]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/memory.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * demand-loading started 01.12.91 - seems it is high on the list of | |
9 | * things wanted, and it should be easy to implement. - Linus | |
10 | */ | |
11 | ||
12 | /* | |
13 | * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | |
14 | * pages started 02.12.91, seems to work. - Linus. | |
15 | * | |
16 | * Tested sharing by executing about 30 /bin/sh: under the old kernel it | |
17 | * would have taken more than the 6M I have free, but it worked well as | |
18 | * far as I could see. | |
19 | * | |
20 | * Also corrected some "invalidate()"s - I wasn't doing enough of them. | |
21 | */ | |
22 | ||
23 | /* | |
24 | * Real VM (paging to/from disk) started 18.12.91. Much more work and | |
25 | * thought has to go into this. Oh, well.. | |
26 | * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. | |
27 | * Found it. Everything seems to work now. | |
28 | * 20.12.91 - Ok, making the swap-device changeable like the root. | |
29 | */ | |
30 | ||
31 | /* | |
32 | * 05.04.94 - Multi-page memory management added for v1.1. | |
33 | * Idea by Alex Bligh ([email protected]) | |
34 | * | |
35 | * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG | |
36 | * ([email protected]) | |
37 | * | |
38 | * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | |
39 | */ | |
40 | ||
41 | #include <linux/kernel_stat.h> | |
42 | #include <linux/mm.h> | |
43 | #include <linux/hugetlb.h> | |
44 | #include <linux/mman.h> | |
45 | #include <linux/swap.h> | |
46 | #include <linux/highmem.h> | |
47 | #include <linux/pagemap.h> | |
9a840895 | 48 | #include <linux/ksm.h> |
1da177e4 | 49 | #include <linux/rmap.h> |
b95f1b31 | 50 | #include <linux/export.h> |
0ff92245 | 51 | #include <linux/delayacct.h> |
1da177e4 | 52 | #include <linux/init.h> |
01c8f1c4 | 53 | #include <linux/pfn_t.h> |
edc79b2a | 54 | #include <linux/writeback.h> |
8a9f3ccd | 55 | #include <linux/memcontrol.h> |
cddb8a5c | 56 | #include <linux/mmu_notifier.h> |
3dc14741 HD |
57 | #include <linux/kallsyms.h> |
58 | #include <linux/swapops.h> | |
59 | #include <linux/elf.h> | |
5a0e3ad6 | 60 | #include <linux/gfp.h> |
4daae3b4 | 61 | #include <linux/migrate.h> |
2fbc57c5 | 62 | #include <linux/string.h> |
0abdd7a8 | 63 | #include <linux/dma-debug.h> |
1592eef0 | 64 | #include <linux/debugfs.h> |
6b251fc9 | 65 | #include <linux/userfaultfd_k.h> |
bc2466e4 | 66 | #include <linux/dax.h> |
1da177e4 | 67 | |
6952b61d | 68 | #include <asm/io.h> |
33a709b2 | 69 | #include <asm/mmu_context.h> |
1da177e4 LT |
70 | #include <asm/pgalloc.h> |
71 | #include <asm/uaccess.h> | |
72 | #include <asm/tlb.h> | |
73 | #include <asm/tlbflush.h> | |
74 | #include <asm/pgtable.h> | |
75 | ||
42b77728 JB |
76 | #include "internal.h" |
77 | ||
90572890 PZ |
78 | #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS |
79 | #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. | |
75980e97 PZ |
80 | #endif |
81 | ||
d41dee36 | 82 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
83 | /* use the per-pgdat data instead for discontigmem - mbligh */ |
84 | unsigned long max_mapnr; | |
85 | struct page *mem_map; | |
86 | ||
87 | EXPORT_SYMBOL(max_mapnr); | |
88 | EXPORT_SYMBOL(mem_map); | |
89 | #endif | |
90 | ||
1da177e4 LT |
91 | /* |
92 | * A number of key systems in x86 including ioremap() rely on the assumption | |
93 | * that high_memory defines the upper bound on direct map memory, then end | |
94 | * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and | |
95 | * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | |
96 | * and ZONE_HIGHMEM. | |
97 | */ | |
98 | void * high_memory; | |
1da177e4 | 99 | |
1da177e4 | 100 | EXPORT_SYMBOL(high_memory); |
1da177e4 | 101 | |
32a93233 IM |
102 | /* |
103 | * Randomize the address space (stacks, mmaps, brk, etc.). | |
104 | * | |
105 | * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, | |
106 | * as ancient (libc5 based) binaries can segfault. ) | |
107 | */ | |
108 | int randomize_va_space __read_mostly = | |
109 | #ifdef CONFIG_COMPAT_BRK | |
110 | 1; | |
111 | #else | |
112 | 2; | |
113 | #endif | |
a62eaf15 AK |
114 | |
115 | static int __init disable_randmaps(char *s) | |
116 | { | |
117 | randomize_va_space = 0; | |
9b41046c | 118 | return 1; |
a62eaf15 AK |
119 | } |
120 | __setup("norandmaps", disable_randmaps); | |
121 | ||
62eede62 | 122 | unsigned long zero_pfn __read_mostly; |
03f6462a | 123 | unsigned long highest_memmap_pfn __read_mostly; |
a13ea5b7 | 124 | |
0b70068e AB |
125 | EXPORT_SYMBOL(zero_pfn); |
126 | ||
a13ea5b7 HD |
127 | /* |
128 | * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() | |
129 | */ | |
130 | static int __init init_zero_pfn(void) | |
131 | { | |
132 | zero_pfn = page_to_pfn(ZERO_PAGE(0)); | |
133 | return 0; | |
134 | } | |
135 | core_initcall(init_zero_pfn); | |
a62eaf15 | 136 | |
d559db08 | 137 | |
34e55232 KH |
138 | #if defined(SPLIT_RSS_COUNTING) |
139 | ||
ea48cf78 | 140 | void sync_mm_rss(struct mm_struct *mm) |
34e55232 KH |
141 | { |
142 | int i; | |
143 | ||
144 | for (i = 0; i < NR_MM_COUNTERS; i++) { | |
05af2e10 DR |
145 | if (current->rss_stat.count[i]) { |
146 | add_mm_counter(mm, i, current->rss_stat.count[i]); | |
147 | current->rss_stat.count[i] = 0; | |
34e55232 KH |
148 | } |
149 | } | |
05af2e10 | 150 | current->rss_stat.events = 0; |
34e55232 KH |
151 | } |
152 | ||
153 | static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) | |
154 | { | |
155 | struct task_struct *task = current; | |
156 | ||
157 | if (likely(task->mm == mm)) | |
158 | task->rss_stat.count[member] += val; | |
159 | else | |
160 | add_mm_counter(mm, member, val); | |
161 | } | |
162 | #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) | |
163 | #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) | |
164 | ||
165 | /* sync counter once per 64 page faults */ | |
166 | #define TASK_RSS_EVENTS_THRESH (64) | |
167 | static void check_sync_rss_stat(struct task_struct *task) | |
168 | { | |
169 | if (unlikely(task != current)) | |
170 | return; | |
171 | if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) | |
ea48cf78 | 172 | sync_mm_rss(task->mm); |
34e55232 | 173 | } |
9547d01b | 174 | #else /* SPLIT_RSS_COUNTING */ |
34e55232 KH |
175 | |
176 | #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) | |
177 | #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) | |
178 | ||
179 | static void check_sync_rss_stat(struct task_struct *task) | |
180 | { | |
181 | } | |
182 | ||
9547d01b PZ |
183 | #endif /* SPLIT_RSS_COUNTING */ |
184 | ||
185 | #ifdef HAVE_GENERIC_MMU_GATHER | |
186 | ||
ca1d6c7d | 187 | static bool tlb_next_batch(struct mmu_gather *tlb) |
9547d01b PZ |
188 | { |
189 | struct mmu_gather_batch *batch; | |
190 | ||
191 | batch = tlb->active; | |
192 | if (batch->next) { | |
193 | tlb->active = batch->next; | |
ca1d6c7d | 194 | return true; |
9547d01b PZ |
195 | } |
196 | ||
53a59fc6 | 197 | if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) |
ca1d6c7d | 198 | return false; |
53a59fc6 | 199 | |
9547d01b PZ |
200 | batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); |
201 | if (!batch) | |
ca1d6c7d | 202 | return false; |
9547d01b | 203 | |
53a59fc6 | 204 | tlb->batch_count++; |
9547d01b PZ |
205 | batch->next = NULL; |
206 | batch->nr = 0; | |
207 | batch->max = MAX_GATHER_BATCH; | |
208 | ||
209 | tlb->active->next = batch; | |
210 | tlb->active = batch; | |
211 | ||
ca1d6c7d | 212 | return true; |
9547d01b PZ |
213 | } |
214 | ||
215 | /* tlb_gather_mmu | |
216 | * Called to initialize an (on-stack) mmu_gather structure for page-table | |
217 | * tear-down from @mm. The @fullmm argument is used when @mm is without | |
218 | * users and we're going to destroy the full address space (exit/execve). | |
219 | */ | |
2b047252 | 220 | void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) |
9547d01b PZ |
221 | { |
222 | tlb->mm = mm; | |
223 | ||
2b047252 LT |
224 | /* Is it from 0 to ~0? */ |
225 | tlb->fullmm = !(start | (end+1)); | |
1de14c3c | 226 | tlb->need_flush_all = 0; |
9547d01b PZ |
227 | tlb->local.next = NULL; |
228 | tlb->local.nr = 0; | |
229 | tlb->local.max = ARRAY_SIZE(tlb->__pages); | |
230 | tlb->active = &tlb->local; | |
53a59fc6 | 231 | tlb->batch_count = 0; |
9547d01b PZ |
232 | |
233 | #ifdef CONFIG_HAVE_RCU_TABLE_FREE | |
234 | tlb->batch = NULL; | |
235 | #endif | |
fb7332a9 WD |
236 | |
237 | __tlb_reset_range(tlb); | |
9547d01b PZ |
238 | } |
239 | ||
1cf35d47 | 240 | static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) |
9547d01b | 241 | { |
721c21c1 WD |
242 | if (!tlb->end) |
243 | return; | |
244 | ||
9547d01b | 245 | tlb_flush(tlb); |
34ee645e | 246 | mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); |
9547d01b PZ |
247 | #ifdef CONFIG_HAVE_RCU_TABLE_FREE |
248 | tlb_table_flush(tlb); | |
34e55232 | 249 | #endif |
fb7332a9 | 250 | __tlb_reset_range(tlb); |
1cf35d47 LT |
251 | } |
252 | ||
253 | static void tlb_flush_mmu_free(struct mmu_gather *tlb) | |
254 | { | |
255 | struct mmu_gather_batch *batch; | |
34e55232 | 256 | |
721c21c1 | 257 | for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { |
9547d01b PZ |
258 | free_pages_and_swap_cache(batch->pages, batch->nr); |
259 | batch->nr = 0; | |
260 | } | |
261 | tlb->active = &tlb->local; | |
262 | } | |
263 | ||
1cf35d47 LT |
264 | void tlb_flush_mmu(struct mmu_gather *tlb) |
265 | { | |
1cf35d47 LT |
266 | tlb_flush_mmu_tlbonly(tlb); |
267 | tlb_flush_mmu_free(tlb); | |
268 | } | |
269 | ||
9547d01b PZ |
270 | /* tlb_finish_mmu |
271 | * Called at the end of the shootdown operation to free up any resources | |
272 | * that were required. | |
273 | */ | |
274 | void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) | |
275 | { | |
276 | struct mmu_gather_batch *batch, *next; | |
277 | ||
278 | tlb_flush_mmu(tlb); | |
279 | ||
280 | /* keep the page table cache within bounds */ | |
281 | check_pgt_cache(); | |
282 | ||
283 | for (batch = tlb->local.next; batch; batch = next) { | |
284 | next = batch->next; | |
285 | free_pages((unsigned long)batch, 0); | |
286 | } | |
287 | tlb->local.next = NULL; | |
288 | } | |
289 | ||
290 | /* __tlb_remove_page | |
291 | * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while | |
292 | * handling the additional races in SMP caused by other CPUs caching valid | |
293 | * mappings in their TLBs. Returns the number of free page slots left. | |
294 | * When out of page slots we must call tlb_flush_mmu(). | |
295 | */ | |
296 | int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) | |
297 | { | |
298 | struct mmu_gather_batch *batch; | |
299 | ||
fb7332a9 | 300 | VM_BUG_ON(!tlb->end); |
9547d01b | 301 | |
9547d01b PZ |
302 | batch = tlb->active; |
303 | batch->pages[batch->nr++] = page; | |
304 | if (batch->nr == batch->max) { | |
305 | if (!tlb_next_batch(tlb)) | |
306 | return 0; | |
0b43c3aa | 307 | batch = tlb->active; |
9547d01b | 308 | } |
309381fe | 309 | VM_BUG_ON_PAGE(batch->nr > batch->max, page); |
9547d01b PZ |
310 | |
311 | return batch->max - batch->nr; | |
312 | } | |
313 | ||
314 | #endif /* HAVE_GENERIC_MMU_GATHER */ | |
315 | ||
26723911 PZ |
316 | #ifdef CONFIG_HAVE_RCU_TABLE_FREE |
317 | ||
318 | /* | |
319 | * See the comment near struct mmu_table_batch. | |
320 | */ | |
321 | ||
322 | static void tlb_remove_table_smp_sync(void *arg) | |
323 | { | |
324 | /* Simply deliver the interrupt */ | |
325 | } | |
326 | ||
327 | static void tlb_remove_table_one(void *table) | |
328 | { | |
329 | /* | |
330 | * This isn't an RCU grace period and hence the page-tables cannot be | |
331 | * assumed to be actually RCU-freed. | |
332 | * | |
333 | * It is however sufficient for software page-table walkers that rely on | |
334 | * IRQ disabling. See the comment near struct mmu_table_batch. | |
335 | */ | |
336 | smp_call_function(tlb_remove_table_smp_sync, NULL, 1); | |
337 | __tlb_remove_table(table); | |
338 | } | |
339 | ||
340 | static void tlb_remove_table_rcu(struct rcu_head *head) | |
341 | { | |
342 | struct mmu_table_batch *batch; | |
343 | int i; | |
344 | ||
345 | batch = container_of(head, struct mmu_table_batch, rcu); | |
346 | ||
347 | for (i = 0; i < batch->nr; i++) | |
348 | __tlb_remove_table(batch->tables[i]); | |
349 | ||
350 | free_page((unsigned long)batch); | |
351 | } | |
352 | ||
353 | void tlb_table_flush(struct mmu_gather *tlb) | |
354 | { | |
355 | struct mmu_table_batch **batch = &tlb->batch; | |
356 | ||
357 | if (*batch) { | |
358 | call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); | |
359 | *batch = NULL; | |
360 | } | |
361 | } | |
362 | ||
363 | void tlb_remove_table(struct mmu_gather *tlb, void *table) | |
364 | { | |
365 | struct mmu_table_batch **batch = &tlb->batch; | |
366 | ||
26723911 PZ |
367 | /* |
368 | * When there's less then two users of this mm there cannot be a | |
369 | * concurrent page-table walk. | |
370 | */ | |
371 | if (atomic_read(&tlb->mm->mm_users) < 2) { | |
372 | __tlb_remove_table(table); | |
373 | return; | |
374 | } | |
375 | ||
376 | if (*batch == NULL) { | |
377 | *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); | |
378 | if (*batch == NULL) { | |
379 | tlb_remove_table_one(table); | |
380 | return; | |
381 | } | |
382 | (*batch)->nr = 0; | |
383 | } | |
384 | (*batch)->tables[(*batch)->nr++] = table; | |
385 | if ((*batch)->nr == MAX_TABLE_BATCH) | |
386 | tlb_table_flush(tlb); | |
387 | } | |
388 | ||
9547d01b | 389 | #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ |
26723911 | 390 | |
1da177e4 LT |
391 | /* |
392 | * Note: this doesn't free the actual pages themselves. That | |
393 | * has been handled earlier when unmapping all the memory regions. | |
394 | */ | |
9e1b32ca BH |
395 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, |
396 | unsigned long addr) | |
1da177e4 | 397 | { |
2f569afd | 398 | pgtable_t token = pmd_pgtable(*pmd); |
e0da382c | 399 | pmd_clear(pmd); |
9e1b32ca | 400 | pte_free_tlb(tlb, token, addr); |
e1f56c89 | 401 | atomic_long_dec(&tlb->mm->nr_ptes); |
1da177e4 LT |
402 | } |
403 | ||
e0da382c HD |
404 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, |
405 | unsigned long addr, unsigned long end, | |
406 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
407 | { |
408 | pmd_t *pmd; | |
409 | unsigned long next; | |
e0da382c | 410 | unsigned long start; |
1da177e4 | 411 | |
e0da382c | 412 | start = addr; |
1da177e4 | 413 | pmd = pmd_offset(pud, addr); |
1da177e4 LT |
414 | do { |
415 | next = pmd_addr_end(addr, end); | |
416 | if (pmd_none_or_clear_bad(pmd)) | |
417 | continue; | |
9e1b32ca | 418 | free_pte_range(tlb, pmd, addr); |
1da177e4 LT |
419 | } while (pmd++, addr = next, addr != end); |
420 | ||
e0da382c HD |
421 | start &= PUD_MASK; |
422 | if (start < floor) | |
423 | return; | |
424 | if (ceiling) { | |
425 | ceiling &= PUD_MASK; | |
426 | if (!ceiling) | |
427 | return; | |
1da177e4 | 428 | } |
e0da382c HD |
429 | if (end - 1 > ceiling - 1) |
430 | return; | |
431 | ||
432 | pmd = pmd_offset(pud, start); | |
433 | pud_clear(pud); | |
9e1b32ca | 434 | pmd_free_tlb(tlb, pmd, start); |
dc6c9a35 | 435 | mm_dec_nr_pmds(tlb->mm); |
1da177e4 LT |
436 | } |
437 | ||
e0da382c HD |
438 | static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, |
439 | unsigned long addr, unsigned long end, | |
440 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
441 | { |
442 | pud_t *pud; | |
443 | unsigned long next; | |
e0da382c | 444 | unsigned long start; |
1da177e4 | 445 | |
e0da382c | 446 | start = addr; |
1da177e4 | 447 | pud = pud_offset(pgd, addr); |
1da177e4 LT |
448 | do { |
449 | next = pud_addr_end(addr, end); | |
450 | if (pud_none_or_clear_bad(pud)) | |
451 | continue; | |
e0da382c | 452 | free_pmd_range(tlb, pud, addr, next, floor, ceiling); |
1da177e4 LT |
453 | } while (pud++, addr = next, addr != end); |
454 | ||
e0da382c HD |
455 | start &= PGDIR_MASK; |
456 | if (start < floor) | |
457 | return; | |
458 | if (ceiling) { | |
459 | ceiling &= PGDIR_MASK; | |
460 | if (!ceiling) | |
461 | return; | |
1da177e4 | 462 | } |
e0da382c HD |
463 | if (end - 1 > ceiling - 1) |
464 | return; | |
465 | ||
466 | pud = pud_offset(pgd, start); | |
467 | pgd_clear(pgd); | |
9e1b32ca | 468 | pud_free_tlb(tlb, pud, start); |
1da177e4 LT |
469 | } |
470 | ||
471 | /* | |
e0da382c | 472 | * This function frees user-level page tables of a process. |
1da177e4 | 473 | */ |
42b77728 | 474 | void free_pgd_range(struct mmu_gather *tlb, |
e0da382c HD |
475 | unsigned long addr, unsigned long end, |
476 | unsigned long floor, unsigned long ceiling) | |
1da177e4 LT |
477 | { |
478 | pgd_t *pgd; | |
479 | unsigned long next; | |
e0da382c HD |
480 | |
481 | /* | |
482 | * The next few lines have given us lots of grief... | |
483 | * | |
484 | * Why are we testing PMD* at this top level? Because often | |
485 | * there will be no work to do at all, and we'd prefer not to | |
486 | * go all the way down to the bottom just to discover that. | |
487 | * | |
488 | * Why all these "- 1"s? Because 0 represents both the bottom | |
489 | * of the address space and the top of it (using -1 for the | |
490 | * top wouldn't help much: the masks would do the wrong thing). | |
491 | * The rule is that addr 0 and floor 0 refer to the bottom of | |
492 | * the address space, but end 0 and ceiling 0 refer to the top | |
493 | * Comparisons need to use "end - 1" and "ceiling - 1" (though | |
494 | * that end 0 case should be mythical). | |
495 | * | |
496 | * Wherever addr is brought up or ceiling brought down, we must | |
497 | * be careful to reject "the opposite 0" before it confuses the | |
498 | * subsequent tests. But what about where end is brought down | |
499 | * by PMD_SIZE below? no, end can't go down to 0 there. | |
500 | * | |
501 | * Whereas we round start (addr) and ceiling down, by different | |
502 | * masks at different levels, in order to test whether a table | |
503 | * now has no other vmas using it, so can be freed, we don't | |
504 | * bother to round floor or end up - the tests don't need that. | |
505 | */ | |
1da177e4 | 506 | |
e0da382c HD |
507 | addr &= PMD_MASK; |
508 | if (addr < floor) { | |
509 | addr += PMD_SIZE; | |
510 | if (!addr) | |
511 | return; | |
512 | } | |
513 | if (ceiling) { | |
514 | ceiling &= PMD_MASK; | |
515 | if (!ceiling) | |
516 | return; | |
517 | } | |
518 | if (end - 1 > ceiling - 1) | |
519 | end -= PMD_SIZE; | |
520 | if (addr > end - 1) | |
521 | return; | |
522 | ||
42b77728 | 523 | pgd = pgd_offset(tlb->mm, addr); |
1da177e4 LT |
524 | do { |
525 | next = pgd_addr_end(addr, end); | |
526 | if (pgd_none_or_clear_bad(pgd)) | |
527 | continue; | |
42b77728 | 528 | free_pud_range(tlb, pgd, addr, next, floor, ceiling); |
1da177e4 | 529 | } while (pgd++, addr = next, addr != end); |
e0da382c HD |
530 | } |
531 | ||
42b77728 | 532 | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, |
3bf5ee95 | 533 | unsigned long floor, unsigned long ceiling) |
e0da382c HD |
534 | { |
535 | while (vma) { | |
536 | struct vm_area_struct *next = vma->vm_next; | |
537 | unsigned long addr = vma->vm_start; | |
538 | ||
8f4f8c16 | 539 | /* |
25d9e2d1 NP |
540 | * Hide vma from rmap and truncate_pagecache before freeing |
541 | * pgtables | |
8f4f8c16 | 542 | */ |
5beb4930 | 543 | unlink_anon_vmas(vma); |
8f4f8c16 HD |
544 | unlink_file_vma(vma); |
545 | ||
9da61aef | 546 | if (is_vm_hugetlb_page(vma)) { |
3bf5ee95 | 547 | hugetlb_free_pgd_range(tlb, addr, vma->vm_end, |
e0da382c | 548 | floor, next? next->vm_start: ceiling); |
3bf5ee95 HD |
549 | } else { |
550 | /* | |
551 | * Optimization: gather nearby vmas into one call down | |
552 | */ | |
553 | while (next && next->vm_start <= vma->vm_end + PMD_SIZE | |
4866920b | 554 | && !is_vm_hugetlb_page(next)) { |
3bf5ee95 HD |
555 | vma = next; |
556 | next = vma->vm_next; | |
5beb4930 | 557 | unlink_anon_vmas(vma); |
8f4f8c16 | 558 | unlink_file_vma(vma); |
3bf5ee95 HD |
559 | } |
560 | free_pgd_range(tlb, addr, vma->vm_end, | |
561 | floor, next? next->vm_start: ceiling); | |
562 | } | |
e0da382c HD |
563 | vma = next; |
564 | } | |
1da177e4 LT |
565 | } |
566 | ||
3ed3a4f0 | 567 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) |
1da177e4 | 568 | { |
c4088ebd | 569 | spinlock_t *ptl; |
2f569afd | 570 | pgtable_t new = pte_alloc_one(mm, address); |
1bb3630e HD |
571 | if (!new) |
572 | return -ENOMEM; | |
573 | ||
362a61ad NP |
574 | /* |
575 | * Ensure all pte setup (eg. pte page lock and page clearing) are | |
576 | * visible before the pte is made visible to other CPUs by being | |
577 | * put into page tables. | |
578 | * | |
579 | * The other side of the story is the pointer chasing in the page | |
580 | * table walking code (when walking the page table without locking; | |
581 | * ie. most of the time). Fortunately, these data accesses consist | |
582 | * of a chain of data-dependent loads, meaning most CPUs (alpha | |
583 | * being the notable exception) will already guarantee loads are | |
584 | * seen in-order. See the alpha page table accessors for the | |
585 | * smp_read_barrier_depends() barriers in page table walking code. | |
586 | */ | |
587 | smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ | |
588 | ||
c4088ebd | 589 | ptl = pmd_lock(mm, pmd); |
8ac1f832 | 590 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ |
e1f56c89 | 591 | atomic_long_inc(&mm->nr_ptes); |
1da177e4 | 592 | pmd_populate(mm, pmd, new); |
2f569afd | 593 | new = NULL; |
4b471e88 | 594 | } |
c4088ebd | 595 | spin_unlock(ptl); |
2f569afd MS |
596 | if (new) |
597 | pte_free(mm, new); | |
1bb3630e | 598 | return 0; |
1da177e4 LT |
599 | } |
600 | ||
1bb3630e | 601 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) |
1da177e4 | 602 | { |
1bb3630e HD |
603 | pte_t *new = pte_alloc_one_kernel(&init_mm, address); |
604 | if (!new) | |
605 | return -ENOMEM; | |
606 | ||
362a61ad NP |
607 | smp_wmb(); /* See comment in __pte_alloc */ |
608 | ||
1bb3630e | 609 | spin_lock(&init_mm.page_table_lock); |
8ac1f832 | 610 | if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ |
1bb3630e | 611 | pmd_populate_kernel(&init_mm, pmd, new); |
2f569afd | 612 | new = NULL; |
4b471e88 | 613 | } |
1bb3630e | 614 | spin_unlock(&init_mm.page_table_lock); |
2f569afd MS |
615 | if (new) |
616 | pte_free_kernel(&init_mm, new); | |
1bb3630e | 617 | return 0; |
1da177e4 LT |
618 | } |
619 | ||
d559db08 KH |
620 | static inline void init_rss_vec(int *rss) |
621 | { | |
622 | memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); | |
623 | } | |
624 | ||
625 | static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) | |
ae859762 | 626 | { |
d559db08 KH |
627 | int i; |
628 | ||
34e55232 | 629 | if (current->mm == mm) |
05af2e10 | 630 | sync_mm_rss(mm); |
d559db08 KH |
631 | for (i = 0; i < NR_MM_COUNTERS; i++) |
632 | if (rss[i]) | |
633 | add_mm_counter(mm, i, rss[i]); | |
ae859762 HD |
634 | } |
635 | ||
b5810039 | 636 | /* |
6aab341e LT |
637 | * This function is called to print an error when a bad pte |
638 | * is found. For example, we might have a PFN-mapped pte in | |
639 | * a region that doesn't allow it. | |
b5810039 NP |
640 | * |
641 | * The calling function must still handle the error. | |
642 | */ | |
3dc14741 HD |
643 | static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, |
644 | pte_t pte, struct page *page) | |
b5810039 | 645 | { |
3dc14741 HD |
646 | pgd_t *pgd = pgd_offset(vma->vm_mm, addr); |
647 | pud_t *pud = pud_offset(pgd, addr); | |
648 | pmd_t *pmd = pmd_offset(pud, addr); | |
649 | struct address_space *mapping; | |
650 | pgoff_t index; | |
d936cf9b HD |
651 | static unsigned long resume; |
652 | static unsigned long nr_shown; | |
653 | static unsigned long nr_unshown; | |
654 | ||
655 | /* | |
656 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
657 | * or allow a steady drip of one report per second. | |
658 | */ | |
659 | if (nr_shown == 60) { | |
660 | if (time_before(jiffies, resume)) { | |
661 | nr_unshown++; | |
662 | return; | |
663 | } | |
664 | if (nr_unshown) { | |
1170532b JP |
665 | pr_alert("BUG: Bad page map: %lu messages suppressed\n", |
666 | nr_unshown); | |
d936cf9b HD |
667 | nr_unshown = 0; |
668 | } | |
669 | nr_shown = 0; | |
670 | } | |
671 | if (nr_shown++ == 0) | |
672 | resume = jiffies + 60 * HZ; | |
3dc14741 HD |
673 | |
674 | mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; | |
675 | index = linear_page_index(vma, addr); | |
676 | ||
1170532b JP |
677 | pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", |
678 | current->comm, | |
679 | (long long)pte_val(pte), (long long)pmd_val(*pmd)); | |
718a3821 | 680 | if (page) |
f0b791a3 | 681 | dump_page(page, "bad pte"); |
1170532b JP |
682 | pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", |
683 | (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); | |
3dc14741 HD |
684 | /* |
685 | * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y | |
686 | */ | |
2682582a KK |
687 | pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", |
688 | vma->vm_file, | |
689 | vma->vm_ops ? vma->vm_ops->fault : NULL, | |
690 | vma->vm_file ? vma->vm_file->f_op->mmap : NULL, | |
691 | mapping ? mapping->a_ops->readpage : NULL); | |
b5810039 | 692 | dump_stack(); |
373d4d09 | 693 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
b5810039 NP |
694 | } |
695 | ||
ee498ed7 | 696 | /* |
7e675137 | 697 | * vm_normal_page -- This function gets the "struct page" associated with a pte. |
6aab341e | 698 | * |
7e675137 NP |
699 | * "Special" mappings do not wish to be associated with a "struct page" (either |
700 | * it doesn't exist, or it exists but they don't want to touch it). In this | |
701 | * case, NULL is returned here. "Normal" mappings do have a struct page. | |
b379d790 | 702 | * |
7e675137 NP |
703 | * There are 2 broad cases. Firstly, an architecture may define a pte_special() |
704 | * pte bit, in which case this function is trivial. Secondly, an architecture | |
705 | * may not have a spare pte bit, which requires a more complicated scheme, | |
706 | * described below. | |
707 | * | |
708 | * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a | |
709 | * special mapping (even if there are underlying and valid "struct pages"). | |
710 | * COWed pages of a VM_PFNMAP are always normal. | |
6aab341e | 711 | * |
b379d790 JH |
712 | * The way we recognize COWed pages within VM_PFNMAP mappings is through the |
713 | * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit | |
7e675137 NP |
714 | * set, and the vm_pgoff will point to the first PFN mapped: thus every special |
715 | * mapping will always honor the rule | |
6aab341e LT |
716 | * |
717 | * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) | |
718 | * | |
7e675137 NP |
719 | * And for normal mappings this is false. |
720 | * | |
721 | * This restricts such mappings to be a linear translation from virtual address | |
722 | * to pfn. To get around this restriction, we allow arbitrary mappings so long | |
723 | * as the vma is not a COW mapping; in that case, we know that all ptes are | |
724 | * special (because none can have been COWed). | |
b379d790 | 725 | * |
b379d790 | 726 | * |
7e675137 | 727 | * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. |
b379d790 JH |
728 | * |
729 | * VM_MIXEDMAP mappings can likewise contain memory with or without "struct | |
730 | * page" backing, however the difference is that _all_ pages with a struct | |
731 | * page (that is, those where pfn_valid is true) are refcounted and considered | |
732 | * normal pages by the VM. The disadvantage is that pages are refcounted | |
733 | * (which can be slower and simply not an option for some PFNMAP users). The | |
734 | * advantage is that we don't have to follow the strict linearity rule of | |
735 | * PFNMAP mappings in order to support COWable mappings. | |
736 | * | |
ee498ed7 | 737 | */ |
7e675137 NP |
738 | #ifdef __HAVE_ARCH_PTE_SPECIAL |
739 | # define HAVE_PTE_SPECIAL 1 | |
740 | #else | |
741 | # define HAVE_PTE_SPECIAL 0 | |
742 | #endif | |
743 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, | |
744 | pte_t pte) | |
ee498ed7 | 745 | { |
22b31eec | 746 | unsigned long pfn = pte_pfn(pte); |
7e675137 NP |
747 | |
748 | if (HAVE_PTE_SPECIAL) { | |
b38af472 | 749 | if (likely(!pte_special(pte))) |
22b31eec | 750 | goto check_pfn; |
667a0a06 DV |
751 | if (vma->vm_ops && vma->vm_ops->find_special_page) |
752 | return vma->vm_ops->find_special_page(vma, addr); | |
a13ea5b7 HD |
753 | if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) |
754 | return NULL; | |
62eede62 | 755 | if (!is_zero_pfn(pfn)) |
22b31eec | 756 | print_bad_pte(vma, addr, pte, NULL); |
7e675137 NP |
757 | return NULL; |
758 | } | |
759 | ||
760 | /* !HAVE_PTE_SPECIAL case follows: */ | |
761 | ||
b379d790 JH |
762 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { |
763 | if (vma->vm_flags & VM_MIXEDMAP) { | |
764 | if (!pfn_valid(pfn)) | |
765 | return NULL; | |
766 | goto out; | |
767 | } else { | |
7e675137 NP |
768 | unsigned long off; |
769 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
b379d790 JH |
770 | if (pfn == vma->vm_pgoff + off) |
771 | return NULL; | |
772 | if (!is_cow_mapping(vma->vm_flags)) | |
773 | return NULL; | |
774 | } | |
6aab341e LT |
775 | } |
776 | ||
b38af472 HD |
777 | if (is_zero_pfn(pfn)) |
778 | return NULL; | |
22b31eec HD |
779 | check_pfn: |
780 | if (unlikely(pfn > highest_memmap_pfn)) { | |
781 | print_bad_pte(vma, addr, pte, NULL); | |
782 | return NULL; | |
783 | } | |
6aab341e LT |
784 | |
785 | /* | |
7e675137 | 786 | * NOTE! We still have PageReserved() pages in the page tables. |
7e675137 | 787 | * eg. VDSO mappings can cause them to exist. |
6aab341e | 788 | */ |
b379d790 | 789 | out: |
6aab341e | 790 | return pfn_to_page(pfn); |
ee498ed7 HD |
791 | } |
792 | ||
28093f9f GS |
793 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
794 | struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, | |
795 | pmd_t pmd) | |
796 | { | |
797 | unsigned long pfn = pmd_pfn(pmd); | |
798 | ||
799 | /* | |
800 | * There is no pmd_special() but there may be special pmds, e.g. | |
801 | * in a direct-access (dax) mapping, so let's just replicate the | |
802 | * !HAVE_PTE_SPECIAL case from vm_normal_page() here. | |
803 | */ | |
804 | if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { | |
805 | if (vma->vm_flags & VM_MIXEDMAP) { | |
806 | if (!pfn_valid(pfn)) | |
807 | return NULL; | |
808 | goto out; | |
809 | } else { | |
810 | unsigned long off; | |
811 | off = (addr - vma->vm_start) >> PAGE_SHIFT; | |
812 | if (pfn == vma->vm_pgoff + off) | |
813 | return NULL; | |
814 | if (!is_cow_mapping(vma->vm_flags)) | |
815 | return NULL; | |
816 | } | |
817 | } | |
818 | ||
819 | if (is_zero_pfn(pfn)) | |
820 | return NULL; | |
821 | if (unlikely(pfn > highest_memmap_pfn)) | |
822 | return NULL; | |
823 | ||
824 | /* | |
825 | * NOTE! We still have PageReserved() pages in the page tables. | |
826 | * eg. VDSO mappings can cause them to exist. | |
827 | */ | |
828 | out: | |
829 | return pfn_to_page(pfn); | |
830 | } | |
831 | #endif | |
832 | ||
1da177e4 LT |
833 | /* |
834 | * copy one vm_area from one task to the other. Assumes the page tables | |
835 | * already present in the new task to be cleared in the whole range | |
836 | * covered by this vma. | |
1da177e4 LT |
837 | */ |
838 | ||
570a335b | 839 | static inline unsigned long |
1da177e4 | 840 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
b5810039 | 841 | pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, |
8c103762 | 842 | unsigned long addr, int *rss) |
1da177e4 | 843 | { |
b5810039 | 844 | unsigned long vm_flags = vma->vm_flags; |
1da177e4 LT |
845 | pte_t pte = *src_pte; |
846 | struct page *page; | |
1da177e4 LT |
847 | |
848 | /* pte contains position in swap or file, so copy. */ | |
849 | if (unlikely(!pte_present(pte))) { | |
0661a336 KS |
850 | swp_entry_t entry = pte_to_swp_entry(pte); |
851 | ||
852 | if (likely(!non_swap_entry(entry))) { | |
853 | if (swap_duplicate(entry) < 0) | |
854 | return entry.val; | |
855 | ||
856 | /* make sure dst_mm is on swapoff's mmlist. */ | |
857 | if (unlikely(list_empty(&dst_mm->mmlist))) { | |
858 | spin_lock(&mmlist_lock); | |
859 | if (list_empty(&dst_mm->mmlist)) | |
860 | list_add(&dst_mm->mmlist, | |
861 | &src_mm->mmlist); | |
862 | spin_unlock(&mmlist_lock); | |
863 | } | |
864 | rss[MM_SWAPENTS]++; | |
865 | } else if (is_migration_entry(entry)) { | |
866 | page = migration_entry_to_page(entry); | |
867 | ||
eca56ff9 | 868 | rss[mm_counter(page)]++; |
0661a336 KS |
869 | |
870 | if (is_write_migration_entry(entry) && | |
871 | is_cow_mapping(vm_flags)) { | |
872 | /* | |
873 | * COW mappings require pages in both | |
874 | * parent and child to be set to read. | |
875 | */ | |
876 | make_migration_entry_read(&entry); | |
877 | pte = swp_entry_to_pte(entry); | |
878 | if (pte_swp_soft_dirty(*src_pte)) | |
879 | pte = pte_swp_mksoft_dirty(pte); | |
880 | set_pte_at(src_mm, addr, src_pte, pte); | |
0697212a | 881 | } |
1da177e4 | 882 | } |
ae859762 | 883 | goto out_set_pte; |
1da177e4 LT |
884 | } |
885 | ||
1da177e4 LT |
886 | /* |
887 | * If it's a COW mapping, write protect it both | |
888 | * in the parent and the child | |
889 | */ | |
67121172 | 890 | if (is_cow_mapping(vm_flags)) { |
1da177e4 | 891 | ptep_set_wrprotect(src_mm, addr, src_pte); |
3dc90795 | 892 | pte = pte_wrprotect(pte); |
1da177e4 LT |
893 | } |
894 | ||
895 | /* | |
896 | * If it's a shared mapping, mark it clean in | |
897 | * the child | |
898 | */ | |
899 | if (vm_flags & VM_SHARED) | |
900 | pte = pte_mkclean(pte); | |
901 | pte = pte_mkold(pte); | |
6aab341e LT |
902 | |
903 | page = vm_normal_page(vma, addr, pte); | |
904 | if (page) { | |
905 | get_page(page); | |
53f9263b | 906 | page_dup_rmap(page, false); |
eca56ff9 | 907 | rss[mm_counter(page)]++; |
6aab341e | 908 | } |
ae859762 HD |
909 | |
910 | out_set_pte: | |
911 | set_pte_at(dst_mm, addr, dst_pte, pte); | |
570a335b | 912 | return 0; |
1da177e4 LT |
913 | } |
914 | ||
21bda264 | 915 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, |
71e3aac0 AA |
916 | pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, |
917 | unsigned long addr, unsigned long end) | |
1da177e4 | 918 | { |
c36987e2 | 919 | pte_t *orig_src_pte, *orig_dst_pte; |
1da177e4 | 920 | pte_t *src_pte, *dst_pte; |
c74df32c | 921 | spinlock_t *src_ptl, *dst_ptl; |
e040f218 | 922 | int progress = 0; |
d559db08 | 923 | int rss[NR_MM_COUNTERS]; |
570a335b | 924 | swp_entry_t entry = (swp_entry_t){0}; |
1da177e4 LT |
925 | |
926 | again: | |
d559db08 KH |
927 | init_rss_vec(rss); |
928 | ||
c74df32c | 929 | dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); |
1da177e4 LT |
930 | if (!dst_pte) |
931 | return -ENOMEM; | |
ece0e2b6 | 932 | src_pte = pte_offset_map(src_pmd, addr); |
4c21e2f2 | 933 | src_ptl = pte_lockptr(src_mm, src_pmd); |
f20dc5f7 | 934 | spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); |
c36987e2 DN |
935 | orig_src_pte = src_pte; |
936 | orig_dst_pte = dst_pte; | |
6606c3e0 | 937 | arch_enter_lazy_mmu_mode(); |
1da177e4 | 938 | |
1da177e4 LT |
939 | do { |
940 | /* | |
941 | * We are holding two locks at this point - either of them | |
942 | * could generate latencies in another task on another CPU. | |
943 | */ | |
e040f218 HD |
944 | if (progress >= 32) { |
945 | progress = 0; | |
946 | if (need_resched() || | |
95c354fe | 947 | spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) |
e040f218 HD |
948 | break; |
949 | } | |
1da177e4 LT |
950 | if (pte_none(*src_pte)) { |
951 | progress++; | |
952 | continue; | |
953 | } | |
570a335b HD |
954 | entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, |
955 | vma, addr, rss); | |
956 | if (entry.val) | |
957 | break; | |
1da177e4 LT |
958 | progress += 8; |
959 | } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | |
1da177e4 | 960 | |
6606c3e0 | 961 | arch_leave_lazy_mmu_mode(); |
c74df32c | 962 | spin_unlock(src_ptl); |
ece0e2b6 | 963 | pte_unmap(orig_src_pte); |
d559db08 | 964 | add_mm_rss_vec(dst_mm, rss); |
c36987e2 | 965 | pte_unmap_unlock(orig_dst_pte, dst_ptl); |
c74df32c | 966 | cond_resched(); |
570a335b HD |
967 | |
968 | if (entry.val) { | |
969 | if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) | |
970 | return -ENOMEM; | |
971 | progress = 0; | |
972 | } | |
1da177e4 LT |
973 | if (addr != end) |
974 | goto again; | |
975 | return 0; | |
976 | } | |
977 | ||
978 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
979 | pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | |
980 | unsigned long addr, unsigned long end) | |
981 | { | |
982 | pmd_t *src_pmd, *dst_pmd; | |
983 | unsigned long next; | |
984 | ||
985 | dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | |
986 | if (!dst_pmd) | |
987 | return -ENOMEM; | |
988 | src_pmd = pmd_offset(src_pud, addr); | |
989 | do { | |
990 | next = pmd_addr_end(addr, end); | |
5c7fb56e | 991 | if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { |
71e3aac0 | 992 | int err; |
14d1a55c | 993 | VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); |
71e3aac0 AA |
994 | err = copy_huge_pmd(dst_mm, src_mm, |
995 | dst_pmd, src_pmd, addr, vma); | |
996 | if (err == -ENOMEM) | |
997 | return -ENOMEM; | |
998 | if (!err) | |
999 | continue; | |
1000 | /* fall through */ | |
1001 | } | |
1da177e4 LT |
1002 | if (pmd_none_or_clear_bad(src_pmd)) |
1003 | continue; | |
1004 | if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | |
1005 | vma, addr, next)) | |
1006 | return -ENOMEM; | |
1007 | } while (dst_pmd++, src_pmd++, addr = next, addr != end); | |
1008 | return 0; | |
1009 | } | |
1010 | ||
1011 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
1012 | pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | |
1013 | unsigned long addr, unsigned long end) | |
1014 | { | |
1015 | pud_t *src_pud, *dst_pud; | |
1016 | unsigned long next; | |
1017 | ||
1018 | dst_pud = pud_alloc(dst_mm, dst_pgd, addr); | |
1019 | if (!dst_pud) | |
1020 | return -ENOMEM; | |
1021 | src_pud = pud_offset(src_pgd, addr); | |
1022 | do { | |
1023 | next = pud_addr_end(addr, end); | |
1024 | if (pud_none_or_clear_bad(src_pud)) | |
1025 | continue; | |
1026 | if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | |
1027 | vma, addr, next)) | |
1028 | return -ENOMEM; | |
1029 | } while (dst_pud++, src_pud++, addr = next, addr != end); | |
1030 | return 0; | |
1031 | } | |
1032 | ||
1033 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | |
1034 | struct vm_area_struct *vma) | |
1035 | { | |
1036 | pgd_t *src_pgd, *dst_pgd; | |
1037 | unsigned long next; | |
1038 | unsigned long addr = vma->vm_start; | |
1039 | unsigned long end = vma->vm_end; | |
2ec74c3e SG |
1040 | unsigned long mmun_start; /* For mmu_notifiers */ |
1041 | unsigned long mmun_end; /* For mmu_notifiers */ | |
1042 | bool is_cow; | |
cddb8a5c | 1043 | int ret; |
1da177e4 | 1044 | |
d992895b NP |
1045 | /* |
1046 | * Don't copy ptes where a page fault will fill them correctly. | |
1047 | * Fork becomes much lighter when there are big shared or private | |
1048 | * readonly mappings. The tradeoff is that copy_page_range is more | |
1049 | * efficient than faulting. | |
1050 | */ | |
0661a336 KS |
1051 | if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && |
1052 | !vma->anon_vma) | |
1053 | return 0; | |
d992895b | 1054 | |
1da177e4 LT |
1055 | if (is_vm_hugetlb_page(vma)) |
1056 | return copy_hugetlb_page_range(dst_mm, src_mm, vma); | |
1057 | ||
b3b9c293 | 1058 | if (unlikely(vma->vm_flags & VM_PFNMAP)) { |
2ab64037 | 1059 | /* |
1060 | * We do not free on error cases below as remove_vma | |
1061 | * gets called on error from higher level routine | |
1062 | */ | |
5180da41 | 1063 | ret = track_pfn_copy(vma); |
2ab64037 | 1064 | if (ret) |
1065 | return ret; | |
1066 | } | |
1067 | ||
cddb8a5c AA |
1068 | /* |
1069 | * We need to invalidate the secondary MMU mappings only when | |
1070 | * there could be a permission downgrade on the ptes of the | |
1071 | * parent mm. And a permission downgrade will only happen if | |
1072 | * is_cow_mapping() returns true. | |
1073 | */ | |
2ec74c3e SG |
1074 | is_cow = is_cow_mapping(vma->vm_flags); |
1075 | mmun_start = addr; | |
1076 | mmun_end = end; | |
1077 | if (is_cow) | |
1078 | mmu_notifier_invalidate_range_start(src_mm, mmun_start, | |
1079 | mmun_end); | |
cddb8a5c AA |
1080 | |
1081 | ret = 0; | |
1da177e4 LT |
1082 | dst_pgd = pgd_offset(dst_mm, addr); |
1083 | src_pgd = pgd_offset(src_mm, addr); | |
1084 | do { | |
1085 | next = pgd_addr_end(addr, end); | |
1086 | if (pgd_none_or_clear_bad(src_pgd)) | |
1087 | continue; | |
cddb8a5c AA |
1088 | if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, |
1089 | vma, addr, next))) { | |
1090 | ret = -ENOMEM; | |
1091 | break; | |
1092 | } | |
1da177e4 | 1093 | } while (dst_pgd++, src_pgd++, addr = next, addr != end); |
cddb8a5c | 1094 | |
2ec74c3e SG |
1095 | if (is_cow) |
1096 | mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); | |
cddb8a5c | 1097 | return ret; |
1da177e4 LT |
1098 | } |
1099 | ||
51c6f666 | 1100 | static unsigned long zap_pte_range(struct mmu_gather *tlb, |
b5810039 | 1101 | struct vm_area_struct *vma, pmd_t *pmd, |
1da177e4 | 1102 | unsigned long addr, unsigned long end, |
97a89413 | 1103 | struct zap_details *details) |
1da177e4 | 1104 | { |
b5810039 | 1105 | struct mm_struct *mm = tlb->mm; |
d16dfc55 | 1106 | int force_flush = 0; |
d559db08 | 1107 | int rss[NR_MM_COUNTERS]; |
97a89413 | 1108 | spinlock_t *ptl; |
5f1a1907 | 1109 | pte_t *start_pte; |
97a89413 | 1110 | pte_t *pte; |
8a5f14a2 | 1111 | swp_entry_t entry; |
d559db08 | 1112 | |
d16dfc55 | 1113 | again: |
e303297e | 1114 | init_rss_vec(rss); |
5f1a1907 SR |
1115 | start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); |
1116 | pte = start_pte; | |
6606c3e0 | 1117 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
1118 | do { |
1119 | pte_t ptent = *pte; | |
51c6f666 | 1120 | if (pte_none(ptent)) { |
1da177e4 | 1121 | continue; |
51c6f666 | 1122 | } |
6f5e6b9e | 1123 | |
1da177e4 | 1124 | if (pte_present(ptent)) { |
ee498ed7 | 1125 | struct page *page; |
51c6f666 | 1126 | |
6aab341e | 1127 | page = vm_normal_page(vma, addr, ptent); |
1da177e4 LT |
1128 | if (unlikely(details) && page) { |
1129 | /* | |
1130 | * unmap_shared_mapping_pages() wants to | |
1131 | * invalidate cache without truncating: | |
1132 | * unmap shared but keep private pages. | |
1133 | */ | |
1134 | if (details->check_mapping && | |
1135 | details->check_mapping != page->mapping) | |
1136 | continue; | |
1da177e4 | 1137 | } |
b5810039 | 1138 | ptent = ptep_get_and_clear_full(mm, addr, pte, |
a600388d | 1139 | tlb->fullmm); |
1da177e4 LT |
1140 | tlb_remove_tlb_entry(tlb, pte, addr); |
1141 | if (unlikely(!page)) | |
1142 | continue; | |
eca56ff9 JM |
1143 | |
1144 | if (!PageAnon(page)) { | |
1cf35d47 | 1145 | if (pte_dirty(ptent)) { |
aac45363 MH |
1146 | /* |
1147 | * oom_reaper cannot tear down dirty | |
1148 | * pages | |
1149 | */ | |
1150 | if (unlikely(details && details->ignore_dirty)) | |
1151 | continue; | |
1cf35d47 | 1152 | force_flush = 1; |
6237bcd9 | 1153 | set_page_dirty(page); |
1cf35d47 | 1154 | } |
4917e5d0 | 1155 | if (pte_young(ptent) && |
64363aad | 1156 | likely(!(vma->vm_flags & VM_SEQ_READ))) |
bf3f3bc5 | 1157 | mark_page_accessed(page); |
6237bcd9 | 1158 | } |
eca56ff9 | 1159 | rss[mm_counter(page)]--; |
d281ee61 | 1160 | page_remove_rmap(page, false); |
3dc14741 HD |
1161 | if (unlikely(page_mapcount(page) < 0)) |
1162 | print_bad_pte(vma, addr, ptent, page); | |
1cf35d47 LT |
1163 | if (unlikely(!__tlb_remove_page(tlb, page))) { |
1164 | force_flush = 1; | |
ce9ec37b | 1165 | addr += PAGE_SIZE; |
d16dfc55 | 1166 | break; |
1cf35d47 | 1167 | } |
1da177e4 LT |
1168 | continue; |
1169 | } | |
aac45363 MH |
1170 | /* only check swap_entries if explicitly asked for in details */ |
1171 | if (unlikely(details && !details->check_swap_entries)) | |
1da177e4 | 1172 | continue; |
b084d435 | 1173 | |
8a5f14a2 KS |
1174 | entry = pte_to_swp_entry(ptent); |
1175 | if (!non_swap_entry(entry)) | |
1176 | rss[MM_SWAPENTS]--; | |
1177 | else if (is_migration_entry(entry)) { | |
1178 | struct page *page; | |
9f9f1acd | 1179 | |
8a5f14a2 | 1180 | page = migration_entry_to_page(entry); |
eca56ff9 | 1181 | rss[mm_counter(page)]--; |
b084d435 | 1182 | } |
8a5f14a2 KS |
1183 | if (unlikely(!free_swap_and_cache(entry))) |
1184 | print_bad_pte(vma, addr, ptent, NULL); | |
9888a1ca | 1185 | pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); |
97a89413 | 1186 | } while (pte++, addr += PAGE_SIZE, addr != end); |
ae859762 | 1187 | |
d559db08 | 1188 | add_mm_rss_vec(mm, rss); |
6606c3e0 | 1189 | arch_leave_lazy_mmu_mode(); |
51c6f666 | 1190 | |
1cf35d47 | 1191 | /* Do the actual TLB flush before dropping ptl */ |
fb7332a9 | 1192 | if (force_flush) |
1cf35d47 | 1193 | tlb_flush_mmu_tlbonly(tlb); |
1cf35d47 LT |
1194 | pte_unmap_unlock(start_pte, ptl); |
1195 | ||
1196 | /* | |
1197 | * If we forced a TLB flush (either due to running out of | |
1198 | * batch buffers or because we needed to flush dirty TLB | |
1199 | * entries before releasing the ptl), free the batched | |
1200 | * memory too. Restart if we didn't do everything. | |
1201 | */ | |
1202 | if (force_flush) { | |
1203 | force_flush = 0; | |
1204 | tlb_flush_mmu_free(tlb); | |
2b047252 LT |
1205 | |
1206 | if (addr != end) | |
d16dfc55 PZ |
1207 | goto again; |
1208 | } | |
1209 | ||
51c6f666 | 1210 | return addr; |
1da177e4 LT |
1211 | } |
1212 | ||
51c6f666 | 1213 | static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, |
b5810039 | 1214 | struct vm_area_struct *vma, pud_t *pud, |
1da177e4 | 1215 | unsigned long addr, unsigned long end, |
97a89413 | 1216 | struct zap_details *details) |
1da177e4 LT |
1217 | { |
1218 | pmd_t *pmd; | |
1219 | unsigned long next; | |
1220 | ||
1221 | pmd = pmd_offset(pud, addr); | |
1222 | do { | |
1223 | next = pmd_addr_end(addr, end); | |
5c7fb56e | 1224 | if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { |
1a5a9906 | 1225 | if (next - addr != HPAGE_PMD_SIZE) { |
68428398 HD |
1226 | VM_BUG_ON_VMA(vma_is_anonymous(vma) && |
1227 | !rwsem_is_locked(&tlb->mm->mmap_sem), vma); | |
78ddc534 | 1228 | split_huge_pmd(vma, pmd, addr); |
f21760b1 | 1229 | } else if (zap_huge_pmd(tlb, vma, pmd, addr)) |
1a5a9906 | 1230 | goto next; |
71e3aac0 AA |
1231 | /* fall through */ |
1232 | } | |
1a5a9906 AA |
1233 | /* |
1234 | * Here there can be other concurrent MADV_DONTNEED or | |
1235 | * trans huge page faults running, and if the pmd is | |
1236 | * none or trans huge it can change under us. This is | |
1237 | * because MADV_DONTNEED holds the mmap_sem in read | |
1238 | * mode. | |
1239 | */ | |
1240 | if (pmd_none_or_trans_huge_or_clear_bad(pmd)) | |
1241 | goto next; | |
97a89413 | 1242 | next = zap_pte_range(tlb, vma, pmd, addr, next, details); |
1a5a9906 | 1243 | next: |
97a89413 PZ |
1244 | cond_resched(); |
1245 | } while (pmd++, addr = next, addr != end); | |
51c6f666 RH |
1246 | |
1247 | return addr; | |
1da177e4 LT |
1248 | } |
1249 | ||
51c6f666 | 1250 | static inline unsigned long zap_pud_range(struct mmu_gather *tlb, |
b5810039 | 1251 | struct vm_area_struct *vma, pgd_t *pgd, |
1da177e4 | 1252 | unsigned long addr, unsigned long end, |
97a89413 | 1253 | struct zap_details *details) |
1da177e4 LT |
1254 | { |
1255 | pud_t *pud; | |
1256 | unsigned long next; | |
1257 | ||
1258 | pud = pud_offset(pgd, addr); | |
1259 | do { | |
1260 | next = pud_addr_end(addr, end); | |
97a89413 | 1261 | if (pud_none_or_clear_bad(pud)) |
1da177e4 | 1262 | continue; |
97a89413 PZ |
1263 | next = zap_pmd_range(tlb, vma, pud, addr, next, details); |
1264 | } while (pud++, addr = next, addr != end); | |
51c6f666 RH |
1265 | |
1266 | return addr; | |
1da177e4 LT |
1267 | } |
1268 | ||
aac45363 | 1269 | void unmap_page_range(struct mmu_gather *tlb, |
038c7aa1 AV |
1270 | struct vm_area_struct *vma, |
1271 | unsigned long addr, unsigned long end, | |
1272 | struct zap_details *details) | |
1da177e4 LT |
1273 | { |
1274 | pgd_t *pgd; | |
1275 | unsigned long next; | |
1276 | ||
1da177e4 LT |
1277 | BUG_ON(addr >= end); |
1278 | tlb_start_vma(tlb, vma); | |
1279 | pgd = pgd_offset(vma->vm_mm, addr); | |
1280 | do { | |
1281 | next = pgd_addr_end(addr, end); | |
97a89413 | 1282 | if (pgd_none_or_clear_bad(pgd)) |
1da177e4 | 1283 | continue; |
97a89413 PZ |
1284 | next = zap_pud_range(tlb, vma, pgd, addr, next, details); |
1285 | } while (pgd++, addr = next, addr != end); | |
1da177e4 LT |
1286 | tlb_end_vma(tlb, vma); |
1287 | } | |
51c6f666 | 1288 | |
f5cc4eef AV |
1289 | |
1290 | static void unmap_single_vma(struct mmu_gather *tlb, | |
1291 | struct vm_area_struct *vma, unsigned long start_addr, | |
4f74d2c8 | 1292 | unsigned long end_addr, |
f5cc4eef AV |
1293 | struct zap_details *details) |
1294 | { | |
1295 | unsigned long start = max(vma->vm_start, start_addr); | |
1296 | unsigned long end; | |
1297 | ||
1298 | if (start >= vma->vm_end) | |
1299 | return; | |
1300 | end = min(vma->vm_end, end_addr); | |
1301 | if (end <= vma->vm_start) | |
1302 | return; | |
1303 | ||
cbc91f71 SD |
1304 | if (vma->vm_file) |
1305 | uprobe_munmap(vma, start, end); | |
1306 | ||
b3b9c293 | 1307 | if (unlikely(vma->vm_flags & VM_PFNMAP)) |
5180da41 | 1308 | untrack_pfn(vma, 0, 0); |
f5cc4eef AV |
1309 | |
1310 | if (start != end) { | |
1311 | if (unlikely(is_vm_hugetlb_page(vma))) { | |
1312 | /* | |
1313 | * It is undesirable to test vma->vm_file as it | |
1314 | * should be non-null for valid hugetlb area. | |
1315 | * However, vm_file will be NULL in the error | |
7aa6b4ad | 1316 | * cleanup path of mmap_region. When |
f5cc4eef | 1317 | * hugetlbfs ->mmap method fails, |
7aa6b4ad | 1318 | * mmap_region() nullifies vma->vm_file |
f5cc4eef AV |
1319 | * before calling this function to clean up. |
1320 | * Since no pte has actually been setup, it is | |
1321 | * safe to do nothing in this case. | |
1322 | */ | |
24669e58 | 1323 | if (vma->vm_file) { |
83cde9e8 | 1324 | i_mmap_lock_write(vma->vm_file->f_mapping); |
d833352a | 1325 | __unmap_hugepage_range_final(tlb, vma, start, end, NULL); |
83cde9e8 | 1326 | i_mmap_unlock_write(vma->vm_file->f_mapping); |
24669e58 | 1327 | } |
f5cc4eef AV |
1328 | } else |
1329 | unmap_page_range(tlb, vma, start, end, details); | |
1330 | } | |
1da177e4 LT |
1331 | } |
1332 | ||
1da177e4 LT |
1333 | /** |
1334 | * unmap_vmas - unmap a range of memory covered by a list of vma's | |
0164f69d | 1335 | * @tlb: address of the caller's struct mmu_gather |
1da177e4 LT |
1336 | * @vma: the starting vma |
1337 | * @start_addr: virtual address at which to start unmapping | |
1338 | * @end_addr: virtual address at which to end unmapping | |
1da177e4 | 1339 | * |
508034a3 | 1340 | * Unmap all pages in the vma list. |
1da177e4 | 1341 | * |
1da177e4 LT |
1342 | * Only addresses between `start' and `end' will be unmapped. |
1343 | * | |
1344 | * The VMA list must be sorted in ascending virtual address order. | |
1345 | * | |
1346 | * unmap_vmas() assumes that the caller will flush the whole unmapped address | |
1347 | * range after unmap_vmas() returns. So the only responsibility here is to | |
1348 | * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | |
1349 | * drops the lock and schedules. | |
1350 | */ | |
6e8bb019 | 1351 | void unmap_vmas(struct mmu_gather *tlb, |
1da177e4 | 1352 | struct vm_area_struct *vma, unsigned long start_addr, |
4f74d2c8 | 1353 | unsigned long end_addr) |
1da177e4 | 1354 | { |
cddb8a5c | 1355 | struct mm_struct *mm = vma->vm_mm; |
1da177e4 | 1356 | |
cddb8a5c | 1357 | mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); |
f5cc4eef | 1358 | for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) |
4f74d2c8 | 1359 | unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); |
cddb8a5c | 1360 | mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); |
1da177e4 LT |
1361 | } |
1362 | ||
1363 | /** | |
1364 | * zap_page_range - remove user pages in a given range | |
1365 | * @vma: vm_area_struct holding the applicable pages | |
eb4546bb | 1366 | * @start: starting address of pages to zap |
1da177e4 | 1367 | * @size: number of bytes to zap |
8a5f14a2 | 1368 | * @details: details of shared cache invalidation |
f5cc4eef AV |
1369 | * |
1370 | * Caller must protect the VMA list | |
1da177e4 | 1371 | */ |
7e027b14 | 1372 | void zap_page_range(struct vm_area_struct *vma, unsigned long start, |
1da177e4 LT |
1373 | unsigned long size, struct zap_details *details) |
1374 | { | |
1375 | struct mm_struct *mm = vma->vm_mm; | |
d16dfc55 | 1376 | struct mmu_gather tlb; |
7e027b14 | 1377 | unsigned long end = start + size; |
1da177e4 | 1378 | |
1da177e4 | 1379 | lru_add_drain(); |
2b047252 | 1380 | tlb_gather_mmu(&tlb, mm, start, end); |
365e9c87 | 1381 | update_hiwater_rss(mm); |
7e027b14 LT |
1382 | mmu_notifier_invalidate_range_start(mm, start, end); |
1383 | for ( ; vma && vma->vm_start < end; vma = vma->vm_next) | |
4f74d2c8 | 1384 | unmap_single_vma(&tlb, vma, start, end, details); |
7e027b14 LT |
1385 | mmu_notifier_invalidate_range_end(mm, start, end); |
1386 | tlb_finish_mmu(&tlb, start, end); | |
1da177e4 LT |
1387 | } |
1388 | ||
f5cc4eef AV |
1389 | /** |
1390 | * zap_page_range_single - remove user pages in a given range | |
1391 | * @vma: vm_area_struct holding the applicable pages | |
1392 | * @address: starting address of pages to zap | |
1393 | * @size: number of bytes to zap | |
8a5f14a2 | 1394 | * @details: details of shared cache invalidation |
f5cc4eef AV |
1395 | * |
1396 | * The range must fit into one VMA. | |
1da177e4 | 1397 | */ |
f5cc4eef | 1398 | static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, |
1da177e4 LT |
1399 | unsigned long size, struct zap_details *details) |
1400 | { | |
1401 | struct mm_struct *mm = vma->vm_mm; | |
d16dfc55 | 1402 | struct mmu_gather tlb; |
1da177e4 | 1403 | unsigned long end = address + size; |
1da177e4 | 1404 | |
1da177e4 | 1405 | lru_add_drain(); |
2b047252 | 1406 | tlb_gather_mmu(&tlb, mm, address, end); |
365e9c87 | 1407 | update_hiwater_rss(mm); |
f5cc4eef | 1408 | mmu_notifier_invalidate_range_start(mm, address, end); |
4f74d2c8 | 1409 | unmap_single_vma(&tlb, vma, address, end, details); |
f5cc4eef | 1410 | mmu_notifier_invalidate_range_end(mm, address, end); |
d16dfc55 | 1411 | tlb_finish_mmu(&tlb, address, end); |
1da177e4 LT |
1412 | } |
1413 | ||
c627f9cc JS |
1414 | /** |
1415 | * zap_vma_ptes - remove ptes mapping the vma | |
1416 | * @vma: vm_area_struct holding ptes to be zapped | |
1417 | * @address: starting address of pages to zap | |
1418 | * @size: number of bytes to zap | |
1419 | * | |
1420 | * This function only unmaps ptes assigned to VM_PFNMAP vmas. | |
1421 | * | |
1422 | * The entire address range must be fully contained within the vma. | |
1423 | * | |
1424 | * Returns 0 if successful. | |
1425 | */ | |
1426 | int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, | |
1427 | unsigned long size) | |
1428 | { | |
1429 | if (address < vma->vm_start || address + size > vma->vm_end || | |
1430 | !(vma->vm_flags & VM_PFNMAP)) | |
1431 | return -1; | |
f5cc4eef | 1432 | zap_page_range_single(vma, address, size, NULL); |
c627f9cc JS |
1433 | return 0; |
1434 | } | |
1435 | EXPORT_SYMBOL_GPL(zap_vma_ptes); | |
1436 | ||
25ca1d6c | 1437 | pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, |
920c7a5d | 1438 | spinlock_t **ptl) |
c9cfcddf LT |
1439 | { |
1440 | pgd_t * pgd = pgd_offset(mm, addr); | |
1441 | pud_t * pud = pud_alloc(mm, pgd, addr); | |
1442 | if (pud) { | |
49c91fb0 | 1443 | pmd_t * pmd = pmd_alloc(mm, pud, addr); |
f66055ab AA |
1444 | if (pmd) { |
1445 | VM_BUG_ON(pmd_trans_huge(*pmd)); | |
c9cfcddf | 1446 | return pte_alloc_map_lock(mm, pmd, addr, ptl); |
f66055ab | 1447 | } |
c9cfcddf LT |
1448 | } |
1449 | return NULL; | |
1450 | } | |
1451 | ||
238f58d8 LT |
1452 | /* |
1453 | * This is the old fallback for page remapping. | |
1454 | * | |
1455 | * For historical reasons, it only allows reserved pages. Only | |
1456 | * old drivers should use this, and they needed to mark their | |
1457 | * pages reserved for the old functions anyway. | |
1458 | */ | |
423bad60 NP |
1459 | static int insert_page(struct vm_area_struct *vma, unsigned long addr, |
1460 | struct page *page, pgprot_t prot) | |
238f58d8 | 1461 | { |
423bad60 | 1462 | struct mm_struct *mm = vma->vm_mm; |
238f58d8 | 1463 | int retval; |
c9cfcddf | 1464 | pte_t *pte; |
8a9f3ccd BS |
1465 | spinlock_t *ptl; |
1466 | ||
238f58d8 | 1467 | retval = -EINVAL; |
a145dd41 | 1468 | if (PageAnon(page)) |
5b4e655e | 1469 | goto out; |
238f58d8 LT |
1470 | retval = -ENOMEM; |
1471 | flush_dcache_page(page); | |
c9cfcddf | 1472 | pte = get_locked_pte(mm, addr, &ptl); |
238f58d8 | 1473 | if (!pte) |
5b4e655e | 1474 | goto out; |
238f58d8 LT |
1475 | retval = -EBUSY; |
1476 | if (!pte_none(*pte)) | |
1477 | goto out_unlock; | |
1478 | ||
1479 | /* Ok, finally just insert the thing.. */ | |
1480 | get_page(page); | |
eca56ff9 | 1481 | inc_mm_counter_fast(mm, mm_counter_file(page)); |
238f58d8 LT |
1482 | page_add_file_rmap(page); |
1483 | set_pte_at(mm, addr, pte, mk_pte(page, prot)); | |
1484 | ||
1485 | retval = 0; | |
8a9f3ccd BS |
1486 | pte_unmap_unlock(pte, ptl); |
1487 | return retval; | |
238f58d8 LT |
1488 | out_unlock: |
1489 | pte_unmap_unlock(pte, ptl); | |
1490 | out: | |
1491 | return retval; | |
1492 | } | |
1493 | ||
bfa5bf6d REB |
1494 | /** |
1495 | * vm_insert_page - insert single page into user vma | |
1496 | * @vma: user vma to map to | |
1497 | * @addr: target user address of this page | |
1498 | * @page: source kernel page | |
1499 | * | |
a145dd41 LT |
1500 | * This allows drivers to insert individual pages they've allocated |
1501 | * into a user vma. | |
1502 | * | |
1503 | * The page has to be a nice clean _individual_ kernel allocation. | |
1504 | * If you allocate a compound page, you need to have marked it as | |
1505 | * such (__GFP_COMP), or manually just split the page up yourself | |
8dfcc9ba | 1506 | * (see split_page()). |
a145dd41 LT |
1507 | * |
1508 | * NOTE! Traditionally this was done with "remap_pfn_range()" which | |
1509 | * took an arbitrary page protection parameter. This doesn't allow | |
1510 | * that. Your vma protection will have to be set up correctly, which | |
1511 | * means that if you want a shared writable mapping, you'd better | |
1512 | * ask for a shared writable mapping! | |
1513 | * | |
1514 | * The page does not need to be reserved. | |
4b6e1e37 KK |
1515 | * |
1516 | * Usually this function is called from f_op->mmap() handler | |
1517 | * under mm->mmap_sem write-lock, so it can change vma->vm_flags. | |
1518 | * Caller must set VM_MIXEDMAP on vma if it wants to call this | |
1519 | * function from other places, for example from page-fault handler. | |
a145dd41 | 1520 | */ |
423bad60 NP |
1521 | int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, |
1522 | struct page *page) | |
a145dd41 LT |
1523 | { |
1524 | if (addr < vma->vm_start || addr >= vma->vm_end) | |
1525 | return -EFAULT; | |
1526 | if (!page_count(page)) | |
1527 | return -EINVAL; | |
4b6e1e37 KK |
1528 | if (!(vma->vm_flags & VM_MIXEDMAP)) { |
1529 | BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); | |
1530 | BUG_ON(vma->vm_flags & VM_PFNMAP); | |
1531 | vma->vm_flags |= VM_MIXEDMAP; | |
1532 | } | |
423bad60 | 1533 | return insert_page(vma, addr, page, vma->vm_page_prot); |
a145dd41 | 1534 | } |
e3c3374f | 1535 | EXPORT_SYMBOL(vm_insert_page); |
a145dd41 | 1536 | |
423bad60 | 1537 | static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, |
01c8f1c4 | 1538 | pfn_t pfn, pgprot_t prot) |
423bad60 NP |
1539 | { |
1540 | struct mm_struct *mm = vma->vm_mm; | |
1541 | int retval; | |
1542 | pte_t *pte, entry; | |
1543 | spinlock_t *ptl; | |
1544 | ||
1545 | retval = -ENOMEM; | |
1546 | pte = get_locked_pte(mm, addr, &ptl); | |
1547 | if (!pte) | |
1548 | goto out; | |
1549 | retval = -EBUSY; | |
1550 | if (!pte_none(*pte)) | |
1551 | goto out_unlock; | |
1552 | ||
1553 | /* Ok, finally just insert the thing.. */ | |
01c8f1c4 DW |
1554 | if (pfn_t_devmap(pfn)) |
1555 | entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); | |
1556 | else | |
1557 | entry = pte_mkspecial(pfn_t_pte(pfn, prot)); | |
423bad60 | 1558 | set_pte_at(mm, addr, pte, entry); |
4b3073e1 | 1559 | update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ |
423bad60 NP |
1560 | |
1561 | retval = 0; | |
1562 | out_unlock: | |
1563 | pte_unmap_unlock(pte, ptl); | |
1564 | out: | |
1565 | return retval; | |
1566 | } | |
1567 | ||
e0dc0d8f NP |
1568 | /** |
1569 | * vm_insert_pfn - insert single pfn into user vma | |
1570 | * @vma: user vma to map to | |
1571 | * @addr: target user address of this page | |
1572 | * @pfn: source kernel pfn | |
1573 | * | |
c462f179 | 1574 | * Similar to vm_insert_page, this allows drivers to insert individual pages |
e0dc0d8f NP |
1575 | * they've allocated into a user vma. Same comments apply. |
1576 | * | |
1577 | * This function should only be called from a vm_ops->fault handler, and | |
1578 | * in that case the handler should return NULL. | |
0d71d10a NP |
1579 | * |
1580 | * vma cannot be a COW mapping. | |
1581 | * | |
1582 | * As this is called only for pages that do not currently exist, we | |
1583 | * do not need to flush old virtual caches or the TLB. | |
e0dc0d8f NP |
1584 | */ |
1585 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | |
423bad60 | 1586 | unsigned long pfn) |
1745cbc5 AL |
1587 | { |
1588 | return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); | |
1589 | } | |
1590 | EXPORT_SYMBOL(vm_insert_pfn); | |
1591 | ||
1592 | /** | |
1593 | * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot | |
1594 | * @vma: user vma to map to | |
1595 | * @addr: target user address of this page | |
1596 | * @pfn: source kernel pfn | |
1597 | * @pgprot: pgprot flags for the inserted page | |
1598 | * | |
1599 | * This is exactly like vm_insert_pfn, except that it allows drivers to | |
1600 | * to override pgprot on a per-page basis. | |
1601 | * | |
1602 | * This only makes sense for IO mappings, and it makes no sense for | |
1603 | * cow mappings. In general, using multiple vmas is preferable; | |
1604 | * vm_insert_pfn_prot should only be used if using multiple VMAs is | |
1605 | * impractical. | |
1606 | */ | |
1607 | int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, | |
1608 | unsigned long pfn, pgprot_t pgprot) | |
e0dc0d8f | 1609 | { |
2ab64037 | 1610 | int ret; |
7e675137 NP |
1611 | /* |
1612 | * Technically, architectures with pte_special can avoid all these | |
1613 | * restrictions (same for remap_pfn_range). However we would like | |
1614 | * consistency in testing and feature parity among all, so we should | |
1615 | * try to keep these invariants in place for everybody. | |
1616 | */ | |
b379d790 JH |
1617 | BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); |
1618 | BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == | |
1619 | (VM_PFNMAP|VM_MIXEDMAP)); | |
1620 | BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); | |
1621 | BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); | |
e0dc0d8f | 1622 | |
423bad60 NP |
1623 | if (addr < vma->vm_start || addr >= vma->vm_end) |
1624 | return -EFAULT; | |
f25748e3 | 1625 | if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV))) |
2ab64037 | 1626 | return -EINVAL; |
1627 | ||
01c8f1c4 | 1628 | ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot); |
2ab64037 | 1629 | |
2ab64037 | 1630 | return ret; |
423bad60 | 1631 | } |
1745cbc5 | 1632 | EXPORT_SYMBOL(vm_insert_pfn_prot); |
e0dc0d8f | 1633 | |
423bad60 | 1634 | int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, |
01c8f1c4 | 1635 | pfn_t pfn) |
423bad60 NP |
1636 | { |
1637 | BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); | |
e0dc0d8f | 1638 | |
423bad60 NP |
1639 | if (addr < vma->vm_start || addr >= vma->vm_end) |
1640 | return -EFAULT; | |
e0dc0d8f | 1641 | |
423bad60 NP |
1642 | /* |
1643 | * If we don't have pte special, then we have to use the pfn_valid() | |
1644 | * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* | |
1645 | * refcount the page if pfn_valid is true (hence insert_page rather | |
62eede62 HD |
1646 | * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP |
1647 | * without pte special, it would there be refcounted as a normal page. | |
423bad60 | 1648 | */ |
03fc2da6 | 1649 | if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { |
423bad60 NP |
1650 | struct page *page; |
1651 | ||
03fc2da6 DW |
1652 | /* |
1653 | * At this point we are committed to insert_page() | |
1654 | * regardless of whether the caller specified flags that | |
1655 | * result in pfn_t_has_page() == false. | |
1656 | */ | |
1657 | page = pfn_to_page(pfn_t_to_pfn(pfn)); | |
423bad60 NP |
1658 | return insert_page(vma, addr, page, vma->vm_page_prot); |
1659 | } | |
1660 | return insert_pfn(vma, addr, pfn, vma->vm_page_prot); | |
e0dc0d8f | 1661 | } |
423bad60 | 1662 | EXPORT_SYMBOL(vm_insert_mixed); |
e0dc0d8f | 1663 | |
1da177e4 LT |
1664 | /* |
1665 | * maps a range of physical memory into the requested pages. the old | |
1666 | * mappings are removed. any references to nonexistent pages results | |
1667 | * in null mappings (currently treated as "copy-on-access") | |
1668 | */ | |
1669 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | |
1670 | unsigned long addr, unsigned long end, | |
1671 | unsigned long pfn, pgprot_t prot) | |
1672 | { | |
1673 | pte_t *pte; | |
c74df32c | 1674 | spinlock_t *ptl; |
1da177e4 | 1675 | |
c74df32c | 1676 | pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); |
1da177e4 LT |
1677 | if (!pte) |
1678 | return -ENOMEM; | |
6606c3e0 | 1679 | arch_enter_lazy_mmu_mode(); |
1da177e4 LT |
1680 | do { |
1681 | BUG_ON(!pte_none(*pte)); | |
7e675137 | 1682 | set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); |
1da177e4 LT |
1683 | pfn++; |
1684 | } while (pte++, addr += PAGE_SIZE, addr != end); | |
6606c3e0 | 1685 | arch_leave_lazy_mmu_mode(); |
c74df32c | 1686 | pte_unmap_unlock(pte - 1, ptl); |
1da177e4 LT |
1687 | return 0; |
1688 | } | |
1689 | ||
1690 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1691 | unsigned long addr, unsigned long end, | |
1692 | unsigned long pfn, pgprot_t prot) | |
1693 | { | |
1694 | pmd_t *pmd; | |
1695 | unsigned long next; | |
1696 | ||
1697 | pfn -= addr >> PAGE_SHIFT; | |
1698 | pmd = pmd_alloc(mm, pud, addr); | |
1699 | if (!pmd) | |
1700 | return -ENOMEM; | |
f66055ab | 1701 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
1da177e4 LT |
1702 | do { |
1703 | next = pmd_addr_end(addr, end); | |
1704 | if (remap_pte_range(mm, pmd, addr, next, | |
1705 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1706 | return -ENOMEM; | |
1707 | } while (pmd++, addr = next, addr != end); | |
1708 | return 0; | |
1709 | } | |
1710 | ||
1711 | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1712 | unsigned long addr, unsigned long end, | |
1713 | unsigned long pfn, pgprot_t prot) | |
1714 | { | |
1715 | pud_t *pud; | |
1716 | unsigned long next; | |
1717 | ||
1718 | pfn -= addr >> PAGE_SHIFT; | |
1719 | pud = pud_alloc(mm, pgd, addr); | |
1720 | if (!pud) | |
1721 | return -ENOMEM; | |
1722 | do { | |
1723 | next = pud_addr_end(addr, end); | |
1724 | if (remap_pmd_range(mm, pud, addr, next, | |
1725 | pfn + (addr >> PAGE_SHIFT), prot)) | |
1726 | return -ENOMEM; | |
1727 | } while (pud++, addr = next, addr != end); | |
1728 | return 0; | |
1729 | } | |
1730 | ||
bfa5bf6d REB |
1731 | /** |
1732 | * remap_pfn_range - remap kernel memory to userspace | |
1733 | * @vma: user vma to map to | |
1734 | * @addr: target user address to start at | |
1735 | * @pfn: physical address of kernel memory | |
1736 | * @size: size of map area | |
1737 | * @prot: page protection flags for this mapping | |
1738 | * | |
1739 | * Note: this is only safe if the mm semaphore is held when called. | |
1740 | */ | |
1da177e4 LT |
1741 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, |
1742 | unsigned long pfn, unsigned long size, pgprot_t prot) | |
1743 | { | |
1744 | pgd_t *pgd; | |
1745 | unsigned long next; | |
2d15cab8 | 1746 | unsigned long end = addr + PAGE_ALIGN(size); |
1da177e4 | 1747 | struct mm_struct *mm = vma->vm_mm; |
d5957d2f | 1748 | unsigned long remap_pfn = pfn; |
1da177e4 LT |
1749 | int err; |
1750 | ||
1751 | /* | |
1752 | * Physically remapped pages are special. Tell the | |
1753 | * rest of the world about it: | |
1754 | * VM_IO tells people not to look at these pages | |
1755 | * (accesses can have side effects). | |
6aab341e LT |
1756 | * VM_PFNMAP tells the core MM that the base pages are just |
1757 | * raw PFN mappings, and do not have a "struct page" associated | |
1758 | * with them. | |
314e51b9 KK |
1759 | * VM_DONTEXPAND |
1760 | * Disable vma merging and expanding with mremap(). | |
1761 | * VM_DONTDUMP | |
1762 | * Omit vma from core dump, even when VM_IO turned off. | |
fb155c16 LT |
1763 | * |
1764 | * There's a horrible special case to handle copy-on-write | |
1765 | * behaviour that some programs depend on. We mark the "original" | |
1766 | * un-COW'ed pages by matching them up with "vma->vm_pgoff". | |
b3b9c293 | 1767 | * See vm_normal_page() for details. |
1da177e4 | 1768 | */ |
b3b9c293 KK |
1769 | if (is_cow_mapping(vma->vm_flags)) { |
1770 | if (addr != vma->vm_start || end != vma->vm_end) | |
1771 | return -EINVAL; | |
fb155c16 | 1772 | vma->vm_pgoff = pfn; |
b3b9c293 KK |
1773 | } |
1774 | ||
d5957d2f | 1775 | err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); |
b3b9c293 | 1776 | if (err) |
3c8bb73a | 1777 | return -EINVAL; |
fb155c16 | 1778 | |
314e51b9 | 1779 | vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; |
1da177e4 LT |
1780 | |
1781 | BUG_ON(addr >= end); | |
1782 | pfn -= addr >> PAGE_SHIFT; | |
1783 | pgd = pgd_offset(mm, addr); | |
1784 | flush_cache_range(vma, addr, end); | |
1da177e4 LT |
1785 | do { |
1786 | next = pgd_addr_end(addr, end); | |
1787 | err = remap_pud_range(mm, pgd, addr, next, | |
1788 | pfn + (addr >> PAGE_SHIFT), prot); | |
1789 | if (err) | |
1790 | break; | |
1791 | } while (pgd++, addr = next, addr != end); | |
2ab64037 | 1792 | |
1793 | if (err) | |
d5957d2f | 1794 | untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); |
2ab64037 | 1795 | |
1da177e4 LT |
1796 | return err; |
1797 | } | |
1798 | EXPORT_SYMBOL(remap_pfn_range); | |
1799 | ||
b4cbb197 LT |
1800 | /** |
1801 | * vm_iomap_memory - remap memory to userspace | |
1802 | * @vma: user vma to map to | |
1803 | * @start: start of area | |
1804 | * @len: size of area | |
1805 | * | |
1806 | * This is a simplified io_remap_pfn_range() for common driver use. The | |
1807 | * driver just needs to give us the physical memory range to be mapped, | |
1808 | * we'll figure out the rest from the vma information. | |
1809 | * | |
1810 | * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get | |
1811 | * whatever write-combining details or similar. | |
1812 | */ | |
1813 | int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) | |
1814 | { | |
1815 | unsigned long vm_len, pfn, pages; | |
1816 | ||
1817 | /* Check that the physical memory area passed in looks valid */ | |
1818 | if (start + len < start) | |
1819 | return -EINVAL; | |
1820 | /* | |
1821 | * You *really* shouldn't map things that aren't page-aligned, | |
1822 | * but we've historically allowed it because IO memory might | |
1823 | * just have smaller alignment. | |
1824 | */ | |
1825 | len += start & ~PAGE_MASK; | |
1826 | pfn = start >> PAGE_SHIFT; | |
1827 | pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; | |
1828 | if (pfn + pages < pfn) | |
1829 | return -EINVAL; | |
1830 | ||
1831 | /* We start the mapping 'vm_pgoff' pages into the area */ | |
1832 | if (vma->vm_pgoff > pages) | |
1833 | return -EINVAL; | |
1834 | pfn += vma->vm_pgoff; | |
1835 | pages -= vma->vm_pgoff; | |
1836 | ||
1837 | /* Can we fit all of the mapping? */ | |
1838 | vm_len = vma->vm_end - vma->vm_start; | |
1839 | if (vm_len >> PAGE_SHIFT > pages) | |
1840 | return -EINVAL; | |
1841 | ||
1842 | /* Ok, let it rip */ | |
1843 | return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); | |
1844 | } | |
1845 | EXPORT_SYMBOL(vm_iomap_memory); | |
1846 | ||
aee16b3c JF |
1847 | static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, |
1848 | unsigned long addr, unsigned long end, | |
1849 | pte_fn_t fn, void *data) | |
1850 | { | |
1851 | pte_t *pte; | |
1852 | int err; | |
2f569afd | 1853 | pgtable_t token; |
94909914 | 1854 | spinlock_t *uninitialized_var(ptl); |
aee16b3c JF |
1855 | |
1856 | pte = (mm == &init_mm) ? | |
1857 | pte_alloc_kernel(pmd, addr) : | |
1858 | pte_alloc_map_lock(mm, pmd, addr, &ptl); | |
1859 | if (!pte) | |
1860 | return -ENOMEM; | |
1861 | ||
1862 | BUG_ON(pmd_huge(*pmd)); | |
1863 | ||
38e0edb1 JF |
1864 | arch_enter_lazy_mmu_mode(); |
1865 | ||
2f569afd | 1866 | token = pmd_pgtable(*pmd); |
aee16b3c JF |
1867 | |
1868 | do { | |
c36987e2 | 1869 | err = fn(pte++, token, addr, data); |
aee16b3c JF |
1870 | if (err) |
1871 | break; | |
c36987e2 | 1872 | } while (addr += PAGE_SIZE, addr != end); |
aee16b3c | 1873 | |
38e0edb1 JF |
1874 | arch_leave_lazy_mmu_mode(); |
1875 | ||
aee16b3c JF |
1876 | if (mm != &init_mm) |
1877 | pte_unmap_unlock(pte-1, ptl); | |
1878 | return err; | |
1879 | } | |
1880 | ||
1881 | static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, | |
1882 | unsigned long addr, unsigned long end, | |
1883 | pte_fn_t fn, void *data) | |
1884 | { | |
1885 | pmd_t *pmd; | |
1886 | unsigned long next; | |
1887 | int err; | |
1888 | ||
ceb86879 AK |
1889 | BUG_ON(pud_huge(*pud)); |
1890 | ||
aee16b3c JF |
1891 | pmd = pmd_alloc(mm, pud, addr); |
1892 | if (!pmd) | |
1893 | return -ENOMEM; | |
1894 | do { | |
1895 | next = pmd_addr_end(addr, end); | |
1896 | err = apply_to_pte_range(mm, pmd, addr, next, fn, data); | |
1897 | if (err) | |
1898 | break; | |
1899 | } while (pmd++, addr = next, addr != end); | |
1900 | return err; | |
1901 | } | |
1902 | ||
1903 | static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, | |
1904 | unsigned long addr, unsigned long end, | |
1905 | pte_fn_t fn, void *data) | |
1906 | { | |
1907 | pud_t *pud; | |
1908 | unsigned long next; | |
1909 | int err; | |
1910 | ||
1911 | pud = pud_alloc(mm, pgd, addr); | |
1912 | if (!pud) | |
1913 | return -ENOMEM; | |
1914 | do { | |
1915 | next = pud_addr_end(addr, end); | |
1916 | err = apply_to_pmd_range(mm, pud, addr, next, fn, data); | |
1917 | if (err) | |
1918 | break; | |
1919 | } while (pud++, addr = next, addr != end); | |
1920 | return err; | |
1921 | } | |
1922 | ||
1923 | /* | |
1924 | * Scan a region of virtual memory, filling in page tables as necessary | |
1925 | * and calling a provided function on each leaf page table. | |
1926 | */ | |
1927 | int apply_to_page_range(struct mm_struct *mm, unsigned long addr, | |
1928 | unsigned long size, pte_fn_t fn, void *data) | |
1929 | { | |
1930 | pgd_t *pgd; | |
1931 | unsigned long next; | |
57250a5b | 1932 | unsigned long end = addr + size; |
aee16b3c JF |
1933 | int err; |
1934 | ||
9cb65bc3 MP |
1935 | if (WARN_ON(addr >= end)) |
1936 | return -EINVAL; | |
1937 | ||
aee16b3c JF |
1938 | pgd = pgd_offset(mm, addr); |
1939 | do { | |
1940 | next = pgd_addr_end(addr, end); | |
1941 | err = apply_to_pud_range(mm, pgd, addr, next, fn, data); | |
1942 | if (err) | |
1943 | break; | |
1944 | } while (pgd++, addr = next, addr != end); | |
57250a5b | 1945 | |
aee16b3c JF |
1946 | return err; |
1947 | } | |
1948 | EXPORT_SYMBOL_GPL(apply_to_page_range); | |
1949 | ||
8f4e2101 | 1950 | /* |
9b4bdd2f KS |
1951 | * handle_pte_fault chooses page fault handler according to an entry which was |
1952 | * read non-atomically. Before making any commitment, on those architectures | |
1953 | * or configurations (e.g. i386 with PAE) which might give a mix of unmatched | |
1954 | * parts, do_swap_page must check under lock before unmapping the pte and | |
1955 | * proceeding (but do_wp_page is only called after already making such a check; | |
a335b2e1 | 1956 | * and do_anonymous_page can safely check later on). |
8f4e2101 | 1957 | */ |
4c21e2f2 | 1958 | static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, |
8f4e2101 HD |
1959 | pte_t *page_table, pte_t orig_pte) |
1960 | { | |
1961 | int same = 1; | |
1962 | #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) | |
1963 | if (sizeof(pte_t) > sizeof(unsigned long)) { | |
4c21e2f2 HD |
1964 | spinlock_t *ptl = pte_lockptr(mm, pmd); |
1965 | spin_lock(ptl); | |
8f4e2101 | 1966 | same = pte_same(*page_table, orig_pte); |
4c21e2f2 | 1967 | spin_unlock(ptl); |
8f4e2101 HD |
1968 | } |
1969 | #endif | |
1970 | pte_unmap(page_table); | |
1971 | return same; | |
1972 | } | |
1973 | ||
9de455b2 | 1974 | static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) |
6aab341e | 1975 | { |
0abdd7a8 DW |
1976 | debug_dma_assert_idle(src); |
1977 | ||
6aab341e LT |
1978 | /* |
1979 | * If the source page was a PFN mapping, we don't have | |
1980 | * a "struct page" for it. We do a best-effort copy by | |
1981 | * just copying from the original user address. If that | |
1982 | * fails, we just zero-fill it. Live with it. | |
1983 | */ | |
1984 | if (unlikely(!src)) { | |
9b04c5fe | 1985 | void *kaddr = kmap_atomic(dst); |
5d2a2dbb LT |
1986 | void __user *uaddr = (void __user *)(va & PAGE_MASK); |
1987 | ||
1988 | /* | |
1989 | * This really shouldn't fail, because the page is there | |
1990 | * in the page tables. But it might just be unreadable, | |
1991 | * in which case we just give up and fill the result with | |
1992 | * zeroes. | |
1993 | */ | |
1994 | if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) | |
3ecb01df | 1995 | clear_page(kaddr); |
9b04c5fe | 1996 | kunmap_atomic(kaddr); |
c4ec7b0d | 1997 | flush_dcache_page(dst); |
0ed361de NP |
1998 | } else |
1999 | copy_user_highpage(dst, src, va, vma); | |
6aab341e LT |
2000 | } |
2001 | ||
c20cd45e MH |
2002 | static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) |
2003 | { | |
2004 | struct file *vm_file = vma->vm_file; | |
2005 | ||
2006 | if (vm_file) | |
2007 | return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; | |
2008 | ||
2009 | /* | |
2010 | * Special mappings (e.g. VDSO) do not have any file so fake | |
2011 | * a default GFP_KERNEL for them. | |
2012 | */ | |
2013 | return GFP_KERNEL; | |
2014 | } | |
2015 | ||
fb09a464 KS |
2016 | /* |
2017 | * Notify the address space that the page is about to become writable so that | |
2018 | * it can prohibit this or wait for the page to get into an appropriate state. | |
2019 | * | |
2020 | * We do this without the lock held, so that it can sleep if it needs to. | |
2021 | */ | |
2022 | static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page, | |
2023 | unsigned long address) | |
2024 | { | |
2025 | struct vm_fault vmf; | |
2026 | int ret; | |
2027 | ||
2028 | vmf.virtual_address = (void __user *)(address & PAGE_MASK); | |
2029 | vmf.pgoff = page->index; | |
2030 | vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; | |
c20cd45e | 2031 | vmf.gfp_mask = __get_fault_gfp_mask(vma); |
fb09a464 | 2032 | vmf.page = page; |
2e4cdab0 | 2033 | vmf.cow_page = NULL; |
fb09a464 KS |
2034 | |
2035 | ret = vma->vm_ops->page_mkwrite(vma, &vmf); | |
2036 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) | |
2037 | return ret; | |
2038 | if (unlikely(!(ret & VM_FAULT_LOCKED))) { | |
2039 | lock_page(page); | |
2040 | if (!page->mapping) { | |
2041 | unlock_page(page); | |
2042 | return 0; /* retry */ | |
2043 | } | |
2044 | ret |= VM_FAULT_LOCKED; | |
2045 | } else | |
2046 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
2047 | return ret; | |
2048 | } | |
2049 | ||
4e047f89 SR |
2050 | /* |
2051 | * Handle write page faults for pages that can be reused in the current vma | |
2052 | * | |
2053 | * This can happen either due to the mapping being with the VM_SHARED flag, | |
2054 | * or due to us being the last reference standing to the page. In either | |
2055 | * case, all we need to do here is to mark the page as writable and update | |
2056 | * any related book-keeping. | |
2057 | */ | |
2058 | static inline int wp_page_reuse(struct mm_struct *mm, | |
2059 | struct vm_area_struct *vma, unsigned long address, | |
2060 | pte_t *page_table, spinlock_t *ptl, pte_t orig_pte, | |
2061 | struct page *page, int page_mkwrite, | |
2062 | int dirty_shared) | |
2063 | __releases(ptl) | |
2064 | { | |
2065 | pte_t entry; | |
2066 | /* | |
2067 | * Clear the pages cpupid information as the existing | |
2068 | * information potentially belongs to a now completely | |
2069 | * unrelated process. | |
2070 | */ | |
2071 | if (page) | |
2072 | page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); | |
2073 | ||
2074 | flush_cache_page(vma, address, pte_pfn(orig_pte)); | |
2075 | entry = pte_mkyoung(orig_pte); | |
2076 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
2077 | if (ptep_set_access_flags(vma, address, page_table, entry, 1)) | |
2078 | update_mmu_cache(vma, address, page_table); | |
2079 | pte_unmap_unlock(page_table, ptl); | |
2080 | ||
2081 | if (dirty_shared) { | |
2082 | struct address_space *mapping; | |
2083 | int dirtied; | |
2084 | ||
2085 | if (!page_mkwrite) | |
2086 | lock_page(page); | |
2087 | ||
2088 | dirtied = set_page_dirty(page); | |
2089 | VM_BUG_ON_PAGE(PageAnon(page), page); | |
2090 | mapping = page->mapping; | |
2091 | unlock_page(page); | |
09cbfeaf | 2092 | put_page(page); |
4e047f89 SR |
2093 | |
2094 | if ((dirtied || page_mkwrite) && mapping) { | |
2095 | /* | |
2096 | * Some device drivers do not set page.mapping | |
2097 | * but still dirty their pages | |
2098 | */ | |
2099 | balance_dirty_pages_ratelimited(mapping); | |
2100 | } | |
2101 | ||
2102 | if (!page_mkwrite) | |
2103 | file_update_time(vma->vm_file); | |
2104 | } | |
2105 | ||
2106 | return VM_FAULT_WRITE; | |
2107 | } | |
2108 | ||
2f38ab2c SR |
2109 | /* |
2110 | * Handle the case of a page which we actually need to copy to a new page. | |
2111 | * | |
2112 | * Called with mmap_sem locked and the old page referenced, but | |
2113 | * without the ptl held. | |
2114 | * | |
2115 | * High level logic flow: | |
2116 | * | |
2117 | * - Allocate a page, copy the content of the old page to the new one. | |
2118 | * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. | |
2119 | * - Take the PTL. If the pte changed, bail out and release the allocated page | |
2120 | * - If the pte is still the way we remember it, update the page table and all | |
2121 | * relevant references. This includes dropping the reference the page-table | |
2122 | * held to the old page, as well as updating the rmap. | |
2123 | * - In any case, unlock the PTL and drop the reference we took to the old page. | |
2124 | */ | |
2125 | static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma, | |
2126 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
2127 | pte_t orig_pte, struct page *old_page) | |
2128 | { | |
2129 | struct page *new_page = NULL; | |
2130 | spinlock_t *ptl = NULL; | |
2131 | pte_t entry; | |
2132 | int page_copied = 0; | |
2133 | const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */ | |
2134 | const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */ | |
2135 | struct mem_cgroup *memcg; | |
2136 | ||
2137 | if (unlikely(anon_vma_prepare(vma))) | |
2138 | goto oom; | |
2139 | ||
2140 | if (is_zero_pfn(pte_pfn(orig_pte))) { | |
2141 | new_page = alloc_zeroed_user_highpage_movable(vma, address); | |
2142 | if (!new_page) | |
2143 | goto oom; | |
2144 | } else { | |
2145 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); | |
2146 | if (!new_page) | |
2147 | goto oom; | |
2148 | cow_user_page(new_page, old_page, address, vma); | |
2149 | } | |
2f38ab2c | 2150 | |
f627c2f5 | 2151 | if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) |
2f38ab2c SR |
2152 | goto oom_free_new; |
2153 | ||
eb3c24f3 MG |
2154 | __SetPageUptodate(new_page); |
2155 | ||
2f38ab2c SR |
2156 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); |
2157 | ||
2158 | /* | |
2159 | * Re-check the pte - we dropped the lock | |
2160 | */ | |
2161 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | |
2162 | if (likely(pte_same(*page_table, orig_pte))) { | |
2163 | if (old_page) { | |
2164 | if (!PageAnon(old_page)) { | |
eca56ff9 JM |
2165 | dec_mm_counter_fast(mm, |
2166 | mm_counter_file(old_page)); | |
2f38ab2c SR |
2167 | inc_mm_counter_fast(mm, MM_ANONPAGES); |
2168 | } | |
2169 | } else { | |
2170 | inc_mm_counter_fast(mm, MM_ANONPAGES); | |
2171 | } | |
2172 | flush_cache_page(vma, address, pte_pfn(orig_pte)); | |
2173 | entry = mk_pte(new_page, vma->vm_page_prot); | |
2174 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
2175 | /* | |
2176 | * Clear the pte entry and flush it first, before updating the | |
2177 | * pte with the new entry. This will avoid a race condition | |
2178 | * seen in the presence of one thread doing SMC and another | |
2179 | * thread doing COW. | |
2180 | */ | |
2181 | ptep_clear_flush_notify(vma, address, page_table); | |
d281ee61 | 2182 | page_add_new_anon_rmap(new_page, vma, address, false); |
f627c2f5 | 2183 | mem_cgroup_commit_charge(new_page, memcg, false, false); |
2f38ab2c SR |
2184 | lru_cache_add_active_or_unevictable(new_page, vma); |
2185 | /* | |
2186 | * We call the notify macro here because, when using secondary | |
2187 | * mmu page tables (such as kvm shadow page tables), we want the | |
2188 | * new page to be mapped directly into the secondary page table. | |
2189 | */ | |
2190 | set_pte_at_notify(mm, address, page_table, entry); | |
2191 | update_mmu_cache(vma, address, page_table); | |
2192 | if (old_page) { | |
2193 | /* | |
2194 | * Only after switching the pte to the new page may | |
2195 | * we remove the mapcount here. Otherwise another | |
2196 | * process may come and find the rmap count decremented | |
2197 | * before the pte is switched to the new page, and | |
2198 | * "reuse" the old page writing into it while our pte | |
2199 | * here still points into it and can be read by other | |
2200 | * threads. | |
2201 | * | |
2202 | * The critical issue is to order this | |
2203 | * page_remove_rmap with the ptp_clear_flush above. | |
2204 | * Those stores are ordered by (if nothing else,) | |
2205 | * the barrier present in the atomic_add_negative | |
2206 | * in page_remove_rmap. | |
2207 | * | |
2208 | * Then the TLB flush in ptep_clear_flush ensures that | |
2209 | * no process can access the old page before the | |
2210 | * decremented mapcount is visible. And the old page | |
2211 | * cannot be reused until after the decremented | |
2212 | * mapcount is visible. So transitively, TLBs to | |
2213 | * old page will be flushed before it can be reused. | |
2214 | */ | |
d281ee61 | 2215 | page_remove_rmap(old_page, false); |
2f38ab2c SR |
2216 | } |
2217 | ||
2218 | /* Free the old page.. */ | |
2219 | new_page = old_page; | |
2220 | page_copied = 1; | |
2221 | } else { | |
f627c2f5 | 2222 | mem_cgroup_cancel_charge(new_page, memcg, false); |
2f38ab2c SR |
2223 | } |
2224 | ||
2225 | if (new_page) | |
09cbfeaf | 2226 | put_page(new_page); |
2f38ab2c SR |
2227 | |
2228 | pte_unmap_unlock(page_table, ptl); | |
2229 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); | |
2230 | if (old_page) { | |
2231 | /* | |
2232 | * Don't let another task, with possibly unlocked vma, | |
2233 | * keep the mlocked page. | |
2234 | */ | |
2235 | if (page_copied && (vma->vm_flags & VM_LOCKED)) { | |
2236 | lock_page(old_page); /* LRU manipulation */ | |
e90309c9 KS |
2237 | if (PageMlocked(old_page)) |
2238 | munlock_vma_page(old_page); | |
2f38ab2c SR |
2239 | unlock_page(old_page); |
2240 | } | |
09cbfeaf | 2241 | put_page(old_page); |
2f38ab2c SR |
2242 | } |
2243 | return page_copied ? VM_FAULT_WRITE : 0; | |
2244 | oom_free_new: | |
09cbfeaf | 2245 | put_page(new_page); |
2f38ab2c SR |
2246 | oom: |
2247 | if (old_page) | |
09cbfeaf | 2248 | put_page(old_page); |
2f38ab2c SR |
2249 | return VM_FAULT_OOM; |
2250 | } | |
2251 | ||
dd906184 BH |
2252 | /* |
2253 | * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED | |
2254 | * mapping | |
2255 | */ | |
2256 | static int wp_pfn_shared(struct mm_struct *mm, | |
2257 | struct vm_area_struct *vma, unsigned long address, | |
2258 | pte_t *page_table, spinlock_t *ptl, pte_t orig_pte, | |
2259 | pmd_t *pmd) | |
2260 | { | |
2261 | if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { | |
2262 | struct vm_fault vmf = { | |
2263 | .page = NULL, | |
2264 | .pgoff = linear_page_index(vma, address), | |
2265 | .virtual_address = (void __user *)(address & PAGE_MASK), | |
2266 | .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE, | |
2267 | }; | |
2268 | int ret; | |
2269 | ||
2270 | pte_unmap_unlock(page_table, ptl); | |
2271 | ret = vma->vm_ops->pfn_mkwrite(vma, &vmf); | |
2272 | if (ret & VM_FAULT_ERROR) | |
2273 | return ret; | |
2274 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); | |
2275 | /* | |
2276 | * We might have raced with another page fault while we | |
2277 | * released the pte_offset_map_lock. | |
2278 | */ | |
2279 | if (!pte_same(*page_table, orig_pte)) { | |
2280 | pte_unmap_unlock(page_table, ptl); | |
2281 | return 0; | |
2282 | } | |
2283 | } | |
2284 | return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte, | |
2285 | NULL, 0, 0); | |
2286 | } | |
2287 | ||
93e478d4 SR |
2288 | static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma, |
2289 | unsigned long address, pte_t *page_table, | |
2290 | pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte, | |
2291 | struct page *old_page) | |
2292 | __releases(ptl) | |
2293 | { | |
2294 | int page_mkwrite = 0; | |
2295 | ||
09cbfeaf | 2296 | get_page(old_page); |
93e478d4 | 2297 | |
93e478d4 SR |
2298 | if (vma->vm_ops && vma->vm_ops->page_mkwrite) { |
2299 | int tmp; | |
2300 | ||
2301 | pte_unmap_unlock(page_table, ptl); | |
2302 | tmp = do_page_mkwrite(vma, old_page, address); | |
2303 | if (unlikely(!tmp || (tmp & | |
2304 | (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | |
09cbfeaf | 2305 | put_page(old_page); |
93e478d4 SR |
2306 | return tmp; |
2307 | } | |
2308 | /* | |
2309 | * Since we dropped the lock we need to revalidate | |
2310 | * the PTE as someone else may have changed it. If | |
2311 | * they did, we just return, as we can count on the | |
2312 | * MMU to tell us if they didn't also make it writable. | |
2313 | */ | |
2314 | page_table = pte_offset_map_lock(mm, pmd, address, | |
2315 | &ptl); | |
2316 | if (!pte_same(*page_table, orig_pte)) { | |
2317 | unlock_page(old_page); | |
2318 | pte_unmap_unlock(page_table, ptl); | |
09cbfeaf | 2319 | put_page(old_page); |
93e478d4 SR |
2320 | return 0; |
2321 | } | |
2322 | page_mkwrite = 1; | |
2323 | } | |
2324 | ||
2325 | return wp_page_reuse(mm, vma, address, page_table, ptl, | |
2326 | orig_pte, old_page, page_mkwrite, 1); | |
2327 | } | |
2328 | ||
1da177e4 LT |
2329 | /* |
2330 | * This routine handles present pages, when users try to write | |
2331 | * to a shared page. It is done by copying the page to a new address | |
2332 | * and decrementing the shared-page counter for the old page. | |
2333 | * | |
1da177e4 LT |
2334 | * Note that this routine assumes that the protection checks have been |
2335 | * done by the caller (the low-level page fault routine in most cases). | |
2336 | * Thus we can safely just mark it writable once we've done any necessary | |
2337 | * COW. | |
2338 | * | |
2339 | * We also mark the page dirty at this point even though the page will | |
2340 | * change only once the write actually happens. This avoids a few races, | |
2341 | * and potentially makes it more efficient. | |
2342 | * | |
8f4e2101 HD |
2343 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2344 | * but allow concurrent faults), with pte both mapped and locked. | |
2345 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2346 | */ |
65500d23 HD |
2347 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2348 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
8f4e2101 | 2349 | spinlock_t *ptl, pte_t orig_pte) |
e6219ec8 | 2350 | __releases(ptl) |
1da177e4 | 2351 | { |
2f38ab2c | 2352 | struct page *old_page; |
1da177e4 | 2353 | |
6aab341e | 2354 | old_page = vm_normal_page(vma, address, orig_pte); |
251b97f5 PZ |
2355 | if (!old_page) { |
2356 | /* | |
64e45507 PF |
2357 | * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a |
2358 | * VM_PFNMAP VMA. | |
251b97f5 PZ |
2359 | * |
2360 | * We should not cow pages in a shared writeable mapping. | |
dd906184 | 2361 | * Just mark the pages writable and/or call ops->pfn_mkwrite. |
251b97f5 PZ |
2362 | */ |
2363 | if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == | |
2364 | (VM_WRITE|VM_SHARED)) | |
dd906184 BH |
2365 | return wp_pfn_shared(mm, vma, address, page_table, ptl, |
2366 | orig_pte, pmd); | |
2f38ab2c SR |
2367 | |
2368 | pte_unmap_unlock(page_table, ptl); | |
2369 | return wp_page_copy(mm, vma, address, page_table, pmd, | |
2370 | orig_pte, old_page); | |
251b97f5 | 2371 | } |
1da177e4 | 2372 | |
d08b3851 | 2373 | /* |
ee6a6457 PZ |
2374 | * Take out anonymous pages first, anonymous shared vmas are |
2375 | * not dirty accountable. | |
d08b3851 | 2376 | */ |
9a840895 | 2377 | if (PageAnon(old_page) && !PageKsm(old_page)) { |
6d0a07ed | 2378 | int total_mapcount; |
ab967d86 | 2379 | if (!trylock_page(old_page)) { |
09cbfeaf | 2380 | get_page(old_page); |
ab967d86 HD |
2381 | pte_unmap_unlock(page_table, ptl); |
2382 | lock_page(old_page); | |
2383 | page_table = pte_offset_map_lock(mm, pmd, address, | |
2384 | &ptl); | |
2385 | if (!pte_same(*page_table, orig_pte)) { | |
2386 | unlock_page(old_page); | |
28766805 | 2387 | pte_unmap_unlock(page_table, ptl); |
09cbfeaf | 2388 | put_page(old_page); |
28766805 | 2389 | return 0; |
ab967d86 | 2390 | } |
09cbfeaf | 2391 | put_page(old_page); |
ee6a6457 | 2392 | } |
6d0a07ed AA |
2393 | if (reuse_swap_page(old_page, &total_mapcount)) { |
2394 | if (total_mapcount == 1) { | |
2395 | /* | |
2396 | * The page is all ours. Move it to | |
2397 | * our anon_vma so the rmap code will | |
2398 | * not search our parent or siblings. | |
2399 | * Protected against the rmap code by | |
2400 | * the page lock. | |
2401 | */ | |
2402 | page_move_anon_rmap(compound_head(old_page), | |
2403 | vma, address); | |
2404 | } | |
b009c024 | 2405 | unlock_page(old_page); |
4e047f89 SR |
2406 | return wp_page_reuse(mm, vma, address, page_table, ptl, |
2407 | orig_pte, old_page, 0, 0); | |
b009c024 | 2408 | } |
ab967d86 | 2409 | unlock_page(old_page); |
ee6a6457 | 2410 | } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == |
d08b3851 | 2411 | (VM_WRITE|VM_SHARED))) { |
93e478d4 SR |
2412 | return wp_page_shared(mm, vma, address, page_table, pmd, |
2413 | ptl, orig_pte, old_page); | |
1da177e4 | 2414 | } |
1da177e4 LT |
2415 | |
2416 | /* | |
2417 | * Ok, we need to copy. Oh, well.. | |
2418 | */ | |
09cbfeaf | 2419 | get_page(old_page); |
28766805 | 2420 | |
8f4e2101 | 2421 | pte_unmap_unlock(page_table, ptl); |
2f38ab2c SR |
2422 | return wp_page_copy(mm, vma, address, page_table, pmd, |
2423 | orig_pte, old_page); | |
1da177e4 LT |
2424 | } |
2425 | ||
97a89413 | 2426 | static void unmap_mapping_range_vma(struct vm_area_struct *vma, |
1da177e4 LT |
2427 | unsigned long start_addr, unsigned long end_addr, |
2428 | struct zap_details *details) | |
2429 | { | |
f5cc4eef | 2430 | zap_page_range_single(vma, start_addr, end_addr - start_addr, details); |
1da177e4 LT |
2431 | } |
2432 | ||
6b2dbba8 | 2433 | static inline void unmap_mapping_range_tree(struct rb_root *root, |
1da177e4 LT |
2434 | struct zap_details *details) |
2435 | { | |
2436 | struct vm_area_struct *vma; | |
1da177e4 LT |
2437 | pgoff_t vba, vea, zba, zea; |
2438 | ||
6b2dbba8 | 2439 | vma_interval_tree_foreach(vma, root, |
1da177e4 | 2440 | details->first_index, details->last_index) { |
1da177e4 LT |
2441 | |
2442 | vba = vma->vm_pgoff; | |
d6e93217 | 2443 | vea = vba + vma_pages(vma) - 1; |
1da177e4 LT |
2444 | zba = details->first_index; |
2445 | if (zba < vba) | |
2446 | zba = vba; | |
2447 | zea = details->last_index; | |
2448 | if (zea > vea) | |
2449 | zea = vea; | |
2450 | ||
97a89413 | 2451 | unmap_mapping_range_vma(vma, |
1da177e4 LT |
2452 | ((zba - vba) << PAGE_SHIFT) + vma->vm_start, |
2453 | ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | |
97a89413 | 2454 | details); |
1da177e4 LT |
2455 | } |
2456 | } | |
2457 | ||
1da177e4 | 2458 | /** |
8a5f14a2 KS |
2459 | * unmap_mapping_range - unmap the portion of all mmaps in the specified |
2460 | * address_space corresponding to the specified page range in the underlying | |
2461 | * file. | |
2462 | * | |
3d41088f | 2463 | * @mapping: the address space containing mmaps to be unmapped. |
1da177e4 LT |
2464 | * @holebegin: byte in first page to unmap, relative to the start of |
2465 | * the underlying file. This will be rounded down to a PAGE_SIZE | |
25d9e2d1 | 2466 | * boundary. Note that this is different from truncate_pagecache(), which |
1da177e4 LT |
2467 | * must keep the partial page. In contrast, we must get rid of |
2468 | * partial pages. | |
2469 | * @holelen: size of prospective hole in bytes. This will be rounded | |
2470 | * up to a PAGE_SIZE boundary. A holelen of zero truncates to the | |
2471 | * end of the file. | |
2472 | * @even_cows: 1 when truncating a file, unmap even private COWed pages; | |
2473 | * but 0 when invalidating pagecache, don't throw away private data. | |
2474 | */ | |
2475 | void unmap_mapping_range(struct address_space *mapping, | |
2476 | loff_t const holebegin, loff_t const holelen, int even_cows) | |
2477 | { | |
aac45363 | 2478 | struct zap_details details = { }; |
1da177e4 LT |
2479 | pgoff_t hba = holebegin >> PAGE_SHIFT; |
2480 | pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
2481 | ||
2482 | /* Check for overflow. */ | |
2483 | if (sizeof(holelen) > sizeof(hlen)) { | |
2484 | long long holeend = | |
2485 | (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | |
2486 | if (holeend & ~(long long)ULONG_MAX) | |
2487 | hlen = ULONG_MAX - hba + 1; | |
2488 | } | |
2489 | ||
2490 | details.check_mapping = even_cows? NULL: mapping; | |
1da177e4 LT |
2491 | details.first_index = hba; |
2492 | details.last_index = hba + hlen - 1; | |
2493 | if (details.last_index < details.first_index) | |
2494 | details.last_index = ULONG_MAX; | |
1da177e4 | 2495 | |
46c043ed | 2496 | i_mmap_lock_write(mapping); |
6b2dbba8 | 2497 | if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) |
1da177e4 | 2498 | unmap_mapping_range_tree(&mapping->i_mmap, &details); |
46c043ed | 2499 | i_mmap_unlock_write(mapping); |
1da177e4 LT |
2500 | } |
2501 | EXPORT_SYMBOL(unmap_mapping_range); | |
2502 | ||
1da177e4 | 2503 | /* |
8f4e2101 HD |
2504 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2505 | * but allow concurrent faults), and pte mapped but not yet locked. | |
9a95f3cf PC |
2506 | * We return with pte unmapped and unlocked. |
2507 | * | |
2508 | * We return with the mmap_sem locked or unlocked in the same cases | |
2509 | * as does filemap_fault(). | |
1da177e4 | 2510 | */ |
65500d23 HD |
2511 | static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2512 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
30c9f3a9 | 2513 | unsigned int flags, pte_t orig_pte) |
1da177e4 | 2514 | { |
8f4e2101 | 2515 | spinlock_t *ptl; |
56f31801 | 2516 | struct page *page, *swapcache; |
00501b53 | 2517 | struct mem_cgroup *memcg; |
65500d23 | 2518 | swp_entry_t entry; |
1da177e4 | 2519 | pte_t pte; |
d065bd81 | 2520 | int locked; |
ad8c2ee8 | 2521 | int exclusive = 0; |
83c54070 | 2522 | int ret = 0; |
1da177e4 | 2523 | |
4c21e2f2 | 2524 | if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) |
8f4e2101 | 2525 | goto out; |
65500d23 HD |
2526 | |
2527 | entry = pte_to_swp_entry(orig_pte); | |
d1737fdb AK |
2528 | if (unlikely(non_swap_entry(entry))) { |
2529 | if (is_migration_entry(entry)) { | |
2530 | migration_entry_wait(mm, pmd, address); | |
2531 | } else if (is_hwpoison_entry(entry)) { | |
2532 | ret = VM_FAULT_HWPOISON; | |
2533 | } else { | |
2534 | print_bad_pte(vma, address, orig_pte, NULL); | |
d99be1a8 | 2535 | ret = VM_FAULT_SIGBUS; |
d1737fdb | 2536 | } |
0697212a CL |
2537 | goto out; |
2538 | } | |
0ff92245 | 2539 | delayacct_set_flag(DELAYACCT_PF_SWAPIN); |
1da177e4 LT |
2540 | page = lookup_swap_cache(entry); |
2541 | if (!page) { | |
02098fea HD |
2542 | page = swapin_readahead(entry, |
2543 | GFP_HIGHUSER_MOVABLE, vma, address); | |
1da177e4 LT |
2544 | if (!page) { |
2545 | /* | |
8f4e2101 HD |
2546 | * Back out if somebody else faulted in this pte |
2547 | * while we released the pte lock. | |
1da177e4 | 2548 | */ |
8f4e2101 | 2549 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1da177e4 LT |
2550 | if (likely(pte_same(*page_table, orig_pte))) |
2551 | ret = VM_FAULT_OOM; | |
0ff92245 | 2552 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
65500d23 | 2553 | goto unlock; |
1da177e4 LT |
2554 | } |
2555 | ||
2556 | /* Had to read the page from swap area: Major fault */ | |
2557 | ret = VM_FAULT_MAJOR; | |
f8891e5e | 2558 | count_vm_event(PGMAJFAULT); |
456f998e | 2559 | mem_cgroup_count_vm_event(mm, PGMAJFAULT); |
d1737fdb | 2560 | } else if (PageHWPoison(page)) { |
71f72525 WF |
2561 | /* |
2562 | * hwpoisoned dirty swapcache pages are kept for killing | |
2563 | * owner processes (which may be unknown at hwpoison time) | |
2564 | */ | |
d1737fdb AK |
2565 | ret = VM_FAULT_HWPOISON; |
2566 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); | |
56f31801 | 2567 | swapcache = page; |
4779cb31 | 2568 | goto out_release; |
1da177e4 LT |
2569 | } |
2570 | ||
56f31801 | 2571 | swapcache = page; |
d065bd81 | 2572 | locked = lock_page_or_retry(page, mm, flags); |
e709ffd6 | 2573 | |
073e587e | 2574 | delayacct_clear_flag(DELAYACCT_PF_SWAPIN); |
d065bd81 ML |
2575 | if (!locked) { |
2576 | ret |= VM_FAULT_RETRY; | |
2577 | goto out_release; | |
2578 | } | |
073e587e | 2579 | |
4969c119 | 2580 | /* |
31c4a3d3 HD |
2581 | * Make sure try_to_free_swap or reuse_swap_page or swapoff did not |
2582 | * release the swapcache from under us. The page pin, and pte_same | |
2583 | * test below, are not enough to exclude that. Even if it is still | |
2584 | * swapcache, we need to check that the page's swap has not changed. | |
4969c119 | 2585 | */ |
31c4a3d3 | 2586 | if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) |
4969c119 AA |
2587 | goto out_page; |
2588 | ||
cbf86cfe HD |
2589 | page = ksm_might_need_to_copy(page, vma, address); |
2590 | if (unlikely(!page)) { | |
2591 | ret = VM_FAULT_OOM; | |
2592 | page = swapcache; | |
cbf86cfe | 2593 | goto out_page; |
5ad64688 HD |
2594 | } |
2595 | ||
f627c2f5 | 2596 | if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) { |
8a9f3ccd | 2597 | ret = VM_FAULT_OOM; |
bc43f75c | 2598 | goto out_page; |
8a9f3ccd BS |
2599 | } |
2600 | ||
1da177e4 | 2601 | /* |
8f4e2101 | 2602 | * Back out if somebody else already faulted in this pte. |
1da177e4 | 2603 | */ |
8f4e2101 | 2604 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
9e9bef07 | 2605 | if (unlikely(!pte_same(*page_table, orig_pte))) |
b8107480 | 2606 | goto out_nomap; |
b8107480 KK |
2607 | |
2608 | if (unlikely(!PageUptodate(page))) { | |
2609 | ret = VM_FAULT_SIGBUS; | |
2610 | goto out_nomap; | |
1da177e4 LT |
2611 | } |
2612 | ||
8c7c6e34 KH |
2613 | /* |
2614 | * The page isn't present yet, go ahead with the fault. | |
2615 | * | |
2616 | * Be careful about the sequence of operations here. | |
2617 | * To get its accounting right, reuse_swap_page() must be called | |
2618 | * while the page is counted on swap but not yet in mapcount i.e. | |
2619 | * before page_add_anon_rmap() and swap_free(); try_to_free_swap() | |
2620 | * must be called after the swap_free(), or it will never succeed. | |
8c7c6e34 | 2621 | */ |
1da177e4 | 2622 | |
34e55232 | 2623 | inc_mm_counter_fast(mm, MM_ANONPAGES); |
b084d435 | 2624 | dec_mm_counter_fast(mm, MM_SWAPENTS); |
1da177e4 | 2625 | pte = mk_pte(page, vma->vm_page_prot); |
6d0a07ed | 2626 | if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { |
1da177e4 | 2627 | pte = maybe_mkwrite(pte_mkdirty(pte), vma); |
30c9f3a9 | 2628 | flags &= ~FAULT_FLAG_WRITE; |
9a5b489b | 2629 | ret |= VM_FAULT_WRITE; |
d281ee61 | 2630 | exclusive = RMAP_EXCLUSIVE; |
1da177e4 | 2631 | } |
1da177e4 | 2632 | flush_icache_page(vma, page); |
179ef71c CG |
2633 | if (pte_swp_soft_dirty(orig_pte)) |
2634 | pte = pte_mksoft_dirty(pte); | |
1da177e4 | 2635 | set_pte_at(mm, address, page_table, pte); |
00501b53 | 2636 | if (page == swapcache) { |
af34770e | 2637 | do_page_add_anon_rmap(page, vma, address, exclusive); |
f627c2f5 | 2638 | mem_cgroup_commit_charge(page, memcg, true, false); |
00501b53 | 2639 | } else { /* ksm created a completely new copy */ |
d281ee61 | 2640 | page_add_new_anon_rmap(page, vma, address, false); |
f627c2f5 | 2641 | mem_cgroup_commit_charge(page, memcg, false, false); |
00501b53 JW |
2642 | lru_cache_add_active_or_unevictable(page, vma); |
2643 | } | |
1da177e4 | 2644 | |
c475a8ab | 2645 | swap_free(entry); |
5ccc5aba VD |
2646 | if (mem_cgroup_swap_full(page) || |
2647 | (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) | |
a2c43eed | 2648 | try_to_free_swap(page); |
c475a8ab | 2649 | unlock_page(page); |
56f31801 | 2650 | if (page != swapcache) { |
4969c119 AA |
2651 | /* |
2652 | * Hold the lock to avoid the swap entry to be reused | |
2653 | * until we take the PT lock for the pte_same() check | |
2654 | * (to avoid false positives from pte_same). For | |
2655 | * further safety release the lock after the swap_free | |
2656 | * so that the swap count won't change under a | |
2657 | * parallel locked swapcache. | |
2658 | */ | |
2659 | unlock_page(swapcache); | |
09cbfeaf | 2660 | put_page(swapcache); |
4969c119 | 2661 | } |
c475a8ab | 2662 | |
30c9f3a9 | 2663 | if (flags & FAULT_FLAG_WRITE) { |
61469f1d HD |
2664 | ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); |
2665 | if (ret & VM_FAULT_ERROR) | |
2666 | ret &= VM_FAULT_ERROR; | |
1da177e4 LT |
2667 | goto out; |
2668 | } | |
2669 | ||
2670 | /* No need to invalidate - it was non-present before */ | |
4b3073e1 | 2671 | update_mmu_cache(vma, address, page_table); |
65500d23 | 2672 | unlock: |
8f4e2101 | 2673 | pte_unmap_unlock(page_table, ptl); |
1da177e4 LT |
2674 | out: |
2675 | return ret; | |
b8107480 | 2676 | out_nomap: |
f627c2f5 | 2677 | mem_cgroup_cancel_charge(page, memcg, false); |
8f4e2101 | 2678 | pte_unmap_unlock(page_table, ptl); |
bc43f75c | 2679 | out_page: |
b8107480 | 2680 | unlock_page(page); |
4779cb31 | 2681 | out_release: |
09cbfeaf | 2682 | put_page(page); |
56f31801 | 2683 | if (page != swapcache) { |
4969c119 | 2684 | unlock_page(swapcache); |
09cbfeaf | 2685 | put_page(swapcache); |
4969c119 | 2686 | } |
65500d23 | 2687 | return ret; |
1da177e4 LT |
2688 | } |
2689 | ||
320b2b8d | 2690 | /* |
8ca3eb08 TL |
2691 | * This is like a special single-page "expand_{down|up}wards()", |
2692 | * except we must first make sure that 'address{-|+}PAGE_SIZE' | |
320b2b8d | 2693 | * doesn't hit another vma. |
320b2b8d LT |
2694 | */ |
2695 | static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) | |
2696 | { | |
2697 | address &= PAGE_MASK; | |
2698 | if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { | |
0e8e50e2 LT |
2699 | struct vm_area_struct *prev = vma->vm_prev; |
2700 | ||
2701 | /* | |
2702 | * Is there a mapping abutting this one below? | |
2703 | * | |
2704 | * That's only ok if it's the same stack mapping | |
2705 | * that has gotten split.. | |
2706 | */ | |
2707 | if (prev && prev->vm_end == address) | |
2708 | return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; | |
320b2b8d | 2709 | |
fee7e49d | 2710 | return expand_downwards(vma, address - PAGE_SIZE); |
320b2b8d | 2711 | } |
8ca3eb08 TL |
2712 | if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { |
2713 | struct vm_area_struct *next = vma->vm_next; | |
2714 | ||
2715 | /* As VM_GROWSDOWN but s/below/above/ */ | |
2716 | if (next && next->vm_start == address + PAGE_SIZE) | |
2717 | return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; | |
2718 | ||
fee7e49d | 2719 | return expand_upwards(vma, address + PAGE_SIZE); |
8ca3eb08 | 2720 | } |
320b2b8d LT |
2721 | return 0; |
2722 | } | |
2723 | ||
1da177e4 | 2724 | /* |
8f4e2101 HD |
2725 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
2726 | * but allow concurrent faults), and pte mapped but not yet locked. | |
2727 | * We return with mmap_sem still held, but pte unmapped and unlocked. | |
1da177e4 | 2728 | */ |
65500d23 HD |
2729 | static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, |
2730 | unsigned long address, pte_t *page_table, pmd_t *pmd, | |
30c9f3a9 | 2731 | unsigned int flags) |
1da177e4 | 2732 | { |
00501b53 | 2733 | struct mem_cgroup *memcg; |
8f4e2101 HD |
2734 | struct page *page; |
2735 | spinlock_t *ptl; | |
1da177e4 | 2736 | pte_t entry; |
1da177e4 | 2737 | |
11ac5524 LT |
2738 | pte_unmap(page_table); |
2739 | ||
6b7339f4 KS |
2740 | /* File mapping without ->vm_ops ? */ |
2741 | if (vma->vm_flags & VM_SHARED) | |
2742 | return VM_FAULT_SIGBUS; | |
2743 | ||
11ac5524 LT |
2744 | /* Check if we need to add a guard page to the stack */ |
2745 | if (check_stack_guard_page(vma, address) < 0) | |
9c145c56 | 2746 | return VM_FAULT_SIGSEGV; |
320b2b8d | 2747 | |
11ac5524 | 2748 | /* Use the zero-page for reads */ |
593befa6 | 2749 | if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) { |
62eede62 HD |
2750 | entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), |
2751 | vma->vm_page_prot)); | |
11ac5524 | 2752 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
a13ea5b7 HD |
2753 | if (!pte_none(*page_table)) |
2754 | goto unlock; | |
6b251fc9 AA |
2755 | /* Deliver the page fault to userland, check inside PT lock */ |
2756 | if (userfaultfd_missing(vma)) { | |
2757 | pte_unmap_unlock(page_table, ptl); | |
2758 | return handle_userfault(vma, address, flags, | |
2759 | VM_UFFD_MISSING); | |
2760 | } | |
a13ea5b7 HD |
2761 | goto setpte; |
2762 | } | |
2763 | ||
557ed1fa | 2764 | /* Allocate our own private page. */ |
557ed1fa NP |
2765 | if (unlikely(anon_vma_prepare(vma))) |
2766 | goto oom; | |
2767 | page = alloc_zeroed_user_highpage_movable(vma, address); | |
2768 | if (!page) | |
2769 | goto oom; | |
eb3c24f3 | 2770 | |
f627c2f5 | 2771 | if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) |
eb3c24f3 MG |
2772 | goto oom_free_page; |
2773 | ||
52f37629 MK |
2774 | /* |
2775 | * The memory barrier inside __SetPageUptodate makes sure that | |
2776 | * preceeding stores to the page contents become visible before | |
2777 | * the set_pte_at() write. | |
2778 | */ | |
0ed361de | 2779 | __SetPageUptodate(page); |
8f4e2101 | 2780 | |
557ed1fa | 2781 | entry = mk_pte(page, vma->vm_page_prot); |
1ac0cb5d HD |
2782 | if (vma->vm_flags & VM_WRITE) |
2783 | entry = pte_mkwrite(pte_mkdirty(entry)); | |
1da177e4 | 2784 | |
557ed1fa | 2785 | page_table = pte_offset_map_lock(mm, pmd, address, &ptl); |
1c2fb7a4 | 2786 | if (!pte_none(*page_table)) |
557ed1fa | 2787 | goto release; |
9ba69294 | 2788 | |
6b251fc9 AA |
2789 | /* Deliver the page fault to userland, check inside PT lock */ |
2790 | if (userfaultfd_missing(vma)) { | |
2791 | pte_unmap_unlock(page_table, ptl); | |
f627c2f5 | 2792 | mem_cgroup_cancel_charge(page, memcg, false); |
09cbfeaf | 2793 | put_page(page); |
6b251fc9 AA |
2794 | return handle_userfault(vma, address, flags, |
2795 | VM_UFFD_MISSING); | |
2796 | } | |
2797 | ||
34e55232 | 2798 | inc_mm_counter_fast(mm, MM_ANONPAGES); |
d281ee61 | 2799 | page_add_new_anon_rmap(page, vma, address, false); |
f627c2f5 | 2800 | mem_cgroup_commit_charge(page, memcg, false, false); |
00501b53 | 2801 | lru_cache_add_active_or_unevictable(page, vma); |
a13ea5b7 | 2802 | setpte: |
65500d23 | 2803 | set_pte_at(mm, address, page_table, entry); |
1da177e4 LT |
2804 | |
2805 | /* No need to invalidate - it was non-present before */ | |
4b3073e1 | 2806 | update_mmu_cache(vma, address, page_table); |
65500d23 | 2807 | unlock: |
8f4e2101 | 2808 | pte_unmap_unlock(page_table, ptl); |
83c54070 | 2809 | return 0; |
8f4e2101 | 2810 | release: |
f627c2f5 | 2811 | mem_cgroup_cancel_charge(page, memcg, false); |
09cbfeaf | 2812 | put_page(page); |
8f4e2101 | 2813 | goto unlock; |
8a9f3ccd | 2814 | oom_free_page: |
09cbfeaf | 2815 | put_page(page); |
65500d23 | 2816 | oom: |
1da177e4 LT |
2817 | return VM_FAULT_OOM; |
2818 | } | |
2819 | ||
9a95f3cf PC |
2820 | /* |
2821 | * The mmap_sem must have been held on entry, and may have been | |
2822 | * released depending on flags and vma->vm_ops->fault() return value. | |
2823 | * See filemap_fault() and __lock_page_retry(). | |
2824 | */ | |
7eae74af | 2825 | static int __do_fault(struct vm_area_struct *vma, unsigned long address, |
2e4cdab0 | 2826 | pgoff_t pgoff, unsigned int flags, |
bc2466e4 JK |
2827 | struct page *cow_page, struct page **page, |
2828 | void **entry) | |
7eae74af KS |
2829 | { |
2830 | struct vm_fault vmf; | |
2831 | int ret; | |
2832 | ||
2833 | vmf.virtual_address = (void __user *)(address & PAGE_MASK); | |
2834 | vmf.pgoff = pgoff; | |
2835 | vmf.flags = flags; | |
2836 | vmf.page = NULL; | |
c20cd45e | 2837 | vmf.gfp_mask = __get_fault_gfp_mask(vma); |
2e4cdab0 | 2838 | vmf.cow_page = cow_page; |
7eae74af KS |
2839 | |
2840 | ret = vma->vm_ops->fault(vma, &vmf); | |
2841 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) | |
2842 | return ret; | |
bc2466e4 JK |
2843 | if (ret & VM_FAULT_DAX_LOCKED) { |
2844 | *entry = vmf.entry; | |
2845 | return ret; | |
2846 | } | |
7eae74af KS |
2847 | |
2848 | if (unlikely(PageHWPoison(vmf.page))) { | |
2849 | if (ret & VM_FAULT_LOCKED) | |
2850 | unlock_page(vmf.page); | |
09cbfeaf | 2851 | put_page(vmf.page); |
7eae74af KS |
2852 | return VM_FAULT_HWPOISON; |
2853 | } | |
2854 | ||
2855 | if (unlikely(!(ret & VM_FAULT_LOCKED))) | |
2856 | lock_page(vmf.page); | |
2857 | else | |
2858 | VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page); | |
2859 | ||
2860 | *page = vmf.page; | |
2861 | return ret; | |
2862 | } | |
2863 | ||
8c6e50b0 KS |
2864 | /** |
2865 | * do_set_pte - setup new PTE entry for given page and add reverse page mapping. | |
2866 | * | |
2867 | * @vma: virtual memory area | |
2868 | * @address: user virtual address | |
2869 | * @page: page to map | |
2870 | * @pte: pointer to target page table entry | |
2871 | * @write: true, if new entry is writable | |
2872 | * @anon: true, if it's anonymous page | |
2873 | * | |
2874 | * Caller must hold page table lock relevant for @pte. | |
2875 | * | |
2876 | * Target users are page handler itself and implementations of | |
2877 | * vm_ops->map_pages. | |
2878 | */ | |
2879 | void do_set_pte(struct vm_area_struct *vma, unsigned long address, | |
315d09bf | 2880 | struct page *page, pte_t *pte, bool write, bool anon) |
3bb97794 KS |
2881 | { |
2882 | pte_t entry; | |
2883 | ||
2884 | flush_icache_page(vma, page); | |
2885 | entry = mk_pte(page, vma->vm_page_prot); | |
2886 | if (write) | |
2887 | entry = maybe_mkwrite(pte_mkdirty(entry), vma); | |
3bb97794 KS |
2888 | if (anon) { |
2889 | inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); | |
d281ee61 | 2890 | page_add_new_anon_rmap(page, vma, address, false); |
3bb97794 | 2891 | } else { |
eca56ff9 | 2892 | inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); |
3bb97794 KS |
2893 | page_add_file_rmap(page); |
2894 | } | |
2895 | set_pte_at(vma->vm_mm, address, pte, entry); | |
2896 | ||
2897 | /* no need to invalidate: a not-present page won't be cached */ | |
2898 | update_mmu_cache(vma, address, pte); | |
2899 | } | |
2900 | ||
3a91053a KS |
2901 | static unsigned long fault_around_bytes __read_mostly = |
2902 | rounddown_pow_of_two(65536); | |
a9b0f861 | 2903 | |
a9b0f861 KS |
2904 | #ifdef CONFIG_DEBUG_FS |
2905 | static int fault_around_bytes_get(void *data, u64 *val) | |
1592eef0 | 2906 | { |
a9b0f861 | 2907 | *val = fault_around_bytes; |
1592eef0 KS |
2908 | return 0; |
2909 | } | |
2910 | ||
b4903d6e AR |
2911 | /* |
2912 | * fault_around_pages() and fault_around_mask() expects fault_around_bytes | |
2913 | * rounded down to nearest page order. It's what do_fault_around() expects to | |
2914 | * see. | |
2915 | */ | |
a9b0f861 | 2916 | static int fault_around_bytes_set(void *data, u64 val) |
1592eef0 | 2917 | { |
a9b0f861 | 2918 | if (val / PAGE_SIZE > PTRS_PER_PTE) |
1592eef0 | 2919 | return -EINVAL; |
b4903d6e AR |
2920 | if (val > PAGE_SIZE) |
2921 | fault_around_bytes = rounddown_pow_of_two(val); | |
2922 | else | |
2923 | fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ | |
1592eef0 KS |
2924 | return 0; |
2925 | } | |
a9b0f861 KS |
2926 | DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, |
2927 | fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); | |
1592eef0 KS |
2928 | |
2929 | static int __init fault_around_debugfs(void) | |
2930 | { | |
2931 | void *ret; | |
2932 | ||
a9b0f861 KS |
2933 | ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, |
2934 | &fault_around_bytes_fops); | |
1592eef0 | 2935 | if (!ret) |
a9b0f861 | 2936 | pr_warn("Failed to create fault_around_bytes in debugfs"); |
1592eef0 KS |
2937 | return 0; |
2938 | } | |
2939 | late_initcall(fault_around_debugfs); | |
1592eef0 | 2940 | #endif |
8c6e50b0 | 2941 | |
1fdb412b KS |
2942 | /* |
2943 | * do_fault_around() tries to map few pages around the fault address. The hope | |
2944 | * is that the pages will be needed soon and this will lower the number of | |
2945 | * faults to handle. | |
2946 | * | |
2947 | * It uses vm_ops->map_pages() to map the pages, which skips the page if it's | |
2948 | * not ready to be mapped: not up-to-date, locked, etc. | |
2949 | * | |
2950 | * This function is called with the page table lock taken. In the split ptlock | |
2951 | * case the page table lock only protects only those entries which belong to | |
2952 | * the page table corresponding to the fault address. | |
2953 | * | |
2954 | * This function doesn't cross the VMA boundaries, in order to call map_pages() | |
2955 | * only once. | |
2956 | * | |
2957 | * fault_around_pages() defines how many pages we'll try to map. | |
2958 | * do_fault_around() expects it to return a power of two less than or equal to | |
2959 | * PTRS_PER_PTE. | |
2960 | * | |
2961 | * The virtual address of the area that we map is naturally aligned to the | |
2962 | * fault_around_pages() value (and therefore to page order). This way it's | |
2963 | * easier to guarantee that we don't cross page table boundaries. | |
2964 | */ | |
8c6e50b0 KS |
2965 | static void do_fault_around(struct vm_area_struct *vma, unsigned long address, |
2966 | pte_t *pte, pgoff_t pgoff, unsigned int flags) | |
2967 | { | |
aecd6f44 | 2968 | unsigned long start_addr, nr_pages, mask; |
8c6e50b0 KS |
2969 | pgoff_t max_pgoff; |
2970 | struct vm_fault vmf; | |
2971 | int off; | |
2972 | ||
4db0c3c2 | 2973 | nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; |
aecd6f44 KS |
2974 | mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; |
2975 | ||
2976 | start_addr = max(address & mask, vma->vm_start); | |
8c6e50b0 KS |
2977 | off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); |
2978 | pte -= off; | |
2979 | pgoff -= off; | |
2980 | ||
2981 | /* | |
2982 | * max_pgoff is either end of page table or end of vma | |
850e9c69 | 2983 | * or fault_around_pages() from pgoff, depending what is nearest. |
8c6e50b0 KS |
2984 | */ |
2985 | max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + | |
2986 | PTRS_PER_PTE - 1; | |
2987 | max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1, | |
aecd6f44 | 2988 | pgoff + nr_pages - 1); |
8c6e50b0 KS |
2989 | |
2990 | /* Check if it makes any sense to call ->map_pages */ | |
2991 | while (!pte_none(*pte)) { | |
2992 | if (++pgoff > max_pgoff) | |
2993 | return; | |
2994 | start_addr += PAGE_SIZE; | |
2995 | if (start_addr >= vma->vm_end) | |
2996 | return; | |
2997 | pte++; | |
2998 | } | |
2999 | ||
3000 | vmf.virtual_address = (void __user *) start_addr; | |
3001 | vmf.pte = pte; | |
3002 | vmf.pgoff = pgoff; | |
3003 | vmf.max_pgoff = max_pgoff; | |
3004 | vmf.flags = flags; | |
c20cd45e | 3005 | vmf.gfp_mask = __get_fault_gfp_mask(vma); |
8c6e50b0 KS |
3006 | vma->vm_ops->map_pages(vma, &vmf); |
3007 | } | |
3008 | ||
e655fb29 KS |
3009 | static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
3010 | unsigned long address, pmd_t *pmd, | |
3011 | pgoff_t pgoff, unsigned int flags, pte_t orig_pte) | |
3012 | { | |
3013 | struct page *fault_page; | |
3014 | spinlock_t *ptl; | |
3bb97794 | 3015 | pte_t *pte; |
8c6e50b0 KS |
3016 | int ret = 0; |
3017 | ||
3018 | /* | |
3019 | * Let's call ->map_pages() first and use ->fault() as fallback | |
3020 | * if page by the offset is not ready to be mapped (cold cache or | |
3021 | * something). | |
3022 | */ | |
9b4bdd2f | 3023 | if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { |
8c6e50b0 | 3024 | pte = pte_offset_map_lock(mm, pmd, address, &ptl); |
5c0a85fa | 3025 | do_fault_around(vma, address, pte, pgoff, flags); |
315d09bf | 3026 | if (!pte_same(*pte, orig_pte)) |
5c0a85fa | 3027 | goto unlock_out; |
8c6e50b0 KS |
3028 | pte_unmap_unlock(pte, ptl); |
3029 | } | |
e655fb29 | 3030 | |
bc2466e4 | 3031 | ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page, NULL); |
e655fb29 KS |
3032 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
3033 | return ret; | |
3034 | ||
3035 | pte = pte_offset_map_lock(mm, pmd, address, &ptl); | |
3036 | if (unlikely(!pte_same(*pte, orig_pte))) { | |
3037 | pte_unmap_unlock(pte, ptl); | |
3038 | unlock_page(fault_page); | |
09cbfeaf | 3039 | put_page(fault_page); |
e655fb29 KS |
3040 | return ret; |
3041 | } | |
315d09bf | 3042 | do_set_pte(vma, address, fault_page, pte, false, false); |
e655fb29 | 3043 | unlock_page(fault_page); |
8c6e50b0 KS |
3044 | unlock_out: |
3045 | pte_unmap_unlock(pte, ptl); | |
e655fb29 KS |
3046 | return ret; |
3047 | } | |
3048 | ||
ec47c3b9 KS |
3049 | static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
3050 | unsigned long address, pmd_t *pmd, | |
3051 | pgoff_t pgoff, unsigned int flags, pte_t orig_pte) | |
3052 | { | |
3053 | struct page *fault_page, *new_page; | |
bc2466e4 | 3054 | void *fault_entry; |
00501b53 | 3055 | struct mem_cgroup *memcg; |
ec47c3b9 | 3056 | spinlock_t *ptl; |
3bb97794 | 3057 | pte_t *pte; |
ec47c3b9 KS |
3058 | int ret; |
3059 | ||
3060 | if (unlikely(anon_vma_prepare(vma))) | |
3061 | return VM_FAULT_OOM; | |
3062 | ||
3063 | new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); | |
3064 | if (!new_page) | |
3065 | return VM_FAULT_OOM; | |
3066 | ||
f627c2f5 | 3067 | if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) { |
09cbfeaf | 3068 | put_page(new_page); |
ec47c3b9 KS |
3069 | return VM_FAULT_OOM; |
3070 | } | |
3071 | ||
bc2466e4 JK |
3072 | ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page, |
3073 | &fault_entry); | |
ec47c3b9 KS |
3074 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
3075 | goto uncharge_out; | |
3076 | ||
bc2466e4 | 3077 | if (!(ret & VM_FAULT_DAX_LOCKED)) |
2e4cdab0 | 3078 | copy_user_highpage(new_page, fault_page, address, vma); |
ec47c3b9 KS |
3079 | __SetPageUptodate(new_page); |
3080 | ||
3081 | pte = pte_offset_map_lock(mm, pmd, address, &ptl); | |
3082 | if (unlikely(!pte_same(*pte, orig_pte))) { | |
3083 | pte_unmap_unlock(pte, ptl); | |
bc2466e4 | 3084 | if (!(ret & VM_FAULT_DAX_LOCKED)) { |
2e4cdab0 | 3085 | unlock_page(fault_page); |
09cbfeaf | 3086 | put_page(fault_page); |
2e4cdab0 | 3087 | } else { |
bc2466e4 JK |
3088 | dax_unlock_mapping_entry(vma->vm_file->f_mapping, |
3089 | pgoff); | |
2e4cdab0 | 3090 | } |
ec47c3b9 KS |
3091 | goto uncharge_out; |
3092 | } | |
315d09bf | 3093 | do_set_pte(vma, address, new_page, pte, true, true); |
f627c2f5 | 3094 | mem_cgroup_commit_charge(new_page, memcg, false, false); |
00501b53 | 3095 | lru_cache_add_active_or_unevictable(new_page, vma); |
ec47c3b9 | 3096 | pte_unmap_unlock(pte, ptl); |
bc2466e4 | 3097 | if (!(ret & VM_FAULT_DAX_LOCKED)) { |
2e4cdab0 | 3098 | unlock_page(fault_page); |
09cbfeaf | 3099 | put_page(fault_page); |
2e4cdab0 | 3100 | } else { |
bc2466e4 | 3101 | dax_unlock_mapping_entry(vma->vm_file->f_mapping, pgoff); |
2e4cdab0 | 3102 | } |
ec47c3b9 KS |
3103 | return ret; |
3104 | uncharge_out: | |
f627c2f5 | 3105 | mem_cgroup_cancel_charge(new_page, memcg, false); |
09cbfeaf | 3106 | put_page(new_page); |
ec47c3b9 KS |
3107 | return ret; |
3108 | } | |
3109 | ||
f0c6d4d2 | 3110 | static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
16abfa08 | 3111 | unsigned long address, pmd_t *pmd, |
54cb8821 | 3112 | pgoff_t pgoff, unsigned int flags, pte_t orig_pte) |
1da177e4 | 3113 | { |
f0c6d4d2 KS |
3114 | struct page *fault_page; |
3115 | struct address_space *mapping; | |
8f4e2101 | 3116 | spinlock_t *ptl; |
3bb97794 | 3117 | pte_t *pte; |
f0c6d4d2 | 3118 | int dirtied = 0; |
f0c6d4d2 | 3119 | int ret, tmp; |
1d65f86d | 3120 | |
bc2466e4 | 3121 | ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page, NULL); |
7eae74af | 3122 | if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) |
f0c6d4d2 | 3123 | return ret; |
1da177e4 LT |
3124 | |
3125 | /* | |
f0c6d4d2 KS |
3126 | * Check if the backing address space wants to know that the page is |
3127 | * about to become writable | |
1da177e4 | 3128 | */ |
fb09a464 KS |
3129 | if (vma->vm_ops->page_mkwrite) { |
3130 | unlock_page(fault_page); | |
3131 | tmp = do_page_mkwrite(vma, fault_page, address); | |
3132 | if (unlikely(!tmp || | |
3133 | (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { | |
09cbfeaf | 3134 | put_page(fault_page); |
fb09a464 | 3135 | return tmp; |
4294621f | 3136 | } |
fb09a464 KS |
3137 | } |
3138 | ||
f0c6d4d2 KS |
3139 | pte = pte_offset_map_lock(mm, pmd, address, &ptl); |
3140 | if (unlikely(!pte_same(*pte, orig_pte))) { | |
3141 | pte_unmap_unlock(pte, ptl); | |
3142 | unlock_page(fault_page); | |
09cbfeaf | 3143 | put_page(fault_page); |
f0c6d4d2 | 3144 | return ret; |
1da177e4 | 3145 | } |
315d09bf | 3146 | do_set_pte(vma, address, fault_page, pte, true, false); |
f0c6d4d2 | 3147 | pte_unmap_unlock(pte, ptl); |
b827e496 | 3148 | |
f0c6d4d2 KS |
3149 | if (set_page_dirty(fault_page)) |
3150 | dirtied = 1; | |
d82fa87d AM |
3151 | /* |
3152 | * Take a local copy of the address_space - page.mapping may be zeroed | |
3153 | * by truncate after unlock_page(). The address_space itself remains | |
3154 | * pinned by vma->vm_file's reference. We rely on unlock_page()'s | |
3155 | * release semantics to prevent the compiler from undoing this copying. | |
3156 | */ | |
1c290f64 | 3157 | mapping = page_rmapping(fault_page); |
f0c6d4d2 KS |
3158 | unlock_page(fault_page); |
3159 | if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) { | |
3160 | /* | |
3161 | * Some device drivers do not set page.mapping but still | |
3162 | * dirty their pages | |
3163 | */ | |
3164 | balance_dirty_pages_ratelimited(mapping); | |
d08b3851 | 3165 | } |
d00806b1 | 3166 | |
74ec6751 | 3167 | if (!vma->vm_ops->page_mkwrite) |
f0c6d4d2 | 3168 | file_update_time(vma->vm_file); |
b827e496 | 3169 | |
1d65f86d | 3170 | return ret; |
54cb8821 | 3171 | } |
d00806b1 | 3172 | |
9a95f3cf PC |
3173 | /* |
3174 | * We enter with non-exclusive mmap_sem (to exclude vma changes, | |
3175 | * but allow concurrent faults). | |
3176 | * The mmap_sem may have been released depending on flags and our | |
3177 | * return value. See filemap_fault() and __lock_page_or_retry(). | |
3178 | */ | |
9b4bdd2f | 3179 | static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
54cb8821 | 3180 | unsigned long address, pte_t *page_table, pmd_t *pmd, |
30c9f3a9 | 3181 | unsigned int flags, pte_t orig_pte) |
54cb8821 | 3182 | { |
88193f7c | 3183 | pgoff_t pgoff = linear_page_index(vma, address); |
54cb8821 | 3184 | |
16abfa08 | 3185 | pte_unmap(page_table); |
6b7339f4 KS |
3186 | /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ |
3187 | if (!vma->vm_ops->fault) | |
3188 | return VM_FAULT_SIGBUS; | |
e655fb29 KS |
3189 | if (!(flags & FAULT_FLAG_WRITE)) |
3190 | return do_read_fault(mm, vma, address, pmd, pgoff, flags, | |
3191 | orig_pte); | |
ec47c3b9 KS |
3192 | if (!(vma->vm_flags & VM_SHARED)) |
3193 | return do_cow_fault(mm, vma, address, pmd, pgoff, flags, | |
3194 | orig_pte); | |
f0c6d4d2 | 3195 | return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); |
54cb8821 NP |
3196 | } |
3197 | ||
b19a9939 | 3198 | static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, |
04bb2f94 RR |
3199 | unsigned long addr, int page_nid, |
3200 | int *flags) | |
9532fec1 MG |
3201 | { |
3202 | get_page(page); | |
3203 | ||
3204 | count_vm_numa_event(NUMA_HINT_FAULTS); | |
04bb2f94 | 3205 | if (page_nid == numa_node_id()) { |
9532fec1 | 3206 | count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); |
04bb2f94 RR |
3207 | *flags |= TNF_FAULT_LOCAL; |
3208 | } | |
9532fec1 MG |
3209 | |
3210 | return mpol_misplaced(page, vma, addr); | |
3211 | } | |
3212 | ||
b19a9939 | 3213 | static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, |
d10e63f2 MG |
3214 | unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) |
3215 | { | |
4daae3b4 | 3216 | struct page *page = NULL; |
d10e63f2 | 3217 | spinlock_t *ptl; |
8191acbd | 3218 | int page_nid = -1; |
90572890 | 3219 | int last_cpupid; |
cbee9f88 | 3220 | int target_nid; |
b8593bfd | 3221 | bool migrated = false; |
b191f9b1 | 3222 | bool was_writable = pte_write(pte); |
6688cc05 | 3223 | int flags = 0; |
d10e63f2 | 3224 | |
c0e7cad9 MG |
3225 | /* A PROT_NONE fault should not end up here */ |
3226 | BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))); | |
3227 | ||
d10e63f2 MG |
3228 | /* |
3229 | * The "pte" at this point cannot be used safely without | |
3230 | * validation through pte_unmap_same(). It's of NUMA type but | |
3231 | * the pfn may be screwed if the read is non atomic. | |
3232 | * | |
4d942466 MG |
3233 | * We can safely just do a "set_pte_at()", because the old |
3234 | * page table entry is not accessible, so there would be no | |
3235 | * concurrent hardware modifications to the PTE. | |
d10e63f2 MG |
3236 | */ |
3237 | ptl = pte_lockptr(mm, pmd); | |
3238 | spin_lock(ptl); | |
4daae3b4 MG |
3239 | if (unlikely(!pte_same(*ptep, pte))) { |
3240 | pte_unmap_unlock(ptep, ptl); | |
3241 | goto out; | |
3242 | } | |
3243 | ||
4d942466 MG |
3244 | /* Make it present again */ |
3245 | pte = pte_modify(pte, vma->vm_page_prot); | |
3246 | pte = pte_mkyoung(pte); | |
b191f9b1 MG |
3247 | if (was_writable) |
3248 | pte = pte_mkwrite(pte); | |
d10e63f2 MG |
3249 | set_pte_at(mm, addr, ptep, pte); |
3250 | update_mmu_cache(vma, addr, ptep); | |
3251 | ||
3252 | page = vm_normal_page(vma, addr, pte); | |
3253 | if (!page) { | |
3254 | pte_unmap_unlock(ptep, ptl); | |
3255 | return 0; | |
3256 | } | |
3257 | ||
e81c4802 KS |
3258 | /* TODO: handle PTE-mapped THP */ |
3259 | if (PageCompound(page)) { | |
3260 | pte_unmap_unlock(ptep, ptl); | |
3261 | return 0; | |
3262 | } | |
3263 | ||
6688cc05 | 3264 | /* |
bea66fbd MG |
3265 | * Avoid grouping on RO pages in general. RO pages shouldn't hurt as |
3266 | * much anyway since they can be in shared cache state. This misses | |
3267 | * the case where a mapping is writable but the process never writes | |
3268 | * to it but pte_write gets cleared during protection updates and | |
3269 | * pte_dirty has unpredictable behaviour between PTE scan updates, | |
3270 | * background writeback, dirty balancing and application behaviour. | |
6688cc05 | 3271 | */ |
bea66fbd | 3272 | if (!(vma->vm_flags & VM_WRITE)) |
6688cc05 PZ |
3273 | flags |= TNF_NO_GROUP; |
3274 | ||
dabe1d99 RR |
3275 | /* |
3276 | * Flag if the page is shared between multiple address spaces. This | |
3277 | * is later used when determining whether to group tasks together | |
3278 | */ | |
3279 | if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) | |
3280 | flags |= TNF_SHARED; | |
3281 | ||
90572890 | 3282 | last_cpupid = page_cpupid_last(page); |
8191acbd | 3283 | page_nid = page_to_nid(page); |
04bb2f94 | 3284 | target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags); |
d10e63f2 | 3285 | pte_unmap_unlock(ptep, ptl); |
4daae3b4 | 3286 | if (target_nid == -1) { |
4daae3b4 MG |
3287 | put_page(page); |
3288 | goto out; | |
3289 | } | |
3290 | ||
3291 | /* Migrate to the requested node */ | |
1bc115d8 | 3292 | migrated = migrate_misplaced_page(page, vma, target_nid); |
6688cc05 | 3293 | if (migrated) { |
8191acbd | 3294 | page_nid = target_nid; |
6688cc05 | 3295 | flags |= TNF_MIGRATED; |
074c2381 MG |
3296 | } else |
3297 | flags |= TNF_MIGRATE_FAIL; | |
4daae3b4 MG |
3298 | |
3299 | out: | |
8191acbd | 3300 | if (page_nid != -1) |
6688cc05 | 3301 | task_numa_fault(last_cpupid, page_nid, 1, flags); |
d10e63f2 MG |
3302 | return 0; |
3303 | } | |
3304 | ||
b96375f7 MW |
3305 | static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma, |
3306 | unsigned long address, pmd_t *pmd, unsigned int flags) | |
3307 | { | |
fb6dd5fa | 3308 | if (vma_is_anonymous(vma)) |
b96375f7 MW |
3309 | return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags); |
3310 | if (vma->vm_ops->pmd_fault) | |
3311 | return vma->vm_ops->pmd_fault(vma, address, pmd, flags); | |
3312 | return VM_FAULT_FALLBACK; | |
3313 | } | |
3314 | ||
3315 | static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma, | |
3316 | unsigned long address, pmd_t *pmd, pmd_t orig_pmd, | |
3317 | unsigned int flags) | |
3318 | { | |
fb6dd5fa | 3319 | if (vma_is_anonymous(vma)) |
b96375f7 MW |
3320 | return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd); |
3321 | if (vma->vm_ops->pmd_fault) | |
3322 | return vma->vm_ops->pmd_fault(vma, address, pmd, flags); | |
3323 | return VM_FAULT_FALLBACK; | |
3324 | } | |
3325 | ||
1da177e4 LT |
3326 | /* |
3327 | * These routines also need to handle stuff like marking pages dirty | |
3328 | * and/or accessed for architectures that don't do it in hardware (most | |
3329 | * RISC architectures). The early dirtying is also good on the i386. | |
3330 | * | |
3331 | * There is also a hook called "update_mmu_cache()" that architectures | |
3332 | * with external mmu caches can use to update those (ie the Sparc or | |
3333 | * PowerPC hashed page tables that act as extended TLBs). | |
3334 | * | |
c74df32c HD |
3335 | * We enter with non-exclusive mmap_sem (to exclude vma changes, |
3336 | * but allow concurrent faults), and pte mapped but not yet locked. | |
9a95f3cf PC |
3337 | * We return with pte unmapped and unlocked. |
3338 | * | |
3339 | * The mmap_sem may have been released depending on flags and our | |
3340 | * return value. See filemap_fault() and __lock_page_or_retry(). | |
1da177e4 | 3341 | */ |
c0292554 | 3342 | static int handle_pte_fault(struct mm_struct *mm, |
71e3aac0 AA |
3343 | struct vm_area_struct *vma, unsigned long address, |
3344 | pte_t *pte, pmd_t *pmd, unsigned int flags) | |
1da177e4 LT |
3345 | { |
3346 | pte_t entry; | |
8f4e2101 | 3347 | spinlock_t *ptl; |
1da177e4 | 3348 | |
e37c6982 CB |
3349 | /* |
3350 | * some architectures can have larger ptes than wordsize, | |
3351 | * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y, | |
3352 | * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses. | |
3353 | * The code below just needs a consistent view for the ifs and | |
3354 | * we later double check anyway with the ptl lock held. So here | |
3355 | * a barrier will do. | |
3356 | */ | |
3357 | entry = *pte; | |
3358 | barrier(); | |
1da177e4 | 3359 | if (!pte_present(entry)) { |
65500d23 | 3360 | if (pte_none(entry)) { |
b5330628 ON |
3361 | if (vma_is_anonymous(vma)) |
3362 | return do_anonymous_page(mm, vma, address, | |
3363 | pte, pmd, flags); | |
3364 | else | |
6b7339f4 KS |
3365 | return do_fault(mm, vma, address, pte, pmd, |
3366 | flags, entry); | |
65500d23 | 3367 | } |
65500d23 | 3368 | return do_swap_page(mm, vma, address, |
30c9f3a9 | 3369 | pte, pmd, flags, entry); |
1da177e4 LT |
3370 | } |
3371 | ||
8a0516ed | 3372 | if (pte_protnone(entry)) |
d10e63f2 MG |
3373 | return do_numa_page(mm, vma, address, entry, pte, pmd); |
3374 | ||
4c21e2f2 | 3375 | ptl = pte_lockptr(mm, pmd); |
8f4e2101 HD |
3376 | spin_lock(ptl); |
3377 | if (unlikely(!pte_same(*pte, entry))) | |
3378 | goto unlock; | |
30c9f3a9 | 3379 | if (flags & FAULT_FLAG_WRITE) { |
1da177e4 | 3380 | if (!pte_write(entry)) |
8f4e2101 HD |
3381 | return do_wp_page(mm, vma, address, |
3382 | pte, pmd, ptl, entry); | |
1da177e4 LT |
3383 | entry = pte_mkdirty(entry); |
3384 | } | |
3385 | entry = pte_mkyoung(entry); | |
30c9f3a9 | 3386 | if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { |
4b3073e1 | 3387 | update_mmu_cache(vma, address, pte); |
1a44e149 AA |
3388 | } else { |
3389 | /* | |
3390 | * This is needed only for protection faults but the arch code | |
3391 | * is not yet telling us if this is a protection fault or not. | |
3392 | * This still avoids useless tlb flushes for .text page faults | |
3393 | * with threads. | |
3394 | */ | |
30c9f3a9 | 3395 | if (flags & FAULT_FLAG_WRITE) |
61c77326 | 3396 | flush_tlb_fix_spurious_fault(vma, address); |
1a44e149 | 3397 | } |
8f4e2101 HD |
3398 | unlock: |
3399 | pte_unmap_unlock(pte, ptl); | |
83c54070 | 3400 | return 0; |
1da177e4 LT |
3401 | } |
3402 | ||
3403 | /* | |
3404 | * By the time we get here, we already hold the mm semaphore | |
9a95f3cf PC |
3405 | * |
3406 | * The mmap_sem may have been released depending on flags and our | |
3407 | * return value. See filemap_fault() and __lock_page_or_retry(). | |
1da177e4 | 3408 | */ |
519e5247 JW |
3409 | static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
3410 | unsigned long address, unsigned int flags) | |
1da177e4 LT |
3411 | { |
3412 | pgd_t *pgd; | |
3413 | pud_t *pud; | |
3414 | pmd_t *pmd; | |
3415 | pte_t *pte; | |
3416 | ||
1b2ee126 | 3417 | if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, |
d61172b4 | 3418 | flags & FAULT_FLAG_INSTRUCTION, |
1b2ee126 | 3419 | flags & FAULT_FLAG_REMOTE)) |
33a709b2 DH |
3420 | return VM_FAULT_SIGSEGV; |
3421 | ||
ac9b9c66 | 3422 | if (unlikely(is_vm_hugetlb_page(vma))) |
30c9f3a9 | 3423 | return hugetlb_fault(mm, vma, address, flags); |
1da177e4 | 3424 | |
1da177e4 | 3425 | pgd = pgd_offset(mm, address); |
1da177e4 LT |
3426 | pud = pud_alloc(mm, pgd, address); |
3427 | if (!pud) | |
c74df32c | 3428 | return VM_FAULT_OOM; |
1da177e4 LT |
3429 | pmd = pmd_alloc(mm, pud, address); |
3430 | if (!pmd) | |
c74df32c | 3431 | return VM_FAULT_OOM; |
71e3aac0 | 3432 | if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { |
b96375f7 | 3433 | int ret = create_huge_pmd(mm, vma, address, pmd, flags); |
c0292554 KS |
3434 | if (!(ret & VM_FAULT_FALLBACK)) |
3435 | return ret; | |
71e3aac0 AA |
3436 | } else { |
3437 | pmd_t orig_pmd = *pmd; | |
1f1d06c3 DR |
3438 | int ret; |
3439 | ||
71e3aac0 | 3440 | barrier(); |
5c7fb56e | 3441 | if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { |
a1dd450b WD |
3442 | unsigned int dirty = flags & FAULT_FLAG_WRITE; |
3443 | ||
8a0516ed | 3444 | if (pmd_protnone(orig_pmd)) |
4daae3b4 | 3445 | return do_huge_pmd_numa_page(mm, vma, address, |
d10e63f2 MG |
3446 | orig_pmd, pmd); |
3447 | ||
3d59eebc | 3448 | if (dirty && !pmd_write(orig_pmd)) { |
b96375f7 MW |
3449 | ret = wp_huge_pmd(mm, vma, address, pmd, |
3450 | orig_pmd, flags); | |
9845cbbd KS |
3451 | if (!(ret & VM_FAULT_FALLBACK)) |
3452 | return ret; | |
a1dd450b WD |
3453 | } else { |
3454 | huge_pmd_set_accessed(mm, vma, address, pmd, | |
3455 | orig_pmd, dirty); | |
9845cbbd | 3456 | return 0; |
1f1d06c3 | 3457 | } |
71e3aac0 AA |
3458 | } |
3459 | } | |
3460 | ||
3461 | /* | |
3ed3a4f0 | 3462 | * Use pte_alloc() instead of pte_alloc_map, because we can't |
71e3aac0 AA |
3463 | * run pte_offset_map on the pmd, if an huge pmd could |
3464 | * materialize from under us from a different thread. | |
3465 | */ | |
3ed3a4f0 | 3466 | if (unlikely(pte_alloc(mm, pmd, address))) |
c74df32c | 3467 | return VM_FAULT_OOM; |
ad33bb04 AA |
3468 | /* |
3469 | * If a huge pmd materialized under us just retry later. Use | |
3470 | * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd | |
3471 | * didn't become pmd_trans_huge under us and then back to pmd_none, as | |
3472 | * a result of MADV_DONTNEED running immediately after a huge pmd fault | |
3473 | * in a different thread of this mm, in turn leading to a misleading | |
3474 | * pmd_trans_huge() retval. All we have to ensure is that it is a | |
3475 | * regular pmd that we can walk with pte_offset_map() and we can do that | |
3476 | * through an atomic read in C, which is what pmd_trans_unstable() | |
3477 | * provides. | |
3478 | */ | |
3479 | if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd))) | |
71e3aac0 AA |
3480 | return 0; |
3481 | /* | |
3482 | * A regular pmd is established and it can't morph into a huge pmd | |
3483 | * from under us anymore at this point because we hold the mmap_sem | |
3484 | * read mode and khugepaged takes it in write mode. So now it's | |
3485 | * safe to run pte_offset_map(). | |
3486 | */ | |
3487 | pte = pte_offset_map(pmd, address); | |
1da177e4 | 3488 | |
30c9f3a9 | 3489 | return handle_pte_fault(mm, vma, address, pte, pmd, flags); |
1da177e4 LT |
3490 | } |
3491 | ||
9a95f3cf PC |
3492 | /* |
3493 | * By the time we get here, we already hold the mm semaphore | |
3494 | * | |
3495 | * The mmap_sem may have been released depending on flags and our | |
3496 | * return value. See filemap_fault() and __lock_page_or_retry(). | |
3497 | */ | |
519e5247 JW |
3498 | int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, |
3499 | unsigned long address, unsigned int flags) | |
3500 | { | |
3501 | int ret; | |
3502 | ||
3503 | __set_current_state(TASK_RUNNING); | |
3504 | ||
3505 | count_vm_event(PGFAULT); | |
3506 | mem_cgroup_count_vm_event(mm, PGFAULT); | |
3507 | ||
3508 | /* do counter updates before entering really critical section. */ | |
3509 | check_sync_rss_stat(current); | |
3510 | ||
3511 | /* | |
3512 | * Enable the memcg OOM handling for faults triggered in user | |
3513 | * space. Kernel faults are handled more gracefully. | |
3514 | */ | |
3515 | if (flags & FAULT_FLAG_USER) | |
49426420 | 3516 | mem_cgroup_oom_enable(); |
519e5247 JW |
3517 | |
3518 | ret = __handle_mm_fault(mm, vma, address, flags); | |
3519 | ||
49426420 JW |
3520 | if (flags & FAULT_FLAG_USER) { |
3521 | mem_cgroup_oom_disable(); | |
3522 | /* | |
3523 | * The task may have entered a memcg OOM situation but | |
3524 | * if the allocation error was handled gracefully (no | |
3525 | * VM_FAULT_OOM), there is no need to kill anything. | |
3526 | * Just clean up the OOM state peacefully. | |
3527 | */ | |
3528 | if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) | |
3529 | mem_cgroup_oom_synchronize(false); | |
3530 | } | |
3812c8c8 | 3531 | |
519e5247 JW |
3532 | return ret; |
3533 | } | |
e1d6d01a | 3534 | EXPORT_SYMBOL_GPL(handle_mm_fault); |
519e5247 | 3535 | |
1da177e4 LT |
3536 | #ifndef __PAGETABLE_PUD_FOLDED |
3537 | /* | |
3538 | * Allocate page upper directory. | |
872fec16 | 3539 | * We've already handled the fast-path in-line. |
1da177e4 | 3540 | */ |
1bb3630e | 3541 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) |
1da177e4 | 3542 | { |
c74df32c HD |
3543 | pud_t *new = pud_alloc_one(mm, address); |
3544 | if (!new) | |
1bb3630e | 3545 | return -ENOMEM; |
1da177e4 | 3546 | |
362a61ad NP |
3547 | smp_wmb(); /* See comment in __pte_alloc */ |
3548 | ||
872fec16 | 3549 | spin_lock(&mm->page_table_lock); |
1bb3630e | 3550 | if (pgd_present(*pgd)) /* Another has populated it */ |
5e541973 | 3551 | pud_free(mm, new); |
1bb3630e HD |
3552 | else |
3553 | pgd_populate(mm, pgd, new); | |
c74df32c | 3554 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 3555 | return 0; |
1da177e4 LT |
3556 | } |
3557 | #endif /* __PAGETABLE_PUD_FOLDED */ | |
3558 | ||
3559 | #ifndef __PAGETABLE_PMD_FOLDED | |
3560 | /* | |
3561 | * Allocate page middle directory. | |
872fec16 | 3562 | * We've already handled the fast-path in-line. |
1da177e4 | 3563 | */ |
1bb3630e | 3564 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) |
1da177e4 | 3565 | { |
c74df32c HD |
3566 | pmd_t *new = pmd_alloc_one(mm, address); |
3567 | if (!new) | |
1bb3630e | 3568 | return -ENOMEM; |
1da177e4 | 3569 | |
362a61ad NP |
3570 | smp_wmb(); /* See comment in __pte_alloc */ |
3571 | ||
872fec16 | 3572 | spin_lock(&mm->page_table_lock); |
1da177e4 | 3573 | #ifndef __ARCH_HAS_4LEVEL_HACK |
dc6c9a35 KS |
3574 | if (!pud_present(*pud)) { |
3575 | mm_inc_nr_pmds(mm); | |
1bb3630e | 3576 | pud_populate(mm, pud, new); |
dc6c9a35 | 3577 | } else /* Another has populated it */ |
5e541973 | 3578 | pmd_free(mm, new); |
dc6c9a35 KS |
3579 | #else |
3580 | if (!pgd_present(*pud)) { | |
3581 | mm_inc_nr_pmds(mm); | |
1bb3630e | 3582 | pgd_populate(mm, pud, new); |
dc6c9a35 KS |
3583 | } else /* Another has populated it */ |
3584 | pmd_free(mm, new); | |
1da177e4 | 3585 | #endif /* __ARCH_HAS_4LEVEL_HACK */ |
c74df32c | 3586 | spin_unlock(&mm->page_table_lock); |
1bb3630e | 3587 | return 0; |
e0f39591 | 3588 | } |
1da177e4 LT |
3589 | #endif /* __PAGETABLE_PMD_FOLDED */ |
3590 | ||
1b36ba81 | 3591 | static int __follow_pte(struct mm_struct *mm, unsigned long address, |
f8ad0f49 JW |
3592 | pte_t **ptepp, spinlock_t **ptlp) |
3593 | { | |
3594 | pgd_t *pgd; | |
3595 | pud_t *pud; | |
3596 | pmd_t *pmd; | |
3597 | pte_t *ptep; | |
3598 | ||
3599 | pgd = pgd_offset(mm, address); | |
3600 | if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | |
3601 | goto out; | |
3602 | ||
3603 | pud = pud_offset(pgd, address); | |
3604 | if (pud_none(*pud) || unlikely(pud_bad(*pud))) | |
3605 | goto out; | |
3606 | ||
3607 | pmd = pmd_offset(pud, address); | |
f66055ab | 3608 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
f8ad0f49 JW |
3609 | if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) |
3610 | goto out; | |
3611 | ||
3612 | /* We cannot handle huge page PFN maps. Luckily they don't exist. */ | |
3613 | if (pmd_huge(*pmd)) | |
3614 | goto out; | |
3615 | ||
3616 | ptep = pte_offset_map_lock(mm, pmd, address, ptlp); | |
3617 | if (!ptep) | |
3618 | goto out; | |
3619 | if (!pte_present(*ptep)) | |
3620 | goto unlock; | |
3621 | *ptepp = ptep; | |
3622 | return 0; | |
3623 | unlock: | |
3624 | pte_unmap_unlock(ptep, *ptlp); | |
3625 | out: | |
3626 | return -EINVAL; | |
3627 | } | |
3628 | ||
1b36ba81 NK |
3629 | static inline int follow_pte(struct mm_struct *mm, unsigned long address, |
3630 | pte_t **ptepp, spinlock_t **ptlp) | |
3631 | { | |
3632 | int res; | |
3633 | ||
3634 | /* (void) is needed to make gcc happy */ | |
3635 | (void) __cond_lock(*ptlp, | |
3636 | !(res = __follow_pte(mm, address, ptepp, ptlp))); | |
3637 | return res; | |
3638 | } | |
3639 | ||
3b6748e2 JW |
3640 | /** |
3641 | * follow_pfn - look up PFN at a user virtual address | |
3642 | * @vma: memory mapping | |
3643 | * @address: user virtual address | |
3644 | * @pfn: location to store found PFN | |
3645 | * | |
3646 | * Only IO mappings and raw PFN mappings are allowed. | |
3647 | * | |
3648 | * Returns zero and the pfn at @pfn on success, -ve otherwise. | |
3649 | */ | |
3650 | int follow_pfn(struct vm_area_struct *vma, unsigned long address, | |
3651 | unsigned long *pfn) | |
3652 | { | |
3653 | int ret = -EINVAL; | |
3654 | spinlock_t *ptl; | |
3655 | pte_t *ptep; | |
3656 | ||
3657 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) | |
3658 | return ret; | |
3659 | ||
3660 | ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); | |
3661 | if (ret) | |
3662 | return ret; | |
3663 | *pfn = pte_pfn(*ptep); | |
3664 | pte_unmap_unlock(ptep, ptl); | |
3665 | return 0; | |
3666 | } | |
3667 | EXPORT_SYMBOL(follow_pfn); | |
3668 | ||
28b2ee20 | 3669 | #ifdef CONFIG_HAVE_IOREMAP_PROT |
d87fe660 | 3670 | int follow_phys(struct vm_area_struct *vma, |
3671 | unsigned long address, unsigned int flags, | |
3672 | unsigned long *prot, resource_size_t *phys) | |
28b2ee20 | 3673 | { |
03668a4d | 3674 | int ret = -EINVAL; |
28b2ee20 RR |
3675 | pte_t *ptep, pte; |
3676 | spinlock_t *ptl; | |
28b2ee20 | 3677 | |
d87fe660 | 3678 | if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) |
3679 | goto out; | |
28b2ee20 | 3680 | |
03668a4d | 3681 | if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) |
d87fe660 | 3682 | goto out; |
28b2ee20 | 3683 | pte = *ptep; |
03668a4d | 3684 | |
28b2ee20 RR |
3685 | if ((flags & FOLL_WRITE) && !pte_write(pte)) |
3686 | goto unlock; | |
28b2ee20 RR |
3687 | |
3688 | *prot = pgprot_val(pte_pgprot(pte)); | |
03668a4d | 3689 | *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; |
28b2ee20 | 3690 | |
03668a4d | 3691 | ret = 0; |
28b2ee20 RR |
3692 | unlock: |
3693 | pte_unmap_unlock(ptep, ptl); | |
3694 | out: | |
d87fe660 | 3695 | return ret; |
28b2ee20 RR |
3696 | } |
3697 | ||
3698 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, | |
3699 | void *buf, int len, int write) | |
3700 | { | |
3701 | resource_size_t phys_addr; | |
3702 | unsigned long prot = 0; | |
2bc7273b | 3703 | void __iomem *maddr; |
28b2ee20 RR |
3704 | int offset = addr & (PAGE_SIZE-1); |
3705 | ||
d87fe660 | 3706 | if (follow_phys(vma, addr, write, &prot, &phys_addr)) |
28b2ee20 RR |
3707 | return -EINVAL; |
3708 | ||
9cb12d7b | 3709 | maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); |
28b2ee20 RR |
3710 | if (write) |
3711 | memcpy_toio(maddr + offset, buf, len); | |
3712 | else | |
3713 | memcpy_fromio(buf, maddr + offset, len); | |
3714 | iounmap(maddr); | |
3715 | ||
3716 | return len; | |
3717 | } | |
5a73633e | 3718 | EXPORT_SYMBOL_GPL(generic_access_phys); |
28b2ee20 RR |
3719 | #endif |
3720 | ||
0ec76a11 | 3721 | /* |
206cb636 SW |
3722 | * Access another process' address space as given in mm. If non-NULL, use the |
3723 | * given task for page fault accounting. | |
0ec76a11 | 3724 | */ |
206cb636 SW |
3725 | static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, |
3726 | unsigned long addr, void *buf, int len, int write) | |
0ec76a11 | 3727 | { |
0ec76a11 | 3728 | struct vm_area_struct *vma; |
0ec76a11 DH |
3729 | void *old_buf = buf; |
3730 | ||
0ec76a11 | 3731 | down_read(&mm->mmap_sem); |
183ff22b | 3732 | /* ignore errors, just check how much was successfully transferred */ |
0ec76a11 DH |
3733 | while (len) { |
3734 | int bytes, ret, offset; | |
3735 | void *maddr; | |
28b2ee20 | 3736 | struct page *page = NULL; |
0ec76a11 | 3737 | |
1e987790 | 3738 | ret = get_user_pages_remote(tsk, mm, addr, 1, |
0ec76a11 | 3739 | write, 1, &page, &vma); |
28b2ee20 | 3740 | if (ret <= 0) { |
dbffcd03 RR |
3741 | #ifndef CONFIG_HAVE_IOREMAP_PROT |
3742 | break; | |
3743 | #else | |
28b2ee20 RR |
3744 | /* |
3745 | * Check if this is a VM_IO | VM_PFNMAP VMA, which | |
3746 | * we can access using slightly different code. | |
3747 | */ | |
28b2ee20 | 3748 | vma = find_vma(mm, addr); |
fe936dfc | 3749 | if (!vma || vma->vm_start > addr) |
28b2ee20 RR |
3750 | break; |
3751 | if (vma->vm_ops && vma->vm_ops->access) | |
3752 | ret = vma->vm_ops->access(vma, addr, buf, | |
3753 | len, write); | |
3754 | if (ret <= 0) | |
28b2ee20 RR |
3755 | break; |
3756 | bytes = ret; | |
dbffcd03 | 3757 | #endif |
0ec76a11 | 3758 | } else { |
28b2ee20 RR |
3759 | bytes = len; |
3760 | offset = addr & (PAGE_SIZE-1); | |
3761 | if (bytes > PAGE_SIZE-offset) | |
3762 | bytes = PAGE_SIZE-offset; | |
3763 | ||
3764 | maddr = kmap(page); | |
3765 | if (write) { | |
3766 | copy_to_user_page(vma, page, addr, | |
3767 | maddr + offset, buf, bytes); | |
3768 | set_page_dirty_lock(page); | |
3769 | } else { | |
3770 | copy_from_user_page(vma, page, addr, | |
3771 | buf, maddr + offset, bytes); | |
3772 | } | |
3773 | kunmap(page); | |
09cbfeaf | 3774 | put_page(page); |
0ec76a11 | 3775 | } |
0ec76a11 DH |
3776 | len -= bytes; |
3777 | buf += bytes; | |
3778 | addr += bytes; | |
3779 | } | |
3780 | up_read(&mm->mmap_sem); | |
0ec76a11 DH |
3781 | |
3782 | return buf - old_buf; | |
3783 | } | |
03252919 | 3784 | |
5ddd36b9 | 3785 | /** |
ae91dbfc | 3786 | * access_remote_vm - access another process' address space |
5ddd36b9 SW |
3787 | * @mm: the mm_struct of the target address space |
3788 | * @addr: start address to access | |
3789 | * @buf: source or destination buffer | |
3790 | * @len: number of bytes to transfer | |
3791 | * @write: whether the access is a write | |
3792 | * | |
3793 | * The caller must hold a reference on @mm. | |
3794 | */ | |
3795 | int access_remote_vm(struct mm_struct *mm, unsigned long addr, | |
3796 | void *buf, int len, int write) | |
3797 | { | |
3798 | return __access_remote_vm(NULL, mm, addr, buf, len, write); | |
3799 | } | |
3800 | ||
206cb636 SW |
3801 | /* |
3802 | * Access another process' address space. | |
3803 | * Source/target buffer must be kernel space, | |
3804 | * Do not walk the page table directly, use get_user_pages | |
3805 | */ | |
3806 | int access_process_vm(struct task_struct *tsk, unsigned long addr, | |
3807 | void *buf, int len, int write) | |
3808 | { | |
3809 | struct mm_struct *mm; | |
3810 | int ret; | |
3811 | ||
3812 | mm = get_task_mm(tsk); | |
3813 | if (!mm) | |
3814 | return 0; | |
3815 | ||
3816 | ret = __access_remote_vm(tsk, mm, addr, buf, len, write); | |
3817 | mmput(mm); | |
3818 | ||
3819 | return ret; | |
3820 | } | |
3821 | ||
03252919 AK |
3822 | /* |
3823 | * Print the name of a VMA. | |
3824 | */ | |
3825 | void print_vma_addr(char *prefix, unsigned long ip) | |
3826 | { | |
3827 | struct mm_struct *mm = current->mm; | |
3828 | struct vm_area_struct *vma; | |
3829 | ||
e8bff74a IM |
3830 | /* |
3831 | * Do not print if we are in atomic | |
3832 | * contexts (in exception stacks, etc.): | |
3833 | */ | |
3834 | if (preempt_count()) | |
3835 | return; | |
3836 | ||
03252919 AK |
3837 | down_read(&mm->mmap_sem); |
3838 | vma = find_vma(mm, ip); | |
3839 | if (vma && vma->vm_file) { | |
3840 | struct file *f = vma->vm_file; | |
3841 | char *buf = (char *)__get_free_page(GFP_KERNEL); | |
3842 | if (buf) { | |
2fbc57c5 | 3843 | char *p; |
03252919 | 3844 | |
9bf39ab2 | 3845 | p = file_path(f, buf, PAGE_SIZE); |
03252919 AK |
3846 | if (IS_ERR(p)) |
3847 | p = "?"; | |
2fbc57c5 | 3848 | printk("%s%s[%lx+%lx]", prefix, kbasename(p), |
03252919 AK |
3849 | vma->vm_start, |
3850 | vma->vm_end - vma->vm_start); | |
3851 | free_page((unsigned long)buf); | |
3852 | } | |
3853 | } | |
51a07e50 | 3854 | up_read(&mm->mmap_sem); |
03252919 | 3855 | } |
3ee1afa3 | 3856 | |
662bbcb2 | 3857 | #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) |
9ec23531 | 3858 | void __might_fault(const char *file, int line) |
3ee1afa3 | 3859 | { |
95156f00 PZ |
3860 | /* |
3861 | * Some code (nfs/sunrpc) uses socket ops on kernel memory while | |
3862 | * holding the mmap_sem, this is safe because kernel memory doesn't | |
3863 | * get paged out, therefore we'll never actually fault, and the | |
3864 | * below annotations will generate false positives. | |
3865 | */ | |
3866 | if (segment_eq(get_fs(), KERNEL_DS)) | |
3867 | return; | |
9ec23531 | 3868 | if (pagefault_disabled()) |
662bbcb2 | 3869 | return; |
9ec23531 DH |
3870 | __might_sleep(file, line, 0); |
3871 | #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) | |
662bbcb2 | 3872 | if (current->mm) |
3ee1afa3 | 3873 | might_lock_read(¤t->mm->mmap_sem); |
9ec23531 | 3874 | #endif |
3ee1afa3 | 3875 | } |
9ec23531 | 3876 | EXPORT_SYMBOL(__might_fault); |
3ee1afa3 | 3877 | #endif |
47ad8475 AA |
3878 | |
3879 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) | |
3880 | static void clear_gigantic_page(struct page *page, | |
3881 | unsigned long addr, | |
3882 | unsigned int pages_per_huge_page) | |
3883 | { | |
3884 | int i; | |
3885 | struct page *p = page; | |
3886 | ||
3887 | might_sleep(); | |
3888 | for (i = 0; i < pages_per_huge_page; | |
3889 | i++, p = mem_map_next(p, page, i)) { | |
3890 | cond_resched(); | |
3891 | clear_user_highpage(p, addr + i * PAGE_SIZE); | |
3892 | } | |
3893 | } | |
3894 | void clear_huge_page(struct page *page, | |
3895 | unsigned long addr, unsigned int pages_per_huge_page) | |
3896 | { | |
3897 | int i; | |
3898 | ||
3899 | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | |
3900 | clear_gigantic_page(page, addr, pages_per_huge_page); | |
3901 | return; | |
3902 | } | |
3903 | ||
3904 | might_sleep(); | |
3905 | for (i = 0; i < pages_per_huge_page; i++) { | |
3906 | cond_resched(); | |
3907 | clear_user_highpage(page + i, addr + i * PAGE_SIZE); | |
3908 | } | |
3909 | } | |
3910 | ||
3911 | static void copy_user_gigantic_page(struct page *dst, struct page *src, | |
3912 | unsigned long addr, | |
3913 | struct vm_area_struct *vma, | |
3914 | unsigned int pages_per_huge_page) | |
3915 | { | |
3916 | int i; | |
3917 | struct page *dst_base = dst; | |
3918 | struct page *src_base = src; | |
3919 | ||
3920 | for (i = 0; i < pages_per_huge_page; ) { | |
3921 | cond_resched(); | |
3922 | copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); | |
3923 | ||
3924 | i++; | |
3925 | dst = mem_map_next(dst, dst_base, i); | |
3926 | src = mem_map_next(src, src_base, i); | |
3927 | } | |
3928 | } | |
3929 | ||
3930 | void copy_user_huge_page(struct page *dst, struct page *src, | |
3931 | unsigned long addr, struct vm_area_struct *vma, | |
3932 | unsigned int pages_per_huge_page) | |
3933 | { | |
3934 | int i; | |
3935 | ||
3936 | if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { | |
3937 | copy_user_gigantic_page(dst, src, addr, vma, | |
3938 | pages_per_huge_page); | |
3939 | return; | |
3940 | } | |
3941 | ||
3942 | might_sleep(); | |
3943 | for (i = 0; i < pages_per_huge_page; i++) { | |
3944 | cond_resched(); | |
3945 | copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); | |
3946 | } | |
3947 | } | |
3948 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ | |
49076ec2 | 3949 | |
40b64acd | 3950 | #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS |
b35f1819 KS |
3951 | |
3952 | static struct kmem_cache *page_ptl_cachep; | |
3953 | ||
3954 | void __init ptlock_cache_init(void) | |
3955 | { | |
3956 | page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, | |
3957 | SLAB_PANIC, NULL); | |
3958 | } | |
3959 | ||
539edb58 | 3960 | bool ptlock_alloc(struct page *page) |
49076ec2 KS |
3961 | { |
3962 | spinlock_t *ptl; | |
3963 | ||
b35f1819 | 3964 | ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); |
49076ec2 KS |
3965 | if (!ptl) |
3966 | return false; | |
539edb58 | 3967 | page->ptl = ptl; |
49076ec2 KS |
3968 | return true; |
3969 | } | |
3970 | ||
539edb58 | 3971 | void ptlock_free(struct page *page) |
49076ec2 | 3972 | { |
b35f1819 | 3973 | kmem_cache_free(page_ptl_cachep, page->ptl); |
49076ec2 KS |
3974 | } |
3975 | #endif |