]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Fast Userspace Mutexes (which I call "Futexes!"). | |
3 | * (C) Rusty Russell, IBM 2002 | |
4 | * | |
5 | * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar | |
6 | * (C) Copyright 2003 Red Hat Inc, All Rights Reserved | |
7 | * | |
8 | * Removed page pinning, fix privately mapped COW pages and other cleanups | |
9 | * (C) Copyright 2003, 2004 Jamie Lokier | |
10 | * | |
0771dfef IM |
11 | * Robust futex support started by Ingo Molnar |
12 | * (C) Copyright 2006 Red Hat Inc, All Rights Reserved | |
13 | * Thanks to Thomas Gleixner for suggestions, analysis and fixes. | |
14 | * | |
c87e2837 IM |
15 | * PI-futex support started by Ingo Molnar and Thomas Gleixner |
16 | * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <[email protected]> | |
17 | * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <[email protected]> | |
18 | * | |
34f01cc1 ED |
19 | * PRIVATE futexes by Eric Dumazet |
20 | * Copyright (C) 2007 Eric Dumazet <[email protected]> | |
21 | * | |
52400ba9 DH |
22 | * Requeue-PI support by Darren Hart <[email protected]> |
23 | * Copyright (C) IBM Corporation, 2009 | |
24 | * Thanks to Thomas Gleixner for conceptual design and careful reviews. | |
25 | * | |
1da177e4 LT |
26 | * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly |
27 | * enough at me, Linus for the original (flawed) idea, Matthew | |
28 | * Kirkwood for proof-of-concept implementation. | |
29 | * | |
30 | * "The futexes are also cursed." | |
31 | * "But they come in a choice of three flavours!" | |
32 | * | |
33 | * This program is free software; you can redistribute it and/or modify | |
34 | * it under the terms of the GNU General Public License as published by | |
35 | * the Free Software Foundation; either version 2 of the License, or | |
36 | * (at your option) any later version. | |
37 | * | |
38 | * This program is distributed in the hope that it will be useful, | |
39 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
40 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
41 | * GNU General Public License for more details. | |
42 | * | |
43 | * You should have received a copy of the GNU General Public License | |
44 | * along with this program; if not, write to the Free Software | |
45 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
46 | */ | |
47 | #include <linux/slab.h> | |
48 | #include <linux/poll.h> | |
49 | #include <linux/fs.h> | |
50 | #include <linux/file.h> | |
51 | #include <linux/jhash.h> | |
52 | #include <linux/init.h> | |
53 | #include <linux/futex.h> | |
54 | #include <linux/mount.h> | |
55 | #include <linux/pagemap.h> | |
56 | #include <linux/syscalls.h> | |
7ed20e1a | 57 | #include <linux/signal.h> |
9984de1a | 58 | #include <linux/export.h> |
fd5eea42 | 59 | #include <linux/magic.h> |
b488893a PE |
60 | #include <linux/pid.h> |
61 | #include <linux/nsproxy.h> | |
bdbb776f | 62 | #include <linux/ptrace.h> |
b488893a | 63 | |
4732efbe | 64 | #include <asm/futex.h> |
1da177e4 | 65 | |
c87e2837 IM |
66 | #include "rtmutex_common.h" |
67 | ||
a0c1e907 TG |
68 | int __read_mostly futex_cmpxchg_enabled; |
69 | ||
1da177e4 LT |
70 | #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8) |
71 | ||
b41277dc DH |
72 | /* |
73 | * Futex flags used to encode options to functions and preserve them across | |
74 | * restarts. | |
75 | */ | |
76 | #define FLAGS_SHARED 0x01 | |
77 | #define FLAGS_CLOCKRT 0x02 | |
78 | #define FLAGS_HAS_TIMEOUT 0x04 | |
79 | ||
c87e2837 IM |
80 | /* |
81 | * Priority Inheritance state: | |
82 | */ | |
83 | struct futex_pi_state { | |
84 | /* | |
85 | * list of 'owned' pi_state instances - these have to be | |
86 | * cleaned up in do_exit() if the task exits prematurely: | |
87 | */ | |
88 | struct list_head list; | |
89 | ||
90 | /* | |
91 | * The PI object: | |
92 | */ | |
93 | struct rt_mutex pi_mutex; | |
94 | ||
95 | struct task_struct *owner; | |
96 | atomic_t refcount; | |
97 | ||
98 | union futex_key key; | |
99 | }; | |
100 | ||
d8d88fbb DH |
101 | /** |
102 | * struct futex_q - The hashed futex queue entry, one per waiting task | |
fb62db2b | 103 | * @list: priority-sorted list of tasks waiting on this futex |
d8d88fbb DH |
104 | * @task: the task waiting on the futex |
105 | * @lock_ptr: the hash bucket lock | |
106 | * @key: the key the futex is hashed on | |
107 | * @pi_state: optional priority inheritance state | |
108 | * @rt_waiter: rt_waiter storage for use with requeue_pi | |
109 | * @requeue_pi_key: the requeue_pi target futex key | |
110 | * @bitset: bitset for the optional bitmasked wakeup | |
111 | * | |
112 | * We use this hashed waitqueue, instead of a normal wait_queue_t, so | |
1da177e4 LT |
113 | * we can wake only the relevant ones (hashed queues may be shared). |
114 | * | |
115 | * A futex_q has a woken state, just like tasks have TASK_RUNNING. | |
ec92d082 | 116 | * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0. |
fb62db2b | 117 | * The order of wakeup is always to make the first condition true, then |
d8d88fbb DH |
118 | * the second. |
119 | * | |
120 | * PI futexes are typically woken before they are removed from the hash list via | |
121 | * the rt_mutex code. See unqueue_me_pi(). | |
1da177e4 LT |
122 | */ |
123 | struct futex_q { | |
ec92d082 | 124 | struct plist_node list; |
1da177e4 | 125 | |
d8d88fbb | 126 | struct task_struct *task; |
1da177e4 | 127 | spinlock_t *lock_ptr; |
1da177e4 | 128 | union futex_key key; |
c87e2837 | 129 | struct futex_pi_state *pi_state; |
52400ba9 | 130 | struct rt_mutex_waiter *rt_waiter; |
84bc4af5 | 131 | union futex_key *requeue_pi_key; |
cd689985 | 132 | u32 bitset; |
1da177e4 LT |
133 | }; |
134 | ||
5bdb05f9 DH |
135 | static const struct futex_q futex_q_init = { |
136 | /* list gets initialized in queue_me()*/ | |
137 | .key = FUTEX_KEY_INIT, | |
138 | .bitset = FUTEX_BITSET_MATCH_ANY | |
139 | }; | |
140 | ||
1da177e4 | 141 | /* |
b2d0994b DH |
142 | * Hash buckets are shared by all the futex_keys that hash to the same |
143 | * location. Each key may have multiple futex_q structures, one for each task | |
144 | * waiting on a futex. | |
1da177e4 LT |
145 | */ |
146 | struct futex_hash_bucket { | |
ec92d082 PP |
147 | spinlock_t lock; |
148 | struct plist_head chain; | |
1da177e4 LT |
149 | }; |
150 | ||
151 | static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS]; | |
152 | ||
1da177e4 LT |
153 | /* |
154 | * We hash on the keys returned from get_futex_key (see below). | |
155 | */ | |
156 | static struct futex_hash_bucket *hash_futex(union futex_key *key) | |
157 | { | |
158 | u32 hash = jhash2((u32*)&key->both.word, | |
159 | (sizeof(key->both.word)+sizeof(key->both.ptr))/4, | |
160 | key->both.offset); | |
161 | return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)]; | |
162 | } | |
163 | ||
164 | /* | |
165 | * Return 1 if two futex_keys are equal, 0 otherwise. | |
166 | */ | |
167 | static inline int match_futex(union futex_key *key1, union futex_key *key2) | |
168 | { | |
2bc87203 DH |
169 | return (key1 && key2 |
170 | && key1->both.word == key2->both.word | |
1da177e4 LT |
171 | && key1->both.ptr == key2->both.ptr |
172 | && key1->both.offset == key2->both.offset); | |
173 | } | |
174 | ||
38d47c1b PZ |
175 | /* |
176 | * Take a reference to the resource addressed by a key. | |
177 | * Can be called while holding spinlocks. | |
178 | * | |
179 | */ | |
180 | static void get_futex_key_refs(union futex_key *key) | |
181 | { | |
182 | if (!key->both.ptr) | |
183 | return; | |
184 | ||
185 | switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { | |
186 | case FUT_OFF_INODE: | |
7de9c6ee | 187 | ihold(key->shared.inode); |
38d47c1b PZ |
188 | break; |
189 | case FUT_OFF_MMSHARED: | |
190 | atomic_inc(&key->private.mm->mm_count); | |
191 | break; | |
192 | } | |
193 | } | |
194 | ||
195 | /* | |
196 | * Drop a reference to the resource addressed by a key. | |
197 | * The hash bucket spinlock must not be held. | |
198 | */ | |
199 | static void drop_futex_key_refs(union futex_key *key) | |
200 | { | |
90621c40 DH |
201 | if (!key->both.ptr) { |
202 | /* If we're here then we tried to put a key we failed to get */ | |
203 | WARN_ON_ONCE(1); | |
38d47c1b | 204 | return; |
90621c40 | 205 | } |
38d47c1b PZ |
206 | |
207 | switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) { | |
208 | case FUT_OFF_INODE: | |
209 | iput(key->shared.inode); | |
210 | break; | |
211 | case FUT_OFF_MMSHARED: | |
212 | mmdrop(key->private.mm); | |
213 | break; | |
214 | } | |
215 | } | |
216 | ||
34f01cc1 | 217 | /** |
d96ee56c DH |
218 | * get_futex_key() - Get parameters which are the keys for a futex |
219 | * @uaddr: virtual address of the futex | |
220 | * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED | |
221 | * @key: address where result is stored. | |
9ea71503 SB |
222 | * @rw: mapping needs to be read/write (values: VERIFY_READ, |
223 | * VERIFY_WRITE) | |
34f01cc1 ED |
224 | * |
225 | * Returns a negative error code or 0 | |
226 | * The key words are stored in *key on success. | |
1da177e4 | 227 | * |
f3a43f3f | 228 | * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode, |
1da177e4 LT |
229 | * offset_within_page). For private mappings, it's (uaddr, current->mm). |
230 | * We can usually work out the index without swapping in the page. | |
231 | * | |
b2d0994b | 232 | * lock_page() might sleep, the caller should not hold a spinlock. |
1da177e4 | 233 | */ |
64d1304a | 234 | static int |
9ea71503 | 235 | get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw) |
1da177e4 | 236 | { |
e2970f2f | 237 | unsigned long address = (unsigned long)uaddr; |
1da177e4 | 238 | struct mm_struct *mm = current->mm; |
a5b338f2 | 239 | struct page *page, *page_head; |
9ea71503 | 240 | int err, ro = 0; |
1da177e4 LT |
241 | |
242 | /* | |
243 | * The futex address must be "naturally" aligned. | |
244 | */ | |
e2970f2f | 245 | key->both.offset = address % PAGE_SIZE; |
34f01cc1 | 246 | if (unlikely((address % sizeof(u32)) != 0)) |
1da177e4 | 247 | return -EINVAL; |
e2970f2f | 248 | address -= key->both.offset; |
1da177e4 | 249 | |
34f01cc1 ED |
250 | /* |
251 | * PROCESS_PRIVATE futexes are fast. | |
252 | * As the mm cannot disappear under us and the 'key' only needs | |
253 | * virtual address, we dont even have to find the underlying vma. | |
254 | * Note : We do have to check 'uaddr' is a valid user address, | |
255 | * but access_ok() should be faster than find_vma() | |
256 | */ | |
257 | if (!fshared) { | |
7485d0d3 | 258 | if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))) |
34f01cc1 ED |
259 | return -EFAULT; |
260 | key->private.mm = mm; | |
261 | key->private.address = address; | |
42569c39 | 262 | get_futex_key_refs(key); |
34f01cc1 ED |
263 | return 0; |
264 | } | |
1da177e4 | 265 | |
38d47c1b | 266 | again: |
7485d0d3 | 267 | err = get_user_pages_fast(address, 1, 1, &page); |
9ea71503 SB |
268 | /* |
269 | * If write access is not required (eg. FUTEX_WAIT), try | |
270 | * and get read-only access. | |
271 | */ | |
272 | if (err == -EFAULT && rw == VERIFY_READ) { | |
273 | err = get_user_pages_fast(address, 1, 0, &page); | |
274 | ro = 1; | |
275 | } | |
38d47c1b PZ |
276 | if (err < 0) |
277 | return err; | |
9ea71503 SB |
278 | else |
279 | err = 0; | |
38d47c1b | 280 | |
a5b338f2 AA |
281 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
282 | page_head = page; | |
283 | if (unlikely(PageTail(page))) { | |
38d47c1b | 284 | put_page(page); |
a5b338f2 AA |
285 | /* serialize against __split_huge_page_splitting() */ |
286 | local_irq_disable(); | |
287 | if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) { | |
288 | page_head = compound_head(page); | |
289 | /* | |
290 | * page_head is valid pointer but we must pin | |
291 | * it before taking the PG_lock and/or | |
292 | * PG_compound_lock. The moment we re-enable | |
293 | * irqs __split_huge_page_splitting() can | |
294 | * return and the head page can be freed from | |
295 | * under us. We can't take the PG_lock and/or | |
296 | * PG_compound_lock on a page that could be | |
297 | * freed from under us. | |
298 | */ | |
299 | if (page != page_head) { | |
300 | get_page(page_head); | |
301 | put_page(page); | |
302 | } | |
303 | local_irq_enable(); | |
304 | } else { | |
305 | local_irq_enable(); | |
306 | goto again; | |
307 | } | |
308 | } | |
309 | #else | |
310 | page_head = compound_head(page); | |
311 | if (page != page_head) { | |
312 | get_page(page_head); | |
313 | put_page(page); | |
314 | } | |
315 | #endif | |
316 | ||
317 | lock_page(page_head); | |
e6780f72 HD |
318 | |
319 | /* | |
320 | * If page_head->mapping is NULL, then it cannot be a PageAnon | |
321 | * page; but it might be the ZERO_PAGE or in the gate area or | |
322 | * in a special mapping (all cases which we are happy to fail); | |
323 | * or it may have been a good file page when get_user_pages_fast | |
324 | * found it, but truncated or holepunched or subjected to | |
325 | * invalidate_complete_page2 before we got the page lock (also | |
326 | * cases which we are happy to fail). And we hold a reference, | |
327 | * so refcount care in invalidate_complete_page's remove_mapping | |
328 | * prevents drop_caches from setting mapping to NULL beneath us. | |
329 | * | |
330 | * The case we do have to guard against is when memory pressure made | |
331 | * shmem_writepage move it from filecache to swapcache beneath us: | |
332 | * an unlikely race, but we do need to retry for page_head->mapping. | |
333 | */ | |
a5b338f2 | 334 | if (!page_head->mapping) { |
e6780f72 | 335 | int shmem_swizzled = PageSwapCache(page_head); |
a5b338f2 AA |
336 | unlock_page(page_head); |
337 | put_page(page_head); | |
e6780f72 HD |
338 | if (shmem_swizzled) |
339 | goto again; | |
340 | return -EFAULT; | |
38d47c1b | 341 | } |
1da177e4 LT |
342 | |
343 | /* | |
344 | * Private mappings are handled in a simple way. | |
345 | * | |
346 | * NOTE: When userspace waits on a MAP_SHARED mapping, even if | |
347 | * it's a read-only handle, it's expected that futexes attach to | |
38d47c1b | 348 | * the object not the particular process. |
1da177e4 | 349 | */ |
a5b338f2 | 350 | if (PageAnon(page_head)) { |
9ea71503 SB |
351 | /* |
352 | * A RO anonymous page will never change and thus doesn't make | |
353 | * sense for futex operations. | |
354 | */ | |
355 | if (ro) { | |
356 | err = -EFAULT; | |
357 | goto out; | |
358 | } | |
359 | ||
38d47c1b | 360 | key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */ |
1da177e4 | 361 | key->private.mm = mm; |
e2970f2f | 362 | key->private.address = address; |
38d47c1b PZ |
363 | } else { |
364 | key->both.offset |= FUT_OFF_INODE; /* inode-based key */ | |
a5b338f2 AA |
365 | key->shared.inode = page_head->mapping->host; |
366 | key->shared.pgoff = page_head->index; | |
1da177e4 LT |
367 | } |
368 | ||
38d47c1b | 369 | get_futex_key_refs(key); |
1da177e4 | 370 | |
9ea71503 | 371 | out: |
a5b338f2 AA |
372 | unlock_page(page_head); |
373 | put_page(page_head); | |
9ea71503 | 374 | return err; |
1da177e4 LT |
375 | } |
376 | ||
ae791a2d | 377 | static inline void put_futex_key(union futex_key *key) |
1da177e4 | 378 | { |
38d47c1b | 379 | drop_futex_key_refs(key); |
1da177e4 LT |
380 | } |
381 | ||
d96ee56c DH |
382 | /** |
383 | * fault_in_user_writeable() - Fault in user address and verify RW access | |
d0725992 TG |
384 | * @uaddr: pointer to faulting user space address |
385 | * | |
386 | * Slow path to fixup the fault we just took in the atomic write | |
387 | * access to @uaddr. | |
388 | * | |
fb62db2b | 389 | * We have no generic implementation of a non-destructive write to the |
d0725992 TG |
390 | * user address. We know that we faulted in the atomic pagefault |
391 | * disabled section so we can as well avoid the #PF overhead by | |
392 | * calling get_user_pages() right away. | |
393 | */ | |
394 | static int fault_in_user_writeable(u32 __user *uaddr) | |
395 | { | |
722d0172 AK |
396 | struct mm_struct *mm = current->mm; |
397 | int ret; | |
398 | ||
399 | down_read(&mm->mmap_sem); | |
2efaca92 BH |
400 | ret = fixup_user_fault(current, mm, (unsigned long)uaddr, |
401 | FAULT_FLAG_WRITE); | |
722d0172 AK |
402 | up_read(&mm->mmap_sem); |
403 | ||
d0725992 TG |
404 | return ret < 0 ? ret : 0; |
405 | } | |
406 | ||
4b1c486b DH |
407 | /** |
408 | * futex_top_waiter() - Return the highest priority waiter on a futex | |
d96ee56c DH |
409 | * @hb: the hash bucket the futex_q's reside in |
410 | * @key: the futex key (to distinguish it from other futex futex_q's) | |
4b1c486b DH |
411 | * |
412 | * Must be called with the hb lock held. | |
413 | */ | |
414 | static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, | |
415 | union futex_key *key) | |
416 | { | |
417 | struct futex_q *this; | |
418 | ||
419 | plist_for_each_entry(this, &hb->chain, list) { | |
420 | if (match_futex(&this->key, key)) | |
421 | return this; | |
422 | } | |
423 | return NULL; | |
424 | } | |
425 | ||
37a9d912 ML |
426 | static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr, |
427 | u32 uval, u32 newval) | |
36cf3b5c | 428 | { |
37a9d912 | 429 | int ret; |
36cf3b5c TG |
430 | |
431 | pagefault_disable(); | |
37a9d912 | 432 | ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval); |
36cf3b5c TG |
433 | pagefault_enable(); |
434 | ||
37a9d912 | 435 | return ret; |
36cf3b5c TG |
436 | } |
437 | ||
438 | static int get_futex_value_locked(u32 *dest, u32 __user *from) | |
1da177e4 LT |
439 | { |
440 | int ret; | |
441 | ||
a866374a | 442 | pagefault_disable(); |
e2970f2f | 443 | ret = __copy_from_user_inatomic(dest, from, sizeof(u32)); |
a866374a | 444 | pagefault_enable(); |
1da177e4 LT |
445 | |
446 | return ret ? -EFAULT : 0; | |
447 | } | |
448 | ||
c87e2837 IM |
449 | |
450 | /* | |
451 | * PI code: | |
452 | */ | |
453 | static int refill_pi_state_cache(void) | |
454 | { | |
455 | struct futex_pi_state *pi_state; | |
456 | ||
457 | if (likely(current->pi_state_cache)) | |
458 | return 0; | |
459 | ||
4668edc3 | 460 | pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL); |
c87e2837 IM |
461 | |
462 | if (!pi_state) | |
463 | return -ENOMEM; | |
464 | ||
c87e2837 IM |
465 | INIT_LIST_HEAD(&pi_state->list); |
466 | /* pi_mutex gets initialized later */ | |
467 | pi_state->owner = NULL; | |
468 | atomic_set(&pi_state->refcount, 1); | |
38d47c1b | 469 | pi_state->key = FUTEX_KEY_INIT; |
c87e2837 IM |
470 | |
471 | current->pi_state_cache = pi_state; | |
472 | ||
473 | return 0; | |
474 | } | |
475 | ||
476 | static struct futex_pi_state * alloc_pi_state(void) | |
477 | { | |
478 | struct futex_pi_state *pi_state = current->pi_state_cache; | |
479 | ||
480 | WARN_ON(!pi_state); | |
481 | current->pi_state_cache = NULL; | |
482 | ||
483 | return pi_state; | |
484 | } | |
485 | ||
486 | static void free_pi_state(struct futex_pi_state *pi_state) | |
487 | { | |
488 | if (!atomic_dec_and_test(&pi_state->refcount)) | |
489 | return; | |
490 | ||
491 | /* | |
492 | * If pi_state->owner is NULL, the owner is most probably dying | |
493 | * and has cleaned up the pi_state already | |
494 | */ | |
495 | if (pi_state->owner) { | |
1d615482 | 496 | raw_spin_lock_irq(&pi_state->owner->pi_lock); |
c87e2837 | 497 | list_del_init(&pi_state->list); |
1d615482 | 498 | raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
c87e2837 IM |
499 | |
500 | rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner); | |
501 | } | |
502 | ||
503 | if (current->pi_state_cache) | |
504 | kfree(pi_state); | |
505 | else { | |
506 | /* | |
507 | * pi_state->list is already empty. | |
508 | * clear pi_state->owner. | |
509 | * refcount is at 0 - put it back to 1. | |
510 | */ | |
511 | pi_state->owner = NULL; | |
512 | atomic_set(&pi_state->refcount, 1); | |
513 | current->pi_state_cache = pi_state; | |
514 | } | |
515 | } | |
516 | ||
517 | /* | |
518 | * Look up the task based on what TID userspace gave us. | |
519 | * We dont trust it. | |
520 | */ | |
521 | static struct task_struct * futex_find_get_task(pid_t pid) | |
522 | { | |
523 | struct task_struct *p; | |
524 | ||
d359b549 | 525 | rcu_read_lock(); |
228ebcbe | 526 | p = find_task_by_vpid(pid); |
7a0ea09a MH |
527 | if (p) |
528 | get_task_struct(p); | |
a06381fe | 529 | |
d359b549 | 530 | rcu_read_unlock(); |
c87e2837 IM |
531 | |
532 | return p; | |
533 | } | |
534 | ||
535 | /* | |
536 | * This task is holding PI mutexes at exit time => bad. | |
537 | * Kernel cleans up PI-state, but userspace is likely hosed. | |
538 | * (Robust-futex cleanup is separate and might save the day for userspace.) | |
539 | */ | |
540 | void exit_pi_state_list(struct task_struct *curr) | |
541 | { | |
c87e2837 IM |
542 | struct list_head *next, *head = &curr->pi_state_list; |
543 | struct futex_pi_state *pi_state; | |
627371d7 | 544 | struct futex_hash_bucket *hb; |
38d47c1b | 545 | union futex_key key = FUTEX_KEY_INIT; |
c87e2837 | 546 | |
a0c1e907 TG |
547 | if (!futex_cmpxchg_enabled) |
548 | return; | |
c87e2837 IM |
549 | /* |
550 | * We are a ZOMBIE and nobody can enqueue itself on | |
551 | * pi_state_list anymore, but we have to be careful | |
627371d7 | 552 | * versus waiters unqueueing themselves: |
c87e2837 | 553 | */ |
1d615482 | 554 | raw_spin_lock_irq(&curr->pi_lock); |
c87e2837 IM |
555 | while (!list_empty(head)) { |
556 | ||
557 | next = head->next; | |
558 | pi_state = list_entry(next, struct futex_pi_state, list); | |
559 | key = pi_state->key; | |
627371d7 | 560 | hb = hash_futex(&key); |
1d615482 | 561 | raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837 | 562 | |
c87e2837 IM |
563 | spin_lock(&hb->lock); |
564 | ||
1d615482 | 565 | raw_spin_lock_irq(&curr->pi_lock); |
627371d7 IM |
566 | /* |
567 | * We dropped the pi-lock, so re-check whether this | |
568 | * task still owns the PI-state: | |
569 | */ | |
c87e2837 IM |
570 | if (head->next != next) { |
571 | spin_unlock(&hb->lock); | |
572 | continue; | |
573 | } | |
574 | ||
c87e2837 | 575 | WARN_ON(pi_state->owner != curr); |
627371d7 IM |
576 | WARN_ON(list_empty(&pi_state->list)); |
577 | list_del_init(&pi_state->list); | |
c87e2837 | 578 | pi_state->owner = NULL; |
1d615482 | 579 | raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837 IM |
580 | |
581 | rt_mutex_unlock(&pi_state->pi_mutex); | |
582 | ||
583 | spin_unlock(&hb->lock); | |
584 | ||
1d615482 | 585 | raw_spin_lock_irq(&curr->pi_lock); |
c87e2837 | 586 | } |
1d615482 | 587 | raw_spin_unlock_irq(&curr->pi_lock); |
c87e2837 IM |
588 | } |
589 | ||
590 | static int | |
d0aa7a70 PP |
591 | lookup_pi_state(u32 uval, struct futex_hash_bucket *hb, |
592 | union futex_key *key, struct futex_pi_state **ps) | |
c87e2837 IM |
593 | { |
594 | struct futex_pi_state *pi_state = NULL; | |
595 | struct futex_q *this, *next; | |
ec92d082 | 596 | struct plist_head *head; |
c87e2837 | 597 | struct task_struct *p; |
778e9a9c | 598 | pid_t pid = uval & FUTEX_TID_MASK; |
c87e2837 IM |
599 | |
600 | head = &hb->chain; | |
601 | ||
ec92d082 | 602 | plist_for_each_entry_safe(this, next, head, list) { |
d0aa7a70 | 603 | if (match_futex(&this->key, key)) { |
c87e2837 IM |
604 | /* |
605 | * Another waiter already exists - bump up | |
606 | * the refcount and return its pi_state: | |
607 | */ | |
608 | pi_state = this->pi_state; | |
06a9ec29 | 609 | /* |
fb62db2b | 610 | * Userspace might have messed up non-PI and PI futexes |
06a9ec29 TG |
611 | */ |
612 | if (unlikely(!pi_state)) | |
613 | return -EINVAL; | |
614 | ||
627371d7 | 615 | WARN_ON(!atomic_read(&pi_state->refcount)); |
59647b6a TG |
616 | |
617 | /* | |
618 | * When pi_state->owner is NULL then the owner died | |
619 | * and another waiter is on the fly. pi_state->owner | |
620 | * is fixed up by the task which acquires | |
621 | * pi_state->rt_mutex. | |
622 | * | |
623 | * We do not check for pid == 0 which can happen when | |
624 | * the owner died and robust_list_exit() cleared the | |
625 | * TID. | |
626 | */ | |
627 | if (pid && pi_state->owner) { | |
628 | /* | |
629 | * Bail out if user space manipulated the | |
630 | * futex value. | |
631 | */ | |
632 | if (pid != task_pid_vnr(pi_state->owner)) | |
633 | return -EINVAL; | |
634 | } | |
627371d7 | 635 | |
c87e2837 | 636 | atomic_inc(&pi_state->refcount); |
d0aa7a70 | 637 | *ps = pi_state; |
c87e2837 IM |
638 | |
639 | return 0; | |
640 | } | |
641 | } | |
642 | ||
643 | /* | |
e3f2ddea | 644 | * We are the first waiter - try to look up the real owner and attach |
778e9a9c | 645 | * the new pi_state to it, but bail out when TID = 0 |
c87e2837 | 646 | */ |
778e9a9c | 647 | if (!pid) |
e3f2ddea | 648 | return -ESRCH; |
c87e2837 | 649 | p = futex_find_get_task(pid); |
7a0ea09a MH |
650 | if (!p) |
651 | return -ESRCH; | |
778e9a9c AK |
652 | |
653 | /* | |
654 | * We need to look at the task state flags to figure out, | |
655 | * whether the task is exiting. To protect against the do_exit | |
656 | * change of the task flags, we do this protected by | |
657 | * p->pi_lock: | |
658 | */ | |
1d615482 | 659 | raw_spin_lock_irq(&p->pi_lock); |
778e9a9c AK |
660 | if (unlikely(p->flags & PF_EXITING)) { |
661 | /* | |
662 | * The task is on the way out. When PF_EXITPIDONE is | |
663 | * set, we know that the task has finished the | |
664 | * cleanup: | |
665 | */ | |
666 | int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN; | |
667 | ||
1d615482 | 668 | raw_spin_unlock_irq(&p->pi_lock); |
778e9a9c AK |
669 | put_task_struct(p); |
670 | return ret; | |
671 | } | |
c87e2837 IM |
672 | |
673 | pi_state = alloc_pi_state(); | |
674 | ||
675 | /* | |
676 | * Initialize the pi_mutex in locked state and make 'p' | |
677 | * the owner of it: | |
678 | */ | |
679 | rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p); | |
680 | ||
681 | /* Store the key for possible exit cleanups: */ | |
d0aa7a70 | 682 | pi_state->key = *key; |
c87e2837 | 683 | |
627371d7 | 684 | WARN_ON(!list_empty(&pi_state->list)); |
c87e2837 IM |
685 | list_add(&pi_state->list, &p->pi_state_list); |
686 | pi_state->owner = p; | |
1d615482 | 687 | raw_spin_unlock_irq(&p->pi_lock); |
c87e2837 IM |
688 | |
689 | put_task_struct(p); | |
690 | ||
d0aa7a70 | 691 | *ps = pi_state; |
c87e2837 IM |
692 | |
693 | return 0; | |
694 | } | |
695 | ||
1a52084d | 696 | /** |
d96ee56c | 697 | * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex |
bab5bc9e DH |
698 | * @uaddr: the pi futex user address |
699 | * @hb: the pi futex hash bucket | |
700 | * @key: the futex key associated with uaddr and hb | |
701 | * @ps: the pi_state pointer where we store the result of the | |
702 | * lookup | |
703 | * @task: the task to perform the atomic lock work for. This will | |
704 | * be "current" except in the case of requeue pi. | |
705 | * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) | |
1a52084d DH |
706 | * |
707 | * Returns: | |
708 | * 0 - ready to wait | |
709 | * 1 - acquired the lock | |
710 | * <0 - error | |
711 | * | |
712 | * The hb->lock and futex_key refs shall be held by the caller. | |
713 | */ | |
714 | static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb, | |
715 | union futex_key *key, | |
716 | struct futex_pi_state **ps, | |
bab5bc9e | 717 | struct task_struct *task, int set_waiters) |
1a52084d DH |
718 | { |
719 | int lock_taken, ret, ownerdied = 0; | |
c0c9ed15 | 720 | u32 uval, newval, curval, vpid = task_pid_vnr(task); |
1a52084d DH |
721 | |
722 | retry: | |
723 | ret = lock_taken = 0; | |
724 | ||
725 | /* | |
726 | * To avoid races, we attempt to take the lock here again | |
727 | * (by doing a 0 -> TID atomic cmpxchg), while holding all | |
728 | * the locks. It will most likely not succeed. | |
729 | */ | |
c0c9ed15 | 730 | newval = vpid; |
bab5bc9e DH |
731 | if (set_waiters) |
732 | newval |= FUTEX_WAITERS; | |
1a52084d | 733 | |
37a9d912 | 734 | if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval))) |
1a52084d DH |
735 | return -EFAULT; |
736 | ||
737 | /* | |
738 | * Detect deadlocks. | |
739 | */ | |
c0c9ed15 | 740 | if ((unlikely((curval & FUTEX_TID_MASK) == vpid))) |
1a52084d DH |
741 | return -EDEADLK; |
742 | ||
743 | /* | |
744 | * Surprise - we got the lock. Just return to userspace: | |
745 | */ | |
746 | if (unlikely(!curval)) | |
747 | return 1; | |
748 | ||
749 | uval = curval; | |
750 | ||
751 | /* | |
752 | * Set the FUTEX_WAITERS flag, so the owner will know it has someone | |
753 | * to wake at the next unlock. | |
754 | */ | |
755 | newval = curval | FUTEX_WAITERS; | |
756 | ||
757 | /* | |
758 | * There are two cases, where a futex might have no owner (the | |
759 | * owner TID is 0): OWNER_DIED. We take over the futex in this | |
760 | * case. We also do an unconditional take over, when the owner | |
761 | * of the futex died. | |
762 | * | |
763 | * This is safe as we are protected by the hash bucket lock ! | |
764 | */ | |
765 | if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) { | |
766 | /* Keep the OWNER_DIED bit */ | |
c0c9ed15 | 767 | newval = (curval & ~FUTEX_TID_MASK) | vpid; |
1a52084d DH |
768 | ownerdied = 0; |
769 | lock_taken = 1; | |
770 | } | |
771 | ||
37a9d912 | 772 | if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))) |
1a52084d DH |
773 | return -EFAULT; |
774 | if (unlikely(curval != uval)) | |
775 | goto retry; | |
776 | ||
777 | /* | |
778 | * We took the lock due to owner died take over. | |
779 | */ | |
780 | if (unlikely(lock_taken)) | |
781 | return 1; | |
782 | ||
783 | /* | |
784 | * We dont have the lock. Look up the PI state (or create it if | |
785 | * we are the first waiter): | |
786 | */ | |
787 | ret = lookup_pi_state(uval, hb, key, ps); | |
788 | ||
789 | if (unlikely(ret)) { | |
790 | switch (ret) { | |
791 | case -ESRCH: | |
792 | /* | |
793 | * No owner found for this futex. Check if the | |
794 | * OWNER_DIED bit is set to figure out whether | |
795 | * this is a robust futex or not. | |
796 | */ | |
797 | if (get_futex_value_locked(&curval, uaddr)) | |
798 | return -EFAULT; | |
799 | ||
800 | /* | |
801 | * We simply start over in case of a robust | |
802 | * futex. The code above will take the futex | |
803 | * and return happy. | |
804 | */ | |
805 | if (curval & FUTEX_OWNER_DIED) { | |
806 | ownerdied = 1; | |
807 | goto retry; | |
808 | } | |
809 | default: | |
810 | break; | |
811 | } | |
812 | } | |
813 | ||
814 | return ret; | |
815 | } | |
816 | ||
2e12978a LJ |
817 | /** |
818 | * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket | |
819 | * @q: The futex_q to unqueue | |
820 | * | |
821 | * The q->lock_ptr must not be NULL and must be held by the caller. | |
822 | */ | |
823 | static void __unqueue_futex(struct futex_q *q) | |
824 | { | |
825 | struct futex_hash_bucket *hb; | |
826 | ||
29096202 SR |
827 | if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr)) |
828 | || WARN_ON(plist_node_empty(&q->list))) | |
2e12978a LJ |
829 | return; |
830 | ||
831 | hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock); | |
832 | plist_del(&q->list, &hb->chain); | |
833 | } | |
834 | ||
1da177e4 LT |
835 | /* |
836 | * The hash bucket lock must be held when this is called. | |
837 | * Afterwards, the futex_q must not be accessed. | |
838 | */ | |
839 | static void wake_futex(struct futex_q *q) | |
840 | { | |
f1a11e05 TG |
841 | struct task_struct *p = q->task; |
842 | ||
1da177e4 | 843 | /* |
f1a11e05 | 844 | * We set q->lock_ptr = NULL _before_ we wake up the task. If |
fb62db2b RD |
845 | * a non-futex wake up happens on another CPU then the task |
846 | * might exit and p would dereference a non-existing task | |
f1a11e05 TG |
847 | * struct. Prevent this by holding a reference on p across the |
848 | * wake up. | |
1da177e4 | 849 | */ |
f1a11e05 TG |
850 | get_task_struct(p); |
851 | ||
2e12978a | 852 | __unqueue_futex(q); |
1da177e4 | 853 | /* |
f1a11e05 TG |
854 | * The waiting task can free the futex_q as soon as |
855 | * q->lock_ptr = NULL is written, without taking any locks. A | |
856 | * memory barrier is required here to prevent the following | |
857 | * store to lock_ptr from getting ahead of the plist_del. | |
1da177e4 | 858 | */ |
ccdea2f8 | 859 | smp_wmb(); |
1da177e4 | 860 | q->lock_ptr = NULL; |
f1a11e05 TG |
861 | |
862 | wake_up_state(p, TASK_NORMAL); | |
863 | put_task_struct(p); | |
1da177e4 LT |
864 | } |
865 | ||
c87e2837 IM |
866 | static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this) |
867 | { | |
868 | struct task_struct *new_owner; | |
869 | struct futex_pi_state *pi_state = this->pi_state; | |
7cfdaf38 | 870 | u32 uninitialized_var(curval), newval; |
c87e2837 IM |
871 | |
872 | if (!pi_state) | |
873 | return -EINVAL; | |
874 | ||
51246bfd TG |
875 | /* |
876 | * If current does not own the pi_state then the futex is | |
877 | * inconsistent and user space fiddled with the futex value. | |
878 | */ | |
879 | if (pi_state->owner != current) | |
880 | return -EINVAL; | |
881 | ||
d209d74d | 882 | raw_spin_lock(&pi_state->pi_mutex.wait_lock); |
c87e2837 IM |
883 | new_owner = rt_mutex_next_owner(&pi_state->pi_mutex); |
884 | ||
885 | /* | |
f123c98e SR |
886 | * It is possible that the next waiter (the one that brought |
887 | * this owner to the kernel) timed out and is no longer | |
888 | * waiting on the lock. | |
c87e2837 IM |
889 | */ |
890 | if (!new_owner) | |
891 | new_owner = this->task; | |
892 | ||
893 | /* | |
894 | * We pass it to the next owner. (The WAITERS bit is always | |
895 | * kept enabled while there is PI state around. We must also | |
896 | * preserve the owner died bit.) | |
897 | */ | |
e3f2ddea | 898 | if (!(uval & FUTEX_OWNER_DIED)) { |
778e9a9c AK |
899 | int ret = 0; |
900 | ||
b488893a | 901 | newval = FUTEX_WAITERS | task_pid_vnr(new_owner); |
e3f2ddea | 902 | |
37a9d912 | 903 | if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) |
778e9a9c | 904 | ret = -EFAULT; |
cde898fa | 905 | else if (curval != uval) |
778e9a9c AK |
906 | ret = -EINVAL; |
907 | if (ret) { | |
d209d74d | 908 | raw_spin_unlock(&pi_state->pi_mutex.wait_lock); |
778e9a9c AK |
909 | return ret; |
910 | } | |
e3f2ddea | 911 | } |
c87e2837 | 912 | |
1d615482 | 913 | raw_spin_lock_irq(&pi_state->owner->pi_lock); |
627371d7 IM |
914 | WARN_ON(list_empty(&pi_state->list)); |
915 | list_del_init(&pi_state->list); | |
1d615482 | 916 | raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
627371d7 | 917 | |
1d615482 | 918 | raw_spin_lock_irq(&new_owner->pi_lock); |
627371d7 | 919 | WARN_ON(!list_empty(&pi_state->list)); |
c87e2837 IM |
920 | list_add(&pi_state->list, &new_owner->pi_state_list); |
921 | pi_state->owner = new_owner; | |
1d615482 | 922 | raw_spin_unlock_irq(&new_owner->pi_lock); |
627371d7 | 923 | |
d209d74d | 924 | raw_spin_unlock(&pi_state->pi_mutex.wait_lock); |
c87e2837 IM |
925 | rt_mutex_unlock(&pi_state->pi_mutex); |
926 | ||
927 | return 0; | |
928 | } | |
929 | ||
930 | static int unlock_futex_pi(u32 __user *uaddr, u32 uval) | |
931 | { | |
7cfdaf38 | 932 | u32 uninitialized_var(oldval); |
c87e2837 IM |
933 | |
934 | /* | |
935 | * There is no waiter, so we unlock the futex. The owner died | |
936 | * bit has not to be preserved here. We are the owner: | |
937 | */ | |
37a9d912 ML |
938 | if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0)) |
939 | return -EFAULT; | |
c87e2837 IM |
940 | if (oldval != uval) |
941 | return -EAGAIN; | |
942 | ||
943 | return 0; | |
944 | } | |
945 | ||
8b8f319f IM |
946 | /* |
947 | * Express the locking dependencies for lockdep: | |
948 | */ | |
949 | static inline void | |
950 | double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | |
951 | { | |
952 | if (hb1 <= hb2) { | |
953 | spin_lock(&hb1->lock); | |
954 | if (hb1 < hb2) | |
955 | spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING); | |
956 | } else { /* hb1 > hb2 */ | |
957 | spin_lock(&hb2->lock); | |
958 | spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING); | |
959 | } | |
960 | } | |
961 | ||
5eb3dc62 DH |
962 | static inline void |
963 | double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2) | |
964 | { | |
f061d351 | 965 | spin_unlock(&hb1->lock); |
88f502fe IM |
966 | if (hb1 != hb2) |
967 | spin_unlock(&hb2->lock); | |
5eb3dc62 DH |
968 | } |
969 | ||
1da177e4 | 970 | /* |
b2d0994b | 971 | * Wake up waiters matching bitset queued on this futex (uaddr). |
1da177e4 | 972 | */ |
b41277dc DH |
973 | static int |
974 | futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset) | |
1da177e4 | 975 | { |
e2970f2f | 976 | struct futex_hash_bucket *hb; |
1da177e4 | 977 | struct futex_q *this, *next; |
ec92d082 | 978 | struct plist_head *head; |
38d47c1b | 979 | union futex_key key = FUTEX_KEY_INIT; |
1da177e4 LT |
980 | int ret; |
981 | ||
cd689985 TG |
982 | if (!bitset) |
983 | return -EINVAL; | |
984 | ||
9ea71503 | 985 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ); |
1da177e4 LT |
986 | if (unlikely(ret != 0)) |
987 | goto out; | |
988 | ||
e2970f2f IM |
989 | hb = hash_futex(&key); |
990 | spin_lock(&hb->lock); | |
991 | head = &hb->chain; | |
1da177e4 | 992 | |
ec92d082 | 993 | plist_for_each_entry_safe(this, next, head, list) { |
1da177e4 | 994 | if (match_futex (&this->key, &key)) { |
52400ba9 | 995 | if (this->pi_state || this->rt_waiter) { |
ed6f7b10 IM |
996 | ret = -EINVAL; |
997 | break; | |
998 | } | |
cd689985 TG |
999 | |
1000 | /* Check if one of the bits is set in both bitsets */ | |
1001 | if (!(this->bitset & bitset)) | |
1002 | continue; | |
1003 | ||
1da177e4 LT |
1004 | wake_futex(this); |
1005 | if (++ret >= nr_wake) | |
1006 | break; | |
1007 | } | |
1008 | } | |
1009 | ||
e2970f2f | 1010 | spin_unlock(&hb->lock); |
ae791a2d | 1011 | put_futex_key(&key); |
42d35d48 | 1012 | out: |
1da177e4 LT |
1013 | return ret; |
1014 | } | |
1015 | ||
4732efbe JJ |
1016 | /* |
1017 | * Wake up all waiters hashed on the physical page that is mapped | |
1018 | * to this virtual address: | |
1019 | */ | |
e2970f2f | 1020 | static int |
b41277dc | 1021 | futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2, |
e2970f2f | 1022 | int nr_wake, int nr_wake2, int op) |
4732efbe | 1023 | { |
38d47c1b | 1024 | union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
e2970f2f | 1025 | struct futex_hash_bucket *hb1, *hb2; |
ec92d082 | 1026 | struct plist_head *head; |
4732efbe | 1027 | struct futex_q *this, *next; |
e4dc5b7a | 1028 | int ret, op_ret; |
4732efbe | 1029 | |
e4dc5b7a | 1030 | retry: |
9ea71503 | 1031 | ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ); |
4732efbe JJ |
1032 | if (unlikely(ret != 0)) |
1033 | goto out; | |
9ea71503 | 1034 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE); |
4732efbe | 1035 | if (unlikely(ret != 0)) |
42d35d48 | 1036 | goto out_put_key1; |
4732efbe | 1037 | |
e2970f2f IM |
1038 | hb1 = hash_futex(&key1); |
1039 | hb2 = hash_futex(&key2); | |
4732efbe | 1040 | |
e4dc5b7a | 1041 | retry_private: |
eaaea803 | 1042 | double_lock_hb(hb1, hb2); |
e2970f2f | 1043 | op_ret = futex_atomic_op_inuser(op, uaddr2); |
4732efbe | 1044 | if (unlikely(op_ret < 0)) { |
4732efbe | 1045 | |
5eb3dc62 | 1046 | double_unlock_hb(hb1, hb2); |
4732efbe | 1047 | |
7ee1dd3f | 1048 | #ifndef CONFIG_MMU |
e2970f2f IM |
1049 | /* |
1050 | * we don't get EFAULT from MMU faults if we don't have an MMU, | |
1051 | * but we might get them from range checking | |
1052 | */ | |
7ee1dd3f | 1053 | ret = op_ret; |
42d35d48 | 1054 | goto out_put_keys; |
7ee1dd3f DH |
1055 | #endif |
1056 | ||
796f8d9b DG |
1057 | if (unlikely(op_ret != -EFAULT)) { |
1058 | ret = op_ret; | |
42d35d48 | 1059 | goto out_put_keys; |
796f8d9b DG |
1060 | } |
1061 | ||
d0725992 | 1062 | ret = fault_in_user_writeable(uaddr2); |
4732efbe | 1063 | if (ret) |
de87fcc1 | 1064 | goto out_put_keys; |
4732efbe | 1065 | |
b41277dc | 1066 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a DH |
1067 | goto retry_private; |
1068 | ||
ae791a2d TG |
1069 | put_futex_key(&key2); |
1070 | put_futex_key(&key1); | |
e4dc5b7a | 1071 | goto retry; |
4732efbe JJ |
1072 | } |
1073 | ||
e2970f2f | 1074 | head = &hb1->chain; |
4732efbe | 1075 | |
ec92d082 | 1076 | plist_for_each_entry_safe(this, next, head, list) { |
4732efbe JJ |
1077 | if (match_futex (&this->key, &key1)) { |
1078 | wake_futex(this); | |
1079 | if (++ret >= nr_wake) | |
1080 | break; | |
1081 | } | |
1082 | } | |
1083 | ||
1084 | if (op_ret > 0) { | |
e2970f2f | 1085 | head = &hb2->chain; |
4732efbe JJ |
1086 | |
1087 | op_ret = 0; | |
ec92d082 | 1088 | plist_for_each_entry_safe(this, next, head, list) { |
4732efbe JJ |
1089 | if (match_futex (&this->key, &key2)) { |
1090 | wake_futex(this); | |
1091 | if (++op_ret >= nr_wake2) | |
1092 | break; | |
1093 | } | |
1094 | } | |
1095 | ret += op_ret; | |
1096 | } | |
1097 | ||
5eb3dc62 | 1098 | double_unlock_hb(hb1, hb2); |
42d35d48 | 1099 | out_put_keys: |
ae791a2d | 1100 | put_futex_key(&key2); |
42d35d48 | 1101 | out_put_key1: |
ae791a2d | 1102 | put_futex_key(&key1); |
42d35d48 | 1103 | out: |
4732efbe JJ |
1104 | return ret; |
1105 | } | |
1106 | ||
9121e478 DH |
1107 | /** |
1108 | * requeue_futex() - Requeue a futex_q from one hb to another | |
1109 | * @q: the futex_q to requeue | |
1110 | * @hb1: the source hash_bucket | |
1111 | * @hb2: the target hash_bucket | |
1112 | * @key2: the new key for the requeued futex_q | |
1113 | */ | |
1114 | static inline | |
1115 | void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1, | |
1116 | struct futex_hash_bucket *hb2, union futex_key *key2) | |
1117 | { | |
1118 | ||
1119 | /* | |
1120 | * If key1 and key2 hash to the same bucket, no need to | |
1121 | * requeue. | |
1122 | */ | |
1123 | if (likely(&hb1->chain != &hb2->chain)) { | |
1124 | plist_del(&q->list, &hb1->chain); | |
1125 | plist_add(&q->list, &hb2->chain); | |
1126 | q->lock_ptr = &hb2->lock; | |
9121e478 DH |
1127 | } |
1128 | get_futex_key_refs(key2); | |
1129 | q->key = *key2; | |
1130 | } | |
1131 | ||
52400ba9 DH |
1132 | /** |
1133 | * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue | |
d96ee56c DH |
1134 | * @q: the futex_q |
1135 | * @key: the key of the requeue target futex | |
1136 | * @hb: the hash_bucket of the requeue target futex | |
52400ba9 DH |
1137 | * |
1138 | * During futex_requeue, with requeue_pi=1, it is possible to acquire the | |
1139 | * target futex if it is uncontended or via a lock steal. Set the futex_q key | |
1140 | * to the requeue target futex so the waiter can detect the wakeup on the right | |
1141 | * futex, but remove it from the hb and NULL the rt_waiter so it can detect | |
beda2c7e DH |
1142 | * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock |
1143 | * to protect access to the pi_state to fixup the owner later. Must be called | |
1144 | * with both q->lock_ptr and hb->lock held. | |
52400ba9 DH |
1145 | */ |
1146 | static inline | |
beda2c7e DH |
1147 | void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key, |
1148 | struct futex_hash_bucket *hb) | |
52400ba9 | 1149 | { |
52400ba9 DH |
1150 | get_futex_key_refs(key); |
1151 | q->key = *key; | |
1152 | ||
2e12978a | 1153 | __unqueue_futex(q); |
52400ba9 DH |
1154 | |
1155 | WARN_ON(!q->rt_waiter); | |
1156 | q->rt_waiter = NULL; | |
1157 | ||
beda2c7e | 1158 | q->lock_ptr = &hb->lock; |
beda2c7e | 1159 | |
f1a11e05 | 1160 | wake_up_state(q->task, TASK_NORMAL); |
52400ba9 DH |
1161 | } |
1162 | ||
1163 | /** | |
1164 | * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter | |
bab5bc9e DH |
1165 | * @pifutex: the user address of the to futex |
1166 | * @hb1: the from futex hash bucket, must be locked by the caller | |
1167 | * @hb2: the to futex hash bucket, must be locked by the caller | |
1168 | * @key1: the from futex key | |
1169 | * @key2: the to futex key | |
1170 | * @ps: address to store the pi_state pointer | |
1171 | * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0) | |
52400ba9 DH |
1172 | * |
1173 | * Try and get the lock on behalf of the top waiter if we can do it atomically. | |
bab5bc9e DH |
1174 | * Wake the top waiter if we succeed. If the caller specified set_waiters, |
1175 | * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit. | |
1176 | * hb1 and hb2 must be held by the caller. | |
52400ba9 DH |
1177 | * |
1178 | * Returns: | |
1179 | * 0 - failed to acquire the lock atomicly | |
1180 | * 1 - acquired the lock | |
1181 | * <0 - error | |
1182 | */ | |
1183 | static int futex_proxy_trylock_atomic(u32 __user *pifutex, | |
1184 | struct futex_hash_bucket *hb1, | |
1185 | struct futex_hash_bucket *hb2, | |
1186 | union futex_key *key1, union futex_key *key2, | |
bab5bc9e | 1187 | struct futex_pi_state **ps, int set_waiters) |
52400ba9 | 1188 | { |
bab5bc9e | 1189 | struct futex_q *top_waiter = NULL; |
52400ba9 DH |
1190 | u32 curval; |
1191 | int ret; | |
1192 | ||
1193 | if (get_futex_value_locked(&curval, pifutex)) | |
1194 | return -EFAULT; | |
1195 | ||
bab5bc9e DH |
1196 | /* |
1197 | * Find the top_waiter and determine if there are additional waiters. | |
1198 | * If the caller intends to requeue more than 1 waiter to pifutex, | |
1199 | * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now, | |
1200 | * as we have means to handle the possible fault. If not, don't set | |
1201 | * the bit unecessarily as it will force the subsequent unlock to enter | |
1202 | * the kernel. | |
1203 | */ | |
52400ba9 DH |
1204 | top_waiter = futex_top_waiter(hb1, key1); |
1205 | ||
1206 | /* There are no waiters, nothing for us to do. */ | |
1207 | if (!top_waiter) | |
1208 | return 0; | |
1209 | ||
84bc4af5 DH |
1210 | /* Ensure we requeue to the expected futex. */ |
1211 | if (!match_futex(top_waiter->requeue_pi_key, key2)) | |
1212 | return -EINVAL; | |
1213 | ||
52400ba9 | 1214 | /* |
bab5bc9e DH |
1215 | * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in |
1216 | * the contended case or if set_waiters is 1. The pi_state is returned | |
1217 | * in ps in contended cases. | |
52400ba9 | 1218 | */ |
bab5bc9e DH |
1219 | ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task, |
1220 | set_waiters); | |
52400ba9 | 1221 | if (ret == 1) |
beda2c7e | 1222 | requeue_pi_wake_futex(top_waiter, key2, hb2); |
52400ba9 DH |
1223 | |
1224 | return ret; | |
1225 | } | |
1226 | ||
1227 | /** | |
1228 | * futex_requeue() - Requeue waiters from uaddr1 to uaddr2 | |
fb62db2b | 1229 | * @uaddr1: source futex user address |
b41277dc | 1230 | * @flags: futex flags (FLAGS_SHARED, etc.) |
fb62db2b RD |
1231 | * @uaddr2: target futex user address |
1232 | * @nr_wake: number of waiters to wake (must be 1 for requeue_pi) | |
1233 | * @nr_requeue: number of waiters to requeue (0-INT_MAX) | |
1234 | * @cmpval: @uaddr1 expected value (or %NULL) | |
1235 | * @requeue_pi: if we are attempting to requeue from a non-pi futex to a | |
b41277dc | 1236 | * pi futex (pi to pi requeue is not supported) |
52400ba9 DH |
1237 | * |
1238 | * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire | |
1239 | * uaddr2 atomically on behalf of the top waiter. | |
1240 | * | |
1241 | * Returns: | |
1242 | * >=0 - on success, the number of tasks requeued or woken | |
1243 | * <0 - on error | |
1da177e4 | 1244 | */ |
b41277dc DH |
1245 | static int futex_requeue(u32 __user *uaddr1, unsigned int flags, |
1246 | u32 __user *uaddr2, int nr_wake, int nr_requeue, | |
1247 | u32 *cmpval, int requeue_pi) | |
1da177e4 | 1248 | { |
38d47c1b | 1249 | union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT; |
52400ba9 DH |
1250 | int drop_count = 0, task_count = 0, ret; |
1251 | struct futex_pi_state *pi_state = NULL; | |
e2970f2f | 1252 | struct futex_hash_bucket *hb1, *hb2; |
ec92d082 | 1253 | struct plist_head *head1; |
1da177e4 | 1254 | struct futex_q *this, *next; |
52400ba9 DH |
1255 | u32 curval2; |
1256 | ||
1257 | if (requeue_pi) { | |
1258 | /* | |
1259 | * requeue_pi requires a pi_state, try to allocate it now | |
1260 | * without any locks in case it fails. | |
1261 | */ | |
1262 | if (refill_pi_state_cache()) | |
1263 | return -ENOMEM; | |
1264 | /* | |
1265 | * requeue_pi must wake as many tasks as it can, up to nr_wake | |
1266 | * + nr_requeue, since it acquires the rt_mutex prior to | |
1267 | * returning to userspace, so as to not leave the rt_mutex with | |
1268 | * waiters and no owner. However, second and third wake-ups | |
1269 | * cannot be predicted as they involve race conditions with the | |
1270 | * first wake and a fault while looking up the pi_state. Both | |
1271 | * pthread_cond_signal() and pthread_cond_broadcast() should | |
1272 | * use nr_wake=1. | |
1273 | */ | |
1274 | if (nr_wake != 1) | |
1275 | return -EINVAL; | |
1276 | } | |
1da177e4 | 1277 | |
42d35d48 | 1278 | retry: |
52400ba9 DH |
1279 | if (pi_state != NULL) { |
1280 | /* | |
1281 | * We will have to lookup the pi_state again, so free this one | |
1282 | * to keep the accounting correct. | |
1283 | */ | |
1284 | free_pi_state(pi_state); | |
1285 | pi_state = NULL; | |
1286 | } | |
1287 | ||
9ea71503 | 1288 | ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ); |
1da177e4 LT |
1289 | if (unlikely(ret != 0)) |
1290 | goto out; | |
9ea71503 SB |
1291 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, |
1292 | requeue_pi ? VERIFY_WRITE : VERIFY_READ); | |
1da177e4 | 1293 | if (unlikely(ret != 0)) |
42d35d48 | 1294 | goto out_put_key1; |
1da177e4 | 1295 | |
e2970f2f IM |
1296 | hb1 = hash_futex(&key1); |
1297 | hb2 = hash_futex(&key2); | |
1da177e4 | 1298 | |
e4dc5b7a | 1299 | retry_private: |
8b8f319f | 1300 | double_lock_hb(hb1, hb2); |
1da177e4 | 1301 | |
e2970f2f IM |
1302 | if (likely(cmpval != NULL)) { |
1303 | u32 curval; | |
1da177e4 | 1304 | |
e2970f2f | 1305 | ret = get_futex_value_locked(&curval, uaddr1); |
1da177e4 LT |
1306 | |
1307 | if (unlikely(ret)) { | |
5eb3dc62 | 1308 | double_unlock_hb(hb1, hb2); |
1da177e4 | 1309 | |
e2970f2f | 1310 | ret = get_user(curval, uaddr1); |
e4dc5b7a DH |
1311 | if (ret) |
1312 | goto out_put_keys; | |
1da177e4 | 1313 | |
b41277dc | 1314 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a | 1315 | goto retry_private; |
1da177e4 | 1316 | |
ae791a2d TG |
1317 | put_futex_key(&key2); |
1318 | put_futex_key(&key1); | |
e4dc5b7a | 1319 | goto retry; |
1da177e4 | 1320 | } |
e2970f2f | 1321 | if (curval != *cmpval) { |
1da177e4 LT |
1322 | ret = -EAGAIN; |
1323 | goto out_unlock; | |
1324 | } | |
1325 | } | |
1326 | ||
52400ba9 | 1327 | if (requeue_pi && (task_count - nr_wake < nr_requeue)) { |
bab5bc9e DH |
1328 | /* |
1329 | * Attempt to acquire uaddr2 and wake the top waiter. If we | |
1330 | * intend to requeue waiters, force setting the FUTEX_WAITERS | |
1331 | * bit. We force this here where we are able to easily handle | |
1332 | * faults rather in the requeue loop below. | |
1333 | */ | |
52400ba9 | 1334 | ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1, |
bab5bc9e | 1335 | &key2, &pi_state, nr_requeue); |
52400ba9 DH |
1336 | |
1337 | /* | |
1338 | * At this point the top_waiter has either taken uaddr2 or is | |
1339 | * waiting on it. If the former, then the pi_state will not | |
1340 | * exist yet, look it up one more time to ensure we have a | |
1341 | * reference to it. | |
1342 | */ | |
1343 | if (ret == 1) { | |
1344 | WARN_ON(pi_state); | |
89061d3d | 1345 | drop_count++; |
52400ba9 DH |
1346 | task_count++; |
1347 | ret = get_futex_value_locked(&curval2, uaddr2); | |
1348 | if (!ret) | |
1349 | ret = lookup_pi_state(curval2, hb2, &key2, | |
1350 | &pi_state); | |
1351 | } | |
1352 | ||
1353 | switch (ret) { | |
1354 | case 0: | |
1355 | break; | |
1356 | case -EFAULT: | |
1357 | double_unlock_hb(hb1, hb2); | |
ae791a2d TG |
1358 | put_futex_key(&key2); |
1359 | put_futex_key(&key1); | |
d0725992 | 1360 | ret = fault_in_user_writeable(uaddr2); |
52400ba9 DH |
1361 | if (!ret) |
1362 | goto retry; | |
1363 | goto out; | |
1364 | case -EAGAIN: | |
1365 | /* The owner was exiting, try again. */ | |
1366 | double_unlock_hb(hb1, hb2); | |
ae791a2d TG |
1367 | put_futex_key(&key2); |
1368 | put_futex_key(&key1); | |
52400ba9 DH |
1369 | cond_resched(); |
1370 | goto retry; | |
1371 | default: | |
1372 | goto out_unlock; | |
1373 | } | |
1374 | } | |
1375 | ||
e2970f2f | 1376 | head1 = &hb1->chain; |
ec92d082 | 1377 | plist_for_each_entry_safe(this, next, head1, list) { |
52400ba9 DH |
1378 | if (task_count - nr_wake >= nr_requeue) |
1379 | break; | |
1380 | ||
1381 | if (!match_futex(&this->key, &key1)) | |
1da177e4 | 1382 | continue; |
52400ba9 | 1383 | |
392741e0 DH |
1384 | /* |
1385 | * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always | |
1386 | * be paired with each other and no other futex ops. | |
1387 | */ | |
1388 | if ((requeue_pi && !this->rt_waiter) || | |
1389 | (!requeue_pi && this->rt_waiter)) { | |
1390 | ret = -EINVAL; | |
1391 | break; | |
1392 | } | |
52400ba9 DH |
1393 | |
1394 | /* | |
1395 | * Wake nr_wake waiters. For requeue_pi, if we acquired the | |
1396 | * lock, we already woke the top_waiter. If not, it will be | |
1397 | * woken by futex_unlock_pi(). | |
1398 | */ | |
1399 | if (++task_count <= nr_wake && !requeue_pi) { | |
1da177e4 | 1400 | wake_futex(this); |
52400ba9 DH |
1401 | continue; |
1402 | } | |
1da177e4 | 1403 | |
84bc4af5 DH |
1404 | /* Ensure we requeue to the expected futex for requeue_pi. */ |
1405 | if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) { | |
1406 | ret = -EINVAL; | |
1407 | break; | |
1408 | } | |
1409 | ||
52400ba9 DH |
1410 | /* |
1411 | * Requeue nr_requeue waiters and possibly one more in the case | |
1412 | * of requeue_pi if we couldn't acquire the lock atomically. | |
1413 | */ | |
1414 | if (requeue_pi) { | |
1415 | /* Prepare the waiter to take the rt_mutex. */ | |
1416 | atomic_inc(&pi_state->refcount); | |
1417 | this->pi_state = pi_state; | |
1418 | ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex, | |
1419 | this->rt_waiter, | |
1420 | this->task, 1); | |
1421 | if (ret == 1) { | |
1422 | /* We got the lock. */ | |
beda2c7e | 1423 | requeue_pi_wake_futex(this, &key2, hb2); |
89061d3d | 1424 | drop_count++; |
52400ba9 DH |
1425 | continue; |
1426 | } else if (ret) { | |
1427 | /* -EDEADLK */ | |
1428 | this->pi_state = NULL; | |
1429 | free_pi_state(pi_state); | |
1430 | goto out_unlock; | |
1431 | } | |
1da177e4 | 1432 | } |
52400ba9 DH |
1433 | requeue_futex(this, hb1, hb2, &key2); |
1434 | drop_count++; | |
1da177e4 LT |
1435 | } |
1436 | ||
1437 | out_unlock: | |
5eb3dc62 | 1438 | double_unlock_hb(hb1, hb2); |
1da177e4 | 1439 | |
cd84a42f DH |
1440 | /* |
1441 | * drop_futex_key_refs() must be called outside the spinlocks. During | |
1442 | * the requeue we moved futex_q's from the hash bucket at key1 to the | |
1443 | * one at key2 and updated their key pointer. We no longer need to | |
1444 | * hold the references to key1. | |
1445 | */ | |
1da177e4 | 1446 | while (--drop_count >= 0) |
9adef58b | 1447 | drop_futex_key_refs(&key1); |
1da177e4 | 1448 | |
42d35d48 | 1449 | out_put_keys: |
ae791a2d | 1450 | put_futex_key(&key2); |
42d35d48 | 1451 | out_put_key1: |
ae791a2d | 1452 | put_futex_key(&key1); |
42d35d48 | 1453 | out: |
52400ba9 DH |
1454 | if (pi_state != NULL) |
1455 | free_pi_state(pi_state); | |
1456 | return ret ? ret : task_count; | |
1da177e4 LT |
1457 | } |
1458 | ||
1459 | /* The key must be already stored in q->key. */ | |
82af7aca | 1460 | static inline struct futex_hash_bucket *queue_lock(struct futex_q *q) |
15e408cd | 1461 | __acquires(&hb->lock) |
1da177e4 | 1462 | { |
e2970f2f | 1463 | struct futex_hash_bucket *hb; |
1da177e4 | 1464 | |
e2970f2f IM |
1465 | hb = hash_futex(&q->key); |
1466 | q->lock_ptr = &hb->lock; | |
1da177e4 | 1467 | |
e2970f2f IM |
1468 | spin_lock(&hb->lock); |
1469 | return hb; | |
1da177e4 LT |
1470 | } |
1471 | ||
d40d65c8 DH |
1472 | static inline void |
1473 | queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb) | |
15e408cd | 1474 | __releases(&hb->lock) |
d40d65c8 DH |
1475 | { |
1476 | spin_unlock(&hb->lock); | |
d40d65c8 DH |
1477 | } |
1478 | ||
1479 | /** | |
1480 | * queue_me() - Enqueue the futex_q on the futex_hash_bucket | |
1481 | * @q: The futex_q to enqueue | |
1482 | * @hb: The destination hash bucket | |
1483 | * | |
1484 | * The hb->lock must be held by the caller, and is released here. A call to | |
1485 | * queue_me() is typically paired with exactly one call to unqueue_me(). The | |
1486 | * exceptions involve the PI related operations, which may use unqueue_me_pi() | |
1487 | * or nothing if the unqueue is done as part of the wake process and the unqueue | |
1488 | * state is implicit in the state of woken task (see futex_wait_requeue_pi() for | |
1489 | * an example). | |
1490 | */ | |
82af7aca | 1491 | static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb) |
15e408cd | 1492 | __releases(&hb->lock) |
1da177e4 | 1493 | { |
ec92d082 PP |
1494 | int prio; |
1495 | ||
1496 | /* | |
1497 | * The priority used to register this element is | |
1498 | * - either the real thread-priority for the real-time threads | |
1499 | * (i.e. threads with a priority lower than MAX_RT_PRIO) | |
1500 | * - or MAX_RT_PRIO for non-RT threads. | |
1501 | * Thus, all RT-threads are woken first in priority order, and | |
1502 | * the others are woken last, in FIFO order. | |
1503 | */ | |
1504 | prio = min(current->normal_prio, MAX_RT_PRIO); | |
1505 | ||
1506 | plist_node_init(&q->list, prio); | |
ec92d082 | 1507 | plist_add(&q->list, &hb->chain); |
c87e2837 | 1508 | q->task = current; |
e2970f2f | 1509 | spin_unlock(&hb->lock); |
1da177e4 LT |
1510 | } |
1511 | ||
d40d65c8 DH |
1512 | /** |
1513 | * unqueue_me() - Remove the futex_q from its futex_hash_bucket | |
1514 | * @q: The futex_q to unqueue | |
1515 | * | |
1516 | * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must | |
1517 | * be paired with exactly one earlier call to queue_me(). | |
1518 | * | |
1519 | * Returns: | |
1520 | * 1 - if the futex_q was still queued (and we removed unqueued it) | |
1521 | * 0 - if the futex_q was already removed by the waking thread | |
1da177e4 | 1522 | */ |
1da177e4 LT |
1523 | static int unqueue_me(struct futex_q *q) |
1524 | { | |
1da177e4 | 1525 | spinlock_t *lock_ptr; |
e2970f2f | 1526 | int ret = 0; |
1da177e4 LT |
1527 | |
1528 | /* In the common case we don't take the spinlock, which is nice. */ | |
42d35d48 | 1529 | retry: |
1da177e4 | 1530 | lock_ptr = q->lock_ptr; |
e91467ec | 1531 | barrier(); |
c80544dc | 1532 | if (lock_ptr != NULL) { |
1da177e4 LT |
1533 | spin_lock(lock_ptr); |
1534 | /* | |
1535 | * q->lock_ptr can change between reading it and | |
1536 | * spin_lock(), causing us to take the wrong lock. This | |
1537 | * corrects the race condition. | |
1538 | * | |
1539 | * Reasoning goes like this: if we have the wrong lock, | |
1540 | * q->lock_ptr must have changed (maybe several times) | |
1541 | * between reading it and the spin_lock(). It can | |
1542 | * change again after the spin_lock() but only if it was | |
1543 | * already changed before the spin_lock(). It cannot, | |
1544 | * however, change back to the original value. Therefore | |
1545 | * we can detect whether we acquired the correct lock. | |
1546 | */ | |
1547 | if (unlikely(lock_ptr != q->lock_ptr)) { | |
1548 | spin_unlock(lock_ptr); | |
1549 | goto retry; | |
1550 | } | |
2e12978a | 1551 | __unqueue_futex(q); |
c87e2837 IM |
1552 | |
1553 | BUG_ON(q->pi_state); | |
1554 | ||
1da177e4 LT |
1555 | spin_unlock(lock_ptr); |
1556 | ret = 1; | |
1557 | } | |
1558 | ||
9adef58b | 1559 | drop_futex_key_refs(&q->key); |
1da177e4 LT |
1560 | return ret; |
1561 | } | |
1562 | ||
c87e2837 IM |
1563 | /* |
1564 | * PI futexes can not be requeued and must remove themself from the | |
d0aa7a70 PP |
1565 | * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry |
1566 | * and dropped here. | |
c87e2837 | 1567 | */ |
d0aa7a70 | 1568 | static void unqueue_me_pi(struct futex_q *q) |
15e408cd | 1569 | __releases(q->lock_ptr) |
c87e2837 | 1570 | { |
2e12978a | 1571 | __unqueue_futex(q); |
c87e2837 IM |
1572 | |
1573 | BUG_ON(!q->pi_state); | |
1574 | free_pi_state(q->pi_state); | |
1575 | q->pi_state = NULL; | |
1576 | ||
d0aa7a70 | 1577 | spin_unlock(q->lock_ptr); |
c87e2837 IM |
1578 | } |
1579 | ||
d0aa7a70 | 1580 | /* |
cdf71a10 | 1581 | * Fixup the pi_state owner with the new owner. |
d0aa7a70 | 1582 | * |
778e9a9c AK |
1583 | * Must be called with hash bucket lock held and mm->sem held for non |
1584 | * private futexes. | |
d0aa7a70 | 1585 | */ |
778e9a9c | 1586 | static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q, |
ae791a2d | 1587 | struct task_struct *newowner) |
d0aa7a70 | 1588 | { |
cdf71a10 | 1589 | u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS; |
d0aa7a70 | 1590 | struct futex_pi_state *pi_state = q->pi_state; |
1b7558e4 | 1591 | struct task_struct *oldowner = pi_state->owner; |
7cfdaf38 | 1592 | u32 uval, uninitialized_var(curval), newval; |
e4dc5b7a | 1593 | int ret; |
d0aa7a70 PP |
1594 | |
1595 | /* Owner died? */ | |
1b7558e4 TG |
1596 | if (!pi_state->owner) |
1597 | newtid |= FUTEX_OWNER_DIED; | |
1598 | ||
1599 | /* | |
1600 | * We are here either because we stole the rtmutex from the | |
8161239a LJ |
1601 | * previous highest priority waiter or we are the highest priority |
1602 | * waiter but failed to get the rtmutex the first time. | |
1603 | * We have to replace the newowner TID in the user space variable. | |
1604 | * This must be atomic as we have to preserve the owner died bit here. | |
1b7558e4 | 1605 | * |
b2d0994b DH |
1606 | * Note: We write the user space value _before_ changing the pi_state |
1607 | * because we can fault here. Imagine swapped out pages or a fork | |
1608 | * that marked all the anonymous memory readonly for cow. | |
1b7558e4 TG |
1609 | * |
1610 | * Modifying pi_state _before_ the user space value would | |
1611 | * leave the pi_state in an inconsistent state when we fault | |
1612 | * here, because we need to drop the hash bucket lock to | |
1613 | * handle the fault. This might be observed in the PID check | |
1614 | * in lookup_pi_state. | |
1615 | */ | |
1616 | retry: | |
1617 | if (get_futex_value_locked(&uval, uaddr)) | |
1618 | goto handle_fault; | |
1619 | ||
1620 | while (1) { | |
1621 | newval = (uval & FUTEX_OWNER_DIED) | newtid; | |
1622 | ||
37a9d912 | 1623 | if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) |
1b7558e4 TG |
1624 | goto handle_fault; |
1625 | if (curval == uval) | |
1626 | break; | |
1627 | uval = curval; | |
1628 | } | |
1629 | ||
1630 | /* | |
1631 | * We fixed up user space. Now we need to fix the pi_state | |
1632 | * itself. | |
1633 | */ | |
d0aa7a70 | 1634 | if (pi_state->owner != NULL) { |
1d615482 | 1635 | raw_spin_lock_irq(&pi_state->owner->pi_lock); |
d0aa7a70 PP |
1636 | WARN_ON(list_empty(&pi_state->list)); |
1637 | list_del_init(&pi_state->list); | |
1d615482 | 1638 | raw_spin_unlock_irq(&pi_state->owner->pi_lock); |
1b7558e4 | 1639 | } |
d0aa7a70 | 1640 | |
cdf71a10 | 1641 | pi_state->owner = newowner; |
d0aa7a70 | 1642 | |
1d615482 | 1643 | raw_spin_lock_irq(&newowner->pi_lock); |
d0aa7a70 | 1644 | WARN_ON(!list_empty(&pi_state->list)); |
cdf71a10 | 1645 | list_add(&pi_state->list, &newowner->pi_state_list); |
1d615482 | 1646 | raw_spin_unlock_irq(&newowner->pi_lock); |
1b7558e4 | 1647 | return 0; |
d0aa7a70 | 1648 | |
d0aa7a70 | 1649 | /* |
1b7558e4 | 1650 | * To handle the page fault we need to drop the hash bucket |
8161239a LJ |
1651 | * lock here. That gives the other task (either the highest priority |
1652 | * waiter itself or the task which stole the rtmutex) the | |
1b7558e4 TG |
1653 | * chance to try the fixup of the pi_state. So once we are |
1654 | * back from handling the fault we need to check the pi_state | |
1655 | * after reacquiring the hash bucket lock and before trying to | |
1656 | * do another fixup. When the fixup has been done already we | |
1657 | * simply return. | |
d0aa7a70 | 1658 | */ |
1b7558e4 TG |
1659 | handle_fault: |
1660 | spin_unlock(q->lock_ptr); | |
778e9a9c | 1661 | |
d0725992 | 1662 | ret = fault_in_user_writeable(uaddr); |
778e9a9c | 1663 | |
1b7558e4 | 1664 | spin_lock(q->lock_ptr); |
778e9a9c | 1665 | |
1b7558e4 TG |
1666 | /* |
1667 | * Check if someone else fixed it for us: | |
1668 | */ | |
1669 | if (pi_state->owner != oldowner) | |
1670 | return 0; | |
1671 | ||
1672 | if (ret) | |
1673 | return ret; | |
1674 | ||
1675 | goto retry; | |
d0aa7a70 PP |
1676 | } |
1677 | ||
72c1bbf3 | 1678 | static long futex_wait_restart(struct restart_block *restart); |
36cf3b5c | 1679 | |
dd973998 DH |
1680 | /** |
1681 | * fixup_owner() - Post lock pi_state and corner case management | |
1682 | * @uaddr: user address of the futex | |
dd973998 DH |
1683 | * @q: futex_q (contains pi_state and access to the rt_mutex) |
1684 | * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0) | |
1685 | * | |
1686 | * After attempting to lock an rt_mutex, this function is called to cleanup | |
1687 | * the pi_state owner as well as handle race conditions that may allow us to | |
1688 | * acquire the lock. Must be called with the hb lock held. | |
1689 | * | |
1690 | * Returns: | |
1691 | * 1 - success, lock taken | |
1692 | * 0 - success, lock not taken | |
1693 | * <0 - on error (-EFAULT) | |
1694 | */ | |
ae791a2d | 1695 | static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked) |
dd973998 DH |
1696 | { |
1697 | struct task_struct *owner; | |
1698 | int ret = 0; | |
1699 | ||
1700 | if (locked) { | |
1701 | /* | |
1702 | * Got the lock. We might not be the anticipated owner if we | |
1703 | * did a lock-steal - fix up the PI-state in that case: | |
1704 | */ | |
1705 | if (q->pi_state->owner != current) | |
ae791a2d | 1706 | ret = fixup_pi_state_owner(uaddr, q, current); |
dd973998 DH |
1707 | goto out; |
1708 | } | |
1709 | ||
1710 | /* | |
1711 | * Catch the rare case, where the lock was released when we were on the | |
1712 | * way back before we locked the hash bucket. | |
1713 | */ | |
1714 | if (q->pi_state->owner == current) { | |
1715 | /* | |
1716 | * Try to get the rt_mutex now. This might fail as some other | |
1717 | * task acquired the rt_mutex after we removed ourself from the | |
1718 | * rt_mutex waiters list. | |
1719 | */ | |
1720 | if (rt_mutex_trylock(&q->pi_state->pi_mutex)) { | |
1721 | locked = 1; | |
1722 | goto out; | |
1723 | } | |
1724 | ||
1725 | /* | |
1726 | * pi_state is incorrect, some other task did a lock steal and | |
1727 | * we returned due to timeout or signal without taking the | |
8161239a | 1728 | * rt_mutex. Too late. |
dd973998 | 1729 | */ |
8161239a | 1730 | raw_spin_lock(&q->pi_state->pi_mutex.wait_lock); |
dd973998 | 1731 | owner = rt_mutex_owner(&q->pi_state->pi_mutex); |
8161239a LJ |
1732 | if (!owner) |
1733 | owner = rt_mutex_next_owner(&q->pi_state->pi_mutex); | |
1734 | raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock); | |
ae791a2d | 1735 | ret = fixup_pi_state_owner(uaddr, q, owner); |
dd973998 DH |
1736 | goto out; |
1737 | } | |
1738 | ||
1739 | /* | |
1740 | * Paranoia check. If we did not take the lock, then we should not be | |
8161239a | 1741 | * the owner of the rt_mutex. |
dd973998 DH |
1742 | */ |
1743 | if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) | |
1744 | printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p " | |
1745 | "pi-state %p\n", ret, | |
1746 | q->pi_state->pi_mutex.owner, | |
1747 | q->pi_state->owner); | |
1748 | ||
1749 | out: | |
1750 | return ret ? ret : locked; | |
1751 | } | |
1752 | ||
ca5f9524 DH |
1753 | /** |
1754 | * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal | |
1755 | * @hb: the futex hash bucket, must be locked by the caller | |
1756 | * @q: the futex_q to queue up on | |
1757 | * @timeout: the prepared hrtimer_sleeper, or null for no timeout | |
ca5f9524 DH |
1758 | */ |
1759 | static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q, | |
f1a11e05 | 1760 | struct hrtimer_sleeper *timeout) |
ca5f9524 | 1761 | { |
9beba3c5 DH |
1762 | /* |
1763 | * The task state is guaranteed to be set before another task can | |
1764 | * wake it. set_current_state() is implemented using set_mb() and | |
1765 | * queue_me() calls spin_unlock() upon completion, both serializing | |
1766 | * access to the hash list and forcing another memory barrier. | |
1767 | */ | |
f1a11e05 | 1768 | set_current_state(TASK_INTERRUPTIBLE); |
0729e196 | 1769 | queue_me(q, hb); |
ca5f9524 DH |
1770 | |
1771 | /* Arm the timer */ | |
1772 | if (timeout) { | |
1773 | hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS); | |
1774 | if (!hrtimer_active(&timeout->timer)) | |
1775 | timeout->task = NULL; | |
1776 | } | |
1777 | ||
1778 | /* | |
0729e196 DH |
1779 | * If we have been removed from the hash list, then another task |
1780 | * has tried to wake us, and we can skip the call to schedule(). | |
ca5f9524 DH |
1781 | */ |
1782 | if (likely(!plist_node_empty(&q->list))) { | |
1783 | /* | |
1784 | * If the timer has already expired, current will already be | |
1785 | * flagged for rescheduling. Only call schedule if there | |
1786 | * is no timeout, or if it has yet to expire. | |
1787 | */ | |
1788 | if (!timeout || timeout->task) | |
1789 | schedule(); | |
1790 | } | |
1791 | __set_current_state(TASK_RUNNING); | |
1792 | } | |
1793 | ||
f801073f DH |
1794 | /** |
1795 | * futex_wait_setup() - Prepare to wait on a futex | |
1796 | * @uaddr: the futex userspace address | |
1797 | * @val: the expected value | |
b41277dc | 1798 | * @flags: futex flags (FLAGS_SHARED, etc.) |
f801073f DH |
1799 | * @q: the associated futex_q |
1800 | * @hb: storage for hash_bucket pointer to be returned to caller | |
1801 | * | |
1802 | * Setup the futex_q and locate the hash_bucket. Get the futex value and | |
1803 | * compare it with the expected value. Handle atomic faults internally. | |
1804 | * Return with the hb lock held and a q.key reference on success, and unlocked | |
1805 | * with no q.key reference on failure. | |
1806 | * | |
1807 | * Returns: | |
1808 | * 0 - uaddr contains val and hb has been locked | |
ca4a04cf | 1809 | * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked |
f801073f | 1810 | */ |
b41277dc | 1811 | static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags, |
f801073f | 1812 | struct futex_q *q, struct futex_hash_bucket **hb) |
1da177e4 | 1813 | { |
e2970f2f IM |
1814 | u32 uval; |
1815 | int ret; | |
1da177e4 | 1816 | |
1da177e4 | 1817 | /* |
b2d0994b | 1818 | * Access the page AFTER the hash-bucket is locked. |
1da177e4 LT |
1819 | * Order is important: |
1820 | * | |
1821 | * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val); | |
1822 | * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); } | |
1823 | * | |
1824 | * The basic logical guarantee of a futex is that it blocks ONLY | |
1825 | * if cond(var) is known to be true at the time of blocking, for | |
8fe8f545 ML |
1826 | * any cond. If we locked the hash-bucket after testing *uaddr, that |
1827 | * would open a race condition where we could block indefinitely with | |
1da177e4 LT |
1828 | * cond(var) false, which would violate the guarantee. |
1829 | * | |
8fe8f545 ML |
1830 | * On the other hand, we insert q and release the hash-bucket only |
1831 | * after testing *uaddr. This guarantees that futex_wait() will NOT | |
1832 | * absorb a wakeup if *uaddr does not match the desired values | |
1833 | * while the syscall executes. | |
1da177e4 | 1834 | */ |
f801073f | 1835 | retry: |
9ea71503 | 1836 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ); |
f801073f | 1837 | if (unlikely(ret != 0)) |
a5a2a0c7 | 1838 | return ret; |
f801073f DH |
1839 | |
1840 | retry_private: | |
1841 | *hb = queue_lock(q); | |
1842 | ||
e2970f2f | 1843 | ret = get_futex_value_locked(&uval, uaddr); |
1da177e4 | 1844 | |
f801073f DH |
1845 | if (ret) { |
1846 | queue_unlock(q, *hb); | |
1da177e4 | 1847 | |
e2970f2f | 1848 | ret = get_user(uval, uaddr); |
e4dc5b7a | 1849 | if (ret) |
f801073f | 1850 | goto out; |
1da177e4 | 1851 | |
b41277dc | 1852 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a DH |
1853 | goto retry_private; |
1854 | ||
ae791a2d | 1855 | put_futex_key(&q->key); |
e4dc5b7a | 1856 | goto retry; |
1da177e4 | 1857 | } |
ca5f9524 | 1858 | |
f801073f DH |
1859 | if (uval != val) { |
1860 | queue_unlock(q, *hb); | |
1861 | ret = -EWOULDBLOCK; | |
2fff78c7 | 1862 | } |
1da177e4 | 1863 | |
f801073f DH |
1864 | out: |
1865 | if (ret) | |
ae791a2d | 1866 | put_futex_key(&q->key); |
f801073f DH |
1867 | return ret; |
1868 | } | |
1869 | ||
b41277dc DH |
1870 | static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, |
1871 | ktime_t *abs_time, u32 bitset) | |
f801073f DH |
1872 | { |
1873 | struct hrtimer_sleeper timeout, *to = NULL; | |
f801073f DH |
1874 | struct restart_block *restart; |
1875 | struct futex_hash_bucket *hb; | |
5bdb05f9 | 1876 | struct futex_q q = futex_q_init; |
f801073f DH |
1877 | int ret; |
1878 | ||
1879 | if (!bitset) | |
1880 | return -EINVAL; | |
f801073f DH |
1881 | q.bitset = bitset; |
1882 | ||
1883 | if (abs_time) { | |
1884 | to = &timeout; | |
1885 | ||
b41277dc DH |
1886 | hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ? |
1887 | CLOCK_REALTIME : CLOCK_MONOTONIC, | |
1888 | HRTIMER_MODE_ABS); | |
f801073f DH |
1889 | hrtimer_init_sleeper(to, current); |
1890 | hrtimer_set_expires_range_ns(&to->timer, *abs_time, | |
1891 | current->timer_slack_ns); | |
1892 | } | |
1893 | ||
d58e6576 | 1894 | retry: |
7ada876a DH |
1895 | /* |
1896 | * Prepare to wait on uaddr. On success, holds hb lock and increments | |
1897 | * q.key refs. | |
1898 | */ | |
b41277dc | 1899 | ret = futex_wait_setup(uaddr, val, flags, &q, &hb); |
f801073f DH |
1900 | if (ret) |
1901 | goto out; | |
1902 | ||
ca5f9524 | 1903 | /* queue_me and wait for wakeup, timeout, or a signal. */ |
f1a11e05 | 1904 | futex_wait_queue_me(hb, &q, to); |
1da177e4 LT |
1905 | |
1906 | /* If we were woken (and unqueued), we succeeded, whatever. */ | |
2fff78c7 | 1907 | ret = 0; |
7ada876a | 1908 | /* unqueue_me() drops q.key ref */ |
1da177e4 | 1909 | if (!unqueue_me(&q)) |
7ada876a | 1910 | goto out; |
2fff78c7 | 1911 | ret = -ETIMEDOUT; |
ca5f9524 | 1912 | if (to && !to->task) |
7ada876a | 1913 | goto out; |
72c1bbf3 | 1914 | |
e2970f2f | 1915 | /* |
d58e6576 TG |
1916 | * We expect signal_pending(current), but we might be the |
1917 | * victim of a spurious wakeup as well. | |
e2970f2f | 1918 | */ |
7ada876a | 1919 | if (!signal_pending(current)) |
d58e6576 | 1920 | goto retry; |
d58e6576 | 1921 | |
2fff78c7 | 1922 | ret = -ERESTARTSYS; |
c19384b5 | 1923 | if (!abs_time) |
7ada876a | 1924 | goto out; |
1da177e4 | 1925 | |
2fff78c7 PZ |
1926 | restart = ¤t_thread_info()->restart_block; |
1927 | restart->fn = futex_wait_restart; | |
a3c74c52 | 1928 | restart->futex.uaddr = uaddr; |
2fff78c7 PZ |
1929 | restart->futex.val = val; |
1930 | restart->futex.time = abs_time->tv64; | |
1931 | restart->futex.bitset = bitset; | |
0cd9c649 | 1932 | restart->futex.flags = flags | FLAGS_HAS_TIMEOUT; |
42d35d48 | 1933 | |
2fff78c7 PZ |
1934 | ret = -ERESTART_RESTARTBLOCK; |
1935 | ||
42d35d48 | 1936 | out: |
ca5f9524 DH |
1937 | if (to) { |
1938 | hrtimer_cancel(&to->timer); | |
1939 | destroy_hrtimer_on_stack(&to->timer); | |
1940 | } | |
c87e2837 IM |
1941 | return ret; |
1942 | } | |
1943 | ||
72c1bbf3 NP |
1944 | |
1945 | static long futex_wait_restart(struct restart_block *restart) | |
1946 | { | |
a3c74c52 | 1947 | u32 __user *uaddr = restart->futex.uaddr; |
a72188d8 | 1948 | ktime_t t, *tp = NULL; |
72c1bbf3 | 1949 | |
a72188d8 DH |
1950 | if (restart->futex.flags & FLAGS_HAS_TIMEOUT) { |
1951 | t.tv64 = restart->futex.time; | |
1952 | tp = &t; | |
1953 | } | |
72c1bbf3 | 1954 | restart->fn = do_no_restart_syscall; |
b41277dc DH |
1955 | |
1956 | return (long)futex_wait(uaddr, restart->futex.flags, | |
1957 | restart->futex.val, tp, restart->futex.bitset); | |
72c1bbf3 NP |
1958 | } |
1959 | ||
1960 | ||
c87e2837 IM |
1961 | /* |
1962 | * Userspace tried a 0 -> TID atomic transition of the futex value | |
1963 | * and failed. The kernel side here does the whole locking operation: | |
1964 | * if there are waiters then it will block, it does PI, etc. (Due to | |
1965 | * races the kernel might see a 0 value of the futex too.) | |
1966 | */ | |
b41277dc DH |
1967 | static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect, |
1968 | ktime_t *time, int trylock) | |
c87e2837 | 1969 | { |
c5780e97 | 1970 | struct hrtimer_sleeper timeout, *to = NULL; |
c87e2837 | 1971 | struct futex_hash_bucket *hb; |
5bdb05f9 | 1972 | struct futex_q q = futex_q_init; |
dd973998 | 1973 | int res, ret; |
c87e2837 IM |
1974 | |
1975 | if (refill_pi_state_cache()) | |
1976 | return -ENOMEM; | |
1977 | ||
c19384b5 | 1978 | if (time) { |
c5780e97 | 1979 | to = &timeout; |
237fc6e7 TG |
1980 | hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME, |
1981 | HRTIMER_MODE_ABS); | |
c5780e97 | 1982 | hrtimer_init_sleeper(to, current); |
cc584b21 | 1983 | hrtimer_set_expires(&to->timer, *time); |
c5780e97 TG |
1984 | } |
1985 | ||
42d35d48 | 1986 | retry: |
9ea71503 | 1987 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE); |
c87e2837 | 1988 | if (unlikely(ret != 0)) |
42d35d48 | 1989 | goto out; |
c87e2837 | 1990 | |
e4dc5b7a | 1991 | retry_private: |
82af7aca | 1992 | hb = queue_lock(&q); |
c87e2837 | 1993 | |
bab5bc9e | 1994 | ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0); |
c87e2837 | 1995 | if (unlikely(ret)) { |
778e9a9c | 1996 | switch (ret) { |
1a52084d DH |
1997 | case 1: |
1998 | /* We got the lock. */ | |
1999 | ret = 0; | |
2000 | goto out_unlock_put_key; | |
2001 | case -EFAULT: | |
2002 | goto uaddr_faulted; | |
778e9a9c AK |
2003 | case -EAGAIN: |
2004 | /* | |
2005 | * Task is exiting and we just wait for the | |
2006 | * exit to complete. | |
2007 | */ | |
2008 | queue_unlock(&q, hb); | |
ae791a2d | 2009 | put_futex_key(&q.key); |
778e9a9c AK |
2010 | cond_resched(); |
2011 | goto retry; | |
778e9a9c | 2012 | default: |
42d35d48 | 2013 | goto out_unlock_put_key; |
c87e2837 | 2014 | } |
c87e2837 IM |
2015 | } |
2016 | ||
2017 | /* | |
2018 | * Only actually queue now that the atomic ops are done: | |
2019 | */ | |
82af7aca | 2020 | queue_me(&q, hb); |
c87e2837 | 2021 | |
c87e2837 IM |
2022 | WARN_ON(!q.pi_state); |
2023 | /* | |
2024 | * Block on the PI mutex: | |
2025 | */ | |
2026 | if (!trylock) | |
2027 | ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1); | |
2028 | else { | |
2029 | ret = rt_mutex_trylock(&q.pi_state->pi_mutex); | |
2030 | /* Fixup the trylock return value: */ | |
2031 | ret = ret ? 0 : -EWOULDBLOCK; | |
2032 | } | |
2033 | ||
a99e4e41 | 2034 | spin_lock(q.lock_ptr); |
dd973998 DH |
2035 | /* |
2036 | * Fixup the pi_state owner and possibly acquire the lock if we | |
2037 | * haven't already. | |
2038 | */ | |
ae791a2d | 2039 | res = fixup_owner(uaddr, &q, !ret); |
dd973998 DH |
2040 | /* |
2041 | * If fixup_owner() returned an error, proprogate that. If it acquired | |
2042 | * the lock, clear our -ETIMEDOUT or -EINTR. | |
2043 | */ | |
2044 | if (res) | |
2045 | ret = (res < 0) ? res : 0; | |
c87e2837 | 2046 | |
e8f6386c | 2047 | /* |
dd973998 DH |
2048 | * If fixup_owner() faulted and was unable to handle the fault, unlock |
2049 | * it and return the fault to userspace. | |
e8f6386c DH |
2050 | */ |
2051 | if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) | |
2052 | rt_mutex_unlock(&q.pi_state->pi_mutex); | |
2053 | ||
778e9a9c AK |
2054 | /* Unqueue and drop the lock */ |
2055 | unqueue_me_pi(&q); | |
c87e2837 | 2056 | |
5ecb01cf | 2057 | goto out_put_key; |
c87e2837 | 2058 | |
42d35d48 | 2059 | out_unlock_put_key: |
c87e2837 IM |
2060 | queue_unlock(&q, hb); |
2061 | ||
42d35d48 | 2062 | out_put_key: |
ae791a2d | 2063 | put_futex_key(&q.key); |
42d35d48 | 2064 | out: |
237fc6e7 TG |
2065 | if (to) |
2066 | destroy_hrtimer_on_stack(&to->timer); | |
dd973998 | 2067 | return ret != -EINTR ? ret : -ERESTARTNOINTR; |
c87e2837 | 2068 | |
42d35d48 | 2069 | uaddr_faulted: |
778e9a9c AK |
2070 | queue_unlock(&q, hb); |
2071 | ||
d0725992 | 2072 | ret = fault_in_user_writeable(uaddr); |
e4dc5b7a DH |
2073 | if (ret) |
2074 | goto out_put_key; | |
c87e2837 | 2075 | |
b41277dc | 2076 | if (!(flags & FLAGS_SHARED)) |
e4dc5b7a DH |
2077 | goto retry_private; |
2078 | ||
ae791a2d | 2079 | put_futex_key(&q.key); |
e4dc5b7a | 2080 | goto retry; |
c87e2837 IM |
2081 | } |
2082 | ||
c87e2837 IM |
2083 | /* |
2084 | * Userspace attempted a TID -> 0 atomic transition, and failed. | |
2085 | * This is the in-kernel slowpath: we look up the PI state (if any), | |
2086 | * and do the rt-mutex unlock. | |
2087 | */ | |
b41277dc | 2088 | static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags) |
c87e2837 IM |
2089 | { |
2090 | struct futex_hash_bucket *hb; | |
2091 | struct futex_q *this, *next; | |
ec92d082 | 2092 | struct plist_head *head; |
38d47c1b | 2093 | union futex_key key = FUTEX_KEY_INIT; |
c0c9ed15 | 2094 | u32 uval, vpid = task_pid_vnr(current); |
e4dc5b7a | 2095 | int ret; |
c87e2837 IM |
2096 | |
2097 | retry: | |
2098 | if (get_user(uval, uaddr)) | |
2099 | return -EFAULT; | |
2100 | /* | |
2101 | * We release only a lock we actually own: | |
2102 | */ | |
c0c9ed15 | 2103 | if ((uval & FUTEX_TID_MASK) != vpid) |
c87e2837 | 2104 | return -EPERM; |
c87e2837 | 2105 | |
9ea71503 | 2106 | ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE); |
c87e2837 IM |
2107 | if (unlikely(ret != 0)) |
2108 | goto out; | |
2109 | ||
2110 | hb = hash_futex(&key); | |
2111 | spin_lock(&hb->lock); | |
2112 | ||
c87e2837 IM |
2113 | /* |
2114 | * To avoid races, try to do the TID -> 0 atomic transition | |
2115 | * again. If it succeeds then we can return without waking | |
2116 | * anyone else up: | |
2117 | */ | |
37a9d912 ML |
2118 | if (!(uval & FUTEX_OWNER_DIED) && |
2119 | cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0)) | |
c87e2837 IM |
2120 | goto pi_faulted; |
2121 | /* | |
2122 | * Rare case: we managed to release the lock atomically, | |
2123 | * no need to wake anyone else up: | |
2124 | */ | |
c0c9ed15 | 2125 | if (unlikely(uval == vpid)) |
c87e2837 IM |
2126 | goto out_unlock; |
2127 | ||
2128 | /* | |
2129 | * Ok, other tasks may need to be woken up - check waiters | |
2130 | * and do the wakeup if necessary: | |
2131 | */ | |
2132 | head = &hb->chain; | |
2133 | ||
ec92d082 | 2134 | plist_for_each_entry_safe(this, next, head, list) { |
c87e2837 IM |
2135 | if (!match_futex (&this->key, &key)) |
2136 | continue; | |
2137 | ret = wake_futex_pi(uaddr, uval, this); | |
2138 | /* | |
2139 | * The atomic access to the futex value | |
2140 | * generated a pagefault, so retry the | |
2141 | * user-access and the wakeup: | |
2142 | */ | |
2143 | if (ret == -EFAULT) | |
2144 | goto pi_faulted; | |
2145 | goto out_unlock; | |
2146 | } | |
2147 | /* | |
2148 | * No waiters - kernel unlocks the futex: | |
2149 | */ | |
e3f2ddea IM |
2150 | if (!(uval & FUTEX_OWNER_DIED)) { |
2151 | ret = unlock_futex_pi(uaddr, uval); | |
2152 | if (ret == -EFAULT) | |
2153 | goto pi_faulted; | |
2154 | } | |
c87e2837 IM |
2155 | |
2156 | out_unlock: | |
2157 | spin_unlock(&hb->lock); | |
ae791a2d | 2158 | put_futex_key(&key); |
c87e2837 | 2159 | |
42d35d48 | 2160 | out: |
c87e2837 IM |
2161 | return ret; |
2162 | ||
2163 | pi_faulted: | |
778e9a9c | 2164 | spin_unlock(&hb->lock); |
ae791a2d | 2165 | put_futex_key(&key); |
c87e2837 | 2166 | |
d0725992 | 2167 | ret = fault_in_user_writeable(uaddr); |
b5686363 | 2168 | if (!ret) |
c87e2837 IM |
2169 | goto retry; |
2170 | ||
1da177e4 LT |
2171 | return ret; |
2172 | } | |
2173 | ||
52400ba9 DH |
2174 | /** |
2175 | * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex | |
2176 | * @hb: the hash_bucket futex_q was original enqueued on | |
2177 | * @q: the futex_q woken while waiting to be requeued | |
2178 | * @key2: the futex_key of the requeue target futex | |
2179 | * @timeout: the timeout associated with the wait (NULL if none) | |
2180 | * | |
2181 | * Detect if the task was woken on the initial futex as opposed to the requeue | |
2182 | * target futex. If so, determine if it was a timeout or a signal that caused | |
2183 | * the wakeup and return the appropriate error code to the caller. Must be | |
2184 | * called with the hb lock held. | |
2185 | * | |
2186 | * Returns | |
2187 | * 0 - no early wakeup detected | |
1c840c14 | 2188 | * <0 - -ETIMEDOUT or -ERESTARTNOINTR |
52400ba9 DH |
2189 | */ |
2190 | static inline | |
2191 | int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb, | |
2192 | struct futex_q *q, union futex_key *key2, | |
2193 | struct hrtimer_sleeper *timeout) | |
2194 | { | |
2195 | int ret = 0; | |
2196 | ||
2197 | /* | |
2198 | * With the hb lock held, we avoid races while we process the wakeup. | |
2199 | * We only need to hold hb (and not hb2) to ensure atomicity as the | |
2200 | * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb. | |
2201 | * It can't be requeued from uaddr2 to something else since we don't | |
2202 | * support a PI aware source futex for requeue. | |
2203 | */ | |
2204 | if (!match_futex(&q->key, key2)) { | |
2205 | WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr)); | |
2206 | /* | |
2207 | * We were woken prior to requeue by a timeout or a signal. | |
2208 | * Unqueue the futex_q and determine which it was. | |
2209 | */ | |
2e12978a | 2210 | plist_del(&q->list, &hb->chain); |
52400ba9 | 2211 | |
d58e6576 | 2212 | /* Handle spurious wakeups gracefully */ |
11df6ddd | 2213 | ret = -EWOULDBLOCK; |
52400ba9 DH |
2214 | if (timeout && !timeout->task) |
2215 | ret = -ETIMEDOUT; | |
d58e6576 | 2216 | else if (signal_pending(current)) |
1c840c14 | 2217 | ret = -ERESTARTNOINTR; |
52400ba9 DH |
2218 | } |
2219 | return ret; | |
2220 | } | |
2221 | ||
2222 | /** | |
2223 | * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2 | |
56ec1607 | 2224 | * @uaddr: the futex we initially wait on (non-pi) |
b41277dc | 2225 | * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be |
52400ba9 DH |
2226 | * the same type, no requeueing from private to shared, etc. |
2227 | * @val: the expected value of uaddr | |
2228 | * @abs_time: absolute timeout | |
56ec1607 | 2229 | * @bitset: 32 bit wakeup bitset set by userspace, defaults to all |
52400ba9 DH |
2230 | * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0) |
2231 | * @uaddr2: the pi futex we will take prior to returning to user-space | |
2232 | * | |
2233 | * The caller will wait on uaddr and will be requeued by futex_requeue() to | |
2234 | * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and | |
2235 | * complete the acquisition of the rt_mutex prior to returning to userspace. | |
2236 | * This ensures the rt_mutex maintains an owner when it has waiters; without | |
2237 | * one, the pi logic wouldn't know which task to boost/deboost, if there was a | |
2238 | * need to. | |
2239 | * | |
2240 | * We call schedule in futex_wait_queue_me() when we enqueue and return there | |
2241 | * via the following: | |
2242 | * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue() | |
cc6db4e6 DH |
2243 | * 2) wakeup on uaddr2 after a requeue |
2244 | * 3) signal | |
2245 | * 4) timeout | |
52400ba9 | 2246 | * |
cc6db4e6 | 2247 | * If 3, cleanup and return -ERESTARTNOINTR. |
52400ba9 DH |
2248 | * |
2249 | * If 2, we may then block on trying to take the rt_mutex and return via: | |
2250 | * 5) successful lock | |
2251 | * 6) signal | |
2252 | * 7) timeout | |
2253 | * 8) other lock acquisition failure | |
2254 | * | |
cc6db4e6 | 2255 | * If 6, return -EWOULDBLOCK (restarting the syscall would do the same). |
52400ba9 DH |
2256 | * |
2257 | * If 4 or 7, we cleanup and return with -ETIMEDOUT. | |
2258 | * | |
2259 | * Returns: | |
2260 | * 0 - On success | |
2261 | * <0 - On error | |
2262 | */ | |
b41277dc | 2263 | static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, |
52400ba9 | 2264 | u32 val, ktime_t *abs_time, u32 bitset, |
b41277dc | 2265 | u32 __user *uaddr2) |
52400ba9 DH |
2266 | { |
2267 | struct hrtimer_sleeper timeout, *to = NULL; | |
2268 | struct rt_mutex_waiter rt_waiter; | |
2269 | struct rt_mutex *pi_mutex = NULL; | |
52400ba9 | 2270 | struct futex_hash_bucket *hb; |
5bdb05f9 DH |
2271 | union futex_key key2 = FUTEX_KEY_INIT; |
2272 | struct futex_q q = futex_q_init; | |
52400ba9 | 2273 | int res, ret; |
52400ba9 DH |
2274 | |
2275 | if (!bitset) | |
2276 | return -EINVAL; | |
2277 | ||
2278 | if (abs_time) { | |
2279 | to = &timeout; | |
b41277dc DH |
2280 | hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ? |
2281 | CLOCK_REALTIME : CLOCK_MONOTONIC, | |
2282 | HRTIMER_MODE_ABS); | |
52400ba9 DH |
2283 | hrtimer_init_sleeper(to, current); |
2284 | hrtimer_set_expires_range_ns(&to->timer, *abs_time, | |
2285 | current->timer_slack_ns); | |
2286 | } | |
2287 | ||
2288 | /* | |
2289 | * The waiter is allocated on our stack, manipulated by the requeue | |
2290 | * code while we sleep on uaddr. | |
2291 | */ | |
2292 | debug_rt_mutex_init_waiter(&rt_waiter); | |
2293 | rt_waiter.task = NULL; | |
2294 | ||
9ea71503 | 2295 | ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE); |
52400ba9 DH |
2296 | if (unlikely(ret != 0)) |
2297 | goto out; | |
2298 | ||
84bc4af5 DH |
2299 | q.bitset = bitset; |
2300 | q.rt_waiter = &rt_waiter; | |
2301 | q.requeue_pi_key = &key2; | |
2302 | ||
7ada876a DH |
2303 | /* |
2304 | * Prepare to wait on uaddr. On success, increments q.key (key1) ref | |
2305 | * count. | |
2306 | */ | |
b41277dc | 2307 | ret = futex_wait_setup(uaddr, val, flags, &q, &hb); |
c8b15a70 TG |
2308 | if (ret) |
2309 | goto out_key2; | |
52400ba9 DH |
2310 | |
2311 | /* Queue the futex_q, drop the hb lock, wait for wakeup. */ | |
f1a11e05 | 2312 | futex_wait_queue_me(hb, &q, to); |
52400ba9 DH |
2313 | |
2314 | spin_lock(&hb->lock); | |
2315 | ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to); | |
2316 | spin_unlock(&hb->lock); | |
2317 | if (ret) | |
2318 | goto out_put_keys; | |
2319 | ||
2320 | /* | |
2321 | * In order for us to be here, we know our q.key == key2, and since | |
2322 | * we took the hb->lock above, we also know that futex_requeue() has | |
2323 | * completed and we no longer have to concern ourselves with a wakeup | |
7ada876a DH |
2324 | * race with the atomic proxy lock acquisition by the requeue code. The |
2325 | * futex_requeue dropped our key1 reference and incremented our key2 | |
2326 | * reference count. | |
52400ba9 DH |
2327 | */ |
2328 | ||
2329 | /* Check if the requeue code acquired the second futex for us. */ | |
2330 | if (!q.rt_waiter) { | |
2331 | /* | |
2332 | * Got the lock. We might not be the anticipated owner if we | |
2333 | * did a lock-steal - fix up the PI-state in that case. | |
2334 | */ | |
2335 | if (q.pi_state && (q.pi_state->owner != current)) { | |
2336 | spin_lock(q.lock_ptr); | |
ae791a2d | 2337 | ret = fixup_pi_state_owner(uaddr2, &q, current); |
52400ba9 DH |
2338 | spin_unlock(q.lock_ptr); |
2339 | } | |
2340 | } else { | |
2341 | /* | |
2342 | * We have been woken up by futex_unlock_pi(), a timeout, or a | |
2343 | * signal. futex_unlock_pi() will not destroy the lock_ptr nor | |
2344 | * the pi_state. | |
2345 | */ | |
2346 | WARN_ON(!&q.pi_state); | |
2347 | pi_mutex = &q.pi_state->pi_mutex; | |
2348 | ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1); | |
2349 | debug_rt_mutex_free_waiter(&rt_waiter); | |
2350 | ||
2351 | spin_lock(q.lock_ptr); | |
2352 | /* | |
2353 | * Fixup the pi_state owner and possibly acquire the lock if we | |
2354 | * haven't already. | |
2355 | */ | |
ae791a2d | 2356 | res = fixup_owner(uaddr2, &q, !ret); |
52400ba9 DH |
2357 | /* |
2358 | * If fixup_owner() returned an error, proprogate that. If it | |
56ec1607 | 2359 | * acquired the lock, clear -ETIMEDOUT or -EINTR. |
52400ba9 DH |
2360 | */ |
2361 | if (res) | |
2362 | ret = (res < 0) ? res : 0; | |
2363 | ||
2364 | /* Unqueue and drop the lock. */ | |
2365 | unqueue_me_pi(&q); | |
2366 | } | |
2367 | ||
2368 | /* | |
2369 | * If fixup_pi_state_owner() faulted and was unable to handle the | |
2370 | * fault, unlock the rt_mutex and return the fault to userspace. | |
2371 | */ | |
2372 | if (ret == -EFAULT) { | |
2373 | if (rt_mutex_owner(pi_mutex) == current) | |
2374 | rt_mutex_unlock(pi_mutex); | |
2375 | } else if (ret == -EINTR) { | |
52400ba9 | 2376 | /* |
cc6db4e6 DH |
2377 | * We've already been requeued, but cannot restart by calling |
2378 | * futex_lock_pi() directly. We could restart this syscall, but | |
2379 | * it would detect that the user space "val" changed and return | |
2380 | * -EWOULDBLOCK. Save the overhead of the restart and return | |
2381 | * -EWOULDBLOCK directly. | |
52400ba9 | 2382 | */ |
2070887f | 2383 | ret = -EWOULDBLOCK; |
52400ba9 DH |
2384 | } |
2385 | ||
2386 | out_put_keys: | |
ae791a2d | 2387 | put_futex_key(&q.key); |
c8b15a70 | 2388 | out_key2: |
ae791a2d | 2389 | put_futex_key(&key2); |
52400ba9 DH |
2390 | |
2391 | out: | |
2392 | if (to) { | |
2393 | hrtimer_cancel(&to->timer); | |
2394 | destroy_hrtimer_on_stack(&to->timer); | |
2395 | } | |
2396 | return ret; | |
2397 | } | |
2398 | ||
0771dfef IM |
2399 | /* |
2400 | * Support for robust futexes: the kernel cleans up held futexes at | |
2401 | * thread exit time. | |
2402 | * | |
2403 | * Implementation: user-space maintains a per-thread list of locks it | |
2404 | * is holding. Upon do_exit(), the kernel carefully walks this list, | |
2405 | * and marks all locks that are owned by this thread with the | |
c87e2837 | 2406 | * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is |
0771dfef IM |
2407 | * always manipulated with the lock held, so the list is private and |
2408 | * per-thread. Userspace also maintains a per-thread 'list_op_pending' | |
2409 | * field, to allow the kernel to clean up if the thread dies after | |
2410 | * acquiring the lock, but just before it could have added itself to | |
2411 | * the list. There can only be one such pending lock. | |
2412 | */ | |
2413 | ||
2414 | /** | |
d96ee56c DH |
2415 | * sys_set_robust_list() - Set the robust-futex list head of a task |
2416 | * @head: pointer to the list-head | |
2417 | * @len: length of the list-head, as userspace expects | |
0771dfef | 2418 | */ |
836f92ad HC |
2419 | SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head, |
2420 | size_t, len) | |
0771dfef | 2421 | { |
a0c1e907 TG |
2422 | if (!futex_cmpxchg_enabled) |
2423 | return -ENOSYS; | |
0771dfef IM |
2424 | /* |
2425 | * The kernel knows only one size for now: | |
2426 | */ | |
2427 | if (unlikely(len != sizeof(*head))) | |
2428 | return -EINVAL; | |
2429 | ||
2430 | current->robust_list = head; | |
2431 | ||
2432 | return 0; | |
2433 | } | |
2434 | ||
2435 | /** | |
d96ee56c DH |
2436 | * sys_get_robust_list() - Get the robust-futex list head of a task |
2437 | * @pid: pid of the process [zero for current task] | |
2438 | * @head_ptr: pointer to a list-head pointer, the kernel fills it in | |
2439 | * @len_ptr: pointer to a length field, the kernel fills in the header size | |
0771dfef | 2440 | */ |
836f92ad HC |
2441 | SYSCALL_DEFINE3(get_robust_list, int, pid, |
2442 | struct robust_list_head __user * __user *, head_ptr, | |
2443 | size_t __user *, len_ptr) | |
0771dfef | 2444 | { |
ba46df98 | 2445 | struct robust_list_head __user *head; |
0771dfef | 2446 | unsigned long ret; |
bdbb776f | 2447 | struct task_struct *p; |
0771dfef | 2448 | |
a0c1e907 TG |
2449 | if (!futex_cmpxchg_enabled) |
2450 | return -ENOSYS; | |
2451 | ||
ec0c4274 KC |
2452 | WARN_ONCE(1, "deprecated: get_robust_list will be deleted in 2013.\n"); |
2453 | ||
bdbb776f KC |
2454 | rcu_read_lock(); |
2455 | ||
2456 | ret = -ESRCH; | |
0771dfef | 2457 | if (!pid) |
bdbb776f | 2458 | p = current; |
0771dfef | 2459 | else { |
228ebcbe | 2460 | p = find_task_by_vpid(pid); |
0771dfef IM |
2461 | if (!p) |
2462 | goto err_unlock; | |
0771dfef IM |
2463 | } |
2464 | ||
bdbb776f KC |
2465 | ret = -EPERM; |
2466 | if (!ptrace_may_access(p, PTRACE_MODE_READ)) | |
2467 | goto err_unlock; | |
2468 | ||
2469 | head = p->robust_list; | |
2470 | rcu_read_unlock(); | |
2471 | ||
0771dfef IM |
2472 | if (put_user(sizeof(*head), len_ptr)) |
2473 | return -EFAULT; | |
2474 | return put_user(head, head_ptr); | |
2475 | ||
2476 | err_unlock: | |
aaa2a97e | 2477 | rcu_read_unlock(); |
0771dfef IM |
2478 | |
2479 | return ret; | |
2480 | } | |
2481 | ||
2482 | /* | |
2483 | * Process a futex-list entry, check whether it's owned by the | |
2484 | * dying task, and do notification if so: | |
2485 | */ | |
e3f2ddea | 2486 | int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi) |
0771dfef | 2487 | { |
7cfdaf38 | 2488 | u32 uval, uninitialized_var(nval), mval; |
0771dfef | 2489 | |
8f17d3a5 IM |
2490 | retry: |
2491 | if (get_user(uval, uaddr)) | |
0771dfef IM |
2492 | return -1; |
2493 | ||
b488893a | 2494 | if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) { |
0771dfef IM |
2495 | /* |
2496 | * Ok, this dying thread is truly holding a futex | |
2497 | * of interest. Set the OWNER_DIED bit atomically | |
2498 | * via cmpxchg, and if the value had FUTEX_WAITERS | |
2499 | * set, wake up a waiter (if any). (We have to do a | |
2500 | * futex_wake() even if OWNER_DIED is already set - | |
2501 | * to handle the rare but possible case of recursive | |
2502 | * thread-death.) The rest of the cleanup is done in | |
2503 | * userspace. | |
2504 | */ | |
e3f2ddea | 2505 | mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED; |
6e0aa9f8 TG |
2506 | /* |
2507 | * We are not holding a lock here, but we want to have | |
2508 | * the pagefault_disable/enable() protection because | |
2509 | * we want to handle the fault gracefully. If the | |
2510 | * access fails we try to fault in the futex with R/W | |
2511 | * verification via get_user_pages. get_user() above | |
2512 | * does not guarantee R/W access. If that fails we | |
2513 | * give up and leave the futex locked. | |
2514 | */ | |
2515 | if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) { | |
2516 | if (fault_in_user_writeable(uaddr)) | |
2517 | return -1; | |
2518 | goto retry; | |
2519 | } | |
c87e2837 | 2520 | if (nval != uval) |
8f17d3a5 | 2521 | goto retry; |
0771dfef | 2522 | |
e3f2ddea IM |
2523 | /* |
2524 | * Wake robust non-PI futexes here. The wakeup of | |
2525 | * PI futexes happens in exit_pi_state(): | |
2526 | */ | |
36cf3b5c | 2527 | if (!pi && (uval & FUTEX_WAITERS)) |
c2f9f201 | 2528 | futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY); |
0771dfef IM |
2529 | } |
2530 | return 0; | |
2531 | } | |
2532 | ||
e3f2ddea IM |
2533 | /* |
2534 | * Fetch a robust-list pointer. Bit 0 signals PI futexes: | |
2535 | */ | |
2536 | static inline int fetch_robust_entry(struct robust_list __user **entry, | |
ba46df98 | 2537 | struct robust_list __user * __user *head, |
1dcc41bb | 2538 | unsigned int *pi) |
e3f2ddea IM |
2539 | { |
2540 | unsigned long uentry; | |
2541 | ||
ba46df98 | 2542 | if (get_user(uentry, (unsigned long __user *)head)) |
e3f2ddea IM |
2543 | return -EFAULT; |
2544 | ||
ba46df98 | 2545 | *entry = (void __user *)(uentry & ~1UL); |
e3f2ddea IM |
2546 | *pi = uentry & 1; |
2547 | ||
2548 | return 0; | |
2549 | } | |
2550 | ||
0771dfef IM |
2551 | /* |
2552 | * Walk curr->robust_list (very carefully, it's a userspace list!) | |
2553 | * and mark any locks found there dead, and notify any waiters. | |
2554 | * | |
2555 | * We silently return on any sign of list-walking problem. | |
2556 | */ | |
2557 | void exit_robust_list(struct task_struct *curr) | |
2558 | { | |
2559 | struct robust_list_head __user *head = curr->robust_list; | |
9f96cb1e | 2560 | struct robust_list __user *entry, *next_entry, *pending; |
4c115e95 DH |
2561 | unsigned int limit = ROBUST_LIST_LIMIT, pi, pip; |
2562 | unsigned int uninitialized_var(next_pi); | |
0771dfef | 2563 | unsigned long futex_offset; |
9f96cb1e | 2564 | int rc; |
0771dfef | 2565 | |
a0c1e907 TG |
2566 | if (!futex_cmpxchg_enabled) |
2567 | return; | |
2568 | ||
0771dfef IM |
2569 | /* |
2570 | * Fetch the list head (which was registered earlier, via | |
2571 | * sys_set_robust_list()): | |
2572 | */ | |
e3f2ddea | 2573 | if (fetch_robust_entry(&entry, &head->list.next, &pi)) |
0771dfef IM |
2574 | return; |
2575 | /* | |
2576 | * Fetch the relative futex offset: | |
2577 | */ | |
2578 | if (get_user(futex_offset, &head->futex_offset)) | |
2579 | return; | |
2580 | /* | |
2581 | * Fetch any possibly pending lock-add first, and handle it | |
2582 | * if it exists: | |
2583 | */ | |
e3f2ddea | 2584 | if (fetch_robust_entry(&pending, &head->list_op_pending, &pip)) |
0771dfef | 2585 | return; |
e3f2ddea | 2586 | |
9f96cb1e | 2587 | next_entry = NULL; /* avoid warning with gcc */ |
0771dfef | 2588 | while (entry != &head->list) { |
9f96cb1e MS |
2589 | /* |
2590 | * Fetch the next entry in the list before calling | |
2591 | * handle_futex_death: | |
2592 | */ | |
2593 | rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi); | |
0771dfef IM |
2594 | /* |
2595 | * A pending lock might already be on the list, so | |
c87e2837 | 2596 | * don't process it twice: |
0771dfef IM |
2597 | */ |
2598 | if (entry != pending) | |
ba46df98 | 2599 | if (handle_futex_death((void __user *)entry + futex_offset, |
e3f2ddea | 2600 | curr, pi)) |
0771dfef | 2601 | return; |
9f96cb1e | 2602 | if (rc) |
0771dfef | 2603 | return; |
9f96cb1e MS |
2604 | entry = next_entry; |
2605 | pi = next_pi; | |
0771dfef IM |
2606 | /* |
2607 | * Avoid excessively long or circular lists: | |
2608 | */ | |
2609 | if (!--limit) | |
2610 | break; | |
2611 | ||
2612 | cond_resched(); | |
2613 | } | |
9f96cb1e MS |
2614 | |
2615 | if (pending) | |
2616 | handle_futex_death((void __user *)pending + futex_offset, | |
2617 | curr, pip); | |
0771dfef IM |
2618 | } |
2619 | ||
c19384b5 | 2620 | long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout, |
e2970f2f | 2621 | u32 __user *uaddr2, u32 val2, u32 val3) |
1da177e4 | 2622 | { |
81b40539 | 2623 | int cmd = op & FUTEX_CMD_MASK; |
b41277dc | 2624 | unsigned int flags = 0; |
34f01cc1 ED |
2625 | |
2626 | if (!(op & FUTEX_PRIVATE_FLAG)) | |
b41277dc | 2627 | flags |= FLAGS_SHARED; |
1da177e4 | 2628 | |
b41277dc DH |
2629 | if (op & FUTEX_CLOCK_REALTIME) { |
2630 | flags |= FLAGS_CLOCKRT; | |
2631 | if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI) | |
2632 | return -ENOSYS; | |
2633 | } | |
1da177e4 | 2634 | |
59263b51 TG |
2635 | switch (cmd) { |
2636 | case FUTEX_LOCK_PI: | |
2637 | case FUTEX_UNLOCK_PI: | |
2638 | case FUTEX_TRYLOCK_PI: | |
2639 | case FUTEX_WAIT_REQUEUE_PI: | |
2640 | case FUTEX_CMP_REQUEUE_PI: | |
2641 | if (!futex_cmpxchg_enabled) | |
2642 | return -ENOSYS; | |
2643 | } | |
2644 | ||
34f01cc1 | 2645 | switch (cmd) { |
1da177e4 | 2646 | case FUTEX_WAIT: |
cd689985 TG |
2647 | val3 = FUTEX_BITSET_MATCH_ANY; |
2648 | case FUTEX_WAIT_BITSET: | |
81b40539 | 2649 | return futex_wait(uaddr, flags, val, timeout, val3); |
1da177e4 | 2650 | case FUTEX_WAKE: |
cd689985 TG |
2651 | val3 = FUTEX_BITSET_MATCH_ANY; |
2652 | case FUTEX_WAKE_BITSET: | |
81b40539 | 2653 | return futex_wake(uaddr, flags, val, val3); |
1da177e4 | 2654 | case FUTEX_REQUEUE: |
81b40539 | 2655 | return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0); |
1da177e4 | 2656 | case FUTEX_CMP_REQUEUE: |
81b40539 | 2657 | return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0); |
4732efbe | 2658 | case FUTEX_WAKE_OP: |
81b40539 | 2659 | return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3); |
c87e2837 | 2660 | case FUTEX_LOCK_PI: |
81b40539 | 2661 | return futex_lock_pi(uaddr, flags, val, timeout, 0); |
c87e2837 | 2662 | case FUTEX_UNLOCK_PI: |
81b40539 | 2663 | return futex_unlock_pi(uaddr, flags); |
c87e2837 | 2664 | case FUTEX_TRYLOCK_PI: |
81b40539 | 2665 | return futex_lock_pi(uaddr, flags, 0, timeout, 1); |
52400ba9 DH |
2666 | case FUTEX_WAIT_REQUEUE_PI: |
2667 | val3 = FUTEX_BITSET_MATCH_ANY; | |
81b40539 TG |
2668 | return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3, |
2669 | uaddr2); | |
52400ba9 | 2670 | case FUTEX_CMP_REQUEUE_PI: |
81b40539 | 2671 | return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1); |
1da177e4 | 2672 | } |
81b40539 | 2673 | return -ENOSYS; |
1da177e4 LT |
2674 | } |
2675 | ||
2676 | ||
17da2bd9 HC |
2677 | SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val, |
2678 | struct timespec __user *, utime, u32 __user *, uaddr2, | |
2679 | u32, val3) | |
1da177e4 | 2680 | { |
c19384b5 PP |
2681 | struct timespec ts; |
2682 | ktime_t t, *tp = NULL; | |
e2970f2f | 2683 | u32 val2 = 0; |
34f01cc1 | 2684 | int cmd = op & FUTEX_CMD_MASK; |
1da177e4 | 2685 | |
cd689985 | 2686 | if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI || |
52400ba9 DH |
2687 | cmd == FUTEX_WAIT_BITSET || |
2688 | cmd == FUTEX_WAIT_REQUEUE_PI)) { | |
c19384b5 | 2689 | if (copy_from_user(&ts, utime, sizeof(ts)) != 0) |
1da177e4 | 2690 | return -EFAULT; |
c19384b5 | 2691 | if (!timespec_valid(&ts)) |
9741ef96 | 2692 | return -EINVAL; |
c19384b5 PP |
2693 | |
2694 | t = timespec_to_ktime(ts); | |
34f01cc1 | 2695 | if (cmd == FUTEX_WAIT) |
5a7780e7 | 2696 | t = ktime_add_safe(ktime_get(), t); |
c19384b5 | 2697 | tp = &t; |
1da177e4 LT |
2698 | } |
2699 | /* | |
52400ba9 | 2700 | * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*. |
f54f0986 | 2701 | * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP. |
1da177e4 | 2702 | */ |
f54f0986 | 2703 | if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE || |
ba9c22f2 | 2704 | cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP) |
e2970f2f | 2705 | val2 = (u32) (unsigned long) utime; |
1da177e4 | 2706 | |
c19384b5 | 2707 | return do_futex(uaddr, op, val, tp, uaddr2, val2, val3); |
1da177e4 LT |
2708 | } |
2709 | ||
f6d107fb | 2710 | static int __init futex_init(void) |
1da177e4 | 2711 | { |
a0c1e907 | 2712 | u32 curval; |
3e4ab747 | 2713 | int i; |
95362fa9 | 2714 | |
a0c1e907 TG |
2715 | /* |
2716 | * This will fail and we want it. Some arch implementations do | |
2717 | * runtime detection of the futex_atomic_cmpxchg_inatomic() | |
2718 | * functionality. We want to know that before we call in any | |
2719 | * of the complex code paths. Also we want to prevent | |
2720 | * registration of robust lists in that case. NULL is | |
2721 | * guaranteed to fault and we get -EFAULT on functional | |
fb62db2b | 2722 | * implementation, the non-functional ones will return |
a0c1e907 TG |
2723 | * -ENOSYS. |
2724 | */ | |
37a9d912 | 2725 | if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT) |
a0c1e907 TG |
2726 | futex_cmpxchg_enabled = 1; |
2727 | ||
3e4ab747 | 2728 | for (i = 0; i < ARRAY_SIZE(futex_queues); i++) { |
732375c6 | 2729 | plist_head_init(&futex_queues[i].chain); |
3e4ab747 TG |
2730 | spin_lock_init(&futex_queues[i].lock); |
2731 | } | |
2732 | ||
1da177e4 LT |
2733 | return 0; |
2734 | } | |
f6d107fb | 2735 | __initcall(futex_init); |