718 | if (cachep->flags & SLAB_RED_ZONE) { | |
2719 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; | |
2720 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2721 | } | |
2722 | /* | |
a737b3e2 AM |
2723 | * Constructors are not allowed to allocate memory from the same |
2724 | * cache which they are a constructor for. Otherwise, deadlock. | |
2725 | * They must also be threaded. | |
1da177e4 LT |
2726 | */ |
2727 | if (cachep->ctor && !(cachep->flags & SLAB_POISON)) | |
51cc5068 | 2728 | cachep->ctor(objp + obj_offset(cachep)); |
1da177e4 LT |
2729 | |
2730 | if (cachep->flags & SLAB_RED_ZONE) { | |
2731 | if (*dbg_redzone2(cachep, objp) != RED_INACTIVE) | |
2732 | slab_error(cachep, "constructor overwrote the" | |
b28a02de | 2733 | " end of an object"); |
1da177e4 LT |
2734 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE) |
2735 | slab_error(cachep, "constructor overwrote the" | |
b28a02de | 2736 | " start of an object"); |
1da177e4 | 2737 | } |
3b0efdfa | 2738 | if ((cachep->size % PAGE_SIZE) == 0 && |
a737b3e2 | 2739 | OFF_SLAB(cachep) && cachep->flags & SLAB_POISON) |
b28a02de | 2740 | kernel_map_pages(virt_to_page(objp), |
3b0efdfa | 2741 | cachep->size / PAGE_SIZE, 0); |
1da177e4 LT |
2742 | #else |
2743 | if (cachep->ctor) | |
51cc5068 | 2744 | cachep->ctor(objp); |
1da177e4 | 2745 | #endif |
b28a02de | 2746 | slab_bufctl(slabp)[i] = i + 1; |
1da177e4 | 2747 | } |
b28a02de | 2748 | slab_bufctl(slabp)[i - 1] = BUFCTL_END; |
1da177e4 LT |
2749 | } |
2750 | ||
343e0d7a | 2751 | static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 2752 | { |
4b51d669 CL |
2753 | if (CONFIG_ZONE_DMA_FLAG) { |
2754 | if (flags & GFP_DMA) | |
a618e89f | 2755 | BUG_ON(!(cachep->allocflags & GFP_DMA)); |
4b51d669 | 2756 | else |
a618e89f | 2757 | BUG_ON(cachep->allocflags & GFP_DMA); |
4b51d669 | 2758 | } |
1da177e4 LT |
2759 | } |
2760 | ||
a737b3e2 AM |
2761 | static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, |
2762 | int nodeid) | |
78d382d7 | 2763 | { |
8fea4e96 | 2764 | void *objp = index_to_obj(cachep, slabp, slabp->free); |
78d382d7 MD |
2765 | kmem_bufctl_t next; |
2766 | ||
2767 | slabp->inuse++; | |
2768 | next = slab_bufctl(slabp)[slabp->free]; | |
2769 | #if DEBUG | |
2770 | slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE; | |
2771 | WARN_ON(slabp->nodeid != nodeid); | |
2772 | #endif | |
2773 | slabp->free = next; | |
2774 | ||
2775 | return objp; | |
2776 | } | |
2777 | ||
a737b3e2 AM |
2778 | static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, |
2779 | void *objp, int nodeid) | |
78d382d7 | 2780 | { |
8fea4e96 | 2781 | unsigned int objnr = obj_to_index(cachep, slabp, objp); |
78d382d7 MD |
2782 | |
2783 | #if DEBUG | |
2784 | /* Verify that the slab belongs to the intended node */ | |
2785 | WARN_ON(slabp->nodeid != nodeid); | |
2786 | ||
871751e2 | 2787 | if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) { |
78d382d7 | 2788 | printk(KERN_ERR "slab: double free detected in cache " |
a737b3e2 | 2789 | "'%s', objp %p\n", cachep->name, objp); |
78d382d7 MD |
2790 | BUG(); |
2791 | } | |
2792 | #endif | |
2793 | slab_bufctl(slabp)[objnr] = slabp->free; | |
2794 | slabp->free = objnr; | |
2795 | slabp->inuse--; | |
2796 | } | |
2797 | ||
4776874f PE |
2798 | /* |
2799 | * Map pages beginning at addr to the given cache and slab. This is required | |
2800 | * for the slab allocator to be able to lookup the cache and slab of a | |
ccd35fb9 | 2801 | * virtual address for kfree, ksize, and slab debugging. |
4776874f PE |
2802 | */ |
2803 | static void slab_map_pages(struct kmem_cache *cache, struct slab *slab, | |
2804 | void *addr) | |
1da177e4 | 2805 | { |
4776874f | 2806 | int nr_pages; |
1da177e4 LT |
2807 | struct page *page; |
2808 | ||
4776874f | 2809 | page = virt_to_page(addr); |
84097518 | 2810 | |
4776874f | 2811 | nr_pages = 1; |
84097518 | 2812 | if (likely(!PageCompound(page))) |
4776874f PE |
2813 | nr_pages <<= cache->gfporder; |
2814 | ||
1da177e4 | 2815 | do { |
35026088 CL |
2816 | page->slab_cache = cache; |
2817 | page->slab_page = slab; | |
1da177e4 | 2818 | page++; |
4776874f | 2819 | } while (--nr_pages); |
1da177e4 LT |
2820 | } |
2821 | ||
2822 | /* | |
2823 | * Grow (by 1) the number of slabs within a cache. This is called by | |
2824 | * kmem_cache_alloc() when there are no active objs left in a cache. | |
2825 | */ | |
3c517a61 CL |
2826 | static int cache_grow(struct kmem_cache *cachep, |
2827 | gfp_t flags, int nodeid, void *objp) | |
1da177e4 | 2828 | { |
b28a02de | 2829 | struct slab *slabp; |
b28a02de PE |
2830 | size_t offset; |
2831 | gfp_t local_flags; | |
e498be7d | 2832 | struct kmem_list3 *l3; |
1da177e4 | 2833 | |
a737b3e2 AM |
2834 | /* |
2835 | * Be lazy and only check for valid flags here, keeping it out of the | |
2836 | * critical path in kmem_cache_alloc(). | |
1da177e4 | 2837 | */ |
6cb06229 CL |
2838 | BUG_ON(flags & GFP_SLAB_BUG_MASK); |
2839 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); | |
1da177e4 | 2840 | |
2e1217cf | 2841 | /* Take the l3 list lock to change the colour_next on this node */ |
1da177e4 | 2842 | check_irq_off(); |
2e1217cf RT |
2843 | l3 = cachep->nodelists[nodeid]; |
2844 | spin_lock(&l3->list_lock); | |
1da177e4 LT |
2845 | |
2846 | /* Get colour for the slab, and cal the next value. */ | |
2e1217cf RT |
2847 | offset = l3->colour_next; |
2848 | l3->colour_next++; | |
2849 | if (l3->colour_next >= cachep->colour) | |
2850 | l3->colour_next = 0; | |
2851 | spin_unlock(&l3->list_lock); | |
1da177e4 | 2852 | |
2e1217cf | 2853 | offset *= cachep->colour_off; |
1da177e4 LT |
2854 | |
2855 | if (local_flags & __GFP_WAIT) | |
2856 | local_irq_enable(); | |
2857 | ||
2858 | /* | |
2859 | * The test for missing atomic flag is performed here, rather than | |
2860 | * the more obvious place, simply to reduce the critical path length | |
2861 | * in kmem_cache_alloc(). If a caller is seriously mis-behaving they | |
2862 | * will eventually be caught here (where it matters). | |
2863 | */ | |
2864 | kmem_flagcheck(cachep, flags); | |
2865 | ||
a737b3e2 AM |
2866 | /* |
2867 | * Get mem for the objs. Attempt to allocate a physical page from | |
2868 | * 'nodeid'. | |
e498be7d | 2869 | */ |
3c517a61 | 2870 | if (!objp) |
b8c1c5da | 2871 | objp = kmem_getpages(cachep, local_flags, nodeid); |
a737b3e2 | 2872 | if (!objp) |
1da177e4 LT |
2873 | goto failed; |
2874 | ||
2875 | /* Get slab management. */ | |
3c517a61 | 2876 | slabp = alloc_slabmgmt(cachep, objp, offset, |
6cb06229 | 2877 | local_flags & ~GFP_CONSTRAINT_MASK, nodeid); |
a737b3e2 | 2878 | if (!slabp) |
1da177e4 LT |
2879 | goto opps1; |
2880 | ||
4776874f | 2881 | slab_map_pages(cachep, slabp, objp); |
1da177e4 | 2882 | |
a35afb83 | 2883 | cache_init_objs(cachep, slabp); |
1da177e4 LT |
2884 | |
2885 | if (local_flags & __GFP_WAIT) | |
2886 | local_irq_disable(); | |
2887 | check_irq_off(); | |
e498be7d | 2888 | spin_lock(&l3->list_lock); |
1da177e4 LT |
2889 | |
2890 | /* Make slab active. */ | |
e498be7d | 2891 | list_add_tail(&slabp->list, &(l3->slabs_free)); |
1da177e4 | 2892 | STATS_INC_GROWN(cachep); |
e498be7d CL |
2893 | l3->free_objects += cachep->num; |
2894 | spin_unlock(&l3->list_lock); | |
1da177e4 | 2895 | return 1; |
a737b3e2 | 2896 | opps1: |
1da177e4 | 2897 | kmem_freepages(cachep, objp); |
a737b3e2 | 2898 | failed: |
1da177e4 LT |
2899 | if (local_flags & __GFP_WAIT) |
2900 | local_irq_disable(); | |
2901 | return 0; | |
2902 | } | |
2903 | ||
2904 | #if DEBUG | |
2905 | ||
2906 | /* | |
2907 | * Perform extra freeing checks: | |
2908 | * - detect bad pointers. | |
2909 | * - POISON/RED_ZONE checking | |
1da177e4 LT |
2910 | */ |
2911 | static void kfree_debugcheck(const void *objp) | |
2912 | { | |
1da177e4 LT |
2913 | if (!virt_addr_valid(objp)) { |
2914 | printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n", | |
b28a02de PE |
2915 | (unsigned long)objp); |
2916 | BUG(); | |
1da177e4 | 2917 | } |
1da177e4 LT |
2918 | } |
2919 | ||
58ce1fd5 PE |
2920 | static inline void verify_redzone_free(struct kmem_cache *cache, void *obj) |
2921 | { | |
b46b8f19 | 2922 | unsigned long long redzone1, redzone2; |
58ce1fd5 PE |
2923 | |
2924 | redzone1 = *dbg_redzone1(cache, obj); | |
2925 | redzone2 = *dbg_redzone2(cache, obj); | |
2926 | ||
2927 | /* | |
2928 | * Redzone is ok. | |
2929 | */ | |
2930 | if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE) | |
2931 | return; | |
2932 | ||
2933 | if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE) | |
2934 | slab_error(cache, "double free detected"); | |
2935 | else | |
2936 | slab_error(cache, "memory outside object was overwritten"); | |
2937 | ||
b46b8f19 | 2938 | printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n", |
58ce1fd5 PE |
2939 | obj, redzone1, redzone2); |
2940 | } | |
2941 | ||
343e0d7a | 2942 | static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp, |
b28a02de | 2943 | void *caller) |
1da177e4 LT |
2944 | { |
2945 | struct page *page; | |
2946 | unsigned int objnr; | |
2947 | struct slab *slabp; | |
2948 | ||
80cbd911 MW |
2949 | BUG_ON(virt_to_cache(objp) != cachep); |
2950 | ||
3dafccf2 | 2951 | objp -= obj_offset(cachep); |
1da177e4 | 2952 | kfree_debugcheck(objp); |
b49af68f | 2953 | page = virt_to_head_page(objp); |
1da177e4 | 2954 | |
35026088 | 2955 | slabp = page->slab_page; |
1da177e4 LT |
2956 | |
2957 | if (cachep->flags & SLAB_RED_ZONE) { | |
58ce1fd5 | 2958 | verify_redzone_free(cachep, objp); |
1da177e4 LT |
2959 | *dbg_redzone1(cachep, objp) = RED_INACTIVE; |
2960 | *dbg_redzone2(cachep, objp) = RED_INACTIVE; | |
2961 | } | |
2962 | if (cachep->flags & SLAB_STORE_USER) | |
2963 | *dbg_userword(cachep, objp) = caller; | |
2964 | ||
8fea4e96 | 2965 | objnr = obj_to_index(cachep, slabp, objp); |
1da177e4 LT |
2966 | |
2967 | BUG_ON(objnr >= cachep->num); | |
8fea4e96 | 2968 | BUG_ON(objp != index_to_obj(cachep, slabp, objnr)); |
1da177e4 | 2969 | |
871751e2 AV |
2970 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
2971 | slab_bufctl(slabp)[objnr] = BUFCTL_FREE; | |
2972 | #endif | |
1da177e4 LT |
2973 | if (cachep->flags & SLAB_POISON) { |
2974 | #ifdef CONFIG_DEBUG_PAGEALLOC | |
3b0efdfa | 2975 | if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) { |
1da177e4 | 2976 | store_stackinfo(cachep, objp, (unsigned long)caller); |
b28a02de | 2977 | kernel_map_pages(virt_to_page(objp), |
3b0efdfa | 2978 | cachep->size / PAGE_SIZE, 0); |
1da177e4 LT |
2979 | } else { |
2980 | poison_obj(cachep, objp, POISON_FREE); | |
2981 | } | |
2982 | #else | |
2983 | poison_obj(cachep, objp, POISON_FREE); | |
2984 | #endif | |
2985 | } | |
2986 | return objp; | |
2987 | } | |
2988 | ||
343e0d7a | 2989 | static void check_slabp(struct kmem_cache *cachep, struct slab *slabp) |
1da177e4 LT |
2990 | { |
2991 | kmem_bufctl_t i; | |
2992 | int entries = 0; | |
b28a02de | 2993 | |
1da177e4 LT |
2994 | /* Check slab's freelist to see if this obj is there. */ |
2995 | for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) { | |
2996 | entries++; | |
2997 | if (entries > cachep->num || i >= cachep->num) | |
2998 | goto bad; | |
2999 | } | |
3000 | if (entries != cachep->num - slabp->inuse) { | |
a737b3e2 AM |
3001 | bad: |
3002 | printk(KERN_ERR "slab: Internal list corruption detected in " | |
face37f5 DJ |
3003 | "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n", |
3004 | cachep->name, cachep->num, slabp, slabp->inuse, | |
3005 | print_tainted()); | |
fdde6abb SAS |
3006 | print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp, |
3007 | sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t), | |
3008 | 1); | |
1da177e4 LT |
3009 | BUG(); |
3010 | } | |
3011 | } | |
3012 | #else | |
3013 | #define kfree_debugcheck(x) do { } while(0) | |
3014 | #define cache_free_debugcheck(x,objp,z) (objp) | |
3015 | #define check_slabp(x,y) do { } while(0) | |
3016 | #endif | |
3017 | ||
343e0d7a | 3018 | static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 LT |
3019 | { |
3020 | int batchcount; | |
3021 | struct kmem_list3 *l3; | |
3022 | struct array_cache *ac; | |
1ca4cb24 PE |
3023 | int node; |
3024 | ||
6d2144d3 | 3025 | retry: |
1da177e4 | 3026 | check_irq_off(); |
7d6e6d09 | 3027 | node = numa_mem_id(); |
9a2dba4b | 3028 | ac = cpu_cache_get(cachep); |
1da177e4 LT |
3029 | batchcount = ac->batchcount; |
3030 | if (!ac->touched && batchcount > BATCHREFILL_LIMIT) { | |
a737b3e2 AM |
3031 | /* |
3032 | * If there was little recent activity on this cache, then | |
3033 | * perform only a partial refill. Otherwise we could generate | |
3034 | * refill bouncing. | |
1da177e4 LT |
3035 | */ |
3036 | batchcount = BATCHREFILL_LIMIT; | |
3037 | } | |
1ca4cb24 | 3038 | l3 = cachep->nodelists[node]; |
e498be7d CL |
3039 | |
3040 | BUG_ON(ac->avail > 0 || !l3); | |
3041 | spin_lock(&l3->list_lock); | |
1da177e4 | 3042 | |
3ded175a | 3043 | /* See if we can refill from the shared array */ |
44b57f1c NP |
3044 | if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) { |
3045 | l3->shared->touched = 1; | |
3ded175a | 3046 | goto alloc_done; |
44b57f1c | 3047 | } |
3ded175a | 3048 | |
1da177e4 LT |
3049 | while (batchcount > 0) { |
3050 | struct list_head *entry; | |
3051 | struct slab *slabp; | |
3052 | /* Get slab alloc is to come from. */ | |
3053 | entry = l3->slabs_partial.next; | |
3054 | if (entry == &l3->slabs_partial) { | |
3055 | l3->free_touched = 1; | |
3056 | entry = l3->slabs_free.next; | |
3057 | if (entry == &l3->slabs_free) | |
3058 | goto must_grow; | |
3059 | } | |
3060 | ||
3061 | slabp = list_entry(entry, struct slab, list); | |
3062 | check_slabp(cachep, slabp); | |
3063 | check_spinlock_acquired(cachep); | |
714b8171 PE |
3064 | |
3065 | /* | |
3066 | * The slab was either on partial or free list so | |
3067 | * there must be at least one object available for | |
3068 | * allocation. | |
3069 | */ | |
249b9f33 | 3070 | BUG_ON(slabp->inuse >= cachep->num); |
714b8171 | 3071 | |
1da177e4 | 3072 | while (slabp->inuse < cachep->num && batchcount--) { |
1da177e4 LT |
3073 | STATS_INC_ALLOCED(cachep); |
3074 | STATS_INC_ACTIVE(cachep); | |
3075 | STATS_SET_HIGH(cachep); | |
3076 | ||
78d382d7 | 3077 | ac->entry[ac->avail++] = slab_get_obj(cachep, slabp, |
1ca4cb24 | 3078 | node); |
1da177e4 LT |
3079 | } |
3080 | check_slabp(cachep, slabp); | |
3081 | ||
3082 | /* move slabp to correct slabp list: */ | |
3083 | list_del(&slabp->list); | |
3084 | if (slabp->free == BUFCTL_END) | |
3085 | list_add(&slabp->list, &l3->slabs_full); | |
3086 | else | |
3087 | list_add(&slabp->list, &l3->slabs_partial); | |
3088 | } | |
3089 | ||
a737b3e2 | 3090 | must_grow: |
1da177e4 | 3091 | l3->free_objects -= ac->avail; |
a737b3e2 | 3092 | alloc_done: |
e498be7d | 3093 | spin_unlock(&l3->list_lock); |
1da177e4 LT |
3094 | |
3095 | if (unlikely(!ac->avail)) { | |
3096 | int x; | |
3c517a61 | 3097 | x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL); |
e498be7d | 3098 | |
a737b3e2 | 3099 | /* cache_grow can reenable interrupts, then ac could change. */ |
9a2dba4b | 3100 | ac = cpu_cache_get(cachep); |
a737b3e2 | 3101 | if (!x && ac->avail == 0) /* no objects in sight? abort */ |
1da177e4 LT |
3102 | return NULL; |
3103 | ||
a737b3e2 | 3104 | if (!ac->avail) /* objects refilled by interrupt? */ |
1da177e4 LT |
3105 | goto retry; |
3106 | } | |
3107 | ac->touched = 1; | |
e498be7d | 3108 | return ac->entry[--ac->avail]; |
1da177e4 LT |
3109 | } |
3110 | ||
a737b3e2 AM |
3111 | static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep, |
3112 | gfp_t flags) | |
1da177e4 LT |
3113 | { |
3114 | might_sleep_if(flags & __GFP_WAIT); | |
3115 | #if DEBUG | |
3116 | kmem_flagcheck(cachep, flags); | |
3117 | #endif | |
3118 | } | |
3119 | ||
3120 | #if DEBUG | |
a737b3e2 AM |
3121 | static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, |
3122 | gfp_t flags, void *objp, void *caller) | |
1da177e4 | 3123 | { |
b28a02de | 3124 | if (!objp) |
1da177e4 | 3125 | return objp; |
b28a02de | 3126 | if (cachep->flags & SLAB_POISON) { |
1da177e4 | 3127 | #ifdef CONFIG_DEBUG_PAGEALLOC |
3b0efdfa | 3128 | if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) |
b28a02de | 3129 | kernel_map_pages(virt_to_page(objp), |
3b0efdfa | 3130 | cachep->size / PAGE_SIZE, 1); |
1da177e4 LT |
3131 | else |
3132 | check_poison_obj(cachep, objp); | |
3133 | #else | |
3134 | check_poison_obj(cachep, objp); | |
3135 | #endif | |
3136 | poison_obj(cachep, objp, POISON_INUSE); | |
3137 | } | |
3138 | if (cachep->flags & SLAB_STORE_USER) | |
3139 | *dbg_userword(cachep, objp) = caller; | |
3140 | ||
3141 | if (cachep->flags & SLAB_RED_ZONE) { | |
a737b3e2 AM |
3142 | if (*dbg_redzone1(cachep, objp) != RED_INACTIVE || |
3143 | *dbg_redzone2(cachep, objp) != RED_INACTIVE) { | |
3144 | slab_error(cachep, "double free, or memory outside" | |
3145 | " object was overwritten"); | |
b28a02de | 3146 | printk(KERN_ERR |
b46b8f19 | 3147 | "%p: redzone 1:0x%llx, redzone 2:0x%llx\n", |
a737b3e2 AM |
3148 | objp, *dbg_redzone1(cachep, objp), |
3149 | *dbg_redzone2(cachep, objp)); | |
1da177e4 LT |
3150 | } |
3151 | *dbg_redzone1(cachep, objp) = RED_ACTIVE; | |
3152 | *dbg_redzone2(cachep, objp) = RED_ACTIVE; | |
3153 | } | |
871751e2 AV |
3154 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
3155 | { | |
3156 | struct slab *slabp; | |
3157 | unsigned objnr; | |
3158 | ||
35026088 | 3159 | slabp = virt_to_head_page(objp)->slab_page; |
3b0efdfa | 3160 | objnr = (unsigned)(objp - slabp->s_mem) / cachep->size; |
871751e2 AV |
3161 | slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE; |
3162 | } | |
3163 | #endif | |
3dafccf2 | 3164 | objp += obj_offset(cachep); |
4f104934 | 3165 | if (cachep->ctor && cachep->flags & SLAB_POISON) |
51cc5068 | 3166 | cachep->ctor(objp); |
7ea466f2 TH |
3167 | if (ARCH_SLAB_MINALIGN && |
3168 | ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) { | |
a44b56d3 | 3169 | printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n", |
c225150b | 3170 | objp, (int)ARCH_SLAB_MINALIGN); |
a44b56d3 | 3171 | } |
1da177e4 LT |
3172 | return objp; |
3173 | } | |
3174 | #else | |
3175 | #define cache_alloc_debugcheck_after(a,b,objp,d) (objp) | |
3176 | #endif | |
3177 | ||
773ff60e | 3178 | static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags) |
8a8b6502 AM |
3179 | { |
3180 | if (cachep == &cache_cache) | |
773ff60e | 3181 | return false; |
8a8b6502 | 3182 | |
8c138bc0 | 3183 | return should_failslab(cachep->object_size, flags, cachep->flags); |
8a8b6502 AM |
3184 | } |
3185 | ||
343e0d7a | 3186 | static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3187 | { |
b28a02de | 3188 | void *objp; |
1da177e4 LT |
3189 | struct array_cache *ac; |
3190 | ||
5c382300 | 3191 | check_irq_off(); |
8a8b6502 | 3192 | |
9a2dba4b | 3193 | ac = cpu_cache_get(cachep); |
1da177e4 LT |
3194 | if (likely(ac->avail)) { |
3195 | STATS_INC_ALLOCHIT(cachep); | |
3196 | ac->touched = 1; | |
e498be7d | 3197 | objp = ac->entry[--ac->avail]; |
1da177e4 LT |
3198 | } else { |
3199 | STATS_INC_ALLOCMISS(cachep); | |
3200 | objp = cache_alloc_refill(cachep, flags); | |
ddbf2e83 O |
3201 | /* |
3202 | * the 'ac' may be updated by cache_alloc_refill(), | |
3203 | * and kmemleak_erase() requires its correct value. | |
3204 | */ | |
3205 | ac = cpu_cache_get(cachep); | |
1da177e4 | 3206 | } |
d5cff635 CM |
3207 | /* |
3208 | * To avoid a false negative, if an object that is in one of the | |
3209 | * per-CPU caches is leaked, we need to make sure kmemleak doesn't | |
3210 | * treat the array pointers as a reference to the object. | |
3211 | */ | |
f3d8b53a O |
3212 | if (objp) |
3213 | kmemleak_erase(&ac->entry[ac->avail]); | |
5c382300 AK |
3214 | return objp; |
3215 | } | |
3216 | ||
e498be7d | 3217 | #ifdef CONFIG_NUMA |
c61afb18 | 3218 | /* |
b2455396 | 3219 | * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY. |
c61afb18 PJ |
3220 | * |
3221 | * If we are in_interrupt, then process context, including cpusets and | |
3222 | * mempolicy, may not apply and should not be used for allocation policy. | |
3223 | */ | |
3224 | static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3225 | { | |
3226 | int nid_alloc, nid_here; | |
3227 | ||
765c4507 | 3228 | if (in_interrupt() || (flags & __GFP_THISNODE)) |
c61afb18 | 3229 | return NULL; |
7d6e6d09 | 3230 | nid_alloc = nid_here = numa_mem_id(); |
c61afb18 | 3231 | if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD)) |
6adef3eb | 3232 | nid_alloc = cpuset_slab_spread_node(); |
c61afb18 | 3233 | else if (current->mempolicy) |
e7b691b0 | 3234 | nid_alloc = slab_node(); |
c61afb18 | 3235 | if (nid_alloc != nid_here) |
8b98c169 | 3236 | return ____cache_alloc_node(cachep, flags, nid_alloc); |
c61afb18 PJ |
3237 | return NULL; |
3238 | } | |
3239 | ||
765c4507 CL |
3240 | /* |
3241 | * Fallback function if there was no memory available and no objects on a | |
3c517a61 CL |
3242 | * certain node and fall back is permitted. First we scan all the |
3243 | * available nodelists for available objects. If that fails then we | |
3244 | * perform an allocation without specifying a node. This allows the page | |
3245 | * allocator to do its reclaim / fallback magic. We then insert the | |
3246 | * slab into the proper nodelist and then allocate from it. | |
765c4507 | 3247 | */ |
8c8cc2c1 | 3248 | static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags) |
765c4507 | 3249 | { |
8c8cc2c1 PE |
3250 | struct zonelist *zonelist; |
3251 | gfp_t local_flags; | |
dd1a239f | 3252 | struct zoneref *z; |
54a6eb5c MG |
3253 | struct zone *zone; |
3254 | enum zone_type high_zoneidx = gfp_zone(flags); | |
765c4507 | 3255 | void *obj = NULL; |
3c517a61 | 3256 | int nid; |
cc9a6c87 | 3257 | unsigned int cpuset_mems_cookie; |
8c8cc2c1 PE |
3258 | |
3259 | if (flags & __GFP_THISNODE) | |
3260 | return NULL; | |
3261 | ||
6cb06229 | 3262 | local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK); |
765c4507 | 3263 | |
cc9a6c87 MG |
3264 | retry_cpuset: |
3265 | cpuset_mems_cookie = get_mems_allowed(); | |
e7b691b0 | 3266 | zonelist = node_zonelist(slab_node(), flags); |
cc9a6c87 | 3267 | |
3c517a61 CL |
3268 | retry: |
3269 | /* | |
3270 | * Look through allowed nodes for objects available | |
3271 | * from existing per node queues. | |
3272 | */ | |
54a6eb5c MG |
3273 | for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
3274 | nid = zone_to_nid(zone); | |
aedb0eb1 | 3275 | |
54a6eb5c | 3276 | if (cpuset_zone_allowed_hardwall(zone, flags) && |
3c517a61 | 3277 | cache->nodelists[nid] && |
481c5346 | 3278 | cache->nodelists[nid]->free_objects) { |
3c517a61 CL |
3279 | obj = ____cache_alloc_node(cache, |
3280 | flags | GFP_THISNODE, nid); | |
481c5346 CL |
3281 | if (obj) |
3282 | break; | |
3283 | } | |
3c517a61 CL |
3284 | } |
3285 | ||
cfce6604 | 3286 | if (!obj) { |
3c517a61 CL |
3287 | /* |
3288 | * This allocation will be performed within the constraints | |
3289 | * of the current cpuset / memory policy requirements. | |
3290 | * We may trigger various forms of reclaim on the allowed | |
3291 | * set and go into memory reserves if necessary. | |
3292 | */ | |
dd47ea75 CL |
3293 | if (local_flags & __GFP_WAIT) |
3294 | local_irq_enable(); | |
3295 | kmem_flagcheck(cache, flags); | |
7d6e6d09 | 3296 | obj = kmem_getpages(cache, local_flags, numa_mem_id()); |
dd47ea75 CL |
3297 | if (local_flags & __GFP_WAIT) |
3298 | local_irq_disable(); | |
3c517a61 CL |
3299 | if (obj) { |
3300 | /* | |
3301 | * Insert into the appropriate per node queues | |
3302 | */ | |
3303 | nid = page_to_nid(virt_to_page(obj)); | |
3304 | if (cache_grow(cache, flags, nid, obj)) { | |
3305 | obj = ____cache_alloc_node(cache, | |
3306 | flags | GFP_THISNODE, nid); | |
3307 | if (!obj) | |
3308 | /* | |
3309 | * Another processor may allocate the | |
3310 | * objects in the slab since we are | |
3311 | * not holding any locks. | |
3312 | */ | |
3313 | goto retry; | |
3314 | } else { | |
b6a60451 | 3315 | /* cache_grow already freed obj */ |
3c517a61 CL |
3316 | obj = NULL; |
3317 | } | |
3318 | } | |
aedb0eb1 | 3319 | } |
cc9a6c87 MG |
3320 | |
3321 | if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj)) | |
3322 | goto retry_cpuset; | |
765c4507 CL |
3323 | return obj; |
3324 | } | |
3325 | ||
e498be7d CL |
3326 | /* |
3327 | * A interface to enable slab creation on nodeid | |
1da177e4 | 3328 | */ |
8b98c169 | 3329 | static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, |
a737b3e2 | 3330 | int nodeid) |
e498be7d CL |
3331 | { |
3332 | struct list_head *entry; | |
b28a02de PE |
3333 | struct slab *slabp; |
3334 | struct kmem_list3 *l3; | |
3335 | void *obj; | |
b28a02de PE |
3336 | int x; |
3337 | ||
3338 | l3 = cachep->nodelists[nodeid]; | |
3339 | BUG_ON(!l3); | |
3340 | ||
a737b3e2 | 3341 | retry: |
ca3b9b91 | 3342 | check_irq_off(); |
b28a02de PE |
3343 | spin_lock(&l3->list_lock); |
3344 | entry = l3->slabs_partial.next; | |
3345 | if (entry == &l3->slabs_partial) { | |
3346 | l3->free_touched = 1; | |
3347 | entry = l3->slabs_free.next; | |
3348 | if (entry == &l3->slabs_free) | |
3349 | goto must_grow; | |
3350 | } | |
3351 | ||
3352 | slabp = list_entry(entry, struct slab, list); | |
3353 | check_spinlock_acquired_node(cachep, nodeid); | |
3354 | check_slabp(cachep, slabp); | |
3355 | ||
3356 | STATS_INC_NODEALLOCS(cachep); | |
3357 | STATS_INC_ACTIVE(cachep); | |
3358 | STATS_SET_HIGH(cachep); | |
3359 | ||
3360 | BUG_ON(slabp->inuse == cachep->num); | |
3361 | ||
78d382d7 | 3362 | obj = slab_get_obj(cachep, slabp, nodeid); |
b28a02de PE |
3363 | check_slabp(cachep, slabp); |
3364 | l3->free_objects--; | |
3365 | /* move slabp to correct slabp list: */ | |
3366 | list_del(&slabp->list); | |
3367 | ||
a737b3e2 | 3368 | if (slabp->free == BUFCTL_END) |
b28a02de | 3369 | list_add(&slabp->list, &l3->slabs_full); |
a737b3e2 | 3370 | else |
b28a02de | 3371 | list_add(&slabp->list, &l3->slabs_partial); |
e498be7d | 3372 | |
b28a02de PE |
3373 | spin_unlock(&l3->list_lock); |
3374 | goto done; | |
e498be7d | 3375 | |
a737b3e2 | 3376 | must_grow: |
b28a02de | 3377 | spin_unlock(&l3->list_lock); |
3c517a61 | 3378 | x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL); |
765c4507 CL |
3379 | if (x) |
3380 | goto retry; | |
1da177e4 | 3381 | |
8c8cc2c1 | 3382 | return fallback_alloc(cachep, flags); |
e498be7d | 3383 | |
a737b3e2 | 3384 | done: |
b28a02de | 3385 | return obj; |
e498be7d | 3386 | } |
8c8cc2c1 PE |
3387 | |
3388 | /** | |
3389 | * kmem_cache_alloc_node - Allocate an object on the specified node | |
3390 | * @cachep: The cache to allocate from. | |
3391 | * @flags: See kmalloc(). | |
3392 | * @nodeid: node number of the target node. | |
3393 | * @caller: return address of caller, used for debug information | |
3394 | * | |
3395 | * Identical to kmem_cache_alloc but it will allocate memory on the given | |
3396 | * node, which can improve the performance for cpu bound structures. | |
3397 | * | |
3398 | * Fallback to other node is possible if __GFP_THISNODE is not set. | |
3399 | */ | |
3400 | static __always_inline void * | |
3401 | __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid, | |
3402 | void *caller) | |
3403 | { | |
3404 | unsigned long save_flags; | |
3405 | void *ptr; | |
7d6e6d09 | 3406 | int slab_node = numa_mem_id(); |
8c8cc2c1 | 3407 | |
dcce284a | 3408 | flags &= gfp_allowed_mask; |
7e85ee0c | 3409 | |
cf40bd16 NP |
3410 | lockdep_trace_alloc(flags); |
3411 | ||
773ff60e | 3412 | if (slab_should_failslab(cachep, flags)) |
824ebef1 AM |
3413 | return NULL; |
3414 | ||
8c8cc2c1 PE |
3415 | cache_alloc_debugcheck_before(cachep, flags); |
3416 | local_irq_save(save_flags); | |
3417 | ||
eacbbae3 | 3418 | if (nodeid == NUMA_NO_NODE) |
7d6e6d09 | 3419 | nodeid = slab_node; |
8c8cc2c1 PE |
3420 | |
3421 | if (unlikely(!cachep->nodelists[nodeid])) { | |
3422 | /* Node not bootstrapped yet */ | |
3423 | ptr = fallback_alloc(cachep, flags); | |
3424 | goto out; | |
3425 | } | |
3426 | ||
7d6e6d09 | 3427 | if (nodeid == slab_node) { |
8c8cc2c1 PE |
3428 | /* |
3429 | * Use the locally cached objects if possible. | |
3430 | * However ____cache_alloc does not allow fallback | |
3431 | * to other nodes. It may fail while we still have | |
3432 | * objects on other nodes available. | |
3433 | */ | |
3434 | ptr = ____cache_alloc(cachep, flags); | |
3435 | if (ptr) | |
3436 | goto out; | |
3437 | } | |
3438 | /* ___cache_alloc_node can fall back to other nodes */ | |
3439 | ptr = ____cache_alloc_node(cachep, flags, nodeid); | |
3440 | out: | |
3441 | local_irq_restore(save_flags); | |
3442 | ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller); | |
8c138bc0 | 3443 | kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags, |
d5cff635 | 3444 | flags); |
8c8cc2c1 | 3445 | |
c175eea4 | 3446 | if (likely(ptr)) |
8c138bc0 | 3447 | kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size); |
c175eea4 | 3448 | |
d07dbea4 | 3449 | if (unlikely((flags & __GFP_ZERO) && ptr)) |
8c138bc0 | 3450 | memset(ptr, 0, cachep->object_size); |
d07dbea4 | 3451 | |
8c8cc2c1 PE |
3452 | return ptr; |
3453 | } | |
3454 | ||
3455 | static __always_inline void * | |
3456 | __do_cache_alloc(struct kmem_cache *cache, gfp_t flags) | |
3457 | { | |
3458 | void *objp; | |
3459 | ||
3460 | if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) { | |
3461 | objp = alternate_node_alloc(cache, flags); | |
3462 | if (objp) | |
3463 | goto out; | |
3464 | } | |
3465 | objp = ____cache_alloc(cache, flags); | |
3466 | ||
3467 | /* | |
3468 | * We may just have run out of memory on the local node. | |
3469 | * ____cache_alloc_node() knows how to locate memory on other nodes | |
3470 | */ | |
7d6e6d09 LS |
3471 | if (!objp) |
3472 | objp = ____cache_alloc_node(cache, flags, numa_mem_id()); | |
8c8cc2c1 PE |
3473 | |
3474 | out: | |
3475 | return objp; | |
3476 | } | |
3477 | #else | |
3478 | ||
3479 | static __always_inline void * | |
3480 | __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags) | |
3481 | { | |
3482 | return ____cache_alloc(cachep, flags); | |
3483 | } | |
3484 | ||
3485 | #endif /* CONFIG_NUMA */ | |
3486 | ||
3487 | static __always_inline void * | |
3488 | __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller) | |
3489 | { | |
3490 | unsigned long save_flags; | |
3491 | void *objp; | |
3492 | ||
dcce284a | 3493 | flags &= gfp_allowed_mask; |
7e85ee0c | 3494 | |
cf40bd16 NP |
3495 | lockdep_trace_alloc(flags); |
3496 | ||
773ff60e | 3497 | if (slab_should_failslab(cachep, flags)) |
824ebef1 AM |
3498 | return NULL; |
3499 | ||
8c8cc2c1 PE |
3500 | cache_alloc_debugcheck_before(cachep, flags); |
3501 | local_irq_save(save_flags); | |
3502 | objp = __do_cache_alloc(cachep, flags); | |
3503 | local_irq_restore(save_flags); | |
3504 | objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller); | |
8c138bc0 | 3505 | kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags, |
d5cff635 | 3506 | flags); |
8c8cc2c1 PE |
3507 | prefetchw(objp); |
3508 | ||
c175eea4 | 3509 | if (likely(objp)) |
8c138bc0 | 3510 | kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size); |
c175eea4 | 3511 | |
d07dbea4 | 3512 | if (unlikely((flags & __GFP_ZERO) && objp)) |
8c138bc0 | 3513 | memset(objp, 0, cachep->object_size); |
d07dbea4 | 3514 | |
8c8cc2c1 PE |
3515 | return objp; |
3516 | } | |
e498be7d CL |
3517 | |
3518 | /* | |
3519 | * Caller needs to acquire correct kmem_list's list_lock | |
3520 | */ | |
343e0d7a | 3521 | static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects, |
b28a02de | 3522 | int node) |
1da177e4 LT |
3523 | { |
3524 | int i; | |
e498be7d | 3525 | struct kmem_list3 *l3; |
1da177e4 LT |
3526 | |
3527 | for (i = 0; i < nr_objects; i++) { | |
3528 | void *objp = objpp[i]; | |
3529 | struct slab *slabp; | |
1da177e4 | 3530 | |
6ed5eb22 | 3531 | slabp = virt_to_slab(objp); |
ff69416e | 3532 | l3 = cachep->nodelists[node]; |
1da177e4 | 3533 | list_del(&slabp->list); |
ff69416e | 3534 | check_spinlock_acquired_node(cachep, node); |
1da177e4 | 3535 | check_slabp(cachep, slabp); |
78d382d7 | 3536 | slab_put_obj(cachep, slabp, objp, node); |
1da177e4 | 3537 | STATS_DEC_ACTIVE(cachep); |
e498be7d | 3538 | l3->free_objects++; |
1da177e4 LT |
3539 | check_slabp(cachep, slabp); |
3540 | ||
3541 | /* fixup slab chains */ | |
3542 | if (slabp->inuse == 0) { | |
e498be7d CL |
3543 | if (l3->free_objects > l3->free_limit) { |
3544 | l3->free_objects -= cachep->num; | |
e5ac9c5a RT |
3545 | /* No need to drop any previously held |
3546 | * lock here, even if we have a off-slab slab | |
3547 | * descriptor it is guaranteed to come from | |
3548 | * a different cache, refer to comments before | |
3549 | * alloc_slabmgmt. | |
3550 | */ | |
1da177e4 LT |
3551 | slab_destroy(cachep, slabp); |
3552 | } else { | |
e498be7d | 3553 | list_add(&slabp->list, &l3->slabs_free); |
1da177e4 LT |
3554 | } |
3555 | } else { | |
3556 | /* Unconditionally move a slab to the end of the | |
3557 | * partial list on free - maximum time for the | |
3558 | * other objects to be freed, too. | |
3559 | */ | |
e498be7d | 3560 | list_add_tail(&slabp->list, &l3->slabs_partial); |
1da177e4 LT |
3561 | } |
3562 | } | |
3563 | } | |
3564 | ||
343e0d7a | 3565 | static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac) |
1da177e4 LT |
3566 | { |
3567 | int batchcount; | |
e498be7d | 3568 | struct kmem_list3 *l3; |
7d6e6d09 | 3569 | int node = numa_mem_id(); |
1da177e4 LT |
3570 | |
3571 | batchcount = ac->batchcount; | |
3572 | #if DEBUG | |
3573 | BUG_ON(!batchcount || batchcount > ac->avail); | |
3574 | #endif | |
3575 | check_irq_off(); | |
ff69416e | 3576 | l3 = cachep->nodelists[node]; |
873623df | 3577 | spin_lock(&l3->list_lock); |
e498be7d CL |
3578 | if (l3->shared) { |
3579 | struct array_cache *shared_array = l3->shared; | |
b28a02de | 3580 | int max = shared_array->limit - shared_array->avail; |
1da177e4 LT |
3581 | if (max) { |
3582 | if (batchcount > max) | |
3583 | batchcount = max; | |
e498be7d | 3584 | memcpy(&(shared_array->entry[shared_array->avail]), |
b28a02de | 3585 | ac->entry, sizeof(void *) * batchcount); |
1da177e4 LT |
3586 | shared_array->avail += batchcount; |
3587 | goto free_done; | |
3588 | } | |
3589 | } | |
3590 | ||
ff69416e | 3591 | free_block(cachep, ac->entry, batchcount, node); |
a737b3e2 | 3592 | free_done: |
1da177e4 LT |
3593 | #if STATS |
3594 | { | |
3595 | int i = 0; | |
3596 | struct list_head *p; | |
3597 | ||
e498be7d CL |
3598 | p = l3->slabs_free.next; |
3599 | while (p != &(l3->slabs_free)) { | |
1da177e4 LT |
3600 | struct slab *slabp; |
3601 | ||
3602 | slabp = list_entry(p, struct slab, list); | |
3603 | BUG_ON(slabp->inuse); | |
3604 | ||
3605 | i++; | |
3606 | p = p->next; | |
3607 | } | |
3608 | STATS_SET_FREEABLE(cachep, i); | |
3609 | } | |
3610 | #endif | |
e498be7d | 3611 | spin_unlock(&l3->list_lock); |
1da177e4 | 3612 | ac->avail -= batchcount; |
a737b3e2 | 3613 | memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail); |
1da177e4 LT |
3614 | } |
3615 | ||
3616 | /* | |
a737b3e2 AM |
3617 | * Release an obj back to its cache. If the obj has a constructed state, it must |
3618 | * be in this state _before_ it is released. Called with disabled ints. | |
1da177e4 | 3619 | */ |
a947eb95 SS |
3620 | static inline void __cache_free(struct kmem_cache *cachep, void *objp, |
3621 | void *caller) | |
1da177e4 | 3622 | { |
9a2dba4b | 3623 | struct array_cache *ac = cpu_cache_get(cachep); |
1da177e4 LT |
3624 | |
3625 | check_irq_off(); | |
d5cff635 | 3626 | kmemleak_free_recursive(objp, cachep->flags); |
a947eb95 | 3627 | objp = cache_free_debugcheck(cachep, objp, caller); |
1da177e4 | 3628 | |
8c138bc0 | 3629 | kmemcheck_slab_free(cachep, objp, cachep->object_size); |
c175eea4 | 3630 | |
1807a1aa SS |
3631 | /* |
3632 | * Skip calling cache_free_alien() when the platform is not numa. | |
3633 | * This will avoid cache misses that happen while accessing slabp (which | |
3634 | * is per page memory reference) to get nodeid. Instead use a global | |
3635 | * variable to skip the call, which is mostly likely to be present in | |
3636 | * the cache. | |
3637 | */ | |
b6e68bc1 | 3638 | if (nr_online_nodes > 1 && cache_free_alien(cachep, objp)) |
729bd0b7 PE |
3639 | return; |
3640 | ||
1da177e4 LT |
3641 | if (likely(ac->avail < ac->limit)) { |
3642 | STATS_INC_FREEHIT(cachep); | |
1da177e4 LT |
3643 | } else { |
3644 | STATS_INC_FREEMISS(cachep); | |
3645 | cache_flusharray(cachep, ac); | |
1da177e4 | 3646 | } |
42c8c99c ZJ |
3647 | |
3648 | ac->entry[ac->avail++] = objp; | |
1da177e4 LT |
3649 | } |
3650 | ||
3651 | /** | |
3652 | * kmem_cache_alloc - Allocate an object | |
3653 | * @cachep: The cache to allocate from. | |
3654 | * @flags: See kmalloc(). | |
3655 | * | |
3656 | * Allocate an object from this cache. The flags are only relevant | |
3657 | * if the cache has no available objects. | |
3658 | */ | |
343e0d7a | 3659 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
1da177e4 | 3660 | { |
36555751 EGM |
3661 | void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0)); |
3662 | ||
ca2b84cb | 3663 | trace_kmem_cache_alloc(_RET_IP_, ret, |
8c138bc0 | 3664 | cachep->object_size, cachep->size, flags); |
36555751 EGM |
3665 | |
3666 | return ret; | |
1da177e4 LT |
3667 | } |
3668 | EXPORT_SYMBOL(kmem_cache_alloc); | |
3669 | ||
0f24f128 | 3670 | #ifdef CONFIG_TRACING |
85beb586 SR |
3671 | void * |
3672 | kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags) | |
36555751 | 3673 | { |
85beb586 SR |
3674 | void *ret; |
3675 | ||
3676 | ret = __cache_alloc(cachep, flags, __builtin_return_address(0)); | |
3677 | ||
3678 | trace_kmalloc(_RET_IP_, ret, | |
3679 | size, slab_buffer_size(cachep), flags); | |
3680 | return ret; | |
36555751 | 3681 | } |
85beb586 | 3682 | EXPORT_SYMBOL(kmem_cache_alloc_trace); |
36555751 EGM |
3683 | #endif |
3684 | ||
1da177e4 | 3685 | #ifdef CONFIG_NUMA |
8b98c169 CH |
3686 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid) |
3687 | { | |
36555751 EGM |
3688 | void *ret = __cache_alloc_node(cachep, flags, nodeid, |
3689 | __builtin_return_address(0)); | |
3690 | ||
ca2b84cb | 3691 | trace_kmem_cache_alloc_node(_RET_IP_, ret, |
8c138bc0 | 3692 | cachep->object_size, cachep->size, |
ca2b84cb | 3693 | flags, nodeid); |
36555751 EGM |
3694 | |
3695 | return ret; | |
8b98c169 | 3696 | } |
1da177e4 LT |
3697 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
3698 | ||
0f24f128 | 3699 | #ifdef CONFIG_TRACING |
85beb586 SR |
3700 | void *kmem_cache_alloc_node_trace(size_t size, |
3701 | struct kmem_cache *cachep, | |
3702 | gfp_t flags, | |
3703 | int nodeid) | |
36555751 | 3704 | { |
85beb586 SR |
3705 | void *ret; |
3706 | ||
3707 | ret = __cache_alloc_node(cachep, flags, nodeid, | |
36555751 | 3708 | __builtin_return_address(0)); |
85beb586 SR |
3709 | trace_kmalloc_node(_RET_IP_, ret, |
3710 | size, slab_buffer_size(cachep), | |
3711 | flags, nodeid); | |
3712 | return ret; | |
36555751 | 3713 | } |
85beb586 | 3714 | EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
36555751 EGM |
3715 | #endif |
3716 | ||
8b98c169 CH |
3717 | static __always_inline void * |
3718 | __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller) | |
97e2bde4 | 3719 | { |
343e0d7a | 3720 | struct kmem_cache *cachep; |
97e2bde4 MS |
3721 | |
3722 | cachep = kmem_find_general_cachep(size, flags); | |
6cb8f913 CL |
3723 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3724 | return cachep; | |
85beb586 | 3725 | return kmem_cache_alloc_node_trace(size, cachep, flags, node); |
97e2bde4 | 3726 | } |
8b98c169 | 3727 | |
0bb38a5c | 3728 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) |
8b98c169 CH |
3729 | void *__kmalloc_node(size_t size, gfp_t flags, int node) |
3730 | { | |
3731 | return __do_kmalloc_node(size, flags, node, | |
3732 | __builtin_return_address(0)); | |
3733 | } | |
dbe5e69d | 3734 | EXPORT_SYMBOL(__kmalloc_node); |
8b98c169 CH |
3735 | |
3736 | void *__kmalloc_node_track_caller(size_t size, gfp_t flags, | |
ce71e27c | 3737 | int node, unsigned long caller) |
8b98c169 | 3738 | { |
ce71e27c | 3739 | return __do_kmalloc_node(size, flags, node, (void *)caller); |
8b98c169 CH |
3740 | } |
3741 | EXPORT_SYMBOL(__kmalloc_node_track_caller); | |
3742 | #else | |
3743 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | |
3744 | { | |
3745 | return __do_kmalloc_node(size, flags, node, NULL); | |
3746 | } | |
3747 | EXPORT_SYMBOL(__kmalloc_node); | |
0bb38a5c | 3748 | #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */ |
8b98c169 | 3749 | #endif /* CONFIG_NUMA */ |
1da177e4 LT |
3750 | |
3751 | /** | |
800590f5 | 3752 | * __do_kmalloc - allocate memory |
1da177e4 | 3753 | * @size: how many bytes of memory are required. |
800590f5 | 3754 | * @flags: the type of memory to allocate (see kmalloc). |
911851e6 | 3755 | * @caller: function caller for debug tracking of the caller |
1da177e4 | 3756 | */ |
7fd6b141 PE |
3757 | static __always_inline void *__do_kmalloc(size_t size, gfp_t flags, |
3758 | void *caller) | |
1da177e4 | 3759 | { |
343e0d7a | 3760 | struct kmem_cache *cachep; |
36555751 | 3761 | void *ret; |
1da177e4 | 3762 | |
97e2bde4 MS |
3763 | /* If you want to save a few bytes .text space: replace |
3764 | * __ with kmem_. | |
3765 | * Then kmalloc uses the uninlined functions instead of the inline | |
3766 | * functions. | |
3767 | */ | |
3768 | cachep = __find_general_cachep(size, flags); | |
a5c96d8a LT |
3769 | if (unlikely(ZERO_OR_NULL_PTR(cachep))) |
3770 | return cachep; | |
36555751 EGM |
3771 | ret = __cache_alloc(cachep, flags, caller); |
3772 | ||
ca2b84cb | 3773 | trace_kmalloc((unsigned long) caller, ret, |
3b0efdfa | 3774 | size, cachep->size, flags); |
36555751 EGM |
3775 | |
3776 | return ret; | |
7fd6b141 PE |
3777 | } |
3778 | ||
7fd6b141 | 3779 | |
0bb38a5c | 3780 | #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING) |
7fd6b141 PE |
3781 | void *__kmalloc(size_t size, gfp_t flags) |
3782 | { | |
871751e2 | 3783 | return __do_kmalloc(size, flags, __builtin_return_address(0)); |
1da177e4 LT |
3784 | } |
3785 | EXPORT_SYMBOL(__kmalloc); | |
3786 | ||
ce71e27c | 3787 | void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller) |
7fd6b141 | 3788 | { |
ce71e27c | 3789 | return __do_kmalloc(size, flags, (void *)caller); |
7fd6b141 PE |
3790 | } |
3791 | EXPORT_SYMBOL(__kmalloc_track_caller); | |
1d2c8eea CH |
3792 | |
3793 | #else | |
3794 | void *__kmalloc(size_t size, gfp_t flags) | |
3795 | { | |
3796 | return __do_kmalloc(size, flags, NULL); | |
3797 | } | |
3798 | EXPORT_SYMBOL(__kmalloc); | |
7fd6b141 PE |
3799 | #endif |
3800 | ||
1da177e4 LT |
3801 | /** |
3802 | * kmem_cache_free - Deallocate an object | |
3803 | * @cachep: The cache the allocation was from. | |
3804 | * @objp: The previously allocated object. | |
3805 | * | |
3806 | * Free an object which was previously allocated from this | |
3807 | * cache. | |
3808 | */ | |
343e0d7a | 3809 | void kmem_cache_free(struct kmem_cache *cachep, void *objp) |
1da177e4 LT |
3810 | { |
3811 | unsigned long flags; | |
3812 | ||
3813 | local_irq_save(flags); | |
d97d476b | 3814 | debug_check_no_locks_freed(objp, cachep->object_size); |
3ac7fe5a | 3815 | if (!(cachep->flags & SLAB_DEBUG_OBJECTS)) |
8c138bc0 | 3816 | debug_check_no_obj_freed(objp, cachep->object_size); |
a947eb95 | 3817 | __cache_free(cachep, objp, __builtin_return_address(0)); |
1da177e4 | 3818 | local_irq_restore(flags); |
36555751 | 3819 | |
ca2b84cb | 3820 | trace_kmem_cache_free(_RET_IP_, objp); |
1da177e4 LT |
3821 | } |
3822 | EXPORT_SYMBOL(kmem_cache_free); | |
3823 | ||
1da177e4 LT |
3824 | /** |
3825 | * kfree - free previously allocated memory | |
3826 | * @objp: pointer returned by kmalloc. | |
3827 | * | |
80e93eff PE |
3828 | * If @objp is NULL, no operation is performed. |
3829 | * | |
1da177e4 LT |
3830 | * Don't free memory not originally allocated by kmalloc() |
3831 | * or you will run into trouble. | |
3832 | */ | |
3833 | void kfree(const void *objp) | |
3834 | { | |
343e0d7a | 3835 | struct kmem_cache *c; |
1da177e4 LT |
3836 | unsigned long flags; |
3837 | ||
2121db74 PE |
3838 | trace_kfree(_RET_IP_, objp); |
3839 | ||
6cb8f913 | 3840 | if (unlikely(ZERO_OR_NULL_PTR(objp))) |
1da177e4 LT |
3841 | return; |
3842 | local_irq_save(flags); | |
3843 | kfree_debugcheck(objp); | |
6ed5eb22 | 3844 | c = virt_to_cache(objp); |
8c138bc0 CL |
3845 | debug_check_no_locks_freed(objp, c->object_size); |
3846 | ||
3847 | debug_check_no_obj_freed(objp, c->object_size); | |
a947eb95 | 3848 | __cache_free(c, (void *)objp, __builtin_return_address(0)); |
1da177e4 LT |
3849 | local_irq_restore(flags); |
3850 | } | |
3851 | EXPORT_SYMBOL(kfree); | |
3852 | ||
343e0d7a | 3853 | unsigned int kmem_cache_size(struct kmem_cache *cachep) |
1da177e4 | 3854 | { |
8c138bc0 | 3855 | return cachep->object_size; |
1da177e4 LT |
3856 | } |
3857 | EXPORT_SYMBOL(kmem_cache_size); | |
3858 | ||
e498be7d | 3859 | /* |
183ff22b | 3860 | * This initializes kmem_list3 or resizes various caches for all nodes. |
e498be7d | 3861 | */ |
83b519e8 | 3862 | static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp) |
e498be7d CL |
3863 | { |
3864 | int node; | |
3865 | struct kmem_list3 *l3; | |
cafeb02e | 3866 | struct array_cache *new_shared; |
3395ee05 | 3867 | struct array_cache **new_alien = NULL; |
e498be7d | 3868 | |
9c09a95c | 3869 | for_each_online_node(node) { |
cafeb02e | 3870 | |
3395ee05 | 3871 | if (use_alien_caches) { |
83b519e8 | 3872 | new_alien = alloc_alien_cache(node, cachep->limit, gfp); |
3395ee05 PM |
3873 | if (!new_alien) |
3874 | goto fail; | |
3875 | } | |
cafeb02e | 3876 | |
63109846 ED |
3877 | new_shared = NULL; |
3878 | if (cachep->shared) { | |
3879 | new_shared = alloc_arraycache(node, | |
0718dc2a | 3880 | cachep->shared*cachep->batchcount, |
83b519e8 | 3881 | 0xbaadf00d, gfp); |
63109846 ED |
3882 | if (!new_shared) { |
3883 | free_alien_cache(new_alien); | |
3884 | goto fail; | |
3885 | } | |
0718dc2a | 3886 | } |
cafeb02e | 3887 | |
a737b3e2 AM |
3888 | l3 = cachep->nodelists[node]; |
3889 | if (l3) { | |
cafeb02e CL |
3890 | struct array_cache *shared = l3->shared; |
3891 | ||
e498be7d CL |
3892 | spin_lock_irq(&l3->list_lock); |
3893 | ||
cafeb02e | 3894 | if (shared) |
0718dc2a CL |
3895 | free_block(cachep, shared->entry, |
3896 | shared->avail, node); | |
e498be7d | 3897 | |
cafeb02e CL |
3898 | l3->shared = new_shared; |
3899 | if (!l3->alien) { | |
e498be7d CL |
3900 | l3->alien = new_alien; |
3901 | new_alien = NULL; | |
3902 | } | |
b28a02de | 3903 | l3->free_limit = (1 + nr_cpus_node(node)) * |
a737b3e2 | 3904 | cachep->batchcount + cachep->num; |
e498be7d | 3905 | spin_unlock_irq(&l3->list_lock); |
cafeb02e | 3906 | kfree(shared); |
e498be7d CL |
3907 | free_alien_cache(new_alien); |
3908 | continue; | |
3909 | } | |
83b519e8 | 3910 | l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node); |
0718dc2a CL |
3911 | if (!l3) { |
3912 | free_alien_cache(new_alien); | |
3913 | kfree(new_shared); | |
e498be7d | 3914 | goto fail; |
0718dc2a | 3915 | } |
e498be7d CL |
3916 | |
3917 | kmem_list3_init(l3); | |
3918 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3 + | |
a737b3e2 | 3919 | ((unsigned long)cachep) % REAPTIMEOUT_LIST3; |
cafeb02e | 3920 | l3->shared = new_shared; |
e498be7d | 3921 | l3->alien = new_alien; |
b28a02de | 3922 | l3->free_limit = (1 + nr_cpus_node(node)) * |
a737b3e2 | 3923 | cachep->batchcount + cachep->num; |
e498be7d CL |
3924 | cachep->nodelists[node] = l3; |
3925 | } | |
cafeb02e | 3926 | return 0; |
0718dc2a | 3927 | |
a737b3e2 | 3928 | fail: |
3b0efdfa | 3929 | if (!cachep->list.next) { |
0718dc2a CL |
3930 | /* Cache is not active yet. Roll back what we did */ |
3931 | node--; | |
3932 | while (node >= 0) { | |
3933 | if (cachep->nodelists[node]) { | |
3934 | l3 = cachep->nodelists[node]; | |
3935 | ||
3936 | kfree(l3->shared); | |
3937 | free_alien_cache(l3->alien); | |
3938 | kfree(l3); | |
3939 | cachep->nodelists[node] = NULL; | |
3940 | } | |
3941 | node--; | |
3942 | } | |
3943 | } | |
cafeb02e | 3944 | return -ENOMEM; |
e498be7d CL |
3945 | } |
3946 | ||
1da177e4 | 3947 | struct ccupdate_struct { |
343e0d7a | 3948 | struct kmem_cache *cachep; |
acfe7d74 | 3949 | struct array_cache *new[0]; |
1da177e4 LT |
3950 | }; |
3951 | ||
3952 | static void do_ccupdate_local(void *info) | |
3953 | { | |
a737b3e2 | 3954 | struct ccupdate_struct *new = info; |
1da177e4 LT |
3955 | struct array_cache *old; |
3956 | ||
3957 | check_irq_off(); | |
9a2dba4b | 3958 | old = cpu_cache_get(new->cachep); |
e498be7d | 3959 | |
1da177e4 LT |
3960 | new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()]; |
3961 | new->new[smp_processor_id()] = old; | |
3962 | } | |
3963 | ||
18004c5d | 3964 | /* Always called with the slab_mutex held */ |
a737b3e2 | 3965 | static int do_tune_cpucache(struct kmem_cache *cachep, int limit, |
83b519e8 | 3966 | int batchcount, int shared, gfp_t gfp) |
1da177e4 | 3967 | { |
d2e7b7d0 | 3968 | struct ccupdate_struct *new; |
2ed3a4ef | 3969 | int i; |
1da177e4 | 3970 | |
acfe7d74 ED |
3971 | new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *), |
3972 | gfp); | |
d2e7b7d0 SS |
3973 | if (!new) |
3974 | return -ENOMEM; | |
3975 | ||
e498be7d | 3976 | for_each_online_cpu(i) { |
7d6e6d09 | 3977 | new->new[i] = alloc_arraycache(cpu_to_mem(i), limit, |
83b519e8 | 3978 | batchcount, gfp); |
d2e7b7d0 | 3979 | if (!new->new[i]) { |
b28a02de | 3980 | for (i--; i >= 0; i--) |
d2e7b7d0 SS |
3981 | kfree(new->new[i]); |
3982 | kfree(new); | |
e498be7d | 3983 | return -ENOMEM; |
1da177e4 LT |
3984 | } |
3985 | } | |
d2e7b7d0 | 3986 | new->cachep = cachep; |
1da177e4 | 3987 | |
15c8b6c1 | 3988 | on_each_cpu(do_ccupdate_local, (void *)new, 1); |
e498be7d | 3989 | |
1da177e4 | 3990 | check_irq_on(); |
1da177e4 LT |
3991 | cachep->batchcount = batchcount; |
3992 | cachep->limit = limit; | |
e498be7d | 3993 | cachep->shared = shared; |
1da177e4 | 3994 | |
e498be7d | 3995 | for_each_online_cpu(i) { |
d2e7b7d0 | 3996 | struct array_cache *ccold = new->new[i]; |
1da177e4 LT |
3997 | if (!ccold) |
3998 | continue; | |
7d6e6d09 LS |
3999 | spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); |
4000 | free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i)); | |
4001 | spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock); | |
1da177e4 LT |
4002 | kfree(ccold); |
4003 | } | |
d2e7b7d0 | 4004 | kfree(new); |
83b519e8 | 4005 | return alloc_kmemlist(cachep, gfp); |
1da177e4 LT |
4006 | } |
4007 | ||
18004c5d | 4008 | /* Called with slab_mutex held always */ |
83b519e8 | 4009 | static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp) |
1da177e4 LT |
4010 | { |
4011 | int err; | |
4012 | int limit, shared; | |
4013 | ||
a737b3e2 AM |
4014 | /* |
4015 | * The head array serves three purposes: | |
1da177e4 LT |
4016 | * - create a LIFO ordering, i.e. return objects that are cache-warm |
4017 | * - reduce the number of spinlock operations. | |
a737b3e2 | 4018 | * - reduce the number of linked list operations on the slab and |
1da177e4 LT |
4019 | * bufctl chains: array operations are cheaper. |
4020 | * The numbers are guessed, we should auto-tune as described by | |
4021 | * Bonwick. | |
4022 | */ | |
3b0efdfa | 4023 | if (cachep->size > 131072) |
1da177e4 | 4024 | limit = 1; |
3b0efdfa | 4025 | else if (cachep->size > PAGE_SIZE) |
1da177e4 | 4026 | limit = 8; |
3b0efdfa | 4027 | else if (cachep->size > 1024) |
1da177e4 | 4028 | limit = 24; |
3b0efdfa | 4029 | else if (cachep->size > 256) |
1da177e4 LT |
4030 | limit = 54; |
4031 | else | |
4032 | limit = 120; | |
4033 | ||
a737b3e2 AM |
4034 | /* |
4035 | * CPU bound tasks (e.g. network routing) can exhibit cpu bound | |
1da177e4 LT |
4036 | * allocation behaviour: Most allocs on one cpu, most free operations |
4037 | * on another cpu. For these cases, an efficient object passing between | |
4038 | * cpus is necessary. This is provided by a shared array. The array | |
4039 | * replaces Bonwick's magazine layer. | |
4040 | * On uniprocessor, it's functionally equivalent (but less efficient) | |
4041 | * to a larger limit. Thus disabled by default. | |
4042 | */ | |
4043 | shared = 0; | |
3b0efdfa | 4044 | if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1) |
1da177e4 | 4045 | shared = 8; |
1da177e4 LT |
4046 | |
4047 | #if DEBUG | |
a737b3e2 AM |
4048 | /* |
4049 | * With debugging enabled, large batchcount lead to excessively long | |
4050 | * periods with disabled local interrupts. Limit the batchcount | |
1da177e4 LT |
4051 | */ |
4052 | if (limit > 32) | |
4053 | limit = 32; | |
4054 | #endif | |
83b519e8 | 4055 | err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp); |
1da177e4 LT |
4056 | if (err) |
4057 | printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n", | |
b28a02de | 4058 | cachep->name, -err); |
2ed3a4ef | 4059 | return err; |
1da177e4 LT |
4060 | } |
4061 | ||
1b55253a CL |
4062 | /* |
4063 | * Drain an array if it contains any elements taking the l3 lock only if | |
b18e7e65 CL |
4064 | * necessary. Note that the l3 listlock also protects the array_cache |
4065 | * if drain_array() is used on the shared array. | |
1b55253a | 4066 | */ |
68a1b195 | 4067 | static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3, |
1b55253a | 4068 | struct array_cache *ac, int force, int node) |
1da177e4 LT |
4069 | { |
4070 | int tofree; | |
4071 | ||
1b55253a CL |
4072 | if (!ac || !ac->avail) |
4073 | return; | |
1da177e4 LT |
4074 | if (ac->touched && !force) { |
4075 | ac->touched = 0; | |
b18e7e65 | 4076 | } else { |
1b55253a | 4077 | spin_lock_irq(&l3->list_lock); |
b18e7e65 CL |
4078 | if (ac->avail) { |
4079 | tofree = force ? ac->avail : (ac->limit + 4) / 5; | |
4080 | if (tofree > ac->avail) | |
4081 | tofree = (ac->avail + 1) / 2; | |
4082 | free_block(cachep, ac->entry, tofree, node); | |
4083 | ac->avail -= tofree; | |
4084 | memmove(ac->entry, &(ac->entry[tofree]), | |
4085 | sizeof(void *) * ac->avail); | |
4086 | } | |
1b55253a | 4087 | spin_unlock_irq(&l3->list_lock); |
1da177e4 LT |
4088 | } |
4089 | } | |
4090 | ||
4091 | /** | |
4092 | * cache_reap - Reclaim memory from caches. | |
05fb6bf0 | 4093 | * @w: work descriptor |
1da177e4 LT |
4094 | * |
4095 | * Called from workqueue/eventd every few seconds. | |
4096 | * Purpose: | |
4097 | * - clear the per-cpu caches for this CPU. | |
4098 | * - return freeable pages to the main free memory pool. | |
4099 | * | |
a737b3e2 AM |
4100 | * If we cannot acquire the cache chain mutex then just give up - we'll try |
4101 | * again on the next iteration. | |
1da177e4 | 4102 | */ |
7c5cae36 | 4103 | static void cache_reap(struct work_struct *w) |
1da177e4 | 4104 | { |
7a7c381d | 4105 | struct kmem_cache *searchp; |
e498be7d | 4106 | struct kmem_list3 *l3; |
7d6e6d09 | 4107 | int node = numa_mem_id(); |
bf6aede7 | 4108 | struct delayed_work *work = to_delayed_work(w); |
1da177e4 | 4109 | |
18004c5d | 4110 | if (!mutex_trylock(&slab_mutex)) |
1da177e4 | 4111 | /* Give up. Setup the next iteration. */ |
7c5cae36 | 4112 | goto out; |
1da177e4 | 4113 | |
18004c5d | 4114 | list_for_each_entry(searchp, &slab_caches, list) { |
1da177e4 LT |
4115 | check_irq_on(); |
4116 | ||
35386e3b CL |
4117 | /* |
4118 | * We only take the l3 lock if absolutely necessary and we | |
4119 | * have established with reasonable certainty that | |
4120 | * we can do some work if the lock was obtained. | |
4121 | */ | |
aab2207c | 4122 | l3 = searchp->nodelists[node]; |
35386e3b | 4123 | |
8fce4d8e | 4124 | reap_alien(searchp, l3); |
1da177e4 | 4125 | |
aab2207c | 4126 | drain_array(searchp, l3, cpu_cache_get(searchp), 0, node); |
1da177e4 | 4127 | |
35386e3b CL |
4128 | /* |
4129 | * These are racy checks but it does not matter | |
4130 | * if we skip one check or scan twice. | |
4131 | */ | |
e498be7d | 4132 | if (time_after(l3->next_reap, jiffies)) |
35386e3b | 4133 | goto next; |
1da177e4 | 4134 | |
e498be7d | 4135 | l3->next_reap = jiffies + REAPTIMEOUT_LIST3; |
1da177e4 | 4136 | |
aab2207c | 4137 | drain_array(searchp, l3, l3->shared, 0, node); |
1da177e4 | 4138 | |
ed11d9eb | 4139 | if (l3->free_touched) |
e498be7d | 4140 | l3->free_touched = 0; |
ed11d9eb CL |
4141 | else { |
4142 | int freed; | |
1da177e4 | 4143 | |
ed11d9eb CL |
4144 | freed = drain_freelist(searchp, l3, (l3->free_limit + |
4145 | 5 * searchp->num - 1) / (5 * searchp->num)); | |
4146 | STATS_ADD_REAPED(searchp, freed); | |
4147 | } | |
35386e3b | 4148 | next: |
1da177e4 LT |
4149 | cond_resched(); |
4150 | } | |
4151 | check_irq_on(); | |
18004c5d | 4152 | mutex_unlock(&slab_mutex); |
8fce4d8e | 4153 | next_reap_node(); |
7c5cae36 | 4154 | out: |
a737b3e2 | 4155 | /* Set up the next iteration */ |
7c5cae36 | 4156 | schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC)); |
1da177e4 LT |
4157 | } |
4158 | ||
158a9624 | 4159 | #ifdef CONFIG_SLABINFO |
1da177e4 | 4160 | |
85289f98 | 4161 | static void print_slabinfo_header(struct seq_file *m) |
1da177e4 | 4162 | { |
85289f98 PE |
4163 | /* |
4164 | * Output format version, so at least we can change it | |
4165 | * without _too_ many complaints. | |
4166 | */ | |
1da177e4 | 4167 | #if STATS |
85289f98 | 4168 | seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); |
1da177e4 | 4169 | #else |
85289f98 | 4170 | seq_puts(m, "slabinfo - version: 2.1\n"); |
1da177e4 | 4171 | #endif |
85289f98 PE |
4172 | seq_puts(m, "# name <active_objs> <num_objs> <objsize> " |
4173 | "<objperslab> <pagesperslab>"); | |
4174 | seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | |
4175 | seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | |
1da177e4 | 4176 | #if STATS |
85289f98 | 4177 | seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> " |
fb7faf33 | 4178 | "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); |
85289f98 | 4179 | seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); |
1da177e4 | 4180 | #endif |
85289f98 PE |
4181 | seq_putc(m, '\n'); |
4182 | } | |
4183 | ||
4184 | static void *s_start(struct seq_file *m, loff_t *pos) | |
4185 | { | |
4186 | loff_t n = *pos; | |
85289f98 | 4187 | |
18004c5d | 4188 | mutex_lock(&slab_mutex); |
85289f98 PE |
4189 | if (!n) |
4190 | print_slabinfo_header(m); | |
b92151ba | 4191 | |
18004c5d | 4192 | return seq_list_start(&slab_caches, *pos); |
1da177e4 LT |
4193 | } |
4194 | ||
4195 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | |
4196 | { | |
18004c5d | 4197 | return seq_list_next(p, &slab_caches, pos); |
1da177e4 LT |
4198 | } |
4199 | ||
4200 | static void s_stop(struct seq_file *m, void *p) | |
4201 | { | |
18004c5d | 4202 | mutex_unlock(&slab_mutex); |
1da177e4 LT |
4203 | } |
4204 | ||
4205 | static int s_show(struct seq_file *m, void *p) | |
4206 | { | |
3b0efdfa | 4207 | struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); |
b28a02de PE |
4208 | struct slab *slabp; |
4209 | unsigned long active_objs; | |
4210 | unsigned long num_objs; | |
4211 | unsigned long active_slabs = 0; | |
4212 | unsigned long num_slabs, free_objects = 0, shared_avail = 0; | |
e498be7d | 4213 | const char *name; |
1da177e4 | 4214 | char *error = NULL; |
e498be7d CL |
4215 | int node; |
4216 | struct kmem_list3 *l3; | |
1da177e4 | 4217 | |
1da177e4 LT |
4218 | active_objs = 0; |
4219 | num_slabs = 0; | |
e498be7d CL |
4220 | for_each_online_node(node) { |
4221 | l3 = cachep->nodelists[node]; | |
4222 | if (!l3) | |
4223 | continue; | |
4224 | ||
ca3b9b91 RT |
4225 | check_irq_on(); |
4226 | spin_lock_irq(&l3->list_lock); | |
e498be7d | 4227 | |
7a7c381d | 4228 | list_for_each_entry(slabp, &l3->slabs_full, list) { |
e498be7d CL |
4229 | if (slabp->inuse != cachep->num && !error) |
4230 | error = "slabs_full accounting error"; | |
4231 | active_objs += cachep->num; | |
4232 | active_slabs++; | |
4233 | } | |
7a7c381d | 4234 | list_for_each_entry(slabp, &l3->slabs_partial, list) { |
e498be7d CL |
4235 | if (slabp->inuse == cachep->num && !error) |
4236 | error = "slabs_partial inuse accounting error"; | |
4237 | if (!slabp->inuse && !error) | |
4238 | error = "slabs_partial/inuse accounting error"; | |
4239 | active_objs += slabp->inuse; | |
4240 | active_slabs++; | |
4241 | } | |
7a7c381d | 4242 | list_for_each_entry(slabp, &l3->slabs_free, list) { |
e498be7d CL |
4243 | if (slabp->inuse && !error) |
4244 | error = "slabs_free/inuse accounting error"; | |
4245 | num_slabs++; | |
4246 | } | |
4247 | free_objects += l3->free_objects; | |
4484ebf1 RT |
4248 | if (l3->shared) |
4249 | shared_avail += l3->shared->avail; | |
e498be7d | 4250 | |
ca3b9b91 | 4251 | spin_unlock_irq(&l3->list_lock); |
1da177e4 | 4252 | } |
b28a02de PE |
4253 | num_slabs += active_slabs; |
4254 | num_objs = num_slabs * cachep->num; | |
e498be7d | 4255 | if (num_objs - active_objs != free_objects && !error) |
1da177e4 LT |
4256 | error = "free_objects accounting error"; |
4257 | ||
b28a02de | 4258 | name = cachep->name; |
1da177e4 LT |
4259 | if (error) |
4260 | printk(KERN_ERR "slab: cache %s error: %s\n", name, error); | |
4261 | ||
4262 | seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", | |
3b0efdfa | 4263 | name, active_objs, num_objs, cachep->size, |
b28a02de | 4264 | cachep->num, (1 << cachep->gfporder)); |
1da177e4 | 4265 | seq_printf(m, " : tunables %4u %4u %4u", |
b28a02de | 4266 | cachep->limit, cachep->batchcount, cachep->shared); |
e498be7d | 4267 | seq_printf(m, " : slabdata %6lu %6lu %6lu", |
b28a02de | 4268 | active_slabs, num_slabs, shared_avail); |
1da177e4 | 4269 | #if STATS |
b28a02de | 4270 | { /* list3 stats */ |
1da177e4 LT |
4271 | unsigned long high = cachep->high_mark; |
4272 | unsigned long allocs = cachep->num_allocations; | |
4273 | unsigned long grown = cachep->grown; | |
4274 | unsigned long reaped = cachep->reaped; | |
4275 | unsigned long errors = cachep->errors; | |
4276 | unsigned long max_freeable = cachep->max_freeable; | |
1da177e4 | 4277 | unsigned long node_allocs = cachep->node_allocs; |
e498be7d | 4278 | unsigned long node_frees = cachep->node_frees; |
fb7faf33 | 4279 | unsigned long overflows = cachep->node_overflow; |
1da177e4 | 4280 | |
e92dd4fd JP |
4281 | seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu " |
4282 | "%4lu %4lu %4lu %4lu %4lu", | |
4283 | allocs, high, grown, | |
4284 | reaped, errors, max_freeable, node_allocs, | |
4285 | node_frees, overflows); | |
1da177e4 LT |
4286 | } |
4287 | /* cpu stats */ | |
4288 | { | |
4289 | unsigned long allochit = atomic_read(&cachep->allochit); | |
4290 | unsigned long allocmiss = atomic_read(&cachep->allocmiss); | |
4291 | unsigned long freehit = atomic_read(&cachep->freehit); | |
4292 | unsigned long freemiss = atomic_read(&cachep->freemiss); | |
4293 | ||
4294 | seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu", | |
b28a02de | 4295 | allochit, allocmiss, freehit, freemiss); |
1da177e4 LT |
4296 | } |
4297 | #endif | |
4298 | seq_putc(m, '\n'); | |
1da177e4 LT |
4299 | return 0; |
4300 | } | |
4301 | ||
4302 | /* | |
4303 | * slabinfo_op - iterator that generates /proc/slabinfo | |
4304 | * | |
4305 | * Output layout: | |
4306 | * cache-name | |
4307 | * num-active-objs | |
4308 | * total-objs | |
4309 | * object size | |
4310 | * num-active-slabs | |
4311 | * total-slabs | |
4312 | * num-pages-per-slab | |
4313 | * + further values on SMP and with statistics enabled | |
4314 | */ | |
4315 | ||
7b3c3a50 | 4316 | static const struct seq_operations slabinfo_op = { |
b28a02de PE |
4317 | .start = s_start, |
4318 | .next = s_next, | |
4319 | .stop = s_stop, | |
4320 | .show = s_show, | |
1da177e4 LT |
4321 | }; |
4322 | ||
4323 | #define MAX_SLABINFO_WRITE 128 | |
4324 | /** | |
4325 | * slabinfo_write - Tuning for the slab allocator | |
4326 | * @file: unused | |
4327 | * @buffer: user buffer | |
4328 | * @count: data length | |
4329 | * @ppos: unused | |
4330 | */ | |
68a1b195 | 4331 | static ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
b28a02de | 4332 | size_t count, loff_t *ppos) |
1da177e4 | 4333 | { |
b28a02de | 4334 | char kbuf[MAX_SLABINFO_WRITE + 1], *tmp; |
1da177e4 | 4335 | int limit, batchcount, shared, res; |
7a7c381d | 4336 | struct kmem_cache *cachep; |
b28a02de | 4337 | |
1da177e4 LT |
4338 | if (count > MAX_SLABINFO_WRITE) |
4339 | return -EINVAL; | |
4340 | if (copy_from_user(&kbuf, buffer, count)) | |
4341 | return -EFAULT; | |
b28a02de | 4342 | kbuf[MAX_SLABINFO_WRITE] = '\0'; |
1da177e4 LT |
4343 | |
4344 | tmp = strchr(kbuf, ' '); | |
4345 | if (!tmp) | |
4346 | return -EINVAL; | |
4347 | *tmp = '\0'; | |
4348 | tmp++; | |
4349 | if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3) | |
4350 | return -EINVAL; | |
4351 | ||
4352 | /* Find the cache in the chain of caches. */ | |
18004c5d | 4353 | mutex_lock(&slab_mutex); |
1da177e4 | 4354 | res = -EINVAL; |
18004c5d | 4355 | list_for_each_entry(cachep, &slab_caches, list) { |
1da177e4 | 4356 | if (!strcmp(cachep->name, kbuf)) { |
a737b3e2 AM |
4357 | if (limit < 1 || batchcount < 1 || |
4358 | batchcount > limit || shared < 0) { | |
e498be7d | 4359 | res = 0; |
1da177e4 | 4360 | } else { |
e498be7d | 4361 | res = do_tune_cpucache(cachep, limit, |
83b519e8 PE |
4362 | batchcount, shared, |
4363 | GFP_KERNEL); | |
1da177e4 LT |
4364 | } |
4365 | break; | |
4366 | } | |
4367 | } | |
18004c5d | 4368 | mutex_unlock(&slab_mutex); |
1da177e4 LT |
4369 | if (res >= 0) |
4370 | res = count; | |
4371 | return res; | |
4372 | } | |
871751e2 | 4373 | |
7b3c3a50 AD |
4374 | static int slabinfo_open(struct inode *inode, struct file *file) |
4375 | { | |
4376 | return seq_open(file, &slabinfo_op); | |
4377 | } | |
4378 | ||
4379 | static const struct file_operations proc_slabinfo_operations = { | |
4380 | .open = slabinfo_open, | |
4381 | .read = seq_read, | |
4382 | .write = slabinfo_write, | |
4383 | .llseek = seq_lseek, | |
4384 | .release = seq_release, | |
4385 | }; | |
4386 | ||
871751e2 AV |
4387 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
4388 | ||
4389 | static void *leaks_start(struct seq_file *m, loff_t *pos) | |
4390 | { | |
18004c5d CL |
4391 | mutex_lock(&slab_mutex); |
4392 | return seq_list_start(&slab_caches, *pos); | |
871751e2 AV |
4393 | } |
4394 | ||
4395 | static inline int add_caller(unsigned long *n, unsigned long v) | |
4396 | { | |
4397 | unsigned long *p; | |
4398 | int l; | |
4399 | if (!v) | |
4400 | return 1; | |
4401 | l = n[1]; | |
4402 | p = n + 2; | |
4403 | while (l) { | |
4404 | int i = l/2; | |
4405 | unsigned long *q = p + 2 * i; | |
4406 | if (*q == v) { | |
4407 | q[1]++; | |
4408 | return 1; | |
4409 | } | |
4410 | if (*q > v) { | |
4411 | l = i; | |
4412 | } else { | |
4413 | p = q + 2; | |
4414 | l -= i + 1; | |
4415 | } | |
4416 | } | |
4417 | if (++n[1] == n[0]) | |
4418 | return 0; | |
4419 | memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n)); | |
4420 | p[0] = v; | |
4421 | p[1] = 1; | |
4422 | return 1; | |
4423 | } | |
4424 | ||
4425 | static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s) | |
4426 | { | |
4427 | void *p; | |
4428 | int i; | |
4429 | if (n[0] == n[1]) | |
4430 | return; | |
3b0efdfa | 4431 | for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) { |
871751e2 AV |
4432 | if (slab_bufctl(s)[i] != BUFCTL_ACTIVE) |
4433 | continue; | |
4434 | if (!add_caller(n, (unsigned long)*dbg_userword(c, p))) | |
4435 | return; | |
4436 | } | |
4437 | } | |
4438 | ||
4439 | static void show_symbol(struct seq_file *m, unsigned long address) | |
4440 | { | |
4441 | #ifdef CONFIG_KALLSYMS | |
871751e2 | 4442 | unsigned long offset, size; |
9281acea | 4443 | char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN]; |
871751e2 | 4444 | |
a5c43dae | 4445 | if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) { |
871751e2 | 4446 | seq_printf(m, "%s+%#lx/%#lx", name, offset, size); |
a5c43dae | 4447 | if (modname[0]) |
871751e2 AV |
4448 | seq_printf(m, " [%s]", modname); |
4449 | return; | |
4450 | } | |
4451 | #endif | |
4452 | seq_printf(m, "%p", (void *)address); | |
4453 | } | |
4454 | ||
4455 | static int leaks_show(struct seq_file *m, void *p) | |
4456 | { | |
0672aa7c | 4457 | struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list); |
871751e2 AV |
4458 | struct slab *slabp; |
4459 | struct kmem_list3 *l3; | |
4460 | const char *name; | |
4461 | unsigned long *n = m->private; | |
4462 | int node; | |
4463 | int i; | |
4464 | ||
4465 | if (!(cachep->flags & SLAB_STORE_USER)) | |
4466 | return 0; | |
4467 | if (!(cachep->flags & SLAB_RED_ZONE)) | |
4468 | return 0; | |
4469 | ||
4470 | /* OK, we can do it */ | |
4471 | ||
4472 | n[1] = 0; | |
4473 | ||
4474 | for_each_online_node(node) { | |
4475 | l3 = cachep->nodelists[node]; | |
4476 | if (!l3) | |
4477 | continue; | |
4478 | ||
4479 | check_irq_on(); | |
4480 | spin_lock_irq(&l3->list_lock); | |
4481 | ||
7a7c381d | 4482 | list_for_each_entry(slabp, &l3->slabs_full, list) |
871751e2 | 4483 | handle_slab(n, cachep, slabp); |
7a7c381d | 4484 | list_for_each_entry(slabp, &l3->slabs_partial, list) |
871751e2 | 4485 | handle_slab(n, cachep, slabp); |
871751e2 AV |
4486 | spin_unlock_irq(&l3->list_lock); |
4487 | } | |
4488 | name = cachep->name; | |
4489 | if (n[0] == n[1]) { | |
4490 | /* Increase the buffer size */ | |
18004c5d | 4491 | mutex_unlock(&slab_mutex); |
871751e2 AV |
4492 | m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL); |
4493 | if (!m->private) { | |
4494 | /* Too bad, we are really out */ | |
4495 | m->private = n; | |
18004c5d | 4496 | mutex_lock(&slab_mutex); |
871751e2 AV |
4497 | return -ENOMEM; |
4498 | } | |
4499 | *(unsigned long *)m->private = n[0] * 2; | |
4500 | kfree(n); | |
18004c5d | 4501 | mutex_lock(&slab_mutex); |
871751e2 AV |
4502 | /* Now make sure this entry will be retried */ |
4503 | m->count = m->size; | |
4504 | return 0; | |
4505 | } | |
4506 | for (i = 0; i < n[1]; i++) { | |
4507 | seq_printf(m, "%s: %lu ", name, n[2*i+3]); | |
4508 | show_symbol(m, n[2*i+2]); | |
4509 | seq_putc(m, '\n'); | |
4510 | } | |
d2e7b7d0 | 4511 | |
871751e2 AV |
4512 | return 0; |
4513 | } | |
4514 | ||
a0ec95a8 | 4515 | static const struct seq_operations slabstats_op = { |
871751e2 AV |
4516 | .start = leaks_start, |
4517 | .next = s_next, | |
4518 | .stop = s_stop, | |
4519 | .show = leaks_show, | |
4520 | }; | |
a0ec95a8 AD |
4521 | |
4522 | static int slabstats_open(struct inode *inode, struct file *file) | |
4523 | { | |
4524 | unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL); | |
4525 | int ret = -ENOMEM; | |
4526 | if (n) { | |
4527 | ret = seq_open(file, &slabstats_op); | |
4528 | if (!ret) { | |
4529 | struct seq_file *m = file->private_data; | |
4530 | *n = PAGE_SIZE / (2 * sizeof(unsigned long)); | |
4531 | m->private = n; | |
4532 | n = NULL; | |
4533 | } | |
4534 | kfree(n); | |
4535 | } | |
4536 | return ret; | |
4537 | } | |
4538 | ||
4539 | static const struct file_operations proc_slabstats_operations = { | |
4540 | .open = slabstats_open, | |
4541 | .read = seq_read, | |
4542 | .llseek = seq_lseek, | |
4543 | .release = seq_release_private, | |
4544 | }; | |
4545 | #endif | |
4546 | ||
4547 | static int __init slab_proc_init(void) | |
4548 | { | |
ab067e99 | 4549 | proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations); |
a0ec95a8 AD |
4550 | #ifdef CONFIG_DEBUG_SLAB_LEAK |
4551 | proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations); | |
871751e2 | 4552 | #endif |
a0ec95a8 AD |
4553 | return 0; |
4554 | } | |
4555 | module_init(slab_proc_init); | |
1da177e4 LT |
4556 | #endif |
4557 | ||
00e145b6 MS |
4558 | /** |
4559 | * ksize - get the actual amount of memory allocated for a given object | |
4560 | * @objp: Pointer to the object | |
4561 | * | |
4562 | * kmalloc may internally round up allocations and return more memory | |
4563 | * than requested. ksize() can be used to determine the actual amount of | |
4564 | * memory allocated. The caller may use this additional memory, even though | |
4565 | * a smaller amount of memory was initially specified with the kmalloc call. | |
4566 | * The caller must guarantee that objp points to a valid object previously | |
4567 | * allocated with either kmalloc() or kmem_cache_alloc(). The object | |
4568 | * must not be freed during the duration of the call. | |
4569 | */ | |
fd76bab2 | 4570 | size_t ksize(const void *objp) |
1da177e4 | 4571 | { |
ef8b4520 CL |
4572 | BUG_ON(!objp); |
4573 | if (unlikely(objp == ZERO_SIZE_PTR)) | |
00e145b6 | 4574 | return 0; |
1da177e4 | 4575 | |
8c138bc0 | 4576 | return virt_to_cache(objp)->object_size; |
1da177e4 | 4577 | } |
b1aabecd | 4578 | EXPORT_SYMBOL(ksize); |