]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
1da177e4 LT |
2 | /* |
3 | * linux/mm/filemap.c | |
4 | * | |
5 | * Copyright (C) 1994-1999 Linus Torvalds | |
6 | */ | |
7 | ||
8 | /* | |
9 | * This file handles the generic file mmap semantics used by | |
10 | * most "normal" filesystems (but you don't /have/ to use this: | |
11 | * the NFS filesystem used to do this differently, for example) | |
12 | */ | |
b95f1b31 | 13 | #include <linux/export.h> |
1da177e4 | 14 | #include <linux/compiler.h> |
f9fe48be | 15 | #include <linux/dax.h> |
1da177e4 | 16 | #include <linux/fs.h> |
3f07c014 | 17 | #include <linux/sched/signal.h> |
c22ce143 | 18 | #include <linux/uaccess.h> |
c59ede7b | 19 | #include <linux/capability.h> |
1da177e4 | 20 | #include <linux/kernel_stat.h> |
5a0e3ad6 | 21 | #include <linux/gfp.h> |
1da177e4 LT |
22 | #include <linux/mm.h> |
23 | #include <linux/swap.h> | |
24 | #include <linux/mman.h> | |
25 | #include <linux/pagemap.h> | |
26 | #include <linux/file.h> | |
27 | #include <linux/uio.h> | |
cfcbfb13 | 28 | #include <linux/error-injection.h> |
1da177e4 LT |
29 | #include <linux/hash.h> |
30 | #include <linux/writeback.h> | |
53253383 | 31 | #include <linux/backing-dev.h> |
1da177e4 LT |
32 | #include <linux/pagevec.h> |
33 | #include <linux/blkdev.h> | |
34 | #include <linux/security.h> | |
44110fe3 | 35 | #include <linux/cpuset.h> |
00501b53 | 36 | #include <linux/hugetlb.h> |
8a9f3ccd | 37 | #include <linux/memcontrol.h> |
c515e1fd | 38 | #include <linux/cleancache.h> |
c7df8ad2 | 39 | #include <linux/shmem_fs.h> |
f1820361 | 40 | #include <linux/rmap.h> |
b1d29ba8 | 41 | #include <linux/delayacct.h> |
eb414681 | 42 | #include <linux/psi.h> |
0f8053a5 NP |
43 | #include "internal.h" |
44 | ||
fe0bfaaf RJ |
45 | #define CREATE_TRACE_POINTS |
46 | #include <trace/events/filemap.h> | |
47 | ||
1da177e4 | 48 | /* |
1da177e4 LT |
49 | * FIXME: remove all knowledge of the buffer layer from the core VM |
50 | */ | |
148f948b | 51 | #include <linux/buffer_head.h> /* for try_to_free_buffers */ |
1da177e4 | 52 | |
1da177e4 LT |
53 | #include <asm/mman.h> |
54 | ||
55 | /* | |
56 | * Shared mappings implemented 30.11.1994. It's not fully working yet, | |
57 | * though. | |
58 | * | |
59 | * Shared mappings now work. 15.8.1995 Bruno. | |
60 | * | |
61 | * finished 'unifying' the page and buffer cache and SMP-threaded the | |
62 | * page-cache, 21.05.1999, Ingo Molnar <[email protected]> | |
63 | * | |
64 | * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <[email protected]> | |
65 | */ | |
66 | ||
67 | /* | |
68 | * Lock ordering: | |
69 | * | |
c8c06efa | 70 | * ->i_mmap_rwsem (truncate_pagecache) |
1da177e4 | 71 | * ->private_lock (__free_pte->__set_page_dirty_buffers) |
5d337b91 | 72 | * ->swap_lock (exclusive_swap_page, others) |
b93b0163 | 73 | * ->i_pages lock |
1da177e4 | 74 | * |
1b1dcc1b | 75 | * ->i_mutex |
c8c06efa | 76 | * ->i_mmap_rwsem (truncate->unmap_mapping_range) |
1da177e4 LT |
77 | * |
78 | * ->mmap_sem | |
c8c06efa | 79 | * ->i_mmap_rwsem |
b8072f09 | 80 | * ->page_table_lock or pte_lock (various, mainly in memory.c) |
b93b0163 | 81 | * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) |
1da177e4 LT |
82 | * |
83 | * ->mmap_sem | |
84 | * ->lock_page (access_process_vm) | |
85 | * | |
ccad2365 | 86 | * ->i_mutex (generic_perform_write) |
82591e6e | 87 | * ->mmap_sem (fault_in_pages_readable->do_page_fault) |
1da177e4 | 88 | * |
f758eeab | 89 | * bdi->wb.list_lock |
a66979ab | 90 | * sb_lock (fs/fs-writeback.c) |
b93b0163 | 91 | * ->i_pages lock (__sync_single_inode) |
1da177e4 | 92 | * |
c8c06efa | 93 | * ->i_mmap_rwsem |
1da177e4 LT |
94 | * ->anon_vma.lock (vma_adjust) |
95 | * | |
96 | * ->anon_vma.lock | |
b8072f09 | 97 | * ->page_table_lock or pte_lock (anon_vma_prepare and various) |
1da177e4 | 98 | * |
b8072f09 | 99 | * ->page_table_lock or pte_lock |
5d337b91 | 100 | * ->swap_lock (try_to_unmap_one) |
1da177e4 | 101 | * ->private_lock (try_to_unmap_one) |
b93b0163 | 102 | * ->i_pages lock (try_to_unmap_one) |
f4b7e272 AR |
103 | * ->pgdat->lru_lock (follow_page->mark_page_accessed) |
104 | * ->pgdat->lru_lock (check_pte_range->isolate_lru_page) | |
1da177e4 | 105 | * ->private_lock (page_remove_rmap->set_page_dirty) |
b93b0163 | 106 | * ->i_pages lock (page_remove_rmap->set_page_dirty) |
f758eeab | 107 | * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) |
250df6ed | 108 | * ->inode->i_lock (page_remove_rmap->set_page_dirty) |
81f8c3a4 | 109 | * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) |
f758eeab | 110 | * bdi.wb->list_lock (zap_pte_range->set_page_dirty) |
250df6ed | 111 | * ->inode->i_lock (zap_pte_range->set_page_dirty) |
1da177e4 LT |
112 | * ->private_lock (zap_pte_range->__set_page_dirty_buffers) |
113 | * | |
c8c06efa | 114 | * ->i_mmap_rwsem |
9a3c531d | 115 | * ->tasklist_lock (memory_failure, collect_procs_ao) |
1da177e4 LT |
116 | */ |
117 | ||
5c024e6a | 118 | static void page_cache_delete(struct address_space *mapping, |
91b0abe3 JW |
119 | struct page *page, void *shadow) |
120 | { | |
5c024e6a MW |
121 | XA_STATE(xas, &mapping->i_pages, page->index); |
122 | unsigned int nr = 1; | |
c70b647d | 123 | |
5c024e6a | 124 | mapping_set_update(&xas, mapping); |
c70b647d | 125 | |
5c024e6a MW |
126 | /* hugetlb pages are represented by a single entry in the xarray */ |
127 | if (!PageHuge(page)) { | |
128 | xas_set_order(&xas, page->index, compound_order(page)); | |
129 | nr = 1U << compound_order(page); | |
130 | } | |
91b0abe3 | 131 | |
83929372 KS |
132 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
133 | VM_BUG_ON_PAGE(PageTail(page), page); | |
134 | VM_BUG_ON_PAGE(nr != 1 && shadow, page); | |
449dd698 | 135 | |
5c024e6a MW |
136 | xas_store(&xas, shadow); |
137 | xas_init_marks(&xas); | |
d3798ae8 | 138 | |
2300638b JK |
139 | page->mapping = NULL; |
140 | /* Leave page->index set: truncation lookup relies upon it */ | |
141 | ||
d3798ae8 JW |
142 | if (shadow) { |
143 | mapping->nrexceptional += nr; | |
144 | /* | |
145 | * Make sure the nrexceptional update is committed before | |
146 | * the nrpages update so that final truncate racing | |
147 | * with reclaim does not see both counters 0 at the | |
148 | * same time and miss a shadow entry. | |
149 | */ | |
150 | smp_wmb(); | |
151 | } | |
152 | mapping->nrpages -= nr; | |
91b0abe3 JW |
153 | } |
154 | ||
5ecc4d85 JK |
155 | static void unaccount_page_cache_page(struct address_space *mapping, |
156 | struct page *page) | |
1da177e4 | 157 | { |
5ecc4d85 | 158 | int nr; |
1da177e4 | 159 | |
c515e1fd DM |
160 | /* |
161 | * if we're uptodate, flush out into the cleancache, otherwise | |
162 | * invalidate any existing cleancache entries. We can't leave | |
163 | * stale data around in the cleancache once our page is gone | |
164 | */ | |
165 | if (PageUptodate(page) && PageMappedToDisk(page)) | |
166 | cleancache_put_page(page); | |
167 | else | |
3167760f | 168 | cleancache_invalidate_page(mapping, page); |
c515e1fd | 169 | |
83929372 | 170 | VM_BUG_ON_PAGE(PageTail(page), page); |
06b241f3 HD |
171 | VM_BUG_ON_PAGE(page_mapped(page), page); |
172 | if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { | |
173 | int mapcount; | |
174 | ||
175 | pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", | |
176 | current->comm, page_to_pfn(page)); | |
177 | dump_page(page, "still mapped when deleted"); | |
178 | dump_stack(); | |
179 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | |
180 | ||
181 | mapcount = page_mapcount(page); | |
182 | if (mapping_exiting(mapping) && | |
183 | page_count(page) >= mapcount + 2) { | |
184 | /* | |
185 | * All vmas have already been torn down, so it's | |
186 | * a good bet that actually the page is unmapped, | |
187 | * and we'd prefer not to leak it: if we're wrong, | |
188 | * some other bad page check should catch it later. | |
189 | */ | |
190 | page_mapcount_reset(page); | |
6d061f9f | 191 | page_ref_sub(page, mapcount); |
06b241f3 HD |
192 | } |
193 | } | |
194 | ||
4165b9b4 | 195 | /* hugetlb pages do not participate in page cache accounting. */ |
5ecc4d85 JK |
196 | if (PageHuge(page)) |
197 | return; | |
09612fa6 | 198 | |
5ecc4d85 JK |
199 | nr = hpage_nr_pages(page); |
200 | ||
201 | __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); | |
202 | if (PageSwapBacked(page)) { | |
203 | __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); | |
204 | if (PageTransHuge(page)) | |
205 | __dec_node_page_state(page, NR_SHMEM_THPS); | |
206 | } else { | |
207 | VM_BUG_ON_PAGE(PageTransHuge(page), page); | |
800d8c63 | 208 | } |
5ecc4d85 JK |
209 | |
210 | /* | |
211 | * At this point page must be either written or cleaned by | |
212 | * truncate. Dirty page here signals a bug and loss of | |
213 | * unwritten data. | |
214 | * | |
215 | * This fixes dirty accounting after removing the page entirely | |
216 | * but leaves PageDirty set: it has no effect for truncated | |
217 | * page and anyway will be cleared before returning page into | |
218 | * buddy allocator. | |
219 | */ | |
220 | if (WARN_ON_ONCE(PageDirty(page))) | |
221 | account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); | |
222 | } | |
223 | ||
224 | /* | |
225 | * Delete a page from the page cache and free it. Caller has to make | |
226 | * sure the page is locked and that nobody else uses it - or that usage | |
b93b0163 | 227 | * is safe. The caller must hold the i_pages lock. |
5ecc4d85 JK |
228 | */ |
229 | void __delete_from_page_cache(struct page *page, void *shadow) | |
230 | { | |
231 | struct address_space *mapping = page->mapping; | |
232 | ||
233 | trace_mm_filemap_delete_from_page_cache(page); | |
234 | ||
235 | unaccount_page_cache_page(mapping, page); | |
5c024e6a | 236 | page_cache_delete(mapping, page, shadow); |
1da177e4 LT |
237 | } |
238 | ||
59c66c5f JK |
239 | static void page_cache_free_page(struct address_space *mapping, |
240 | struct page *page) | |
241 | { | |
242 | void (*freepage)(struct page *); | |
243 | ||
244 | freepage = mapping->a_ops->freepage; | |
245 | if (freepage) | |
246 | freepage(page); | |
247 | ||
248 | if (PageTransHuge(page) && !PageHuge(page)) { | |
249 | page_ref_sub(page, HPAGE_PMD_NR); | |
250 | VM_BUG_ON_PAGE(page_count(page) <= 0, page); | |
251 | } else { | |
252 | put_page(page); | |
253 | } | |
254 | } | |
255 | ||
702cfbf9 MK |
256 | /** |
257 | * delete_from_page_cache - delete page from page cache | |
258 | * @page: the page which the kernel is trying to remove from page cache | |
259 | * | |
260 | * This must be called only on pages that have been verified to be in the page | |
261 | * cache and locked. It will never put the page into the free list, the caller | |
262 | * has a reference on the page. | |
263 | */ | |
264 | void delete_from_page_cache(struct page *page) | |
1da177e4 | 265 | { |
83929372 | 266 | struct address_space *mapping = page_mapping(page); |
c4843a75 | 267 | unsigned long flags; |
1da177e4 | 268 | |
cd7619d6 | 269 | BUG_ON(!PageLocked(page)); |
b93b0163 | 270 | xa_lock_irqsave(&mapping->i_pages, flags); |
62cccb8c | 271 | __delete_from_page_cache(page, NULL); |
b93b0163 | 272 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
6072d13c | 273 | |
59c66c5f | 274 | page_cache_free_page(mapping, page); |
97cecb5a MK |
275 | } |
276 | EXPORT_SYMBOL(delete_from_page_cache); | |
277 | ||
aa65c29c | 278 | /* |
ef8e5717 | 279 | * page_cache_delete_batch - delete several pages from page cache |
aa65c29c JK |
280 | * @mapping: the mapping to which pages belong |
281 | * @pvec: pagevec with pages to delete | |
282 | * | |
b93b0163 | 283 | * The function walks over mapping->i_pages and removes pages passed in @pvec |
5fd4ca2d MW |
284 | * from the mapping. The function expects @pvec to be sorted by page index |
285 | * and is optimised for it to be dense. | |
b93b0163 | 286 | * It tolerates holes in @pvec (mapping entries at those indices are not |
aa65c29c | 287 | * modified). The function expects only THP head pages to be present in the |
5fd4ca2d | 288 | * @pvec. |
aa65c29c | 289 | * |
b93b0163 | 290 | * The function expects the i_pages lock to be held. |
aa65c29c | 291 | */ |
ef8e5717 | 292 | static void page_cache_delete_batch(struct address_space *mapping, |
aa65c29c JK |
293 | struct pagevec *pvec) |
294 | { | |
ef8e5717 | 295 | XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); |
aa65c29c | 296 | int total_pages = 0; |
5fd4ca2d | 297 | int i = 0; |
aa65c29c | 298 | struct page *page; |
aa65c29c | 299 | |
ef8e5717 MW |
300 | mapping_set_update(&xas, mapping); |
301 | xas_for_each(&xas, page, ULONG_MAX) { | |
5fd4ca2d | 302 | if (i >= pagevec_count(pvec)) |
aa65c29c | 303 | break; |
5fd4ca2d MW |
304 | |
305 | /* A swap/dax/shadow entry got inserted? Skip it. */ | |
3159f943 | 306 | if (xa_is_value(page)) |
aa65c29c | 307 | continue; |
5fd4ca2d MW |
308 | /* |
309 | * A page got inserted in our range? Skip it. We have our | |
310 | * pages locked so they are protected from being removed. | |
311 | * If we see a page whose index is higher than ours, it | |
312 | * means our page has been removed, which shouldn't be | |
313 | * possible because we're holding the PageLock. | |
314 | */ | |
315 | if (page != pvec->pages[i]) { | |
316 | VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index, | |
317 | page); | |
318 | continue; | |
319 | } | |
320 | ||
321 | WARN_ON_ONCE(!PageLocked(page)); | |
322 | ||
323 | if (page->index == xas.xa_index) | |
aa65c29c | 324 | page->mapping = NULL; |
5fd4ca2d MW |
325 | /* Leave page->index set: truncation lookup relies on it */ |
326 | ||
327 | /* | |
328 | * Move to the next page in the vector if this is a regular | |
329 | * page or the index is of the last sub-page of this compound | |
330 | * page. | |
331 | */ | |
332 | if (page->index + (1UL << compound_order(page)) - 1 == | |
333 | xas.xa_index) | |
aa65c29c | 334 | i++; |
ef8e5717 | 335 | xas_store(&xas, NULL); |
aa65c29c JK |
336 | total_pages++; |
337 | } | |
338 | mapping->nrpages -= total_pages; | |
339 | } | |
340 | ||
341 | void delete_from_page_cache_batch(struct address_space *mapping, | |
342 | struct pagevec *pvec) | |
343 | { | |
344 | int i; | |
345 | unsigned long flags; | |
346 | ||
347 | if (!pagevec_count(pvec)) | |
348 | return; | |
349 | ||
b93b0163 | 350 | xa_lock_irqsave(&mapping->i_pages, flags); |
aa65c29c JK |
351 | for (i = 0; i < pagevec_count(pvec); i++) { |
352 | trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); | |
353 | ||
354 | unaccount_page_cache_page(mapping, pvec->pages[i]); | |
355 | } | |
ef8e5717 | 356 | page_cache_delete_batch(mapping, pvec); |
b93b0163 | 357 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
aa65c29c JK |
358 | |
359 | for (i = 0; i < pagevec_count(pvec); i++) | |
360 | page_cache_free_page(mapping, pvec->pages[i]); | |
361 | } | |
362 | ||
d72d9e2a | 363 | int filemap_check_errors(struct address_space *mapping) |
865ffef3 DM |
364 | { |
365 | int ret = 0; | |
366 | /* Check for outstanding write errors */ | |
7fcbbaf1 JA |
367 | if (test_bit(AS_ENOSPC, &mapping->flags) && |
368 | test_and_clear_bit(AS_ENOSPC, &mapping->flags)) | |
865ffef3 | 369 | ret = -ENOSPC; |
7fcbbaf1 JA |
370 | if (test_bit(AS_EIO, &mapping->flags) && |
371 | test_and_clear_bit(AS_EIO, &mapping->flags)) | |
865ffef3 DM |
372 | ret = -EIO; |
373 | return ret; | |
374 | } | |
d72d9e2a | 375 | EXPORT_SYMBOL(filemap_check_errors); |
865ffef3 | 376 | |
76341cab JL |
377 | static int filemap_check_and_keep_errors(struct address_space *mapping) |
378 | { | |
379 | /* Check for outstanding write errors */ | |
380 | if (test_bit(AS_EIO, &mapping->flags)) | |
381 | return -EIO; | |
382 | if (test_bit(AS_ENOSPC, &mapping->flags)) | |
383 | return -ENOSPC; | |
384 | return 0; | |
385 | } | |
386 | ||
1da177e4 | 387 | /** |
485bb99b | 388 | * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range |
67be2dd1 MW |
389 | * @mapping: address space structure to write |
390 | * @start: offset in bytes where the range starts | |
469eb4d0 | 391 | * @end: offset in bytes where the range ends (inclusive) |
67be2dd1 | 392 | * @sync_mode: enable synchronous operation |
1da177e4 | 393 | * |
485bb99b RD |
394 | * Start writeback against all of a mapping's dirty pages that lie |
395 | * within the byte offsets <start, end> inclusive. | |
396 | * | |
1da177e4 | 397 | * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as |
485bb99b | 398 | * opposed to a regular memory cleansing writeback. The difference between |
1da177e4 LT |
399 | * these two operations is that if a dirty page/buffer is encountered, it must |
400 | * be waited upon, and not just skipped over. | |
a862f68a MR |
401 | * |
402 | * Return: %0 on success, negative error code otherwise. | |
1da177e4 | 403 | */ |
ebcf28e1 AM |
404 | int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
405 | loff_t end, int sync_mode) | |
1da177e4 LT |
406 | { |
407 | int ret; | |
408 | struct writeback_control wbc = { | |
409 | .sync_mode = sync_mode, | |
05fe478d | 410 | .nr_to_write = LONG_MAX, |
111ebb6e OH |
411 | .range_start = start, |
412 | .range_end = end, | |
1da177e4 LT |
413 | }; |
414 | ||
415 | if (!mapping_cap_writeback_dirty(mapping)) | |
416 | return 0; | |
417 | ||
b16b1deb | 418 | wbc_attach_fdatawrite_inode(&wbc, mapping->host); |
1da177e4 | 419 | ret = do_writepages(mapping, &wbc); |
b16b1deb | 420 | wbc_detach_inode(&wbc); |
1da177e4 LT |
421 | return ret; |
422 | } | |
423 | ||
424 | static inline int __filemap_fdatawrite(struct address_space *mapping, | |
425 | int sync_mode) | |
426 | { | |
111ebb6e | 427 | return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); |
1da177e4 LT |
428 | } |
429 | ||
430 | int filemap_fdatawrite(struct address_space *mapping) | |
431 | { | |
432 | return __filemap_fdatawrite(mapping, WB_SYNC_ALL); | |
433 | } | |
434 | EXPORT_SYMBOL(filemap_fdatawrite); | |
435 | ||
f4c0a0fd | 436 | int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
ebcf28e1 | 437 | loff_t end) |
1da177e4 LT |
438 | { |
439 | return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); | |
440 | } | |
f4c0a0fd | 441 | EXPORT_SYMBOL(filemap_fdatawrite_range); |
1da177e4 | 442 | |
485bb99b RD |
443 | /** |
444 | * filemap_flush - mostly a non-blocking flush | |
445 | * @mapping: target address_space | |
446 | * | |
1da177e4 LT |
447 | * This is a mostly non-blocking flush. Not suitable for data-integrity |
448 | * purposes - I/O may not be started against all dirty pages. | |
a862f68a MR |
449 | * |
450 | * Return: %0 on success, negative error code otherwise. | |
1da177e4 LT |
451 | */ |
452 | int filemap_flush(struct address_space *mapping) | |
453 | { | |
454 | return __filemap_fdatawrite(mapping, WB_SYNC_NONE); | |
455 | } | |
456 | EXPORT_SYMBOL(filemap_flush); | |
457 | ||
7fc9e472 GR |
458 | /** |
459 | * filemap_range_has_page - check if a page exists in range. | |
460 | * @mapping: address space within which to check | |
461 | * @start_byte: offset in bytes where the range starts | |
462 | * @end_byte: offset in bytes where the range ends (inclusive) | |
463 | * | |
464 | * Find at least one page in the range supplied, usually used to check if | |
465 | * direct writing in this range will trigger a writeback. | |
a862f68a MR |
466 | * |
467 | * Return: %true if at least one page exists in the specified range, | |
468 | * %false otherwise. | |
7fc9e472 GR |
469 | */ |
470 | bool filemap_range_has_page(struct address_space *mapping, | |
471 | loff_t start_byte, loff_t end_byte) | |
472 | { | |
f7b68046 | 473 | struct page *page; |
8fa8e538 MW |
474 | XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); |
475 | pgoff_t max = end_byte >> PAGE_SHIFT; | |
7fc9e472 GR |
476 | |
477 | if (end_byte < start_byte) | |
478 | return false; | |
479 | ||
8fa8e538 MW |
480 | rcu_read_lock(); |
481 | for (;;) { | |
482 | page = xas_find(&xas, max); | |
483 | if (xas_retry(&xas, page)) | |
484 | continue; | |
485 | /* Shadow entries don't count */ | |
486 | if (xa_is_value(page)) | |
487 | continue; | |
488 | /* | |
489 | * We don't need to try to pin this page; we're about to | |
490 | * release the RCU lock anyway. It is enough to know that | |
491 | * there was a page here recently. | |
492 | */ | |
493 | break; | |
494 | } | |
495 | rcu_read_unlock(); | |
7fc9e472 | 496 | |
8fa8e538 | 497 | return page != NULL; |
7fc9e472 GR |
498 | } |
499 | EXPORT_SYMBOL(filemap_range_has_page); | |
500 | ||
5e8fcc1a | 501 | static void __filemap_fdatawait_range(struct address_space *mapping, |
aa750fd7 | 502 | loff_t start_byte, loff_t end_byte) |
1da177e4 | 503 | { |
09cbfeaf KS |
504 | pgoff_t index = start_byte >> PAGE_SHIFT; |
505 | pgoff_t end = end_byte >> PAGE_SHIFT; | |
1da177e4 LT |
506 | struct pagevec pvec; |
507 | int nr_pages; | |
1da177e4 | 508 | |
94004ed7 | 509 | if (end_byte < start_byte) |
5e8fcc1a | 510 | return; |
1da177e4 | 511 | |
86679820 | 512 | pagevec_init(&pvec); |
312e9d2f | 513 | while (index <= end) { |
1da177e4 LT |
514 | unsigned i; |
515 | ||
312e9d2f | 516 | nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, |
67fd707f | 517 | end, PAGECACHE_TAG_WRITEBACK); |
312e9d2f JK |
518 | if (!nr_pages) |
519 | break; | |
520 | ||
1da177e4 LT |
521 | for (i = 0; i < nr_pages; i++) { |
522 | struct page *page = pvec.pages[i]; | |
523 | ||
1da177e4 | 524 | wait_on_page_writeback(page); |
5e8fcc1a | 525 | ClearPageError(page); |
1da177e4 LT |
526 | } |
527 | pagevec_release(&pvec); | |
528 | cond_resched(); | |
529 | } | |
aa750fd7 JN |
530 | } |
531 | ||
532 | /** | |
533 | * filemap_fdatawait_range - wait for writeback to complete | |
534 | * @mapping: address space structure to wait for | |
535 | * @start_byte: offset in bytes where the range starts | |
536 | * @end_byte: offset in bytes where the range ends (inclusive) | |
537 | * | |
538 | * Walk the list of under-writeback pages of the given address space | |
539 | * in the given range and wait for all of them. Check error status of | |
540 | * the address space and return it. | |
541 | * | |
542 | * Since the error status of the address space is cleared by this function, | |
543 | * callers are responsible for checking the return value and handling and/or | |
544 | * reporting the error. | |
a862f68a MR |
545 | * |
546 | * Return: error status of the address space. | |
aa750fd7 JN |
547 | */ |
548 | int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, | |
549 | loff_t end_byte) | |
550 | { | |
5e8fcc1a JL |
551 | __filemap_fdatawait_range(mapping, start_byte, end_byte); |
552 | return filemap_check_errors(mapping); | |
1da177e4 | 553 | } |
d3bccb6f JK |
554 | EXPORT_SYMBOL(filemap_fdatawait_range); |
555 | ||
a823e458 JL |
556 | /** |
557 | * file_fdatawait_range - wait for writeback to complete | |
558 | * @file: file pointing to address space structure to wait for | |
559 | * @start_byte: offset in bytes where the range starts | |
560 | * @end_byte: offset in bytes where the range ends (inclusive) | |
561 | * | |
562 | * Walk the list of under-writeback pages of the address space that file | |
563 | * refers to, in the given range and wait for all of them. Check error | |
564 | * status of the address space vs. the file->f_wb_err cursor and return it. | |
565 | * | |
566 | * Since the error status of the file is advanced by this function, | |
567 | * callers are responsible for checking the return value and handling and/or | |
568 | * reporting the error. | |
a862f68a MR |
569 | * |
570 | * Return: error status of the address space vs. the file->f_wb_err cursor. | |
a823e458 JL |
571 | */ |
572 | int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) | |
573 | { | |
574 | struct address_space *mapping = file->f_mapping; | |
575 | ||
576 | __filemap_fdatawait_range(mapping, start_byte, end_byte); | |
577 | return file_check_and_advance_wb_err(file); | |
578 | } | |
579 | EXPORT_SYMBOL(file_fdatawait_range); | |
d3bccb6f | 580 | |
aa750fd7 JN |
581 | /** |
582 | * filemap_fdatawait_keep_errors - wait for writeback without clearing errors | |
583 | * @mapping: address space structure to wait for | |
584 | * | |
585 | * Walk the list of under-writeback pages of the given address space | |
586 | * and wait for all of them. Unlike filemap_fdatawait(), this function | |
587 | * does not clear error status of the address space. | |
588 | * | |
589 | * Use this function if callers don't handle errors themselves. Expected | |
590 | * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), | |
591 | * fsfreeze(8) | |
a862f68a MR |
592 | * |
593 | * Return: error status of the address space. | |
aa750fd7 | 594 | */ |
76341cab | 595 | int filemap_fdatawait_keep_errors(struct address_space *mapping) |
aa750fd7 | 596 | { |
ffb959bb | 597 | __filemap_fdatawait_range(mapping, 0, LLONG_MAX); |
76341cab | 598 | return filemap_check_and_keep_errors(mapping); |
aa750fd7 | 599 | } |
76341cab | 600 | EXPORT_SYMBOL(filemap_fdatawait_keep_errors); |
aa750fd7 | 601 | |
9326c9b2 | 602 | static bool mapping_needs_writeback(struct address_space *mapping) |
1da177e4 | 603 | { |
9326c9b2 JL |
604 | return (!dax_mapping(mapping) && mapping->nrpages) || |
605 | (dax_mapping(mapping) && mapping->nrexceptional); | |
1da177e4 | 606 | } |
1da177e4 LT |
607 | |
608 | int filemap_write_and_wait(struct address_space *mapping) | |
609 | { | |
28fd1298 | 610 | int err = 0; |
1da177e4 | 611 | |
9326c9b2 | 612 | if (mapping_needs_writeback(mapping)) { |
28fd1298 OH |
613 | err = filemap_fdatawrite(mapping); |
614 | /* | |
615 | * Even if the above returned error, the pages may be | |
616 | * written partially (e.g. -ENOSPC), so we wait for it. | |
617 | * But the -EIO is special case, it may indicate the worst | |
618 | * thing (e.g. bug) happened, so we avoid waiting for it. | |
619 | */ | |
620 | if (err != -EIO) { | |
621 | int err2 = filemap_fdatawait(mapping); | |
622 | if (!err) | |
623 | err = err2; | |
cbeaf951 JL |
624 | } else { |
625 | /* Clear any previously stored errors */ | |
626 | filemap_check_errors(mapping); | |
28fd1298 | 627 | } |
865ffef3 DM |
628 | } else { |
629 | err = filemap_check_errors(mapping); | |
1da177e4 | 630 | } |
28fd1298 | 631 | return err; |
1da177e4 | 632 | } |
28fd1298 | 633 | EXPORT_SYMBOL(filemap_write_and_wait); |
1da177e4 | 634 | |
485bb99b RD |
635 | /** |
636 | * filemap_write_and_wait_range - write out & wait on a file range | |
637 | * @mapping: the address_space for the pages | |
638 | * @lstart: offset in bytes where the range starts | |
639 | * @lend: offset in bytes where the range ends (inclusive) | |
640 | * | |
469eb4d0 AM |
641 | * Write out and wait upon file offsets lstart->lend, inclusive. |
642 | * | |
0e056eb5 | 643 | * Note that @lend is inclusive (describes the last byte to be written) so |
469eb4d0 | 644 | * that this function can be used to write to the very end-of-file (end = -1). |
a862f68a MR |
645 | * |
646 | * Return: error status of the address space. | |
469eb4d0 | 647 | */ |
1da177e4 LT |
648 | int filemap_write_and_wait_range(struct address_space *mapping, |
649 | loff_t lstart, loff_t lend) | |
650 | { | |
28fd1298 | 651 | int err = 0; |
1da177e4 | 652 | |
9326c9b2 | 653 | if (mapping_needs_writeback(mapping)) { |
28fd1298 OH |
654 | err = __filemap_fdatawrite_range(mapping, lstart, lend, |
655 | WB_SYNC_ALL); | |
656 | /* See comment of filemap_write_and_wait() */ | |
657 | if (err != -EIO) { | |
94004ed7 CH |
658 | int err2 = filemap_fdatawait_range(mapping, |
659 | lstart, lend); | |
28fd1298 OH |
660 | if (!err) |
661 | err = err2; | |
cbeaf951 JL |
662 | } else { |
663 | /* Clear any previously stored errors */ | |
664 | filemap_check_errors(mapping); | |
28fd1298 | 665 | } |
865ffef3 DM |
666 | } else { |
667 | err = filemap_check_errors(mapping); | |
1da177e4 | 668 | } |
28fd1298 | 669 | return err; |
1da177e4 | 670 | } |
f6995585 | 671 | EXPORT_SYMBOL(filemap_write_and_wait_range); |
1da177e4 | 672 | |
5660e13d JL |
673 | void __filemap_set_wb_err(struct address_space *mapping, int err) |
674 | { | |
3acdfd28 | 675 | errseq_t eseq = errseq_set(&mapping->wb_err, err); |
5660e13d JL |
676 | |
677 | trace_filemap_set_wb_err(mapping, eseq); | |
678 | } | |
679 | EXPORT_SYMBOL(__filemap_set_wb_err); | |
680 | ||
681 | /** | |
682 | * file_check_and_advance_wb_err - report wb error (if any) that was previously | |
683 | * and advance wb_err to current one | |
684 | * @file: struct file on which the error is being reported | |
685 | * | |
686 | * When userland calls fsync (or something like nfsd does the equivalent), we | |
687 | * want to report any writeback errors that occurred since the last fsync (or | |
688 | * since the file was opened if there haven't been any). | |
689 | * | |
690 | * Grab the wb_err from the mapping. If it matches what we have in the file, | |
691 | * then just quickly return 0. The file is all caught up. | |
692 | * | |
693 | * If it doesn't match, then take the mapping value, set the "seen" flag in | |
694 | * it and try to swap it into place. If it works, or another task beat us | |
695 | * to it with the new value, then update the f_wb_err and return the error | |
696 | * portion. The error at this point must be reported via proper channels | |
697 | * (a'la fsync, or NFS COMMIT operation, etc.). | |
698 | * | |
699 | * While we handle mapping->wb_err with atomic operations, the f_wb_err | |
700 | * value is protected by the f_lock since we must ensure that it reflects | |
701 | * the latest value swapped in for this file descriptor. | |
a862f68a MR |
702 | * |
703 | * Return: %0 on success, negative error code otherwise. | |
5660e13d JL |
704 | */ |
705 | int file_check_and_advance_wb_err(struct file *file) | |
706 | { | |
707 | int err = 0; | |
708 | errseq_t old = READ_ONCE(file->f_wb_err); | |
709 | struct address_space *mapping = file->f_mapping; | |
710 | ||
711 | /* Locklessly handle the common case where nothing has changed */ | |
712 | if (errseq_check(&mapping->wb_err, old)) { | |
713 | /* Something changed, must use slow path */ | |
714 | spin_lock(&file->f_lock); | |
715 | old = file->f_wb_err; | |
716 | err = errseq_check_and_advance(&mapping->wb_err, | |
717 | &file->f_wb_err); | |
718 | trace_file_check_and_advance_wb_err(file, old); | |
719 | spin_unlock(&file->f_lock); | |
720 | } | |
f4e222c5 JL |
721 | |
722 | /* | |
723 | * We're mostly using this function as a drop in replacement for | |
724 | * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect | |
725 | * that the legacy code would have had on these flags. | |
726 | */ | |
727 | clear_bit(AS_EIO, &mapping->flags); | |
728 | clear_bit(AS_ENOSPC, &mapping->flags); | |
5660e13d JL |
729 | return err; |
730 | } | |
731 | EXPORT_SYMBOL(file_check_and_advance_wb_err); | |
732 | ||
733 | /** | |
734 | * file_write_and_wait_range - write out & wait on a file range | |
735 | * @file: file pointing to address_space with pages | |
736 | * @lstart: offset in bytes where the range starts | |
737 | * @lend: offset in bytes where the range ends (inclusive) | |
738 | * | |
739 | * Write out and wait upon file offsets lstart->lend, inclusive. | |
740 | * | |
741 | * Note that @lend is inclusive (describes the last byte to be written) so | |
742 | * that this function can be used to write to the very end-of-file (end = -1). | |
743 | * | |
744 | * After writing out and waiting on the data, we check and advance the | |
745 | * f_wb_err cursor to the latest value, and return any errors detected there. | |
a862f68a MR |
746 | * |
747 | * Return: %0 on success, negative error code otherwise. | |
5660e13d JL |
748 | */ |
749 | int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) | |
750 | { | |
751 | int err = 0, err2; | |
752 | struct address_space *mapping = file->f_mapping; | |
753 | ||
9326c9b2 | 754 | if (mapping_needs_writeback(mapping)) { |
5660e13d JL |
755 | err = __filemap_fdatawrite_range(mapping, lstart, lend, |
756 | WB_SYNC_ALL); | |
757 | /* See comment of filemap_write_and_wait() */ | |
758 | if (err != -EIO) | |
759 | __filemap_fdatawait_range(mapping, lstart, lend); | |
760 | } | |
761 | err2 = file_check_and_advance_wb_err(file); | |
762 | if (!err) | |
763 | err = err2; | |
764 | return err; | |
765 | } | |
766 | EXPORT_SYMBOL(file_write_and_wait_range); | |
767 | ||
ef6a3c63 MS |
768 | /** |
769 | * replace_page_cache_page - replace a pagecache page with a new one | |
770 | * @old: page to be replaced | |
771 | * @new: page to replace with | |
772 | * @gfp_mask: allocation mode | |
773 | * | |
774 | * This function replaces a page in the pagecache with a new one. On | |
775 | * success it acquires the pagecache reference for the new page and | |
776 | * drops it for the old page. Both the old and new pages must be | |
777 | * locked. This function does not add the new page to the LRU, the | |
778 | * caller must do that. | |
779 | * | |
74d60958 | 780 | * The remove + add is atomic. This function cannot fail. |
a862f68a MR |
781 | * |
782 | * Return: %0 | |
ef6a3c63 MS |
783 | */ |
784 | int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) | |
785 | { | |
74d60958 MW |
786 | struct address_space *mapping = old->mapping; |
787 | void (*freepage)(struct page *) = mapping->a_ops->freepage; | |
788 | pgoff_t offset = old->index; | |
789 | XA_STATE(xas, &mapping->i_pages, offset); | |
790 | unsigned long flags; | |
ef6a3c63 | 791 | |
309381fe SL |
792 | VM_BUG_ON_PAGE(!PageLocked(old), old); |
793 | VM_BUG_ON_PAGE(!PageLocked(new), new); | |
794 | VM_BUG_ON_PAGE(new->mapping, new); | |
ef6a3c63 | 795 | |
74d60958 MW |
796 | get_page(new); |
797 | new->mapping = mapping; | |
798 | new->index = offset; | |
ef6a3c63 | 799 | |
74d60958 MW |
800 | xas_lock_irqsave(&xas, flags); |
801 | xas_store(&xas, new); | |
4165b9b4 | 802 | |
74d60958 MW |
803 | old->mapping = NULL; |
804 | /* hugetlb pages do not participate in page cache accounting. */ | |
805 | if (!PageHuge(old)) | |
806 | __dec_node_page_state(new, NR_FILE_PAGES); | |
807 | if (!PageHuge(new)) | |
808 | __inc_node_page_state(new, NR_FILE_PAGES); | |
809 | if (PageSwapBacked(old)) | |
810 | __dec_node_page_state(new, NR_SHMEM); | |
811 | if (PageSwapBacked(new)) | |
812 | __inc_node_page_state(new, NR_SHMEM); | |
813 | xas_unlock_irqrestore(&xas, flags); | |
814 | mem_cgroup_migrate(old, new); | |
815 | if (freepage) | |
816 | freepage(old); | |
817 | put_page(old); | |
ef6a3c63 | 818 | |
74d60958 | 819 | return 0; |
ef6a3c63 MS |
820 | } |
821 | EXPORT_SYMBOL_GPL(replace_page_cache_page); | |
822 | ||
a528910e JW |
823 | static int __add_to_page_cache_locked(struct page *page, |
824 | struct address_space *mapping, | |
825 | pgoff_t offset, gfp_t gfp_mask, | |
826 | void **shadowp) | |
1da177e4 | 827 | { |
74d60958 | 828 | XA_STATE(xas, &mapping->i_pages, offset); |
00501b53 JW |
829 | int huge = PageHuge(page); |
830 | struct mem_cgroup *memcg; | |
e286781d | 831 | int error; |
74d60958 | 832 | void *old; |
e286781d | 833 | |
309381fe SL |
834 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
835 | VM_BUG_ON_PAGE(PageSwapBacked(page), page); | |
74d60958 | 836 | mapping_set_update(&xas, mapping); |
e286781d | 837 | |
00501b53 JW |
838 | if (!huge) { |
839 | error = mem_cgroup_try_charge(page, current->mm, | |
f627c2f5 | 840 | gfp_mask, &memcg, false); |
00501b53 JW |
841 | if (error) |
842 | return error; | |
843 | } | |
1da177e4 | 844 | |
09cbfeaf | 845 | get_page(page); |
66a0c8ee KS |
846 | page->mapping = mapping; |
847 | page->index = offset; | |
848 | ||
74d60958 MW |
849 | do { |
850 | xas_lock_irq(&xas); | |
851 | old = xas_load(&xas); | |
852 | if (old && !xa_is_value(old)) | |
853 | xas_set_err(&xas, -EEXIST); | |
854 | xas_store(&xas, page); | |
855 | if (xas_error(&xas)) | |
856 | goto unlock; | |
857 | ||
858 | if (xa_is_value(old)) { | |
859 | mapping->nrexceptional--; | |
860 | if (shadowp) | |
861 | *shadowp = old; | |
862 | } | |
863 | mapping->nrpages++; | |
864 | ||
865 | /* hugetlb pages do not participate in page cache accounting */ | |
866 | if (!huge) | |
867 | __inc_node_page_state(page, NR_FILE_PAGES); | |
868 | unlock: | |
869 | xas_unlock_irq(&xas); | |
870 | } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK)); | |
871 | ||
872 | if (xas_error(&xas)) | |
873 | goto error; | |
4165b9b4 | 874 | |
00501b53 | 875 | if (!huge) |
f627c2f5 | 876 | mem_cgroup_commit_charge(page, memcg, false, false); |
66a0c8ee KS |
877 | trace_mm_filemap_add_to_page_cache(page); |
878 | return 0; | |
74d60958 | 879 | error: |
66a0c8ee KS |
880 | page->mapping = NULL; |
881 | /* Leave page->index set: truncation relies upon it */ | |
00501b53 | 882 | if (!huge) |
f627c2f5 | 883 | mem_cgroup_cancel_charge(page, memcg, false); |
09cbfeaf | 884 | put_page(page); |
74d60958 | 885 | return xas_error(&xas); |
1da177e4 | 886 | } |
cfcbfb13 | 887 | ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); |
a528910e JW |
888 | |
889 | /** | |
890 | * add_to_page_cache_locked - add a locked page to the pagecache | |
891 | * @page: page to add | |
892 | * @mapping: the page's address_space | |
893 | * @offset: page index | |
894 | * @gfp_mask: page allocation mode | |
895 | * | |
896 | * This function is used to add a page to the pagecache. It must be locked. | |
897 | * This function does not add the page to the LRU. The caller must do that. | |
a862f68a MR |
898 | * |
899 | * Return: %0 on success, negative error code otherwise. | |
a528910e JW |
900 | */ |
901 | int add_to_page_cache_locked(struct page *page, struct address_space *mapping, | |
902 | pgoff_t offset, gfp_t gfp_mask) | |
903 | { | |
904 | return __add_to_page_cache_locked(page, mapping, offset, | |
905 | gfp_mask, NULL); | |
906 | } | |
e286781d | 907 | EXPORT_SYMBOL(add_to_page_cache_locked); |
1da177e4 LT |
908 | |
909 | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, | |
6daa0e28 | 910 | pgoff_t offset, gfp_t gfp_mask) |
1da177e4 | 911 | { |
a528910e | 912 | void *shadow = NULL; |
4f98a2fe RR |
913 | int ret; |
914 | ||
48c935ad | 915 | __SetPageLocked(page); |
a528910e JW |
916 | ret = __add_to_page_cache_locked(page, mapping, offset, |
917 | gfp_mask, &shadow); | |
918 | if (unlikely(ret)) | |
48c935ad | 919 | __ClearPageLocked(page); |
a528910e JW |
920 | else { |
921 | /* | |
922 | * The page might have been evicted from cache only | |
923 | * recently, in which case it should be activated like | |
924 | * any other repeatedly accessed page. | |
f0281a00 RR |
925 | * The exception is pages getting rewritten; evicting other |
926 | * data from the working set, only to cache data that will | |
927 | * get overwritten with something else, is a waste of memory. | |
a528910e | 928 | */ |
1899ad18 JW |
929 | WARN_ON_ONCE(PageActive(page)); |
930 | if (!(gfp_mask & __GFP_WRITE) && shadow) | |
931 | workingset_refault(page, shadow); | |
a528910e JW |
932 | lru_cache_add(page); |
933 | } | |
1da177e4 LT |
934 | return ret; |
935 | } | |
18bc0bbd | 936 | EXPORT_SYMBOL_GPL(add_to_page_cache_lru); |
1da177e4 | 937 | |
44110fe3 | 938 | #ifdef CONFIG_NUMA |
2ae88149 | 939 | struct page *__page_cache_alloc(gfp_t gfp) |
44110fe3 | 940 | { |
c0ff7453 MX |
941 | int n; |
942 | struct page *page; | |
943 | ||
44110fe3 | 944 | if (cpuset_do_page_mem_spread()) { |
cc9a6c87 MG |
945 | unsigned int cpuset_mems_cookie; |
946 | do { | |
d26914d1 | 947 | cpuset_mems_cookie = read_mems_allowed_begin(); |
cc9a6c87 | 948 | n = cpuset_mem_spread_node(); |
96db800f | 949 | page = __alloc_pages_node(n, gfp, 0); |
d26914d1 | 950 | } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); |
cc9a6c87 | 951 | |
c0ff7453 | 952 | return page; |
44110fe3 | 953 | } |
2ae88149 | 954 | return alloc_pages(gfp, 0); |
44110fe3 | 955 | } |
2ae88149 | 956 | EXPORT_SYMBOL(__page_cache_alloc); |
44110fe3 PJ |
957 | #endif |
958 | ||
1da177e4 LT |
959 | /* |
960 | * In order to wait for pages to become available there must be | |
961 | * waitqueues associated with pages. By using a hash table of | |
962 | * waitqueues where the bucket discipline is to maintain all | |
963 | * waiters on the same queue and wake all when any of the pages | |
964 | * become available, and for the woken contexts to check to be | |
965 | * sure the appropriate page became available, this saves space | |
966 | * at a cost of "thundering herd" phenomena during rare hash | |
967 | * collisions. | |
968 | */ | |
62906027 NP |
969 | #define PAGE_WAIT_TABLE_BITS 8 |
970 | #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) | |
971 | static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; | |
972 | ||
973 | static wait_queue_head_t *page_waitqueue(struct page *page) | |
1da177e4 | 974 | { |
62906027 | 975 | return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; |
1da177e4 | 976 | } |
1da177e4 | 977 | |
62906027 | 978 | void __init pagecache_init(void) |
1da177e4 | 979 | { |
62906027 | 980 | int i; |
1da177e4 | 981 | |
62906027 NP |
982 | for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) |
983 | init_waitqueue_head(&page_wait_table[i]); | |
984 | ||
985 | page_writeback_init(); | |
1da177e4 | 986 | } |
1da177e4 | 987 | |
3510ca20 | 988 | /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ |
62906027 NP |
989 | struct wait_page_key { |
990 | struct page *page; | |
991 | int bit_nr; | |
992 | int page_match; | |
993 | }; | |
994 | ||
995 | struct wait_page_queue { | |
996 | struct page *page; | |
997 | int bit_nr; | |
ac6424b9 | 998 | wait_queue_entry_t wait; |
62906027 NP |
999 | }; |
1000 | ||
ac6424b9 | 1001 | static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) |
f62e00cc | 1002 | { |
62906027 NP |
1003 | struct wait_page_key *key = arg; |
1004 | struct wait_page_queue *wait_page | |
1005 | = container_of(wait, struct wait_page_queue, wait); | |
1006 | ||
1007 | if (wait_page->page != key->page) | |
1008 | return 0; | |
1009 | key->page_match = 1; | |
f62e00cc | 1010 | |
62906027 NP |
1011 | if (wait_page->bit_nr != key->bit_nr) |
1012 | return 0; | |
3510ca20 | 1013 | |
9a1ea439 HD |
1014 | /* |
1015 | * Stop walking if it's locked. | |
1016 | * Is this safe if put_and_wait_on_page_locked() is in use? | |
1017 | * Yes: the waker must hold a reference to this page, and if PG_locked | |
1018 | * has now already been set by another task, that task must also hold | |
1019 | * a reference to the *same usage* of this page; so there is no need | |
1020 | * to walk on to wake even the put_and_wait_on_page_locked() callers. | |
1021 | */ | |
62906027 | 1022 | if (test_bit(key->bit_nr, &key->page->flags)) |
3510ca20 | 1023 | return -1; |
f62e00cc | 1024 | |
62906027 | 1025 | return autoremove_wake_function(wait, mode, sync, key); |
f62e00cc KM |
1026 | } |
1027 | ||
74d81bfa | 1028 | static void wake_up_page_bit(struct page *page, int bit_nr) |
cbbce822 | 1029 | { |
62906027 NP |
1030 | wait_queue_head_t *q = page_waitqueue(page); |
1031 | struct wait_page_key key; | |
1032 | unsigned long flags; | |
11a19c7b | 1033 | wait_queue_entry_t bookmark; |
cbbce822 | 1034 | |
62906027 NP |
1035 | key.page = page; |
1036 | key.bit_nr = bit_nr; | |
1037 | key.page_match = 0; | |
1038 | ||
11a19c7b TC |
1039 | bookmark.flags = 0; |
1040 | bookmark.private = NULL; | |
1041 | bookmark.func = NULL; | |
1042 | INIT_LIST_HEAD(&bookmark.entry); | |
1043 | ||
62906027 | 1044 | spin_lock_irqsave(&q->lock, flags); |
11a19c7b TC |
1045 | __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); |
1046 | ||
1047 | while (bookmark.flags & WQ_FLAG_BOOKMARK) { | |
1048 | /* | |
1049 | * Take a breather from holding the lock, | |
1050 | * allow pages that finish wake up asynchronously | |
1051 | * to acquire the lock and remove themselves | |
1052 | * from wait queue | |
1053 | */ | |
1054 | spin_unlock_irqrestore(&q->lock, flags); | |
1055 | cpu_relax(); | |
1056 | spin_lock_irqsave(&q->lock, flags); | |
1057 | __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); | |
1058 | } | |
1059 | ||
62906027 NP |
1060 | /* |
1061 | * It is possible for other pages to have collided on the waitqueue | |
1062 | * hash, so in that case check for a page match. That prevents a long- | |
1063 | * term waiter | |
1064 | * | |
1065 | * It is still possible to miss a case here, when we woke page waiters | |
1066 | * and removed them from the waitqueue, but there are still other | |
1067 | * page waiters. | |
1068 | */ | |
1069 | if (!waitqueue_active(q) || !key.page_match) { | |
1070 | ClearPageWaiters(page); | |
1071 | /* | |
1072 | * It's possible to miss clearing Waiters here, when we woke | |
1073 | * our page waiters, but the hashed waitqueue has waiters for | |
1074 | * other pages on it. | |
1075 | * | |
1076 | * That's okay, it's a rare case. The next waker will clear it. | |
1077 | */ | |
1078 | } | |
1079 | spin_unlock_irqrestore(&q->lock, flags); | |
1080 | } | |
74d81bfa NP |
1081 | |
1082 | static void wake_up_page(struct page *page, int bit) | |
1083 | { | |
1084 | if (!PageWaiters(page)) | |
1085 | return; | |
1086 | wake_up_page_bit(page, bit); | |
1087 | } | |
62906027 | 1088 | |
9a1ea439 HD |
1089 | /* |
1090 | * A choice of three behaviors for wait_on_page_bit_common(): | |
1091 | */ | |
1092 | enum behavior { | |
1093 | EXCLUSIVE, /* Hold ref to page and take the bit when woken, like | |
1094 | * __lock_page() waiting on then setting PG_locked. | |
1095 | */ | |
1096 | SHARED, /* Hold ref to page and check the bit when woken, like | |
1097 | * wait_on_page_writeback() waiting on PG_writeback. | |
1098 | */ | |
1099 | DROP, /* Drop ref to page before wait, no check when woken, | |
1100 | * like put_and_wait_on_page_locked() on PG_locked. | |
1101 | */ | |
1102 | }; | |
1103 | ||
62906027 | 1104 | static inline int wait_on_page_bit_common(wait_queue_head_t *q, |
9a1ea439 | 1105 | struct page *page, int bit_nr, int state, enum behavior behavior) |
62906027 NP |
1106 | { |
1107 | struct wait_page_queue wait_page; | |
ac6424b9 | 1108 | wait_queue_entry_t *wait = &wait_page.wait; |
9a1ea439 | 1109 | bool bit_is_set; |
b1d29ba8 | 1110 | bool thrashing = false; |
9a1ea439 | 1111 | bool delayacct = false; |
eb414681 | 1112 | unsigned long pflags; |
62906027 NP |
1113 | int ret = 0; |
1114 | ||
eb414681 | 1115 | if (bit_nr == PG_locked && |
b1d29ba8 | 1116 | !PageUptodate(page) && PageWorkingset(page)) { |
9a1ea439 | 1117 | if (!PageSwapBacked(page)) { |
eb414681 | 1118 | delayacct_thrashing_start(); |
9a1ea439 HD |
1119 | delayacct = true; |
1120 | } | |
eb414681 | 1121 | psi_memstall_enter(&pflags); |
b1d29ba8 JW |
1122 | thrashing = true; |
1123 | } | |
1124 | ||
62906027 | 1125 | init_wait(wait); |
9a1ea439 | 1126 | wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0; |
62906027 NP |
1127 | wait->func = wake_page_function; |
1128 | wait_page.page = page; | |
1129 | wait_page.bit_nr = bit_nr; | |
1130 | ||
1131 | for (;;) { | |
1132 | spin_lock_irq(&q->lock); | |
1133 | ||
2055da97 | 1134 | if (likely(list_empty(&wait->entry))) { |
3510ca20 | 1135 | __add_wait_queue_entry_tail(q, wait); |
62906027 NP |
1136 | SetPageWaiters(page); |
1137 | } | |
1138 | ||
1139 | set_current_state(state); | |
1140 | ||
1141 | spin_unlock_irq(&q->lock); | |
1142 | ||
9a1ea439 HD |
1143 | bit_is_set = test_bit(bit_nr, &page->flags); |
1144 | if (behavior == DROP) | |
1145 | put_page(page); | |
1146 | ||
1147 | if (likely(bit_is_set)) | |
62906027 | 1148 | io_schedule(); |
62906027 | 1149 | |
9a1ea439 | 1150 | if (behavior == EXCLUSIVE) { |
62906027 NP |
1151 | if (!test_and_set_bit_lock(bit_nr, &page->flags)) |
1152 | break; | |
9a1ea439 | 1153 | } else if (behavior == SHARED) { |
62906027 NP |
1154 | if (!test_bit(bit_nr, &page->flags)) |
1155 | break; | |
1156 | } | |
a8b169af | 1157 | |
fa45f116 | 1158 | if (signal_pending_state(state, current)) { |
a8b169af LT |
1159 | ret = -EINTR; |
1160 | break; | |
1161 | } | |
9a1ea439 HD |
1162 | |
1163 | if (behavior == DROP) { | |
1164 | /* | |
1165 | * We can no longer safely access page->flags: | |
1166 | * even if CONFIG_MEMORY_HOTREMOVE is not enabled, | |
1167 | * there is a risk of waiting forever on a page reused | |
1168 | * for something that keeps it locked indefinitely. | |
1169 | * But best check for -EINTR above before breaking. | |
1170 | */ | |
1171 | break; | |
1172 | } | |
62906027 NP |
1173 | } |
1174 | ||
1175 | finish_wait(q, wait); | |
1176 | ||
eb414681 | 1177 | if (thrashing) { |
9a1ea439 | 1178 | if (delayacct) |
eb414681 JW |
1179 | delayacct_thrashing_end(); |
1180 | psi_memstall_leave(&pflags); | |
1181 | } | |
b1d29ba8 | 1182 | |
62906027 NP |
1183 | /* |
1184 | * A signal could leave PageWaiters set. Clearing it here if | |
1185 | * !waitqueue_active would be possible (by open-coding finish_wait), | |
1186 | * but still fail to catch it in the case of wait hash collision. We | |
1187 | * already can fail to clear wait hash collision cases, so don't | |
1188 | * bother with signals either. | |
1189 | */ | |
1190 | ||
1191 | return ret; | |
1192 | } | |
1193 | ||
1194 | void wait_on_page_bit(struct page *page, int bit_nr) | |
1195 | { | |
1196 | wait_queue_head_t *q = page_waitqueue(page); | |
9a1ea439 | 1197 | wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); |
62906027 NP |
1198 | } |
1199 | EXPORT_SYMBOL(wait_on_page_bit); | |
1200 | ||
1201 | int wait_on_page_bit_killable(struct page *page, int bit_nr) | |
1202 | { | |
1203 | wait_queue_head_t *q = page_waitqueue(page); | |
9a1ea439 | 1204 | return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); |
cbbce822 | 1205 | } |
4343d008 | 1206 | EXPORT_SYMBOL(wait_on_page_bit_killable); |
cbbce822 | 1207 | |
9a1ea439 HD |
1208 | /** |
1209 | * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked | |
1210 | * @page: The page to wait for. | |
1211 | * | |
1212 | * The caller should hold a reference on @page. They expect the page to | |
1213 | * become unlocked relatively soon, but do not wish to hold up migration | |
1214 | * (for example) by holding the reference while waiting for the page to | |
1215 | * come unlocked. After this function returns, the caller should not | |
1216 | * dereference @page. | |
1217 | */ | |
1218 | void put_and_wait_on_page_locked(struct page *page) | |
1219 | { | |
1220 | wait_queue_head_t *q; | |
1221 | ||
1222 | page = compound_head(page); | |
1223 | q = page_waitqueue(page); | |
1224 | wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP); | |
1225 | } | |
1226 | ||
385e1ca5 DH |
1227 | /** |
1228 | * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue | |
697f619f RD |
1229 | * @page: Page defining the wait queue of interest |
1230 | * @waiter: Waiter to add to the queue | |
385e1ca5 DH |
1231 | * |
1232 | * Add an arbitrary @waiter to the wait queue for the nominated @page. | |
1233 | */ | |
ac6424b9 | 1234 | void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) |
385e1ca5 DH |
1235 | { |
1236 | wait_queue_head_t *q = page_waitqueue(page); | |
1237 | unsigned long flags; | |
1238 | ||
1239 | spin_lock_irqsave(&q->lock, flags); | |
9c3a815f | 1240 | __add_wait_queue_entry_tail(q, waiter); |
62906027 | 1241 | SetPageWaiters(page); |
385e1ca5 DH |
1242 | spin_unlock_irqrestore(&q->lock, flags); |
1243 | } | |
1244 | EXPORT_SYMBOL_GPL(add_page_wait_queue); | |
1245 | ||
b91e1302 LT |
1246 | #ifndef clear_bit_unlock_is_negative_byte |
1247 | ||
1248 | /* | |
1249 | * PG_waiters is the high bit in the same byte as PG_lock. | |
1250 | * | |
1251 | * On x86 (and on many other architectures), we can clear PG_lock and | |
1252 | * test the sign bit at the same time. But if the architecture does | |
1253 | * not support that special operation, we just do this all by hand | |
1254 | * instead. | |
1255 | * | |
1256 | * The read of PG_waiters has to be after (or concurrently with) PG_locked | |
1257 | * being cleared, but a memory barrier should be unneccssary since it is | |
1258 | * in the same byte as PG_locked. | |
1259 | */ | |
1260 | static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) | |
1261 | { | |
1262 | clear_bit_unlock(nr, mem); | |
1263 | /* smp_mb__after_atomic(); */ | |
98473f9f | 1264 | return test_bit(PG_waiters, mem); |
b91e1302 LT |
1265 | } |
1266 | ||
1267 | #endif | |
1268 | ||
1da177e4 | 1269 | /** |
485bb99b | 1270 | * unlock_page - unlock a locked page |
1da177e4 LT |
1271 | * @page: the page |
1272 | * | |
1273 | * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). | |
1274 | * Also wakes sleepers in wait_on_page_writeback() because the wakeup | |
da3dae54 | 1275 | * mechanism between PageLocked pages and PageWriteback pages is shared. |
1da177e4 LT |
1276 | * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. |
1277 | * | |
b91e1302 LT |
1278 | * Note that this depends on PG_waiters being the sign bit in the byte |
1279 | * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to | |
1280 | * clear the PG_locked bit and test PG_waiters at the same time fairly | |
1281 | * portably (architectures that do LL/SC can test any bit, while x86 can | |
1282 | * test the sign bit). | |
1da177e4 | 1283 | */ |
920c7a5d | 1284 | void unlock_page(struct page *page) |
1da177e4 | 1285 | { |
b91e1302 | 1286 | BUILD_BUG_ON(PG_waiters != 7); |
48c935ad | 1287 | page = compound_head(page); |
309381fe | 1288 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
b91e1302 LT |
1289 | if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) |
1290 | wake_up_page_bit(page, PG_locked); | |
1da177e4 LT |
1291 | } |
1292 | EXPORT_SYMBOL(unlock_page); | |
1293 | ||
485bb99b RD |
1294 | /** |
1295 | * end_page_writeback - end writeback against a page | |
1296 | * @page: the page | |
1da177e4 LT |
1297 | */ |
1298 | void end_page_writeback(struct page *page) | |
1299 | { | |
888cf2db MG |
1300 | /* |
1301 | * TestClearPageReclaim could be used here but it is an atomic | |
1302 | * operation and overkill in this particular case. Failing to | |
1303 | * shuffle a page marked for immediate reclaim is too mild to | |
1304 | * justify taking an atomic operation penalty at the end of | |
1305 | * ever page writeback. | |
1306 | */ | |
1307 | if (PageReclaim(page)) { | |
1308 | ClearPageReclaim(page); | |
ac6aadb2 | 1309 | rotate_reclaimable_page(page); |
888cf2db | 1310 | } |
ac6aadb2 MS |
1311 | |
1312 | if (!test_clear_page_writeback(page)) | |
1313 | BUG(); | |
1314 | ||
4e857c58 | 1315 | smp_mb__after_atomic(); |
1da177e4 LT |
1316 | wake_up_page(page, PG_writeback); |
1317 | } | |
1318 | EXPORT_SYMBOL(end_page_writeback); | |
1319 | ||
57d99845 MW |
1320 | /* |
1321 | * After completing I/O on a page, call this routine to update the page | |
1322 | * flags appropriately | |
1323 | */ | |
c11f0c0b | 1324 | void page_endio(struct page *page, bool is_write, int err) |
57d99845 | 1325 | { |
c11f0c0b | 1326 | if (!is_write) { |
57d99845 MW |
1327 | if (!err) { |
1328 | SetPageUptodate(page); | |
1329 | } else { | |
1330 | ClearPageUptodate(page); | |
1331 | SetPageError(page); | |
1332 | } | |
1333 | unlock_page(page); | |
abf54548 | 1334 | } else { |
57d99845 | 1335 | if (err) { |
dd8416c4 MK |
1336 | struct address_space *mapping; |
1337 | ||
57d99845 | 1338 | SetPageError(page); |
dd8416c4 MK |
1339 | mapping = page_mapping(page); |
1340 | if (mapping) | |
1341 | mapping_set_error(mapping, err); | |
57d99845 MW |
1342 | } |
1343 | end_page_writeback(page); | |
1344 | } | |
1345 | } | |
1346 | EXPORT_SYMBOL_GPL(page_endio); | |
1347 | ||
485bb99b RD |
1348 | /** |
1349 | * __lock_page - get a lock on the page, assuming we need to sleep to get it | |
87066755 | 1350 | * @__page: the page to lock |
1da177e4 | 1351 | */ |
62906027 | 1352 | void __lock_page(struct page *__page) |
1da177e4 | 1353 | { |
62906027 NP |
1354 | struct page *page = compound_head(__page); |
1355 | wait_queue_head_t *q = page_waitqueue(page); | |
9a1ea439 HD |
1356 | wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, |
1357 | EXCLUSIVE); | |
1da177e4 LT |
1358 | } |
1359 | EXPORT_SYMBOL(__lock_page); | |
1360 | ||
62906027 | 1361 | int __lock_page_killable(struct page *__page) |
2687a356 | 1362 | { |
62906027 NP |
1363 | struct page *page = compound_head(__page); |
1364 | wait_queue_head_t *q = page_waitqueue(page); | |
9a1ea439 HD |
1365 | return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, |
1366 | EXCLUSIVE); | |
2687a356 | 1367 | } |
18bc0bbd | 1368 | EXPORT_SYMBOL_GPL(__lock_page_killable); |
2687a356 | 1369 | |
9a95f3cf PC |
1370 | /* |
1371 | * Return values: | |
1372 | * 1 - page is locked; mmap_sem is still held. | |
1373 | * 0 - page is not locked. | |
1374 | * mmap_sem has been released (up_read()), unless flags had both | |
1375 | * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in | |
1376 | * which case mmap_sem is still held. | |
1377 | * | |
1378 | * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 | |
1379 | * with the page locked and the mmap_sem unperturbed. | |
1380 | */ | |
d065bd81 ML |
1381 | int __lock_page_or_retry(struct page *page, struct mm_struct *mm, |
1382 | unsigned int flags) | |
1383 | { | |
37b23e05 KM |
1384 | if (flags & FAULT_FLAG_ALLOW_RETRY) { |
1385 | /* | |
1386 | * CAUTION! In this case, mmap_sem is not released | |
1387 | * even though return 0. | |
1388 | */ | |
1389 | if (flags & FAULT_FLAG_RETRY_NOWAIT) | |
1390 | return 0; | |
1391 | ||
1392 | up_read(&mm->mmap_sem); | |
1393 | if (flags & FAULT_FLAG_KILLABLE) | |
1394 | wait_on_page_locked_killable(page); | |
1395 | else | |
318b275f | 1396 | wait_on_page_locked(page); |
d065bd81 | 1397 | return 0; |
37b23e05 KM |
1398 | } else { |
1399 | if (flags & FAULT_FLAG_KILLABLE) { | |
1400 | int ret; | |
1401 | ||
1402 | ret = __lock_page_killable(page); | |
1403 | if (ret) { | |
1404 | up_read(&mm->mmap_sem); | |
1405 | return 0; | |
1406 | } | |
1407 | } else | |
1408 | __lock_page(page); | |
1409 | return 1; | |
d065bd81 ML |
1410 | } |
1411 | } | |
1412 | ||
e7b563bb | 1413 | /** |
0d3f9296 MW |
1414 | * page_cache_next_miss() - Find the next gap in the page cache. |
1415 | * @mapping: Mapping. | |
1416 | * @index: Index. | |
1417 | * @max_scan: Maximum range to search. | |
e7b563bb | 1418 | * |
0d3f9296 MW |
1419 | * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the |
1420 | * gap with the lowest index. | |
e7b563bb | 1421 | * |
0d3f9296 MW |
1422 | * This function may be called under the rcu_read_lock. However, this will |
1423 | * not atomically search a snapshot of the cache at a single point in time. | |
1424 | * For example, if a gap is created at index 5, then subsequently a gap is | |
1425 | * created at index 10, page_cache_next_miss covering both indices may | |
1426 | * return 10 if called under the rcu_read_lock. | |
e7b563bb | 1427 | * |
0d3f9296 MW |
1428 | * Return: The index of the gap if found, otherwise an index outside the |
1429 | * range specified (in which case 'return - index >= max_scan' will be true). | |
1430 | * In the rare case of index wrap-around, 0 will be returned. | |
e7b563bb | 1431 | */ |
0d3f9296 | 1432 | pgoff_t page_cache_next_miss(struct address_space *mapping, |
e7b563bb JW |
1433 | pgoff_t index, unsigned long max_scan) |
1434 | { | |
0d3f9296 | 1435 | XA_STATE(xas, &mapping->i_pages, index); |
e7b563bb | 1436 | |
0d3f9296 MW |
1437 | while (max_scan--) { |
1438 | void *entry = xas_next(&xas); | |
1439 | if (!entry || xa_is_value(entry)) | |
e7b563bb | 1440 | break; |
0d3f9296 | 1441 | if (xas.xa_index == 0) |
e7b563bb JW |
1442 | break; |
1443 | } | |
1444 | ||
0d3f9296 | 1445 | return xas.xa_index; |
e7b563bb | 1446 | } |
0d3f9296 | 1447 | EXPORT_SYMBOL(page_cache_next_miss); |
e7b563bb JW |
1448 | |
1449 | /** | |
2346a560 | 1450 | * page_cache_prev_miss() - Find the previous gap in the page cache. |
0d3f9296 MW |
1451 | * @mapping: Mapping. |
1452 | * @index: Index. | |
1453 | * @max_scan: Maximum range to search. | |
e7b563bb | 1454 | * |
0d3f9296 MW |
1455 | * Search the range [max(index - max_scan + 1, 0), index] for the |
1456 | * gap with the highest index. | |
e7b563bb | 1457 | * |
0d3f9296 MW |
1458 | * This function may be called under the rcu_read_lock. However, this will |
1459 | * not atomically search a snapshot of the cache at a single point in time. | |
1460 | * For example, if a gap is created at index 10, then subsequently a gap is | |
1461 | * created at index 5, page_cache_prev_miss() covering both indices may | |
1462 | * return 5 if called under the rcu_read_lock. | |
e7b563bb | 1463 | * |
0d3f9296 MW |
1464 | * Return: The index of the gap if found, otherwise an index outside the |
1465 | * range specified (in which case 'index - return >= max_scan' will be true). | |
1466 | * In the rare case of wrap-around, ULONG_MAX will be returned. | |
e7b563bb | 1467 | */ |
0d3f9296 | 1468 | pgoff_t page_cache_prev_miss(struct address_space *mapping, |
e7b563bb JW |
1469 | pgoff_t index, unsigned long max_scan) |
1470 | { | |
0d3f9296 | 1471 | XA_STATE(xas, &mapping->i_pages, index); |
e7b563bb | 1472 | |
0d3f9296 MW |
1473 | while (max_scan--) { |
1474 | void *entry = xas_prev(&xas); | |
1475 | if (!entry || xa_is_value(entry)) | |
e7b563bb | 1476 | break; |
0d3f9296 | 1477 | if (xas.xa_index == ULONG_MAX) |
e7b563bb JW |
1478 | break; |
1479 | } | |
1480 | ||
0d3f9296 | 1481 | return xas.xa_index; |
e7b563bb | 1482 | } |
0d3f9296 | 1483 | EXPORT_SYMBOL(page_cache_prev_miss); |
e7b563bb | 1484 | |
485bb99b | 1485 | /** |
0cd6144a | 1486 | * find_get_entry - find and get a page cache entry |
485bb99b | 1487 | * @mapping: the address_space to search |
0cd6144a JW |
1488 | * @offset: the page cache index |
1489 | * | |
1490 | * Looks up the page cache slot at @mapping & @offset. If there is a | |
1491 | * page cache page, it is returned with an increased refcount. | |
485bb99b | 1492 | * |
139b6a6f JW |
1493 | * If the slot holds a shadow entry of a previously evicted page, or a |
1494 | * swap entry from shmem/tmpfs, it is returned. | |
0cd6144a | 1495 | * |
a862f68a | 1496 | * Return: the found page or shadow entry, %NULL if nothing is found. |
1da177e4 | 1497 | */ |
0cd6144a | 1498 | struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) |
1da177e4 | 1499 | { |
4c7472c0 | 1500 | XA_STATE(xas, &mapping->i_pages, offset); |
5fd4ca2d | 1501 | struct page *page; |
1da177e4 | 1502 | |
a60637c8 NP |
1503 | rcu_read_lock(); |
1504 | repeat: | |
4c7472c0 MW |
1505 | xas_reset(&xas); |
1506 | page = xas_load(&xas); | |
1507 | if (xas_retry(&xas, page)) | |
1508 | goto repeat; | |
1509 | /* | |
1510 | * A shadow entry of a recently evicted page, or a swap entry from | |
1511 | * shmem/tmpfs. Return it without attempting to raise page count. | |
1512 | */ | |
1513 | if (!page || xa_is_value(page)) | |
1514 | goto out; | |
83929372 | 1515 | |
5fd4ca2d | 1516 | if (!page_cache_get_speculative(page)) |
4c7472c0 | 1517 | goto repeat; |
83929372 | 1518 | |
4c7472c0 | 1519 | /* |
5fd4ca2d | 1520 | * Has the page moved or been split? |
4c7472c0 MW |
1521 | * This is part of the lockless pagecache protocol. See |
1522 | * include/linux/pagemap.h for details. | |
1523 | */ | |
1524 | if (unlikely(page != xas_reload(&xas))) { | |
5fd4ca2d | 1525 | put_page(page); |
4c7472c0 | 1526 | goto repeat; |
a60637c8 | 1527 | } |
5fd4ca2d | 1528 | page = find_subpage(page, offset); |
27d20fdd | 1529 | out: |
a60637c8 NP |
1530 | rcu_read_unlock(); |
1531 | ||
1da177e4 LT |
1532 | return page; |
1533 | } | |
0cd6144a | 1534 | EXPORT_SYMBOL(find_get_entry); |
1da177e4 | 1535 | |
0cd6144a JW |
1536 | /** |
1537 | * find_lock_entry - locate, pin and lock a page cache entry | |
1538 | * @mapping: the address_space to search | |
1539 | * @offset: the page cache index | |
1540 | * | |
1541 | * Looks up the page cache slot at @mapping & @offset. If there is a | |
1542 | * page cache page, it is returned locked and with an increased | |
1543 | * refcount. | |
1544 | * | |
139b6a6f JW |
1545 | * If the slot holds a shadow entry of a previously evicted page, or a |
1546 | * swap entry from shmem/tmpfs, it is returned. | |
0cd6144a | 1547 | * |
0cd6144a | 1548 | * find_lock_entry() may sleep. |
a862f68a MR |
1549 | * |
1550 | * Return: the found page or shadow entry, %NULL if nothing is found. | |
0cd6144a JW |
1551 | */ |
1552 | struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) | |
1da177e4 LT |
1553 | { |
1554 | struct page *page; | |
1555 | ||
1da177e4 | 1556 | repeat: |
0cd6144a | 1557 | page = find_get_entry(mapping, offset); |
4c7472c0 | 1558 | if (page && !xa_is_value(page)) { |
a60637c8 NP |
1559 | lock_page(page); |
1560 | /* Has the page been truncated? */ | |
83929372 | 1561 | if (unlikely(page_mapping(page) != mapping)) { |
a60637c8 | 1562 | unlock_page(page); |
09cbfeaf | 1563 | put_page(page); |
a60637c8 | 1564 | goto repeat; |
1da177e4 | 1565 | } |
83929372 | 1566 | VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); |
1da177e4 | 1567 | } |
1da177e4 LT |
1568 | return page; |
1569 | } | |
0cd6144a JW |
1570 | EXPORT_SYMBOL(find_lock_entry); |
1571 | ||
1572 | /** | |
2457aec6 | 1573 | * pagecache_get_page - find and get a page reference |
0cd6144a JW |
1574 | * @mapping: the address_space to search |
1575 | * @offset: the page index | |
2457aec6 | 1576 | * @fgp_flags: PCG flags |
45f87de5 | 1577 | * @gfp_mask: gfp mask to use for the page cache data page allocation |
0cd6144a | 1578 | * |
2457aec6 | 1579 | * Looks up the page cache slot at @mapping & @offset. |
1da177e4 | 1580 | * |
75325189 | 1581 | * PCG flags modify how the page is returned. |
0cd6144a | 1582 | * |
0e056eb5 MCC |
1583 | * @fgp_flags can be: |
1584 | * | |
1585 | * - FGP_ACCESSED: the page will be marked accessed | |
1586 | * - FGP_LOCK: Page is return locked | |
1587 | * - FGP_CREAT: If page is not present then a new page is allocated using | |
1588 | * @gfp_mask and added to the page cache and the VM's LRU | |
1589 | * list. The page is returned locked and with an increased | |
a862f68a | 1590 | * refcount. |
a75d4c33 JB |
1591 | * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do |
1592 | * its own locking dance if the page is already in cache, or unlock the page | |
1593 | * before returning if we had to add the page to pagecache. | |
1da177e4 | 1594 | * |
2457aec6 MG |
1595 | * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even |
1596 | * if the GFP flags specified for FGP_CREAT are atomic. | |
1da177e4 | 1597 | * |
2457aec6 | 1598 | * If there is a page cache page, it is returned with an increased refcount. |
a862f68a MR |
1599 | * |
1600 | * Return: the found page or %NULL otherwise. | |
1da177e4 | 1601 | */ |
2457aec6 | 1602 | struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, |
45f87de5 | 1603 | int fgp_flags, gfp_t gfp_mask) |
1da177e4 | 1604 | { |
eb2be189 | 1605 | struct page *page; |
2457aec6 | 1606 | |
1da177e4 | 1607 | repeat: |
2457aec6 | 1608 | page = find_get_entry(mapping, offset); |
3159f943 | 1609 | if (xa_is_value(page)) |
2457aec6 MG |
1610 | page = NULL; |
1611 | if (!page) | |
1612 | goto no_page; | |
1613 | ||
1614 | if (fgp_flags & FGP_LOCK) { | |
1615 | if (fgp_flags & FGP_NOWAIT) { | |
1616 | if (!trylock_page(page)) { | |
09cbfeaf | 1617 | put_page(page); |
2457aec6 MG |
1618 | return NULL; |
1619 | } | |
1620 | } else { | |
1621 | lock_page(page); | |
1622 | } | |
1623 | ||
1624 | /* Has the page been truncated? */ | |
1625 | if (unlikely(page->mapping != mapping)) { | |
1626 | unlock_page(page); | |
09cbfeaf | 1627 | put_page(page); |
2457aec6 MG |
1628 | goto repeat; |
1629 | } | |
1630 | VM_BUG_ON_PAGE(page->index != offset, page); | |
1631 | } | |
1632 | ||
c16eb000 | 1633 | if (fgp_flags & FGP_ACCESSED) |
2457aec6 MG |
1634 | mark_page_accessed(page); |
1635 | ||
1636 | no_page: | |
1637 | if (!page && (fgp_flags & FGP_CREAT)) { | |
1638 | int err; | |
1639 | if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) | |
45f87de5 MH |
1640 | gfp_mask |= __GFP_WRITE; |
1641 | if (fgp_flags & FGP_NOFS) | |
1642 | gfp_mask &= ~__GFP_FS; | |
2457aec6 | 1643 | |
45f87de5 | 1644 | page = __page_cache_alloc(gfp_mask); |
eb2be189 NP |
1645 | if (!page) |
1646 | return NULL; | |
2457aec6 | 1647 | |
a75d4c33 | 1648 | if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) |
2457aec6 MG |
1649 | fgp_flags |= FGP_LOCK; |
1650 | ||
eb39d618 | 1651 | /* Init accessed so avoid atomic mark_page_accessed later */ |
2457aec6 | 1652 | if (fgp_flags & FGP_ACCESSED) |
eb39d618 | 1653 | __SetPageReferenced(page); |
2457aec6 | 1654 | |
abc1be13 | 1655 | err = add_to_page_cache_lru(page, mapping, offset, gfp_mask); |
eb2be189 | 1656 | if (unlikely(err)) { |
09cbfeaf | 1657 | put_page(page); |
eb2be189 NP |
1658 | page = NULL; |
1659 | if (err == -EEXIST) | |
1660 | goto repeat; | |
1da177e4 | 1661 | } |
a75d4c33 JB |
1662 | |
1663 | /* | |
1664 | * add_to_page_cache_lru locks the page, and for mmap we expect | |
1665 | * an unlocked page. | |
1666 | */ | |
1667 | if (page && (fgp_flags & FGP_FOR_MMAP)) | |
1668 | unlock_page(page); | |
1da177e4 | 1669 | } |
2457aec6 | 1670 | |
1da177e4 LT |
1671 | return page; |
1672 | } | |
2457aec6 | 1673 | EXPORT_SYMBOL(pagecache_get_page); |
1da177e4 | 1674 | |
0cd6144a JW |
1675 | /** |
1676 | * find_get_entries - gang pagecache lookup | |
1677 | * @mapping: The address_space to search | |
1678 | * @start: The starting page cache index | |
1679 | * @nr_entries: The maximum number of entries | |
1680 | * @entries: Where the resulting entries are placed | |
1681 | * @indices: The cache indices corresponding to the entries in @entries | |
1682 | * | |
1683 | * find_get_entries() will search for and return a group of up to | |
1684 | * @nr_entries entries in the mapping. The entries are placed at | |
1685 | * @entries. find_get_entries() takes a reference against any actual | |
1686 | * pages it returns. | |
1687 | * | |
1688 | * The search returns a group of mapping-contiguous page cache entries | |
1689 | * with ascending indexes. There may be holes in the indices due to | |
1690 | * not-present pages. | |
1691 | * | |
139b6a6f JW |
1692 | * Any shadow entries of evicted pages, or swap entries from |
1693 | * shmem/tmpfs, are included in the returned array. | |
0cd6144a | 1694 | * |
a862f68a | 1695 | * Return: the number of pages and shadow entries which were found. |
0cd6144a JW |
1696 | */ |
1697 | unsigned find_get_entries(struct address_space *mapping, | |
1698 | pgoff_t start, unsigned int nr_entries, | |
1699 | struct page **entries, pgoff_t *indices) | |
1700 | { | |
f280bf09 MW |
1701 | XA_STATE(xas, &mapping->i_pages, start); |
1702 | struct page *page; | |
0cd6144a | 1703 | unsigned int ret = 0; |
0cd6144a JW |
1704 | |
1705 | if (!nr_entries) | |
1706 | return 0; | |
1707 | ||
1708 | rcu_read_lock(); | |
f280bf09 | 1709 | xas_for_each(&xas, page, ULONG_MAX) { |
f280bf09 | 1710 | if (xas_retry(&xas, page)) |
0cd6144a | 1711 | continue; |
f280bf09 MW |
1712 | /* |
1713 | * A shadow entry of a recently evicted page, a swap | |
1714 | * entry from shmem/tmpfs or a DAX entry. Return it | |
1715 | * without attempting to raise page count. | |
1716 | */ | |
1717 | if (xa_is_value(page)) | |
0cd6144a | 1718 | goto export; |
83929372 | 1719 | |
5fd4ca2d | 1720 | if (!page_cache_get_speculative(page)) |
f280bf09 | 1721 | goto retry; |
83929372 | 1722 | |
5fd4ca2d | 1723 | /* Has the page moved or been split? */ |
f280bf09 MW |
1724 | if (unlikely(page != xas_reload(&xas))) |
1725 | goto put_page; | |
5fd4ca2d | 1726 | page = find_subpage(page, xas.xa_index); |
f280bf09 | 1727 | |
0cd6144a | 1728 | export: |
f280bf09 | 1729 | indices[ret] = xas.xa_index; |
0cd6144a JW |
1730 | entries[ret] = page; |
1731 | if (++ret == nr_entries) | |
1732 | break; | |
f280bf09 MW |
1733 | continue; |
1734 | put_page: | |
5fd4ca2d | 1735 | put_page(page); |
f280bf09 MW |
1736 | retry: |
1737 | xas_reset(&xas); | |
0cd6144a JW |
1738 | } |
1739 | rcu_read_unlock(); | |
1740 | return ret; | |
1741 | } | |
1742 | ||
1da177e4 | 1743 | /** |
b947cee4 | 1744 | * find_get_pages_range - gang pagecache lookup |
1da177e4 LT |
1745 | * @mapping: The address_space to search |
1746 | * @start: The starting page index | |
b947cee4 | 1747 | * @end: The final page index (inclusive) |
1da177e4 LT |
1748 | * @nr_pages: The maximum number of pages |
1749 | * @pages: Where the resulting pages are placed | |
1750 | * | |
b947cee4 JK |
1751 | * find_get_pages_range() will search for and return a group of up to @nr_pages |
1752 | * pages in the mapping starting at index @start and up to index @end | |
1753 | * (inclusive). The pages are placed at @pages. find_get_pages_range() takes | |
1754 | * a reference against the returned pages. | |
1da177e4 LT |
1755 | * |
1756 | * The search returns a group of mapping-contiguous pages with ascending | |
1757 | * indexes. There may be holes in the indices due to not-present pages. | |
d72dc8a2 | 1758 | * We also update @start to index the next page for the traversal. |
1da177e4 | 1759 | * |
a862f68a MR |
1760 | * Return: the number of pages which were found. If this number is |
1761 | * smaller than @nr_pages, the end of specified range has been | |
b947cee4 | 1762 | * reached. |
1da177e4 | 1763 | */ |
b947cee4 JK |
1764 | unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, |
1765 | pgoff_t end, unsigned int nr_pages, | |
1766 | struct page **pages) | |
1da177e4 | 1767 | { |
fd1b3cee MW |
1768 | XA_STATE(xas, &mapping->i_pages, *start); |
1769 | struct page *page; | |
0fc9d104 KK |
1770 | unsigned ret = 0; |
1771 | ||
1772 | if (unlikely(!nr_pages)) | |
1773 | return 0; | |
a60637c8 NP |
1774 | |
1775 | rcu_read_lock(); | |
fd1b3cee | 1776 | xas_for_each(&xas, page, end) { |
fd1b3cee | 1777 | if (xas_retry(&xas, page)) |
a60637c8 | 1778 | continue; |
fd1b3cee MW |
1779 | /* Skip over shadow, swap and DAX entries */ |
1780 | if (xa_is_value(page)) | |
8079b1c8 | 1781 | continue; |
a60637c8 | 1782 | |
5fd4ca2d | 1783 | if (!page_cache_get_speculative(page)) |
fd1b3cee | 1784 | goto retry; |
83929372 | 1785 | |
5fd4ca2d | 1786 | /* Has the page moved or been split? */ |
fd1b3cee MW |
1787 | if (unlikely(page != xas_reload(&xas))) |
1788 | goto put_page; | |
1da177e4 | 1789 | |
5fd4ca2d | 1790 | pages[ret] = find_subpage(page, xas.xa_index); |
b947cee4 | 1791 | if (++ret == nr_pages) { |
5d3ee42f | 1792 | *start = xas.xa_index + 1; |
b947cee4 JK |
1793 | goto out; |
1794 | } | |
fd1b3cee MW |
1795 | continue; |
1796 | put_page: | |
5fd4ca2d | 1797 | put_page(page); |
fd1b3cee MW |
1798 | retry: |
1799 | xas_reset(&xas); | |
a60637c8 | 1800 | } |
5b280c0c | 1801 | |
b947cee4 JK |
1802 | /* |
1803 | * We come here when there is no page beyond @end. We take care to not | |
1804 | * overflow the index @start as it confuses some of the callers. This | |
fd1b3cee | 1805 | * breaks the iteration when there is a page at index -1 but that is |
b947cee4 JK |
1806 | * already broken anyway. |
1807 | */ | |
1808 | if (end == (pgoff_t)-1) | |
1809 | *start = (pgoff_t)-1; | |
1810 | else | |
1811 | *start = end + 1; | |
1812 | out: | |
a60637c8 | 1813 | rcu_read_unlock(); |
d72dc8a2 | 1814 | |
1da177e4 LT |
1815 | return ret; |
1816 | } | |
1817 | ||
ebf43500 JA |
1818 | /** |
1819 | * find_get_pages_contig - gang contiguous pagecache lookup | |
1820 | * @mapping: The address_space to search | |
1821 | * @index: The starting page index | |
1822 | * @nr_pages: The maximum number of pages | |
1823 | * @pages: Where the resulting pages are placed | |
1824 | * | |
1825 | * find_get_pages_contig() works exactly like find_get_pages(), except | |
1826 | * that the returned number of pages are guaranteed to be contiguous. | |
1827 | * | |
a862f68a | 1828 | * Return: the number of pages which were found. |
ebf43500 JA |
1829 | */ |
1830 | unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, | |
1831 | unsigned int nr_pages, struct page **pages) | |
1832 | { | |
3ece58a2 MW |
1833 | XA_STATE(xas, &mapping->i_pages, index); |
1834 | struct page *page; | |
0fc9d104 KK |
1835 | unsigned int ret = 0; |
1836 | ||
1837 | if (unlikely(!nr_pages)) | |
1838 | return 0; | |
a60637c8 NP |
1839 | |
1840 | rcu_read_lock(); | |
3ece58a2 | 1841 | for (page = xas_load(&xas); page; page = xas_next(&xas)) { |
3ece58a2 MW |
1842 | if (xas_retry(&xas, page)) |
1843 | continue; | |
1844 | /* | |
1845 | * If the entry has been swapped out, we can stop looking. | |
1846 | * No current caller is looking for DAX entries. | |
1847 | */ | |
1848 | if (xa_is_value(page)) | |
8079b1c8 | 1849 | break; |
ebf43500 | 1850 | |
5fd4ca2d | 1851 | if (!page_cache_get_speculative(page)) |
3ece58a2 | 1852 | goto retry; |
83929372 | 1853 | |
5fd4ca2d | 1854 | /* Has the page moved or been split? */ |
3ece58a2 MW |
1855 | if (unlikely(page != xas_reload(&xas))) |
1856 | goto put_page; | |
a60637c8 | 1857 | |
5fd4ca2d | 1858 | pages[ret] = find_subpage(page, xas.xa_index); |
0fc9d104 KK |
1859 | if (++ret == nr_pages) |
1860 | break; | |
3ece58a2 MW |
1861 | continue; |
1862 | put_page: | |
5fd4ca2d | 1863 | put_page(page); |
3ece58a2 MW |
1864 | retry: |
1865 | xas_reset(&xas); | |
ebf43500 | 1866 | } |
a60637c8 NP |
1867 | rcu_read_unlock(); |
1868 | return ret; | |
ebf43500 | 1869 | } |
ef71c15c | 1870 | EXPORT_SYMBOL(find_get_pages_contig); |
ebf43500 | 1871 | |
485bb99b | 1872 | /** |
72b045ae | 1873 | * find_get_pages_range_tag - find and return pages in given range matching @tag |
485bb99b RD |
1874 | * @mapping: the address_space to search |
1875 | * @index: the starting page index | |
72b045ae | 1876 | * @end: The final page index (inclusive) |
485bb99b RD |
1877 | * @tag: the tag index |
1878 | * @nr_pages: the maximum number of pages | |
1879 | * @pages: where the resulting pages are placed | |
1880 | * | |
1da177e4 | 1881 | * Like find_get_pages, except we only return pages which are tagged with |
485bb99b | 1882 | * @tag. We update @index to index the next page for the traversal. |
a862f68a MR |
1883 | * |
1884 | * Return: the number of pages which were found. | |
1da177e4 | 1885 | */ |
72b045ae | 1886 | unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, |
a6906972 | 1887 | pgoff_t end, xa_mark_t tag, unsigned int nr_pages, |
72b045ae | 1888 | struct page **pages) |
1da177e4 | 1889 | { |
a6906972 MW |
1890 | XA_STATE(xas, &mapping->i_pages, *index); |
1891 | struct page *page; | |
0fc9d104 KK |
1892 | unsigned ret = 0; |
1893 | ||
1894 | if (unlikely(!nr_pages)) | |
1895 | return 0; | |
a60637c8 NP |
1896 | |
1897 | rcu_read_lock(); | |
a6906972 | 1898 | xas_for_each_marked(&xas, page, end, tag) { |
a6906972 | 1899 | if (xas_retry(&xas, page)) |
a60637c8 | 1900 | continue; |
a6906972 MW |
1901 | /* |
1902 | * Shadow entries should never be tagged, but this iteration | |
1903 | * is lockless so there is a window for page reclaim to evict | |
1904 | * a page we saw tagged. Skip over it. | |
1905 | */ | |
1906 | if (xa_is_value(page)) | |
139b6a6f | 1907 | continue; |
a60637c8 | 1908 | |
5fd4ca2d | 1909 | if (!page_cache_get_speculative(page)) |
a6906972 | 1910 | goto retry; |
a60637c8 | 1911 | |
5fd4ca2d | 1912 | /* Has the page moved or been split? */ |
a6906972 MW |
1913 | if (unlikely(page != xas_reload(&xas))) |
1914 | goto put_page; | |
a60637c8 | 1915 | |
5fd4ca2d | 1916 | pages[ret] = find_subpage(page, xas.xa_index); |
72b045ae | 1917 | if (++ret == nr_pages) { |
5d3ee42f | 1918 | *index = xas.xa_index + 1; |
72b045ae JK |
1919 | goto out; |
1920 | } | |
a6906972 MW |
1921 | continue; |
1922 | put_page: | |
5fd4ca2d | 1923 | put_page(page); |
a6906972 MW |
1924 | retry: |
1925 | xas_reset(&xas); | |
a60637c8 | 1926 | } |
5b280c0c | 1927 | |
72b045ae | 1928 | /* |
a6906972 | 1929 | * We come here when we got to @end. We take care to not overflow the |
72b045ae | 1930 | * index @index as it confuses some of the callers. This breaks the |
a6906972 MW |
1931 | * iteration when there is a page at index -1 but that is already |
1932 | * broken anyway. | |
72b045ae JK |
1933 | */ |
1934 | if (end == (pgoff_t)-1) | |
1935 | *index = (pgoff_t)-1; | |
1936 | else | |
1937 | *index = end + 1; | |
1938 | out: | |
a60637c8 | 1939 | rcu_read_unlock(); |
1da177e4 | 1940 | |
1da177e4 LT |
1941 | return ret; |
1942 | } | |
72b045ae | 1943 | EXPORT_SYMBOL(find_get_pages_range_tag); |
1da177e4 | 1944 | |
76d42bd9 WF |
1945 | /* |
1946 | * CD/DVDs are error prone. When a medium error occurs, the driver may fail | |
1947 | * a _large_ part of the i/o request. Imagine the worst scenario: | |
1948 | * | |
1949 | * ---R__________________________________________B__________ | |
1950 | * ^ reading here ^ bad block(assume 4k) | |
1951 | * | |
1952 | * read(R) => miss => readahead(R...B) => media error => frustrating retries | |
1953 | * => failing the whole request => read(R) => read(R+1) => | |
1954 | * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => | |
1955 | * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => | |
1956 | * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... | |
1957 | * | |
1958 | * It is going insane. Fix it by quickly scaling down the readahead size. | |
1959 | */ | |
1960 | static void shrink_readahead_size_eio(struct file *filp, | |
1961 | struct file_ra_state *ra) | |
1962 | { | |
76d42bd9 | 1963 | ra->ra_pages /= 4; |
76d42bd9 WF |
1964 | } |
1965 | ||
485bb99b | 1966 | /** |
47c27bc4 CH |
1967 | * generic_file_buffered_read - generic file read routine |
1968 | * @iocb: the iocb to read | |
6e58e79d AV |
1969 | * @iter: data destination |
1970 | * @written: already copied | |
485bb99b | 1971 | * |
1da177e4 | 1972 | * This is a generic file read routine, and uses the |
485bb99b | 1973 | * mapping->a_ops->readpage() function for the actual low-level stuff. |
1da177e4 LT |
1974 | * |
1975 | * This is really ugly. But the goto's actually try to clarify some | |
1976 | * of the logic when it comes to error handling etc. | |
a862f68a MR |
1977 | * |
1978 | * Return: | |
1979 | * * total number of bytes copied, including those the were already @written | |
1980 | * * negative error code if nothing was copied | |
1da177e4 | 1981 | */ |
47c27bc4 | 1982 | static ssize_t generic_file_buffered_read(struct kiocb *iocb, |
6e58e79d | 1983 | struct iov_iter *iter, ssize_t written) |
1da177e4 | 1984 | { |
47c27bc4 | 1985 | struct file *filp = iocb->ki_filp; |
36e78914 | 1986 | struct address_space *mapping = filp->f_mapping; |
1da177e4 | 1987 | struct inode *inode = mapping->host; |
36e78914 | 1988 | struct file_ra_state *ra = &filp->f_ra; |
47c27bc4 | 1989 | loff_t *ppos = &iocb->ki_pos; |
57f6b96c FW |
1990 | pgoff_t index; |
1991 | pgoff_t last_index; | |
1992 | pgoff_t prev_index; | |
1993 | unsigned long offset; /* offset into pagecache page */ | |
ec0f1637 | 1994 | unsigned int prev_offset; |
6e58e79d | 1995 | int error = 0; |
1da177e4 | 1996 | |
c2a9737f | 1997 | if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) |
d05c5f7b | 1998 | return 0; |
c2a9737f WF |
1999 | iov_iter_truncate(iter, inode->i_sb->s_maxbytes); |
2000 | ||
09cbfeaf KS |
2001 | index = *ppos >> PAGE_SHIFT; |
2002 | prev_index = ra->prev_pos >> PAGE_SHIFT; | |
2003 | prev_offset = ra->prev_pos & (PAGE_SIZE-1); | |
2004 | last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; | |
2005 | offset = *ppos & ~PAGE_MASK; | |
1da177e4 | 2006 | |
1da177e4 LT |
2007 | for (;;) { |
2008 | struct page *page; | |
57f6b96c | 2009 | pgoff_t end_index; |
a32ea1e1 | 2010 | loff_t isize; |
1da177e4 LT |
2011 | unsigned long nr, ret; |
2012 | ||
1da177e4 | 2013 | cond_resched(); |
1da177e4 | 2014 | find_page: |
5abf186a MH |
2015 | if (fatal_signal_pending(current)) { |
2016 | error = -EINTR; | |
2017 | goto out; | |
2018 | } | |
2019 | ||
1da177e4 | 2020 | page = find_get_page(mapping, index); |
3ea89ee8 | 2021 | if (!page) { |
3239d834 MT |
2022 | if (iocb->ki_flags & IOCB_NOWAIT) |
2023 | goto would_block; | |
cf914a7d | 2024 | page_cache_sync_readahead(mapping, |
7ff81078 | 2025 | ra, filp, |
3ea89ee8 FW |
2026 | index, last_index - index); |
2027 | page = find_get_page(mapping, index); | |
2028 | if (unlikely(page == NULL)) | |
2029 | goto no_cached_page; | |
2030 | } | |
2031 | if (PageReadahead(page)) { | |
cf914a7d | 2032 | page_cache_async_readahead(mapping, |
7ff81078 | 2033 | ra, filp, page, |
3ea89ee8 | 2034 | index, last_index - index); |
1da177e4 | 2035 | } |
8ab22b9a | 2036 | if (!PageUptodate(page)) { |
3239d834 MT |
2037 | if (iocb->ki_flags & IOCB_NOWAIT) { |
2038 | put_page(page); | |
2039 | goto would_block; | |
2040 | } | |
2041 | ||
ebded027 MG |
2042 | /* |
2043 | * See comment in do_read_cache_page on why | |
2044 | * wait_on_page_locked is used to avoid unnecessarily | |
2045 | * serialisations and why it's safe. | |
2046 | */ | |
c4b209a4 BVA |
2047 | error = wait_on_page_locked_killable(page); |
2048 | if (unlikely(error)) | |
2049 | goto readpage_error; | |
ebded027 MG |
2050 | if (PageUptodate(page)) |
2051 | goto page_ok; | |
2052 | ||
09cbfeaf | 2053 | if (inode->i_blkbits == PAGE_SHIFT || |
8ab22b9a HH |
2054 | !mapping->a_ops->is_partially_uptodate) |
2055 | goto page_not_up_to_date; | |
6d6d36bc | 2056 | /* pipes can't handle partially uptodate pages */ |
00e23707 | 2057 | if (unlikely(iov_iter_is_pipe(iter))) |
6d6d36bc | 2058 | goto page_not_up_to_date; |
529ae9aa | 2059 | if (!trylock_page(page)) |
8ab22b9a | 2060 | goto page_not_up_to_date; |
8d056cb9 DH |
2061 | /* Did it get truncated before we got the lock? */ |
2062 | if (!page->mapping) | |
2063 | goto page_not_up_to_date_locked; | |
8ab22b9a | 2064 | if (!mapping->a_ops->is_partially_uptodate(page, |
6e58e79d | 2065 | offset, iter->count)) |
8ab22b9a HH |
2066 | goto page_not_up_to_date_locked; |
2067 | unlock_page(page); | |
2068 | } | |
1da177e4 | 2069 | page_ok: |
a32ea1e1 N |
2070 | /* |
2071 | * i_size must be checked after we know the page is Uptodate. | |
2072 | * | |
2073 | * Checking i_size after the check allows us to calculate | |
2074 | * the correct value for "nr", which means the zero-filled | |
2075 | * part of the page is not copied back to userspace (unless | |
2076 | * another truncate extends the file - this is desired though). | |
2077 | */ | |
2078 | ||
2079 | isize = i_size_read(inode); | |
09cbfeaf | 2080 | end_index = (isize - 1) >> PAGE_SHIFT; |
a32ea1e1 | 2081 | if (unlikely(!isize || index > end_index)) { |
09cbfeaf | 2082 | put_page(page); |
a32ea1e1 N |
2083 | goto out; |
2084 | } | |
2085 | ||
2086 | /* nr is the maximum number of bytes to copy from this page */ | |
09cbfeaf | 2087 | nr = PAGE_SIZE; |
a32ea1e1 | 2088 | if (index == end_index) { |
09cbfeaf | 2089 | nr = ((isize - 1) & ~PAGE_MASK) + 1; |
a32ea1e1 | 2090 | if (nr <= offset) { |
09cbfeaf | 2091 | put_page(page); |
a32ea1e1 N |
2092 | goto out; |
2093 | } | |
2094 | } | |
2095 | nr = nr - offset; | |
1da177e4 LT |
2096 | |
2097 | /* If users can be writing to this page using arbitrary | |
2098 | * virtual addresses, take care about potential aliasing | |
2099 | * before reading the page on the kernel side. | |
2100 | */ | |
2101 | if (mapping_writably_mapped(mapping)) | |
2102 | flush_dcache_page(page); | |
2103 | ||
2104 | /* | |
ec0f1637 JK |
2105 | * When a sequential read accesses a page several times, |
2106 | * only mark it as accessed the first time. | |
1da177e4 | 2107 | */ |
ec0f1637 | 2108 | if (prev_index != index || offset != prev_offset) |
1da177e4 LT |
2109 | mark_page_accessed(page); |
2110 | prev_index = index; | |
2111 | ||
2112 | /* | |
2113 | * Ok, we have the page, and it's up-to-date, so | |
2114 | * now we can copy it to user space... | |
1da177e4 | 2115 | */ |
6e58e79d AV |
2116 | |
2117 | ret = copy_page_to_iter(page, offset, nr, iter); | |
1da177e4 | 2118 | offset += ret; |
09cbfeaf KS |
2119 | index += offset >> PAGE_SHIFT; |
2120 | offset &= ~PAGE_MASK; | |
6ce745ed | 2121 | prev_offset = offset; |
1da177e4 | 2122 | |
09cbfeaf | 2123 | put_page(page); |
6e58e79d AV |
2124 | written += ret; |
2125 | if (!iov_iter_count(iter)) | |
2126 | goto out; | |
2127 | if (ret < nr) { | |
2128 | error = -EFAULT; | |
2129 | goto out; | |
2130 | } | |
2131 | continue; | |
1da177e4 LT |
2132 | |
2133 | page_not_up_to_date: | |
2134 | /* Get exclusive access to the page ... */ | |
85462323 ON |
2135 | error = lock_page_killable(page); |
2136 | if (unlikely(error)) | |
2137 | goto readpage_error; | |
1da177e4 | 2138 | |
8ab22b9a | 2139 | page_not_up_to_date_locked: |
da6052f7 | 2140 | /* Did it get truncated before we got the lock? */ |
1da177e4 LT |
2141 | if (!page->mapping) { |
2142 | unlock_page(page); | |
09cbfeaf | 2143 | put_page(page); |
1da177e4 LT |
2144 | continue; |
2145 | } | |
2146 | ||
2147 | /* Did somebody else fill it already? */ | |
2148 | if (PageUptodate(page)) { | |
2149 | unlock_page(page); | |
2150 | goto page_ok; | |
2151 | } | |
2152 | ||
2153 | readpage: | |
91803b49 JM |
2154 | /* |
2155 | * A previous I/O error may have been due to temporary | |
2156 | * failures, eg. multipath errors. | |
2157 | * PG_error will be set again if readpage fails. | |
2158 | */ | |
2159 | ClearPageError(page); | |
1da177e4 LT |
2160 | /* Start the actual read. The read will unlock the page. */ |
2161 | error = mapping->a_ops->readpage(filp, page); | |
2162 | ||
994fc28c ZB |
2163 | if (unlikely(error)) { |
2164 | if (error == AOP_TRUNCATED_PAGE) { | |
09cbfeaf | 2165 | put_page(page); |
6e58e79d | 2166 | error = 0; |
994fc28c ZB |
2167 | goto find_page; |
2168 | } | |
1da177e4 | 2169 | goto readpage_error; |
994fc28c | 2170 | } |
1da177e4 LT |
2171 | |
2172 | if (!PageUptodate(page)) { | |
85462323 ON |
2173 | error = lock_page_killable(page); |
2174 | if (unlikely(error)) | |
2175 | goto readpage_error; | |
1da177e4 LT |
2176 | if (!PageUptodate(page)) { |
2177 | if (page->mapping == NULL) { | |
2178 | /* | |
2ecdc82e | 2179 | * invalidate_mapping_pages got it |
1da177e4 LT |
2180 | */ |
2181 | unlock_page(page); | |
09cbfeaf | 2182 | put_page(page); |
1da177e4 LT |
2183 | goto find_page; |
2184 | } | |
2185 | unlock_page(page); | |
7ff81078 | 2186 | shrink_readahead_size_eio(filp, ra); |
85462323 ON |
2187 | error = -EIO; |
2188 | goto readpage_error; | |
1da177e4 LT |
2189 | } |
2190 | unlock_page(page); | |
2191 | } | |
2192 | ||
1da177e4 LT |
2193 | goto page_ok; |
2194 | ||
2195 | readpage_error: | |
2196 | /* UHHUH! A synchronous read error occurred. Report it */ | |
09cbfeaf | 2197 | put_page(page); |
1da177e4 LT |
2198 | goto out; |
2199 | ||
2200 | no_cached_page: | |
2201 | /* | |
2202 | * Ok, it wasn't cached, so we need to create a new | |
2203 | * page.. | |
2204 | */ | |
453f85d4 | 2205 | page = page_cache_alloc(mapping); |
eb2be189 | 2206 | if (!page) { |
6e58e79d | 2207 | error = -ENOMEM; |
eb2be189 | 2208 | goto out; |
1da177e4 | 2209 | } |
6afdb859 | 2210 | error = add_to_page_cache_lru(page, mapping, index, |
c62d2555 | 2211 | mapping_gfp_constraint(mapping, GFP_KERNEL)); |
1da177e4 | 2212 | if (error) { |
09cbfeaf | 2213 | put_page(page); |
6e58e79d AV |
2214 | if (error == -EEXIST) { |
2215 | error = 0; | |
1da177e4 | 2216 | goto find_page; |
6e58e79d | 2217 | } |
1da177e4 LT |
2218 | goto out; |
2219 | } | |
1da177e4 LT |
2220 | goto readpage; |
2221 | } | |
2222 | ||
3239d834 MT |
2223 | would_block: |
2224 | error = -EAGAIN; | |
1da177e4 | 2225 | out: |
7ff81078 | 2226 | ra->prev_pos = prev_index; |
09cbfeaf | 2227 | ra->prev_pos <<= PAGE_SHIFT; |
7ff81078 | 2228 | ra->prev_pos |= prev_offset; |
1da177e4 | 2229 | |
09cbfeaf | 2230 | *ppos = ((loff_t)index << PAGE_SHIFT) + offset; |
0c6aa263 | 2231 | file_accessed(filp); |
6e58e79d | 2232 | return written ? written : error; |
1da177e4 LT |
2233 | } |
2234 | ||
485bb99b | 2235 | /** |
6abd2322 | 2236 | * generic_file_read_iter - generic filesystem read routine |
485bb99b | 2237 | * @iocb: kernel I/O control block |
6abd2322 | 2238 | * @iter: destination for the data read |
485bb99b | 2239 | * |
6abd2322 | 2240 | * This is the "read_iter()" routine for all filesystems |
1da177e4 | 2241 | * that can use the page cache directly. |
a862f68a MR |
2242 | * Return: |
2243 | * * number of bytes copied, even for partial reads | |
2244 | * * negative error code if nothing was read | |
1da177e4 LT |
2245 | */ |
2246 | ssize_t | |
ed978a81 | 2247 | generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) |
1da177e4 | 2248 | { |
e7080a43 | 2249 | size_t count = iov_iter_count(iter); |
47c27bc4 | 2250 | ssize_t retval = 0; |
e7080a43 NS |
2251 | |
2252 | if (!count) | |
2253 | goto out; /* skip atime */ | |
1da177e4 | 2254 | |
2ba48ce5 | 2255 | if (iocb->ki_flags & IOCB_DIRECT) { |
47c27bc4 | 2256 | struct file *file = iocb->ki_filp; |
ed978a81 AV |
2257 | struct address_space *mapping = file->f_mapping; |
2258 | struct inode *inode = mapping->host; | |
543ade1f | 2259 | loff_t size; |
1da177e4 | 2260 | |
1da177e4 | 2261 | size = i_size_read(inode); |
6be96d3a GR |
2262 | if (iocb->ki_flags & IOCB_NOWAIT) { |
2263 | if (filemap_range_has_page(mapping, iocb->ki_pos, | |
2264 | iocb->ki_pos + count - 1)) | |
2265 | return -EAGAIN; | |
2266 | } else { | |
2267 | retval = filemap_write_and_wait_range(mapping, | |
2268 | iocb->ki_pos, | |
2269 | iocb->ki_pos + count - 1); | |
2270 | if (retval < 0) | |
2271 | goto out; | |
2272 | } | |
d8d3d94b | 2273 | |
0d5b0cf2 CH |
2274 | file_accessed(file); |
2275 | ||
5ecda137 | 2276 | retval = mapping->a_ops->direct_IO(iocb, iter); |
c3a69024 | 2277 | if (retval >= 0) { |
c64fb5c7 | 2278 | iocb->ki_pos += retval; |
5ecda137 | 2279 | count -= retval; |
9fe55eea | 2280 | } |
5b47d59a | 2281 | iov_iter_revert(iter, count - iov_iter_count(iter)); |
66f998f6 | 2282 | |
9fe55eea SW |
2283 | /* |
2284 | * Btrfs can have a short DIO read if we encounter | |
2285 | * compressed extents, so if there was an error, or if | |
2286 | * we've already read everything we wanted to, or if | |
2287 | * there was a short read because we hit EOF, go ahead | |
2288 | * and return. Otherwise fallthrough to buffered io for | |
fbbbad4b MW |
2289 | * the rest of the read. Buffered reads will not work for |
2290 | * DAX files, so don't bother trying. | |
9fe55eea | 2291 | */ |
5ecda137 | 2292 | if (retval < 0 || !count || iocb->ki_pos >= size || |
0d5b0cf2 | 2293 | IS_DAX(inode)) |
9fe55eea | 2294 | goto out; |
1da177e4 LT |
2295 | } |
2296 | ||
47c27bc4 | 2297 | retval = generic_file_buffered_read(iocb, iter, retval); |
1da177e4 LT |
2298 | out: |
2299 | return retval; | |
2300 | } | |
ed978a81 | 2301 | EXPORT_SYMBOL(generic_file_read_iter); |
1da177e4 | 2302 | |
1da177e4 | 2303 | #ifdef CONFIG_MMU |
1da177e4 | 2304 | #define MMAP_LOTSAMISS (100) |
6b4c9f44 JB |
2305 | static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, |
2306 | struct file *fpin) | |
2307 | { | |
2308 | int flags = vmf->flags; | |
2309 | ||
2310 | if (fpin) | |
2311 | return fpin; | |
2312 | ||
2313 | /* | |
2314 | * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or | |
2315 | * anything, so we only pin the file and drop the mmap_sem if only | |
2316 | * FAULT_FLAG_ALLOW_RETRY is set. | |
2317 | */ | |
2318 | if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) == | |
2319 | FAULT_FLAG_ALLOW_RETRY) { | |
2320 | fpin = get_file(vmf->vma->vm_file); | |
2321 | up_read(&vmf->vma->vm_mm->mmap_sem); | |
2322 | } | |
2323 | return fpin; | |
2324 | } | |
2325 | ||
2326 | /* | |
2327 | * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem | |
2328 | * @vmf - the vm_fault for this fault. | |
2329 | * @page - the page to lock. | |
2330 | * @fpin - the pointer to the file we may pin (or is already pinned). | |
2331 | * | |
2332 | * This works similar to lock_page_or_retry in that it can drop the mmap_sem. | |
2333 | * It differs in that it actually returns the page locked if it returns 1 and 0 | |
2334 | * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin | |
2335 | * will point to the pinned file and needs to be fput()'ed at a later point. | |
2336 | */ | |
2337 | static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, | |
2338 | struct file **fpin) | |
2339 | { | |
2340 | if (trylock_page(page)) | |
2341 | return 1; | |
2342 | ||
8b0f9fa2 LT |
2343 | /* |
2344 | * NOTE! This will make us return with VM_FAULT_RETRY, but with | |
2345 | * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT | |
2346 | * is supposed to work. We have way too many special cases.. | |
2347 | */ | |
6b4c9f44 JB |
2348 | if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) |
2349 | return 0; | |
2350 | ||
2351 | *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); | |
2352 | if (vmf->flags & FAULT_FLAG_KILLABLE) { | |
2353 | if (__lock_page_killable(page)) { | |
2354 | /* | |
2355 | * We didn't have the right flags to drop the mmap_sem, | |
2356 | * but all fault_handlers only check for fatal signals | |
2357 | * if we return VM_FAULT_RETRY, so we need to drop the | |
2358 | * mmap_sem here and return 0 if we don't have a fpin. | |
2359 | */ | |
2360 | if (*fpin == NULL) | |
2361 | up_read(&vmf->vma->vm_mm->mmap_sem); | |
2362 | return 0; | |
2363 | } | |
2364 | } else | |
2365 | __lock_page(page); | |
2366 | return 1; | |
2367 | } | |
2368 | ||
1da177e4 | 2369 | |
ef00e08e | 2370 | /* |
6b4c9f44 JB |
2371 | * Synchronous readahead happens when we don't even find a page in the page |
2372 | * cache at all. We don't want to perform IO under the mmap sem, so if we have | |
2373 | * to drop the mmap sem we return the file that was pinned in order for us to do | |
2374 | * that. If we didn't pin a file then we return NULL. The file that is | |
2375 | * returned needs to be fput()'ed when we're done with it. | |
ef00e08e | 2376 | */ |
6b4c9f44 | 2377 | static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) |
ef00e08e | 2378 | { |
2a1180f1 JB |
2379 | struct file *file = vmf->vma->vm_file; |
2380 | struct file_ra_state *ra = &file->f_ra; | |
ef00e08e | 2381 | struct address_space *mapping = file->f_mapping; |
6b4c9f44 | 2382 | struct file *fpin = NULL; |
2a1180f1 | 2383 | pgoff_t offset = vmf->pgoff; |
ef00e08e LT |
2384 | |
2385 | /* If we don't want any read-ahead, don't bother */ | |
2a1180f1 | 2386 | if (vmf->vma->vm_flags & VM_RAND_READ) |
6b4c9f44 | 2387 | return fpin; |
275b12bf | 2388 | if (!ra->ra_pages) |
6b4c9f44 | 2389 | return fpin; |
ef00e08e | 2390 | |
2a1180f1 | 2391 | if (vmf->vma->vm_flags & VM_SEQ_READ) { |
6b4c9f44 | 2392 | fpin = maybe_unlock_mmap_for_io(vmf, fpin); |
7ffc59b4 WF |
2393 | page_cache_sync_readahead(mapping, ra, file, offset, |
2394 | ra->ra_pages); | |
6b4c9f44 | 2395 | return fpin; |
ef00e08e LT |
2396 | } |
2397 | ||
207d04ba AK |
2398 | /* Avoid banging the cache line if not needed */ |
2399 | if (ra->mmap_miss < MMAP_LOTSAMISS * 10) | |
ef00e08e LT |
2400 | ra->mmap_miss++; |
2401 | ||
2402 | /* | |
2403 | * Do we miss much more than hit in this file? If so, | |
2404 | * stop bothering with read-ahead. It will only hurt. | |
2405 | */ | |
2406 | if (ra->mmap_miss > MMAP_LOTSAMISS) | |
6b4c9f44 | 2407 | return fpin; |
ef00e08e | 2408 | |
d30a1100 WF |
2409 | /* |
2410 | * mmap read-around | |
2411 | */ | |
6b4c9f44 | 2412 | fpin = maybe_unlock_mmap_for_io(vmf, fpin); |
600e19af RG |
2413 | ra->start = max_t(long, 0, offset - ra->ra_pages / 2); |
2414 | ra->size = ra->ra_pages; | |
2415 | ra->async_size = ra->ra_pages / 4; | |
275b12bf | 2416 | ra_submit(ra, mapping, file); |
6b4c9f44 | 2417 | return fpin; |
ef00e08e LT |
2418 | } |
2419 | ||
2420 | /* | |
2421 | * Asynchronous readahead happens when we find the page and PG_readahead, | |
6b4c9f44 JB |
2422 | * so we want to possibly extend the readahead further. We return the file that |
2423 | * was pinned if we have to drop the mmap_sem in order to do IO. | |
ef00e08e | 2424 | */ |
6b4c9f44 JB |
2425 | static struct file *do_async_mmap_readahead(struct vm_fault *vmf, |
2426 | struct page *page) | |
ef00e08e | 2427 | { |
2a1180f1 JB |
2428 | struct file *file = vmf->vma->vm_file; |
2429 | struct file_ra_state *ra = &file->f_ra; | |
ef00e08e | 2430 | struct address_space *mapping = file->f_mapping; |
6b4c9f44 | 2431 | struct file *fpin = NULL; |
2a1180f1 | 2432 | pgoff_t offset = vmf->pgoff; |
ef00e08e LT |
2433 | |
2434 | /* If we don't want any read-ahead, don't bother */ | |
2a1180f1 | 2435 | if (vmf->vma->vm_flags & VM_RAND_READ) |
6b4c9f44 | 2436 | return fpin; |
ef00e08e LT |
2437 | if (ra->mmap_miss > 0) |
2438 | ra->mmap_miss--; | |
6b4c9f44 JB |
2439 | if (PageReadahead(page)) { |
2440 | fpin = maybe_unlock_mmap_for_io(vmf, fpin); | |
2fad6f5d WF |
2441 | page_cache_async_readahead(mapping, ra, file, |
2442 | page, offset, ra->ra_pages); | |
6b4c9f44 JB |
2443 | } |
2444 | return fpin; | |
ef00e08e LT |
2445 | } |
2446 | ||
485bb99b | 2447 | /** |
54cb8821 | 2448 | * filemap_fault - read in file data for page fault handling |
d0217ac0 | 2449 | * @vmf: struct vm_fault containing details of the fault |
485bb99b | 2450 | * |
54cb8821 | 2451 | * filemap_fault() is invoked via the vma operations vector for a |
1da177e4 LT |
2452 | * mapped memory region to read in file data during a page fault. |
2453 | * | |
2454 | * The goto's are kind of ugly, but this streamlines the normal case of having | |
2455 | * it in the page cache, and handles the special cases reasonably without | |
2456 | * having a lot of duplicated code. | |
9a95f3cf PC |
2457 | * |
2458 | * vma->vm_mm->mmap_sem must be held on entry. | |
2459 | * | |
2460 | * If our return value has VM_FAULT_RETRY set, it's because | |
2461 | * lock_page_or_retry() returned 0. | |
2462 | * The mmap_sem has usually been released in this case. | |
2463 | * See __lock_page_or_retry() for the exception. | |
2464 | * | |
2465 | * If our return value does not have VM_FAULT_RETRY set, the mmap_sem | |
2466 | * has not been released. | |
2467 | * | |
2468 | * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. | |
a862f68a MR |
2469 | * |
2470 | * Return: bitwise-OR of %VM_FAULT_ codes. | |
1da177e4 | 2471 | */ |
2bcd6454 | 2472 | vm_fault_t filemap_fault(struct vm_fault *vmf) |
1da177e4 LT |
2473 | { |
2474 | int error; | |
11bac800 | 2475 | struct file *file = vmf->vma->vm_file; |
6b4c9f44 | 2476 | struct file *fpin = NULL; |
1da177e4 LT |
2477 | struct address_space *mapping = file->f_mapping; |
2478 | struct file_ra_state *ra = &file->f_ra; | |
2479 | struct inode *inode = mapping->host; | |
ef00e08e | 2480 | pgoff_t offset = vmf->pgoff; |
9ab2594f | 2481 | pgoff_t max_off; |
1da177e4 | 2482 | struct page *page; |
2bcd6454 | 2483 | vm_fault_t ret = 0; |
1da177e4 | 2484 | |
9ab2594f MW |
2485 | max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); |
2486 | if (unlikely(offset >= max_off)) | |
5307cc1a | 2487 | return VM_FAULT_SIGBUS; |
1da177e4 | 2488 | |
1da177e4 | 2489 | /* |
49426420 | 2490 | * Do we have something in the page cache already? |
1da177e4 | 2491 | */ |
ef00e08e | 2492 | page = find_get_page(mapping, offset); |
45cac65b | 2493 | if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { |
1da177e4 | 2494 | /* |
ef00e08e LT |
2495 | * We found the page, so try async readahead before |
2496 | * waiting for the lock. | |
1da177e4 | 2497 | */ |
6b4c9f44 | 2498 | fpin = do_async_mmap_readahead(vmf, page); |
45cac65b | 2499 | } else if (!page) { |
ef00e08e | 2500 | /* No page in the page cache at all */ |
ef00e08e | 2501 | count_vm_event(PGMAJFAULT); |
2262185c | 2502 | count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); |
ef00e08e | 2503 | ret = VM_FAULT_MAJOR; |
6b4c9f44 | 2504 | fpin = do_sync_mmap_readahead(vmf); |
ef00e08e | 2505 | retry_find: |
a75d4c33 JB |
2506 | page = pagecache_get_page(mapping, offset, |
2507 | FGP_CREAT|FGP_FOR_MMAP, | |
2508 | vmf->gfp_mask); | |
6b4c9f44 JB |
2509 | if (!page) { |
2510 | if (fpin) | |
2511 | goto out_retry; | |
a75d4c33 | 2512 | return vmf_error(-ENOMEM); |
6b4c9f44 | 2513 | } |
1da177e4 LT |
2514 | } |
2515 | ||
6b4c9f44 JB |
2516 | if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) |
2517 | goto out_retry; | |
b522c94d ML |
2518 | |
2519 | /* Did it get truncated? */ | |
2520 | if (unlikely(page->mapping != mapping)) { | |
2521 | unlock_page(page); | |
2522 | put_page(page); | |
2523 | goto retry_find; | |
2524 | } | |
309381fe | 2525 | VM_BUG_ON_PAGE(page->index != offset, page); |
b522c94d | 2526 | |
1da177e4 | 2527 | /* |
d00806b1 NP |
2528 | * We have a locked page in the page cache, now we need to check |
2529 | * that it's up-to-date. If not, it is going to be due to an error. | |
1da177e4 | 2530 | */ |
d00806b1 | 2531 | if (unlikely(!PageUptodate(page))) |
1da177e4 LT |
2532 | goto page_not_uptodate; |
2533 | ||
6b4c9f44 JB |
2534 | /* |
2535 | * We've made it this far and we had to drop our mmap_sem, now is the | |
2536 | * time to return to the upper layer and have it re-find the vma and | |
2537 | * redo the fault. | |
2538 | */ | |
2539 | if (fpin) { | |
2540 | unlock_page(page); | |
2541 | goto out_retry; | |
2542 | } | |
2543 | ||
ef00e08e LT |
2544 | /* |
2545 | * Found the page and have a reference on it. | |
2546 | * We must recheck i_size under page lock. | |
2547 | */ | |
9ab2594f MW |
2548 | max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); |
2549 | if (unlikely(offset >= max_off)) { | |
d00806b1 | 2550 | unlock_page(page); |
09cbfeaf | 2551 | put_page(page); |
5307cc1a | 2552 | return VM_FAULT_SIGBUS; |
d00806b1 NP |
2553 | } |
2554 | ||
d0217ac0 | 2555 | vmf->page = page; |
83c54070 | 2556 | return ret | VM_FAULT_LOCKED; |
1da177e4 | 2557 | |
1da177e4 | 2558 | page_not_uptodate: |
1da177e4 LT |
2559 | /* |
2560 | * Umm, take care of errors if the page isn't up-to-date. | |
2561 | * Try to re-read it _once_. We do this synchronously, | |
2562 | * because there really aren't any performance issues here | |
2563 | * and we need to check for errors. | |
2564 | */ | |
1da177e4 | 2565 | ClearPageError(page); |
6b4c9f44 | 2566 | fpin = maybe_unlock_mmap_for_io(vmf, fpin); |
994fc28c | 2567 | error = mapping->a_ops->readpage(file, page); |
3ef0f720 MS |
2568 | if (!error) { |
2569 | wait_on_page_locked(page); | |
2570 | if (!PageUptodate(page)) | |
2571 | error = -EIO; | |
2572 | } | |
6b4c9f44 JB |
2573 | if (fpin) |
2574 | goto out_retry; | |
09cbfeaf | 2575 | put_page(page); |
d00806b1 NP |
2576 | |
2577 | if (!error || error == AOP_TRUNCATED_PAGE) | |
994fc28c | 2578 | goto retry_find; |
1da177e4 | 2579 | |
d00806b1 | 2580 | /* Things didn't work out. Return zero to tell the mm layer so. */ |
76d42bd9 | 2581 | shrink_readahead_size_eio(file, ra); |
d0217ac0 | 2582 | return VM_FAULT_SIGBUS; |
6b4c9f44 JB |
2583 | |
2584 | out_retry: | |
2585 | /* | |
2586 | * We dropped the mmap_sem, we need to return to the fault handler to | |
2587 | * re-find the vma and come back and find our hopefully still populated | |
2588 | * page. | |
2589 | */ | |
2590 | if (page) | |
2591 | put_page(page); | |
2592 | if (fpin) | |
2593 | fput(fpin); | |
2594 | return ret | VM_FAULT_RETRY; | |
54cb8821 NP |
2595 | } |
2596 | EXPORT_SYMBOL(filemap_fault); | |
2597 | ||
82b0f8c3 | 2598 | void filemap_map_pages(struct vm_fault *vmf, |
bae473a4 | 2599 | pgoff_t start_pgoff, pgoff_t end_pgoff) |
f1820361 | 2600 | { |
82b0f8c3 | 2601 | struct file *file = vmf->vma->vm_file; |
f1820361 | 2602 | struct address_space *mapping = file->f_mapping; |
bae473a4 | 2603 | pgoff_t last_pgoff = start_pgoff; |
9ab2594f | 2604 | unsigned long max_idx; |
070e807c | 2605 | XA_STATE(xas, &mapping->i_pages, start_pgoff); |
5fd4ca2d | 2606 | struct page *page; |
f1820361 KS |
2607 | |
2608 | rcu_read_lock(); | |
070e807c MW |
2609 | xas_for_each(&xas, page, end_pgoff) { |
2610 | if (xas_retry(&xas, page)) | |
2611 | continue; | |
2612 | if (xa_is_value(page)) | |
2cf938aa | 2613 | goto next; |
f1820361 | 2614 | |
e0975b2a MH |
2615 | /* |
2616 | * Check for a locked page first, as a speculative | |
2617 | * reference may adversely influence page migration. | |
2618 | */ | |
5fd4ca2d | 2619 | if (PageLocked(page)) |
e0975b2a | 2620 | goto next; |
5fd4ca2d | 2621 | if (!page_cache_get_speculative(page)) |
070e807c | 2622 | goto next; |
f1820361 | 2623 | |
5fd4ca2d | 2624 | /* Has the page moved or been split? */ |
070e807c MW |
2625 | if (unlikely(page != xas_reload(&xas))) |
2626 | goto skip; | |
5fd4ca2d | 2627 | page = find_subpage(page, xas.xa_index); |
f1820361 KS |
2628 | |
2629 | if (!PageUptodate(page) || | |
2630 | PageReadahead(page) || | |
2631 | PageHWPoison(page)) | |
2632 | goto skip; | |
2633 | if (!trylock_page(page)) | |
2634 | goto skip; | |
2635 | ||
2636 | if (page->mapping != mapping || !PageUptodate(page)) | |
2637 | goto unlock; | |
2638 | ||
9ab2594f MW |
2639 | max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); |
2640 | if (page->index >= max_idx) | |
f1820361 KS |
2641 | goto unlock; |
2642 | ||
f1820361 KS |
2643 | if (file->f_ra.mmap_miss > 0) |
2644 | file->f_ra.mmap_miss--; | |
7267ec00 | 2645 | |
070e807c | 2646 | vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT; |
82b0f8c3 | 2647 | if (vmf->pte) |
070e807c MW |
2648 | vmf->pte += xas.xa_index - last_pgoff; |
2649 | last_pgoff = xas.xa_index; | |
82b0f8c3 | 2650 | if (alloc_set_pte(vmf, NULL, page)) |
7267ec00 | 2651 | goto unlock; |
f1820361 KS |
2652 | unlock_page(page); |
2653 | goto next; | |
2654 | unlock: | |
2655 | unlock_page(page); | |
2656 | skip: | |
09cbfeaf | 2657 | put_page(page); |
f1820361 | 2658 | next: |
7267ec00 | 2659 | /* Huge page is mapped? No need to proceed. */ |
82b0f8c3 | 2660 | if (pmd_trans_huge(*vmf->pmd)) |
7267ec00 | 2661 | break; |
f1820361 KS |
2662 | } |
2663 | rcu_read_unlock(); | |
2664 | } | |
2665 | EXPORT_SYMBOL(filemap_map_pages); | |
2666 | ||
2bcd6454 | 2667 | vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) |
4fcf1c62 JK |
2668 | { |
2669 | struct page *page = vmf->page; | |
11bac800 | 2670 | struct inode *inode = file_inode(vmf->vma->vm_file); |
2bcd6454 | 2671 | vm_fault_t ret = VM_FAULT_LOCKED; |
4fcf1c62 | 2672 | |
14da9200 | 2673 | sb_start_pagefault(inode->i_sb); |
11bac800 | 2674 | file_update_time(vmf->vma->vm_file); |
4fcf1c62 JK |
2675 | lock_page(page); |
2676 | if (page->mapping != inode->i_mapping) { | |
2677 | unlock_page(page); | |
2678 | ret = VM_FAULT_NOPAGE; | |
2679 | goto out; | |
2680 | } | |
14da9200 JK |
2681 | /* |
2682 | * We mark the page dirty already here so that when freeze is in | |
2683 | * progress, we are guaranteed that writeback during freezing will | |
2684 | * see the dirty page and writeprotect it again. | |
2685 | */ | |
2686 | set_page_dirty(page); | |
1d1d1a76 | 2687 | wait_for_stable_page(page); |
4fcf1c62 | 2688 | out: |
14da9200 | 2689 | sb_end_pagefault(inode->i_sb); |
4fcf1c62 JK |
2690 | return ret; |
2691 | } | |
4fcf1c62 | 2692 | |
f0f37e2f | 2693 | const struct vm_operations_struct generic_file_vm_ops = { |
54cb8821 | 2694 | .fault = filemap_fault, |
f1820361 | 2695 | .map_pages = filemap_map_pages, |
4fcf1c62 | 2696 | .page_mkwrite = filemap_page_mkwrite, |
1da177e4 LT |
2697 | }; |
2698 | ||
2699 | /* This is used for a general mmap of a disk file */ | |
2700 | ||
2701 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | |
2702 | { | |
2703 | struct address_space *mapping = file->f_mapping; | |
2704 | ||
2705 | if (!mapping->a_ops->readpage) | |
2706 | return -ENOEXEC; | |
2707 | file_accessed(file); | |
2708 | vma->vm_ops = &generic_file_vm_ops; | |
2709 | return 0; | |
2710 | } | |
1da177e4 LT |
2711 | |
2712 | /* | |
2713 | * This is for filesystems which do not implement ->writepage. | |
2714 | */ | |
2715 | int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) | |
2716 | { | |
2717 | if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) | |
2718 | return -EINVAL; | |
2719 | return generic_file_mmap(file, vma); | |
2720 | } | |
2721 | #else | |
4b96a37d | 2722 | vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) |
45397228 | 2723 | { |
4b96a37d | 2724 | return VM_FAULT_SIGBUS; |
45397228 | 2725 | } |
1da177e4 LT |
2726 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) |
2727 | { | |
2728 | return -ENOSYS; | |
2729 | } | |
2730 | int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) | |
2731 | { | |
2732 | return -ENOSYS; | |
2733 | } | |
2734 | #endif /* CONFIG_MMU */ | |
2735 | ||
45397228 | 2736 | EXPORT_SYMBOL(filemap_page_mkwrite); |
1da177e4 LT |
2737 | EXPORT_SYMBOL(generic_file_mmap); |
2738 | EXPORT_SYMBOL(generic_file_readonly_mmap); | |
2739 | ||
67f9fd91 SL |
2740 | static struct page *wait_on_page_read(struct page *page) |
2741 | { | |
2742 | if (!IS_ERR(page)) { | |
2743 | wait_on_page_locked(page); | |
2744 | if (!PageUptodate(page)) { | |
09cbfeaf | 2745 | put_page(page); |
67f9fd91 SL |
2746 | page = ERR_PTR(-EIO); |
2747 | } | |
2748 | } | |
2749 | return page; | |
2750 | } | |
2751 | ||
32b63529 | 2752 | static struct page *do_read_cache_page(struct address_space *mapping, |
57f6b96c | 2753 | pgoff_t index, |
5e5358e7 | 2754 | int (*filler)(void *, struct page *), |
0531b2aa LT |
2755 | void *data, |
2756 | gfp_t gfp) | |
1da177e4 | 2757 | { |
eb2be189 | 2758 | struct page *page; |
1da177e4 LT |
2759 | int err; |
2760 | repeat: | |
2761 | page = find_get_page(mapping, index); | |
2762 | if (!page) { | |
453f85d4 | 2763 | page = __page_cache_alloc(gfp); |
eb2be189 NP |
2764 | if (!page) |
2765 | return ERR_PTR(-ENOMEM); | |
e6f67b8c | 2766 | err = add_to_page_cache_lru(page, mapping, index, gfp); |
eb2be189 | 2767 | if (unlikely(err)) { |
09cbfeaf | 2768 | put_page(page); |
eb2be189 NP |
2769 | if (err == -EEXIST) |
2770 | goto repeat; | |
22ecdb4f | 2771 | /* Presumably ENOMEM for xarray node */ |
1da177e4 LT |
2772 | return ERR_PTR(err); |
2773 | } | |
32b63529 MG |
2774 | |
2775 | filler: | |
1da177e4 LT |
2776 | err = filler(data, page); |
2777 | if (err < 0) { | |
09cbfeaf | 2778 | put_page(page); |
32b63529 | 2779 | return ERR_PTR(err); |
1da177e4 | 2780 | } |
1da177e4 | 2781 | |
32b63529 MG |
2782 | page = wait_on_page_read(page); |
2783 | if (IS_ERR(page)) | |
2784 | return page; | |
2785 | goto out; | |
2786 | } | |
1da177e4 LT |
2787 | if (PageUptodate(page)) |
2788 | goto out; | |
2789 | ||
ebded027 MG |
2790 | /* |
2791 | * Page is not up to date and may be locked due one of the following | |
2792 | * case a: Page is being filled and the page lock is held | |
2793 | * case b: Read/write error clearing the page uptodate status | |
2794 | * case c: Truncation in progress (page locked) | |
2795 | * case d: Reclaim in progress | |
2796 | * | |
2797 | * Case a, the page will be up to date when the page is unlocked. | |
2798 | * There is no need to serialise on the page lock here as the page | |
2799 | * is pinned so the lock gives no additional protection. Even if the | |
2800 | * the page is truncated, the data is still valid if PageUptodate as | |
2801 | * it's a race vs truncate race. | |
2802 | * Case b, the page will not be up to date | |
2803 | * Case c, the page may be truncated but in itself, the data may still | |
2804 | * be valid after IO completes as it's a read vs truncate race. The | |
2805 | * operation must restart if the page is not uptodate on unlock but | |
2806 | * otherwise serialising on page lock to stabilise the mapping gives | |
2807 | * no additional guarantees to the caller as the page lock is | |
2808 | * released before return. | |
2809 | * Case d, similar to truncation. If reclaim holds the page lock, it | |
2810 | * will be a race with remove_mapping that determines if the mapping | |
2811 | * is valid on unlock but otherwise the data is valid and there is | |
2812 | * no need to serialise with page lock. | |
2813 | * | |
2814 | * As the page lock gives no additional guarantee, we optimistically | |
2815 | * wait on the page to be unlocked and check if it's up to date and | |
2816 | * use the page if it is. Otherwise, the page lock is required to | |
2817 | * distinguish between the different cases. The motivation is that we | |
2818 | * avoid spurious serialisations and wakeups when multiple processes | |
2819 | * wait on the same page for IO to complete. | |
2820 | */ | |
2821 | wait_on_page_locked(page); | |
2822 | if (PageUptodate(page)) | |
2823 | goto out; | |
2824 | ||
2825 | /* Distinguish between all the cases under the safety of the lock */ | |
1da177e4 | 2826 | lock_page(page); |
ebded027 MG |
2827 | |
2828 | /* Case c or d, restart the operation */ | |
1da177e4 LT |
2829 | if (!page->mapping) { |
2830 | unlock_page(page); | |
09cbfeaf | 2831 | put_page(page); |
32b63529 | 2832 | goto repeat; |
1da177e4 | 2833 | } |
ebded027 MG |
2834 | |
2835 | /* Someone else locked and filled the page in a very small window */ | |
1da177e4 LT |
2836 | if (PageUptodate(page)) { |
2837 | unlock_page(page); | |
2838 | goto out; | |
2839 | } | |
32b63529 MG |
2840 | goto filler; |
2841 | ||
c855ff37 | 2842 | out: |
6fe6900e NP |
2843 | mark_page_accessed(page); |
2844 | return page; | |
2845 | } | |
0531b2aa LT |
2846 | |
2847 | /** | |
67f9fd91 | 2848 | * read_cache_page - read into page cache, fill it if needed |
0531b2aa LT |
2849 | * @mapping: the page's address_space |
2850 | * @index: the page index | |
2851 | * @filler: function to perform the read | |
5e5358e7 | 2852 | * @data: first arg to filler(data, page) function, often left as NULL |
0531b2aa | 2853 | * |
0531b2aa | 2854 | * Read into the page cache. If a page already exists, and PageUptodate() is |
67f9fd91 | 2855 | * not set, try to fill the page and wait for it to become unlocked. |
0531b2aa LT |
2856 | * |
2857 | * If the page does not get brought uptodate, return -EIO. | |
a862f68a MR |
2858 | * |
2859 | * Return: up to date page on success, ERR_PTR() on failure. | |
0531b2aa | 2860 | */ |
67f9fd91 | 2861 | struct page *read_cache_page(struct address_space *mapping, |
0531b2aa | 2862 | pgoff_t index, |
5e5358e7 | 2863 | int (*filler)(void *, struct page *), |
0531b2aa LT |
2864 | void *data) |
2865 | { | |
2866 | return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); | |
2867 | } | |
67f9fd91 | 2868 | EXPORT_SYMBOL(read_cache_page); |
0531b2aa LT |
2869 | |
2870 | /** | |
2871 | * read_cache_page_gfp - read into page cache, using specified page allocation flags. | |
2872 | * @mapping: the page's address_space | |
2873 | * @index: the page index | |
2874 | * @gfp: the page allocator flags to use if allocating | |
2875 | * | |
2876 | * This is the same as "read_mapping_page(mapping, index, NULL)", but with | |
e6f67b8c | 2877 | * any new page allocations done using the specified allocation flags. |
0531b2aa LT |
2878 | * |
2879 | * If the page does not get brought uptodate, return -EIO. | |
a862f68a MR |
2880 | * |
2881 | * Return: up to date page on success, ERR_PTR() on failure. | |
0531b2aa LT |
2882 | */ |
2883 | struct page *read_cache_page_gfp(struct address_space *mapping, | |
2884 | pgoff_t index, | |
2885 | gfp_t gfp) | |
2886 | { | |
2887 | filler_t *filler = (filler_t *)mapping->a_ops->readpage; | |
2888 | ||
67f9fd91 | 2889 | return do_read_cache_page(mapping, index, filler, NULL, gfp); |
0531b2aa LT |
2890 | } |
2891 | EXPORT_SYMBOL(read_cache_page_gfp); | |
2892 | ||
9fd91a90 DW |
2893 | /* |
2894 | * Don't operate on ranges the page cache doesn't support, and don't exceed the | |
2895 | * LFS limits. If pos is under the limit it becomes a short access. If it | |
2896 | * exceeds the limit we return -EFBIG. | |
2897 | */ | |
2898 | static int generic_access_check_limits(struct file *file, loff_t pos, | |
2899 | loff_t *count) | |
2900 | { | |
2901 | struct inode *inode = file->f_mapping->host; | |
2902 | loff_t max_size = inode->i_sb->s_maxbytes; | |
2903 | ||
2904 | if (!(file->f_flags & O_LARGEFILE)) | |
2905 | max_size = MAX_NON_LFS; | |
2906 | ||
2907 | if (unlikely(pos >= max_size)) | |
2908 | return -EFBIG; | |
2909 | *count = min(*count, max_size - pos); | |
2910 | return 0; | |
2911 | } | |
2912 | ||
2913 | static int generic_write_check_limits(struct file *file, loff_t pos, | |
2914 | loff_t *count) | |
2915 | { | |
2916 | loff_t limit = rlimit(RLIMIT_FSIZE); | |
2917 | ||
2918 | if (limit != RLIM_INFINITY) { | |
2919 | if (pos >= limit) { | |
2920 | send_sig(SIGXFSZ, current, 0); | |
2921 | return -EFBIG; | |
2922 | } | |
2923 | *count = min(*count, limit - pos); | |
2924 | } | |
2925 | ||
2926 | return generic_access_check_limits(file, pos, count); | |
2927 | } | |
2928 | ||
1da177e4 LT |
2929 | /* |
2930 | * Performs necessary checks before doing a write | |
2931 | * | |
485bb99b | 2932 | * Can adjust writing position or amount of bytes to write. |
1da177e4 LT |
2933 | * Returns appropriate error code that caller should return or |
2934 | * zero in case that write should be allowed. | |
2935 | */ | |
3309dd04 | 2936 | inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 | 2937 | { |
3309dd04 | 2938 | struct file *file = iocb->ki_filp; |
1da177e4 | 2939 | struct inode *inode = file->f_mapping->host; |
9fd91a90 DW |
2940 | loff_t count; |
2941 | int ret; | |
1da177e4 | 2942 | |
3309dd04 AV |
2943 | if (!iov_iter_count(from)) |
2944 | return 0; | |
1da177e4 | 2945 | |
0fa6b005 | 2946 | /* FIXME: this is for backwards compatibility with 2.4 */ |
2ba48ce5 | 2947 | if (iocb->ki_flags & IOCB_APPEND) |
3309dd04 | 2948 | iocb->ki_pos = i_size_read(inode); |
1da177e4 | 2949 | |
6be96d3a GR |
2950 | if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) |
2951 | return -EINVAL; | |
2952 | ||
9fd91a90 DW |
2953 | count = iov_iter_count(from); |
2954 | ret = generic_write_check_limits(file, iocb->ki_pos, &count); | |
2955 | if (ret) | |
2956 | return ret; | |
1da177e4 | 2957 | |
9fd91a90 | 2958 | iov_iter_truncate(from, count); |
3309dd04 | 2959 | return iov_iter_count(from); |
1da177e4 LT |
2960 | } |
2961 | EXPORT_SYMBOL(generic_write_checks); | |
2962 | ||
1383a7ed DW |
2963 | /* |
2964 | * Performs necessary checks before doing a clone. | |
2965 | * | |
2966 | * Can adjust amount of bytes to clone. | |
2967 | * Returns appropriate error code that caller should return or | |
2968 | * zero in case the clone should be allowed. | |
2969 | */ | |
2970 | int generic_remap_checks(struct file *file_in, loff_t pos_in, | |
2971 | struct file *file_out, loff_t pos_out, | |
42ec3d4c | 2972 | loff_t *req_count, unsigned int remap_flags) |
1383a7ed DW |
2973 | { |
2974 | struct inode *inode_in = file_in->f_mapping->host; | |
2975 | struct inode *inode_out = file_out->f_mapping->host; | |
2976 | uint64_t count = *req_count; | |
2977 | uint64_t bcount; | |
2978 | loff_t size_in, size_out; | |
2979 | loff_t bs = inode_out->i_sb->s_blocksize; | |
9fd91a90 | 2980 | int ret; |
1383a7ed DW |
2981 | |
2982 | /* The start of both ranges must be aligned to an fs block. */ | |
2983 | if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs)) | |
2984 | return -EINVAL; | |
2985 | ||
2986 | /* Ensure offsets don't wrap. */ | |
2987 | if (pos_in + count < pos_in || pos_out + count < pos_out) | |
2988 | return -EINVAL; | |
2989 | ||
2990 | size_in = i_size_read(inode_in); | |
2991 | size_out = i_size_read(inode_out); | |
2992 | ||
2993 | /* Dedupe requires both ranges to be within EOF. */ | |
3d28193e | 2994 | if ((remap_flags & REMAP_FILE_DEDUP) && |
1383a7ed DW |
2995 | (pos_in >= size_in || pos_in + count > size_in || |
2996 | pos_out >= size_out || pos_out + count > size_out)) | |
2997 | return -EINVAL; | |
2998 | ||
2999 | /* Ensure the infile range is within the infile. */ | |
3000 | if (pos_in >= size_in) | |
3001 | return -EINVAL; | |
3002 | count = min(count, size_in - (uint64_t)pos_in); | |
3003 | ||
9fd91a90 DW |
3004 | ret = generic_access_check_limits(file_in, pos_in, &count); |
3005 | if (ret) | |
3006 | return ret; | |
3007 | ||
3008 | ret = generic_write_check_limits(file_out, pos_out, &count); | |
3009 | if (ret) | |
3010 | return ret; | |
1da177e4 LT |
3011 | |
3012 | /* | |
1383a7ed DW |
3013 | * If the user wanted us to link to the infile's EOF, round up to the |
3014 | * next block boundary for this check. | |
3015 | * | |
3016 | * Otherwise, make sure the count is also block-aligned, having | |
3017 | * already confirmed the starting offsets' block alignment. | |
1da177e4 | 3018 | */ |
1383a7ed DW |
3019 | if (pos_in + count == size_in) { |
3020 | bcount = ALIGN(size_in, bs) - pos_in; | |
3021 | } else { | |
3022 | if (!IS_ALIGNED(count, bs)) | |
eca3654e | 3023 | count = ALIGN_DOWN(count, bs); |
1383a7ed | 3024 | bcount = count; |
1da177e4 LT |
3025 | } |
3026 | ||
1383a7ed DW |
3027 | /* Don't allow overlapped cloning within the same file. */ |
3028 | if (inode_in == inode_out && | |
3029 | pos_out + bcount > pos_in && | |
3030 | pos_out < pos_in + bcount) | |
3031 | return -EINVAL; | |
3032 | ||
1da177e4 | 3033 | /* |
eca3654e DW |
3034 | * We shortened the request but the caller can't deal with that, so |
3035 | * bounce the request back to userspace. | |
1da177e4 | 3036 | */ |
eca3654e | 3037 | if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN)) |
1383a7ed | 3038 | return -EINVAL; |
1da177e4 | 3039 | |
eca3654e | 3040 | *req_count = count; |
1383a7ed | 3041 | return 0; |
1da177e4 | 3042 | } |
1da177e4 | 3043 | |
afddba49 NP |
3044 | int pagecache_write_begin(struct file *file, struct address_space *mapping, |
3045 | loff_t pos, unsigned len, unsigned flags, | |
3046 | struct page **pagep, void **fsdata) | |
3047 | { | |
3048 | const struct address_space_operations *aops = mapping->a_ops; | |
3049 | ||
4e02ed4b | 3050 | return aops->write_begin(file, mapping, pos, len, flags, |
afddba49 | 3051 | pagep, fsdata); |
afddba49 NP |
3052 | } |
3053 | EXPORT_SYMBOL(pagecache_write_begin); | |
3054 | ||
3055 | int pagecache_write_end(struct file *file, struct address_space *mapping, | |
3056 | loff_t pos, unsigned len, unsigned copied, | |
3057 | struct page *page, void *fsdata) | |
3058 | { | |
3059 | const struct address_space_operations *aops = mapping->a_ops; | |
afddba49 | 3060 | |
4e02ed4b | 3061 | return aops->write_end(file, mapping, pos, len, copied, page, fsdata); |
afddba49 NP |
3062 | } |
3063 | EXPORT_SYMBOL(pagecache_write_end); | |
3064 | ||
1da177e4 | 3065 | ssize_t |
1af5bb49 | 3066 | generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 LT |
3067 | { |
3068 | struct file *file = iocb->ki_filp; | |
3069 | struct address_space *mapping = file->f_mapping; | |
3070 | struct inode *inode = mapping->host; | |
1af5bb49 | 3071 | loff_t pos = iocb->ki_pos; |
1da177e4 | 3072 | ssize_t written; |
a969e903 CH |
3073 | size_t write_len; |
3074 | pgoff_t end; | |
1da177e4 | 3075 | |
0c949334 | 3076 | write_len = iov_iter_count(from); |
09cbfeaf | 3077 | end = (pos + write_len - 1) >> PAGE_SHIFT; |
a969e903 | 3078 | |
6be96d3a GR |
3079 | if (iocb->ki_flags & IOCB_NOWAIT) { |
3080 | /* If there are pages to writeback, return */ | |
3081 | if (filemap_range_has_page(inode->i_mapping, pos, | |
35f12f0f | 3082 | pos + write_len - 1)) |
6be96d3a GR |
3083 | return -EAGAIN; |
3084 | } else { | |
3085 | written = filemap_write_and_wait_range(mapping, pos, | |
3086 | pos + write_len - 1); | |
3087 | if (written) | |
3088 | goto out; | |
3089 | } | |
a969e903 CH |
3090 | |
3091 | /* | |
3092 | * After a write we want buffered reads to be sure to go to disk to get | |
3093 | * the new data. We invalidate clean cached page from the region we're | |
3094 | * about to write. We do this *before* the write so that we can return | |
6ccfa806 | 3095 | * without clobbering -EIOCBQUEUED from ->direct_IO(). |
a969e903 | 3096 | */ |
55635ba7 | 3097 | written = invalidate_inode_pages2_range(mapping, |
09cbfeaf | 3098 | pos >> PAGE_SHIFT, end); |
55635ba7 AR |
3099 | /* |
3100 | * If a page can not be invalidated, return 0 to fall back | |
3101 | * to buffered write. | |
3102 | */ | |
3103 | if (written) { | |
3104 | if (written == -EBUSY) | |
3105 | return 0; | |
3106 | goto out; | |
a969e903 CH |
3107 | } |
3108 | ||
639a93a5 | 3109 | written = mapping->a_ops->direct_IO(iocb, from); |
a969e903 CH |
3110 | |
3111 | /* | |
3112 | * Finally, try again to invalidate clean pages which might have been | |
3113 | * cached by non-direct readahead, or faulted in by get_user_pages() | |
3114 | * if the source of the write was an mmap'ed region of the file | |
3115 | * we're writing. Either one is a pretty crazy thing to do, | |
3116 | * so we don't support it 100%. If this invalidation | |
3117 | * fails, tough, the write still worked... | |
332391a9 LC |
3118 | * |
3119 | * Most of the time we do not need this since dio_complete() will do | |
3120 | * the invalidation for us. However there are some file systems that | |
3121 | * do not end up with dio_complete() being called, so let's not break | |
3122 | * them by removing it completely | |
a969e903 | 3123 | */ |
332391a9 LC |
3124 | if (mapping->nrpages) |
3125 | invalidate_inode_pages2_range(mapping, | |
3126 | pos >> PAGE_SHIFT, end); | |
a969e903 | 3127 | |
1da177e4 | 3128 | if (written > 0) { |
0116651c | 3129 | pos += written; |
639a93a5 | 3130 | write_len -= written; |
0116651c NK |
3131 | if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { |
3132 | i_size_write(inode, pos); | |
1da177e4 LT |
3133 | mark_inode_dirty(inode); |
3134 | } | |
5cb6c6c7 | 3135 | iocb->ki_pos = pos; |
1da177e4 | 3136 | } |
639a93a5 | 3137 | iov_iter_revert(from, write_len - iov_iter_count(from)); |
a969e903 | 3138 | out: |
1da177e4 LT |
3139 | return written; |
3140 | } | |
3141 | EXPORT_SYMBOL(generic_file_direct_write); | |
3142 | ||
eb2be189 NP |
3143 | /* |
3144 | * Find or create a page at the given pagecache position. Return the locked | |
3145 | * page. This function is specifically for buffered writes. | |
3146 | */ | |
54566b2c NP |
3147 | struct page *grab_cache_page_write_begin(struct address_space *mapping, |
3148 | pgoff_t index, unsigned flags) | |
eb2be189 | 3149 | { |
eb2be189 | 3150 | struct page *page; |
bbddabe2 | 3151 | int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; |
0faa70cb | 3152 | |
54566b2c | 3153 | if (flags & AOP_FLAG_NOFS) |
2457aec6 MG |
3154 | fgp_flags |= FGP_NOFS; |
3155 | ||
3156 | page = pagecache_get_page(mapping, index, fgp_flags, | |
45f87de5 | 3157 | mapping_gfp_mask(mapping)); |
c585a267 | 3158 | if (page) |
2457aec6 | 3159 | wait_for_stable_page(page); |
eb2be189 | 3160 | |
eb2be189 NP |
3161 | return page; |
3162 | } | |
54566b2c | 3163 | EXPORT_SYMBOL(grab_cache_page_write_begin); |
eb2be189 | 3164 | |
3b93f911 | 3165 | ssize_t generic_perform_write(struct file *file, |
afddba49 NP |
3166 | struct iov_iter *i, loff_t pos) |
3167 | { | |
3168 | struct address_space *mapping = file->f_mapping; | |
3169 | const struct address_space_operations *a_ops = mapping->a_ops; | |
3170 | long status = 0; | |
3171 | ssize_t written = 0; | |
674b892e NP |
3172 | unsigned int flags = 0; |
3173 | ||
afddba49 NP |
3174 | do { |
3175 | struct page *page; | |
afddba49 NP |
3176 | unsigned long offset; /* Offset into pagecache page */ |
3177 | unsigned long bytes; /* Bytes to write to page */ | |
3178 | size_t copied; /* Bytes copied from user */ | |
3179 | void *fsdata; | |
3180 | ||
09cbfeaf KS |
3181 | offset = (pos & (PAGE_SIZE - 1)); |
3182 | bytes = min_t(unsigned long, PAGE_SIZE - offset, | |
afddba49 NP |
3183 | iov_iter_count(i)); |
3184 | ||
3185 | again: | |
00a3d660 LT |
3186 | /* |
3187 | * Bring in the user page that we will copy from _first_. | |
3188 | * Otherwise there's a nasty deadlock on copying from the | |
3189 | * same page as we're writing to, without it being marked | |
3190 | * up-to-date. | |
3191 | * | |
3192 | * Not only is this an optimisation, but it is also required | |
3193 | * to check that the address is actually valid, when atomic | |
3194 | * usercopies are used, below. | |
3195 | */ | |
3196 | if (unlikely(iov_iter_fault_in_readable(i, bytes))) { | |
3197 | status = -EFAULT; | |
3198 | break; | |
3199 | } | |
3200 | ||
296291cd JK |
3201 | if (fatal_signal_pending(current)) { |
3202 | status = -EINTR; | |
3203 | break; | |
3204 | } | |
3205 | ||
674b892e | 3206 | status = a_ops->write_begin(file, mapping, pos, bytes, flags, |
afddba49 | 3207 | &page, &fsdata); |
2457aec6 | 3208 | if (unlikely(status < 0)) |
afddba49 NP |
3209 | break; |
3210 | ||
931e80e4 | 3211 | if (mapping_writably_mapped(mapping)) |
3212 | flush_dcache_page(page); | |
00a3d660 | 3213 | |
afddba49 | 3214 | copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); |
afddba49 NP |
3215 | flush_dcache_page(page); |
3216 | ||
3217 | status = a_ops->write_end(file, mapping, pos, bytes, copied, | |
3218 | page, fsdata); | |
3219 | if (unlikely(status < 0)) | |
3220 | break; | |
3221 | copied = status; | |
3222 | ||
3223 | cond_resched(); | |
3224 | ||
124d3b70 | 3225 | iov_iter_advance(i, copied); |
afddba49 NP |
3226 | if (unlikely(copied == 0)) { |
3227 | /* | |
3228 | * If we were unable to copy any data at all, we must | |
3229 | * fall back to a single segment length write. | |
3230 | * | |
3231 | * If we didn't fallback here, we could livelock | |
3232 | * because not all segments in the iov can be copied at | |
3233 | * once without a pagefault. | |
3234 | */ | |
09cbfeaf | 3235 | bytes = min_t(unsigned long, PAGE_SIZE - offset, |
afddba49 NP |
3236 | iov_iter_single_seg_count(i)); |
3237 | goto again; | |
3238 | } | |
afddba49 NP |
3239 | pos += copied; |
3240 | written += copied; | |
3241 | ||
3242 | balance_dirty_pages_ratelimited(mapping); | |
afddba49 NP |
3243 | } while (iov_iter_count(i)); |
3244 | ||
3245 | return written ? written : status; | |
3246 | } | |
3b93f911 | 3247 | EXPORT_SYMBOL(generic_perform_write); |
1da177e4 | 3248 | |
e4dd9de3 | 3249 | /** |
8174202b | 3250 | * __generic_file_write_iter - write data to a file |
e4dd9de3 | 3251 | * @iocb: IO state structure (file, offset, etc.) |
8174202b | 3252 | * @from: iov_iter with data to write |
e4dd9de3 JK |
3253 | * |
3254 | * This function does all the work needed for actually writing data to a | |
3255 | * file. It does all basic checks, removes SUID from the file, updates | |
3256 | * modification times and calls proper subroutines depending on whether we | |
3257 | * do direct IO or a standard buffered write. | |
3258 | * | |
3259 | * It expects i_mutex to be grabbed unless we work on a block device or similar | |
3260 | * object which does not need locking at all. | |
3261 | * | |
3262 | * This function does *not* take care of syncing data in case of O_SYNC write. | |
3263 | * A caller has to handle it. This is mainly due to the fact that we want to | |
3264 | * avoid syncing under i_mutex. | |
a862f68a MR |
3265 | * |
3266 | * Return: | |
3267 | * * number of bytes written, even for truncated writes | |
3268 | * * negative error code if no data has been written at all | |
e4dd9de3 | 3269 | */ |
8174202b | 3270 | ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 LT |
3271 | { |
3272 | struct file *file = iocb->ki_filp; | |
fb5527e6 | 3273 | struct address_space * mapping = file->f_mapping; |
1da177e4 | 3274 | struct inode *inode = mapping->host; |
3b93f911 | 3275 | ssize_t written = 0; |
1da177e4 | 3276 | ssize_t err; |
3b93f911 | 3277 | ssize_t status; |
1da177e4 | 3278 | |
1da177e4 | 3279 | /* We can write back this queue in page reclaim */ |
de1414a6 | 3280 | current->backing_dev_info = inode_to_bdi(inode); |
5fa8e0a1 | 3281 | err = file_remove_privs(file); |
1da177e4 LT |
3282 | if (err) |
3283 | goto out; | |
3284 | ||
c3b2da31 JB |
3285 | err = file_update_time(file); |
3286 | if (err) | |
3287 | goto out; | |
1da177e4 | 3288 | |
2ba48ce5 | 3289 | if (iocb->ki_flags & IOCB_DIRECT) { |
0b8def9d | 3290 | loff_t pos, endbyte; |
fb5527e6 | 3291 | |
1af5bb49 | 3292 | written = generic_file_direct_write(iocb, from); |
1da177e4 | 3293 | /* |
fbbbad4b MW |
3294 | * If the write stopped short of completing, fall back to |
3295 | * buffered writes. Some filesystems do this for writes to | |
3296 | * holes, for example. For DAX files, a buffered write will | |
3297 | * not succeed (even if it did, DAX does not handle dirty | |
3298 | * page-cache pages correctly). | |
1da177e4 | 3299 | */ |
0b8def9d | 3300 | if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) |
fbbbad4b MW |
3301 | goto out; |
3302 | ||
0b8def9d | 3303 | status = generic_perform_write(file, from, pos = iocb->ki_pos); |
fb5527e6 | 3304 | /* |
3b93f911 | 3305 | * If generic_perform_write() returned a synchronous error |
fb5527e6 JM |
3306 | * then we want to return the number of bytes which were |
3307 | * direct-written, or the error code if that was zero. Note | |
3308 | * that this differs from normal direct-io semantics, which | |
3309 | * will return -EFOO even if some bytes were written. | |
3310 | */ | |
60bb4529 | 3311 | if (unlikely(status < 0)) { |
3b93f911 | 3312 | err = status; |
fb5527e6 JM |
3313 | goto out; |
3314 | } | |
fb5527e6 JM |
3315 | /* |
3316 | * We need to ensure that the page cache pages are written to | |
3317 | * disk and invalidated to preserve the expected O_DIRECT | |
3318 | * semantics. | |
3319 | */ | |
3b93f911 | 3320 | endbyte = pos + status - 1; |
0b8def9d | 3321 | err = filemap_write_and_wait_range(mapping, pos, endbyte); |
fb5527e6 | 3322 | if (err == 0) { |
0b8def9d | 3323 | iocb->ki_pos = endbyte + 1; |
3b93f911 | 3324 | written += status; |
fb5527e6 | 3325 | invalidate_mapping_pages(mapping, |
09cbfeaf KS |
3326 | pos >> PAGE_SHIFT, |
3327 | endbyte >> PAGE_SHIFT); | |
fb5527e6 JM |
3328 | } else { |
3329 | /* | |
3330 | * We don't know how much we wrote, so just return | |
3331 | * the number of bytes which were direct-written | |
3332 | */ | |
3333 | } | |
3334 | } else { | |
0b8def9d AV |
3335 | written = generic_perform_write(file, from, iocb->ki_pos); |
3336 | if (likely(written > 0)) | |
3337 | iocb->ki_pos += written; | |
fb5527e6 | 3338 | } |
1da177e4 LT |
3339 | out: |
3340 | current->backing_dev_info = NULL; | |
3341 | return written ? written : err; | |
3342 | } | |
8174202b | 3343 | EXPORT_SYMBOL(__generic_file_write_iter); |
e4dd9de3 | 3344 | |
e4dd9de3 | 3345 | /** |
8174202b | 3346 | * generic_file_write_iter - write data to a file |
e4dd9de3 | 3347 | * @iocb: IO state structure |
8174202b | 3348 | * @from: iov_iter with data to write |
e4dd9de3 | 3349 | * |
8174202b | 3350 | * This is a wrapper around __generic_file_write_iter() to be used by most |
e4dd9de3 JK |
3351 | * filesystems. It takes care of syncing the file in case of O_SYNC file |
3352 | * and acquires i_mutex as needed. | |
a862f68a MR |
3353 | * Return: |
3354 | * * negative error code if no data has been written at all of | |
3355 | * vfs_fsync_range() failed for a synchronous write | |
3356 | * * number of bytes written, even for truncated writes | |
e4dd9de3 | 3357 | */ |
8174202b | 3358 | ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 LT |
3359 | { |
3360 | struct file *file = iocb->ki_filp; | |
148f948b | 3361 | struct inode *inode = file->f_mapping->host; |
1da177e4 | 3362 | ssize_t ret; |
1da177e4 | 3363 | |
5955102c | 3364 | inode_lock(inode); |
3309dd04 AV |
3365 | ret = generic_write_checks(iocb, from); |
3366 | if (ret > 0) | |
5f380c7f | 3367 | ret = __generic_file_write_iter(iocb, from); |
5955102c | 3368 | inode_unlock(inode); |
1da177e4 | 3369 | |
e2592217 CH |
3370 | if (ret > 0) |
3371 | ret = generic_write_sync(iocb, ret); | |
1da177e4 LT |
3372 | return ret; |
3373 | } | |
8174202b | 3374 | EXPORT_SYMBOL(generic_file_write_iter); |
1da177e4 | 3375 | |
cf9a2ae8 DH |
3376 | /** |
3377 | * try_to_release_page() - release old fs-specific metadata on a page | |
3378 | * | |
3379 | * @page: the page which the kernel is trying to free | |
3380 | * @gfp_mask: memory allocation flags (and I/O mode) | |
3381 | * | |
3382 | * The address_space is to try to release any data against the page | |
a862f68a | 3383 | * (presumably at page->private). |
cf9a2ae8 | 3384 | * |
266cf658 DH |
3385 | * This may also be called if PG_fscache is set on a page, indicating that the |
3386 | * page is known to the local caching routines. | |
3387 | * | |
cf9a2ae8 | 3388 | * The @gfp_mask argument specifies whether I/O may be performed to release |
71baba4b | 3389 | * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). |
cf9a2ae8 | 3390 | * |
a862f68a | 3391 | * Return: %1 if the release was successful, otherwise return zero. |
cf9a2ae8 DH |
3392 | */ |
3393 | int try_to_release_page(struct page *page, gfp_t gfp_mask) | |
3394 | { | |
3395 | struct address_space * const mapping = page->mapping; | |
3396 | ||
3397 | BUG_ON(!PageLocked(page)); | |
3398 | if (PageWriteback(page)) | |
3399 | return 0; | |
3400 | ||
3401 | if (mapping && mapping->a_ops->releasepage) | |
3402 | return mapping->a_ops->releasepage(page, gfp_mask); | |
3403 | return try_to_free_buffers(page); | |
3404 | } | |
3405 | ||
3406 | EXPORT_SYMBOL(try_to_release_page); |