]> Git Repo - linux.git/blame - mm/filemap.c
mm: remove FGP_ENTRY
[linux.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
ffa65753 24#include <linux/swapops.h>
1da177e4
LT
25#include <linux/mman.h>
26#include <linux/pagemap.h>
27#include <linux/file.h>
28#include <linux/uio.h>
cfcbfb13 29#include <linux/error-injection.h>
1da177e4
LT
30#include <linux/hash.h>
31#include <linux/writeback.h>
53253383 32#include <linux/backing-dev.h>
1da177e4 33#include <linux/pagevec.h>
1da177e4 34#include <linux/security.h>
44110fe3 35#include <linux/cpuset.h>
00501b53 36#include <linux/hugetlb.h>
8a9f3ccd 37#include <linux/memcontrol.h>
c7df8ad2 38#include <linux/shmem_fs.h>
f1820361 39#include <linux/rmap.h>
b1d29ba8 40#include <linux/delayacct.h>
eb414681 41#include <linux/psi.h>
d0e6a582 42#include <linux/ramfs.h>
b9306a79 43#include <linux/page_idle.h>
ffa65753 44#include <linux/migrate.h>
07073eb0
DH
45#include <linux/pipe_fs_i.h>
46#include <linux/splice.h>
f9ce0be7 47#include <asm/pgalloc.h>
de591a82 48#include <asm/tlbflush.h>
0f8053a5
NP
49#include "internal.h"
50
fe0bfaaf
RJ
51#define CREATE_TRACE_POINTS
52#include <trace/events/filemap.h>
53
1da177e4 54/*
1da177e4
LT
55 * FIXME: remove all knowledge of the buffer layer from the core VM
56 */
148f948b 57#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 58
1da177e4
LT
59#include <asm/mman.h>
60
61/*
62 * Shared mappings implemented 30.11.1994. It's not fully working yet,
63 * though.
64 *
65 * Shared mappings now work. 15.8.1995 Bruno.
66 *
67 * finished 'unifying' the page and buffer cache and SMP-threaded the
68 * page-cache, 21.05.1999, Ingo Molnar <[email protected]>
69 *
70 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <[email protected]>
71 */
72
73/*
74 * Lock ordering:
75 *
c8c06efa 76 * ->i_mmap_rwsem (truncate_pagecache)
e621900a 77 * ->private_lock (__free_pte->block_dirty_folio)
5d337b91 78 * ->swap_lock (exclusive_swap_page, others)
b93b0163 79 * ->i_pages lock
1da177e4 80 *
9608703e 81 * ->i_rwsem
730633f0
JK
82 * ->invalidate_lock (acquired by fs in truncate path)
83 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 84 *
c1e8d7c6 85 * ->mmap_lock
c8c06efa 86 * ->i_mmap_rwsem
b8072f09 87 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 88 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 89 *
c1e8d7c6 90 * ->mmap_lock
730633f0
JK
91 * ->invalidate_lock (filemap_fault)
92 * ->lock_page (filemap_fault, access_process_vm)
1da177e4 93 *
9608703e 94 * ->i_rwsem (generic_perform_write)
bb523b40 95 * ->mmap_lock (fault_in_readable->do_page_fault)
1da177e4 96 *
f758eeab 97 * bdi->wb.list_lock
a66979ab 98 * sb_lock (fs/fs-writeback.c)
b93b0163 99 * ->i_pages lock (__sync_single_inode)
1da177e4 100 *
c8c06efa 101 * ->i_mmap_rwsem
0503ea8f 102 * ->anon_vma.lock (vma_merge)
1da177e4
LT
103 *
104 * ->anon_vma.lock
b8072f09 105 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 106 *
b8072f09 107 * ->page_table_lock or pte_lock
5d337b91 108 * ->swap_lock (try_to_unmap_one)
1da177e4 109 * ->private_lock (try_to_unmap_one)
b93b0163 110 * ->i_pages lock (try_to_unmap_one)
15b44736
HD
111 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
112 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 113 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 114 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 115 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 116 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 117 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 118 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 119 * ->inode->i_lock (zap_pte_range->set_page_dirty)
e621900a 120 * ->private_lock (zap_pte_range->block_dirty_folio)
1da177e4 121 *
c8c06efa 122 * ->i_mmap_rwsem
9a3c531d 123 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
124 */
125
5c024e6a 126static void page_cache_delete(struct address_space *mapping,
a548b615 127 struct folio *folio, void *shadow)
91b0abe3 128{
a548b615
MWO
129 XA_STATE(xas, &mapping->i_pages, folio->index);
130 long nr = 1;
c70b647d 131
5c024e6a 132 mapping_set_update(&xas, mapping);
c70b647d 133
5c024e6a 134 /* hugetlb pages are represented by a single entry in the xarray */
a548b615
MWO
135 if (!folio_test_hugetlb(folio)) {
136 xas_set_order(&xas, folio->index, folio_order(folio));
137 nr = folio_nr_pages(folio);
5c024e6a 138 }
91b0abe3 139
a548b615 140 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
449dd698 141
5c024e6a
MW
142 xas_store(&xas, shadow);
143 xas_init_marks(&xas);
d3798ae8 144
a548b615 145 folio->mapping = NULL;
2300638b 146 /* Leave page->index set: truncation lookup relies upon it */
d3798ae8 147 mapping->nrpages -= nr;
91b0abe3
JW
148}
149
621db488
MWO
150static void filemap_unaccount_folio(struct address_space *mapping,
151 struct folio *folio)
1da177e4 152{
621db488 153 long nr;
1da177e4 154
621db488
MWO
155 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
156 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
06b241f3 157 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
621db488
MWO
158 current->comm, folio_pfn(folio));
159 dump_page(&folio->page, "still mapped when deleted");
06b241f3
HD
160 dump_stack();
161 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
162
85207ad8
HD
163 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
164 int mapcount = page_mapcount(&folio->page);
165
166 if (folio_ref_count(folio) >= mapcount + 2) {
167 /*
168 * All vmas have already been torn down, so it's
169 * a good bet that actually the page is unmapped
170 * and we'd rather not leak it: if we're wrong,
171 * another bad page check should catch it later.
172 */
173 page_mapcount_reset(&folio->page);
174 folio_ref_sub(folio, mapcount);
175 }
06b241f3
HD
176 }
177 }
178
621db488
MWO
179 /* hugetlb folios do not participate in page cache accounting. */
180 if (folio_test_hugetlb(folio))
5ecc4d85 181 return;
09612fa6 182
621db488 183 nr = folio_nr_pages(folio);
5ecc4d85 184
621db488
MWO
185 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
186 if (folio_test_swapbacked(folio)) {
187 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
188 if (folio_test_pmd_mappable(folio))
189 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
190 } else if (folio_test_pmd_mappable(folio)) {
191 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
09d91cda 192 filemap_nr_thps_dec(mapping);
800d8c63 193 }
5ecc4d85
JK
194
195 /*
621db488
MWO
196 * At this point folio must be either written or cleaned by
197 * truncate. Dirty folio here signals a bug and loss of
566d3362 198 * unwritten data - on ordinary filesystems.
5ecc4d85 199 *
566d3362
HD
200 * But it's harmless on in-memory filesystems like tmpfs; and can
201 * occur when a driver which did get_user_pages() sets page dirty
202 * before putting it, while the inode is being finally evicted.
203 *
204 * Below fixes dirty accounting after removing the folio entirely
621db488
MWO
205 * but leaves the dirty flag set: it has no effect for truncated
206 * folio and anyway will be cleared before returning folio to
5ecc4d85
JK
207 * buddy allocator.
208 */
566d3362
HD
209 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
210 mapping_can_writeback(mapping)))
211 folio_account_cleaned(folio, inode_to_wb(mapping->host));
5ecc4d85
JK
212}
213
214/*
215 * Delete a page from the page cache and free it. Caller has to make
216 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 217 * is safe. The caller must hold the i_pages lock.
5ecc4d85 218 */
452e9e69 219void __filemap_remove_folio(struct folio *folio, void *shadow)
5ecc4d85 220{
452e9e69 221 struct address_space *mapping = folio->mapping;
5ecc4d85 222
a0580c6f 223 trace_mm_filemap_delete_from_page_cache(folio);
621db488 224 filemap_unaccount_folio(mapping, folio);
a548b615 225 page_cache_delete(mapping, folio, shadow);
1da177e4
LT
226}
227
78f42660 228void filemap_free_folio(struct address_space *mapping, struct folio *folio)
59c66c5f 229{
d2329aa0 230 void (*free_folio)(struct folio *);
3abb28e2 231 int refs = 1;
59c66c5f 232
d2329aa0
MWO
233 free_folio = mapping->a_ops->free_folio;
234 if (free_folio)
235 free_folio(folio);
59c66c5f 236
3abb28e2
MWO
237 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
238 refs = folio_nr_pages(folio);
239 folio_put_refs(folio, refs);
59c66c5f
JK
240}
241
702cfbf9 242/**
452e9e69
MWO
243 * filemap_remove_folio - Remove folio from page cache.
244 * @folio: The folio.
702cfbf9 245 *
452e9e69
MWO
246 * This must be called only on folios that are locked and have been
247 * verified to be in the page cache. It will never put the folio into
248 * the free list because the caller has a reference on the page.
702cfbf9 249 */
452e9e69 250void filemap_remove_folio(struct folio *folio)
1da177e4 251{
452e9e69 252 struct address_space *mapping = folio->mapping;
1da177e4 253
452e9e69 254 BUG_ON(!folio_test_locked(folio));
51b8c1fe 255 spin_lock(&mapping->host->i_lock);
30472509 256 xa_lock_irq(&mapping->i_pages);
452e9e69 257 __filemap_remove_folio(folio, NULL);
30472509 258 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
259 if (mapping_shrinkable(mapping))
260 inode_add_lru(mapping->host);
261 spin_unlock(&mapping->host->i_lock);
6072d13c 262
452e9e69 263 filemap_free_folio(mapping, folio);
97cecb5a 264}
97cecb5a 265
aa65c29c 266/*
51dcbdac
MWO
267 * page_cache_delete_batch - delete several folios from page cache
268 * @mapping: the mapping to which folios belong
269 * @fbatch: batch of folios to delete
aa65c29c 270 *
51dcbdac
MWO
271 * The function walks over mapping->i_pages and removes folios passed in
272 * @fbatch from the mapping. The function expects @fbatch to be sorted
273 * by page index and is optimised for it to be dense.
274 * It tolerates holes in @fbatch (mapping entries at those indices are not
275 * modified).
aa65c29c 276 *
b93b0163 277 * The function expects the i_pages lock to be held.
aa65c29c 278 */
ef8e5717 279static void page_cache_delete_batch(struct address_space *mapping,
51dcbdac 280 struct folio_batch *fbatch)
aa65c29c 281{
51dcbdac 282 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
6b24ca4a 283 long total_pages = 0;
4101196b 284 int i = 0;
1afd7ae5 285 struct folio *folio;
aa65c29c 286
ef8e5717 287 mapping_set_update(&xas, mapping);
1afd7ae5 288 xas_for_each(&xas, folio, ULONG_MAX) {
51dcbdac 289 if (i >= folio_batch_count(fbatch))
aa65c29c 290 break;
4101196b
MWO
291
292 /* A swap/dax/shadow entry got inserted? Skip it. */
1afd7ae5 293 if (xa_is_value(folio))
aa65c29c 294 continue;
4101196b
MWO
295 /*
296 * A page got inserted in our range? Skip it. We have our
297 * pages locked so they are protected from being removed.
298 * If we see a page whose index is higher than ours, it
299 * means our page has been removed, which shouldn't be
300 * possible because we're holding the PageLock.
301 */
51dcbdac 302 if (folio != fbatch->folios[i]) {
1afd7ae5 303 VM_BUG_ON_FOLIO(folio->index >
51dcbdac 304 fbatch->folios[i]->index, folio);
4101196b
MWO
305 continue;
306 }
307
1afd7ae5 308 WARN_ON_ONCE(!folio_test_locked(folio));
4101196b 309
6b24ca4a 310 folio->mapping = NULL;
51dcbdac 311 /* Leave folio->index set: truncation lookup relies on it */
4101196b 312
6b24ca4a 313 i++;
ef8e5717 314 xas_store(&xas, NULL);
6b24ca4a 315 total_pages += folio_nr_pages(folio);
aa65c29c
JK
316 }
317 mapping->nrpages -= total_pages;
318}
319
320void delete_from_page_cache_batch(struct address_space *mapping,
51dcbdac 321 struct folio_batch *fbatch)
aa65c29c
JK
322{
323 int i;
aa65c29c 324
51dcbdac 325 if (!folio_batch_count(fbatch))
aa65c29c
JK
326 return;
327
51b8c1fe 328 spin_lock(&mapping->host->i_lock);
30472509 329 xa_lock_irq(&mapping->i_pages);
51dcbdac
MWO
330 for (i = 0; i < folio_batch_count(fbatch); i++) {
331 struct folio *folio = fbatch->folios[i];
aa65c29c 332
a0580c6f
MWO
333 trace_mm_filemap_delete_from_page_cache(folio);
334 filemap_unaccount_folio(mapping, folio);
aa65c29c 335 }
51dcbdac 336 page_cache_delete_batch(mapping, fbatch);
30472509 337 xa_unlock_irq(&mapping->i_pages);
51b8c1fe
JW
338 if (mapping_shrinkable(mapping))
339 inode_add_lru(mapping->host);
340 spin_unlock(&mapping->host->i_lock);
aa65c29c 341
51dcbdac
MWO
342 for (i = 0; i < folio_batch_count(fbatch); i++)
343 filemap_free_folio(mapping, fbatch->folios[i]);
aa65c29c
JK
344}
345
d72d9e2a 346int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
347{
348 int ret = 0;
349 /* Check for outstanding write errors */
7fcbbaf1
JA
350 if (test_bit(AS_ENOSPC, &mapping->flags) &&
351 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 352 ret = -ENOSPC;
7fcbbaf1
JA
353 if (test_bit(AS_EIO, &mapping->flags) &&
354 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
355 ret = -EIO;
356 return ret;
357}
d72d9e2a 358EXPORT_SYMBOL(filemap_check_errors);
865ffef3 359
76341cab
JL
360static int filemap_check_and_keep_errors(struct address_space *mapping)
361{
362 /* Check for outstanding write errors */
363 if (test_bit(AS_EIO, &mapping->flags))
364 return -EIO;
365 if (test_bit(AS_ENOSPC, &mapping->flags))
366 return -ENOSPC;
367 return 0;
368}
369
5a798493
JB
370/**
371 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
372 * @mapping: address space structure to write
373 * @wbc: the writeback_control controlling the writeout
374 *
375 * Call writepages on the mapping using the provided wbc to control the
376 * writeout.
377 *
378 * Return: %0 on success, negative error code otherwise.
379 */
380int filemap_fdatawrite_wbc(struct address_space *mapping,
381 struct writeback_control *wbc)
382{
383 int ret;
384
385 if (!mapping_can_writeback(mapping) ||
386 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
387 return 0;
388
389 wbc_attach_fdatawrite_inode(wbc, mapping->host);
390 ret = do_writepages(mapping, wbc);
391 wbc_detach_inode(wbc);
392 return ret;
393}
394EXPORT_SYMBOL(filemap_fdatawrite_wbc);
395
1da177e4 396/**
485bb99b 397 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
398 * @mapping: address space structure to write
399 * @start: offset in bytes where the range starts
469eb4d0 400 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 401 * @sync_mode: enable synchronous operation
1da177e4 402 *
485bb99b
RD
403 * Start writeback against all of a mapping's dirty pages that lie
404 * within the byte offsets <start, end> inclusive.
405 *
1da177e4 406 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 407 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
408 * these two operations is that if a dirty page/buffer is encountered, it must
409 * be waited upon, and not just skipped over.
a862f68a
MR
410 *
411 * Return: %0 on success, negative error code otherwise.
1da177e4 412 */
ebcf28e1
AM
413int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
414 loff_t end, int sync_mode)
1da177e4 415{
1da177e4
LT
416 struct writeback_control wbc = {
417 .sync_mode = sync_mode,
05fe478d 418 .nr_to_write = LONG_MAX,
111ebb6e
OH
419 .range_start = start,
420 .range_end = end,
1da177e4
LT
421 };
422
5a798493 423 return filemap_fdatawrite_wbc(mapping, &wbc);
1da177e4
LT
424}
425
426static inline int __filemap_fdatawrite(struct address_space *mapping,
427 int sync_mode)
428{
111ebb6e 429 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
430}
431
432int filemap_fdatawrite(struct address_space *mapping)
433{
434 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435}
436EXPORT_SYMBOL(filemap_fdatawrite);
437
f4c0a0fd 438int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 439 loff_t end)
1da177e4
LT
440{
441 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442}
f4c0a0fd 443EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 444
485bb99b
RD
445/**
446 * filemap_flush - mostly a non-blocking flush
447 * @mapping: target address_space
448 *
1da177e4
LT
449 * This is a mostly non-blocking flush. Not suitable for data-integrity
450 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
451 *
452 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
453 */
454int filemap_flush(struct address_space *mapping)
455{
456 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457}
458EXPORT_SYMBOL(filemap_flush);
459
7fc9e472
GR
460/**
461 * filemap_range_has_page - check if a page exists in range.
462 * @mapping: address space within which to check
463 * @start_byte: offset in bytes where the range starts
464 * @end_byte: offset in bytes where the range ends (inclusive)
465 *
466 * Find at least one page in the range supplied, usually used to check if
467 * direct writing in this range will trigger a writeback.
a862f68a
MR
468 *
469 * Return: %true if at least one page exists in the specified range,
470 * %false otherwise.
7fc9e472
GR
471 */
472bool filemap_range_has_page(struct address_space *mapping,
473 loff_t start_byte, loff_t end_byte)
474{
eff3b364 475 struct folio *folio;
8fa8e538
MW
476 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
478
479 if (end_byte < start_byte)
480 return false;
481
8fa8e538
MW
482 rcu_read_lock();
483 for (;;) {
eff3b364
MWO
484 folio = xas_find(&xas, max);
485 if (xas_retry(&xas, folio))
8fa8e538
MW
486 continue;
487 /* Shadow entries don't count */
eff3b364 488 if (xa_is_value(folio))
8fa8e538
MW
489 continue;
490 /*
491 * We don't need to try to pin this page; we're about to
492 * release the RCU lock anyway. It is enough to know that
493 * there was a page here recently.
494 */
495 break;
496 }
497 rcu_read_unlock();
7fc9e472 498
eff3b364 499 return folio != NULL;
7fc9e472
GR
500}
501EXPORT_SYMBOL(filemap_range_has_page);
502
5e8fcc1a 503static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 504 loff_t start_byte, loff_t end_byte)
1da177e4 505{
09cbfeaf
KS
506 pgoff_t index = start_byte >> PAGE_SHIFT;
507 pgoff_t end = end_byte >> PAGE_SHIFT;
6817ef51
VMO
508 struct folio_batch fbatch;
509 unsigned nr_folios;
510
511 folio_batch_init(&fbatch);
1da177e4 512
312e9d2f 513 while (index <= end) {
1da177e4
LT
514 unsigned i;
515
6817ef51
VMO
516 nr_folios = filemap_get_folios_tag(mapping, &index, end,
517 PAGECACHE_TAG_WRITEBACK, &fbatch);
518
519 if (!nr_folios)
312e9d2f
JK
520 break;
521
6817ef51
VMO
522 for (i = 0; i < nr_folios; i++) {
523 struct folio *folio = fbatch.folios[i];
1da177e4 524
6817ef51
VMO
525 folio_wait_writeback(folio);
526 folio_clear_error(folio);
1da177e4 527 }
6817ef51 528 folio_batch_release(&fbatch);
1da177e4
LT
529 cond_resched();
530 }
aa750fd7
JN
531}
532
533/**
534 * filemap_fdatawait_range - wait for writeback to complete
535 * @mapping: address space structure to wait for
536 * @start_byte: offset in bytes where the range starts
537 * @end_byte: offset in bytes where the range ends (inclusive)
538 *
539 * Walk the list of under-writeback pages of the given address space
540 * in the given range and wait for all of them. Check error status of
541 * the address space and return it.
542 *
543 * Since the error status of the address space is cleared by this function,
544 * callers are responsible for checking the return value and handling and/or
545 * reporting the error.
a862f68a
MR
546 *
547 * Return: error status of the address space.
aa750fd7
JN
548 */
549int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
550 loff_t end_byte)
551{
5e8fcc1a
JL
552 __filemap_fdatawait_range(mapping, start_byte, end_byte);
553 return filemap_check_errors(mapping);
1da177e4 554}
d3bccb6f
JK
555EXPORT_SYMBOL(filemap_fdatawait_range);
556
aa0bfcd9
RZ
557/**
558 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
559 * @mapping: address space structure to wait for
560 * @start_byte: offset in bytes where the range starts
561 * @end_byte: offset in bytes where the range ends (inclusive)
562 *
563 * Walk the list of under-writeback pages of the given address space in the
564 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
565 * this function does not clear error status of the address space.
566 *
567 * Use this function if callers don't handle errors themselves. Expected
568 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
569 * fsfreeze(8)
570 */
571int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
572 loff_t start_byte, loff_t end_byte)
573{
574 __filemap_fdatawait_range(mapping, start_byte, end_byte);
575 return filemap_check_and_keep_errors(mapping);
576}
577EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
578
a823e458
JL
579/**
580 * file_fdatawait_range - wait for writeback to complete
581 * @file: file pointing to address space structure to wait for
582 * @start_byte: offset in bytes where the range starts
583 * @end_byte: offset in bytes where the range ends (inclusive)
584 *
585 * Walk the list of under-writeback pages of the address space that file
586 * refers to, in the given range and wait for all of them. Check error
587 * status of the address space vs. the file->f_wb_err cursor and return it.
588 *
589 * Since the error status of the file is advanced by this function,
590 * callers are responsible for checking the return value and handling and/or
591 * reporting the error.
a862f68a
MR
592 *
593 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
594 */
595int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
596{
597 struct address_space *mapping = file->f_mapping;
598
599 __filemap_fdatawait_range(mapping, start_byte, end_byte);
600 return file_check_and_advance_wb_err(file);
601}
602EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 603
aa750fd7
JN
604/**
605 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
606 * @mapping: address space structure to wait for
607 *
608 * Walk the list of under-writeback pages of the given address space
609 * and wait for all of them. Unlike filemap_fdatawait(), this function
610 * does not clear error status of the address space.
611 *
612 * Use this function if callers don't handle errors themselves. Expected
613 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
614 * fsfreeze(8)
a862f68a
MR
615 *
616 * Return: error status of the address space.
aa750fd7 617 */
76341cab 618int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 619{
ffb959bb 620 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 621 return filemap_check_and_keep_errors(mapping);
aa750fd7 622}
76341cab 623EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 624
875d91b1 625/* Returns true if writeback might be needed or already in progress. */
9326c9b2 626static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 627{
875d91b1 628 return mapping->nrpages;
1da177e4 629}
1da177e4 630
4bdcd1dd
JA
631bool filemap_range_has_writeback(struct address_space *mapping,
632 loff_t start_byte, loff_t end_byte)
f8ee8909
JA
633{
634 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
635 pgoff_t max = end_byte >> PAGE_SHIFT;
b05f41a1 636 struct folio *folio;
f8ee8909
JA
637
638 if (end_byte < start_byte)
639 return false;
640
641 rcu_read_lock();
b05f41a1
VMO
642 xas_for_each(&xas, folio, max) {
643 if (xas_retry(&xas, folio))
f8ee8909 644 continue;
b05f41a1 645 if (xa_is_value(folio))
f8ee8909 646 continue;
b05f41a1
VMO
647 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
648 folio_test_writeback(folio))
f8ee8909
JA
649 break;
650 }
651 rcu_read_unlock();
b05f41a1 652 return folio != NULL;
63135aa3 653}
4bdcd1dd 654EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
63135aa3 655
485bb99b
RD
656/**
657 * filemap_write_and_wait_range - write out & wait on a file range
658 * @mapping: the address_space for the pages
659 * @lstart: offset in bytes where the range starts
660 * @lend: offset in bytes where the range ends (inclusive)
661 *
469eb4d0
AM
662 * Write out and wait upon file offsets lstart->lend, inclusive.
663 *
0e056eb5 664 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 665 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
666 *
667 * Return: error status of the address space.
469eb4d0 668 */
1da177e4
LT
669int filemap_write_and_wait_range(struct address_space *mapping,
670 loff_t lstart, loff_t lend)
671{
ccac11da 672 int err = 0, err2;
1da177e4 673
feeb9b26
BF
674 if (lend < lstart)
675 return 0;
676
9326c9b2 677 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
678 err = __filemap_fdatawrite_range(mapping, lstart, lend,
679 WB_SYNC_ALL);
ddf8f376
IW
680 /*
681 * Even if the above returned error, the pages may be
682 * written partially (e.g. -ENOSPC), so we wait for it.
683 * But the -EIO is special case, it may indicate the worst
684 * thing (e.g. bug) happened, so we avoid waiting for it.
685 */
ccac11da
ML
686 if (err != -EIO)
687 __filemap_fdatawait_range(mapping, lstart, lend);
1da177e4 688 }
ccac11da
ML
689 err2 = filemap_check_errors(mapping);
690 if (!err)
691 err = err2;
28fd1298 692 return err;
1da177e4 693}
f6995585 694EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 695
5660e13d
JL
696void __filemap_set_wb_err(struct address_space *mapping, int err)
697{
3acdfd28 698 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
699
700 trace_filemap_set_wb_err(mapping, eseq);
701}
702EXPORT_SYMBOL(__filemap_set_wb_err);
703
704/**
705 * file_check_and_advance_wb_err - report wb error (if any) that was previously
706 * and advance wb_err to current one
707 * @file: struct file on which the error is being reported
708 *
709 * When userland calls fsync (or something like nfsd does the equivalent), we
710 * want to report any writeback errors that occurred since the last fsync (or
711 * since the file was opened if there haven't been any).
712 *
713 * Grab the wb_err from the mapping. If it matches what we have in the file,
714 * then just quickly return 0. The file is all caught up.
715 *
716 * If it doesn't match, then take the mapping value, set the "seen" flag in
717 * it and try to swap it into place. If it works, or another task beat us
718 * to it with the new value, then update the f_wb_err and return the error
719 * portion. The error at this point must be reported via proper channels
720 * (a'la fsync, or NFS COMMIT operation, etc.).
721 *
722 * While we handle mapping->wb_err with atomic operations, the f_wb_err
723 * value is protected by the f_lock since we must ensure that it reflects
724 * the latest value swapped in for this file descriptor.
a862f68a
MR
725 *
726 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
727 */
728int file_check_and_advance_wb_err(struct file *file)
729{
730 int err = 0;
731 errseq_t old = READ_ONCE(file->f_wb_err);
732 struct address_space *mapping = file->f_mapping;
733
734 /* Locklessly handle the common case where nothing has changed */
735 if (errseq_check(&mapping->wb_err, old)) {
736 /* Something changed, must use slow path */
737 spin_lock(&file->f_lock);
738 old = file->f_wb_err;
739 err = errseq_check_and_advance(&mapping->wb_err,
740 &file->f_wb_err);
741 trace_file_check_and_advance_wb_err(file, old);
742 spin_unlock(&file->f_lock);
743 }
f4e222c5
JL
744
745 /*
746 * We're mostly using this function as a drop in replacement for
747 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
748 * that the legacy code would have had on these flags.
749 */
750 clear_bit(AS_EIO, &mapping->flags);
751 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
752 return err;
753}
754EXPORT_SYMBOL(file_check_and_advance_wb_err);
755
756/**
757 * file_write_and_wait_range - write out & wait on a file range
758 * @file: file pointing to address_space with pages
759 * @lstart: offset in bytes where the range starts
760 * @lend: offset in bytes where the range ends (inclusive)
761 *
762 * Write out and wait upon file offsets lstart->lend, inclusive.
763 *
764 * Note that @lend is inclusive (describes the last byte to be written) so
765 * that this function can be used to write to the very end-of-file (end = -1).
766 *
767 * After writing out and waiting on the data, we check and advance the
768 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
769 *
770 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
771 */
772int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
773{
774 int err = 0, err2;
775 struct address_space *mapping = file->f_mapping;
776
feeb9b26
BF
777 if (lend < lstart)
778 return 0;
779
9326c9b2 780 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
781 err = __filemap_fdatawrite_range(mapping, lstart, lend,
782 WB_SYNC_ALL);
783 /* See comment of filemap_write_and_wait() */
784 if (err != -EIO)
785 __filemap_fdatawait_range(mapping, lstart, lend);
786 }
787 err2 = file_check_and_advance_wb_err(file);
788 if (!err)
789 err = err2;
790 return err;
791}
792EXPORT_SYMBOL(file_write_and_wait_range);
793
ef6a3c63 794/**
3720dd6d
VMO
795 * replace_page_cache_folio - replace a pagecache folio with a new one
796 * @old: folio to be replaced
797 * @new: folio to replace with
798 *
799 * This function replaces a folio in the pagecache with a new one. On
800 * success it acquires the pagecache reference for the new folio and
801 * drops it for the old folio. Both the old and new folios must be
802 * locked. This function does not add the new folio to the LRU, the
ef6a3c63
MS
803 * caller must do that.
804 *
74d60958 805 * The remove + add is atomic. This function cannot fail.
ef6a3c63 806 */
3720dd6d 807void replace_page_cache_folio(struct folio *old, struct folio *new)
ef6a3c63 808{
74d60958 809 struct address_space *mapping = old->mapping;
d2329aa0 810 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
74d60958
MW
811 pgoff_t offset = old->index;
812 XA_STATE(xas, &mapping->i_pages, offset);
ef6a3c63 813
3720dd6d
VMO
814 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
815 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
816 VM_BUG_ON_FOLIO(new->mapping, new);
ef6a3c63 817
3720dd6d 818 folio_get(new);
74d60958
MW
819 new->mapping = mapping;
820 new->index = offset;
ef6a3c63 821
3720dd6d 822 mem_cgroup_migrate(old, new);
0d1c2072 823
30472509 824 xas_lock_irq(&xas);
74d60958 825 xas_store(&xas, new);
4165b9b4 826
74d60958
MW
827 old->mapping = NULL;
828 /* hugetlb pages do not participate in page cache accounting. */
3720dd6d
VMO
829 if (!folio_test_hugetlb(old))
830 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
831 if (!folio_test_hugetlb(new))
832 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
833 if (folio_test_swapbacked(old))
834 __lruvec_stat_sub_folio(old, NR_SHMEM);
835 if (folio_test_swapbacked(new))
836 __lruvec_stat_add_folio(new, NR_SHMEM);
30472509 837 xas_unlock_irq(&xas);
d2329aa0 838 if (free_folio)
3720dd6d
VMO
839 free_folio(old);
840 folio_put(old);
ef6a3c63 841}
3720dd6d 842EXPORT_SYMBOL_GPL(replace_page_cache_folio);
ef6a3c63 843
9dd3d069
MWO
844noinline int __filemap_add_folio(struct address_space *mapping,
845 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
1da177e4 846{
9dd3d069
MWO
847 XA_STATE(xas, &mapping->i_pages, index);
848 int huge = folio_test_hugetlb(folio);
da74240e 849 bool charged = false;
d68eccad 850 long nr = 1;
e286781d 851
9dd3d069
MWO
852 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
853 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
74d60958 854 mapping_set_update(&xas, mapping);
e286781d 855
3fea5a49 856 if (!huge) {
d68eccad 857 int error = mem_cgroup_charge(folio, NULL, gfp);
9dd3d069 858 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
3fea5a49 859 if (error)
d68eccad 860 return error;
da74240e 861 charged = true;
d68eccad
MWO
862 xas_set_order(&xas, index, folio_order(folio));
863 nr = folio_nr_pages(folio);
3fea5a49
JW
864 }
865
198b62f8 866 gfp &= GFP_RECLAIM_MASK;
d68eccad
MWO
867 folio_ref_add(folio, nr);
868 folio->mapping = mapping;
869 folio->index = xas.xa_index;
198b62f8 870
74d60958 871 do {
198b62f8
MWO
872 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
873 void *entry, *old = NULL;
874
9dd3d069 875 if (order > folio_order(folio))
198b62f8
MWO
876 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
877 order, gfp);
74d60958 878 xas_lock_irq(&xas);
198b62f8
MWO
879 xas_for_each_conflict(&xas, entry) {
880 old = entry;
881 if (!xa_is_value(entry)) {
882 xas_set_err(&xas, -EEXIST);
883 goto unlock;
884 }
885 }
886
887 if (old) {
888 if (shadowp)
889 *shadowp = old;
890 /* entry may have been split before we acquired lock */
891 order = xa_get_order(xas.xa, xas.xa_index);
9dd3d069 892 if (order > folio_order(folio)) {
d68eccad
MWO
893 /* How to handle large swap entries? */
894 BUG_ON(shmem_mapping(mapping));
198b62f8
MWO
895 xas_split(&xas, old, order);
896 xas_reset(&xas);
897 }
898 }
899
9dd3d069 900 xas_store(&xas, folio);
74d60958
MW
901 if (xas_error(&xas))
902 goto unlock;
903
d68eccad 904 mapping->nrpages += nr;
74d60958
MW
905
906 /* hugetlb pages do not participate in page cache accounting */
d68eccad
MWO
907 if (!huge) {
908 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
909 if (folio_test_pmd_mappable(folio))
910 __lruvec_stat_mod_folio(folio,
911 NR_FILE_THPS, nr);
912 }
74d60958
MW
913unlock:
914 xas_unlock_irq(&xas);
198b62f8 915 } while (xas_nomem(&xas, gfp));
74d60958 916
d68eccad 917 if (xas_error(&xas))
74d60958 918 goto error;
4165b9b4 919
a0580c6f 920 trace_mm_filemap_add_to_page_cache(folio);
66a0c8ee 921 return 0;
74d60958 922error:
d68eccad
MWO
923 if (charged)
924 mem_cgroup_uncharge(folio);
9dd3d069 925 folio->mapping = NULL;
66a0c8ee 926 /* Leave page->index set: truncation relies upon it */
d68eccad
MWO
927 folio_put_refs(folio, nr);
928 return xas_error(&xas);
1da177e4 929}
9dd3d069 930ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
a528910e 931
9dd3d069
MWO
932int filemap_add_folio(struct address_space *mapping, struct folio *folio,
933 pgoff_t index, gfp_t gfp)
1da177e4 934{
a528910e 935 void *shadow = NULL;
4f98a2fe
RR
936 int ret;
937
9dd3d069
MWO
938 __folio_set_locked(folio);
939 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
a528910e 940 if (unlikely(ret))
9dd3d069 941 __folio_clear_locked(folio);
a528910e
JW
942 else {
943 /*
9dd3d069 944 * The folio might have been evicted from cache only
a528910e 945 * recently, in which case it should be activated like
9dd3d069
MWO
946 * any other repeatedly accessed folio.
947 * The exception is folios getting rewritten; evicting other
f0281a00
RR
948 * data from the working set, only to cache data that will
949 * get overwritten with something else, is a waste of memory.
a528910e 950 */
9dd3d069
MWO
951 WARN_ON_ONCE(folio_test_active(folio));
952 if (!(gfp & __GFP_WRITE) && shadow)
953 workingset_refault(folio, shadow);
954 folio_add_lru(folio);
a528910e 955 }
1da177e4
LT
956 return ret;
957}
9dd3d069 958EXPORT_SYMBOL_GPL(filemap_add_folio);
1da177e4 959
44110fe3 960#ifdef CONFIG_NUMA
bb3c579e 961struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
44110fe3 962{
c0ff7453 963 int n;
bb3c579e 964 struct folio *folio;
c0ff7453 965
44110fe3 966 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
967 unsigned int cpuset_mems_cookie;
968 do {
d26914d1 969 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 970 n = cpuset_mem_spread_node();
bb3c579e
MWO
971 folio = __folio_alloc_node(gfp, order, n);
972 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 973
bb3c579e 974 return folio;
44110fe3 975 }
bb3c579e 976 return folio_alloc(gfp, order);
44110fe3 977}
bb3c579e 978EXPORT_SYMBOL(filemap_alloc_folio);
44110fe3
PJ
979#endif
980
7506ae6a
JK
981/*
982 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
983 *
984 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
985 *
986 * @mapping1: the first mapping to lock
987 * @mapping2: the second mapping to lock
988 */
989void filemap_invalidate_lock_two(struct address_space *mapping1,
990 struct address_space *mapping2)
991{
992 if (mapping1 > mapping2)
993 swap(mapping1, mapping2);
994 if (mapping1)
995 down_write(&mapping1->invalidate_lock);
996 if (mapping2 && mapping1 != mapping2)
997 down_write_nested(&mapping2->invalidate_lock, 1);
998}
999EXPORT_SYMBOL(filemap_invalidate_lock_two);
1000
1001/*
1002 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1003 *
1004 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1005 *
1006 * @mapping1: the first mapping to unlock
1007 * @mapping2: the second mapping to unlock
1008 */
1009void filemap_invalidate_unlock_two(struct address_space *mapping1,
1010 struct address_space *mapping2)
1011{
1012 if (mapping1)
1013 up_write(&mapping1->invalidate_lock);
1014 if (mapping2 && mapping1 != mapping2)
1015 up_write(&mapping2->invalidate_lock);
1016}
1017EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1018
1da177e4
LT
1019/*
1020 * In order to wait for pages to become available there must be
1021 * waitqueues associated with pages. By using a hash table of
1022 * waitqueues where the bucket discipline is to maintain all
1023 * waiters on the same queue and wake all when any of the pages
1024 * become available, and for the woken contexts to check to be
1025 * sure the appropriate page became available, this saves space
1026 * at a cost of "thundering herd" phenomena during rare hash
1027 * collisions.
1028 */
62906027
NP
1029#define PAGE_WAIT_TABLE_BITS 8
1030#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
df4d4f12 1031static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
62906027 1032
df4d4f12 1033static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1da177e4 1034{
df4d4f12 1035 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1da177e4 1036}
1da177e4 1037
62906027 1038void __init pagecache_init(void)
1da177e4 1039{
62906027 1040 int i;
1da177e4 1041
62906027 1042 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
df4d4f12 1043 init_waitqueue_head(&folio_wait_table[i]);
62906027
NP
1044
1045 page_writeback_init();
1da177e4 1046}
1da177e4 1047
5ef64cc8
LT
1048/*
1049 * The page wait code treats the "wait->flags" somewhat unusually, because
5868ec26 1050 * we have multiple different kinds of waits, not just the usual "exclusive"
5ef64cc8
LT
1051 * one.
1052 *
1053 * We have:
1054 *
1055 * (a) no special bits set:
1056 *
1057 * We're just waiting for the bit to be released, and when a waker
1058 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1059 * and remove it from the wait queue.
1060 *
1061 * Simple and straightforward.
1062 *
1063 * (b) WQ_FLAG_EXCLUSIVE:
1064 *
1065 * The waiter is waiting to get the lock, and only one waiter should
1066 * be woken up to avoid any thundering herd behavior. We'll set the
1067 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1068 *
1069 * This is the traditional exclusive wait.
1070 *
5868ec26 1071 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
5ef64cc8
LT
1072 *
1073 * The waiter is waiting to get the bit, and additionally wants the
1074 * lock to be transferred to it for fair lock behavior. If the lock
1075 * cannot be taken, we stop walking the wait queue without waking
1076 * the waiter.
1077 *
1078 * This is the "fair lock handoff" case, and in addition to setting
1079 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1080 * that it now has the lock.
1081 */
ac6424b9 1082static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1083{
5ef64cc8 1084 unsigned int flags;
62906027
NP
1085 struct wait_page_key *key = arg;
1086 struct wait_page_queue *wait_page
1087 = container_of(wait, struct wait_page_queue, wait);
1088
cdc8fcb4 1089 if (!wake_page_match(wait_page, key))
62906027 1090 return 0;
3510ca20 1091
9a1ea439 1092 /*
5ef64cc8
LT
1093 * If it's a lock handoff wait, we get the bit for it, and
1094 * stop walking (and do not wake it up) if we can't.
9a1ea439 1095 */
5ef64cc8
LT
1096 flags = wait->flags;
1097 if (flags & WQ_FLAG_EXCLUSIVE) {
df4d4f12 1098 if (test_bit(key->bit_nr, &key->folio->flags))
2a9127fc 1099 return -1;
5ef64cc8 1100 if (flags & WQ_FLAG_CUSTOM) {
df4d4f12 1101 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
5ef64cc8
LT
1102 return -1;
1103 flags |= WQ_FLAG_DONE;
1104 }
2a9127fc 1105 }
f62e00cc 1106
5ef64cc8
LT
1107 /*
1108 * We are holding the wait-queue lock, but the waiter that
1109 * is waiting for this will be checking the flags without
1110 * any locking.
1111 *
1112 * So update the flags atomically, and wake up the waiter
1113 * afterwards to avoid any races. This store-release pairs
101c0bf6 1114 * with the load-acquire in folio_wait_bit_common().
5ef64cc8
LT
1115 */
1116 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
2a9127fc
LT
1117 wake_up_state(wait->private, mode);
1118
1119 /*
1120 * Ok, we have successfully done what we're waiting for,
1121 * and we can unconditionally remove the wait entry.
1122 *
5ef64cc8
LT
1123 * Note that this pairs with the "finish_wait()" in the
1124 * waiter, and has to be the absolute last thing we do.
1125 * After this list_del_init(&wait->entry) the wait entry
2a9127fc
LT
1126 * might be de-allocated and the process might even have
1127 * exited.
2a9127fc 1128 */
c6fe44d9 1129 list_del_init_careful(&wait->entry);
5ef64cc8 1130 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
f62e00cc
KM
1131}
1132
6974d7c9 1133static void folio_wake_bit(struct folio *folio, int bit_nr)
cbbce822 1134{
df4d4f12 1135 wait_queue_head_t *q = folio_waitqueue(folio);
62906027
NP
1136 struct wait_page_key key;
1137 unsigned long flags;
11a19c7b 1138 wait_queue_entry_t bookmark;
cbbce822 1139
df4d4f12 1140 key.folio = folio;
62906027
NP
1141 key.bit_nr = bit_nr;
1142 key.page_match = 0;
1143
11a19c7b
TC
1144 bookmark.flags = 0;
1145 bookmark.private = NULL;
1146 bookmark.func = NULL;
1147 INIT_LIST_HEAD(&bookmark.entry);
1148
62906027 1149 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1150 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1151
1152 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1153 /*
1154 * Take a breather from holding the lock,
1155 * allow pages that finish wake up asynchronously
1156 * to acquire the lock and remove themselves
1157 * from wait queue
1158 */
1159 spin_unlock_irqrestore(&q->lock, flags);
1160 cpu_relax();
1161 spin_lock_irqsave(&q->lock, flags);
1162 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1163 }
1164
62906027 1165 /*
bb43b14b
HD
1166 * It's possible to miss clearing waiters here, when we woke our page
1167 * waiters, but the hashed waitqueue has waiters for other pages on it.
1168 * That's okay, it's a rare case. The next waker will clear it.
62906027 1169 *
bb43b14b
HD
1170 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1171 * other), the flag may be cleared in the course of freeing the page;
1172 * but that is not required for correctness.
62906027 1173 */
bb43b14b 1174 if (!waitqueue_active(q) || !key.page_match)
6974d7c9 1175 folio_clear_waiters(folio);
bb43b14b 1176
62906027
NP
1177 spin_unlock_irqrestore(&q->lock, flags);
1178}
74d81bfa 1179
4268b480 1180static void folio_wake(struct folio *folio, int bit)
74d81bfa 1181{
4268b480 1182 if (!folio_test_waiters(folio))
74d81bfa 1183 return;
6974d7c9 1184 folio_wake_bit(folio, bit);
74d81bfa 1185}
62906027 1186
9a1ea439 1187/*
101c0bf6 1188 * A choice of three behaviors for folio_wait_bit_common():
9a1ea439
HD
1189 */
1190enum behavior {
1191 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
7c23c782 1192 * __folio_lock() waiting on then setting PG_locked.
9a1ea439
HD
1193 */
1194 SHARED, /* Hold ref to page and check the bit when woken, like
9f2b04a2 1195 * folio_wait_writeback() waiting on PG_writeback.
9a1ea439
HD
1196 */
1197 DROP, /* Drop ref to page before wait, no check when woken,
9f2b04a2 1198 * like folio_put_wait_locked() on PG_locked.
9a1ea439
HD
1199 */
1200};
1201
2a9127fc 1202/*
101c0bf6 1203 * Attempt to check (or get) the folio flag, and mark us done
5ef64cc8 1204 * if successful.
2a9127fc 1205 */
101c0bf6 1206static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
2a9127fc
LT
1207 struct wait_queue_entry *wait)
1208{
1209 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
101c0bf6 1210 if (test_and_set_bit(bit_nr, &folio->flags))
2a9127fc 1211 return false;
101c0bf6 1212 } else if (test_bit(bit_nr, &folio->flags))
2a9127fc
LT
1213 return false;
1214
5ef64cc8 1215 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
2a9127fc
LT
1216 return true;
1217}
1218
5ef64cc8
LT
1219/* How many times do we accept lock stealing from under a waiter? */
1220int sysctl_page_lock_unfairness = 5;
1221
101c0bf6
MWO
1222static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1223 int state, enum behavior behavior)
62906027 1224{
df4d4f12 1225 wait_queue_head_t *q = folio_waitqueue(folio);
5ef64cc8 1226 int unfairness = sysctl_page_lock_unfairness;
62906027 1227 struct wait_page_queue wait_page;
ac6424b9 1228 wait_queue_entry_t *wait = &wait_page.wait;
b1d29ba8 1229 bool thrashing = false;
eb414681 1230 unsigned long pflags;
aa1cf99b 1231 bool in_thrashing;
62906027 1232
eb414681 1233 if (bit_nr == PG_locked &&
101c0bf6 1234 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
aa1cf99b 1235 delayacct_thrashing_start(&in_thrashing);
eb414681 1236 psi_memstall_enter(&pflags);
b1d29ba8
JW
1237 thrashing = true;
1238 }
1239
62906027
NP
1240 init_wait(wait);
1241 wait->func = wake_page_function;
df4d4f12 1242 wait_page.folio = folio;
62906027
NP
1243 wait_page.bit_nr = bit_nr;
1244
5ef64cc8
LT
1245repeat:
1246 wait->flags = 0;
1247 if (behavior == EXCLUSIVE) {
1248 wait->flags = WQ_FLAG_EXCLUSIVE;
1249 if (--unfairness < 0)
1250 wait->flags |= WQ_FLAG_CUSTOM;
1251 }
1252
2a9127fc
LT
1253 /*
1254 * Do one last check whether we can get the
1255 * page bit synchronously.
1256 *
101c0bf6 1257 * Do the folio_set_waiters() marking before that
2a9127fc
LT
1258 * to let any waker we _just_ missed know they
1259 * need to wake us up (otherwise they'll never
1260 * even go to the slow case that looks at the
1261 * page queue), and add ourselves to the wait
1262 * queue if we need to sleep.
1263 *
1264 * This part needs to be done under the queue
1265 * lock to avoid races.
1266 */
1267 spin_lock_irq(&q->lock);
101c0bf6
MWO
1268 folio_set_waiters(folio);
1269 if (!folio_trylock_flag(folio, bit_nr, wait))
2a9127fc
LT
1270 __add_wait_queue_entry_tail(q, wait);
1271 spin_unlock_irq(&q->lock);
62906027 1272
2a9127fc
LT
1273 /*
1274 * From now on, all the logic will be based on
5ef64cc8
LT
1275 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1276 * see whether the page bit testing has already
1277 * been done by the wake function.
2a9127fc 1278 *
101c0bf6 1279 * We can drop our reference to the folio.
2a9127fc
LT
1280 */
1281 if (behavior == DROP)
101c0bf6 1282 folio_put(folio);
62906027 1283
5ef64cc8
LT
1284 /*
1285 * Note that until the "finish_wait()", or until
1286 * we see the WQ_FLAG_WOKEN flag, we need to
1287 * be very careful with the 'wait->flags', because
1288 * we may race with a waker that sets them.
1289 */
2a9127fc 1290 for (;;) {
5ef64cc8
LT
1291 unsigned int flags;
1292
62906027
NP
1293 set_current_state(state);
1294
5ef64cc8
LT
1295 /* Loop until we've been woken or interrupted */
1296 flags = smp_load_acquire(&wait->flags);
1297 if (!(flags & WQ_FLAG_WOKEN)) {
1298 if (signal_pending_state(state, current))
1299 break;
1300
1301 io_schedule();
1302 continue;
1303 }
1304
1305 /* If we were non-exclusive, we're done */
1306 if (behavior != EXCLUSIVE)
a8b169af 1307 break;
9a1ea439 1308
5ef64cc8
LT
1309 /* If the waker got the lock for us, we're done */
1310 if (flags & WQ_FLAG_DONE)
9a1ea439 1311 break;
2a9127fc 1312
5ef64cc8
LT
1313 /*
1314 * Otherwise, if we're getting the lock, we need to
1315 * try to get it ourselves.
1316 *
1317 * And if that fails, we'll have to retry this all.
1318 */
101c0bf6 1319 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
5ef64cc8
LT
1320 goto repeat;
1321
1322 wait->flags |= WQ_FLAG_DONE;
1323 break;
62906027
NP
1324 }
1325
5ef64cc8
LT
1326 /*
1327 * If a signal happened, this 'finish_wait()' may remove the last
101c0bf6 1328 * waiter from the wait-queues, but the folio waiters bit will remain
5ef64cc8
LT
1329 * set. That's ok. The next wakeup will take care of it, and trying
1330 * to do it here would be difficult and prone to races.
1331 */
62906027
NP
1332 finish_wait(q, wait);
1333
eb414681 1334 if (thrashing) {
aa1cf99b 1335 delayacct_thrashing_end(&in_thrashing);
eb414681
JW
1336 psi_memstall_leave(&pflags);
1337 }
b1d29ba8 1338
62906027 1339 /*
5ef64cc8
LT
1340 * NOTE! The wait->flags weren't stable until we've done the
1341 * 'finish_wait()', and we could have exited the loop above due
1342 * to a signal, and had a wakeup event happen after the signal
1343 * test but before the 'finish_wait()'.
1344 *
1345 * So only after the finish_wait() can we reliably determine
1346 * if we got woken up or not, so we can now figure out the final
1347 * return value based on that state without races.
1348 *
1349 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1350 * waiter, but an exclusive one requires WQ_FLAG_DONE.
62906027 1351 */
5ef64cc8
LT
1352 if (behavior == EXCLUSIVE)
1353 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
62906027 1354
2a9127fc 1355 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
62906027
NP
1356}
1357
ffa65753
AP
1358#ifdef CONFIG_MIGRATION
1359/**
1360 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1361 * @entry: migration swap entry.
1362 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required
1363 * for pte entries, pass NULL for pmd entries.
1364 * @ptl: already locked ptl. This function will drop the lock.
1365 *
1366 * Wait for a migration entry referencing the given page to be removed. This is
1367 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1368 * this can be called without taking a reference on the page. Instead this
1369 * should be called while holding the ptl for the migration entry referencing
1370 * the page.
1371 *
1372 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock().
1373 *
1374 * This follows the same logic as folio_wait_bit_common() so see the comments
1375 * there.
1376 */
1377void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep,
1378 spinlock_t *ptl)
1379{
1380 struct wait_page_queue wait_page;
1381 wait_queue_entry_t *wait = &wait_page.wait;
1382 bool thrashing = false;
ffa65753 1383 unsigned long pflags;
aa1cf99b 1384 bool in_thrashing;
ffa65753
AP
1385 wait_queue_head_t *q;
1386 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1387
1388 q = folio_waitqueue(folio);
1389 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
aa1cf99b 1390 delayacct_thrashing_start(&in_thrashing);
ffa65753
AP
1391 psi_memstall_enter(&pflags);
1392 thrashing = true;
1393 }
1394
1395 init_wait(wait);
1396 wait->func = wake_page_function;
1397 wait_page.folio = folio;
1398 wait_page.bit_nr = PG_locked;
1399 wait->flags = 0;
1400
1401 spin_lock_irq(&q->lock);
1402 folio_set_waiters(folio);
1403 if (!folio_trylock_flag(folio, PG_locked, wait))
1404 __add_wait_queue_entry_tail(q, wait);
1405 spin_unlock_irq(&q->lock);
1406
1407 /*
1408 * If a migration entry exists for the page the migration path must hold
1409 * a valid reference to the page, and it must take the ptl to remove the
1410 * migration entry. So the page is valid until the ptl is dropped.
1411 */
1412 if (ptep)
1413 pte_unmap_unlock(ptep, ptl);
1414 else
1415 spin_unlock(ptl);
1416
1417 for (;;) {
1418 unsigned int flags;
1419
1420 set_current_state(TASK_UNINTERRUPTIBLE);
1421
1422 /* Loop until we've been woken or interrupted */
1423 flags = smp_load_acquire(&wait->flags);
1424 if (!(flags & WQ_FLAG_WOKEN)) {
1425 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1426 break;
1427
1428 io_schedule();
1429 continue;
1430 }
1431 break;
1432 }
1433
1434 finish_wait(q, wait);
1435
1436 if (thrashing) {
aa1cf99b 1437 delayacct_thrashing_end(&in_thrashing);
ffa65753
AP
1438 psi_memstall_leave(&pflags);
1439 }
1440}
1441#endif
1442
101c0bf6 1443void folio_wait_bit(struct folio *folio, int bit_nr)
62906027 1444{
101c0bf6 1445 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027 1446}
101c0bf6 1447EXPORT_SYMBOL(folio_wait_bit);
62906027 1448
101c0bf6 1449int folio_wait_bit_killable(struct folio *folio, int bit_nr)
62906027 1450{
101c0bf6 1451 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1452}
101c0bf6 1453EXPORT_SYMBOL(folio_wait_bit_killable);
cbbce822 1454
9a1ea439 1455/**
9f2b04a2
MWO
1456 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1457 * @folio: The folio to wait for.
48054625 1458 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
9a1ea439 1459 *
9f2b04a2 1460 * The caller should hold a reference on @folio. They expect the page to
9a1ea439 1461 * become unlocked relatively soon, but do not wish to hold up migration
9f2b04a2 1462 * (for example) by holding the reference while waiting for the folio to
9a1ea439 1463 * come unlocked. After this function returns, the caller should not
9f2b04a2 1464 * dereference @folio.
48054625 1465 *
9f2b04a2 1466 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
9a1ea439 1467 */
c195c321 1468static int folio_put_wait_locked(struct folio *folio, int state)
9a1ea439 1469{
9f2b04a2 1470 return folio_wait_bit_common(folio, PG_locked, state, DROP);
9a1ea439
HD
1471}
1472
385e1ca5 1473/**
df4d4f12
MWO
1474 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1475 * @folio: Folio defining the wait queue of interest
697f619f 1476 * @waiter: Waiter to add to the queue
385e1ca5 1477 *
df4d4f12 1478 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
385e1ca5 1479 */
df4d4f12 1480void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
385e1ca5 1481{
df4d4f12 1482 wait_queue_head_t *q = folio_waitqueue(folio);
385e1ca5
DH
1483 unsigned long flags;
1484
1485 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1486 __add_wait_queue_entry_tail(q, waiter);
df4d4f12 1487 folio_set_waiters(folio);
385e1ca5
DH
1488 spin_unlock_irqrestore(&q->lock, flags);
1489}
df4d4f12 1490EXPORT_SYMBOL_GPL(folio_add_wait_queue);
385e1ca5 1491
b91e1302
LT
1492#ifndef clear_bit_unlock_is_negative_byte
1493
1494/*
1495 * PG_waiters is the high bit in the same byte as PG_lock.
1496 *
1497 * On x86 (and on many other architectures), we can clear PG_lock and
1498 * test the sign bit at the same time. But if the architecture does
1499 * not support that special operation, we just do this all by hand
1500 * instead.
1501 *
1502 * The read of PG_waiters has to be after (or concurrently with) PG_locked
ffceeb62 1503 * being cleared, but a memory barrier should be unnecessary since it is
b91e1302
LT
1504 * in the same byte as PG_locked.
1505 */
1506static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1507{
1508 clear_bit_unlock(nr, mem);
1509 /* smp_mb__after_atomic(); */
98473f9f 1510 return test_bit(PG_waiters, mem);
b91e1302
LT
1511}
1512
1513#endif
1514
1da177e4 1515/**
4e136428
MWO
1516 * folio_unlock - Unlock a locked folio.
1517 * @folio: The folio.
1518 *
1519 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1520 *
1521 * Context: May be called from interrupt or process context. May not be
1522 * called from NMI context.
1da177e4 1523 */
4e136428 1524void folio_unlock(struct folio *folio)
1da177e4 1525{
4e136428 1526 /* Bit 7 allows x86 to check the byte's sign bit */
b91e1302 1527 BUILD_BUG_ON(PG_waiters != 7);
4e136428
MWO
1528 BUILD_BUG_ON(PG_locked > 7);
1529 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1530 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
6974d7c9 1531 folio_wake_bit(folio, PG_locked);
1da177e4 1532}
4e136428 1533EXPORT_SYMBOL(folio_unlock);
1da177e4 1534
73e10ded 1535/**
b47393f8
MWO
1536 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1537 * @folio: The folio.
73e10ded 1538 *
b47393f8
MWO
1539 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1540 * it. The folio reference held for PG_private_2 being set is released.
73e10ded 1541 *
b47393f8
MWO
1542 * This is, for example, used when a netfs folio is being written to a local
1543 * disk cache, thereby allowing writes to the cache for the same folio to be
73e10ded
DH
1544 * serialised.
1545 */
b47393f8 1546void folio_end_private_2(struct folio *folio)
73e10ded 1547{
6974d7c9
MWO
1548 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1549 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1550 folio_wake_bit(folio, PG_private_2);
1551 folio_put(folio);
73e10ded 1552}
b47393f8 1553EXPORT_SYMBOL(folio_end_private_2);
73e10ded
DH
1554
1555/**
b47393f8
MWO
1556 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1557 * @folio: The folio to wait on.
73e10ded 1558 *
b47393f8 1559 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
73e10ded 1560 */
b47393f8 1561void folio_wait_private_2(struct folio *folio)
73e10ded 1562{
101c0bf6
MWO
1563 while (folio_test_private_2(folio))
1564 folio_wait_bit(folio, PG_private_2);
73e10ded 1565}
b47393f8 1566EXPORT_SYMBOL(folio_wait_private_2);
73e10ded
DH
1567
1568/**
b47393f8
MWO
1569 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1570 * @folio: The folio to wait on.
73e10ded 1571 *
b47393f8 1572 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
73e10ded
DH
1573 * fatal signal is received by the calling task.
1574 *
1575 * Return:
1576 * - 0 if successful.
1577 * - -EINTR if a fatal signal was encountered.
1578 */
b47393f8 1579int folio_wait_private_2_killable(struct folio *folio)
73e10ded
DH
1580{
1581 int ret = 0;
1582
101c0bf6
MWO
1583 while (folio_test_private_2(folio)) {
1584 ret = folio_wait_bit_killable(folio, PG_private_2);
73e10ded
DH
1585 if (ret < 0)
1586 break;
1587 }
1588
1589 return ret;
1590}
b47393f8 1591EXPORT_SYMBOL(folio_wait_private_2_killable);
73e10ded 1592
485bb99b 1593/**
4268b480
MWO
1594 * folio_end_writeback - End writeback against a folio.
1595 * @folio: The folio.
1da177e4 1596 */
4268b480 1597void folio_end_writeback(struct folio *folio)
1da177e4 1598{
888cf2db 1599 /*
4268b480
MWO
1600 * folio_test_clear_reclaim() could be used here but it is an
1601 * atomic operation and overkill in this particular case. Failing
1602 * to shuffle a folio marked for immediate reclaim is too mild
1603 * a gain to justify taking an atomic operation penalty at the
1604 * end of every folio writeback.
888cf2db 1605 */
4268b480
MWO
1606 if (folio_test_reclaim(folio)) {
1607 folio_clear_reclaim(folio);
575ced1c 1608 folio_rotate_reclaimable(folio);
888cf2db 1609 }
ac6aadb2 1610
073861ed 1611 /*
4268b480 1612 * Writeback does not hold a folio reference of its own, relying
073861ed 1613 * on truncation to wait for the clearing of PG_writeback.
4268b480
MWO
1614 * But here we must make sure that the folio is not freed and
1615 * reused before the folio_wake().
073861ed 1616 */
4268b480 1617 folio_get(folio);
269ccca3 1618 if (!__folio_end_writeback(folio))
ac6aadb2
MS
1619 BUG();
1620
4e857c58 1621 smp_mb__after_atomic();
4268b480 1622 folio_wake(folio, PG_writeback);
512b7931 1623 acct_reclaim_writeback(folio);
4268b480 1624 folio_put(folio);
1da177e4 1625}
4268b480 1626EXPORT_SYMBOL(folio_end_writeback);
1da177e4 1627
57d99845
MW
1628/*
1629 * After completing I/O on a page, call this routine to update the page
1630 * flags appropriately
1631 */
c11f0c0b 1632void page_endio(struct page *page, bool is_write, int err)
57d99845 1633{
223ce491
SH
1634 struct folio *folio = page_folio(page);
1635
c11f0c0b 1636 if (!is_write) {
57d99845 1637 if (!err) {
223ce491 1638 folio_mark_uptodate(folio);
57d99845 1639 } else {
223ce491
SH
1640 folio_clear_uptodate(folio);
1641 folio_set_error(folio);
57d99845 1642 }
223ce491 1643 folio_unlock(folio);
abf54548 1644 } else {
57d99845 1645 if (err) {
dd8416c4
MK
1646 struct address_space *mapping;
1647
223ce491
SH
1648 folio_set_error(folio);
1649 mapping = folio_mapping(folio);
dd8416c4
MK
1650 if (mapping)
1651 mapping_set_error(mapping, err);
57d99845 1652 }
223ce491 1653 folio_end_writeback(folio);
57d99845
MW
1654 }
1655}
1656EXPORT_SYMBOL_GPL(page_endio);
1657
485bb99b 1658/**
7c23c782
MWO
1659 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1660 * @folio: The folio to lock
1da177e4 1661 */
7c23c782 1662void __folio_lock(struct folio *folio)
1da177e4 1663{
101c0bf6 1664 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
9a1ea439 1665 EXCLUSIVE);
1da177e4 1666}
7c23c782 1667EXPORT_SYMBOL(__folio_lock);
1da177e4 1668
af7f29d9 1669int __folio_lock_killable(struct folio *folio)
2687a356 1670{
101c0bf6 1671 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
9a1ea439 1672 EXCLUSIVE);
2687a356 1673}
af7f29d9 1674EXPORT_SYMBOL_GPL(__folio_lock_killable);
2687a356 1675
ffdc8dab 1676static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
dd3e6d50 1677{
df4d4f12 1678 struct wait_queue_head *q = folio_waitqueue(folio);
f32b5dd7
MWO
1679 int ret = 0;
1680
df4d4f12 1681 wait->folio = folio;
f32b5dd7
MWO
1682 wait->bit_nr = PG_locked;
1683
1684 spin_lock_irq(&q->lock);
1685 __add_wait_queue_entry_tail(q, &wait->wait);
ffdc8dab
MWO
1686 folio_set_waiters(folio);
1687 ret = !folio_trylock(folio);
f32b5dd7
MWO
1688 /*
1689 * If we were successful now, we know we're still on the
1690 * waitqueue as we're still under the lock. This means it's
1691 * safe to remove and return success, we know the callback
1692 * isn't going to trigger.
1693 */
1694 if (!ret)
1695 __remove_wait_queue(q, &wait->wait);
1696 else
1697 ret = -EIOCBQUEUED;
1698 spin_unlock_irq(&q->lock);
1699 return ret;
dd3e6d50
JA
1700}
1701
9a95f3cf
PC
1702/*
1703 * Return values:
9138e47e
MWO
1704 * true - folio is locked; mmap_lock is still held.
1705 * false - folio is not locked.
3e4e28c5 1706 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
9a95f3cf 1707 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
c1e8d7c6 1708 * which case mmap_lock is still held.
9a95f3cf 1709 *
9138e47e
MWO
1710 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1711 * with the folio locked and the mmap_lock unperturbed.
9a95f3cf 1712 */
9138e47e 1713bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
d065bd81
ML
1714 unsigned int flags)
1715{
4064b982 1716 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1717 /*
c1e8d7c6 1718 * CAUTION! In this case, mmap_lock is not released
37b23e05
KM
1719 * even though return 0.
1720 */
1721 if (flags & FAULT_FLAG_RETRY_NOWAIT)
9138e47e 1722 return false;
37b23e05 1723
d8ed45c5 1724 mmap_read_unlock(mm);
37b23e05 1725 if (flags & FAULT_FLAG_KILLABLE)
6baa8d60 1726 folio_wait_locked_killable(folio);
37b23e05 1727 else
6baa8d60 1728 folio_wait_locked(folio);
9138e47e 1729 return false;
800bca7c
HL
1730 }
1731 if (flags & FAULT_FLAG_KILLABLE) {
9138e47e 1732 bool ret;
37b23e05 1733
af7f29d9 1734 ret = __folio_lock_killable(folio);
800bca7c
HL
1735 if (ret) {
1736 mmap_read_unlock(mm);
9138e47e 1737 return false;
800bca7c
HL
1738 }
1739 } else {
af7f29d9 1740 __folio_lock(folio);
d065bd81 1741 }
800bca7c 1742
9138e47e 1743 return true;
d065bd81
ML
1744}
1745
e7b563bb 1746/**
0d3f9296
MW
1747 * page_cache_next_miss() - Find the next gap in the page cache.
1748 * @mapping: Mapping.
1749 * @index: Index.
1750 * @max_scan: Maximum range to search.
e7b563bb 1751 *
0d3f9296
MW
1752 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1753 * gap with the lowest index.
e7b563bb 1754 *
0d3f9296
MW
1755 * This function may be called under the rcu_read_lock. However, this will
1756 * not atomically search a snapshot of the cache at a single point in time.
1757 * For example, if a gap is created at index 5, then subsequently a gap is
1758 * created at index 10, page_cache_next_miss covering both indices may
1759 * return 10 if called under the rcu_read_lock.
e7b563bb 1760 *
0d3f9296
MW
1761 * Return: The index of the gap if found, otherwise an index outside the
1762 * range specified (in which case 'return - index >= max_scan' will be true).
1763 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1764 */
0d3f9296 1765pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1766 pgoff_t index, unsigned long max_scan)
1767{
0d3f9296 1768 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1769
0d3f9296
MW
1770 while (max_scan--) {
1771 void *entry = xas_next(&xas);
1772 if (!entry || xa_is_value(entry))
e7b563bb 1773 break;
0d3f9296 1774 if (xas.xa_index == 0)
e7b563bb
JW
1775 break;
1776 }
1777
0d3f9296 1778 return xas.xa_index;
e7b563bb 1779}
0d3f9296 1780EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1781
1782/**
2346a560 1783 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1784 * @mapping: Mapping.
1785 * @index: Index.
1786 * @max_scan: Maximum range to search.
e7b563bb 1787 *
0d3f9296
MW
1788 * Search the range [max(index - max_scan + 1, 0), index] for the
1789 * gap with the highest index.
e7b563bb 1790 *
0d3f9296
MW
1791 * This function may be called under the rcu_read_lock. However, this will
1792 * not atomically search a snapshot of the cache at a single point in time.
1793 * For example, if a gap is created at index 10, then subsequently a gap is
1794 * created at index 5, page_cache_prev_miss() covering both indices may
1795 * return 5 if called under the rcu_read_lock.
e7b563bb 1796 *
0d3f9296
MW
1797 * Return: The index of the gap if found, otherwise an index outside the
1798 * range specified (in which case 'index - return >= max_scan' will be true).
1799 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1800 */
0d3f9296 1801pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1802 pgoff_t index, unsigned long max_scan)
1803{
0d3f9296 1804 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1805
0d3f9296
MW
1806 while (max_scan--) {
1807 void *entry = xas_prev(&xas);
1808 if (!entry || xa_is_value(entry))
e7b563bb 1809 break;
0d3f9296 1810 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1811 break;
1812 }
1813
0d3f9296 1814 return xas.xa_index;
e7b563bb 1815}
0d3f9296 1816EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1817
020853b6
MWO
1818/*
1819 * Lockless page cache protocol:
1820 * On the lookup side:
1821 * 1. Load the folio from i_pages
1822 * 2. Increment the refcount if it's not zero
1823 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1824 *
1825 * On the removal side:
1826 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1827 * B. Remove the page from i_pages
1828 * C. Return the page to the page allocator
1829 *
1830 * This means that any page may have its reference count temporarily
1831 * increased by a speculative page cache (or fast GUP) lookup as it can
1832 * be allocated by another user before the RCU grace period expires.
1833 * Because the refcount temporarily acquired here may end up being the
1834 * last refcount on the page, any page allocation must be freeable by
1835 * folio_put().
1836 */
1837
44835d20 1838/*
263e721e 1839 * filemap_get_entry - Get a page cache entry.
485bb99b 1840 * @mapping: the address_space to search
a6de4b48 1841 * @index: The page cache index.
0cd6144a 1842 *
bca65eea
MWO
1843 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1844 * it is returned with an increased refcount. If it is a shadow entry
1845 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1846 * it is returned without further action.
485bb99b 1847 *
bca65eea 1848 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1da177e4 1849 */
263e721e 1850void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1da177e4 1851{
a6de4b48 1852 XA_STATE(xas, &mapping->i_pages, index);
bca65eea 1853 struct folio *folio;
1da177e4 1854
a60637c8
NP
1855 rcu_read_lock();
1856repeat:
4c7472c0 1857 xas_reset(&xas);
bca65eea
MWO
1858 folio = xas_load(&xas);
1859 if (xas_retry(&xas, folio))
4c7472c0
MW
1860 goto repeat;
1861 /*
1862 * A shadow entry of a recently evicted page, or a swap entry from
1863 * shmem/tmpfs. Return it without attempting to raise page count.
1864 */
bca65eea 1865 if (!folio || xa_is_value(folio))
4c7472c0 1866 goto out;
83929372 1867
bca65eea 1868 if (!folio_try_get_rcu(folio))
4c7472c0 1869 goto repeat;
83929372 1870
bca65eea
MWO
1871 if (unlikely(folio != xas_reload(&xas))) {
1872 folio_put(folio);
4c7472c0 1873 goto repeat;
a60637c8 1874 }
27d20fdd 1875out:
a60637c8
NP
1876 rcu_read_unlock();
1877
bca65eea 1878 return folio;
1da177e4 1879}
1da177e4 1880
0cd6144a 1881/**
3f0c6a07 1882 * __filemap_get_folio - Find and get a reference to a folio.
2294b32e
MWO
1883 * @mapping: The address_space to search.
1884 * @index: The page index.
3f0c6a07
MWO
1885 * @fgp_flags: %FGP flags modify how the folio is returned.
1886 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1887 *
2294b32e 1888 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1889 *
2294b32e 1890 * @fgp_flags can be zero or more of these flags:
0e056eb5 1891 *
3f0c6a07
MWO
1892 * * %FGP_ACCESSED - The folio will be marked accessed.
1893 * * %FGP_LOCK - The folio is returned locked.
2294b32e 1894 * * %FGP_CREAT - If no page is present then a new page is allocated using
3f0c6a07 1895 * @gfp and added to the page cache and the VM's LRU list.
2294b32e
MWO
1896 * The page is returned locked and with an increased refcount.
1897 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1898 * page is already in cache. If the page was allocated, unlock it before
1899 * returning so the caller can do the same dance.
3f0c6a07
MWO
1900 * * %FGP_WRITE - The page will be written to by the caller.
1901 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1902 * * %FGP_NOWAIT - Don't get blocked by page lock.
b27652d9 1903 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1da177e4 1904 *
2294b32e
MWO
1905 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1906 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1907 *
2457aec6 1908 * If there is a page cache page, it is returned with an increased refcount.
a862f68a 1909 *
3f0c6a07 1910 * Return: The found folio or %NULL otherwise.
1da177e4 1911 */
3f0c6a07
MWO
1912struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1913 int fgp_flags, gfp_t gfp)
1da177e4 1914{
3f0c6a07 1915 struct folio *folio;
2457aec6 1916
1da177e4 1917repeat:
263e721e 1918 folio = filemap_get_entry(mapping, index);
48c9d113 1919 if (xa_is_value(folio))
3f0c6a07 1920 folio = NULL;
3f0c6a07 1921 if (!folio)
2457aec6
MG
1922 goto no_page;
1923
1924 if (fgp_flags & FGP_LOCK) {
1925 if (fgp_flags & FGP_NOWAIT) {
3f0c6a07
MWO
1926 if (!folio_trylock(folio)) {
1927 folio_put(folio);
2457aec6
MG
1928 return NULL;
1929 }
1930 } else {
3f0c6a07 1931 folio_lock(folio);
2457aec6
MG
1932 }
1933
1934 /* Has the page been truncated? */
3f0c6a07
MWO
1935 if (unlikely(folio->mapping != mapping)) {
1936 folio_unlock(folio);
1937 folio_put(folio);
2457aec6
MG
1938 goto repeat;
1939 }
3f0c6a07 1940 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
2457aec6
MG
1941 }
1942
c16eb000 1943 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 1944 folio_mark_accessed(folio);
b9306a79
YS
1945 else if (fgp_flags & FGP_WRITE) {
1946 /* Clear idle flag for buffer write */
3f0c6a07
MWO
1947 if (folio_test_idle(folio))
1948 folio_clear_idle(folio);
b9306a79 1949 }
2457aec6 1950
b27652d9
MWO
1951 if (fgp_flags & FGP_STABLE)
1952 folio_wait_stable(folio);
2457aec6 1953no_page:
3f0c6a07 1954 if (!folio && (fgp_flags & FGP_CREAT)) {
2457aec6 1955 int err;
f56753ac 1956 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
3f0c6a07 1957 gfp |= __GFP_WRITE;
45f87de5 1958 if (fgp_flags & FGP_NOFS)
3f0c6a07 1959 gfp &= ~__GFP_FS;
0dd316ba
JA
1960 if (fgp_flags & FGP_NOWAIT) {
1961 gfp &= ~GFP_KERNEL;
1962 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1963 }
2457aec6 1964
3f0c6a07
MWO
1965 folio = filemap_alloc_folio(gfp, 0);
1966 if (!folio)
eb2be189 1967 return NULL;
2457aec6 1968
a75d4c33 1969 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1970 fgp_flags |= FGP_LOCK;
1971
eb39d618 1972 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1973 if (fgp_flags & FGP_ACCESSED)
3f0c6a07 1974 __folio_set_referenced(folio);
2457aec6 1975
3f0c6a07 1976 err = filemap_add_folio(mapping, folio, index, gfp);
eb2be189 1977 if (unlikely(err)) {
3f0c6a07
MWO
1978 folio_put(folio);
1979 folio = NULL;
eb2be189
NP
1980 if (err == -EEXIST)
1981 goto repeat;
1da177e4 1982 }
a75d4c33
JB
1983
1984 /*
3f0c6a07
MWO
1985 * filemap_add_folio locks the page, and for mmap
1986 * we expect an unlocked page.
a75d4c33 1987 */
3f0c6a07
MWO
1988 if (folio && (fgp_flags & FGP_FOR_MMAP))
1989 folio_unlock(folio);
1da177e4 1990 }
2457aec6 1991
3f0c6a07 1992 return folio;
1da177e4 1993}
3f0c6a07 1994EXPORT_SYMBOL(__filemap_get_folio);
1da177e4 1995
f5e6429a 1996static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
c7bad633
MWO
1997 xa_mark_t mark)
1998{
f5e6429a 1999 struct folio *folio;
c7bad633
MWO
2000
2001retry:
2002 if (mark == XA_PRESENT)
f5e6429a 2003 folio = xas_find(xas, max);
c7bad633 2004 else
f5e6429a 2005 folio = xas_find_marked(xas, max, mark);
c7bad633 2006
f5e6429a 2007 if (xas_retry(xas, folio))
c7bad633
MWO
2008 goto retry;
2009 /*
2010 * A shadow entry of a recently evicted page, a swap
2011 * entry from shmem/tmpfs or a DAX entry. Return it
2012 * without attempting to raise page count.
2013 */
f5e6429a
MWO
2014 if (!folio || xa_is_value(folio))
2015 return folio;
c7bad633 2016
f5e6429a 2017 if (!folio_try_get_rcu(folio))
c7bad633
MWO
2018 goto reset;
2019
f5e6429a
MWO
2020 if (unlikely(folio != xas_reload(xas))) {
2021 folio_put(folio);
c7bad633
MWO
2022 goto reset;
2023 }
2024
f5e6429a 2025 return folio;
c7bad633
MWO
2026reset:
2027 xas_reset(xas);
2028 goto retry;
2029}
2030
0cd6144a
JW
2031/**
2032 * find_get_entries - gang pagecache lookup
2033 * @mapping: The address_space to search
2034 * @start: The starting page cache index
ca122fe4 2035 * @end: The final page index (inclusive).
0e499ed3 2036 * @fbatch: Where the resulting entries are placed.
0cd6144a
JW
2037 * @indices: The cache indices corresponding to the entries in @entries
2038 *
cf2039af 2039 * find_get_entries() will search for and return a batch of entries in
0e499ed3
MWO
2040 * the mapping. The entries are placed in @fbatch. find_get_entries()
2041 * takes a reference on any actual folios it returns.
0cd6144a 2042 *
0e499ed3
MWO
2043 * The entries have ascending indexes. The indices may not be consecutive
2044 * due to not-present entries or large folios.
0cd6144a 2045 *
0e499ed3 2046 * Any shadow entries of evicted folios, or swap entries from
139b6a6f 2047 * shmem/tmpfs, are included in the returned array.
0cd6144a 2048 *
0e499ed3 2049 * Return: The number of entries which were found.
0cd6144a 2050 */
9fb6beea 2051unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
0e499ed3 2052 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
0cd6144a 2053{
9fb6beea 2054 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2055 struct folio *folio;
0cd6144a
JW
2056
2057 rcu_read_lock();
f5e6429a 2058 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
0e499ed3
MWO
2059 indices[fbatch->nr] = xas.xa_index;
2060 if (!folio_batch_add(fbatch, folio))
0cd6144a
JW
2061 break;
2062 }
2063 rcu_read_unlock();
cf2039af 2064
9fb6beea
VMO
2065 if (folio_batch_count(fbatch)) {
2066 unsigned long nr = 1;
2067 int idx = folio_batch_count(fbatch) - 1;
2068
2069 folio = fbatch->folios[idx];
2070 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2071 nr = folio_nr_pages(folio);
2072 *start = indices[idx] + nr;
2073 }
0e499ed3 2074 return folio_batch_count(fbatch);
0cd6144a
JW
2075}
2076
5c211ba2
MWO
2077/**
2078 * find_lock_entries - Find a batch of pagecache entries.
2079 * @mapping: The address_space to search.
2080 * @start: The starting page cache index.
2081 * @end: The final page index (inclusive).
51dcbdac
MWO
2082 * @fbatch: Where the resulting entries are placed.
2083 * @indices: The cache indices of the entries in @fbatch.
5c211ba2
MWO
2084 *
2085 * find_lock_entries() will return a batch of entries from @mapping.
f5e6429a
MWO
2086 * Swap, shadow and DAX entries are included. Folios are returned
2087 * locked and with an incremented refcount. Folios which are locked
2088 * by somebody else or under writeback are skipped. Folios which are
2089 * partially outside the range are not returned.
5c211ba2
MWO
2090 *
2091 * The entries have ascending indexes. The indices may not be consecutive
f5e6429a
MWO
2092 * due to not-present entries, large folios, folios which could not be
2093 * locked or folios under writeback.
5c211ba2
MWO
2094 *
2095 * Return: The number of entries which were found.
2096 */
3392ca12 2097unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
51dcbdac 2098 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
5c211ba2 2099{
3392ca12 2100 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2101 struct folio *folio;
5c211ba2
MWO
2102
2103 rcu_read_lock();
f5e6429a
MWO
2104 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2105 if (!xa_is_value(folio)) {
3392ca12 2106 if (folio->index < *start)
5c211ba2 2107 goto put;
f5e6429a 2108 if (folio->index + folio_nr_pages(folio) - 1 > end)
5c211ba2 2109 goto put;
f5e6429a 2110 if (!folio_trylock(folio))
5c211ba2 2111 goto put;
f5e6429a
MWO
2112 if (folio->mapping != mapping ||
2113 folio_test_writeback(folio))
5c211ba2 2114 goto unlock;
f5e6429a
MWO
2115 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2116 folio);
5c211ba2 2117 }
51dcbdac
MWO
2118 indices[fbatch->nr] = xas.xa_index;
2119 if (!folio_batch_add(fbatch, folio))
5c211ba2 2120 break;
6b24ca4a 2121 continue;
5c211ba2 2122unlock:
f5e6429a 2123 folio_unlock(folio);
5c211ba2 2124put:
f5e6429a 2125 folio_put(folio);
5c211ba2
MWO
2126 }
2127 rcu_read_unlock();
2128
3392ca12
VMO
2129 if (folio_batch_count(fbatch)) {
2130 unsigned long nr = 1;
2131 int idx = folio_batch_count(fbatch) - 1;
2132
2133 folio = fbatch->folios[idx];
2134 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2135 nr = folio_nr_pages(folio);
2136 *start = indices[idx] + nr;
2137 }
51dcbdac 2138 return folio_batch_count(fbatch);
5c211ba2
MWO
2139}
2140
1da177e4 2141/**
be0ced5e 2142 * filemap_get_folios - Get a batch of folios
1da177e4
LT
2143 * @mapping: The address_space to search
2144 * @start: The starting page index
b947cee4 2145 * @end: The final page index (inclusive)
be0ced5e 2146 * @fbatch: The batch to fill.
1da177e4 2147 *
be0ced5e
MWO
2148 * Search for and return a batch of folios in the mapping starting at
2149 * index @start and up to index @end (inclusive). The folios are returned
2150 * in @fbatch with an elevated reference count.
1da177e4 2151 *
be0ced5e
MWO
2152 * The first folio may start before @start; if it does, it will contain
2153 * @start. The final folio may extend beyond @end; if it does, it will
2154 * contain @end. The folios have ascending indices. There may be gaps
2155 * between the folios if there are indices which have no folio in the
2156 * page cache. If folios are added to or removed from the page cache
2157 * while this is running, they may or may not be found by this call.
1da177e4 2158 *
be0ced5e
MWO
2159 * Return: The number of folios which were found.
2160 * We also update @start to index the next folio for the traversal.
1da177e4 2161 */
be0ced5e
MWO
2162unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2163 pgoff_t end, struct folio_batch *fbatch)
1da177e4 2164{
fd1b3cee 2165 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2166 struct folio *folio;
a60637c8
NP
2167
2168 rcu_read_lock();
be0ced5e 2169 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
fd1b3cee 2170 /* Skip over shadow, swap and DAX entries */
f5e6429a 2171 if (xa_is_value(folio))
8079b1c8 2172 continue;
be0ced5e
MWO
2173 if (!folio_batch_add(fbatch, folio)) {
2174 unsigned long nr = folio_nr_pages(folio);
a60637c8 2175
be0ced5e
MWO
2176 if (folio_test_hugetlb(folio))
2177 nr = 1;
2178 *start = folio->index + nr;
b947cee4
JK
2179 goto out;
2180 }
a60637c8 2181 }
5b280c0c 2182
b947cee4
JK
2183 /*
2184 * We come here when there is no page beyond @end. We take care to not
2185 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 2186 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
2187 * already broken anyway.
2188 */
2189 if (end == (pgoff_t)-1)
2190 *start = (pgoff_t)-1;
2191 else
2192 *start = end + 1;
2193out:
a60637c8 2194 rcu_read_unlock();
d72dc8a2 2195
be0ced5e
MWO
2196 return folio_batch_count(fbatch);
2197}
2198EXPORT_SYMBOL(filemap_get_folios);
2199
6b24ca4a
MWO
2200static inline
2201bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2202{
2203 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2204 return false;
2205 if (index >= max)
2206 return false;
2207 return index < folio->index + folio_nr_pages(folio) - 1;
1da177e4
LT
2208}
2209
ebf43500 2210/**
35b47146 2211 * filemap_get_folios_contig - Get a batch of contiguous folios
ebf43500 2212 * @mapping: The address_space to search
35b47146
VMO
2213 * @start: The starting page index
2214 * @end: The final page index (inclusive)
2215 * @fbatch: The batch to fill
ebf43500 2216 *
35b47146
VMO
2217 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2218 * except the returned folios are guaranteed to be contiguous. This may
2219 * not return all contiguous folios if the batch gets filled up.
ebf43500 2220 *
35b47146
VMO
2221 * Return: The number of folios found.
2222 * Also update @start to be positioned for traversal of the next folio.
ebf43500 2223 */
35b47146
VMO
2224
2225unsigned filemap_get_folios_contig(struct address_space *mapping,
2226 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
ebf43500 2227{
35b47146
VMO
2228 XA_STATE(xas, &mapping->i_pages, *start);
2229 unsigned long nr;
e1c37722 2230 struct folio *folio;
a60637c8
NP
2231
2232 rcu_read_lock();
35b47146
VMO
2233
2234 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2235 folio = xas_next(&xas)) {
e1c37722 2236 if (xas_retry(&xas, folio))
3ece58a2
MW
2237 continue;
2238 /*
2239 * If the entry has been swapped out, we can stop looking.
2240 * No current caller is looking for DAX entries.
2241 */
e1c37722 2242 if (xa_is_value(folio))
35b47146 2243 goto update_start;
ebf43500 2244
e1c37722 2245 if (!folio_try_get_rcu(folio))
3ece58a2 2246 goto retry;
83929372 2247
e1c37722 2248 if (unlikely(folio != xas_reload(&xas)))
35b47146 2249 goto put_folio;
a60637c8 2250
35b47146
VMO
2251 if (!folio_batch_add(fbatch, folio)) {
2252 nr = folio_nr_pages(folio);
2253
2254 if (folio_test_hugetlb(folio))
2255 nr = 1;
2256 *start = folio->index + nr;
2257 goto out;
6b24ca4a 2258 }
3ece58a2 2259 continue;
35b47146 2260put_folio:
e1c37722 2261 folio_put(folio);
35b47146 2262
3ece58a2
MW
2263retry:
2264 xas_reset(&xas);
ebf43500 2265 }
35b47146
VMO
2266
2267update_start:
2268 nr = folio_batch_count(fbatch);
2269
2270 if (nr) {
2271 folio = fbatch->folios[nr - 1];
2272 if (folio_test_hugetlb(folio))
2273 *start = folio->index + 1;
2274 else
2275 *start = folio->index + folio_nr_pages(folio);
2276 }
2277out:
a60637c8 2278 rcu_read_unlock();
35b47146 2279 return folio_batch_count(fbatch);
ebf43500 2280}
35b47146 2281EXPORT_SYMBOL(filemap_get_folios_contig);
ebf43500 2282
485bb99b 2283/**
247f9e1f
VMO
2284 * filemap_get_folios_tag - Get a batch of folios matching @tag
2285 * @mapping: The address_space to search
2286 * @start: The starting page index
2287 * @end: The final page index (inclusive)
2288 * @tag: The tag index
2289 * @fbatch: The batch to fill
485bb99b 2290 *
247f9e1f 2291 * Same as filemap_get_folios(), but only returning folios tagged with @tag.
a862f68a 2292 *
247f9e1f
VMO
2293 * Return: The number of folios found.
2294 * Also update @start to index the next folio for traversal.
1da177e4 2295 */
247f9e1f
VMO
2296unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2297 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
1da177e4 2298{
247f9e1f 2299 XA_STATE(xas, &mapping->i_pages, *start);
f5e6429a 2300 struct folio *folio;
a60637c8
NP
2301
2302 rcu_read_lock();
247f9e1f 2303 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
a6906972
MW
2304 /*
2305 * Shadow entries should never be tagged, but this iteration
2306 * is lockless so there is a window for page reclaim to evict
247f9e1f 2307 * a page we saw tagged. Skip over it.
a6906972 2308 */
f5e6429a 2309 if (xa_is_value(folio))
139b6a6f 2310 continue;
247f9e1f
VMO
2311 if (!folio_batch_add(fbatch, folio)) {
2312 unsigned long nr = folio_nr_pages(folio);
a60637c8 2313
247f9e1f
VMO
2314 if (folio_test_hugetlb(folio))
2315 nr = 1;
2316 *start = folio->index + nr;
72b045ae
JK
2317 goto out;
2318 }
a60637c8 2319 }
72b045ae 2320 /*
247f9e1f
VMO
2321 * We come here when there is no page beyond @end. We take care to not
2322 * overflow the index @start as it confuses some of the callers. This
2323 * breaks the iteration when there is a page at index -1 but that is
2324 * already broke anyway.
72b045ae
JK
2325 */
2326 if (end == (pgoff_t)-1)
247f9e1f 2327 *start = (pgoff_t)-1;
72b045ae 2328 else
247f9e1f 2329 *start = end + 1;
72b045ae 2330out:
a60637c8 2331 rcu_read_unlock();
1da177e4 2332
247f9e1f 2333 return folio_batch_count(fbatch);
1da177e4 2334}
247f9e1f 2335EXPORT_SYMBOL(filemap_get_folios_tag);
1da177e4 2336
76d42bd9
WF
2337/*
2338 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2339 * a _large_ part of the i/o request. Imagine the worst scenario:
2340 *
2341 * ---R__________________________________________B__________
2342 * ^ reading here ^ bad block(assume 4k)
2343 *
2344 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2345 * => failing the whole request => read(R) => read(R+1) =>
2346 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2347 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2348 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2349 *
2350 * It is going insane. Fix it by quickly scaling down the readahead size.
2351 */
0f8e2db4 2352static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 2353{
76d42bd9 2354 ra->ra_pages /= 4;
76d42bd9
WF
2355}
2356
cbd59c48 2357/*
25d6a23e 2358 * filemap_get_read_batch - Get a batch of folios for read
cbd59c48 2359 *
25d6a23e
MWO
2360 * Get a batch of folios which represent a contiguous range of bytes in
2361 * the file. No exceptional entries will be returned. If @index is in
2362 * the middle of a folio, the entire folio will be returned. The last
2363 * folio in the batch may have the readahead flag set or the uptodate flag
2364 * clear so that the caller can take the appropriate action.
cbd59c48
MWO
2365 */
2366static void filemap_get_read_batch(struct address_space *mapping,
25d6a23e 2367 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
cbd59c48
MWO
2368{
2369 XA_STATE(xas, &mapping->i_pages, index);
bdb72932 2370 struct folio *folio;
cbd59c48
MWO
2371
2372 rcu_read_lock();
bdb72932
MWO
2373 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2374 if (xas_retry(&xas, folio))
cbd59c48 2375 continue;
bdb72932 2376 if (xas.xa_index > max || xa_is_value(folio))
cbd59c48 2377 break;
cb995f4e
MWO
2378 if (xa_is_sibling(folio))
2379 break;
bdb72932 2380 if (!folio_try_get_rcu(folio))
cbd59c48
MWO
2381 goto retry;
2382
bdb72932 2383 if (unlikely(folio != xas_reload(&xas)))
25d6a23e 2384 goto put_folio;
cbd59c48 2385
25d6a23e 2386 if (!folio_batch_add(fbatch, folio))
cbd59c48 2387 break;
bdb72932 2388 if (!folio_test_uptodate(folio))
cbd59c48 2389 break;
bdb72932 2390 if (folio_test_readahead(folio))
cbd59c48 2391 break;
6b24ca4a 2392 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
cbd59c48 2393 continue;
25d6a23e 2394put_folio:
bdb72932 2395 folio_put(folio);
cbd59c48
MWO
2396retry:
2397 xas_reset(&xas);
2398 }
2399 rcu_read_unlock();
2400}
2401
290e1a32 2402static int filemap_read_folio(struct file *file, filler_t filler,
9d427b4e 2403 struct folio *folio)
723ef24b 2404{
17604240
CH
2405 bool workingset = folio_test_workingset(folio);
2406 unsigned long pflags;
723ef24b
KO
2407 int error;
2408
723ef24b 2409 /*
68430303 2410 * A previous I/O error may have been due to temporary failures,
7e0a1265 2411 * eg. multipath errors. PG_error will be set again if read_folio
68430303 2412 * fails.
723ef24b 2413 */
9d427b4e 2414 folio_clear_error(folio);
17604240 2415
723ef24b 2416 /* Start the actual read. The read will unlock the page. */
17604240
CH
2417 if (unlikely(workingset))
2418 psi_memstall_enter(&pflags);
290e1a32 2419 error = filler(file, folio);
17604240
CH
2420 if (unlikely(workingset))
2421 psi_memstall_leave(&pflags);
68430303
MWO
2422 if (error)
2423 return error;
723ef24b 2424
9d427b4e 2425 error = folio_wait_locked_killable(folio);
68430303
MWO
2426 if (error)
2427 return error;
9d427b4e 2428 if (folio_test_uptodate(folio))
aa1ec2f6 2429 return 0;
290e1a32
MWO
2430 if (file)
2431 shrink_readahead_size_eio(&file->f_ra);
aa1ec2f6 2432 return -EIO;
723ef24b
KO
2433}
2434
fce70da3 2435static bool filemap_range_uptodate(struct address_space *mapping,
dd5b9d00
DH
2436 loff_t pos, size_t count, struct folio *folio,
2437 bool need_uptodate)
fce70da3 2438{
2fa4eeb8 2439 if (folio_test_uptodate(folio))
fce70da3
MWO
2440 return true;
2441 /* pipes can't handle partially uptodate pages */
dd5b9d00 2442 if (need_uptodate)
fce70da3
MWO
2443 return false;
2444 if (!mapping->a_ops->is_partially_uptodate)
2445 return false;
2fa4eeb8 2446 if (mapping->host->i_blkbits >= folio_shift(folio))
fce70da3
MWO
2447 return false;
2448
2fa4eeb8
MWO
2449 if (folio_pos(folio) > pos) {
2450 count -= folio_pos(folio) - pos;
fce70da3
MWO
2451 pos = 0;
2452 } else {
2fa4eeb8 2453 pos -= folio_pos(folio);
fce70da3
MWO
2454 }
2455
2e7e80f7 2456 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
fce70da3
MWO
2457}
2458
4612aeef 2459static int filemap_update_page(struct kiocb *iocb,
dd5b9d00
DH
2460 struct address_space *mapping, size_t count,
2461 struct folio *folio, bool need_uptodate)
723ef24b 2462{
723ef24b
KO
2463 int error;
2464
730633f0
JK
2465 if (iocb->ki_flags & IOCB_NOWAIT) {
2466 if (!filemap_invalidate_trylock_shared(mapping))
2467 return -EAGAIN;
2468 } else {
2469 filemap_invalidate_lock_shared(mapping);
2470 }
2471
ffdc8dab 2472 if (!folio_trylock(folio)) {
730633f0 2473 error = -EAGAIN;
87d1d7b6 2474 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
730633f0 2475 goto unlock_mapping;
87d1d7b6 2476 if (!(iocb->ki_flags & IOCB_WAITQ)) {
730633f0 2477 filemap_invalidate_unlock_shared(mapping);
9f2b04a2
MWO
2478 /*
2479 * This is where we usually end up waiting for a
2480 * previously submitted readahead to finish.
2481 */
2482 folio_put_wait_locked(folio, TASK_KILLABLE);
4612aeef 2483 return AOP_TRUNCATED_PAGE;
bd8a1f36 2484 }
ffdc8dab 2485 error = __folio_lock_async(folio, iocb->ki_waitq);
87d1d7b6 2486 if (error)
730633f0 2487 goto unlock_mapping;
723ef24b 2488 }
723ef24b 2489
730633f0 2490 error = AOP_TRUNCATED_PAGE;
ffdc8dab 2491 if (!folio->mapping)
730633f0 2492 goto unlock;
723ef24b 2493
fce70da3 2494 error = 0;
dd5b9d00
DH
2495 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2496 need_uptodate))
fce70da3
MWO
2497 goto unlock;
2498
2499 error = -EAGAIN;
2500 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2501 goto unlock;
2502
290e1a32
MWO
2503 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2504 folio);
730633f0 2505 goto unlock_mapping;
fce70da3 2506unlock:
ffdc8dab 2507 folio_unlock(folio);
730633f0
JK
2508unlock_mapping:
2509 filemap_invalidate_unlock_shared(mapping);
2510 if (error == AOP_TRUNCATED_PAGE)
ffdc8dab 2511 folio_put(folio);
fce70da3 2512 return error;
723ef24b
KO
2513}
2514
a5d4ad09 2515static int filemap_create_folio(struct file *file,
f253e185 2516 struct address_space *mapping, pgoff_t index,
25d6a23e 2517 struct folio_batch *fbatch)
723ef24b 2518{
a5d4ad09 2519 struct folio *folio;
723ef24b
KO
2520 int error;
2521
a5d4ad09
MWO
2522 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2523 if (!folio)
f253e185 2524 return -ENOMEM;
723ef24b 2525
730633f0 2526 /*
a5d4ad09
MWO
2527 * Protect against truncate / hole punch. Grabbing invalidate_lock
2528 * here assures we cannot instantiate and bring uptodate new
2529 * pagecache folios after evicting page cache during truncate
2530 * and before actually freeing blocks. Note that we could
2531 * release invalidate_lock after inserting the folio into
2532 * the page cache as the locked folio would then be enough to
2533 * synchronize with hole punching. But there are code paths
2534 * such as filemap_update_page() filling in partially uptodate
704528d8 2535 * pages or ->readahead() that need to hold invalidate_lock
a5d4ad09
MWO
2536 * while mapping blocks for IO so let's hold the lock here as
2537 * well to keep locking rules simple.
730633f0
JK
2538 */
2539 filemap_invalidate_lock_shared(mapping);
a5d4ad09 2540 error = filemap_add_folio(mapping, folio, index,
f253e185
MWO
2541 mapping_gfp_constraint(mapping, GFP_KERNEL));
2542 if (error == -EEXIST)
2543 error = AOP_TRUNCATED_PAGE;
2544 if (error)
2545 goto error;
2546
290e1a32 2547 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
f253e185
MWO
2548 if (error)
2549 goto error;
2550
730633f0 2551 filemap_invalidate_unlock_shared(mapping);
25d6a23e 2552 folio_batch_add(fbatch, folio);
f253e185
MWO
2553 return 0;
2554error:
730633f0 2555 filemap_invalidate_unlock_shared(mapping);
a5d4ad09 2556 folio_put(folio);
f253e185 2557 return error;
723ef24b
KO
2558}
2559
5963fe03 2560static int filemap_readahead(struct kiocb *iocb, struct file *file,
65bca53b 2561 struct address_space *mapping, struct folio *folio,
5963fe03
MWO
2562 pgoff_t last_index)
2563{
65bca53b
MWO
2564 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2565
5963fe03
MWO
2566 if (iocb->ki_flags & IOCB_NOIO)
2567 return -EAGAIN;
65bca53b 2568 page_cache_async_ra(&ractl, folio, last_index - folio->index);
5963fe03
MWO
2569 return 0;
2570}
2571
dd5b9d00
DH
2572static int filemap_get_pages(struct kiocb *iocb, size_t count,
2573 struct folio_batch *fbatch, bool need_uptodate)
06c04442
KO
2574{
2575 struct file *filp = iocb->ki_filp;
2576 struct address_space *mapping = filp->f_mapping;
2577 struct file_ra_state *ra = &filp->f_ra;
2578 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
cbd59c48 2579 pgoff_t last_index;
65bca53b 2580 struct folio *folio;
cbd59c48 2581 int err = 0;
06c04442 2582
5956592c 2583 /* "last_index" is the index of the page beyond the end of the read */
dd5b9d00 2584 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2642fca6 2585retry:
06c04442
KO
2586 if (fatal_signal_pending(current))
2587 return -EINTR;
2588
5956592c 2589 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
25d6a23e 2590 if (!folio_batch_count(fbatch)) {
2642fca6
MWO
2591 if (iocb->ki_flags & IOCB_NOIO)
2592 return -EAGAIN;
2593 page_cache_sync_readahead(mapping, ra, filp, index,
2594 last_index - index);
5956592c 2595 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2642fca6 2596 }
25d6a23e 2597 if (!folio_batch_count(fbatch)) {
f253e185
MWO
2598 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2599 return -EAGAIN;
a5d4ad09 2600 err = filemap_create_folio(filp, mapping,
25d6a23e 2601 iocb->ki_pos >> PAGE_SHIFT, fbatch);
f253e185 2602 if (err == AOP_TRUNCATED_PAGE)
2642fca6 2603 goto retry;
f253e185
MWO
2604 return err;
2605 }
06c04442 2606
25d6a23e 2607 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
65bca53b
MWO
2608 if (folio_test_readahead(folio)) {
2609 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2642fca6
MWO
2610 if (err)
2611 goto err;
2612 }
65bca53b 2613 if (!folio_test_uptodate(folio)) {
25d6a23e
MWO
2614 if ((iocb->ki_flags & IOCB_WAITQ) &&
2615 folio_batch_count(fbatch) > 1)
2642fca6 2616 iocb->ki_flags |= IOCB_NOWAIT;
dd5b9d00
DH
2617 err = filemap_update_page(iocb, mapping, count, folio,
2618 need_uptodate);
2642fca6
MWO
2619 if (err)
2620 goto err;
06c04442
KO
2621 }
2622
2642fca6 2623 return 0;
cbd59c48 2624err:
2642fca6 2625 if (err < 0)
65bca53b 2626 folio_put(folio);
25d6a23e 2627 if (likely(--fbatch->nr))
ff993ba1 2628 return 0;
4612aeef 2629 if (err == AOP_TRUNCATED_PAGE)
2642fca6
MWO
2630 goto retry;
2631 return err;
06c04442
KO
2632}
2633
5ccc944d
MWO
2634static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2635{
2636 unsigned int shift = folio_shift(folio);
2637
2638 return (pos1 >> shift == pos2 >> shift);
2639}
2640
485bb99b 2641/**
87fa0f3e
CH
2642 * filemap_read - Read data from the page cache.
2643 * @iocb: The iocb to read.
2644 * @iter: Destination for the data.
2645 * @already_read: Number of bytes already read by the caller.
485bb99b 2646 *
87fa0f3e 2647 * Copies data from the page cache. If the data is not currently present,
7e0a1265 2648 * uses the readahead and read_folio address_space operations to fetch it.
1da177e4 2649 *
87fa0f3e
CH
2650 * Return: Total number of bytes copied, including those already read by
2651 * the caller. If an error happens before any bytes are copied, returns
2652 * a negative error number.
1da177e4 2653 */
87fa0f3e
CH
2654ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2655 ssize_t already_read)
1da177e4 2656{
47c27bc4 2657 struct file *filp = iocb->ki_filp;
06c04442 2658 struct file_ra_state *ra = &filp->f_ra;
36e78914 2659 struct address_space *mapping = filp->f_mapping;
1da177e4 2660 struct inode *inode = mapping->host;
25d6a23e 2661 struct folio_batch fbatch;
ff993ba1 2662 int i, error = 0;
06c04442
KO
2663 bool writably_mapped;
2664 loff_t isize, end_offset;
1da177e4 2665
723ef24b 2666 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
d05c5f7b 2667 return 0;
3644e2d2
KO
2668 if (unlikely(!iov_iter_count(iter)))
2669 return 0;
2670
c2a9737f 2671 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
25d6a23e 2672 folio_batch_init(&fbatch);
c2a9737f 2673
06c04442 2674 do {
1da177e4 2675 cond_resched();
5abf186a 2676
723ef24b 2677 /*
06c04442
KO
2678 * If we've already successfully copied some data, then we
2679 * can no longer safely return -EIOCBQUEUED. Hence mark
2680 * an async read NOWAIT at that point.
723ef24b 2681 */
87fa0f3e 2682 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
723ef24b
KO
2683 iocb->ki_flags |= IOCB_NOWAIT;
2684
8c8387ee
DH
2685 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2686 break;
2687
dd5b9d00
DH
2688 error = filemap_get_pages(iocb, iter->count, &fbatch,
2689 iov_iter_is_pipe(iter));
ff993ba1 2690 if (error < 0)
06c04442 2691 break;
1da177e4 2692
06c04442
KO
2693 /*
2694 * i_size must be checked after we know the pages are Uptodate.
2695 *
2696 * Checking i_size after the check allows us to calculate
2697 * the correct value for "nr", which means the zero-filled
2698 * part of the page is not copied back to userspace (unless
2699 * another truncate extends the file - this is desired though).
2700 */
2701 isize = i_size_read(inode);
2702 if (unlikely(iocb->ki_pos >= isize))
25d6a23e 2703 goto put_folios;
06c04442
KO
2704 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2705
06c04442
KO
2706 /*
2707 * Once we start copying data, we don't want to be touching any
2708 * cachelines that might be contended:
2709 */
2710 writably_mapped = mapping_writably_mapped(mapping);
2711
2712 /*
5ccc944d 2713 * When a read accesses the same folio several times, only
06c04442
KO
2714 * mark it as accessed the first time.
2715 */
5ccc944d
MWO
2716 if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1,
2717 fbatch.folios[0]))
25d6a23e 2718 folio_mark_accessed(fbatch.folios[0]);
06c04442 2719
25d6a23e
MWO
2720 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2721 struct folio *folio = fbatch.folios[i];
d996fc7f
MWO
2722 size_t fsize = folio_size(folio);
2723 size_t offset = iocb->ki_pos & (fsize - 1);
cbd59c48 2724 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
d996fc7f 2725 fsize - offset);
cbd59c48 2726 size_t copied;
06c04442 2727
d996fc7f 2728 if (end_offset < folio_pos(folio))
cbd59c48
MWO
2729 break;
2730 if (i > 0)
d996fc7f 2731 folio_mark_accessed(folio);
06c04442 2732 /*
d996fc7f
MWO
2733 * If users can be writing to this folio using arbitrary
2734 * virtual addresses, take care of potential aliasing
2735 * before reading the folio on the kernel side.
06c04442 2736 */
d996fc7f
MWO
2737 if (writably_mapped)
2738 flush_dcache_folio(folio);
06c04442 2739
d996fc7f 2740 copied = copy_folio_to_iter(folio, offset, bytes, iter);
06c04442 2741
87fa0f3e 2742 already_read += copied;
06c04442
KO
2743 iocb->ki_pos += copied;
2744 ra->prev_pos = iocb->ki_pos;
2745
2746 if (copied < bytes) {
2747 error = -EFAULT;
2748 break;
2749 }
1da177e4 2750 }
25d6a23e
MWO
2751put_folios:
2752 for (i = 0; i < folio_batch_count(&fbatch); i++)
2753 folio_put(fbatch.folios[i]);
2754 folio_batch_init(&fbatch);
06c04442 2755 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
1da177e4 2756
0c6aa263 2757 file_accessed(filp);
06c04442 2758
87fa0f3e 2759 return already_read ? already_read : error;
1da177e4 2760}
87fa0f3e 2761EXPORT_SYMBOL_GPL(filemap_read);
1da177e4 2762
485bb99b 2763/**
6abd2322 2764 * generic_file_read_iter - generic filesystem read routine
485bb99b 2765 * @iocb: kernel I/O control block
6abd2322 2766 * @iter: destination for the data read
485bb99b 2767 *
6abd2322 2768 * This is the "read_iter()" routine for all filesystems
1da177e4 2769 * that can use the page cache directly.
41da51bc
AG
2770 *
2771 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2772 * be returned when no data can be read without waiting for I/O requests
2773 * to complete; it doesn't prevent readahead.
2774 *
2775 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2776 * requests shall be made for the read or for readahead. When no data
2777 * can be read, -EAGAIN shall be returned. When readahead would be
2778 * triggered, a partial, possibly empty read shall be returned.
2779 *
a862f68a
MR
2780 * Return:
2781 * * number of bytes copied, even for partial reads
41da51bc 2782 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2783 */
2784ssize_t
ed978a81 2785generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2786{
e7080a43 2787 size_t count = iov_iter_count(iter);
47c27bc4 2788 ssize_t retval = 0;
e7080a43
NS
2789
2790 if (!count)
826ea860 2791 return 0; /* skip atime */
1da177e4 2792
2ba48ce5 2793 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2794 struct file *file = iocb->ki_filp;
ed978a81
AV
2795 struct address_space *mapping = file->f_mapping;
2796 struct inode *inode = mapping->host;
1da177e4 2797
6be96d3a 2798 if (iocb->ki_flags & IOCB_NOWAIT) {
7a60d6d7
JA
2799 if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2800 iocb->ki_pos + count - 1))
6be96d3a
GR
2801 return -EAGAIN;
2802 } else {
2803 retval = filemap_write_and_wait_range(mapping,
2804 iocb->ki_pos,
2805 iocb->ki_pos + count - 1);
2806 if (retval < 0)
826ea860 2807 return retval;
6be96d3a 2808 }
d8d3d94b 2809
0d5b0cf2
CH
2810 file_accessed(file);
2811
5ecda137 2812 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2813 if (retval >= 0) {
c64fb5c7 2814 iocb->ki_pos += retval;
5ecda137 2815 count -= retval;
9fe55eea 2816 }
ab2125df
PB
2817 if (retval != -EIOCBQUEUED)
2818 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2819
9fe55eea
SW
2820 /*
2821 * Btrfs can have a short DIO read if we encounter
2822 * compressed extents, so if there was an error, or if
2823 * we've already read everything we wanted to, or if
2824 * there was a short read because we hit EOF, go ahead
2825 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2826 * the rest of the read. Buffered reads will not work for
2827 * DAX files, so don't bother trying.
9fe55eea 2828 */
61d0017e
JA
2829 if (retval < 0 || !count || IS_DAX(inode))
2830 return retval;
2831 if (iocb->ki_pos >= i_size_read(inode))
826ea860 2832 return retval;
1da177e4
LT
2833 }
2834
826ea860 2835 return filemap_read(iocb, iter, retval);
1da177e4 2836}
ed978a81 2837EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2838
07073eb0
DH
2839/*
2840 * Splice subpages from a folio into a pipe.
2841 */
2842size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2843 struct folio *folio, loff_t fpos, size_t size)
2844{
2845 struct page *page;
2846 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2847
2848 page = folio_page(folio, offset / PAGE_SIZE);
2849 size = min(size, folio_size(folio) - offset);
2850 offset %= PAGE_SIZE;
2851
2852 while (spliced < size &&
2853 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2854 struct pipe_buffer *buf = pipe_head_buf(pipe);
2855 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2856
2857 *buf = (struct pipe_buffer) {
2858 .ops = &page_cache_pipe_buf_ops,
2859 .page = page,
2860 .offset = offset,
2861 .len = part,
2862 };
2863 folio_get(folio);
2864 pipe->head++;
2865 page++;
2866 spliced += part;
2867 offset = 0;
2868 }
2869
2870 return spliced;
2871}
2872
2873/*
2874 * Splice folios from the pagecache of a buffered (ie. non-O_DIRECT) file into
2875 * a pipe.
2876 */
2877ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2878 struct pipe_inode_info *pipe,
2879 size_t len, unsigned int flags)
2880{
2881 struct folio_batch fbatch;
2882 struct kiocb iocb;
2883 size_t total_spliced = 0, used, npages;
2884 loff_t isize, end_offset;
2885 bool writably_mapped;
2886 int i, error = 0;
2887
2888 init_sync_kiocb(&iocb, in);
2889 iocb.ki_pos = *ppos;
2890
2891 /* Work out how much data we can actually add into the pipe */
2892 used = pipe_occupancy(pipe->head, pipe->tail);
2893 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2894 len = min_t(size_t, len, npages * PAGE_SIZE);
2895
2896 folio_batch_init(&fbatch);
2897
2898 do {
2899 cond_resched();
2900
2901 if (*ppos >= i_size_read(file_inode(in)))
2902 break;
2903
2904 iocb.ki_pos = *ppos;
2905 error = filemap_get_pages(&iocb, len, &fbatch, true);
2906 if (error < 0)
2907 break;
2908
2909 /*
2910 * i_size must be checked after we know the pages are Uptodate.
2911 *
2912 * Checking i_size after the check allows us to calculate
2913 * the correct value for "nr", which means the zero-filled
2914 * part of the page is not copied back to userspace (unless
2915 * another truncate extends the file - this is desired though).
2916 */
2917 isize = i_size_read(file_inode(in));
2918 if (unlikely(*ppos >= isize))
2919 break;
2920 end_offset = min_t(loff_t, isize, *ppos + len);
2921
2922 /*
2923 * Once we start copying data, we don't want to be touching any
2924 * cachelines that might be contended:
2925 */
2926 writably_mapped = mapping_writably_mapped(in->f_mapping);
2927
2928 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2929 struct folio *folio = fbatch.folios[i];
2930 size_t n;
2931
2932 if (folio_pos(folio) >= end_offset)
2933 goto out;
2934 folio_mark_accessed(folio);
2935
2936 /*
2937 * If users can be writing to this folio using arbitrary
2938 * virtual addresses, take care of potential aliasing
2939 * before reading the folio on the kernel side.
2940 */
2941 if (writably_mapped)
2942 flush_dcache_folio(folio);
2943
2944 n = min_t(loff_t, len, isize - *ppos);
2945 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2946 if (!n)
2947 goto out;
2948 len -= n;
2949 total_spliced += n;
2950 *ppos += n;
2951 in->f_ra.prev_pos = *ppos;
2952 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2953 goto out;
2954 }
2955
2956 folio_batch_release(&fbatch);
2957 } while (len);
2958
2959out:
2960 folio_batch_release(&fbatch);
2961 file_accessed(in);
2962
2963 return total_spliced ? total_spliced : error;
2964}
7c8e01eb 2965EXPORT_SYMBOL(filemap_splice_read);
07073eb0 2966
f5e6429a
MWO
2967static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2968 struct address_space *mapping, struct folio *folio,
54fa39ac 2969 loff_t start, loff_t end, bool seek_data)
41139aa4 2970{
54fa39ac
MWO
2971 const struct address_space_operations *ops = mapping->a_ops;
2972 size_t offset, bsz = i_blocksize(mapping->host);
2973
f5e6429a 2974 if (xa_is_value(folio) || folio_test_uptodate(folio))
54fa39ac
MWO
2975 return seek_data ? start : end;
2976 if (!ops->is_partially_uptodate)
2977 return seek_data ? end : start;
2978
2979 xas_pause(xas);
2980 rcu_read_unlock();
f5e6429a
MWO
2981 folio_lock(folio);
2982 if (unlikely(folio->mapping != mapping))
54fa39ac
MWO
2983 goto unlock;
2984
f5e6429a 2985 offset = offset_in_folio(folio, start) & ~(bsz - 1);
54fa39ac
MWO
2986
2987 do {
2e7e80f7 2988 if (ops->is_partially_uptodate(folio, offset, bsz) ==
f5e6429a 2989 seek_data)
54fa39ac
MWO
2990 break;
2991 start = (start + bsz) & ~(bsz - 1);
2992 offset += bsz;
f5e6429a 2993 } while (offset < folio_size(folio));
54fa39ac 2994unlock:
f5e6429a 2995 folio_unlock(folio);
54fa39ac
MWO
2996 rcu_read_lock();
2997 return start;
41139aa4
MWO
2998}
2999
f5e6429a 3000static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
41139aa4 3001{
f5e6429a 3002 if (xa_is_value(folio))
41139aa4 3003 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
f5e6429a 3004 return folio_size(folio);
41139aa4
MWO
3005}
3006
3007/**
3008 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3009 * @mapping: Address space to search.
3010 * @start: First byte to consider.
3011 * @end: Limit of search (exclusive).
3012 * @whence: Either SEEK_HOLE or SEEK_DATA.
3013 *
3014 * If the page cache knows which blocks contain holes and which blocks
3015 * contain data, your filesystem can use this function to implement
3016 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3017 * entirely memory-based such as tmpfs, and filesystems which support
3018 * unwritten extents.
3019 *
f0953a1b 3020 * Return: The requested offset on success, or -ENXIO if @whence specifies
41139aa4
MWO
3021 * SEEK_DATA and there is no data after @start. There is an implicit hole
3022 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3023 * and @end contain data.
3024 */
3025loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3026 loff_t end, int whence)
3027{
3028 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
ed98b015 3029 pgoff_t max = (end - 1) >> PAGE_SHIFT;
41139aa4 3030 bool seek_data = (whence == SEEK_DATA);
f5e6429a 3031 struct folio *folio;
41139aa4
MWO
3032
3033 if (end <= start)
3034 return -ENXIO;
3035
3036 rcu_read_lock();
f5e6429a 3037 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
ed98b015 3038 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
f5e6429a 3039 size_t seek_size;
41139aa4
MWO
3040
3041 if (start < pos) {
3042 if (!seek_data)
3043 goto unlock;
3044 start = pos;
3045 }
3046
f5e6429a
MWO
3047 seek_size = seek_folio_size(&xas, folio);
3048 pos = round_up((u64)pos + 1, seek_size);
3049 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
54fa39ac
MWO
3050 seek_data);
3051 if (start < pos)
41139aa4 3052 goto unlock;
ed98b015
HD
3053 if (start >= end)
3054 break;
3055 if (seek_size > PAGE_SIZE)
3056 xas_set(&xas, pos >> PAGE_SHIFT);
f5e6429a
MWO
3057 if (!xa_is_value(folio))
3058 folio_put(folio);
41139aa4 3059 }
41139aa4 3060 if (seek_data)
ed98b015 3061 start = -ENXIO;
41139aa4
MWO
3062unlock:
3063 rcu_read_unlock();
f5e6429a
MWO
3064 if (folio && !xa_is_value(folio))
3065 folio_put(folio);
41139aa4
MWO
3066 if (start > end)
3067 return end;
3068 return start;
3069}
3070
1da177e4 3071#ifdef CONFIG_MMU
1da177e4 3072#define MMAP_LOTSAMISS (100)
6b4c9f44 3073/*
e292e6d6 3074 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44 3075 * @vmf - the vm_fault for this fault.
e292e6d6 3076 * @folio - the folio to lock.
6b4c9f44
JB
3077 * @fpin - the pointer to the file we may pin (or is already pinned).
3078 *
e292e6d6
MWO
3079 * This works similar to lock_folio_or_retry in that it can drop the
3080 * mmap_lock. It differs in that it actually returns the folio locked
3081 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3082 * to drop the mmap_lock then fpin will point to the pinned file and
3083 * needs to be fput()'ed at a later point.
6b4c9f44 3084 */
e292e6d6 3085static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
6b4c9f44
JB
3086 struct file **fpin)
3087{
7c23c782 3088 if (folio_trylock(folio))
6b4c9f44
JB
3089 return 1;
3090
8b0f9fa2
LT
3091 /*
3092 * NOTE! This will make us return with VM_FAULT_RETRY, but with
c1e8d7c6 3093 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
3094 * is supposed to work. We have way too many special cases..
3095 */
6b4c9f44
JB
3096 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3097 return 0;
3098
3099 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3100 if (vmf->flags & FAULT_FLAG_KILLABLE) {
af7f29d9 3101 if (__folio_lock_killable(folio)) {
6b4c9f44 3102 /*
c1e8d7c6 3103 * We didn't have the right flags to drop the mmap_lock,
6b4c9f44
JB
3104 * but all fault_handlers only check for fatal signals
3105 * if we return VM_FAULT_RETRY, so we need to drop the
c1e8d7c6 3106 * mmap_lock here and return 0 if we don't have a fpin.
6b4c9f44
JB
3107 */
3108 if (*fpin == NULL)
d8ed45c5 3109 mmap_read_unlock(vmf->vma->vm_mm);
6b4c9f44
JB
3110 return 0;
3111 }
3112 } else
7c23c782
MWO
3113 __folio_lock(folio);
3114
6b4c9f44
JB
3115 return 1;
3116}
3117
ef00e08e 3118/*
6b4c9f44
JB
3119 * Synchronous readahead happens when we don't even find a page in the page
3120 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3121 * to drop the mmap sem we return the file that was pinned in order for us to do
3122 * that. If we didn't pin a file then we return NULL. The file that is
3123 * returned needs to be fput()'ed when we're done with it.
ef00e08e 3124 */
6b4c9f44 3125static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 3126{
2a1180f1
JB
3127 struct file *file = vmf->vma->vm_file;
3128 struct file_ra_state *ra = &file->f_ra;
ef00e08e 3129 struct address_space *mapping = file->f_mapping;
fcd9ae4f 3130 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
6b4c9f44 3131 struct file *fpin = NULL;
dcfa24ba 3132 unsigned long vm_flags = vmf->vma->vm_flags;
e630bfac 3133 unsigned int mmap_miss;
ef00e08e 3134
4687fdbb
MWO
3135#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3136 /* Use the readahead code, even if readahead is disabled */
dcfa24ba 3137 if (vm_flags & VM_HUGEPAGE) {
4687fdbb
MWO
3138 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3139 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3140 ra->size = HPAGE_PMD_NR;
3141 /*
3142 * Fetch two PMD folios, so we get the chance to actually
3143 * readahead, unless we've been told not to.
3144 */
dcfa24ba 3145 if (!(vm_flags & VM_RAND_READ))
4687fdbb
MWO
3146 ra->size *= 2;
3147 ra->async_size = HPAGE_PMD_NR;
3148 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3149 return fpin;
3150 }
3151#endif
3152
ef00e08e 3153 /* If we don't want any read-ahead, don't bother */
dcfa24ba 3154 if (vm_flags & VM_RAND_READ)
6b4c9f44 3155 return fpin;
275b12bf 3156 if (!ra->ra_pages)
6b4c9f44 3157 return fpin;
ef00e08e 3158
dcfa24ba 3159 if (vm_flags & VM_SEQ_READ) {
6b4c9f44 3160 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
fcd9ae4f 3161 page_cache_sync_ra(&ractl, ra->ra_pages);
6b4c9f44 3162 return fpin;
ef00e08e
LT
3163 }
3164
207d04ba 3165 /* Avoid banging the cache line if not needed */
e630bfac
KS
3166 mmap_miss = READ_ONCE(ra->mmap_miss);
3167 if (mmap_miss < MMAP_LOTSAMISS * 10)
3168 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
ef00e08e
LT
3169
3170 /*
3171 * Do we miss much more than hit in this file? If so,
3172 * stop bothering with read-ahead. It will only hurt.
3173 */
e630bfac 3174 if (mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 3175 return fpin;
ef00e08e 3176
d30a1100
WF
3177 /*
3178 * mmap read-around
3179 */
6b4c9f44 3180 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
db660d46 3181 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
600e19af
RG
3182 ra->size = ra->ra_pages;
3183 ra->async_size = ra->ra_pages / 4;
db660d46 3184 ractl._index = ra->start;
56a4d67c 3185 page_cache_ra_order(&ractl, ra, 0);
6b4c9f44 3186 return fpin;
ef00e08e
LT
3187}
3188
3189/*
3190 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 3191 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 3192 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 3193 */
6b4c9f44 3194static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
79598ced 3195 struct folio *folio)
ef00e08e 3196{
2a1180f1
JB
3197 struct file *file = vmf->vma->vm_file;
3198 struct file_ra_state *ra = &file->f_ra;
79598ced 3199 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
6b4c9f44 3200 struct file *fpin = NULL;
e630bfac 3201 unsigned int mmap_miss;
ef00e08e
LT
3202
3203 /* If we don't want any read-ahead, don't bother */
5c72feee 3204 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 3205 return fpin;
79598ced 3206
e630bfac
KS
3207 mmap_miss = READ_ONCE(ra->mmap_miss);
3208 if (mmap_miss)
3209 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
79598ced
MWO
3210
3211 if (folio_test_readahead(folio)) {
6b4c9f44 3212 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
79598ced 3213 page_cache_async_ra(&ractl, folio, ra->ra_pages);
6b4c9f44
JB
3214 }
3215 return fpin;
ef00e08e
LT
3216}
3217
485bb99b 3218/**
54cb8821 3219 * filemap_fault - read in file data for page fault handling
d0217ac0 3220 * @vmf: struct vm_fault containing details of the fault
485bb99b 3221 *
54cb8821 3222 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
3223 * mapped memory region to read in file data during a page fault.
3224 *
3225 * The goto's are kind of ugly, but this streamlines the normal case of having
3226 * it in the page cache, and handles the special cases reasonably without
3227 * having a lot of duplicated code.
9a95f3cf 3228 *
c1e8d7c6 3229 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 3230 *
c1e8d7c6 3231 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
e292e6d6 3232 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
9a95f3cf 3233 *
c1e8d7c6 3234 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
3235 * has not been released.
3236 *
3237 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
3238 *
3239 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 3240 */
2bcd6454 3241vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
3242{
3243 int error;
11bac800 3244 struct file *file = vmf->vma->vm_file;
6b4c9f44 3245 struct file *fpin = NULL;
1da177e4 3246 struct address_space *mapping = file->f_mapping;
1da177e4 3247 struct inode *inode = mapping->host;
e292e6d6
MWO
3248 pgoff_t max_idx, index = vmf->pgoff;
3249 struct folio *folio;
2bcd6454 3250 vm_fault_t ret = 0;
730633f0 3251 bool mapping_locked = false;
1da177e4 3252
e292e6d6
MWO
3253 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3254 if (unlikely(index >= max_idx))
5307cc1a 3255 return VM_FAULT_SIGBUS;
1da177e4 3256
1da177e4 3257 /*
49426420 3258 * Do we have something in the page cache already?
1da177e4 3259 */
e292e6d6
MWO
3260 folio = filemap_get_folio(mapping, index);
3261 if (likely(folio)) {
1da177e4 3262 /*
730633f0
JK
3263 * We found the page, so try async readahead before waiting for
3264 * the lock.
1da177e4 3265 */
730633f0 3266 if (!(vmf->flags & FAULT_FLAG_TRIED))
79598ced 3267 fpin = do_async_mmap_readahead(vmf, folio);
e292e6d6 3268 if (unlikely(!folio_test_uptodate(folio))) {
730633f0
JK
3269 filemap_invalidate_lock_shared(mapping);
3270 mapping_locked = true;
3271 }
3272 } else {
ef00e08e 3273 /* No page in the page cache at all */
ef00e08e 3274 count_vm_event(PGMAJFAULT);
2262185c 3275 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 3276 ret = VM_FAULT_MAJOR;
6b4c9f44 3277 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 3278retry_find:
730633f0 3279 /*
e292e6d6 3280 * See comment in filemap_create_folio() why we need
730633f0
JK
3281 * invalidate_lock
3282 */
3283 if (!mapping_locked) {
3284 filemap_invalidate_lock_shared(mapping);
3285 mapping_locked = true;
3286 }
e292e6d6 3287 folio = __filemap_get_folio(mapping, index,
a75d4c33
JB
3288 FGP_CREAT|FGP_FOR_MMAP,
3289 vmf->gfp_mask);
e292e6d6 3290 if (!folio) {
6b4c9f44
JB
3291 if (fpin)
3292 goto out_retry;
730633f0 3293 filemap_invalidate_unlock_shared(mapping);
e520e932 3294 return VM_FAULT_OOM;
6b4c9f44 3295 }
1da177e4
LT
3296 }
3297
e292e6d6 3298 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
6b4c9f44 3299 goto out_retry;
b522c94d
ML
3300
3301 /* Did it get truncated? */
e292e6d6
MWO
3302 if (unlikely(folio->mapping != mapping)) {
3303 folio_unlock(folio);
3304 folio_put(folio);
b522c94d
ML
3305 goto retry_find;
3306 }
e292e6d6 3307 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
b522c94d 3308
1da177e4 3309 /*
d00806b1
NP
3310 * We have a locked page in the page cache, now we need to check
3311 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 3312 */
e292e6d6 3313 if (unlikely(!folio_test_uptodate(folio))) {
730633f0
JK
3314 /*
3315 * The page was in cache and uptodate and now it is not.
3316 * Strange but possible since we didn't hold the page lock all
3317 * the time. Let's drop everything get the invalidate lock and
3318 * try again.
3319 */
3320 if (!mapping_locked) {
e292e6d6
MWO
3321 folio_unlock(folio);
3322 folio_put(folio);
730633f0
JK
3323 goto retry_find;
3324 }
1da177e4 3325 goto page_not_uptodate;
730633f0 3326 }
1da177e4 3327
6b4c9f44 3328 /*
c1e8d7c6 3329 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
3330 * time to return to the upper layer and have it re-find the vma and
3331 * redo the fault.
3332 */
3333 if (fpin) {
e292e6d6 3334 folio_unlock(folio);
6b4c9f44
JB
3335 goto out_retry;
3336 }
730633f0
JK
3337 if (mapping_locked)
3338 filemap_invalidate_unlock_shared(mapping);
6b4c9f44 3339
ef00e08e
LT
3340 /*
3341 * Found the page and have a reference on it.
3342 * We must recheck i_size under page lock.
3343 */
e292e6d6
MWO
3344 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3345 if (unlikely(index >= max_idx)) {
3346 folio_unlock(folio);
3347 folio_put(folio);
5307cc1a 3348 return VM_FAULT_SIGBUS;
d00806b1
NP
3349 }
3350
e292e6d6 3351 vmf->page = folio_file_page(folio, index);
83c54070 3352 return ret | VM_FAULT_LOCKED;
1da177e4 3353
1da177e4 3354page_not_uptodate:
1da177e4
LT
3355 /*
3356 * Umm, take care of errors if the page isn't up-to-date.
3357 * Try to re-read it _once_. We do this synchronously,
3358 * because there really aren't any performance issues here
3359 * and we need to check for errors.
3360 */
6b4c9f44 3361 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
290e1a32 3362 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
6b4c9f44
JB
3363 if (fpin)
3364 goto out_retry;
e292e6d6 3365 folio_put(folio);
d00806b1
NP
3366
3367 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 3368 goto retry_find;
730633f0 3369 filemap_invalidate_unlock_shared(mapping);
1da177e4 3370
d0217ac0 3371 return VM_FAULT_SIGBUS;
6b4c9f44
JB
3372
3373out_retry:
3374 /*
c1e8d7c6 3375 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
3376 * re-find the vma and come back and find our hopefully still populated
3377 * page.
3378 */
e292e6d6
MWO
3379 if (folio)
3380 folio_put(folio);
730633f0
JK
3381 if (mapping_locked)
3382 filemap_invalidate_unlock_shared(mapping);
6b4c9f44
JB
3383 if (fpin)
3384 fput(fpin);
3385 return ret | VM_FAULT_RETRY;
54cb8821
NP
3386}
3387EXPORT_SYMBOL(filemap_fault);
3388
8808ecab
MWO
3389static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3390 pgoff_t start)
f1820361 3391{
f9ce0be7
KS
3392 struct mm_struct *mm = vmf->vma->vm_mm;
3393
3394 /* Huge page is mapped? No need to proceed. */
3395 if (pmd_trans_huge(*vmf->pmd)) {
8808ecab
MWO
3396 folio_unlock(folio);
3397 folio_put(folio);
f9ce0be7
KS
3398 return true;
3399 }
3400
8808ecab
MWO
3401 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3402 struct page *page = folio_file_page(folio, start);
e0f43fa5
YS
3403 vm_fault_t ret = do_set_pmd(vmf, page);
3404 if (!ret) {
3405 /* The page is mapped successfully, reference consumed. */
8808ecab 3406 folio_unlock(folio);
e0f43fa5 3407 return true;
f9ce0be7 3408 }
f9ce0be7
KS
3409 }
3410
03c4f204
QZ
3411 if (pmd_none(*vmf->pmd))
3412 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
f9ce0be7
KS
3413
3414 /* See comment in handle_pte_fault() */
3415 if (pmd_devmap_trans_unstable(vmf->pmd)) {
8808ecab
MWO
3416 folio_unlock(folio);
3417 folio_put(folio);
f9ce0be7
KS
3418 return true;
3419 }
3420
3421 return false;
3422}
3423
820b05e9 3424static struct folio *next_uptodate_page(struct folio *folio,
f9ce0be7
KS
3425 struct address_space *mapping,
3426 struct xa_state *xas, pgoff_t end_pgoff)
3427{
3428 unsigned long max_idx;
3429
3430 do {
9184a307 3431 if (!folio)
f9ce0be7 3432 return NULL;
9184a307 3433 if (xas_retry(xas, folio))
f9ce0be7 3434 continue;
9184a307 3435 if (xa_is_value(folio))
f9ce0be7 3436 continue;
9184a307 3437 if (folio_test_locked(folio))
f9ce0be7 3438 continue;
9184a307 3439 if (!folio_try_get_rcu(folio))
f9ce0be7
KS
3440 continue;
3441 /* Has the page moved or been split? */
9184a307 3442 if (unlikely(folio != xas_reload(xas)))
f9ce0be7 3443 goto skip;
9184a307 3444 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
f9ce0be7 3445 goto skip;
9184a307 3446 if (!folio_trylock(folio))
f9ce0be7 3447 goto skip;
9184a307 3448 if (folio->mapping != mapping)
f9ce0be7 3449 goto unlock;
9184a307 3450 if (!folio_test_uptodate(folio))
f9ce0be7
KS
3451 goto unlock;
3452 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3453 if (xas->xa_index >= max_idx)
3454 goto unlock;
820b05e9 3455 return folio;
f9ce0be7 3456unlock:
9184a307 3457 folio_unlock(folio);
f9ce0be7 3458skip:
9184a307
MWO
3459 folio_put(folio);
3460 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
f9ce0be7
KS
3461
3462 return NULL;
3463}
3464
820b05e9 3465static inline struct folio *first_map_page(struct address_space *mapping,
f9ce0be7
KS
3466 struct xa_state *xas,
3467 pgoff_t end_pgoff)
3468{
3469 return next_uptodate_page(xas_find(xas, end_pgoff),
3470 mapping, xas, end_pgoff);
3471}
3472
820b05e9 3473static inline struct folio *next_map_page(struct address_space *mapping,
f9ce0be7
KS
3474 struct xa_state *xas,
3475 pgoff_t end_pgoff)
3476{
3477 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3478 mapping, xas, end_pgoff);
3479}
3480
3481vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3482 pgoff_t start_pgoff, pgoff_t end_pgoff)
3483{
3484 struct vm_area_struct *vma = vmf->vma;
3485 struct file *file = vma->vm_file;
f1820361 3486 struct address_space *mapping = file->f_mapping;
bae473a4 3487 pgoff_t last_pgoff = start_pgoff;
9d3af4b4 3488 unsigned long addr;
070e807c 3489 XA_STATE(xas, &mapping->i_pages, start_pgoff);
820b05e9
MWO
3490 struct folio *folio;
3491 struct page *page;
e630bfac 3492 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
f9ce0be7 3493 vm_fault_t ret = 0;
f1820361
KS
3494
3495 rcu_read_lock();
820b05e9
MWO
3496 folio = first_map_page(mapping, &xas, end_pgoff);
3497 if (!folio)
f9ce0be7 3498 goto out;
f1820361 3499
8808ecab 3500 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
f9ce0be7
KS
3501 ret = VM_FAULT_NOPAGE;
3502 goto out;
3503 }
f1820361 3504
9d3af4b4
WD
3505 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3506 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
f9ce0be7 3507 do {
6b24ca4a 3508again:
820b05e9 3509 page = folio_file_page(folio, xas.xa_index);
f9ce0be7 3510 if (PageHWPoison(page))
f1820361
KS
3511 goto unlock;
3512
e630bfac
KS
3513 if (mmap_miss > 0)
3514 mmap_miss--;
7267ec00 3515
9d3af4b4 3516 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
f9ce0be7 3517 vmf->pte += xas.xa_index - last_pgoff;
070e807c 3518 last_pgoff = xas.xa_index;
f9ce0be7 3519
5c041f5d
PX
3520 /*
3521 * NOTE: If there're PTE markers, we'll leave them to be
3522 * handled in the specific fault path, and it'll prohibit the
3523 * fault-around logic.
3524 */
f9ce0be7 3525 if (!pte_none(*vmf->pte))
7267ec00 3526 goto unlock;
f9ce0be7 3527
46bdb427 3528 /* We're about to handle the fault */
9d3af4b4 3529 if (vmf->address == addr)
46bdb427 3530 ret = VM_FAULT_NOPAGE;
46bdb427 3531
9d3af4b4 3532 do_set_pte(vmf, page, addr);
f9ce0be7 3533 /* no need to invalidate: a not-present page won't be cached */
9d3af4b4 3534 update_mmu_cache(vma, addr, vmf->pte);
6b24ca4a
MWO
3535 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3536 xas.xa_index++;
3537 folio_ref_inc(folio);
3538 goto again;
3539 }
820b05e9 3540 folio_unlock(folio);
f9ce0be7 3541 continue;
f1820361 3542unlock:
6b24ca4a
MWO
3543 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3544 xas.xa_index++;
3545 goto again;
3546 }
820b05e9
MWO
3547 folio_unlock(folio);
3548 folio_put(folio);
3549 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
f9ce0be7
KS
3550 pte_unmap_unlock(vmf->pte, vmf->ptl);
3551out:
f1820361 3552 rcu_read_unlock();
e630bfac 3553 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
f9ce0be7 3554 return ret;
f1820361
KS
3555}
3556EXPORT_SYMBOL(filemap_map_pages);
3557
2bcd6454 3558vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62 3559{
5df1a672 3560 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
960ea971 3561 struct folio *folio = page_folio(vmf->page);
2bcd6454 3562 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 3563
5df1a672 3564 sb_start_pagefault(mapping->host->i_sb);
11bac800 3565 file_update_time(vmf->vma->vm_file);
960ea971
MWO
3566 folio_lock(folio);
3567 if (folio->mapping != mapping) {
3568 folio_unlock(folio);
4fcf1c62
JK
3569 ret = VM_FAULT_NOPAGE;
3570 goto out;
3571 }
14da9200 3572 /*
960ea971 3573 * We mark the folio dirty already here so that when freeze is in
14da9200 3574 * progress, we are guaranteed that writeback during freezing will
960ea971 3575 * see the dirty folio and writeprotect it again.
14da9200 3576 */
960ea971
MWO
3577 folio_mark_dirty(folio);
3578 folio_wait_stable(folio);
4fcf1c62 3579out:
5df1a672 3580 sb_end_pagefault(mapping->host->i_sb);
4fcf1c62
JK
3581 return ret;
3582}
4fcf1c62 3583
f0f37e2f 3584const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 3585 .fault = filemap_fault,
f1820361 3586 .map_pages = filemap_map_pages,
4fcf1c62 3587 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
3588};
3589
3590/* This is used for a general mmap of a disk file */
3591
68d68ff6 3592int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3593{
3594 struct address_space *mapping = file->f_mapping;
3595
7e0a1265 3596 if (!mapping->a_ops->read_folio)
1da177e4
LT
3597 return -ENOEXEC;
3598 file_accessed(file);
3599 vma->vm_ops = &generic_file_vm_ops;
3600 return 0;
3601}
1da177e4
LT
3602
3603/*
3604 * This is for filesystems which do not implement ->writepage.
3605 */
3606int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3607{
3608 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3609 return -EINVAL;
3610 return generic_file_mmap(file, vma);
3611}
3612#else
4b96a37d 3613vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 3614{
4b96a37d 3615 return VM_FAULT_SIGBUS;
45397228 3616}
68d68ff6 3617int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3618{
3619 return -ENOSYS;
3620}
68d68ff6 3621int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
3622{
3623 return -ENOSYS;
3624}
3625#endif /* CONFIG_MMU */
3626
45397228 3627EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
3628EXPORT_SYMBOL(generic_file_mmap);
3629EXPORT_SYMBOL(generic_file_readonly_mmap);
3630
539a3322 3631static struct folio *do_read_cache_folio(struct address_space *mapping,
e9b5b23e 3632 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
67f9fd91 3633{
539a3322 3634 struct folio *folio;
1da177e4 3635 int err;
07950008
MWO
3636
3637 if (!filler)
3638 filler = mapping->a_ops->read_folio;
1da177e4 3639repeat:
539a3322
MWO
3640 folio = filemap_get_folio(mapping, index);
3641 if (!folio) {
3642 folio = filemap_alloc_folio(gfp, 0);
3643 if (!folio)
eb2be189 3644 return ERR_PTR(-ENOMEM);
539a3322 3645 err = filemap_add_folio(mapping, folio, index, gfp);
eb2be189 3646 if (unlikely(err)) {
539a3322 3647 folio_put(folio);
eb2be189
NP
3648 if (err == -EEXIST)
3649 goto repeat;
22ecdb4f 3650 /* Presumably ENOMEM for xarray node */
1da177e4
LT
3651 return ERR_PTR(err);
3652 }
32b63529 3653
9bc3e869 3654 goto filler;
32b63529 3655 }
539a3322 3656 if (folio_test_uptodate(folio))
1da177e4
LT
3657 goto out;
3658
81f4c03b
MWO
3659 if (!folio_trylock(folio)) {
3660 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3661 goto repeat;
3662 }
ebded027 3663
81f4c03b 3664 /* Folio was truncated from mapping */
539a3322
MWO
3665 if (!folio->mapping) {
3666 folio_unlock(folio);
3667 folio_put(folio);
32b63529 3668 goto repeat;
1da177e4 3669 }
ebded027
MG
3670
3671 /* Someone else locked and filled the page in a very small window */
539a3322
MWO
3672 if (folio_test_uptodate(folio)) {
3673 folio_unlock(folio);
1da177e4
LT
3674 goto out;
3675 }
faffdfa0 3676
9bc3e869 3677filler:
290e1a32 3678 err = filemap_read_folio(file, filler, folio);
1dfa24a4 3679 if (err) {
9bc3e869 3680 folio_put(folio);
1dfa24a4
MWO
3681 if (err == AOP_TRUNCATED_PAGE)
3682 goto repeat;
9bc3e869
MWO
3683 return ERR_PTR(err);
3684 }
32b63529 3685
c855ff37 3686out:
539a3322
MWO
3687 folio_mark_accessed(folio);
3688 return folio;
6fe6900e 3689}
0531b2aa
LT
3690
3691/**
e9b5b23e
MWO
3692 * read_cache_folio - Read into page cache, fill it if needed.
3693 * @mapping: The address_space to read from.
3694 * @index: The index to read.
3695 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3696 * @file: Passed to filler function, may be NULL if not required.
0531b2aa 3697 *
e9b5b23e
MWO
3698 * Read one page into the page cache. If it succeeds, the folio returned
3699 * will contain @index, but it may not be the first page of the folio.
a862f68a 3700 *
e9b5b23e
MWO
3701 * If the filler function returns an error, it will be returned to the
3702 * caller.
730633f0 3703 *
e9b5b23e
MWO
3704 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3705 * Return: An uptodate folio on success, ERR_PTR() on failure.
0531b2aa 3706 */
539a3322 3707struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
e9b5b23e 3708 filler_t filler, struct file *file)
539a3322 3709{
e9b5b23e 3710 return do_read_cache_folio(mapping, index, filler, file,
539a3322
MWO
3711 mapping_gfp_mask(mapping));
3712}
3713EXPORT_SYMBOL(read_cache_folio);
3714
3e629597
MWO
3715/**
3716 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3717 * @mapping: The address_space for the folio.
3718 * @index: The index that the allocated folio will contain.
3719 * @gfp: The page allocator flags to use if allocating.
3720 *
3721 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3722 * any new memory allocations done using the specified allocation flags.
3723 *
3724 * The most likely error from this function is EIO, but ENOMEM is
3725 * possible and so is EINTR. If ->read_folio returns another error,
3726 * that will be returned to the caller.
3727 *
3728 * The function expects mapping->invalidate_lock to be already held.
3729 *
3730 * Return: Uptodate folio on success, ERR_PTR() on failure.
3731 */
3732struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3733 pgoff_t index, gfp_t gfp)
3734{
3735 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3736}
3737EXPORT_SYMBOL(mapping_read_folio_gfp);
3738
539a3322 3739static struct page *do_read_cache_page(struct address_space *mapping,
e9b5b23e 3740 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
539a3322
MWO
3741{
3742 struct folio *folio;
3743
e9b5b23e 3744 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
539a3322
MWO
3745 if (IS_ERR(folio))
3746 return &folio->page;
3747 return folio_file_page(folio, index);
3748}
3749
67f9fd91 3750struct page *read_cache_page(struct address_space *mapping,
e9b5b23e 3751 pgoff_t index, filler_t *filler, struct file *file)
0531b2aa 3752{
e9b5b23e 3753 return do_read_cache_page(mapping, index, filler, file,
d322a8e5 3754 mapping_gfp_mask(mapping));
0531b2aa 3755}
67f9fd91 3756EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
3757
3758/**
3759 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3760 * @mapping: the page's address_space
3761 * @index: the page index
3762 * @gfp: the page allocator flags to use if allocating
3763 *
3764 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 3765 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
3766 *
3767 * If the page does not get brought uptodate, return -EIO.
a862f68a 3768 *
730633f0
JK
3769 * The function expects mapping->invalidate_lock to be already held.
3770 *
a862f68a 3771 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
3772 */
3773struct page *read_cache_page_gfp(struct address_space *mapping,
3774 pgoff_t index,
3775 gfp_t gfp)
3776{
6c45b454 3777 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
3778}
3779EXPORT_SYMBOL(read_cache_page_gfp);
3780
a92853b6
KK
3781/*
3782 * Warn about a page cache invalidation failure during a direct I/O write.
3783 */
3784void dio_warn_stale_pagecache(struct file *filp)
3785{
3786 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3787 char pathname[128];
a92853b6
KK
3788 char *path;
3789
5df1a672 3790 errseq_set(&filp->f_mapping->wb_err, -EIO);
a92853b6
KK
3791 if (__ratelimit(&_rs)) {
3792 path = file_path(filp, pathname, sizeof(pathname));
3793 if (IS_ERR(path))
3794 path = "(unknown)";
3795 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3796 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3797 current->comm);
3798 }
3799}
3800
1da177e4 3801ssize_t
1af5bb49 3802generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3803{
3804 struct file *file = iocb->ki_filp;
3805 struct address_space *mapping = file->f_mapping;
3806 struct inode *inode = mapping->host;
1af5bb49 3807 loff_t pos = iocb->ki_pos;
1da177e4 3808 ssize_t written;
a969e903
CH
3809 size_t write_len;
3810 pgoff_t end;
1da177e4 3811
0c949334 3812 write_len = iov_iter_count(from);
09cbfeaf 3813 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3814
6be96d3a
GR
3815 if (iocb->ki_flags & IOCB_NOWAIT) {
3816 /* If there are pages to writeback, return */
5df1a672 3817 if (filemap_range_has_page(file->f_mapping, pos,
35f12f0f 3818 pos + write_len - 1))
6be96d3a
GR
3819 return -EAGAIN;
3820 } else {
3821 written = filemap_write_and_wait_range(mapping, pos,
3822 pos + write_len - 1);
3823 if (written)
3824 goto out;
3825 }
a969e903
CH
3826
3827 /*
3828 * After a write we want buffered reads to be sure to go to disk to get
3829 * the new data. We invalidate clean cached page from the region we're
3830 * about to write. We do this *before* the write so that we can return
6ccfa806 3831 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3832 */
55635ba7 3833 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3834 pos >> PAGE_SHIFT, end);
55635ba7
AR
3835 /*
3836 * If a page can not be invalidated, return 0 to fall back
3837 * to buffered write.
3838 */
3839 if (written) {
3840 if (written == -EBUSY)
3841 return 0;
3842 goto out;
a969e903
CH
3843 }
3844
639a93a5 3845 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3846
3847 /*
3848 * Finally, try again to invalidate clean pages which might have been
3849 * cached by non-direct readahead, or faulted in by get_user_pages()
3850 * if the source of the write was an mmap'ed region of the file
3851 * we're writing. Either one is a pretty crazy thing to do,
3852 * so we don't support it 100%. If this invalidation
3853 * fails, tough, the write still worked...
332391a9
LC
3854 *
3855 * Most of the time we do not need this since dio_complete() will do
3856 * the invalidation for us. However there are some file systems that
3857 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3858 * them by removing it completely.
3859 *
9266a140
KK
3860 * Noticeable example is a blkdev_direct_IO().
3861 *
80c1fe90 3862 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3863 */
9266a140
KK
3864 if (written > 0 && mapping->nrpages &&
3865 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3866 dio_warn_stale_pagecache(file);
a969e903 3867
1da177e4 3868 if (written > 0) {
0116651c 3869 pos += written;
639a93a5 3870 write_len -= written;
0116651c
NK
3871 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3872 i_size_write(inode, pos);
1da177e4
LT
3873 mark_inode_dirty(inode);
3874 }
5cb6c6c7 3875 iocb->ki_pos = pos;
1da177e4 3876 }
ab2125df
PB
3877 if (written != -EIOCBQUEUED)
3878 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3879out:
1da177e4
LT
3880 return written;
3881}
3882EXPORT_SYMBOL(generic_file_direct_write);
3883
800ba295 3884ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
afddba49 3885{
800ba295
MWO
3886 struct file *file = iocb->ki_filp;
3887 loff_t pos = iocb->ki_pos;
afddba49
NP
3888 struct address_space *mapping = file->f_mapping;
3889 const struct address_space_operations *a_ops = mapping->a_ops;
3890 long status = 0;
3891 ssize_t written = 0;
674b892e 3892
afddba49
NP
3893 do {
3894 struct page *page;
afddba49
NP
3895 unsigned long offset; /* Offset into pagecache page */
3896 unsigned long bytes; /* Bytes to write to page */
3897 size_t copied; /* Bytes copied from user */
1468c6f4 3898 void *fsdata = NULL;
afddba49 3899
09cbfeaf
KS
3900 offset = (pos & (PAGE_SIZE - 1));
3901 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3902 iov_iter_count(i));
3903
3904again:
00a3d660
LT
3905 /*
3906 * Bring in the user page that we will copy from _first_.
3907 * Otherwise there's a nasty deadlock on copying from the
3908 * same page as we're writing to, without it being marked
3909 * up-to-date.
00a3d660 3910 */
631f871f 3911 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
00a3d660
LT
3912 status = -EFAULT;
3913 break;
3914 }
3915
296291cd
JK
3916 if (fatal_signal_pending(current)) {
3917 status = -EINTR;
3918 break;
3919 }
3920
9d6b0cd7 3921 status = a_ops->write_begin(file, mapping, pos, bytes,
afddba49 3922 &page, &fsdata);
2457aec6 3923 if (unlikely(status < 0))
afddba49
NP
3924 break;
3925
931e80e4 3926 if (mapping_writably_mapped(mapping))
3927 flush_dcache_page(page);
00a3d660 3928
f0b65f39 3929 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
afddba49
NP
3930 flush_dcache_page(page);
3931
3932 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3933 page, fsdata);
f0b65f39
AV
3934 if (unlikely(status != copied)) {
3935 iov_iter_revert(i, copied - max(status, 0L));
3936 if (unlikely(status < 0))
3937 break;
3938 }
afddba49
NP
3939 cond_resched();
3940
bc1bb416 3941 if (unlikely(status == 0)) {
afddba49 3942 /*
bc1bb416
AV
3943 * A short copy made ->write_end() reject the
3944 * thing entirely. Might be memory poisoning
3945 * halfway through, might be a race with munmap,
3946 * might be severe memory pressure.
afddba49 3947 */
bc1bb416
AV
3948 if (copied)
3949 bytes = copied;
afddba49
NP
3950 goto again;
3951 }
f0b65f39
AV
3952 pos += status;
3953 written += status;
afddba49
NP
3954
3955 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3956 } while (iov_iter_count(i));
3957
3958 return written ? written : status;
3959}
3b93f911 3960EXPORT_SYMBOL(generic_perform_write);
1da177e4 3961
e4dd9de3 3962/**
8174202b 3963 * __generic_file_write_iter - write data to a file
e4dd9de3 3964 * @iocb: IO state structure (file, offset, etc.)
8174202b 3965 * @from: iov_iter with data to write
e4dd9de3
JK
3966 *
3967 * This function does all the work needed for actually writing data to a
3968 * file. It does all basic checks, removes SUID from the file, updates
3969 * modification times and calls proper subroutines depending on whether we
3970 * do direct IO or a standard buffered write.
3971 *
9608703e 3972 * It expects i_rwsem to be grabbed unless we work on a block device or similar
e4dd9de3
JK
3973 * object which does not need locking at all.
3974 *
3975 * This function does *not* take care of syncing data in case of O_SYNC write.
3976 * A caller has to handle it. This is mainly due to the fact that we want to
9608703e 3977 * avoid syncing under i_rwsem.
a862f68a
MR
3978 *
3979 * Return:
3980 * * number of bytes written, even for truncated writes
3981 * * negative error code if no data has been written at all
e4dd9de3 3982 */
8174202b 3983ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3984{
3985 struct file *file = iocb->ki_filp;
68d68ff6 3986 struct address_space *mapping = file->f_mapping;
1da177e4 3987 struct inode *inode = mapping->host;
3b93f911 3988 ssize_t written = 0;
1da177e4 3989 ssize_t err;
3b93f911 3990 ssize_t status;
1da177e4 3991
1da177e4 3992 /* We can write back this queue in page reclaim */
de1414a6 3993 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3994 err = file_remove_privs(file);
1da177e4
LT
3995 if (err)
3996 goto out;
3997
c3b2da31
JB
3998 err = file_update_time(file);
3999 if (err)
4000 goto out;
1da177e4 4001
2ba48ce5 4002 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 4003 loff_t pos, endbyte;
fb5527e6 4004
1af5bb49 4005 written = generic_file_direct_write(iocb, from);
1da177e4 4006 /*
fbbbad4b
MW
4007 * If the write stopped short of completing, fall back to
4008 * buffered writes. Some filesystems do this for writes to
4009 * holes, for example. For DAX files, a buffered write will
4010 * not succeed (even if it did, DAX does not handle dirty
4011 * page-cache pages correctly).
1da177e4 4012 */
0b8def9d 4013 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
4014 goto out;
4015
800ba295
MWO
4016 pos = iocb->ki_pos;
4017 status = generic_perform_write(iocb, from);
fb5527e6 4018 /*
3b93f911 4019 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
4020 * then we want to return the number of bytes which were
4021 * direct-written, or the error code if that was zero. Note
4022 * that this differs from normal direct-io semantics, which
4023 * will return -EFOO even if some bytes were written.
4024 */
60bb4529 4025 if (unlikely(status < 0)) {
3b93f911 4026 err = status;
fb5527e6
JM
4027 goto out;
4028 }
fb5527e6
JM
4029 /*
4030 * We need to ensure that the page cache pages are written to
4031 * disk and invalidated to preserve the expected O_DIRECT
4032 * semantics.
4033 */
3b93f911 4034 endbyte = pos + status - 1;
0b8def9d 4035 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 4036 if (err == 0) {
0b8def9d 4037 iocb->ki_pos = endbyte + 1;
3b93f911 4038 written += status;
fb5527e6 4039 invalidate_mapping_pages(mapping,
09cbfeaf
KS
4040 pos >> PAGE_SHIFT,
4041 endbyte >> PAGE_SHIFT);
fb5527e6
JM
4042 } else {
4043 /*
4044 * We don't know how much we wrote, so just return
4045 * the number of bytes which were direct-written
4046 */
4047 }
4048 } else {
800ba295 4049 written = generic_perform_write(iocb, from);
0b8def9d
AV
4050 if (likely(written > 0))
4051 iocb->ki_pos += written;
fb5527e6 4052 }
1da177e4
LT
4053out:
4054 current->backing_dev_info = NULL;
4055 return written ? written : err;
4056}
8174202b 4057EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 4058
e4dd9de3 4059/**
8174202b 4060 * generic_file_write_iter - write data to a file
e4dd9de3 4061 * @iocb: IO state structure
8174202b 4062 * @from: iov_iter with data to write
e4dd9de3 4063 *
8174202b 4064 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3 4065 * filesystems. It takes care of syncing the file in case of O_SYNC file
9608703e 4066 * and acquires i_rwsem as needed.
a862f68a
MR
4067 * Return:
4068 * * negative error code if no data has been written at all of
4069 * vfs_fsync_range() failed for a synchronous write
4070 * * number of bytes written, even for truncated writes
e4dd9de3 4071 */
8174202b 4072ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
4073{
4074 struct file *file = iocb->ki_filp;
148f948b 4075 struct inode *inode = file->f_mapping->host;
1da177e4 4076 ssize_t ret;
1da177e4 4077
5955102c 4078 inode_lock(inode);
3309dd04
AV
4079 ret = generic_write_checks(iocb, from);
4080 if (ret > 0)
5f380c7f 4081 ret = __generic_file_write_iter(iocb, from);
5955102c 4082 inode_unlock(inode);
1da177e4 4083
e2592217
CH
4084 if (ret > 0)
4085 ret = generic_write_sync(iocb, ret);
1da177e4
LT
4086 return ret;
4087}
8174202b 4088EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 4089
cf9a2ae8 4090/**
82c50f8b
MWO
4091 * filemap_release_folio() - Release fs-specific metadata on a folio.
4092 * @folio: The folio which the kernel is trying to free.
4093 * @gfp: Memory allocation flags (and I/O mode).
cf9a2ae8 4094 *
82c50f8b
MWO
4095 * The address_space is trying to release any data attached to a folio
4096 * (presumably at folio->private).
cf9a2ae8 4097 *
82c50f8b
MWO
4098 * This will also be called if the private_2 flag is set on a page,
4099 * indicating that the folio has other metadata associated with it.
266cf658 4100 *
82c50f8b
MWO
4101 * The @gfp argument specifies whether I/O may be performed to release
4102 * this page (__GFP_IO), and whether the call may block
4103 * (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 4104 *
82c50f8b 4105 * Return: %true if the release was successful, otherwise %false.
cf9a2ae8 4106 */
82c50f8b 4107bool filemap_release_folio(struct folio *folio, gfp_t gfp)
cf9a2ae8 4108{
82c50f8b 4109 struct address_space * const mapping = folio->mapping;
cf9a2ae8 4110
82c50f8b
MWO
4111 BUG_ON(!folio_test_locked(folio));
4112 if (folio_test_writeback(folio))
4113 return false;
cf9a2ae8 4114
fa29000b
MWO
4115 if (mapping && mapping->a_ops->release_folio)
4116 return mapping->a_ops->release_folio(folio, gfp);
68189fef 4117 return try_to_free_buffers(folio);
cf9a2ae8 4118}
82c50f8b 4119EXPORT_SYMBOL(filemap_release_folio);
This page took 2.387868 seconds and 4 git commands to generate.