]> Git Repo - linux.git/blame - mm/filemap.c
Merge tag 'objtool-core-2024-01-08' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
ffa65753 24#include <linux/swapops.h>
cf264e13 25#include <linux/syscalls.h>
1da177e4
LT
26#include <linux/mman.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/uio.h>
cfcbfb13 30#include <linux/error-injection.h>
1da177e4
LT
31#include <linux/hash.h>
32#include <linux/writeback.h>
53253383 33#include <linux/backing-dev.h>
1da177e4 34#include <linux/pagevec.h>
1da177e4 35#include <linux/security.h>
44110fe3 36#include <linux/cpuset.h>
00501b53 37#include <linux/hugetlb.h>
8a9f3ccd 38#include <linux/memcontrol.h>
c7df8ad2 39#include <linux/shmem_fs.h>
f1820361 40#include <linux/rmap.h>
b1d29ba8 41#include <linux/delayacct.h>
eb414681 42#include <linux/psi.h>
d0e6a582 43#include <linux/ramfs.h>
b9306a79 44#include <linux/page_idle.h>
ffa65753 45#include <linux/migrate.h>
07073eb0
DH
46#include <linux/pipe_fs_i.h>
47#include <linux/splice.h>
f9ce0be7 48#include <asm/pgalloc.h>
de591a82 49#include <asm/tlbflush.h>
0f8053a5
NP
50#include "internal.h"
51
fe0bfaaf
RJ
52#define CREATE_TRACE_POINTS
53#include <trace/events/filemap.h>
54
1da177e4 55/*
1da177e4
LT
56 * FIXME: remove all knowledge of the buffer layer from the core VM
57 */
148f948b 58#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 59
1da177e4
LT
60#include <asm/mman.h>
61
cf264e13
NP
62#include "swap.h"
63
1da177e4
LT
64/*
65 * Shared mappings implemented 30.11.1994. It's not fully working yet,
66 * though.
67 *
68 * Shared mappings now work. 15.8.1995 Bruno.
69 *
70 * finished 'unifying' the page and buffer cache and SMP-threaded the
71 * page-cache, 21.05.1999, Ingo Molnar <[email protected]>
72 *
73 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <[email protected]>
74 */
75
76/*
77 * Lock ordering:
78 *
c8c06efa 79 * ->i_mmap_rwsem (truncate_pagecache)
e621900a 80 * ->private_lock (__free_pte->block_dirty_folio)
5d337b91 81 * ->swap_lock (exclusive_swap_page, others)
b93b0163 82 * ->i_pages lock
1da177e4 83 *
9608703e 84 * ->i_rwsem
730633f0
JK
85 * ->invalidate_lock (acquired by fs in truncate path)
86 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 87 *
c1e8d7c6 88 * ->mmap_lock
c8c06efa 89 * ->i_mmap_rwsem
b8072f09 90 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 91 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 92 *
c1e8d7c6 93 * ->mmap_lock
730633f0
JK
94 * ->invalidate_lock (filemap_fault)
95 * ->lock_page (filemap_fault, access_process_vm)
1da177e4 96 *
9608703e 97 * ->i_rwsem (generic_perform_write)
bb523b40 98 * ->mmap_lock (fault_in_readable->do_page_fault)
1da177e4 99 *
f758eeab 100 * bdi->wb.list_lock
a66979ab 101 * sb_lock (fs/fs-writeback.c)
b93b0163 102 * ->i_pages lock (__sync_single_inode)
1da177e4 103 *
c8c06efa 104 * ->i_mmap_rwsem
0503ea8f 105 * ->anon_vma.lock (vma_merge)
1da177e4
LT
106 *
107 * ->anon_vma.lock
b8072f09 108 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 109 *
b8072f09 110 * ->page_table_lock or pte_lock
5d337b91 111 * ->swap_lock (try_to_unmap_one)
1da177e4 112 * ->private_lock (try_to_unmap_one)
b93b0163 113 * ->i_pages lock (try_to_unmap_one)
15b44736
HD
114 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
115 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 116 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 117 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 118 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 119 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
6c77b607 120 * ->memcg->move_lock (page_remove_rmap->folio_memcg_lock)
f758eeab 121 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 122 * ->inode->i_lock (zap_pte_range->set_page_dirty)
e621900a 123 * ->private_lock (zap_pte_range->block_dirty_folio)
1da177e4
LT
124 */
125
5c024e6a 126static void page_cache_delete(struct address_space *mapping,
a548b615 127 struct folio *folio, void *shadow)
91b0abe3 128{
a548b615
MWO
129 XA_STATE(xas, &mapping->i_pages, folio->index);
130 long nr = 1;
c70b647d 131
5c024e6a 132 mapping_set_update(&xas, mapping);
c70b647d 133
a08c7193
SK
134 xas_set_order(&xas, folio->index, folio_order(folio));
135 nr = folio_nr_pages(folio);
91b0abe3 136
a548b615 137 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
449dd698 138
5c024e6a
MW
139 xas_store(&xas, shadow);
140 xas_init_marks(&xas);
d3798ae8 141
a548b615 142 folio->mapping = NULL;
2300638b 143 /* Leave page->index set: truncation lookup relies upon it */
d3798ae8 144 mapping->nrpages -= nr;
91b0abe3
JW
145}
146
621db488
MWO
147static void filemap_unaccount_folio(struct address_space *mapping,
148 struct folio *folio)
1da177e4 149{
621db488 150 long nr;
1da177e4 151
621db488
MWO
152 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
153 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
06b241f3 154 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
621db488
MWO
155 current->comm, folio_pfn(folio));
156 dump_page(&folio->page, "still mapped when deleted");
06b241f3
HD
157 dump_stack();
158 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
159
85207ad8
HD
160 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
161 int mapcount = page_mapcount(&folio->page);
162
163 if (folio_ref_count(folio) >= mapcount + 2) {
164 /*
165 * All vmas have already been torn down, so it's
166 * a good bet that actually the page is unmapped
167 * and we'd rather not leak it: if we're wrong,
168 * another bad page check should catch it later.
169 */
170 page_mapcount_reset(&folio->page);
171 folio_ref_sub(folio, mapcount);
172 }
06b241f3
HD
173 }
174 }
175
621db488
MWO
176 /* hugetlb folios do not participate in page cache accounting. */
177 if (folio_test_hugetlb(folio))
5ecc4d85 178 return;
09612fa6 179
621db488 180 nr = folio_nr_pages(folio);
5ecc4d85 181
621db488
MWO
182 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
183 if (folio_test_swapbacked(folio)) {
184 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
185 if (folio_test_pmd_mappable(folio))
186 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
187 } else if (folio_test_pmd_mappable(folio)) {
188 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
09d91cda 189 filemap_nr_thps_dec(mapping);
800d8c63 190 }
5ecc4d85
JK
191
192 /*
621db488
MWO
193 * At this point folio must be either written or cleaned by
194 * truncate. Dirty folio here signals a bug and loss of
566d3362 195 * unwritten data - on ordinary filesystems.
5ecc4d85 196 *
566d3362
HD
197 * But it's harmless on in-memory filesystems like tmpfs; and can
198 * occur when a driver which did get_user_pages() sets page dirty
199 * before putting it, while the inode is being finally evicted.
200 *
201 * Below fixes dirty accounting after removing the folio entirely
621db488
MWO
202 * but leaves the dirty flag set: it has no effect for truncated
203 * folio and anyway will be cleared before returning folio to
5ecc4d85
JK
204 * buddy allocator.
205 */
566d3362
HD
206 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
207 mapping_can_writeback(mapping)))
208 folio_account_cleaned(folio, inode_to_wb(mapping->host));
5ecc4d85
JK
209}
210
211/*
212 * Delete a page from the page cache and free it. Caller has to make
213 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 214 * is safe. The caller must hold the i_pages lock.
5ecc4d85 215 */
452e9e69 216void __filemap_remove_folio(struct folio *folio, void *shadow)
5ecc4d85 217{
452e9e69 218 struct address_space *mapping = folio->mapping;
5ecc4d85 219
a0580c6f 220 trace_mm_filemap_delete_from_page_cache(folio);
621db488 221 filemap_unaccount_folio(mapping, folio);
a548b615 222 page_cache_delete(mapping, folio, shadow);
1da177e4
LT
223}
224
78f42660 225void filemap_free_folio(struct address_space *mapping, struct folio *folio)
59c66c5f 226{
d2329aa0 227 void (*free_folio)(struct folio *);
3abb28e2 228 int refs = 1;
59c66c5f 229
d2329aa0
MWO
230 free_folio = mapping->a_ops->free_folio;
231 if (free_folio)
232 free_folio(folio);
59c66c5f 233
a08c7193 234 if (folio_test_large(folio))
3abb28e2
MWO
235 refs = folio_nr_pages(folio);
236 folio_put_refs(folio, refs);
59c66c5f
JK
237}
238
702cfbf9 239/**
452e9e69
MWO
240 * filemap_remove_folio - Remove folio from page cache.
241 * @folio: The folio.
702cfbf9 242 *
452e9e69
MWO
243 * This must be called only on folios that are locked and have been
244 * verified to be in the page cache. It will never put the folio into
245 * the free list because the caller has a reference on the page.
702cfbf9 246 */
452e9e69 247void filemap_remove_folio(struct folio *folio)
1da177e4 248{
452e9e69 249 struct address_space *mapping = folio->mapping;
1da177e4 250
452e9e69 251 BUG_ON(!folio_test_locked(folio));
51b8c1fe 252 spin_lock(&mapping->host->i_lock);
30472509 253 xa_lock_irq(&mapping->i_pages);
452e9e69 254 __filemap_remove_folio(folio, NULL);
30472509 255 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
256 if (mapping_shrinkable(mapping))
257 inode_add_lru(mapping->host);
258 spin_unlock(&mapping->host->i_lock);
6072d13c 259
452e9e69 260 filemap_free_folio(mapping, folio);
97cecb5a 261}
97cecb5a 262
aa65c29c 263/*
51dcbdac
MWO
264 * page_cache_delete_batch - delete several folios from page cache
265 * @mapping: the mapping to which folios belong
266 * @fbatch: batch of folios to delete
aa65c29c 267 *
51dcbdac
MWO
268 * The function walks over mapping->i_pages and removes folios passed in
269 * @fbatch from the mapping. The function expects @fbatch to be sorted
270 * by page index and is optimised for it to be dense.
271 * It tolerates holes in @fbatch (mapping entries at those indices are not
272 * modified).
aa65c29c 273 *
b93b0163 274 * The function expects the i_pages lock to be held.
aa65c29c 275 */
ef8e5717 276static void page_cache_delete_batch(struct address_space *mapping,
51dcbdac 277 struct folio_batch *fbatch)
aa65c29c 278{
51dcbdac 279 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
6b24ca4a 280 long total_pages = 0;
4101196b 281 int i = 0;
1afd7ae5 282 struct folio *folio;
aa65c29c 283
ef8e5717 284 mapping_set_update(&xas, mapping);
1afd7ae5 285 xas_for_each(&xas, folio, ULONG_MAX) {
51dcbdac 286 if (i >= folio_batch_count(fbatch))
aa65c29c 287 break;
4101196b
MWO
288
289 /* A swap/dax/shadow entry got inserted? Skip it. */
1afd7ae5 290 if (xa_is_value(folio))
aa65c29c 291 continue;
4101196b
MWO
292 /*
293 * A page got inserted in our range? Skip it. We have our
294 * pages locked so they are protected from being removed.
295 * If we see a page whose index is higher than ours, it
296 * means our page has been removed, which shouldn't be
297 * possible because we're holding the PageLock.
298 */
51dcbdac 299 if (folio != fbatch->folios[i]) {
1afd7ae5 300 VM_BUG_ON_FOLIO(folio->index >
51dcbdac 301 fbatch->folios[i]->index, folio);
4101196b
MWO
302 continue;
303 }
304
1afd7ae5 305 WARN_ON_ONCE(!folio_test_locked(folio));
4101196b 306
6b24ca4a 307 folio->mapping = NULL;
51dcbdac 308 /* Leave folio->index set: truncation lookup relies on it */
4101196b 309
6b24ca4a 310 i++;
ef8e5717 311 xas_store(&xas, NULL);
6b24ca4a 312 total_pages += folio_nr_pages(folio);
aa65c29c
JK
313 }
314 mapping->nrpages -= total_pages;
315}
316
317void delete_from_page_cache_batch(struct address_space *mapping,
51dcbdac 318 struct folio_batch *fbatch)
aa65c29c
JK
319{
320 int i;
aa65c29c 321
51dcbdac 322 if (!folio_batch_count(fbatch))
aa65c29c
JK
323 return;
324
51b8c1fe 325 spin_lock(&mapping->host->i_lock);
30472509 326 xa_lock_irq(&mapping->i_pages);
51dcbdac
MWO
327 for (i = 0; i < folio_batch_count(fbatch); i++) {
328 struct folio *folio = fbatch->folios[i];
aa65c29c 329
a0580c6f
MWO
330 trace_mm_filemap_delete_from_page_cache(folio);
331 filemap_unaccount_folio(mapping, folio);
aa65c29c 332 }
51dcbdac 333 page_cache_delete_batch(mapping, fbatch);
30472509 334 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
335 if (mapping_shrinkable(mapping))
336 inode_add_lru(mapping->host);
337 spin_unlock(&mapping->host->i_lock);
aa65c29c 338
51dcbdac
MWO
339 for (i = 0; i < folio_batch_count(fbatch); i++)
340 filemap_free_folio(mapping, fbatch->folios[i]);
aa65c29c
JK
341}
342
d72d9e2a 343int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
344{
345 int ret = 0;
346 /* Check for outstanding write errors */
7fcbbaf1
JA
347 if (test_bit(AS_ENOSPC, &mapping->flags) &&
348 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 349 ret = -ENOSPC;
7fcbbaf1
JA
350 if (test_bit(AS_EIO, &mapping->flags) &&
351 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
352 ret = -EIO;
353 return ret;
354}
d72d9e2a 355EXPORT_SYMBOL(filemap_check_errors);
865ffef3 356
76341cab
JL
357static int filemap_check_and_keep_errors(struct address_space *mapping)
358{
359 /* Check for outstanding write errors */
360 if (test_bit(AS_EIO, &mapping->flags))
361 return -EIO;
362 if (test_bit(AS_ENOSPC, &mapping->flags))
363 return -ENOSPC;
364 return 0;
365}
366
5a798493
JB
367/**
368 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
369 * @mapping: address space structure to write
370 * @wbc: the writeback_control controlling the writeout
371 *
372 * Call writepages on the mapping using the provided wbc to control the
373 * writeout.
374 *
375 * Return: %0 on success, negative error code otherwise.
376 */
377int filemap_fdatawrite_wbc(struct address_space *mapping,
378 struct writeback_control *wbc)
379{
380 int ret;
381
382 if (!mapping_can_writeback(mapping) ||
383 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
384 return 0;
385
386 wbc_attach_fdatawrite_inode(wbc, mapping->host);
387 ret = do_writepages(mapping, wbc);
388 wbc_detach_inode(wbc);
389 return ret;
390}
391EXPORT_SYMBOL(filemap_fdatawrite_wbc);
392
1da177e4 393/**
485bb99b 394 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
395 * @mapping: address space structure to write
396 * @start: offset in bytes where the range starts
469eb4d0 397 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 398 * @sync_mode: enable synchronous operation
1da177e4 399 *
485bb99b
RD
400 * Start writeback against all of a mapping's dirty pages that lie
401 * within the byte offsets <start, end> inclusive.
402 *
1da177e4 403 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 404 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
405 * these two operations is that if a dirty page/buffer is encountered, it must
406 * be waited upon, and not just skipped over.
a862f68a
MR
407 *
408 * Return: %0 on success, negative error code otherwise.
1da177e4 409 */
ebcf28e1
AM
410int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
411 loff_t end, int sync_mode)
1da177e4 412{
1da177e4
LT
413 struct writeback_control wbc = {
414 .sync_mode = sync_mode,
05fe478d 415 .nr_to_write = LONG_MAX,
111ebb6e
OH
416 .range_start = start,
417 .range_end = end,
1da177e4
LT
418 };
419
5a798493 420 return filemap_fdatawrite_wbc(mapping, &wbc);
1da177e4
LT
421}
422
423static inline int __filemap_fdatawrite(struct address_space *mapping,
424 int sync_mode)
425{
111ebb6e 426 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
427}
428
429int filemap_fdatawrite(struct address_space *mapping)
430{
431 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
432}
433EXPORT_SYMBOL(filemap_fdatawrite);
434
f4c0a0fd 435int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 436 loff_t end)
1da177e4
LT
437{
438 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
439}
f4c0a0fd 440EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 441
485bb99b
RD
442/**
443 * filemap_flush - mostly a non-blocking flush
444 * @mapping: target address_space
445 *
1da177e4
LT
446 * This is a mostly non-blocking flush. Not suitable for data-integrity
447 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
448 *
449 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
450 */
451int filemap_flush(struct address_space *mapping)
452{
453 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
454}
455EXPORT_SYMBOL(filemap_flush);
456
7fc9e472
GR
457/**
458 * filemap_range_has_page - check if a page exists in range.
459 * @mapping: address space within which to check
460 * @start_byte: offset in bytes where the range starts
461 * @end_byte: offset in bytes where the range ends (inclusive)
462 *
463 * Find at least one page in the range supplied, usually used to check if
464 * direct writing in this range will trigger a writeback.
a862f68a
MR
465 *
466 * Return: %true if at least one page exists in the specified range,
467 * %false otherwise.
7fc9e472
GR
468 */
469bool filemap_range_has_page(struct address_space *mapping,
470 loff_t start_byte, loff_t end_byte)
471{
eff3b364 472 struct folio *folio;
8fa8e538
MW
473 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
474 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
475
476 if (end_byte < start_byte)
477 return false;
478
8fa8e538
MW
479 rcu_read_lock();
480 for (;;) {
eff3b364
MWO
481 folio = xas_find(&xas, max);
482 if (xas_retry(&xas, folio))
8fa8e538
MW
483 continue;
484 /* Shadow entries don't count */
eff3b364 485 if (xa_is_value(folio))
8fa8e538
MW
486 continue;
487 /*
488 * We don't need to try to pin this page; we're about to
489 * release the RCU lock anyway. It is enough to know that
490 * there was a page here recently.
491 */
492 break;
493 }
494 rcu_read_unlock();
7fc9e472 495
eff3b364 496 return folio != NULL;
7fc9e472
GR
497}
498EXPORT_SYMBOL(filemap_range_has_page);
499
5e8fcc1a 500static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 501 loff_t start_byte, loff_t end_byte)
1da177e4 502{
09cbfeaf
KS
503 pgoff_t index = start_byte >> PAGE_SHIFT;
504 pgoff_t end = end_byte >> PAGE_SHIFT;
6817ef51
VMO
505 struct folio_batch fbatch;
506 unsigned nr_folios;
507
508 folio_batch_init(&fbatch);
1da177e4 509
312e9d2f 510 while (index <= end) {
1da177e4
LT
511 unsigned i;
512
6817ef51
VMO
513 nr_folios = filemap_get_folios_tag(mapping, &index, end,
514 PAGECACHE_TAG_WRITEBACK, &fbatch);
515
516 if (!nr_folios)
312e9d2f
JK
517 break;
518
6817ef51
VMO
519 for (i = 0; i < nr_folios; i++) {
520 struct folio *folio = fbatch.folios[i];
1da177e4 521
6817ef51
VMO
522 folio_wait_writeback(folio);
523 folio_clear_error(folio);
1da177e4 524 }
6817ef51 525 folio_batch_release(&fbatch);
1da177e4
LT
526 cond_resched();
527 }
aa750fd7
JN
528}
529
530/**
531 * filemap_fdatawait_range - wait for writeback to complete
532 * @mapping: address space structure to wait for
533 * @start_byte: offset in bytes where the range starts
534 * @end_byte: offset in bytes where the range ends (inclusive)
535 *
536 * Walk the list of under-writeback pages of the given address space
537 * in the given range and wait for all of them. Check error status of
538 * the address space and return it.
539 *
540 * Since the error status of the address space is cleared by this function,
541 * callers are responsible for checking the return value and handling and/or
542 * reporting the error.
a862f68a
MR
543 *
544 * Return: error status of the address space.
aa750fd7
JN
545 */
546int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
547 loff_t end_byte)
548{
5e8fcc1a
JL
549 __filemap_fdatawait_range(mapping, start_byte, end_byte);
550 return filemap_check_errors(mapping);
1da177e4 551}
d3bccb6f
JK
552EXPORT_SYMBOL(filemap_fdatawait_range);
553
aa0bfcd9
RZ
554/**
555 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
556 * @mapping: address space structure to wait for
557 * @start_byte: offset in bytes where the range starts
558 * @end_byte: offset in bytes where the range ends (inclusive)
559 *
560 * Walk the list of under-writeback pages of the given address space in the
561 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
562 * this function does not clear error status of the address space.
563 *
564 * Use this function if callers don't handle errors themselves. Expected
565 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
566 * fsfreeze(8)
567 */
568int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
569 loff_t start_byte, loff_t end_byte)
570{
571 __filemap_fdatawait_range(mapping, start_byte, end_byte);
572 return filemap_check_and_keep_errors(mapping);
573}
574EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
575
a823e458
JL
576/**
577 * file_fdatawait_range - wait for writeback to complete
578 * @file: file pointing to address space structure to wait for
579 * @start_byte: offset in bytes where the range starts
580 * @end_byte: offset in bytes where the range ends (inclusive)
581 *
582 * Walk the list of under-writeback pages of the address space that file
583 * refers to, in the given range and wait for all of them. Check error
584 * status of the address space vs. the file->f_wb_err cursor and return it.
585 *
586 * Since the error status of the file is advanced by this function,
587 * callers are responsible for checking the return value and handling and/or
588 * reporting the error.
a862f68a
MR
589 *
590 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
591 */
592int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
593{
594 struct address_space *mapping = file->f_mapping;
595
596 __filemap_fdatawait_range(mapping, start_byte, end_byte);
597 return file_check_and_advance_wb_err(file);
598}
599EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 600
aa750fd7
JN
601/**
602 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
603 * @mapping: address space structure to wait for
604 *
605 * Walk the list of under-writeback pages of the given address space
606 * and wait for all of them. Unlike filemap_fdatawait(), this function
607 * does not clear error status of the address space.
608 *
609 * Use this function if callers don't handle errors themselves. Expected
610 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
611 * fsfreeze(8)
a862f68a
MR
612 *
613 * Return: error status of the address space.
aa750fd7 614 */
76341cab 615int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 616{
ffb959bb 617 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 618 return filemap_check_and_keep_errors(mapping);
aa750fd7 619}
76341cab 620EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 621
875d91b1 622/* Returns true if writeback might be needed or already in progress. */
9326c9b2 623static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 624{
875d91b1 625 return mapping->nrpages;
1da177e4 626}
1da177e4 627
4bdcd1dd
JA
628bool filemap_range_has_writeback(struct address_space *mapping,
629 loff_t start_byte, loff_t end_byte)
f8ee8909
JA
630{
631 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
632 pgoff_t max = end_byte >> PAGE_SHIFT;
b05f41a1 633 struct folio *folio;
f8ee8909
JA
634
635 if (end_byte < start_byte)
636 return false;
637
638 rcu_read_lock();
b05f41a1
VMO
639 xas_for_each(&xas, folio, max) {
640 if (xas_retry(&xas, folio))
f8ee8909 641 continue;
b05f41a1 642 if (xa_is_value(folio))
f8ee8909 643 continue;
b05f41a1
VMO
644 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
645 folio_test_writeback(folio))
f8ee8909
JA
646 break;
647 }
648 rcu_read_unlock();
b05f41a1 649 return folio != NULL;
63135aa3 650}
4bdcd1dd 651EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
63135aa3 652
485bb99b
RD
653/**
654 * filemap_write_and_wait_range - write out & wait on a file range
655 * @mapping: the address_space for the pages
656 * @lstart: offset in bytes where the range starts
657 * @lend: offset in bytes where the range ends (inclusive)
658 *
469eb4d0
AM
659 * Write out and wait upon file offsets lstart->lend, inclusive.
660 *
0e056eb5 661 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 662 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
663 *
664 * Return: error status of the address space.
469eb4d0 665 */
1da177e4
LT
666int filemap_write_and_wait_range(struct address_space *mapping,
667 loff_t lstart, loff_t lend)
668{
ccac11da 669 int err = 0, err2;
1da177e4 670
feeb9b26
BF
671 if (lend < lstart)
672 return 0;
673
9326c9b2 674 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
675 err = __filemap_fdatawrite_range(mapping, lstart, lend,
676 WB_SYNC_ALL);
ddf8f376
IW
677 /*
678 * Even if the above returned error, the pages may be
679 * written partially (e.g. -ENOSPC), so we wait for it.
680 * But the -EIO is special case, it may indicate the worst
681 * thing (e.g. bug) happened, so we avoid waiting for it.
682 */
ccac11da
ML
683 if (err != -EIO)
684 __filemap_fdatawait_range(mapping, lstart, lend);
1da177e4 685 }
ccac11da
ML
686 err2 = filemap_check_errors(mapping);
687 if (!err)
688 err = err2;
28fd1298 689 return err;
1da177e4 690}
f6995585 691EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 692
5660e13d
JL
693void __filemap_set_wb_err(struct address_space *mapping, int err)
694{
3acdfd28 695 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
696
697 trace_filemap_set_wb_err(mapping, eseq);
698}
699EXPORT_SYMBOL(__filemap_set_wb_err);
700
701/**
702 * file_check_and_advance_wb_err - report wb error (if any) that was previously
703 * and advance wb_err to current one
704 * @file: struct file on which the error is being reported
705 *
706 * When userland calls fsync (or something like nfsd does the equivalent), we
707 * want to report any writeback errors that occurred since the last fsync (or
708 * since the file was opened if there haven't been any).
709 *
710 * Grab the wb_err from the mapping. If it matches what we have in the file,
711 * then just quickly return 0. The file is all caught up.
712 *
713 * If it doesn't match, then take the mapping value, set the "seen" flag in
714 * it and try to swap it into place. If it works, or another task beat us
715 * to it with the new value, then update the f_wb_err and return the error
716 * portion. The error at this point must be reported via proper channels
717 * (a'la fsync, or NFS COMMIT operation, etc.).
718 *
719 * While we handle mapping->wb_err with atomic operations, the f_wb_err
720 * value is protected by the f_lock since we must ensure that it reflects
721 * the latest value swapped in for this file descriptor.
a862f68a
MR
722 *
723 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
724 */
725int file_check_and_advance_wb_err(struct file *file)
726{
727 int err = 0;
728 errseq_t old = READ_ONCE(file->f_wb_err);
729 struct address_space *mapping = file->f_mapping;
730
731 /* Locklessly handle the common case where nothing has changed */
732 if (errseq_check(&mapping->wb_err, old)) {
733 /* Something changed, must use slow path */
734 spin_lock(&file->f_lock);
735 old = file->f_wb_err;
736 err = errseq_check_and_advance(&mapping->wb_err,
737 &file->f_wb_err);
738 trace_file_check_and_advance_wb_err(file, old);
739 spin_unlock(&file->f_lock);
740 }
f4e222c5
JL
741
742 /*
743 * We're mostly using this function as a drop in replacement for
744 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
745 * that the legacy code would have had on these flags.
746 */
747 clear_bit(AS_EIO, &mapping->flags);
748 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
749 return err;
750}
751EXPORT_SYMBOL(file_check_and_advance_wb_err);
752
753/**
754 * file_write_and_wait_range - write out & wait on a file range
755 * @file: file pointing to address_space with pages
756 * @lstart: offset in bytes where the range starts
757 * @lend: offset in bytes where the range ends (inclusive)
758 *
759 * Write out and wait upon file offsets lstart->lend, inclusive.
760 *
761 * Note that @lend is inclusive (describes the last byte to be written) so
762 * that this function can be used to write to the very end-of-file (end = -1).
763 *
764 * After writing out and waiting on the data, we check and advance the
765 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
766 *
767 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
768 */
769int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
770{
771 int err = 0, err2;
772 struct address_space *mapping = file->f_mapping;
773
feeb9b26
BF
774 if (lend < lstart)
775 return 0;
776
9326c9b2 777 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
778 err = __filemap_fdatawrite_range(mapping, lstart, lend,
779 WB_SYNC_ALL);
780 /* See comment of filemap_write_and_wait() */
781 if (err != -EIO)
782 __filemap_fdatawait_range(mapping, lstart, lend);
783 }
784 err2 = file_check_and_advance_wb_err(file);
785 if (!err)
786 err = err2;
787 return err;
788}
789EXPORT_SYMBOL(file_write_and_wait_range);
790
ef6a3c63 791/**
3720dd6d
VMO
792 * replace_page_cache_folio - replace a pagecache folio with a new one
793 * @old: folio to be replaced
794 * @new: folio to replace with
795 *
796 * This function replaces a folio in the pagecache with a new one. On
797 * success it acquires the pagecache reference for the new folio and
798 * drops it for the old folio. Both the old and new folios must be
799 * locked. This function does not add the new folio to the LRU, the
ef6a3c63
MS
800 * caller must do that.
801 *
74d60958 802 * The remove + add is atomic. This function cannot fail.
ef6a3c63 803 */
3720dd6d 804void replace_page_cache_folio(struct folio *old, struct folio *new)
ef6a3c63 805{
74d60958 806 struct address_space *mapping = old->mapping;
d2329aa0 807 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
74d60958
MW
808 pgoff_t offset = old->index;
809 XA_STATE(xas, &mapping->i_pages, offset);
ef6a3c63 810
3720dd6d
VMO
811 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
812 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
813 VM_BUG_ON_FOLIO(new->mapping, new);
ef6a3c63 814
3720dd6d 815 folio_get(new);
74d60958
MW
816 new->mapping = mapping;
817 new->index = offset;
ef6a3c63 818
85ce2c51 819 mem_cgroup_replace_folio(old, new);
0d1c2072 820
30472509 821 xas_lock_irq(&xas);
74d60958 822 xas_store(&xas, new);
4165b9b4 823
74d60958
MW
824 old->mapping = NULL;
825 /* hugetlb pages do not participate in page cache accounting. */
3720dd6d
VMO
826 if (!folio_test_hugetlb(old))
827 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
828 if (!folio_test_hugetlb(new))
829 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
830 if (folio_test_swapbacked(old))
831 __lruvec_stat_sub_folio(old, NR_SHMEM);
832 if (folio_test_swapbacked(new))
833 __lruvec_stat_add_folio(new, NR_SHMEM);
30472509 834 xas_unlock_irq(&xas);
d2329aa0 835 if (free_folio)
3720dd6d
VMO
836 free_folio(old);
837 folio_put(old);
ef6a3c63 838}
3720dd6d 839EXPORT_SYMBOL_GPL(replace_page_cache_folio);
ef6a3c63 840
9dd3d069
MWO
841noinline int __filemap_add_folio(struct address_space *mapping,
842 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
1da177e4 843{
9dd3d069
MWO
844 XA_STATE(xas, &mapping->i_pages, index);
845 int huge = folio_test_hugetlb(folio);
da74240e 846 bool charged = false;
d68eccad 847 long nr = 1;
e286781d 848
9dd3d069
MWO
849 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
850 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
74d60958 851 mapping_set_update(&xas, mapping);
e286781d 852
3fea5a49 853 if (!huge) {
d68eccad 854 int error = mem_cgroup_charge(folio, NULL, gfp);
3fea5a49 855 if (error)
d68eccad 856 return error;
da74240e 857 charged = true;
3fea5a49
JW
858 }
859
a08c7193
SK
860 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
861 xas_set_order(&xas, index, folio_order(folio));
862 nr = folio_nr_pages(folio);
863
198b62f8 864 gfp &= GFP_RECLAIM_MASK;
d68eccad
MWO
865 folio_ref_add(folio, nr);
866 folio->mapping = mapping;
867 folio->index = xas.xa_index;
198b62f8 868
74d60958 869 do {
198b62f8
MWO
870 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
871 void *entry, *old = NULL;
872
9dd3d069 873 if (order > folio_order(folio))
198b62f8
MWO
874 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
875 order, gfp);
74d60958 876 xas_lock_irq(&xas);
198b62f8
MWO
877 xas_for_each_conflict(&xas, entry) {
878 old = entry;
879 if (!xa_is_value(entry)) {
880 xas_set_err(&xas, -EEXIST);
881 goto unlock;
882 }
883 }
884
885 if (old) {
886 if (shadowp)
887 *shadowp = old;
888 /* entry may have been split before we acquired lock */
889 order = xa_get_order(xas.xa, xas.xa_index);
9dd3d069 890 if (order > folio_order(folio)) {
d68eccad
MWO
891 /* How to handle large swap entries? */
892 BUG_ON(shmem_mapping(mapping));
198b62f8
MWO
893 xas_split(&xas, old, order);
894 xas_reset(&xas);
895 }
896 }
897
9dd3d069 898 xas_store(&xas, folio);
74d60958
MW
899 if (xas_error(&xas))
900 goto unlock;
901
d68eccad 902 mapping->nrpages += nr;
74d60958
MW
903
904 /* hugetlb pages do not participate in page cache accounting */
d68eccad
MWO
905 if (!huge) {
906 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
907 if (folio_test_pmd_mappable(folio))
908 __lruvec_stat_mod_folio(folio,
909 NR_FILE_THPS, nr);
910 }
74d60958
MW
911unlock:
912 xas_unlock_irq(&xas);
198b62f8 913 } while (xas_nomem(&xas, gfp));
74d60958 914
d68eccad 915 if (xas_error(&xas))
74d60958 916 goto error;
4165b9b4 917
a0580c6f 918 trace_mm_filemap_add_to_page_cache(folio);
66a0c8ee 919 return 0;
74d60958 920error:
d68eccad
MWO
921 if (charged)
922 mem_cgroup_uncharge(folio);
9dd3d069 923 folio->mapping = NULL;
66a0c8ee 924 /* Leave page->index set: truncation relies upon it */
d68eccad
MWO
925 folio_put_refs(folio, nr);
926 return xas_error(&xas);
1da177e4 927}
9dd3d069 928ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
a528910e 929
9dd3d069
MWO
930int filemap_add_folio(struct address_space *mapping, struct folio *folio,
931 pgoff_t index, gfp_t gfp)
1da177e4 932{
a528910e 933 void *shadow = NULL;
4f98a2fe
RR
934 int ret;
935
9dd3d069
MWO
936 __folio_set_locked(folio);
937 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
a528910e 938 if (unlikely(ret))
9dd3d069 939 __folio_clear_locked(folio);
a528910e
JW
940 else {
941 /*
9dd3d069 942 * The folio might have been evicted from cache only
a528910e 943 * recently, in which case it should be activated like
9dd3d069
MWO
944 * any other repeatedly accessed folio.
945 * The exception is folios getting rewritten; evicting other
f0281a00
RR
946 * data from the working set, only to cache data that will
947 * get overwritten with something else, is a waste of memory.
a528910e 948 */
9dd3d069
MWO
949 WARN_ON_ONCE(folio_test_active(folio));
950 if (!(gfp & __GFP_WRITE) && shadow)
951 workingset_refault(folio, shadow);
952 folio_add_lru(folio);
a528910e 953 }
1da177e4
LT
954 return ret;
955}
9dd3d069 956EXPORT_SYMBOL_GPL(filemap_add_folio);
1da177e4 957
44110fe3 958#ifdef CONFIG_NUMA
bb3c579e 959struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
44110fe3 960{
c0ff7453 961 int n;
bb3c579e 962 struct folio *folio;
c0ff7453 963
44110fe3 964 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
965 unsigned int cpuset_mems_cookie;
966 do {
d26914d1 967 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 968 n = cpuset_mem_spread_node();
bb3c579e
MWO
969 folio = __folio_alloc_node(gfp, order, n);
970 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 971
bb3c579e 972 return folio;
44110fe3 973 }
bb3c579e 974 return folio_alloc(gfp, order);
44110fe3 975}
bb3c579e 976EXPORT_SYMBOL(filemap_alloc_folio);
44110fe3
PJ
977#endif
978
7506ae6a
JK
979/*
980 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
981 *
982 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
983 *
984 * @mapping1: the first mapping to lock
985 * @mapping2: the second mapping to lock
986 */
987void filemap_invalidate_lock_two(struct address_space *mapping1,
988 struct address_space *mapping2)
989{
990 if (mapping1 > mapping2)
991 swap(mapping1, mapping2);
992 if (mapping1)
993 down_write(&mapping1->invalidate_lock);
994 if (mapping2 && mapping1 != mapping2)
995 down_write_nested(&mapping2->invalidate_lock, 1);
996}
997EXPORT_SYMBOL(filemap_invalidate_lock_two);
998
999/*
1000 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1001 *
1002 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1003 *
1004 * @mapping1: the first mapping to unlock
1005 * @mapping2: the second mapping to unlock
1006 */
1007void filemap_invalidate_unlock_two(struct address_space *mapping1,
1008 struct address_space *mapping2)
1009{
1010 if (mapping1)
1011 up_write(&mapping1->invalidate_lock);
1012 if (mapping2 && mapping1 != mapping2)
1013 up_write(&mapping2->invalidate_lock);
1014}
1015EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1016
1da177e4
LT
1017/*
1018 * In order to wait for pages to become available there must be
1019 * waitqueues associated with pages. By using a hash table of
1020 * waitqueues where the bucket discipline is to maintain all
1021 * waiters on the same queue and wake all when any of the pages
1022 * become available, and for the woken contexts to check to be
1023 * sure the appropriate page became available, this saves space
1024 * at a cost of "thundering herd" phenomena during rare hash
1025 * collisions.
1026 */
62906027
NP
1027#define PAGE_WAIT_TABLE_BITS 8
1028#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
df4d4f12 1029static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
62906027 1030
df4d4f12 1031static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1da177e4 1032{
df4d4f12 1033 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1da177e4 1034}
1da177e4 1035
62906027 1036void __init pagecache_init(void)
1da177e4 1037{
62906027 1038 int i;
1da177e4 1039
62906027 1040 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
df4d4f12 1041 init_waitqueue_head(&folio_wait_table[i]);
62906027
NP
1042
1043 page_writeback_init();
1da177e4 1044}
1da177e4 1045
5ef64cc8
LT
1046/*
1047 * The page wait code treats the "wait->flags" somewhat unusually, because
5868ec26 1048 * we have multiple different kinds of waits, not just the usual "exclusive"
5ef64cc8
LT
1049 * one.
1050 *
1051 * We have:
1052 *
1053 * (a) no special bits set:
1054 *
1055 * We're just waiting for the bit to be released, and when a waker
1056 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1057 * and remove it from the wait queue.
1058 *
1059 * Simple and straightforward.
1060 *
1061 * (b) WQ_FLAG_EXCLUSIVE:
1062 *
1063 * The waiter is waiting to get the lock, and only one waiter should
1064 * be woken up to avoid any thundering herd behavior. We'll set the
1065 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1066 *
1067 * This is the traditional exclusive wait.
1068 *
5868ec26 1069 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
5ef64cc8
LT
1070 *
1071 * The waiter is waiting to get the bit, and additionally wants the
1072 * lock to be transferred to it for fair lock behavior. If the lock
1073 * cannot be taken, we stop walking the wait queue without waking
1074 * the waiter.
1075 *
1076 * This is the "fair lock handoff" case, and in addition to setting
1077 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1078 * that it now has the lock.
1079 */
ac6424b9 1080static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1081{
5ef64cc8 1082 unsigned int flags;
62906027
NP
1083 struct wait_page_key *key = arg;
1084 struct wait_page_queue *wait_page
1085 = container_of(wait, struct wait_page_queue, wait);
1086
cdc8fcb4 1087 if (!wake_page_match(wait_page, key))
62906027 1088 return 0;
3510ca20 1089
9a1ea439 1090 /*
5ef64cc8
LT
1091 * If it's a lock handoff wait, we get the bit for it, and
1092 * stop walking (and do not wake it up) if we can't.
9a1ea439 1093 */
5ef64cc8
LT
1094 flags = wait->flags;
1095 if (flags & WQ_FLAG_EXCLUSIVE) {
df4d4f12 1096 if (test_bit(key->bit_nr, &key->folio->flags))
2a9127fc 1097 return -1;
5ef64cc8 1098 if (flags & WQ_FLAG_CUSTOM) {
df4d4f12 1099 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
5ef64cc8
LT
1100 return -1;
1101 flags |= WQ_FLAG_DONE;
1102 }
2a9127fc 1103 }
f62e00cc 1104
5ef64cc8
LT
1105 /*
1106 * We are holding the wait-queue lock, but the waiter that
1107 * is waiting for this will be checking the flags without
1108 * any locking.
1109 *
1110 * So update the flags atomically, and wake up the waiter
1111 * afterwards to avoid any races. This store-release pairs
101c0bf6 1112 * with the load-acquire in folio_wait_bit_common().
5ef64cc8
LT
1113 */
1114 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
2a9127fc
LT
1115 wake_up_state(wait->private, mode);
1116
1117 /*
1118 * Ok, we have successfully done what we're waiting for,
1119 * and we can unconditionally remove the wait entry.
1120 *
5ef64cc8
LT
1121 * Note that this pairs with the "finish_wait()" in the
1122 * waiter, and has to be the absolute last thing we do.
1123 * After this list_del_init(&wait->entry) the wait entry
2a9127fc
LT
1124 * might be de-allocated and the process might even have
1125 * exited.
2a9127fc 1126 */
c6fe44d9 1127 list_del_init_careful(&wait->entry);
5ef64cc8 1128 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
f62e00cc
KM
1129}
1130
6974d7c9 1131static void folio_wake_bit(struct folio *folio, int bit_nr)
cbbce822 1132{
df4d4f12 1133 wait_queue_head_t *q = folio_waitqueue(folio);
62906027
NP
1134 struct wait_page_key key;
1135 unsigned long flags;
cbbce822 1136
df4d4f12 1137 key.folio = folio;
62906027
NP
1138 key.bit_nr = bit_nr;
1139 key.page_match = 0;
1140
1141 spin_lock_irqsave(&q->lock, flags);
b0b598ee 1142 __wake_up_locked_key(q, TASK_NORMAL, &key);
11a19c7b 1143
62906027 1144 /*
bb43b14b
HD
1145 * It's possible to miss clearing waiters here, when we woke our page
1146 * waiters, but the hashed waitqueue has waiters for other pages on it.
1147 * That's okay, it's a rare case. The next waker will clear it.
62906027 1148 *
bb43b14b
HD
1149 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1150 * other), the flag may be cleared in the course of freeing the page;
1151 * but that is not required for correctness.
62906027 1152 */
bb43b14b 1153 if (!waitqueue_active(q) || !key.page_match)
6974d7c9 1154 folio_clear_waiters(folio);
bb43b14b 1155
62906027
NP
1156 spin_unlock_irqrestore(&q->lock, flags);
1157}
74d81bfa 1158
9a1ea439 1159/*
101c0bf6 1160 * A choice of three behaviors for folio_wait_bit_common():
9a1ea439
HD
1161 */
1162enum behavior {
1163 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
7c23c782 1164 * __folio_lock() waiting on then setting PG_locked.
9a1ea439
HD
1165 */
1166 SHARED, /* Hold ref to page and check the bit when woken, like
9f2b04a2 1167 * folio_wait_writeback() waiting on PG_writeback.
9a1ea439
HD
1168 */
1169 DROP, /* Drop ref to page before wait, no check when woken,
9f2b04a2 1170 * like folio_put_wait_locked() on PG_locked.
9a1ea439
HD
1171 */
1172};
1173
2a9127fc 1174/*
101c0bf6 1175 * Attempt to check (or get) the folio flag, and mark us done
5ef64cc8 1176 * if successful.
2a9127fc 1177 */
101c0bf6 1178static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
2a9127fc
LT
1179 struct wait_queue_entry *wait)
1180{
1181 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
101c0bf6 1182 if (test_and_set_bit(bit_nr, &folio->flags))
2a9127fc 1183 return false;
101c0bf6 1184 } else if (test_bit(bit_nr, &folio->flags))
2a9127fc
LT
1185 return false;
1186
5ef64cc8 1187 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
2a9127fc
LT
1188 return true;
1189}
1190
5ef64cc8
LT
1191/* How many times do we accept lock stealing from under a waiter? */
1192int sysctl_page_lock_unfairness = 5;
1193
101c0bf6
MWO
1194static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1195 int state, enum behavior behavior)
62906027 1196{
df4d4f12 1197 wait_queue_head_t *q = folio_waitqueue(folio);
5ef64cc8 1198 int unfairness = sysctl_page_lock_unfairness;
62906027 1199 struct wait_page_queue wait_page;
ac6424b9 1200 wait_queue_entry_t *wait = &wait_page.wait;
b1d29ba8 1201 bool thrashing = false;
eb414681 1202 unsigned long pflags;
aa1cf99b 1203 bool in_thrashing;
62906027 1204
eb414681 1205 if (bit_nr == PG_locked &&
101c0bf6 1206 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
aa1cf99b 1207 delayacct_thrashing_start(&in_thrashing);
eb414681 1208 psi_memstall_enter(&pflags);
b1d29ba8
JW
1209 thrashing = true;
1210 }
1211
62906027
NP
1212 init_wait(wait);
1213 wait->func = wake_page_function;
df4d4f12 1214 wait_page.folio = folio;
62906027
NP
1215 wait_page.bit_nr = bit_nr;
1216
5ef64cc8
LT
1217repeat:
1218 wait->flags = 0;
1219 if (behavior == EXCLUSIVE) {
1220 wait->flags = WQ_FLAG_EXCLUSIVE;
1221 if (--unfairness < 0)
1222 wait->flags |= WQ_FLAG_CUSTOM;
1223 }
1224
2a9127fc
LT
1225 /*
1226 * Do one last check whether we can get the
1227 * page bit synchronously.
1228 *
101c0bf6 1229 * Do the folio_set_waiters() marking before that
2a9127fc
LT
1230 * to let any waker we _just_ missed know they
1231 * need to wake us up (otherwise they'll never
1232 * even go to the slow case that looks at the
1233 * page queue), and add ourselves to the wait
1234 * queue if we need to sleep.
1235 *
1236 * This part needs to be done under the queue
1237 * lock to avoid races.
1238 */
1239 spin_lock_irq(&q->lock);
101c0bf6
MWO
1240 folio_set_waiters(folio);
1241 if (!folio_trylock_flag(folio, bit_nr, wait))
2a9127fc
LT
1242 __add_wait_queue_entry_tail(q, wait);
1243 spin_unlock_irq(&q->lock);
62906027 1244
2a9127fc
LT
1245 /*
1246 * From now on, all the logic will be based on
5ef64cc8
LT
1247 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1248 * see whether the page bit testing has already
1249 * been done by the wake function.
2a9127fc 1250 *
101c0bf6 1251 * We can drop our reference to the folio.
2a9127fc
LT
1252 */
1253 if (behavior == DROP)
101c0bf6 1254 folio_put(folio);
62906027 1255
5ef64cc8
LT
1256 /*
1257 * Note that until the "finish_wait()", or until
1258 * we see the WQ_FLAG_WOKEN flag, we need to
1259 * be very careful with the 'wait->flags', because
1260 * we may race with a waker that sets them.
1261 */
2a9127fc 1262 for (;;) {
5ef64cc8
LT
1263 unsigned int flags;
1264
62906027
NP
1265 set_current_state(state);
1266
5ef64cc8
LT
1267 /* Loop until we've been woken or interrupted */
1268 flags = smp_load_acquire(&wait->flags);
1269 if (!(flags & WQ_FLAG_WOKEN)) {
1270 if (signal_pending_state(state, current))
1271 break;
1272
1273 io_schedule();
1274 continue;
1275 }
1276
1277 /* If we were non-exclusive, we're done */
1278 if (behavior != EXCLUSIVE)
a8b169af 1279 break;
9a1ea439 1280
5ef64cc8
LT
1281 /* If the waker got the lock for us, we're done */
1282 if (flags & WQ_FLAG_DONE)
9a1ea439 1283 break;
2a9127fc 1284
5ef64cc8
LT
1285 /*
1286 * Otherwise, if we're getting the lock, we need to
1287 * try to get it ourselves.
1288 *
1289 * And if that fails, we'll have to retry this all.
1290 */
101c0bf6 1291 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
5ef64cc8
LT
1292 goto repeat;
1293
1294 wait->flags |= WQ_FLAG_DONE;
1295 break;
62906027
NP
1296 }
1297
5ef64cc8
LT
1298 /*
1299 * If a signal happened, this 'finish_wait()' may remove the last
101c0bf6 1300 * waiter from the wait-queues, but the folio waiters bit will remain
5ef64cc8
LT
1301 * set. That's ok. The next wakeup will take care of it, and trying
1302 * to do it here would be difficult and prone to races.
1303 */
62906027
NP
1304 finish_wait(q, wait);
1305
eb414681 1306 if (thrashing) {
aa1cf99b 1307 delayacct_thrashing_end(&in_thrashing);
eb414681
JW
1308 psi_memstall_leave(&pflags);
1309 }
b1d29ba8 1310
62906027 1311 /*
5ef64cc8
LT
1312 * NOTE! The wait->flags weren't stable until we've done the
1313 * 'finish_wait()', and we could have exited the loop above due
1314 * to a signal, and had a wakeup event happen after the signal
1315 * test but before the 'finish_wait()'.
1316 *
1317 * So only after the finish_wait() can we reliably determine
1318 * if we got woken up or not, so we can now figure out the final
1319 * return value based on that state without races.
1320 *
1321 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1322 * waiter, but an exclusive one requires WQ_FLAG_DONE.
62906027 1323 */
5ef64cc8
LT
1324 if (behavior == EXCLUSIVE)
1325 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
62906027 1326
2a9127fc 1327 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
62906027
NP
1328}
1329
ffa65753
AP
1330#ifdef CONFIG_MIGRATION
1331/**
1332 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1333 * @entry: migration swap entry.
ffa65753
AP
1334 * @ptl: already locked ptl. This function will drop the lock.
1335 *
1336 * Wait for a migration entry referencing the given page to be removed. This is
1337 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1338 * this can be called without taking a reference on the page. Instead this
1339 * should be called while holding the ptl for the migration entry referencing
1340 * the page.
1341 *
0cb8fd4d 1342 * Returns after unlocking the ptl.
ffa65753
AP
1343 *
1344 * This follows the same logic as folio_wait_bit_common() so see the comments
1345 * there.
1346 */
0cb8fd4d
HD
1347void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1348 __releases(ptl)
ffa65753
AP
1349{
1350 struct wait_page_queue wait_page;
1351 wait_queue_entry_t *wait = &wait_page.wait;
1352 bool thrashing = false;
ffa65753 1353 unsigned long pflags;
aa1cf99b 1354 bool in_thrashing;
ffa65753
AP
1355 wait_queue_head_t *q;
1356 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1357
1358 q = folio_waitqueue(folio);
1359 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
aa1cf99b 1360 delayacct_thrashing_start(&in_thrashing);
ffa65753
AP
1361 psi_memstall_enter(&pflags);
1362 thrashing = true;
1363 }
1364
1365 init_wait(wait);
1366 wait->func = wake_page_function;
1367 wait_page.folio = folio;
1368 wait_page.bit_nr = PG_locked;
1369 wait->flags = 0;
1370
1371 spin_lock_irq(&q->lock);
1372 folio_set_waiters(folio);
1373 if (!folio_trylock_flag(folio, PG_locked, wait))
1374 __add_wait_queue_entry_tail(q, wait);
1375 spin_unlock_irq(&q->lock);
1376
1377 /*
1378 * If a migration entry exists for the page the migration path must hold
1379 * a valid reference to the page, and it must take the ptl to remove the
1380 * migration entry. So the page is valid until the ptl is dropped.
1381 */
0cb8fd4d 1382 spin_unlock(ptl);
ffa65753
AP
1383
1384 for (;;) {
1385 unsigned int flags;
1386
1387 set_current_state(TASK_UNINTERRUPTIBLE);
1388
1389 /* Loop until we've been woken or interrupted */
1390 flags = smp_load_acquire(&wait->flags);
1391 if (!(flags & WQ_FLAG_WOKEN)) {
1392 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1393 break;
1394
1395 io_schedule();
1396 continue;
1397 }
1398 break;
1399 }
1400
1401 finish_wait(q, wait);
1402
1403 if (thrashing) {
aa1cf99b 1404 delayacct_thrashing_end(&in_thrashing);
ffa65753
AP
1405 psi_memstall_leave(&pflags);
1406 }
1407}
1408#endif
1409
101c0bf6 1410void folio_wait_bit(struct folio *folio, int bit_nr)
62906027 1411{
101c0bf6 1412 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027 1413}
101c0bf6 1414EXPORT_SYMBOL(folio_wait_bit);
62906027 1415
101c0bf6 1416int folio_wait_bit_killable(struct folio *folio, int bit_nr)
62906027 1417{
101c0bf6 1418 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1419}
101c0bf6 1420EXPORT_SYMBOL(folio_wait_bit_killable);
cbbce822 1421
9a1ea439 1422/**
9f2b04a2
MWO
1423 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1424 * @folio: The folio to wait for.
48054625 1425 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
9a1ea439 1426 *
9f2b04a2 1427 * The caller should hold a reference on @folio. They expect the page to
9a1ea439 1428 * become unlocked relatively soon, but do not wish to hold up migration
9f2b04a2 1429 * (for example) by holding the reference while waiting for the folio to
9a1ea439 1430 * come unlocked. After this function returns, the caller should not
9f2b04a2 1431 * dereference @folio.
48054625 1432 *
9f2b04a2 1433 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
9a1ea439 1434 */
c195c321 1435static int folio_put_wait_locked(struct folio *folio, int state)
9a1ea439 1436{
9f2b04a2 1437 return folio_wait_bit_common(folio, PG_locked, state, DROP);
9a1ea439
HD
1438}
1439
385e1ca5 1440/**
df4d4f12
MWO
1441 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1442 * @folio: Folio defining the wait queue of interest
697f619f 1443 * @waiter: Waiter to add to the queue
385e1ca5 1444 *
df4d4f12 1445 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
385e1ca5 1446 */
df4d4f12 1447void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
385e1ca5 1448{
df4d4f12 1449 wait_queue_head_t *q = folio_waitqueue(folio);
385e1ca5
DH
1450 unsigned long flags;
1451
1452 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1453 __add_wait_queue_entry_tail(q, waiter);
df4d4f12 1454 folio_set_waiters(folio);
385e1ca5
DH
1455 spin_unlock_irqrestore(&q->lock, flags);
1456}
df4d4f12 1457EXPORT_SYMBOL_GPL(folio_add_wait_queue);
385e1ca5 1458
1da177e4 1459/**
4e136428
MWO
1460 * folio_unlock - Unlock a locked folio.
1461 * @folio: The folio.
1462 *
1463 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1464 *
1465 * Context: May be called from interrupt or process context. May not be
1466 * called from NMI context.
1da177e4 1467 */
4e136428 1468void folio_unlock(struct folio *folio)
1da177e4 1469{
4e136428 1470 /* Bit 7 allows x86 to check the byte's sign bit */
b91e1302 1471 BUILD_BUG_ON(PG_waiters != 7);
4e136428
MWO
1472 BUILD_BUG_ON(PG_locked > 7);
1473 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
0410cd84 1474 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
6974d7c9 1475 folio_wake_bit(folio, PG_locked);
1da177e4 1476}
4e136428 1477EXPORT_SYMBOL(folio_unlock);
1da177e4 1478
0b237047
MWO
1479/**
1480 * folio_end_read - End read on a folio.
1481 * @folio: The folio.
1482 * @success: True if all reads completed successfully.
1483 *
1484 * When all reads against a folio have completed, filesystems should
1485 * call this function to let the pagecache know that no more reads
1486 * are outstanding. This will unlock the folio and wake up any thread
1487 * sleeping on the lock. The folio will also be marked uptodate if all
1488 * reads succeeded.
1489 *
1490 * Context: May be called from interrupt or process context. May not be
1491 * called from NMI context.
1492 */
1493void folio_end_read(struct folio *folio, bool success)
1494{
0410cd84
MWO
1495 unsigned long mask = 1 << PG_locked;
1496
1497 /* Must be in bottom byte for x86 to work */
1498 BUILD_BUG_ON(PG_uptodate > 7);
1499 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1500 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1501
0b237047 1502 if (likely(success))
0410cd84
MWO
1503 mask |= 1 << PG_uptodate;
1504 if (folio_xor_flags_has_waiters(folio, mask))
1505 folio_wake_bit(folio, PG_locked);
0b237047
MWO
1506}
1507EXPORT_SYMBOL(folio_end_read);
1508
73e10ded 1509/**
b47393f8
MWO
1510 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1511 * @folio: The folio.
73e10ded 1512 *
b47393f8
MWO
1513 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1514 * it. The folio reference held for PG_private_2 being set is released.
73e10ded 1515 *
b47393f8
MWO
1516 * This is, for example, used when a netfs folio is being written to a local
1517 * disk cache, thereby allowing writes to the cache for the same folio to be
73e10ded
DH
1518 * serialised.
1519 */
b47393f8 1520void folio_end_private_2(struct folio *folio)
73e10ded 1521{
6974d7c9
MWO
1522 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1523 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1524 folio_wake_bit(folio, PG_private_2);
1525 folio_put(folio);
73e10ded 1526}
b47393f8 1527EXPORT_SYMBOL(folio_end_private_2);
73e10ded
DH
1528
1529/**
b47393f8
MWO
1530 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1531 * @folio: The folio to wait on.
73e10ded 1532 *
b47393f8 1533 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
73e10ded 1534 */
b47393f8 1535void folio_wait_private_2(struct folio *folio)
73e10ded 1536{
101c0bf6
MWO
1537 while (folio_test_private_2(folio))
1538 folio_wait_bit(folio, PG_private_2);
73e10ded 1539}
b47393f8 1540EXPORT_SYMBOL(folio_wait_private_2);
73e10ded
DH
1541
1542/**
b47393f8
MWO
1543 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1544 * @folio: The folio to wait on.
73e10ded 1545 *
b47393f8 1546 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
73e10ded
DH
1547 * fatal signal is received by the calling task.
1548 *
1549 * Return:
1550 * - 0 if successful.
1551 * - -EINTR if a fatal signal was encountered.
1552 */
b47393f8 1553int folio_wait_private_2_killable(struct folio *folio)
73e10ded
DH
1554{
1555 int ret = 0;
1556
101c0bf6
MWO
1557 while (folio_test_private_2(folio)) {
1558 ret = folio_wait_bit_killable(folio, PG_private_2);
73e10ded
DH
1559 if (ret < 0)
1560 break;
1561 }
1562
1563 return ret;
1564}
b47393f8 1565EXPORT_SYMBOL(folio_wait_private_2_killable);
73e10ded 1566
485bb99b 1567/**
4268b480
MWO
1568 * folio_end_writeback - End writeback against a folio.
1569 * @folio: The folio.
7d0795d0
MWO
1570 *
1571 * The folio must actually be under writeback.
1572 *
1573 * Context: May be called from process or interrupt context.
1da177e4 1574 */
4268b480 1575void folio_end_writeback(struct folio *folio)
1da177e4 1576{
7d0795d0
MWO
1577 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1578
888cf2db 1579 /*
4268b480
MWO
1580 * folio_test_clear_reclaim() could be used here but it is an
1581 * atomic operation and overkill in this particular case. Failing
1582 * to shuffle a folio marked for immediate reclaim is too mild
1583 * a gain to justify taking an atomic operation penalty at the
1584 * end of every folio writeback.
888cf2db 1585 */
4268b480
MWO
1586 if (folio_test_reclaim(folio)) {
1587 folio_clear_reclaim(folio);
575ced1c 1588 folio_rotate_reclaimable(folio);
888cf2db 1589 }
ac6aadb2 1590
073861ed 1591 /*
4268b480 1592 * Writeback does not hold a folio reference of its own, relying
073861ed 1593 * on truncation to wait for the clearing of PG_writeback.
4268b480 1594 * But here we must make sure that the folio is not freed and
2580d554 1595 * reused before the folio_wake_bit().
073861ed 1596 */
4268b480 1597 folio_get(folio);
2580d554
MWO
1598 if (__folio_end_writeback(folio))
1599 folio_wake_bit(folio, PG_writeback);
512b7931 1600 acct_reclaim_writeback(folio);
4268b480 1601 folio_put(folio);
1da177e4 1602}
4268b480 1603EXPORT_SYMBOL(folio_end_writeback);
1da177e4 1604
485bb99b 1605/**
7c23c782
MWO
1606 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1607 * @folio: The folio to lock
1da177e4 1608 */
7c23c782 1609void __folio_lock(struct folio *folio)
1da177e4 1610{
101c0bf6 1611 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
9a1ea439 1612 EXCLUSIVE);
1da177e4 1613}
7c23c782 1614EXPORT_SYMBOL(__folio_lock);
1da177e4 1615
af7f29d9 1616int __folio_lock_killable(struct folio *folio)
2687a356 1617{
101c0bf6 1618 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
9a1ea439 1619 EXCLUSIVE);
2687a356 1620}
af7f29d9 1621EXPORT_SYMBOL_GPL(__folio_lock_killable);
2687a356 1622
ffdc8dab 1623static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
dd3e6d50 1624{
df4d4f12 1625 struct wait_queue_head *q = folio_waitqueue(folio);
f32b5dd7
MWO
1626 int ret = 0;
1627
df4d4f12 1628 wait->folio = folio;
f32b5dd7
MWO
1629 wait->bit_nr = PG_locked;
1630
1631 spin_lock_irq(&q->lock);
1632 __add_wait_queue_entry_tail(q, &wait->wait);
ffdc8dab
MWO
1633 folio_set_waiters(folio);
1634 ret = !folio_trylock(folio);
f32b5dd7
MWO
1635 /*
1636 * If we were successful now, we know we're still on the
1637 * waitqueue as we're still under the lock. This means it's
1638 * safe to remove and return success, we know the callback
1639 * isn't going to trigger.
1640 */
1641 if (!ret)
1642 __remove_wait_queue(q, &wait->wait);
1643 else
1644 ret = -EIOCBQUEUED;
1645 spin_unlock_irq(&q->lock);
1646 return ret;
dd3e6d50
JA
1647}
1648
9a95f3cf
PC
1649/*
1650 * Return values:
fdc724d6
SB
1651 * 0 - folio is locked.
1652 * non-zero - folio is not locked.
1235ccd0
SB
1653 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1654 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1655 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
9a95f3cf 1656 *
fdc724d6 1657 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1235ccd0 1658 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
9a95f3cf 1659 */
fdc724d6 1660vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
d065bd81 1661{
fdc724d6
SB
1662 unsigned int flags = vmf->flags;
1663
4064b982 1664 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1665 /*
1235ccd0
SB
1666 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1667 * released even though returning VM_FAULT_RETRY.
37b23e05
KM
1668 */
1669 if (flags & FAULT_FLAG_RETRY_NOWAIT)
fdc724d6 1670 return VM_FAULT_RETRY;
37b23e05 1671
1235ccd0 1672 release_fault_lock(vmf);
37b23e05 1673 if (flags & FAULT_FLAG_KILLABLE)
6baa8d60 1674 folio_wait_locked_killable(folio);
37b23e05 1675 else
6baa8d60 1676 folio_wait_locked(folio);
fdc724d6 1677 return VM_FAULT_RETRY;
800bca7c
HL
1678 }
1679 if (flags & FAULT_FLAG_KILLABLE) {
9138e47e 1680 bool ret;
37b23e05 1681
af7f29d9 1682 ret = __folio_lock_killable(folio);
800bca7c 1683 if (ret) {
1235ccd0 1684 release_fault_lock(vmf);
fdc724d6 1685 return VM_FAULT_RETRY;
800bca7c
HL
1686 }
1687 } else {
af7f29d9 1688 __folio_lock(folio);
d065bd81 1689 }
800bca7c 1690
fdc724d6 1691 return 0;
d065bd81
ML
1692}
1693
e7b563bb 1694/**
0d3f9296
MW
1695 * page_cache_next_miss() - Find the next gap in the page cache.
1696 * @mapping: Mapping.
1697 * @index: Index.
1698 * @max_scan: Maximum range to search.
e7b563bb 1699 *
0d3f9296
MW
1700 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1701 * gap with the lowest index.
e7b563bb 1702 *
0d3f9296
MW
1703 * This function may be called under the rcu_read_lock. However, this will
1704 * not atomically search a snapshot of the cache at a single point in time.
1705 * For example, if a gap is created at index 5, then subsequently a gap is
1706 * created at index 10, page_cache_next_miss covering both indices may
1707 * return 10 if called under the rcu_read_lock.
e7b563bb 1708 *
0d3f9296
MW
1709 * Return: The index of the gap if found, otherwise an index outside the
1710 * range specified (in which case 'return - index >= max_scan' will be true).
16f8eb3e 1711 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1712 */
0d3f9296 1713pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1714 pgoff_t index, unsigned long max_scan)
1715{
0d3f9296 1716 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1717
0d3f9296
MW
1718 while (max_scan--) {
1719 void *entry = xas_next(&xas);
1720 if (!entry || xa_is_value(entry))
16f8eb3e
MK
1721 break;
1722 if (xas.xa_index == 0)
1723 break;
e7b563bb
JW
1724 }
1725
16f8eb3e 1726 return xas.xa_index;
e7b563bb 1727}
0d3f9296 1728EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1729
1730/**
2346a560 1731 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1732 * @mapping: Mapping.
1733 * @index: Index.
1734 * @max_scan: Maximum range to search.
e7b563bb 1735 *
0d3f9296
MW
1736 * Search the range [max(index - max_scan + 1, 0), index] for the
1737 * gap with the highest index.
e7b563bb 1738 *
0d3f9296
MW
1739 * This function may be called under the rcu_read_lock. However, this will
1740 * not atomically search a snapshot of the cache at a single point in time.
1741 * For example, if a gap is created at index 10, then subsequently a gap is
1742 * created at index 5, page_cache_prev_miss() covering both indices may
1743 * return 5 if called under the rcu_read_lock.
e7b563bb 1744 *
0d3f9296
MW
1745 * Return: The index of the gap if found, otherwise an index outside the
1746 * range specified (in which case 'index - return >= max_scan' will be true).
16f8eb3e 1747 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1748 */
0d3f9296 1749pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1750 pgoff_t index, unsigned long max_scan)
1751{
0d3f9296 1752 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1753
0d3f9296
MW
1754 while (max_scan--) {
1755 void *entry = xas_prev(&xas);
1756 if (!entry || xa_is_value(entry))
16f8eb3e
MK
1757 break;
1758 if (xas.xa_index == ULONG_MAX)
1759 break;
e7b563bb
JW
1760 }
1761
16f8eb3e 1762 return xas.xa_index;
e7b563bb 1763}
0d3f9296 1764EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1765
020853b6
MWO
1766/*
1767 * Lockless page cache protocol:
1768 * On the lookup side:
1769 * 1. Load the folio from i_pages
1770 * 2. Increment the refcount if it's not zero
1771 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1772 *
1773 * On the removal side:
1774 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1775 * B. Remove the page from i_pages
1776 * C. Return the page to the page allocator
1777 *
1778 * This means that any page may have its reference count temporarily
1779 * increased by a speculative page cache (or fast GUP) lookup as it can
1780 * be allocated by another user before the RCU grace period expires.
1781 * Because the refcount temporarily acquired here may end up being the
1782 * last refcount on the page, any page allocation must be freeable by
1783 * folio_put().
1784 */
1785
44835d20 1786/*
263e721e 1787 * filemap_get_entry - Get a page cache entry.
485bb99b 1788 * @mapping: the address_space to search
a6de4b48 1789 * @index: The page cache index.
0cd6144a 1790 *
bca65eea
MWO
1791 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1792 * it is returned with an increased refcount. If it is a shadow entry
1793 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1794 * it is returned without further action.
485bb99b 1795 *
bca65eea 1796 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1da177e4 1797 */
263e721e 1798void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1da177e4 1799{
a6de4b48 1800 XA_STATE(xas, &mapping->i_pages, index);
bca65eea 1801 struct folio *folio;
1da177e4 1802
a60637c8
NP
1803 rcu_read_lock();
1804repeat:
4c7472c0 1805 xas_reset(&xas);
bca65eea
MWO
1806 folio = xas_load(&xas);
1807 if (xas_retry(&xas, folio))
4c7472c0
MW
1808 goto repeat;
1809 /*
1810 * A shadow entry of a recently evicted page, or a swap entry from
1811 * shmem/tmpfs. Return it without attempting to raise page count.
1812 */
bca65eea 1813 if (!folio || xa_is_value(folio))
4c7472c0 1814 goto out;
83929372 1815
bca65eea 1816 if (!folio_try_get_rcu(folio))
4c7472c0 1817 goto repeat;
83929372 1818
bca65eea
MWO
1819 if (unlikely(folio != xas_reload(&xas))) {
1820 folio_put(folio);
4c7472c0 1821 goto repeat;
a60637c8 1822 }
27d20fdd 1823out:
a60637c8
NP
1824 rcu_read_unlock();
1825
bca65eea 1826 return folio;
1da177e4 1827}
1da177e4 1828
0cd6144a 1829/**
3f0c6a07 1830 * __filemap_get_folio - Find and get a reference to a folio.
2294b32e
MWO
1831 * @mapping: The address_space to search.
1832 * @index: The page index.
3f0c6a07
MWO
1833 * @fgp_flags: %FGP flags modify how the folio is returned.
1834 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1835 *
2294b32e 1836 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1837 *
2294b32e
MWO
1838 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1839 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1840 *
ffc143db 1841 * If this function returns a folio, it is returned with an increased refcount.
a862f68a 1842 *
66dabbb6 1843 * Return: The found folio or an ERR_PTR() otherwise.
1da177e4 1844 */
3f0c6a07 1845struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
ffc143db 1846 fgf_t fgp_flags, gfp_t gfp)
1da177e4 1847{
3f0c6a07 1848 struct folio *folio;
2457aec6 1849
1da177e4 1850repeat:
263e721e 1851 folio = filemap_get_entry(mapping, index);
48c9d113 1852 if (xa_is_value(folio))
3f0c6a07 1853 folio = NULL;
3f0c6a07 1854 if (!folio)
2457aec6
MG
1855 goto no_page;
1856
1857 if (fgp_flags & FGP_LOCK) {
1858 if (fgp_flags & FGP_NOWAIT) {
3f0c6a07
MWO
1859 if (!folio_trylock(folio)) {
1860 folio_put(folio);
66dabbb6 1861 return ERR_PTR(-EAGAIN);
2457aec6
MG
1862 }
1863 } else {
3f0c6a07 1864 folio_lock(folio);
2457aec6
MG
1865 }
1866
1867 /* Has the page been truncated? */
3f0c6a07
MWO
1868 if (unlikely(folio->mapping != mapping)) {
1869 folio_unlock(folio);
1870 folio_put(folio);
2457aec6
MG
1871 goto repeat;
1872 }
3f0c6a07 1873 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
2457aec6
MG
1874 }
1875
c16eb000 1876 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 1877 folio_mark_accessed(folio);
b9306a79
YS
1878 else if (fgp_flags & FGP_WRITE) {
1879 /* Clear idle flag for buffer write */
3f0c6a07
MWO
1880 if (folio_test_idle(folio))
1881 folio_clear_idle(folio);
b9306a79 1882 }
2457aec6 1883
b27652d9
MWO
1884 if (fgp_flags & FGP_STABLE)
1885 folio_wait_stable(folio);
2457aec6 1886no_page:
3f0c6a07 1887 if (!folio && (fgp_flags & FGP_CREAT)) {
4f661701 1888 unsigned order = FGF_GET_ORDER(fgp_flags);
2457aec6 1889 int err;
4f661701 1890
f56753ac 1891 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
3f0c6a07 1892 gfp |= __GFP_WRITE;
45f87de5 1893 if (fgp_flags & FGP_NOFS)
3f0c6a07 1894 gfp &= ~__GFP_FS;
0dd316ba
JA
1895 if (fgp_flags & FGP_NOWAIT) {
1896 gfp &= ~GFP_KERNEL;
1897 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1898 }
a75d4c33 1899 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1900 fgp_flags |= FGP_LOCK;
1901
4f661701
MWO
1902 if (!mapping_large_folio_support(mapping))
1903 order = 0;
1904 if (order > MAX_PAGECACHE_ORDER)
1905 order = MAX_PAGECACHE_ORDER;
1906 /* If we're not aligned, allocate a smaller folio */
1907 if (index & ((1UL << order) - 1))
1908 order = __ffs(index);
2457aec6 1909
4f661701
MWO
1910 do {
1911 gfp_t alloc_gfp = gfp;
1912
1913 err = -ENOMEM;
1914 if (order == 1)
1915 order = 0;
1916 if (order > 0)
1917 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1918 folio = filemap_alloc_folio(alloc_gfp, order);
1919 if (!folio)
1920 continue;
1921
1922 /* Init accessed so avoid atomic mark_page_accessed later */
1923 if (fgp_flags & FGP_ACCESSED)
1924 __folio_set_referenced(folio);
1925
1926 err = filemap_add_folio(mapping, folio, index, gfp);
1927 if (!err)
1928 break;
3f0c6a07
MWO
1929 folio_put(folio);
1930 folio = NULL;
4f661701 1931 } while (order-- > 0);
a75d4c33 1932
4f661701
MWO
1933 if (err == -EEXIST)
1934 goto repeat;
1935 if (err)
1936 return ERR_PTR(err);
a75d4c33 1937 /*
3f0c6a07
MWO
1938 * filemap_add_folio locks the page, and for mmap
1939 * we expect an unlocked page.
a75d4c33 1940 */
3f0c6a07
MWO
1941 if (folio && (fgp_flags & FGP_FOR_MMAP))
1942 folio_unlock(folio);
1da177e4 1943 }
2457aec6 1944
66dabbb6
CH
1945 if (!folio)
1946 return ERR_PTR(-ENOENT);
3f0c6a07 1947 return folio;
1da177e4 1948}
3f0c6a07 1949EXPORT_SYMBOL(__filemap_get_folio);
1da177e4 1950
f5e6429a 1951static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
c7bad633
MWO
1952 xa_mark_t mark)
1953{
f5e6429a 1954 struct folio *folio;
c7bad633
MWO
1955
1956retry:
1957 if (mark == XA_PRESENT)
f5e6429a 1958 folio = xas_find(xas, max);
c7bad633 1959 else
f5e6429a 1960 folio = xas_find_marked(xas, max, mark);
c7bad633 1961
f5e6429a 1962 if (xas_retry(xas, folio))
c7bad633
MWO
1963 goto retry;
1964 /*
1965 * A shadow entry of a recently evicted page, a swap
1966 * entry from shmem/tmpfs or a DAX entry. Return it
1967 * without attempting to raise page count.
1968 */
f5e6429a
MWO
1969 if (!folio || xa_is_value(folio))
1970 return folio;
c7bad633 1971
f5e6429a 1972 if (!folio_try_get_rcu(folio))
c7bad633
MWO
1973 goto reset;
1974
f5e6429a
MWO
1975 if (unlikely(folio != xas_reload(xas))) {
1976 folio_put(folio);
c7bad633
MWO
1977 goto reset;
1978 }
1979
f5e6429a 1980 return folio;
c7bad633
MWO
1981reset:
1982 xas_reset(xas);
1983 goto retry;
1984}
1985
0cd6144a
JW
1986/**
1987 * find_get_entries - gang pagecache lookup
1988 * @mapping: The address_space to search
1989 * @start: The starting page cache index
ca122fe4 1990 * @end: The final page index (inclusive).
0e499ed3 1991 * @fbatch: Where the resulting entries are placed.
0cd6144a
JW
1992 * @indices: The cache indices corresponding to the entries in @entries
1993 *
cf2039af 1994 * find_get_entries() will search for and return a batch of entries in
0e499ed3
MWO
1995 * the mapping. The entries are placed in @fbatch. find_get_entries()
1996 * takes a reference on any actual folios it returns.
0cd6144a 1997 *
0e499ed3
MWO
1998 * The entries have ascending indexes. The indices may not be consecutive
1999 * due to not-present entries or large folios.
0cd6144a 2000 *
0e499ed3 2001 * Any shadow entries of evicted folios, or swap entries from
139b6a6f 2002 * shmem/tmpfs, are included in the returned array.
0cd6144a 2003 *
0e499ed3 2004 * Return: The number of entries which were found.
0cd6144a 2005 */
9fb6beea 2006unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
0e499ed3 2007 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
0cd6144a 2008{
9fb6beea 2009 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2010 struct folio *folio;
0cd6144a
JW
2011
2012 rcu_read_lock();
f5e6429a 2013 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
0e499ed3
MWO
2014 indices[fbatch->nr] = xas.xa_index;
2015 if (!folio_batch_add(fbatch, folio))
0cd6144a
JW
2016 break;
2017 }
2018 rcu_read_unlock();
cf2039af 2019
9fb6beea
VMO
2020 if (folio_batch_count(fbatch)) {
2021 unsigned long nr = 1;
2022 int idx = folio_batch_count(fbatch) - 1;
2023
2024 folio = fbatch->folios[idx];
a08c7193 2025 if (!xa_is_value(folio))
9fb6beea
VMO
2026 nr = folio_nr_pages(folio);
2027 *start = indices[idx] + nr;
2028 }
0e499ed3 2029 return folio_batch_count(fbatch);
0cd6144a
JW
2030}
2031
5c211ba2
MWO
2032/**
2033 * find_lock_entries - Find a batch of pagecache entries.
2034 * @mapping: The address_space to search.
2035 * @start: The starting page cache index.
2036 * @end: The final page index (inclusive).
51dcbdac
MWO
2037 * @fbatch: Where the resulting entries are placed.
2038 * @indices: The cache indices of the entries in @fbatch.
5c211ba2
MWO
2039 *
2040 * find_lock_entries() will return a batch of entries from @mapping.
f5e6429a
MWO
2041 * Swap, shadow and DAX entries are included. Folios are returned
2042 * locked and with an incremented refcount. Folios which are locked
2043 * by somebody else or under writeback are skipped. Folios which are
2044 * partially outside the range are not returned.
5c211ba2
MWO
2045 *
2046 * The entries have ascending indexes. The indices may not be consecutive
f5e6429a
MWO
2047 * due to not-present entries, large folios, folios which could not be
2048 * locked or folios under writeback.
5c211ba2
MWO
2049 *
2050 * Return: The number of entries which were found.
2051 */
3392ca12 2052unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
51dcbdac 2053 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
5c211ba2 2054{
3392ca12 2055 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2056 struct folio *folio;
5c211ba2
MWO
2057
2058 rcu_read_lock();
f5e6429a
MWO
2059 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2060 if (!xa_is_value(folio)) {
3392ca12 2061 if (folio->index < *start)
5c211ba2 2062 goto put;
87b11f86 2063 if (folio_next_index(folio) - 1 > end)
5c211ba2 2064 goto put;
f5e6429a 2065 if (!folio_trylock(folio))
5c211ba2 2066 goto put;
f5e6429a
MWO
2067 if (folio->mapping != mapping ||
2068 folio_test_writeback(folio))
5c211ba2 2069 goto unlock;
f5e6429a
MWO
2070 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2071 folio);
5c211ba2 2072 }
51dcbdac
MWO
2073 indices[fbatch->nr] = xas.xa_index;
2074 if (!folio_batch_add(fbatch, folio))
5c211ba2 2075 break;
6b24ca4a 2076 continue;
5c211ba2 2077unlock:
f5e6429a 2078 folio_unlock(folio);
5c211ba2 2079put:
f5e6429a 2080 folio_put(folio);
5c211ba2
MWO
2081 }
2082 rcu_read_unlock();
2083
3392ca12
VMO
2084 if (folio_batch_count(fbatch)) {
2085 unsigned long nr = 1;
2086 int idx = folio_batch_count(fbatch) - 1;
2087
2088 folio = fbatch->folios[idx];
a08c7193 2089 if (!xa_is_value(folio))
3392ca12
VMO
2090 nr = folio_nr_pages(folio);
2091 *start = indices[idx] + nr;
2092 }
51dcbdac 2093 return folio_batch_count(fbatch);
5c211ba2
MWO
2094}
2095
1da177e4 2096/**
be0ced5e 2097 * filemap_get_folios - Get a batch of folios
1da177e4
LT
2098 * @mapping: The address_space to search
2099 * @start: The starting page index
b947cee4 2100 * @end: The final page index (inclusive)
be0ced5e 2101 * @fbatch: The batch to fill.
1da177e4 2102 *
be0ced5e
MWO
2103 * Search for and return a batch of folios in the mapping starting at
2104 * index @start and up to index @end (inclusive). The folios are returned
2105 * in @fbatch with an elevated reference count.
1da177e4 2106 *
be0ced5e
MWO
2107 * Return: The number of folios which were found.
2108 * We also update @start to index the next folio for the traversal.
1da177e4 2109 */
be0ced5e
MWO
2110unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2111 pgoff_t end, struct folio_batch *fbatch)
1da177e4 2112{
bafd7e9d 2113 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
be0ced5e
MWO
2114}
2115EXPORT_SYMBOL(filemap_get_folios);
2116
ebf43500 2117/**
35b47146 2118 * filemap_get_folios_contig - Get a batch of contiguous folios
ebf43500 2119 * @mapping: The address_space to search
35b47146
VMO
2120 * @start: The starting page index
2121 * @end: The final page index (inclusive)
2122 * @fbatch: The batch to fill
ebf43500 2123 *
35b47146
VMO
2124 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2125 * except the returned folios are guaranteed to be contiguous. This may
2126 * not return all contiguous folios if the batch gets filled up.
ebf43500 2127 *
35b47146
VMO
2128 * Return: The number of folios found.
2129 * Also update @start to be positioned for traversal of the next folio.
ebf43500 2130 */
35b47146
VMO
2131
2132unsigned filemap_get_folios_contig(struct address_space *mapping,
2133 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
ebf43500 2134{
35b47146
VMO
2135 XA_STATE(xas, &mapping->i_pages, *start);
2136 unsigned long nr;
e1c37722 2137 struct folio *folio;
a60637c8
NP
2138
2139 rcu_read_lock();
35b47146
VMO
2140
2141 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2142 folio = xas_next(&xas)) {
e1c37722 2143 if (xas_retry(&xas, folio))
3ece58a2
MW
2144 continue;
2145 /*
2146 * If the entry has been swapped out, we can stop looking.
2147 * No current caller is looking for DAX entries.
2148 */
e1c37722 2149 if (xa_is_value(folio))
35b47146 2150 goto update_start;
ebf43500 2151
e1c37722 2152 if (!folio_try_get_rcu(folio))
3ece58a2 2153 goto retry;
83929372 2154
e1c37722 2155 if (unlikely(folio != xas_reload(&xas)))
35b47146 2156 goto put_folio;
a60637c8 2157
35b47146
VMO
2158 if (!folio_batch_add(fbatch, folio)) {
2159 nr = folio_nr_pages(folio);
35b47146
VMO
2160 *start = folio->index + nr;
2161 goto out;
6b24ca4a 2162 }
3ece58a2 2163 continue;
35b47146 2164put_folio:
e1c37722 2165 folio_put(folio);
35b47146 2166
3ece58a2
MW
2167retry:
2168 xas_reset(&xas);
ebf43500 2169 }
35b47146
VMO
2170
2171update_start:
2172 nr = folio_batch_count(fbatch);
2173
2174 if (nr) {
2175 folio = fbatch->folios[nr - 1];
a08c7193 2176 *start = folio->index + folio_nr_pages(folio);
35b47146
VMO
2177 }
2178out:
a60637c8 2179 rcu_read_unlock();
35b47146 2180 return folio_batch_count(fbatch);
ebf43500 2181}
35b47146 2182EXPORT_SYMBOL(filemap_get_folios_contig);
ebf43500 2183
485bb99b 2184/**
247f9e1f
VMO
2185 * filemap_get_folios_tag - Get a batch of folios matching @tag
2186 * @mapping: The address_space to search
2187 * @start: The starting page index
2188 * @end: The final page index (inclusive)
2189 * @tag: The tag index
2190 * @fbatch: The batch to fill
485bb99b 2191 *
bafd7e9d
PR
2192 * The first folio may start before @start; if it does, it will contain
2193 * @start. The final folio may extend beyond @end; if it does, it will
2194 * contain @end. The folios have ascending indices. There may be gaps
2195 * between the folios if there are indices which have no folio in the
2196 * page cache. If folios are added to or removed from the page cache
2197 * while this is running, they may or may not be found by this call.
2198 * Only returns folios that are tagged with @tag.
a862f68a 2199 *
247f9e1f
VMO
2200 * Return: The number of folios found.
2201 * Also update @start to index the next folio for traversal.
1da177e4 2202 */
247f9e1f
VMO
2203unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2204 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
1da177e4 2205{
247f9e1f 2206 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2207 struct folio *folio;
a60637c8
NP
2208
2209 rcu_read_lock();
247f9e1f 2210 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
a6906972
MW
2211 /*
2212 * Shadow entries should never be tagged, but this iteration
2213 * is lockless so there is a window for page reclaim to evict
247f9e1f 2214 * a page we saw tagged. Skip over it.
a6906972 2215 */
f5e6429a 2216 if (xa_is_value(folio))
139b6a6f 2217 continue;
247f9e1f
VMO
2218 if (!folio_batch_add(fbatch, folio)) {
2219 unsigned long nr = folio_nr_pages(folio);
247f9e1f 2220 *start = folio->index + nr;
72b045ae
JK
2221 goto out;
2222 }
a60637c8 2223 }
72b045ae 2224 /*
247f9e1f
VMO
2225 * We come here when there is no page beyond @end. We take care to not
2226 * overflow the index @start as it confuses some of the callers. This
2227 * breaks the iteration when there is a page at index -1 but that is
2228 * already broke anyway.
72b045ae
JK
2229 */
2230 if (end == (pgoff_t)-1)
247f9e1f 2231 *start = (pgoff_t)-1;
72b045ae 2232 else
247f9e1f 2233 *start = end + 1;
72b045ae 2234out:
a60637c8 2235 rcu_read_unlock();
1da177e4 2236
247f9e1f 2237 return folio_batch_count(fbatch);
1da177e4 2238}
247f9e1f 2239EXPORT_SYMBOL(filemap_get_folios_tag);
1da177e4 2240
76d42bd9
WF
2241/*
2242 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2243 * a _large_ part of the i/o request. Imagine the worst scenario:
2244 *
2245 * ---R__________________________________________B__________
2246 * ^ reading here ^ bad block(assume 4k)
2247 *
2248 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2249 * => failing the whole request => read(R) => read(R+1) =>
2250 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2251 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2252 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2253 *
2254 * It is going insane. Fix it by quickly scaling down the readahead size.
2255 */
0f8e2db4 2256static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 2257{
76d42bd9 2258 ra->ra_pages /= 4;
76d42bd9
WF
2259}
2260
cbd59c48 2261/*
25d6a23e 2262 * filemap_get_read_batch - Get a batch of folios for read
cbd59c48 2263 *
25d6a23e
MWO
2264 * Get a batch of folios which represent a contiguous range of bytes in
2265 * the file. No exceptional entries will be returned. If @index is in
2266 * the middle of a folio, the entire folio will be returned. The last
2267 * folio in the batch may have the readahead flag set or the uptodate flag
2268 * clear so that the caller can take the appropriate action.
cbd59c48
MWO
2269 */
2270static void filemap_get_read_batch(struct address_space *mapping,
25d6a23e 2271 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
cbd59c48
MWO
2272{
2273 XA_STATE(xas, &mapping->i_pages, index);
bdb72932 2274 struct folio *folio;
cbd59c48
MWO
2275
2276 rcu_read_lock();
bdb72932
MWO
2277 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2278 if (xas_retry(&xas, folio))
cbd59c48 2279 continue;
bdb72932 2280 if (xas.xa_index > max || xa_is_value(folio))
cbd59c48 2281 break;
cb995f4e
MWO
2282 if (xa_is_sibling(folio))
2283 break;
bdb72932 2284 if (!folio_try_get_rcu(folio))
cbd59c48
MWO
2285 goto retry;
2286
bdb72932 2287 if (unlikely(folio != xas_reload(&xas)))
25d6a23e 2288 goto put_folio;
cbd59c48 2289
25d6a23e 2290 if (!folio_batch_add(fbatch, folio))
cbd59c48 2291 break;
bdb72932 2292 if (!folio_test_uptodate(folio))
cbd59c48 2293 break;
bdb72932 2294 if (folio_test_readahead(folio))
cbd59c48 2295 break;
87b11f86 2296 xas_advance(&xas, folio_next_index(folio) - 1);
cbd59c48 2297 continue;
25d6a23e 2298put_folio:
bdb72932 2299 folio_put(folio);
cbd59c48
MWO
2300retry:
2301 xas_reset(&xas);
2302 }
2303 rcu_read_unlock();
2304}
2305
290e1a32 2306static int filemap_read_folio(struct file *file, filler_t filler,
9d427b4e 2307 struct folio *folio)
723ef24b 2308{
17604240
CH
2309 bool workingset = folio_test_workingset(folio);
2310 unsigned long pflags;
723ef24b
KO
2311 int error;
2312
723ef24b 2313 /*
68430303 2314 * A previous I/O error may have been due to temporary failures,
7e0a1265 2315 * eg. multipath errors. PG_error will be set again if read_folio
68430303 2316 * fails.
723ef24b 2317 */
9d427b4e 2318 folio_clear_error(folio);
17604240 2319
723ef24b 2320 /* Start the actual read. The read will unlock the page. */
17604240
CH
2321 if (unlikely(workingset))
2322 psi_memstall_enter(&pflags);
290e1a32 2323 error = filler(file, folio);
17604240
CH
2324 if (unlikely(workingset))
2325 psi_memstall_leave(&pflags);
68430303
MWO
2326 if (error)
2327 return error;
723ef24b 2328
9d427b4e 2329 error = folio_wait_locked_killable(folio);
68430303
MWO
2330 if (error)
2331 return error;
9d427b4e 2332 if (folio_test_uptodate(folio))
aa1ec2f6 2333 return 0;
290e1a32
MWO
2334 if (file)
2335 shrink_readahead_size_eio(&file->f_ra);
aa1ec2f6 2336 return -EIO;
723ef24b
KO
2337}
2338
fce70da3 2339static bool filemap_range_uptodate(struct address_space *mapping,
dd5b9d00
DH
2340 loff_t pos, size_t count, struct folio *folio,
2341 bool need_uptodate)
fce70da3 2342{
2fa4eeb8 2343 if (folio_test_uptodate(folio))
fce70da3
MWO
2344 return true;
2345 /* pipes can't handle partially uptodate pages */
dd5b9d00 2346 if (need_uptodate)
fce70da3
MWO
2347 return false;
2348 if (!mapping->a_ops->is_partially_uptodate)
2349 return false;
2fa4eeb8 2350 if (mapping->host->i_blkbits >= folio_shift(folio))
fce70da3
MWO
2351 return false;
2352
2fa4eeb8
MWO
2353 if (folio_pos(folio) > pos) {
2354 count -= folio_pos(folio) - pos;
fce70da3
MWO
2355 pos = 0;
2356 } else {
2fa4eeb8 2357 pos -= folio_pos(folio);
fce70da3
MWO
2358 }
2359
2e7e80f7 2360 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
fce70da3
MWO
2361}
2362
4612aeef 2363static int filemap_update_page(struct kiocb *iocb,
dd5b9d00
DH
2364 struct address_space *mapping, size_t count,
2365 struct folio *folio, bool need_uptodate)
723ef24b 2366{
723ef24b
KO
2367 int error;
2368
730633f0
JK
2369 if (iocb->ki_flags & IOCB_NOWAIT) {
2370 if (!filemap_invalidate_trylock_shared(mapping))
2371 return -EAGAIN;
2372 } else {
2373 filemap_invalidate_lock_shared(mapping);
2374 }
2375
ffdc8dab 2376 if (!folio_trylock(folio)) {
730633f0 2377 error = -EAGAIN;
87d1d7b6 2378 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
730633f0 2379 goto unlock_mapping;
87d1d7b6 2380 if (!(iocb->ki_flags & IOCB_WAITQ)) {
730633f0 2381 filemap_invalidate_unlock_shared(mapping);
9f2b04a2
MWO
2382 /*
2383 * This is where we usually end up waiting for a
2384 * previously submitted readahead to finish.
2385 */
2386 folio_put_wait_locked(folio, TASK_KILLABLE);
4612aeef 2387 return AOP_TRUNCATED_PAGE;
bd8a1f36 2388 }
ffdc8dab 2389 error = __folio_lock_async(folio, iocb->ki_waitq);
87d1d7b6 2390 if (error)
730633f0 2391 goto unlock_mapping;
723ef24b 2392 }
723ef24b 2393
730633f0 2394 error = AOP_TRUNCATED_PAGE;
ffdc8dab 2395 if (!folio->mapping)
730633f0 2396 goto unlock;
723ef24b 2397
fce70da3 2398 error = 0;
dd5b9d00
DH
2399 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2400 need_uptodate))
fce70da3
MWO
2401 goto unlock;
2402
2403 error = -EAGAIN;
2404 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2405 goto unlock;
2406
290e1a32
MWO
2407 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2408 folio);
730633f0 2409 goto unlock_mapping;
fce70da3 2410unlock:
ffdc8dab 2411 folio_unlock(folio);
730633f0
JK
2412unlock_mapping:
2413 filemap_invalidate_unlock_shared(mapping);
2414 if (error == AOP_TRUNCATED_PAGE)
ffdc8dab 2415 folio_put(folio);
fce70da3 2416 return error;
723ef24b
KO
2417}
2418
a5d4ad09 2419static int filemap_create_folio(struct file *file,
f253e185 2420 struct address_space *mapping, pgoff_t index,
25d6a23e 2421 struct folio_batch *fbatch)
723ef24b 2422{
a5d4ad09 2423 struct folio *folio;
723ef24b
KO
2424 int error;
2425
a5d4ad09
MWO
2426 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2427 if (!folio)
f253e185 2428 return -ENOMEM;
723ef24b 2429
730633f0 2430 /*
a5d4ad09
MWO
2431 * Protect against truncate / hole punch. Grabbing invalidate_lock
2432 * here assures we cannot instantiate and bring uptodate new
2433 * pagecache folios after evicting page cache during truncate
2434 * and before actually freeing blocks. Note that we could
2435 * release invalidate_lock after inserting the folio into
2436 * the page cache as the locked folio would then be enough to
2437 * synchronize with hole punching. But there are code paths
2438 * such as filemap_update_page() filling in partially uptodate
704528d8 2439 * pages or ->readahead() that need to hold invalidate_lock
a5d4ad09
MWO
2440 * while mapping blocks for IO so let's hold the lock here as
2441 * well to keep locking rules simple.
730633f0
JK
2442 */
2443 filemap_invalidate_lock_shared(mapping);
a5d4ad09 2444 error = filemap_add_folio(mapping, folio, index,
f253e185
MWO
2445 mapping_gfp_constraint(mapping, GFP_KERNEL));
2446 if (error == -EEXIST)
2447 error = AOP_TRUNCATED_PAGE;
2448 if (error)
2449 goto error;
2450
290e1a32 2451 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
f253e185
MWO
2452 if (error)
2453 goto error;
2454
730633f0 2455 filemap_invalidate_unlock_shared(mapping);
25d6a23e 2456 folio_batch_add(fbatch, folio);
f253e185
MWO
2457 return 0;
2458error:
730633f0 2459 filemap_invalidate_unlock_shared(mapping);
a5d4ad09 2460 folio_put(folio);
f253e185 2461 return error;
723ef24b
KO
2462}
2463
5963fe03 2464static int filemap_readahead(struct kiocb *iocb, struct file *file,
65bca53b 2465 struct address_space *mapping, struct folio *folio,
5963fe03
MWO
2466 pgoff_t last_index)
2467{
65bca53b
MWO
2468 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2469
5963fe03
MWO
2470 if (iocb->ki_flags & IOCB_NOIO)
2471 return -EAGAIN;
65bca53b 2472 page_cache_async_ra(&ractl, folio, last_index - folio->index);
5963fe03
MWO
2473 return 0;
2474}
2475
dd5b9d00
DH
2476static int filemap_get_pages(struct kiocb *iocb, size_t count,
2477 struct folio_batch *fbatch, bool need_uptodate)
06c04442
KO
2478{
2479 struct file *filp = iocb->ki_filp;
2480 struct address_space *mapping = filp->f_mapping;
2481 struct file_ra_state *ra = &filp->f_ra;
2482 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
cbd59c48 2483 pgoff_t last_index;
65bca53b 2484 struct folio *folio;
cbd59c48 2485 int err = 0;
06c04442 2486
5956592c 2487 /* "last_index" is the index of the page beyond the end of the read */
dd5b9d00 2488 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2642fca6 2489retry:
06c04442
KO
2490 if (fatal_signal_pending(current))
2491 return -EINTR;
2492
5956592c 2493 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
25d6a23e 2494 if (!folio_batch_count(fbatch)) {
2642fca6
MWO
2495 if (iocb->ki_flags & IOCB_NOIO)
2496 return -EAGAIN;
2497 page_cache_sync_readahead(mapping, ra, filp, index,
2498 last_index - index);
5956592c 2499 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2642fca6 2500 }
25d6a23e 2501 if (!folio_batch_count(fbatch)) {
f253e185
MWO
2502 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2503 return -EAGAIN;
a5d4ad09 2504 err = filemap_create_folio(filp, mapping,
25d6a23e 2505 iocb->ki_pos >> PAGE_SHIFT, fbatch);
f253e185 2506 if (err == AOP_TRUNCATED_PAGE)
2642fca6 2507 goto retry;
f253e185
MWO
2508 return err;
2509 }
06c04442 2510
25d6a23e 2511 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
65bca53b
MWO
2512 if (folio_test_readahead(folio)) {
2513 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2642fca6
MWO
2514 if (err)
2515 goto err;
2516 }
65bca53b 2517 if (!folio_test_uptodate(folio)) {
25d6a23e
MWO
2518 if ((iocb->ki_flags & IOCB_WAITQ) &&
2519 folio_batch_count(fbatch) > 1)
2642fca6 2520 iocb->ki_flags |= IOCB_NOWAIT;
dd5b9d00
DH
2521 err = filemap_update_page(iocb, mapping, count, folio,
2522 need_uptodate);
2642fca6
MWO
2523 if (err)
2524 goto err;
06c04442
KO
2525 }
2526
2642fca6 2527 return 0;
cbd59c48 2528err:
2642fca6 2529 if (err < 0)
65bca53b 2530 folio_put(folio);
25d6a23e 2531 if (likely(--fbatch->nr))
ff993ba1 2532 return 0;
4612aeef 2533 if (err == AOP_TRUNCATED_PAGE)
2642fca6
MWO
2534 goto retry;
2535 return err;
06c04442
KO
2536}
2537
5ccc944d
MWO
2538static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2539{
2540 unsigned int shift = folio_shift(folio);
2541
2542 return (pos1 >> shift == pos2 >> shift);
2543}
2544
485bb99b 2545/**
87fa0f3e
CH
2546 * filemap_read - Read data from the page cache.
2547 * @iocb: The iocb to read.
2548 * @iter: Destination for the data.
2549 * @already_read: Number of bytes already read by the caller.
485bb99b 2550 *
87fa0f3e 2551 * Copies data from the page cache. If the data is not currently present,
7e0a1265 2552 * uses the readahead and read_folio address_space operations to fetch it.
1da177e4 2553 *
87fa0f3e
CH
2554 * Return: Total number of bytes copied, including those already read by
2555 * the caller. If an error happens before any bytes are copied, returns
2556 * a negative error number.
1da177e4 2557 */
87fa0f3e
CH
2558ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2559 ssize_t already_read)
1da177e4 2560{
47c27bc4 2561 struct file *filp = iocb->ki_filp;
06c04442 2562 struct file_ra_state *ra = &filp->f_ra;
36e78914 2563 struct address_space *mapping = filp->f_mapping;
1da177e4 2564 struct inode *inode = mapping->host;
25d6a23e 2565 struct folio_batch fbatch;
ff993ba1 2566 int i, error = 0;
06c04442
KO
2567 bool writably_mapped;
2568 loff_t isize, end_offset;
f04d16ee 2569 loff_t last_pos = ra->prev_pos;
1da177e4 2570
723ef24b 2571 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
d05c5f7b 2572 return 0;
3644e2d2
KO
2573 if (unlikely(!iov_iter_count(iter)))
2574 return 0;
2575
c2a9737f 2576 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
25d6a23e 2577 folio_batch_init(&fbatch);
c2a9737f 2578
06c04442 2579 do {
1da177e4 2580 cond_resched();
5abf186a 2581
723ef24b 2582 /*
06c04442
KO
2583 * If we've already successfully copied some data, then we
2584 * can no longer safely return -EIOCBQUEUED. Hence mark
2585 * an async read NOWAIT at that point.
723ef24b 2586 */
87fa0f3e 2587 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
723ef24b
KO
2588 iocb->ki_flags |= IOCB_NOWAIT;
2589
8c8387ee
DH
2590 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2591 break;
2592
3fc40265 2593 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
ff993ba1 2594 if (error < 0)
06c04442 2595 break;
1da177e4 2596
06c04442
KO
2597 /*
2598 * i_size must be checked after we know the pages are Uptodate.
2599 *
2600 * Checking i_size after the check allows us to calculate
2601 * the correct value for "nr", which means the zero-filled
2602 * part of the page is not copied back to userspace (unless
2603 * another truncate extends the file - this is desired though).
2604 */
2605 isize = i_size_read(inode);
2606 if (unlikely(iocb->ki_pos >= isize))
25d6a23e 2607 goto put_folios;
06c04442
KO
2608 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2609
e2c27b80
BL
2610 /*
2611 * Pairs with a barrier in
2612 * block_write_end()->mark_buffer_dirty() or other page
2613 * dirtying routines like iomap_write_end() to ensure
2614 * changes to page contents are visible before we see
2615 * increased inode size.
2616 */
2617 smp_rmb();
2618
06c04442
KO
2619 /*
2620 * Once we start copying data, we don't want to be touching any
2621 * cachelines that might be contended:
2622 */
2623 writably_mapped = mapping_writably_mapped(mapping);
2624
2625 /*
5ccc944d 2626 * When a read accesses the same folio several times, only
06c04442
KO
2627 * mark it as accessed the first time.
2628 */
f04d16ee
HL
2629 if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2630 fbatch.folios[0]))
25d6a23e 2631 folio_mark_accessed(fbatch.folios[0]);
06c04442 2632
25d6a23e
MWO
2633 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2634 struct folio *folio = fbatch.folios[i];
d996fc7f
MWO
2635 size_t fsize = folio_size(folio);
2636 size_t offset = iocb->ki_pos & (fsize - 1);
cbd59c48 2637 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
d996fc7f 2638 fsize - offset);
cbd59c48 2639 size_t copied;
06c04442 2640
d996fc7f 2641 if (end_offset < folio_pos(folio))
cbd59c48
MWO
2642 break;
2643 if (i > 0)
d996fc7f 2644 folio_mark_accessed(folio);
06c04442 2645 /*
d996fc7f
MWO
2646 * If users can be writing to this folio using arbitrary
2647 * virtual addresses, take care of potential aliasing
2648 * before reading the folio on the kernel side.
06c04442 2649 */
d996fc7f
MWO
2650 if (writably_mapped)
2651 flush_dcache_folio(folio);
06c04442 2652
d996fc7f 2653 copied = copy_folio_to_iter(folio, offset, bytes, iter);
06c04442 2654
87fa0f3e 2655 already_read += copied;
06c04442 2656 iocb->ki_pos += copied;
f04d16ee 2657 last_pos = iocb->ki_pos;
06c04442
KO
2658
2659 if (copied < bytes) {
2660 error = -EFAULT;
2661 break;
2662 }
1da177e4 2663 }
25d6a23e
MWO
2664put_folios:
2665 for (i = 0; i < folio_batch_count(&fbatch); i++)
2666 folio_put(fbatch.folios[i]);
2667 folio_batch_init(&fbatch);
06c04442 2668 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
1da177e4 2669
0c6aa263 2670 file_accessed(filp);
f04d16ee 2671 ra->prev_pos = last_pos;
87fa0f3e 2672 return already_read ? already_read : error;
1da177e4 2673}
87fa0f3e 2674EXPORT_SYMBOL_GPL(filemap_read);
1da177e4 2675
3c435a0f
CH
2676int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2677{
2678 struct address_space *mapping = iocb->ki_filp->f_mapping;
2679 loff_t pos = iocb->ki_pos;
2680 loff_t end = pos + count - 1;
2681
2682 if (iocb->ki_flags & IOCB_NOWAIT) {
2683 if (filemap_range_needs_writeback(mapping, pos, end))
2684 return -EAGAIN;
2685 return 0;
2686 }
2687
2688 return filemap_write_and_wait_range(mapping, pos, end);
2689}
2690
e003f74a
CH
2691int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2692{
2693 struct address_space *mapping = iocb->ki_filp->f_mapping;
2694 loff_t pos = iocb->ki_pos;
2695 loff_t end = pos + count - 1;
2696 int ret;
2697
2698 if (iocb->ki_flags & IOCB_NOWAIT) {
2699 /* we could block if there are any pages in the range */
2700 if (filemap_range_has_page(mapping, pos, end))
2701 return -EAGAIN;
2702 } else {
2703 ret = filemap_write_and_wait_range(mapping, pos, end);
2704 if (ret)
2705 return ret;
2706 }
2707
2708 /*
2709 * After a write we want buffered reads to be sure to go to disk to get
2710 * the new data. We invalidate clean cached page from the region we're
2711 * about to write. We do this *before* the write so that we can return
2712 * without clobbering -EIOCBQUEUED from ->direct_IO().
2713 */
2714 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2715 end >> PAGE_SHIFT);
2716}
2717
485bb99b 2718/**
6abd2322 2719 * generic_file_read_iter - generic filesystem read routine
485bb99b 2720 * @iocb: kernel I/O control block
6abd2322 2721 * @iter: destination for the data read
485bb99b 2722 *
6abd2322 2723 * This is the "read_iter()" routine for all filesystems
1da177e4 2724 * that can use the page cache directly.
41da51bc
AG
2725 *
2726 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2727 * be returned when no data can be read without waiting for I/O requests
2728 * to complete; it doesn't prevent readahead.
2729 *
2730 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2731 * requests shall be made for the read or for readahead. When no data
2732 * can be read, -EAGAIN shall be returned. When readahead would be
2733 * triggered, a partial, possibly empty read shall be returned.
2734 *
a862f68a
MR
2735 * Return:
2736 * * number of bytes copied, even for partial reads
41da51bc 2737 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2738 */
2739ssize_t
ed978a81 2740generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2741{
e7080a43 2742 size_t count = iov_iter_count(iter);
47c27bc4 2743 ssize_t retval = 0;
e7080a43
NS
2744
2745 if (!count)
826ea860 2746 return 0; /* skip atime */
1da177e4 2747
2ba48ce5 2748 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2749 struct file *file = iocb->ki_filp;
ed978a81
AV
2750 struct address_space *mapping = file->f_mapping;
2751 struct inode *inode = mapping->host;
1da177e4 2752
3c435a0f
CH
2753 retval = kiocb_write_and_wait(iocb, count);
2754 if (retval < 0)
2755 return retval;
0d5b0cf2
CH
2756 file_accessed(file);
2757
5ecda137 2758 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2759 if (retval >= 0) {
c64fb5c7 2760 iocb->ki_pos += retval;
5ecda137 2761 count -= retval;
9fe55eea 2762 }
ab2125df
PB
2763 if (retval != -EIOCBQUEUED)
2764 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2765
9fe55eea
SW
2766 /*
2767 * Btrfs can have a short DIO read if we encounter
2768 * compressed extents, so if there was an error, or if
2769 * we've already read everything we wanted to, or if
2770 * there was a short read because we hit EOF, go ahead
2771 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2772 * the rest of the read. Buffered reads will not work for
2773 * DAX files, so don't bother trying.
9fe55eea 2774 */
61d0017e
JA
2775 if (retval < 0 || !count || IS_DAX(inode))
2776 return retval;
2777 if (iocb->ki_pos >= i_size_read(inode))
826ea860 2778 return retval;
1da177e4
LT
2779 }
2780
826ea860 2781 return filemap_read(iocb, iter, retval);
1da177e4 2782}
ed978a81 2783EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2784
07073eb0
DH
2785/*
2786 * Splice subpages from a folio into a pipe.
2787 */
2788size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2789 struct folio *folio, loff_t fpos, size_t size)
2790{
2791 struct page *page;
2792 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2793
2794 page = folio_page(folio, offset / PAGE_SIZE);
2795 size = min(size, folio_size(folio) - offset);
2796 offset %= PAGE_SIZE;
2797
2798 while (spliced < size &&
2799 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2800 struct pipe_buffer *buf = pipe_head_buf(pipe);
2801 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2802
2803 *buf = (struct pipe_buffer) {
2804 .ops = &page_cache_pipe_buf_ops,
2805 .page = page,
2806 .offset = offset,
2807 .len = part,
2808 };
2809 folio_get(folio);
2810 pipe->head++;
2811 page++;
2812 spliced += part;
2813 offset = 0;
2814 }
2815
2816 return spliced;
2817}
2818
9eee8bd8
DH
2819/**
2820 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2821 * @in: The file to read from
2822 * @ppos: Pointer to the file position to read from
2823 * @pipe: The pipe to splice into
2824 * @len: The amount to splice
2825 * @flags: The SPLICE_F_* flags
2826 *
2827 * This function gets folios from a file's pagecache and splices them into the
2828 * pipe. Readahead will be called as necessary to fill more folios. This may
2829 * be used for blockdevs also.
2830 *
2831 * Return: On success, the number of bytes read will be returned and *@ppos
2832 * will be updated if appropriate; 0 will be returned if there is no more data
2833 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2834 * other negative error code will be returned on error. A short read may occur
2835 * if the pipe has insufficient space, we reach the end of the data or we hit a
2836 * hole.
07073eb0
DH
2837 */
2838ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2839 struct pipe_inode_info *pipe,
2840 size_t len, unsigned int flags)
2841{
2842 struct folio_batch fbatch;
2843 struct kiocb iocb;
2844 size_t total_spliced = 0, used, npages;
2845 loff_t isize, end_offset;
2846 bool writably_mapped;
2847 int i, error = 0;
2848
83aeff88
DH
2849 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2850 return 0;
2851
07073eb0
DH
2852 init_sync_kiocb(&iocb, in);
2853 iocb.ki_pos = *ppos;
2854
2855 /* Work out how much data we can actually add into the pipe */
2856 used = pipe_occupancy(pipe->head, pipe->tail);
2857 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2858 len = min_t(size_t, len, npages * PAGE_SIZE);
2859
2860 folio_batch_init(&fbatch);
2861
2862 do {
2863 cond_resched();
2864
c3722208 2865 if (*ppos >= i_size_read(in->f_mapping->host))
07073eb0
DH
2866 break;
2867
2868 iocb.ki_pos = *ppos;
2869 error = filemap_get_pages(&iocb, len, &fbatch, true);
2870 if (error < 0)
2871 break;
2872
2873 /*
2874 * i_size must be checked after we know the pages are Uptodate.
2875 *
2876 * Checking i_size after the check allows us to calculate
2877 * the correct value for "nr", which means the zero-filled
2878 * part of the page is not copied back to userspace (unless
2879 * another truncate extends the file - this is desired though).
2880 */
c3722208 2881 isize = i_size_read(in->f_mapping->host);
07073eb0
DH
2882 if (unlikely(*ppos >= isize))
2883 break;
2884 end_offset = min_t(loff_t, isize, *ppos + len);
2885
2886 /*
2887 * Once we start copying data, we don't want to be touching any
2888 * cachelines that might be contended:
2889 */
2890 writably_mapped = mapping_writably_mapped(in->f_mapping);
2891
2892 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2893 struct folio *folio = fbatch.folios[i];
2894 size_t n;
2895
2896 if (folio_pos(folio) >= end_offset)
2897 goto out;
2898 folio_mark_accessed(folio);
2899
2900 /*
2901 * If users can be writing to this folio using arbitrary
2902 * virtual addresses, take care of potential aliasing
2903 * before reading the folio on the kernel side.
2904 */
2905 if (writably_mapped)
2906 flush_dcache_folio(folio);
2907
2908 n = min_t(loff_t, len, isize - *ppos);
2909 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2910 if (!n)
2911 goto out;
2912 len -= n;
2913 total_spliced += n;
2914 *ppos += n;
2915 in->f_ra.prev_pos = *ppos;
2916 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2917 goto out;
2918 }
2919
2920 folio_batch_release(&fbatch);
2921 } while (len);
2922
2923out:
2924 folio_batch_release(&fbatch);
2925 file_accessed(in);
2926
2927 return total_spliced ? total_spliced : error;
2928}
7c8e01eb 2929EXPORT_SYMBOL(filemap_splice_read);
07073eb0 2930
f5e6429a
MWO
2931static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2932 struct address_space *mapping, struct folio *folio,
54fa39ac 2933 loff_t start, loff_t end, bool seek_data)
41139aa4 2934{
54fa39ac
MWO
2935 const struct address_space_operations *ops = mapping->a_ops;
2936 size_t offset, bsz = i_blocksize(mapping->host);
2937
f5e6429a 2938 if (xa_is_value(folio) || folio_test_uptodate(folio))
54fa39ac
MWO
2939 return seek_data ? start : end;
2940 if (!ops->is_partially_uptodate)
2941 return seek_data ? end : start;
2942
2943 xas_pause(xas);
2944 rcu_read_unlock();
f5e6429a
MWO
2945 folio_lock(folio);
2946 if (unlikely(folio->mapping != mapping))
54fa39ac
MWO
2947 goto unlock;
2948
f5e6429a 2949 offset = offset_in_folio(folio, start) & ~(bsz - 1);
54fa39ac
MWO
2950
2951 do {
2e7e80f7 2952 if (ops->is_partially_uptodate(folio, offset, bsz) ==
f5e6429a 2953 seek_data)
54fa39ac
MWO
2954 break;
2955 start = (start + bsz) & ~(bsz - 1);
2956 offset += bsz;
f5e6429a 2957 } while (offset < folio_size(folio));
54fa39ac 2958unlock:
f5e6429a 2959 folio_unlock(folio);
54fa39ac
MWO
2960 rcu_read_lock();
2961 return start;
41139aa4
MWO
2962}
2963
f5e6429a 2964static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
41139aa4 2965{
f5e6429a 2966 if (xa_is_value(folio))
41139aa4 2967 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
f5e6429a 2968 return folio_size(folio);
41139aa4
MWO
2969}
2970
2971/**
2972 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2973 * @mapping: Address space to search.
2974 * @start: First byte to consider.
2975 * @end: Limit of search (exclusive).
2976 * @whence: Either SEEK_HOLE or SEEK_DATA.
2977 *
2978 * If the page cache knows which blocks contain holes and which blocks
2979 * contain data, your filesystem can use this function to implement
2980 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2981 * entirely memory-based such as tmpfs, and filesystems which support
2982 * unwritten extents.
2983 *
f0953a1b 2984 * Return: The requested offset on success, or -ENXIO if @whence specifies
41139aa4
MWO
2985 * SEEK_DATA and there is no data after @start. There is an implicit hole
2986 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2987 * and @end contain data.
2988 */
2989loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2990 loff_t end, int whence)
2991{
2992 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
ed98b015 2993 pgoff_t max = (end - 1) >> PAGE_SHIFT;
41139aa4 2994 bool seek_data = (whence == SEEK_DATA);
f5e6429a 2995 struct folio *folio;
41139aa4
MWO
2996
2997 if (end <= start)
2998 return -ENXIO;
2999
3000 rcu_read_lock();
f5e6429a 3001 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
ed98b015 3002 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
f5e6429a 3003 size_t seek_size;
41139aa4
MWO
3004
3005 if (start < pos) {
3006 if (!seek_data)
3007 goto unlock;
3008 start = pos;
3009 }
3010
f5e6429a
MWO
3011 seek_size = seek_folio_size(&xas, folio);
3012 pos = round_up((u64)pos + 1, seek_size);
3013 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
54fa39ac
MWO
3014 seek_data);
3015 if (start < pos)
41139aa4 3016 goto unlock;
ed98b015
HD
3017 if (start >= end)
3018 break;
3019 if (seek_size > PAGE_SIZE)
3020 xas_set(&xas, pos >> PAGE_SHIFT);
f5e6429a
MWO
3021 if (!xa_is_value(folio))
3022 folio_put(folio);
41139aa4 3023 }
41139aa4 3024 if (seek_data)
ed98b015 3025 start = -ENXIO;
41139aa4
MWO
3026unlock:
3027 rcu_read_unlock();
f5e6429a
MWO
3028 if (folio && !xa_is_value(folio))
3029 folio_put(folio);
41139aa4
MWO
3030 if (start > end)
3031 return end;
3032 return start;
3033}
3034
1da177e4 3035#ifdef CONFIG_MMU
1da177e4 3036#define MMAP_LOTSAMISS (100)
6b4c9f44 3037/*
e292e6d6 3038 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44 3039 * @vmf - the vm_fault for this fault.
e292e6d6 3040 * @folio - the folio to lock.
6b4c9f44
JB
3041 * @fpin - the pointer to the file we may pin (or is already pinned).
3042 *
e292e6d6
MWO
3043 * This works similar to lock_folio_or_retry in that it can drop the
3044 * mmap_lock. It differs in that it actually returns the folio locked
3045 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3046 * to drop the mmap_lock then fpin will point to the pinned file and
3047 * needs to be fput()'ed at a later point.
6b4c9f44 3048 */
e292e6d6 3049static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
6b4c9f44
JB
3050 struct file **fpin)
3051{
7c23c782 3052 if (folio_trylock(folio))
6b4c9f44
JB
3053 return 1;
3054
8b0f9fa2
LT
3055 /*
3056 * NOTE! This will make us return with VM_FAULT_RETRY, but with
5d74b2ab 3057 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
3058 * is supposed to work. We have way too many special cases..
3059 */
6b4c9f44
JB
3060 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3061 return 0;
3062
3063 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3064 if (vmf->flags & FAULT_FLAG_KILLABLE) {
af7f29d9 3065 if (__folio_lock_killable(folio)) {
6b4c9f44 3066 /*
5d74b2ab
MWO
3067 * We didn't have the right flags to drop the
3068 * fault lock, but all fault_handlers only check
3069 * for fatal signals if we return VM_FAULT_RETRY,
3070 * so we need to drop the fault lock here and
3071 * return 0 if we don't have a fpin.
6b4c9f44
JB
3072 */
3073 if (*fpin == NULL)
5d74b2ab 3074 release_fault_lock(vmf);
6b4c9f44
JB
3075 return 0;
3076 }
3077 } else
7c23c782
MWO
3078 __folio_lock(folio);
3079
6b4c9f44
JB
3080 return 1;
3081}
3082
ef00e08e 3083/*
6b4c9f44
JB
3084 * Synchronous readahead happens when we don't even find a page in the page
3085 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3086 * to drop the mmap sem we return the file that was pinned in order for us to do
3087 * that. If we didn't pin a file then we return NULL. The file that is
3088 * returned needs to be fput()'ed when we're done with it.
ef00e08e 3089 */
6b4c9f44 3090static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 3091{
2a1180f1
JB
3092 struct file *file = vmf->vma->vm_file;
3093 struct file_ra_state *ra = &file->f_ra;
ef00e08e 3094 struct address_space *mapping = file->f_mapping;
fcd9ae4f 3095 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
6b4c9f44 3096 struct file *fpin = NULL;
dcfa24ba 3097 unsigned long vm_flags = vmf->vma->vm_flags;
e630bfac 3098 unsigned int mmap_miss;
ef00e08e 3099
4687fdbb
MWO
3100#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3101 /* Use the readahead code, even if readahead is disabled */
dcfa24ba 3102 if (vm_flags & VM_HUGEPAGE) {
4687fdbb
MWO
3103 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3104 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3105 ra->size = HPAGE_PMD_NR;
3106 /*
3107 * Fetch two PMD folios, so we get the chance to actually
3108 * readahead, unless we've been told not to.
3109 */
dcfa24ba 3110 if (!(vm_flags & VM_RAND_READ))
4687fdbb
MWO
3111 ra->size *= 2;
3112 ra->async_size = HPAGE_PMD_NR;
3113 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3114 return fpin;
3115 }
3116#endif
3117
ef00e08e 3118 /* If we don't want any read-ahead, don't bother */
dcfa24ba 3119 if (vm_flags & VM_RAND_READ)
6b4c9f44 3120 return fpin;
275b12bf 3121 if (!ra->ra_pages)
6b4c9f44 3122 return fpin;
ef00e08e 3123
dcfa24ba 3124 if (vm_flags & VM_SEQ_READ) {
6b4c9f44 3125 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
fcd9ae4f 3126 page_cache_sync_ra(&ractl, ra->ra_pages);
6b4c9f44 3127 return fpin;
ef00e08e
LT
3128 }
3129
207d04ba 3130 /* Avoid banging the cache line if not needed */
e630bfac
KS
3131 mmap_miss = READ_ONCE(ra->mmap_miss);
3132 if (mmap_miss < MMAP_LOTSAMISS * 10)
3133 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
ef00e08e
LT
3134
3135 /*
3136 * Do we miss much more than hit in this file? If so,
3137 * stop bothering with read-ahead. It will only hurt.
3138 */
e630bfac 3139 if (mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 3140 return fpin;
ef00e08e 3141
d30a1100
WF
3142 /*
3143 * mmap read-around
3144 */
6b4c9f44 3145 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
db660d46 3146 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
600e19af
RG
3147 ra->size = ra->ra_pages;
3148 ra->async_size = ra->ra_pages / 4;
db660d46 3149 ractl._index = ra->start;
56a4d67c 3150 page_cache_ra_order(&ractl, ra, 0);
6b4c9f44 3151 return fpin;
ef00e08e
LT
3152}
3153
3154/*
3155 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 3156 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 3157 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 3158 */
6b4c9f44 3159static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
79598ced 3160 struct folio *folio)
ef00e08e 3161{
2a1180f1
JB
3162 struct file *file = vmf->vma->vm_file;
3163 struct file_ra_state *ra = &file->f_ra;
79598ced 3164 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
6b4c9f44 3165 struct file *fpin = NULL;
e630bfac 3166 unsigned int mmap_miss;
ef00e08e
LT
3167
3168 /* If we don't want any read-ahead, don't bother */
5c72feee 3169 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 3170 return fpin;
79598ced 3171
e630bfac
KS
3172 mmap_miss = READ_ONCE(ra->mmap_miss);
3173 if (mmap_miss)
3174 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
79598ced
MWO
3175
3176 if (folio_test_readahead(folio)) {
6b4c9f44 3177 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
79598ced 3178 page_cache_async_ra(&ractl, folio, ra->ra_pages);
6b4c9f44
JB
3179 }
3180 return fpin;
ef00e08e
LT
3181}
3182
485bb99b 3183/**
54cb8821 3184 * filemap_fault - read in file data for page fault handling
d0217ac0 3185 * @vmf: struct vm_fault containing details of the fault
485bb99b 3186 *
54cb8821 3187 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
3188 * mapped memory region to read in file data during a page fault.
3189 *
3190 * The goto's are kind of ugly, but this streamlines the normal case of having
3191 * it in the page cache, and handles the special cases reasonably without
3192 * having a lot of duplicated code.
9a95f3cf 3193 *
c1e8d7c6 3194 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 3195 *
c1e8d7c6 3196 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
e292e6d6 3197 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
9a95f3cf 3198 *
c1e8d7c6 3199 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
3200 * has not been released.
3201 *
3202 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
3203 *
3204 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 3205 */
2bcd6454 3206vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
3207{
3208 int error;
11bac800 3209 struct file *file = vmf->vma->vm_file;
6b4c9f44 3210 struct file *fpin = NULL;
1da177e4 3211 struct address_space *mapping = file->f_mapping;
1da177e4 3212 struct inode *inode = mapping->host;
e292e6d6
MWO
3213 pgoff_t max_idx, index = vmf->pgoff;
3214 struct folio *folio;
2bcd6454 3215 vm_fault_t ret = 0;
730633f0 3216 bool mapping_locked = false;
1da177e4 3217
e292e6d6
MWO
3218 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3219 if (unlikely(index >= max_idx))
5307cc1a 3220 return VM_FAULT_SIGBUS;
1da177e4 3221
1da177e4 3222 /*
49426420 3223 * Do we have something in the page cache already?
1da177e4 3224 */
e292e6d6 3225 folio = filemap_get_folio(mapping, index);
66dabbb6 3226 if (likely(!IS_ERR(folio))) {
1da177e4 3227 /*
730633f0
JK
3228 * We found the page, so try async readahead before waiting for
3229 * the lock.
1da177e4 3230 */
730633f0 3231 if (!(vmf->flags & FAULT_FLAG_TRIED))
79598ced 3232 fpin = do_async_mmap_readahead(vmf, folio);
e292e6d6 3233 if (unlikely(!folio_test_uptodate(folio))) {
730633f0
JK
3234 filemap_invalidate_lock_shared(mapping);
3235 mapping_locked = true;
3236 }
3237 } else {
ef00e08e 3238 /* No page in the page cache at all */
ef00e08e 3239 count_vm_event(PGMAJFAULT);
2262185c 3240 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 3241 ret = VM_FAULT_MAJOR;
6b4c9f44 3242 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 3243retry_find:
730633f0 3244 /*
e292e6d6 3245 * See comment in filemap_create_folio() why we need
730633f0
JK
3246 * invalidate_lock
3247 */
3248 if (!mapping_locked) {
3249 filemap_invalidate_lock_shared(mapping);
3250 mapping_locked = true;
3251 }
e292e6d6 3252 folio = __filemap_get_folio(mapping, index,
a75d4c33
JB
3253 FGP_CREAT|FGP_FOR_MMAP,
3254 vmf->gfp_mask);
66dabbb6 3255 if (IS_ERR(folio)) {
6b4c9f44
JB
3256 if (fpin)
3257 goto out_retry;
730633f0 3258 filemap_invalidate_unlock_shared(mapping);
e520e932 3259 return VM_FAULT_OOM;
6b4c9f44 3260 }
1da177e4
LT
3261 }
3262
e292e6d6 3263 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
6b4c9f44 3264 goto out_retry;
b522c94d
ML
3265
3266 /* Did it get truncated? */
e292e6d6
MWO
3267 if (unlikely(folio->mapping != mapping)) {
3268 folio_unlock(folio);
3269 folio_put(folio);
b522c94d
ML
3270 goto retry_find;
3271 }
e292e6d6 3272 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
b522c94d 3273
1da177e4 3274 /*
6facf36e
LS
3275 * We have a locked folio in the page cache, now we need to check
3276 * that it's up-to-date. If not, it is going to be due to an error,
3277 * or because readahead was otherwise unable to retrieve it.
1da177e4 3278 */
e292e6d6 3279 if (unlikely(!folio_test_uptodate(folio))) {
730633f0 3280 /*
6facf36e
LS
3281 * If the invalidate lock is not held, the folio was in cache
3282 * and uptodate and now it is not. Strange but possible since we
3283 * didn't hold the page lock all the time. Let's drop
3284 * everything, get the invalidate lock and try again.
730633f0
JK
3285 */
3286 if (!mapping_locked) {
e292e6d6
MWO
3287 folio_unlock(folio);
3288 folio_put(folio);
730633f0
JK
3289 goto retry_find;
3290 }
6facf36e
LS
3291
3292 /*
3293 * OK, the folio is really not uptodate. This can be because the
3294 * VMA has the VM_RAND_READ flag set, or because an error
3295 * arose. Let's read it in directly.
3296 */
1da177e4 3297 goto page_not_uptodate;
730633f0 3298 }
1da177e4 3299
6b4c9f44 3300 /*
c1e8d7c6 3301 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
3302 * time to return to the upper layer and have it re-find the vma and
3303 * redo the fault.
3304 */
3305 if (fpin) {
e292e6d6 3306 folio_unlock(folio);
6b4c9f44
JB
3307 goto out_retry;
3308 }
730633f0
JK
3309 if (mapping_locked)
3310 filemap_invalidate_unlock_shared(mapping);
6b4c9f44 3311
ef00e08e
LT
3312 /*
3313 * Found the page and have a reference on it.
3314 * We must recheck i_size under page lock.
3315 */
e292e6d6
MWO
3316 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3317 if (unlikely(index >= max_idx)) {
3318 folio_unlock(folio);
3319 folio_put(folio);
5307cc1a 3320 return VM_FAULT_SIGBUS;
d00806b1
NP
3321 }
3322
e292e6d6 3323 vmf->page = folio_file_page(folio, index);
83c54070 3324 return ret | VM_FAULT_LOCKED;
1da177e4 3325
1da177e4 3326page_not_uptodate:
1da177e4
LT
3327 /*
3328 * Umm, take care of errors if the page isn't up-to-date.
3329 * Try to re-read it _once_. We do this synchronously,
3330 * because there really aren't any performance issues here
3331 * and we need to check for errors.
3332 */
6b4c9f44 3333 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
290e1a32 3334 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
6b4c9f44
JB
3335 if (fpin)
3336 goto out_retry;
e292e6d6 3337 folio_put(folio);
d00806b1
NP
3338
3339 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 3340 goto retry_find;
730633f0 3341 filemap_invalidate_unlock_shared(mapping);
1da177e4 3342
d0217ac0 3343 return VM_FAULT_SIGBUS;
6b4c9f44
JB
3344
3345out_retry:
3346 /*
c1e8d7c6 3347 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
3348 * re-find the vma and come back and find our hopefully still populated
3349 * page.
3350 */
38a55db9 3351 if (!IS_ERR(folio))
e292e6d6 3352 folio_put(folio);
730633f0
JK
3353 if (mapping_locked)
3354 filemap_invalidate_unlock_shared(mapping);
6b4c9f44
JB
3355 if (fpin)
3356 fput(fpin);
3357 return ret | VM_FAULT_RETRY;
54cb8821
NP
3358}
3359EXPORT_SYMBOL(filemap_fault);
3360
8808ecab
MWO
3361static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3362 pgoff_t start)
f1820361 3363{
f9ce0be7
KS
3364 struct mm_struct *mm = vmf->vma->vm_mm;
3365
3366 /* Huge page is mapped? No need to proceed. */
3367 if (pmd_trans_huge(*vmf->pmd)) {
8808ecab
MWO
3368 folio_unlock(folio);
3369 folio_put(folio);
f9ce0be7
KS
3370 return true;
3371 }
3372
8808ecab
MWO
3373 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3374 struct page *page = folio_file_page(folio, start);
e0f43fa5
YS
3375 vm_fault_t ret = do_set_pmd(vmf, page);
3376 if (!ret) {
3377 /* The page is mapped successfully, reference consumed. */
8808ecab 3378 folio_unlock(folio);
e0f43fa5 3379 return true;
f9ce0be7 3380 }
f9ce0be7
KS
3381 }
3382
9aa1345d 3383 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
03c4f204 3384 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
f9ce0be7 3385
f9ce0be7
KS
3386 return false;
3387}
3388
de74976e
YF
3389static struct folio *next_uptodate_folio(struct xa_state *xas,
3390 struct address_space *mapping, pgoff_t end_pgoff)
f9ce0be7 3391{
de74976e 3392 struct folio *folio = xas_next_entry(xas, end_pgoff);
f9ce0be7
KS
3393 unsigned long max_idx;
3394
3395 do {
9184a307 3396 if (!folio)
f9ce0be7 3397 return NULL;
9184a307 3398 if (xas_retry(xas, folio))
f9ce0be7 3399 continue;
9184a307 3400 if (xa_is_value(folio))
f9ce0be7 3401 continue;
9184a307 3402 if (folio_test_locked(folio))
f9ce0be7 3403 continue;
9184a307 3404 if (!folio_try_get_rcu(folio))
f9ce0be7
KS
3405 continue;
3406 /* Has the page moved or been split? */
9184a307 3407 if (unlikely(folio != xas_reload(xas)))
f9ce0be7 3408 goto skip;
9184a307 3409 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
f9ce0be7 3410 goto skip;
9184a307 3411 if (!folio_trylock(folio))
f9ce0be7 3412 goto skip;
9184a307 3413 if (folio->mapping != mapping)
f9ce0be7 3414 goto unlock;
9184a307 3415 if (!folio_test_uptodate(folio))
f9ce0be7
KS
3416 goto unlock;
3417 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3418 if (xas->xa_index >= max_idx)
3419 goto unlock;
820b05e9 3420 return folio;
f9ce0be7 3421unlock:
9184a307 3422 folio_unlock(folio);
f9ce0be7 3423skip:
9184a307
MWO
3424 folio_put(folio);
3425 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
f9ce0be7
KS
3426
3427 return NULL;
3428}
3429
de74976e
YF
3430/*
3431 * Map page range [start_page, start_page + nr_pages) of folio.
3432 * start_page is gotten from start by folio_page(folio, start)
3433 */
3434static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3435 struct folio *folio, unsigned long start,
c8be0380
YF
3436 unsigned long addr, unsigned int nr_pages,
3437 unsigned int *mmap_miss)
f9ce0be7 3438{
de74976e 3439 vm_fault_t ret = 0;
de74976e 3440 struct page *page = folio_page(folio, start);
617c28ec
YF
3441 unsigned int count = 0;
3442 pte_t *old_ptep = vmf->pte;
f9ce0be7 3443
de74976e 3444 do {
617c28ec
YF
3445 if (PageHWPoison(page + count))
3446 goto skip;
de74976e 3447
c8be0380 3448 (*mmap_miss)++;
de74976e
YF
3449
3450 /*
3451 * NOTE: If there're PTE markers, we'll leave them to be
3452 * handled in the specific fault path, and it'll prohibit the
3453 * fault-around logic.
3454 */
afccb080 3455 if (!pte_none(ptep_get(&vmf->pte[count])))
617c28ec 3456 goto skip;
de74976e 3457
617c28ec
YF
3458 count++;
3459 continue;
3460skip:
3461 if (count) {
3462 set_pte_range(vmf, folio, page, count, addr);
3463 folio_ref_add(folio, count);
a501a070 3464 if (in_range(vmf->address, addr, count * PAGE_SIZE))
617c28ec
YF
3465 ret = VM_FAULT_NOPAGE;
3466 }
de74976e 3467
617c28ec
YF
3468 count++;
3469 page += count;
3470 vmf->pte += count;
3471 addr += count * PAGE_SIZE;
3472 count = 0;
3473 } while (--nr_pages > 0);
3474
3475 if (count) {
3476 set_pte_range(vmf, folio, page, count, addr);
3477 folio_ref_add(folio, count);
a501a070 3478 if (in_range(vmf->address, addr, count * PAGE_SIZE))
617c28ec
YF
3479 ret = VM_FAULT_NOPAGE;
3480 }
de74976e 3481
617c28ec 3482 vmf->pte = old_ptep;
c8be0380
YF
3483
3484 return ret;
3485}
3486
3487static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3488 struct folio *folio, unsigned long addr,
3489 unsigned int *mmap_miss)
3490{
3491 vm_fault_t ret = 0;
3492 struct page *page = &folio->page;
3493
3494 if (PageHWPoison(page))
3495 return ret;
3496
3497 (*mmap_miss)++;
3498
3499 /*
3500 * NOTE: If there're PTE markers, we'll leave them to be
3501 * handled in the specific fault path, and it'll prohibit
3502 * the fault-around logic.
3503 */
3504 if (!pte_none(ptep_get(vmf->pte)))
3505 return ret;
3506
3507 if (vmf->address == addr)
3508 ret = VM_FAULT_NOPAGE;
3509
3510 set_pte_range(vmf, folio, page, 1, addr);
3511 folio_ref_inc(folio);
de74976e
YF
3512
3513 return ret;
f9ce0be7
KS
3514}
3515
3516vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3517 pgoff_t start_pgoff, pgoff_t end_pgoff)
3518{
3519 struct vm_area_struct *vma = vmf->vma;
3520 struct file *file = vma->vm_file;
f1820361 3521 struct address_space *mapping = file->f_mapping;
bae473a4 3522 pgoff_t last_pgoff = start_pgoff;
9d3af4b4 3523 unsigned long addr;
070e807c 3524 XA_STATE(xas, &mapping->i_pages, start_pgoff);
820b05e9 3525 struct folio *folio;
f9ce0be7 3526 vm_fault_t ret = 0;
c8be0380 3527 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved;
f1820361
KS
3528
3529 rcu_read_lock();
de74976e 3530 folio = next_uptodate_folio(&xas, mapping, end_pgoff);
820b05e9 3531 if (!folio)
f9ce0be7 3532 goto out;
f1820361 3533
8808ecab 3534 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
f9ce0be7
KS
3535 ret = VM_FAULT_NOPAGE;
3536 goto out;
3537 }
f1820361 3538
9d3af4b4
WD
3539 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3540 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
65747aaf
HD
3541 if (!vmf->pte) {
3542 folio_unlock(folio);
3543 folio_put(folio);
3544 goto out;
3545 }
f9ce0be7 3546 do {
de74976e 3547 unsigned long end;
7267ec00 3548
9d3af4b4 3549 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
f9ce0be7 3550 vmf->pte += xas.xa_index - last_pgoff;
070e807c 3551 last_pgoff = xas.xa_index;
d98388ce 3552 end = folio_next_index(folio) - 1;
de74976e 3553 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
f9ce0be7 3554
c8be0380
YF
3555 if (!folio_test_large(folio))
3556 ret |= filemap_map_order0_folio(vmf,
3557 folio, addr, &mmap_miss);
3558 else
3559 ret |= filemap_map_folio_range(vmf, folio,
3560 xas.xa_index - folio->index, addr,
3561 nr_pages, &mmap_miss);
46bdb427 3562
820b05e9
MWO
3563 folio_unlock(folio);
3564 folio_put(folio);
c8be0380 3565 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
f9ce0be7
KS
3566 pte_unmap_unlock(vmf->pte, vmf->ptl);
3567out:
f1820361 3568 rcu_read_unlock();
c8be0380
YF
3569
3570 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3571 if (mmap_miss >= mmap_miss_saved)
3572 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3573 else
3574 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3575
f9ce0be7 3576 return ret;
f1820361
KS
3577}
3578EXPORT_SYMBOL(filemap_map_pages);
3579
2bcd6454 3580vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62 3581{
5df1a672 3582 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
960ea971 3583 struct folio *folio = page_folio(vmf->page);
2bcd6454 3584 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 3585
5df1a672 3586 sb_start_pagefault(mapping->host->i_sb);
11bac800 3587 file_update_time(vmf->vma->vm_file);
960ea971
MWO
3588 folio_lock(folio);
3589 if (folio->mapping != mapping) {
3590 folio_unlock(folio);
4fcf1c62
JK
3591 ret = VM_FAULT_NOPAGE;
3592 goto out;
3593 }
14da9200 3594 /*
960ea971 3595 * We mark the folio dirty already here so that when freeze is in
14da9200 3596 * progress, we are guaranteed that writeback during freezing will
960ea971 3597 * see the dirty folio and writeprotect it again.
14da9200 3598 */
960ea971
MWO
3599 folio_mark_dirty(folio);
3600 folio_wait_stable(folio);
4fcf1c62 3601out:
5df1a672 3602 sb_end_pagefault(mapping->host->i_sb);
4fcf1c62
JK
3603 return ret;
3604}
4fcf1c62 3605
f0f37e2f 3606const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 3607 .fault = filemap_fault,
f1820361 3608 .map_pages = filemap_map_pages,
4fcf1c62 3609 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
3610};
3611
3612/* This is used for a general mmap of a disk file */
3613
68d68ff6 3614int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3615{
3616 struct address_space *mapping = file->f_mapping;
3617
7e0a1265 3618 if (!mapping->a_ops->read_folio)
1da177e4
LT
3619 return -ENOEXEC;
3620 file_accessed(file);
3621 vma->vm_ops = &generic_file_vm_ops;
3622 return 0;
3623}
1da177e4
LT
3624
3625/*
3626 * This is for filesystems which do not implement ->writepage.
3627 */
3628int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3629{
e8e17ee9 3630 if (vma_is_shared_maywrite(vma))
1da177e4
LT
3631 return -EINVAL;
3632 return generic_file_mmap(file, vma);
3633}
3634#else
4b96a37d 3635vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 3636{
4b96a37d 3637 return VM_FAULT_SIGBUS;
45397228 3638}
68d68ff6 3639int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3640{
3641 return -ENOSYS;
3642}
68d68ff6 3643int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3644{
3645 return -ENOSYS;
3646}
3647#endif /* CONFIG_MMU */
3648
45397228 3649EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
3650EXPORT_SYMBOL(generic_file_mmap);
3651EXPORT_SYMBOL(generic_file_readonly_mmap);
3652
539a3322 3653static struct folio *do_read_cache_folio(struct address_space *mapping,
e9b5b23e 3654 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
67f9fd91 3655{
539a3322 3656 struct folio *folio;
1da177e4 3657 int err;
07950008
MWO
3658
3659 if (!filler)
3660 filler = mapping->a_ops->read_folio;
1da177e4 3661repeat:
539a3322 3662 folio = filemap_get_folio(mapping, index);
66dabbb6 3663 if (IS_ERR(folio)) {
539a3322
MWO
3664 folio = filemap_alloc_folio(gfp, 0);
3665 if (!folio)
eb2be189 3666 return ERR_PTR(-ENOMEM);
539a3322 3667 err = filemap_add_folio(mapping, folio, index, gfp);
eb2be189 3668 if (unlikely(err)) {
539a3322 3669 folio_put(folio);
eb2be189
NP
3670 if (err == -EEXIST)
3671 goto repeat;
22ecdb4f 3672 /* Presumably ENOMEM for xarray node */
1da177e4
LT
3673 return ERR_PTR(err);
3674 }
32b63529 3675
9bc3e869 3676 goto filler;
32b63529 3677 }
539a3322 3678 if (folio_test_uptodate(folio))
1da177e4
LT
3679 goto out;
3680
81f4c03b
MWO
3681 if (!folio_trylock(folio)) {
3682 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3683 goto repeat;
3684 }
ebded027 3685
81f4c03b 3686 /* Folio was truncated from mapping */
539a3322
MWO
3687 if (!folio->mapping) {
3688 folio_unlock(folio);
3689 folio_put(folio);
32b63529 3690 goto repeat;
1da177e4 3691 }
ebded027
MG
3692
3693 /* Someone else locked and filled the page in a very small window */
539a3322
MWO
3694 if (folio_test_uptodate(folio)) {
3695 folio_unlock(folio);
1da177e4
LT
3696 goto out;
3697 }
faffdfa0 3698
9bc3e869 3699filler:
290e1a32 3700 err = filemap_read_folio(file, filler, folio);
1dfa24a4 3701 if (err) {
9bc3e869 3702 folio_put(folio);
1dfa24a4
MWO
3703 if (err == AOP_TRUNCATED_PAGE)
3704 goto repeat;
9bc3e869
MWO
3705 return ERR_PTR(err);
3706 }
32b63529 3707
c855ff37 3708out:
539a3322
MWO
3709 folio_mark_accessed(folio);
3710 return folio;
6fe6900e 3711}
0531b2aa
LT
3712
3713/**
e9b5b23e
MWO
3714 * read_cache_folio - Read into page cache, fill it if needed.
3715 * @mapping: The address_space to read from.
3716 * @index: The index to read.
3717 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3718 * @file: Passed to filler function, may be NULL if not required.
0531b2aa 3719 *
e9b5b23e
MWO
3720 * Read one page into the page cache. If it succeeds, the folio returned
3721 * will contain @index, but it may not be the first page of the folio.
a862f68a 3722 *
e9b5b23e
MWO
3723 * If the filler function returns an error, it will be returned to the
3724 * caller.
730633f0 3725 *
e9b5b23e
MWO
3726 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3727 * Return: An uptodate folio on success, ERR_PTR() on failure.
0531b2aa 3728 */
539a3322 3729struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
e9b5b23e 3730 filler_t filler, struct file *file)
539a3322 3731{
e9b5b23e 3732 return do_read_cache_folio(mapping, index, filler, file,
539a3322
MWO
3733 mapping_gfp_mask(mapping));
3734}
3735EXPORT_SYMBOL(read_cache_folio);
3736
3e629597
MWO
3737/**
3738 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3739 * @mapping: The address_space for the folio.
3740 * @index: The index that the allocated folio will contain.
3741 * @gfp: The page allocator flags to use if allocating.
3742 *
3743 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3744 * any new memory allocations done using the specified allocation flags.
3745 *
3746 * The most likely error from this function is EIO, but ENOMEM is
3747 * possible and so is EINTR. If ->read_folio returns another error,
3748 * that will be returned to the caller.
3749 *
3750 * The function expects mapping->invalidate_lock to be already held.
3751 *
3752 * Return: Uptodate folio on success, ERR_PTR() on failure.
3753 */
3754struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3755 pgoff_t index, gfp_t gfp)
3756{
3757 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3758}
3759EXPORT_SYMBOL(mapping_read_folio_gfp);
3760
539a3322 3761static struct page *do_read_cache_page(struct address_space *mapping,
e9b5b23e 3762 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
539a3322
MWO
3763{
3764 struct folio *folio;
3765
e9b5b23e 3766 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
539a3322
MWO
3767 if (IS_ERR(folio))
3768 return &folio->page;
3769 return folio_file_page(folio, index);
3770}
3771
67f9fd91 3772struct page *read_cache_page(struct address_space *mapping,
e9b5b23e 3773 pgoff_t index, filler_t *filler, struct file *file)
0531b2aa 3774{
e9b5b23e 3775 return do_read_cache_page(mapping, index, filler, file,
d322a8e5 3776 mapping_gfp_mask(mapping));
0531b2aa 3777}
67f9fd91 3778EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
3779
3780/**
3781 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3782 * @mapping: the page's address_space
3783 * @index: the page index
3784 * @gfp: the page allocator flags to use if allocating
3785 *
3786 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 3787 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
3788 *
3789 * If the page does not get brought uptodate, return -EIO.
a862f68a 3790 *
730633f0
JK
3791 * The function expects mapping->invalidate_lock to be already held.
3792 *
a862f68a 3793 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
3794 */
3795struct page *read_cache_page_gfp(struct address_space *mapping,
3796 pgoff_t index,
3797 gfp_t gfp)
3798{
6c45b454 3799 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
3800}
3801EXPORT_SYMBOL(read_cache_page_gfp);
3802
a92853b6
KK
3803/*
3804 * Warn about a page cache invalidation failure during a direct I/O write.
3805 */
c402a9a9 3806static void dio_warn_stale_pagecache(struct file *filp)
a92853b6
KK
3807{
3808 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3809 char pathname[128];
a92853b6
KK
3810 char *path;
3811
5df1a672 3812 errseq_set(&filp->f_mapping->wb_err, -EIO);
a92853b6
KK
3813 if (__ratelimit(&_rs)) {
3814 path = file_path(filp, pathname, sizeof(pathname));
3815 if (IS_ERR(path))
3816 path = "(unknown)";
3817 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3818 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3819 current->comm);
3820 }
3821}
3822
c402a9a9 3823void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
1da177e4 3824{
c402a9a9 3825 struct address_space *mapping = iocb->ki_filp->f_mapping;
1da177e4 3826
c402a9a9
CH
3827 if (mapping->nrpages &&
3828 invalidate_inode_pages2_range(mapping,
3829 iocb->ki_pos >> PAGE_SHIFT,
3830 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3831 dio_warn_stale_pagecache(iocb->ki_filp);
3832}
a969e903 3833
1da177e4 3834ssize_t
1af5bb49 3835generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4 3836{
c402a9a9
CH
3837 struct address_space *mapping = iocb->ki_filp->f_mapping;
3838 size_t write_len = iov_iter_count(from);
3839 ssize_t written;
a969e903 3840
55635ba7
AR
3841 /*
3842 * If a page can not be invalidated, return 0 to fall back
3843 * to buffered write.
3844 */
e003f74a 3845 written = kiocb_invalidate_pages(iocb, write_len);
55635ba7
AR
3846 if (written) {
3847 if (written == -EBUSY)
3848 return 0;
c402a9a9 3849 return written;
a969e903
CH
3850 }
3851
639a93a5 3852 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3853
3854 /*
3855 * Finally, try again to invalidate clean pages which might have been
3856 * cached by non-direct readahead, or faulted in by get_user_pages()
3857 * if the source of the write was an mmap'ed region of the file
3858 * we're writing. Either one is a pretty crazy thing to do,
3859 * so we don't support it 100%. If this invalidation
3860 * fails, tough, the write still worked...
332391a9
LC
3861 *
3862 * Most of the time we do not need this since dio_complete() will do
3863 * the invalidation for us. However there are some file systems that
3864 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3865 * them by removing it completely.
3866 *
9266a140
KK
3867 * Noticeable example is a blkdev_direct_IO().
3868 *
80c1fe90 3869 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3870 */
1da177e4 3871 if (written > 0) {
c402a9a9
CH
3872 struct inode *inode = mapping->host;
3873 loff_t pos = iocb->ki_pos;
3874
3875 kiocb_invalidate_post_direct_write(iocb, written);
0116651c 3876 pos += written;
639a93a5 3877 write_len -= written;
0116651c
NK
3878 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3879 i_size_write(inode, pos);
1da177e4
LT
3880 mark_inode_dirty(inode);
3881 }
5cb6c6c7 3882 iocb->ki_pos = pos;
1da177e4 3883 }
ab2125df
PB
3884 if (written != -EIOCBQUEUED)
3885 iov_iter_revert(from, write_len - iov_iter_count(from));
1da177e4
LT
3886 return written;
3887}
3888EXPORT_SYMBOL(generic_file_direct_write);
3889
800ba295 3890ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
afddba49 3891{
800ba295
MWO
3892 struct file *file = iocb->ki_filp;
3893 loff_t pos = iocb->ki_pos;
afddba49
NP
3894 struct address_space *mapping = file->f_mapping;
3895 const struct address_space_operations *a_ops = mapping->a_ops;
3896 long status = 0;
3897 ssize_t written = 0;
674b892e 3898
afddba49
NP
3899 do {
3900 struct page *page;
afddba49
NP
3901 unsigned long offset; /* Offset into pagecache page */
3902 unsigned long bytes; /* Bytes to write to page */
3903 size_t copied; /* Bytes copied from user */
1468c6f4 3904 void *fsdata = NULL;
afddba49 3905
09cbfeaf
KS
3906 offset = (pos & (PAGE_SIZE - 1));
3907 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3908 iov_iter_count(i));
3909
3910again:
00a3d660
LT
3911 /*
3912 * Bring in the user page that we will copy from _first_.
3913 * Otherwise there's a nasty deadlock on copying from the
3914 * same page as we're writing to, without it being marked
3915 * up-to-date.
00a3d660 3916 */
631f871f 3917 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
00a3d660
LT
3918 status = -EFAULT;
3919 break;
3920 }
3921
296291cd
JK
3922 if (fatal_signal_pending(current)) {
3923 status = -EINTR;
3924 break;
3925 }
3926
9d6b0cd7 3927 status = a_ops->write_begin(file, mapping, pos, bytes,
afddba49 3928 &page, &fsdata);
2457aec6 3929 if (unlikely(status < 0))
afddba49
NP
3930 break;
3931
931e80e4 3932 if (mapping_writably_mapped(mapping))
3933 flush_dcache_page(page);
00a3d660 3934
f0b65f39 3935 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
afddba49
NP
3936 flush_dcache_page(page);
3937
3938 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3939 page, fsdata);
f0b65f39
AV
3940 if (unlikely(status != copied)) {
3941 iov_iter_revert(i, copied - max(status, 0L));
3942 if (unlikely(status < 0))
3943 break;
3944 }
afddba49
NP
3945 cond_resched();
3946
bc1bb416 3947 if (unlikely(status == 0)) {
afddba49 3948 /*
bc1bb416
AV
3949 * A short copy made ->write_end() reject the
3950 * thing entirely. Might be memory poisoning
3951 * halfway through, might be a race with munmap,
3952 * might be severe memory pressure.
afddba49 3953 */
bc1bb416
AV
3954 if (copied)
3955 bytes = copied;
afddba49
NP
3956 goto again;
3957 }
f0b65f39
AV
3958 pos += status;
3959 written += status;
afddba49
NP
3960
3961 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3962 } while (iov_iter_count(i));
3963
182c25e9
CH
3964 if (!written)
3965 return status;
3966 iocb->ki_pos += written;
3967 return written;
afddba49 3968}
3b93f911 3969EXPORT_SYMBOL(generic_perform_write);
1da177e4 3970
e4dd9de3 3971/**
8174202b 3972 * __generic_file_write_iter - write data to a file
e4dd9de3 3973 * @iocb: IO state structure (file, offset, etc.)
8174202b 3974 * @from: iov_iter with data to write
e4dd9de3
JK
3975 *
3976 * This function does all the work needed for actually writing data to a
3977 * file. It does all basic checks, removes SUID from the file, updates
3978 * modification times and calls proper subroutines depending on whether we
3979 * do direct IO or a standard buffered write.
3980 *
9608703e 3981 * It expects i_rwsem to be grabbed unless we work on a block device or similar
e4dd9de3
JK
3982 * object which does not need locking at all.
3983 *
3984 * This function does *not* take care of syncing data in case of O_SYNC write.
3985 * A caller has to handle it. This is mainly due to the fact that we want to
9608703e 3986 * avoid syncing under i_rwsem.
a862f68a
MR
3987 *
3988 * Return:
3989 * * number of bytes written, even for truncated writes
3990 * * negative error code if no data has been written at all
e4dd9de3 3991 */
8174202b 3992ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3993{
3994 struct file *file = iocb->ki_filp;
68d68ff6 3995 struct address_space *mapping = file->f_mapping;
44fff0fa
CH
3996 struct inode *inode = mapping->host;
3997 ssize_t ret;
1da177e4 3998
44fff0fa
CH
3999 ret = file_remove_privs(file);
4000 if (ret)
4001 return ret;
1da177e4 4002
44fff0fa
CH
4003 ret = file_update_time(file);
4004 if (ret)
4005 return ret;
fb5527e6 4006
2ba48ce5 4007 if (iocb->ki_flags & IOCB_DIRECT) {
44fff0fa 4008 ret = generic_file_direct_write(iocb, from);
1da177e4 4009 /*
fbbbad4b
MW
4010 * If the write stopped short of completing, fall back to
4011 * buffered writes. Some filesystems do this for writes to
4012 * holes, for example. For DAX files, a buffered write will
4013 * not succeed (even if it did, DAX does not handle dirty
4014 * page-cache pages correctly).
1da177e4 4015 */
44fff0fa
CH
4016 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4017 return ret;
4018 return direct_write_fallback(iocb, from, ret,
4019 generic_perform_write(iocb, from));
fb5527e6 4020 }
44fff0fa
CH
4021
4022 return generic_perform_write(iocb, from);
1da177e4 4023}
8174202b 4024EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 4025
e4dd9de3 4026/**
8174202b 4027 * generic_file_write_iter - write data to a file
e4dd9de3 4028 * @iocb: IO state structure
8174202b 4029 * @from: iov_iter with data to write
e4dd9de3 4030 *
8174202b 4031 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3 4032 * filesystems. It takes care of syncing the file in case of O_SYNC file
9608703e 4033 * and acquires i_rwsem as needed.
a862f68a
MR
4034 * Return:
4035 * * negative error code if no data has been written at all of
4036 * vfs_fsync_range() failed for a synchronous write
4037 * * number of bytes written, even for truncated writes
e4dd9de3 4038 */
8174202b 4039ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
4040{
4041 struct file *file = iocb->ki_filp;
148f948b 4042 struct inode *inode = file->f_mapping->host;
1da177e4 4043 ssize_t ret;
1da177e4 4044
5955102c 4045 inode_lock(inode);
3309dd04
AV
4046 ret = generic_write_checks(iocb, from);
4047 if (ret > 0)
5f380c7f 4048 ret = __generic_file_write_iter(iocb, from);
5955102c 4049 inode_unlock(inode);
1da177e4 4050
e2592217
CH
4051 if (ret > 0)
4052 ret = generic_write_sync(iocb, ret);
1da177e4
LT
4053 return ret;
4054}
8174202b 4055EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 4056
cf9a2ae8 4057/**
82c50f8b
MWO
4058 * filemap_release_folio() - Release fs-specific metadata on a folio.
4059 * @folio: The folio which the kernel is trying to free.
4060 * @gfp: Memory allocation flags (and I/O mode).
cf9a2ae8 4061 *
82c50f8b
MWO
4062 * The address_space is trying to release any data attached to a folio
4063 * (presumably at folio->private).
cf9a2ae8 4064 *
82c50f8b
MWO
4065 * This will also be called if the private_2 flag is set on a page,
4066 * indicating that the folio has other metadata associated with it.
266cf658 4067 *
82c50f8b
MWO
4068 * The @gfp argument specifies whether I/O may be performed to release
4069 * this page (__GFP_IO), and whether the call may block
4070 * (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 4071 *
82c50f8b 4072 * Return: %true if the release was successful, otherwise %false.
cf9a2ae8 4073 */
82c50f8b 4074bool filemap_release_folio(struct folio *folio, gfp_t gfp)
cf9a2ae8 4075{
82c50f8b 4076 struct address_space * const mapping = folio->mapping;
cf9a2ae8 4077
82c50f8b 4078 BUG_ON(!folio_test_locked(folio));
0201ebf2
DH
4079 if (!folio_needs_release(folio))
4080 return true;
82c50f8b
MWO
4081 if (folio_test_writeback(folio))
4082 return false;
cf9a2ae8 4083
fa29000b
MWO
4084 if (mapping && mapping->a_ops->release_folio)
4085 return mapping->a_ops->release_folio(folio, gfp);
68189fef 4086 return try_to_free_buffers(folio);
cf9a2ae8 4087}
82c50f8b 4088EXPORT_SYMBOL(filemap_release_folio);
cf264e13
NP
4089
4090#ifdef CONFIG_CACHESTAT_SYSCALL
4091/**
4092 * filemap_cachestat() - compute the page cache statistics of a mapping
4093 * @mapping: The mapping to compute the statistics for.
4094 * @first_index: The starting page cache index.
4095 * @last_index: The final page index (inclusive).
4096 * @cs: the cachestat struct to write the result to.
4097 *
4098 * This will query the page cache statistics of a mapping in the
4099 * page range of [first_index, last_index] (inclusive). The statistics
4100 * queried include: number of dirty pages, number of pages marked for
4101 * writeback, and the number of (recently) evicted pages.
4102 */
4103static void filemap_cachestat(struct address_space *mapping,
4104 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4105{
4106 XA_STATE(xas, &mapping->i_pages, first_index);
4107 struct folio *folio;
4108
4109 rcu_read_lock();
4110 xas_for_each(&xas, folio, last_index) {
4111 unsigned long nr_pages;
4112 pgoff_t folio_first_index, folio_last_index;
4113
4114 if (xas_retry(&xas, folio))
4115 continue;
4116
4117 if (xa_is_value(folio)) {
4118 /* page is evicted */
4119 void *shadow = (void *)folio;
4120 bool workingset; /* not used */
4121 int order = xa_get_order(xas.xa, xas.xa_index);
4122
4123 nr_pages = 1 << order;
4124 folio_first_index = round_down(xas.xa_index, 1 << order);
4125 folio_last_index = folio_first_index + nr_pages - 1;
4126
4127 /* Folios might straddle the range boundaries, only count covered pages */
4128 if (folio_first_index < first_index)
4129 nr_pages -= first_index - folio_first_index;
4130
4131 if (folio_last_index > last_index)
4132 nr_pages -= folio_last_index - last_index;
4133
4134 cs->nr_evicted += nr_pages;
4135
4136#ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4137 if (shmem_mapping(mapping)) {
4138 /* shmem file - in swap cache */
4139 swp_entry_t swp = radix_to_swp_entry(folio);
4140
4141 shadow = get_shadow_from_swap_cache(swp);
4142 }
4143#endif
4144 if (workingset_test_recent(shadow, true, &workingset))
4145 cs->nr_recently_evicted += nr_pages;
4146
4147 goto resched;
4148 }
4149
4150 nr_pages = folio_nr_pages(folio);
4151 folio_first_index = folio_pgoff(folio);
4152 folio_last_index = folio_first_index + nr_pages - 1;
4153
4154 /* Folios might straddle the range boundaries, only count covered pages */
4155 if (folio_first_index < first_index)
4156 nr_pages -= first_index - folio_first_index;
4157
4158 if (folio_last_index > last_index)
4159 nr_pages -= folio_last_index - last_index;
4160
4161 /* page is in cache */
4162 cs->nr_cache += nr_pages;
4163
4164 if (folio_test_dirty(folio))
4165 cs->nr_dirty += nr_pages;
4166
4167 if (folio_test_writeback(folio))
4168 cs->nr_writeback += nr_pages;
4169
4170resched:
4171 if (need_resched()) {
4172 xas_pause(&xas);
4173 cond_resched_rcu();
4174 }
4175 }
4176 rcu_read_unlock();
4177}
4178
4179/*
4180 * The cachestat(2) system call.
4181 *
4182 * cachestat() returns the page cache statistics of a file in the
4183 * bytes range specified by `off` and `len`: number of cached pages,
4184 * number of dirty pages, number of pages marked for writeback,
4185 * number of evicted pages, and number of recently evicted pages.
4186 *
4187 * An evicted page is a page that is previously in the page cache
4188 * but has been evicted since. A page is recently evicted if its last
4189 * eviction was recent enough that its reentry to the cache would
4190 * indicate that it is actively being used by the system, and that
4191 * there is memory pressure on the system.
4192 *
4193 * `off` and `len` must be non-negative integers. If `len` > 0,
4194 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4195 * we will query in the range from `off` to the end of the file.
4196 *
4197 * The `flags` argument is unused for now, but is included for future
4198 * extensibility. User should pass 0 (i.e no flag specified).
4199 *
4200 * Currently, hugetlbfs is not supported.
4201 *
4202 * Because the status of a page can change after cachestat() checks it
4203 * but before it returns to the application, the returned values may
4204 * contain stale information.
4205 *
4206 * return values:
4207 * zero - success
4208 * -EFAULT - cstat or cstat_range points to an illegal address
4209 * -EINVAL - invalid flags
4210 * -EBADF - invalid file descriptor
4211 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4212 */
4213SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4214 struct cachestat_range __user *, cstat_range,
4215 struct cachestat __user *, cstat, unsigned int, flags)
4216{
4217 struct fd f = fdget(fd);
4218 struct address_space *mapping;
4219 struct cachestat_range csr;
4220 struct cachestat cs;
4221 pgoff_t first_index, last_index;
4222
4223 if (!f.file)
4224 return -EBADF;
4225
4226 if (copy_from_user(&csr, cstat_range,
4227 sizeof(struct cachestat_range))) {
4228 fdput(f);
4229 return -EFAULT;
4230 }
4231
4232 /* hugetlbfs is not supported */
4233 if (is_file_hugepages(f.file)) {
4234 fdput(f);
4235 return -EOPNOTSUPP;
4236 }
4237
4238 if (flags != 0) {
4239 fdput(f);
4240 return -EINVAL;
4241 }
4242
4243 first_index = csr.off >> PAGE_SHIFT;
4244 last_index =
4245 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4246 memset(&cs, 0, sizeof(struct cachestat));
4247 mapping = f.file->f_mapping;
4248 filemap_cachestat(mapping, first_index, last_index, &cs);
4249 fdput(f);
4250
4251 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4252 return -EFAULT;
4253
4254 return 0;
4255}
4256#endif /* CONFIG_CACHESTAT_SYSCALL */
This page took 2.385802 seconds and 4 git commands to generate.