]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
1da177e4 LT |
2 | /* |
3 | * linux/mm/filemap.c | |
4 | * | |
5 | * Copyright (C) 1994-1999 Linus Torvalds | |
6 | */ | |
7 | ||
8 | /* | |
9 | * This file handles the generic file mmap semantics used by | |
10 | * most "normal" filesystems (but you don't /have/ to use this: | |
11 | * the NFS filesystem used to do this differently, for example) | |
12 | */ | |
b95f1b31 | 13 | #include <linux/export.h> |
1da177e4 | 14 | #include <linux/compiler.h> |
f9fe48be | 15 | #include <linux/dax.h> |
1da177e4 | 16 | #include <linux/fs.h> |
3f07c014 | 17 | #include <linux/sched/signal.h> |
c22ce143 | 18 | #include <linux/uaccess.h> |
c59ede7b | 19 | #include <linux/capability.h> |
1da177e4 | 20 | #include <linux/kernel_stat.h> |
5a0e3ad6 | 21 | #include <linux/gfp.h> |
1da177e4 LT |
22 | #include <linux/mm.h> |
23 | #include <linux/swap.h> | |
24 | #include <linux/mman.h> | |
25 | #include <linux/pagemap.h> | |
26 | #include <linux/file.h> | |
27 | #include <linux/uio.h> | |
cfcbfb13 | 28 | #include <linux/error-injection.h> |
1da177e4 LT |
29 | #include <linux/hash.h> |
30 | #include <linux/writeback.h> | |
53253383 | 31 | #include <linux/backing-dev.h> |
1da177e4 LT |
32 | #include <linux/pagevec.h> |
33 | #include <linux/blkdev.h> | |
34 | #include <linux/security.h> | |
44110fe3 | 35 | #include <linux/cpuset.h> |
00501b53 | 36 | #include <linux/hugetlb.h> |
8a9f3ccd | 37 | #include <linux/memcontrol.h> |
c515e1fd | 38 | #include <linux/cleancache.h> |
c7df8ad2 | 39 | #include <linux/shmem_fs.h> |
f1820361 | 40 | #include <linux/rmap.h> |
b1d29ba8 | 41 | #include <linux/delayacct.h> |
eb414681 | 42 | #include <linux/psi.h> |
0f8053a5 NP |
43 | #include "internal.h" |
44 | ||
fe0bfaaf RJ |
45 | #define CREATE_TRACE_POINTS |
46 | #include <trace/events/filemap.h> | |
47 | ||
1da177e4 | 48 | /* |
1da177e4 LT |
49 | * FIXME: remove all knowledge of the buffer layer from the core VM |
50 | */ | |
148f948b | 51 | #include <linux/buffer_head.h> /* for try_to_free_buffers */ |
1da177e4 | 52 | |
1da177e4 LT |
53 | #include <asm/mman.h> |
54 | ||
55 | /* | |
56 | * Shared mappings implemented 30.11.1994. It's not fully working yet, | |
57 | * though. | |
58 | * | |
59 | * Shared mappings now work. 15.8.1995 Bruno. | |
60 | * | |
61 | * finished 'unifying' the page and buffer cache and SMP-threaded the | |
62 | * page-cache, 21.05.1999, Ingo Molnar <[email protected]> | |
63 | * | |
64 | * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <[email protected]> | |
65 | */ | |
66 | ||
67 | /* | |
68 | * Lock ordering: | |
69 | * | |
c8c06efa | 70 | * ->i_mmap_rwsem (truncate_pagecache) |
1da177e4 | 71 | * ->private_lock (__free_pte->__set_page_dirty_buffers) |
5d337b91 | 72 | * ->swap_lock (exclusive_swap_page, others) |
b93b0163 | 73 | * ->i_pages lock |
1da177e4 | 74 | * |
1b1dcc1b | 75 | * ->i_mutex |
c8c06efa | 76 | * ->i_mmap_rwsem (truncate->unmap_mapping_range) |
1da177e4 LT |
77 | * |
78 | * ->mmap_sem | |
c8c06efa | 79 | * ->i_mmap_rwsem |
b8072f09 | 80 | * ->page_table_lock or pte_lock (various, mainly in memory.c) |
b93b0163 | 81 | * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) |
1da177e4 LT |
82 | * |
83 | * ->mmap_sem | |
84 | * ->lock_page (access_process_vm) | |
85 | * | |
ccad2365 | 86 | * ->i_mutex (generic_perform_write) |
82591e6e | 87 | * ->mmap_sem (fault_in_pages_readable->do_page_fault) |
1da177e4 | 88 | * |
f758eeab | 89 | * bdi->wb.list_lock |
a66979ab | 90 | * sb_lock (fs/fs-writeback.c) |
b93b0163 | 91 | * ->i_pages lock (__sync_single_inode) |
1da177e4 | 92 | * |
c8c06efa | 93 | * ->i_mmap_rwsem |
1da177e4 LT |
94 | * ->anon_vma.lock (vma_adjust) |
95 | * | |
96 | * ->anon_vma.lock | |
b8072f09 | 97 | * ->page_table_lock or pte_lock (anon_vma_prepare and various) |
1da177e4 | 98 | * |
b8072f09 | 99 | * ->page_table_lock or pte_lock |
5d337b91 | 100 | * ->swap_lock (try_to_unmap_one) |
1da177e4 | 101 | * ->private_lock (try_to_unmap_one) |
b93b0163 | 102 | * ->i_pages lock (try_to_unmap_one) |
f4b7e272 AR |
103 | * ->pgdat->lru_lock (follow_page->mark_page_accessed) |
104 | * ->pgdat->lru_lock (check_pte_range->isolate_lru_page) | |
1da177e4 | 105 | * ->private_lock (page_remove_rmap->set_page_dirty) |
b93b0163 | 106 | * ->i_pages lock (page_remove_rmap->set_page_dirty) |
f758eeab | 107 | * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) |
250df6ed | 108 | * ->inode->i_lock (page_remove_rmap->set_page_dirty) |
81f8c3a4 | 109 | * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) |
f758eeab | 110 | * bdi.wb->list_lock (zap_pte_range->set_page_dirty) |
250df6ed | 111 | * ->inode->i_lock (zap_pte_range->set_page_dirty) |
1da177e4 LT |
112 | * ->private_lock (zap_pte_range->__set_page_dirty_buffers) |
113 | * | |
c8c06efa | 114 | * ->i_mmap_rwsem |
9a3c531d | 115 | * ->tasklist_lock (memory_failure, collect_procs_ao) |
1da177e4 LT |
116 | */ |
117 | ||
5c024e6a | 118 | static void page_cache_delete(struct address_space *mapping, |
91b0abe3 JW |
119 | struct page *page, void *shadow) |
120 | { | |
5c024e6a MW |
121 | XA_STATE(xas, &mapping->i_pages, page->index); |
122 | unsigned int nr = 1; | |
c70b647d | 123 | |
5c024e6a | 124 | mapping_set_update(&xas, mapping); |
c70b647d | 125 | |
5c024e6a MW |
126 | /* hugetlb pages are represented by a single entry in the xarray */ |
127 | if (!PageHuge(page)) { | |
128 | xas_set_order(&xas, page->index, compound_order(page)); | |
129 | nr = 1U << compound_order(page); | |
130 | } | |
91b0abe3 | 131 | |
83929372 KS |
132 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
133 | VM_BUG_ON_PAGE(PageTail(page), page); | |
134 | VM_BUG_ON_PAGE(nr != 1 && shadow, page); | |
449dd698 | 135 | |
5c024e6a MW |
136 | xas_store(&xas, shadow); |
137 | xas_init_marks(&xas); | |
d3798ae8 | 138 | |
2300638b JK |
139 | page->mapping = NULL; |
140 | /* Leave page->index set: truncation lookup relies upon it */ | |
141 | ||
d3798ae8 JW |
142 | if (shadow) { |
143 | mapping->nrexceptional += nr; | |
144 | /* | |
145 | * Make sure the nrexceptional update is committed before | |
146 | * the nrpages update so that final truncate racing | |
147 | * with reclaim does not see both counters 0 at the | |
148 | * same time and miss a shadow entry. | |
149 | */ | |
150 | smp_wmb(); | |
151 | } | |
152 | mapping->nrpages -= nr; | |
91b0abe3 JW |
153 | } |
154 | ||
5ecc4d85 JK |
155 | static void unaccount_page_cache_page(struct address_space *mapping, |
156 | struct page *page) | |
1da177e4 | 157 | { |
5ecc4d85 | 158 | int nr; |
1da177e4 | 159 | |
c515e1fd DM |
160 | /* |
161 | * if we're uptodate, flush out into the cleancache, otherwise | |
162 | * invalidate any existing cleancache entries. We can't leave | |
163 | * stale data around in the cleancache once our page is gone | |
164 | */ | |
165 | if (PageUptodate(page) && PageMappedToDisk(page)) | |
166 | cleancache_put_page(page); | |
167 | else | |
3167760f | 168 | cleancache_invalidate_page(mapping, page); |
c515e1fd | 169 | |
83929372 | 170 | VM_BUG_ON_PAGE(PageTail(page), page); |
06b241f3 HD |
171 | VM_BUG_ON_PAGE(page_mapped(page), page); |
172 | if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { | |
173 | int mapcount; | |
174 | ||
175 | pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", | |
176 | current->comm, page_to_pfn(page)); | |
177 | dump_page(page, "still mapped when deleted"); | |
178 | dump_stack(); | |
179 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | |
180 | ||
181 | mapcount = page_mapcount(page); | |
182 | if (mapping_exiting(mapping) && | |
183 | page_count(page) >= mapcount + 2) { | |
184 | /* | |
185 | * All vmas have already been torn down, so it's | |
186 | * a good bet that actually the page is unmapped, | |
187 | * and we'd prefer not to leak it: if we're wrong, | |
188 | * some other bad page check should catch it later. | |
189 | */ | |
190 | page_mapcount_reset(page); | |
6d061f9f | 191 | page_ref_sub(page, mapcount); |
06b241f3 HD |
192 | } |
193 | } | |
194 | ||
4165b9b4 | 195 | /* hugetlb pages do not participate in page cache accounting. */ |
5ecc4d85 JK |
196 | if (PageHuge(page)) |
197 | return; | |
09612fa6 | 198 | |
5ecc4d85 JK |
199 | nr = hpage_nr_pages(page); |
200 | ||
201 | __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); | |
202 | if (PageSwapBacked(page)) { | |
203 | __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); | |
204 | if (PageTransHuge(page)) | |
205 | __dec_node_page_state(page, NR_SHMEM_THPS); | |
206 | } else { | |
207 | VM_BUG_ON_PAGE(PageTransHuge(page), page); | |
800d8c63 | 208 | } |
5ecc4d85 JK |
209 | |
210 | /* | |
211 | * At this point page must be either written or cleaned by | |
212 | * truncate. Dirty page here signals a bug and loss of | |
213 | * unwritten data. | |
214 | * | |
215 | * This fixes dirty accounting after removing the page entirely | |
216 | * but leaves PageDirty set: it has no effect for truncated | |
217 | * page and anyway will be cleared before returning page into | |
218 | * buddy allocator. | |
219 | */ | |
220 | if (WARN_ON_ONCE(PageDirty(page))) | |
221 | account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); | |
222 | } | |
223 | ||
224 | /* | |
225 | * Delete a page from the page cache and free it. Caller has to make | |
226 | * sure the page is locked and that nobody else uses it - or that usage | |
b93b0163 | 227 | * is safe. The caller must hold the i_pages lock. |
5ecc4d85 JK |
228 | */ |
229 | void __delete_from_page_cache(struct page *page, void *shadow) | |
230 | { | |
231 | struct address_space *mapping = page->mapping; | |
232 | ||
233 | trace_mm_filemap_delete_from_page_cache(page); | |
234 | ||
235 | unaccount_page_cache_page(mapping, page); | |
5c024e6a | 236 | page_cache_delete(mapping, page, shadow); |
1da177e4 LT |
237 | } |
238 | ||
59c66c5f JK |
239 | static void page_cache_free_page(struct address_space *mapping, |
240 | struct page *page) | |
241 | { | |
242 | void (*freepage)(struct page *); | |
243 | ||
244 | freepage = mapping->a_ops->freepage; | |
245 | if (freepage) | |
246 | freepage(page); | |
247 | ||
248 | if (PageTransHuge(page) && !PageHuge(page)) { | |
249 | page_ref_sub(page, HPAGE_PMD_NR); | |
250 | VM_BUG_ON_PAGE(page_count(page) <= 0, page); | |
251 | } else { | |
252 | put_page(page); | |
253 | } | |
254 | } | |
255 | ||
702cfbf9 MK |
256 | /** |
257 | * delete_from_page_cache - delete page from page cache | |
258 | * @page: the page which the kernel is trying to remove from page cache | |
259 | * | |
260 | * This must be called only on pages that have been verified to be in the page | |
261 | * cache and locked. It will never put the page into the free list, the caller | |
262 | * has a reference on the page. | |
263 | */ | |
264 | void delete_from_page_cache(struct page *page) | |
1da177e4 | 265 | { |
83929372 | 266 | struct address_space *mapping = page_mapping(page); |
c4843a75 | 267 | unsigned long flags; |
1da177e4 | 268 | |
cd7619d6 | 269 | BUG_ON(!PageLocked(page)); |
b93b0163 | 270 | xa_lock_irqsave(&mapping->i_pages, flags); |
62cccb8c | 271 | __delete_from_page_cache(page, NULL); |
b93b0163 | 272 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
6072d13c | 273 | |
59c66c5f | 274 | page_cache_free_page(mapping, page); |
97cecb5a MK |
275 | } |
276 | EXPORT_SYMBOL(delete_from_page_cache); | |
277 | ||
aa65c29c | 278 | /* |
ef8e5717 | 279 | * page_cache_delete_batch - delete several pages from page cache |
aa65c29c JK |
280 | * @mapping: the mapping to which pages belong |
281 | * @pvec: pagevec with pages to delete | |
282 | * | |
b93b0163 | 283 | * The function walks over mapping->i_pages and removes pages passed in @pvec |
69bf4b6b | 284 | * from the mapping. The function expects @pvec to be sorted by page index. |
b93b0163 | 285 | * It tolerates holes in @pvec (mapping entries at those indices are not |
aa65c29c | 286 | * modified). The function expects only THP head pages to be present in the |
69bf4b6b LT |
287 | * @pvec and takes care to delete all corresponding tail pages from the |
288 | * mapping as well. | |
aa65c29c | 289 | * |
b93b0163 | 290 | * The function expects the i_pages lock to be held. |
aa65c29c | 291 | */ |
ef8e5717 | 292 | static void page_cache_delete_batch(struct address_space *mapping, |
aa65c29c JK |
293 | struct pagevec *pvec) |
294 | { | |
ef8e5717 | 295 | XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); |
aa65c29c | 296 | int total_pages = 0; |
69bf4b6b | 297 | int i = 0, tail_pages = 0; |
aa65c29c | 298 | struct page *page; |
aa65c29c | 299 | |
ef8e5717 MW |
300 | mapping_set_update(&xas, mapping); |
301 | xas_for_each(&xas, page, ULONG_MAX) { | |
69bf4b6b | 302 | if (i >= pagevec_count(pvec) && !tail_pages) |
aa65c29c | 303 | break; |
3159f943 | 304 | if (xa_is_value(page)) |
aa65c29c | 305 | continue; |
69bf4b6b LT |
306 | if (!tail_pages) { |
307 | /* | |
308 | * Some page got inserted in our range? Skip it. We | |
309 | * have our pages locked so they are protected from | |
310 | * being removed. | |
311 | */ | |
312 | if (page != pvec->pages[i]) { | |
313 | VM_BUG_ON_PAGE(page->index > | |
314 | pvec->pages[i]->index, page); | |
315 | continue; | |
316 | } | |
317 | WARN_ON_ONCE(!PageLocked(page)); | |
318 | if (PageTransHuge(page) && !PageHuge(page)) | |
319 | tail_pages = HPAGE_PMD_NR - 1; | |
aa65c29c | 320 | page->mapping = NULL; |
69bf4b6b LT |
321 | /* |
322 | * Leave page->index set: truncation lookup relies | |
323 | * upon it | |
324 | */ | |
aa65c29c | 325 | i++; |
69bf4b6b LT |
326 | } else { |
327 | VM_BUG_ON_PAGE(page->index + HPAGE_PMD_NR - tail_pages | |
328 | != pvec->pages[i]->index, page); | |
329 | tail_pages--; | |
330 | } | |
ef8e5717 | 331 | xas_store(&xas, NULL); |
aa65c29c JK |
332 | total_pages++; |
333 | } | |
334 | mapping->nrpages -= total_pages; | |
335 | } | |
336 | ||
337 | void delete_from_page_cache_batch(struct address_space *mapping, | |
338 | struct pagevec *pvec) | |
339 | { | |
340 | int i; | |
341 | unsigned long flags; | |
342 | ||
343 | if (!pagevec_count(pvec)) | |
344 | return; | |
345 | ||
b93b0163 | 346 | xa_lock_irqsave(&mapping->i_pages, flags); |
aa65c29c JK |
347 | for (i = 0; i < pagevec_count(pvec); i++) { |
348 | trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); | |
349 | ||
350 | unaccount_page_cache_page(mapping, pvec->pages[i]); | |
351 | } | |
ef8e5717 | 352 | page_cache_delete_batch(mapping, pvec); |
b93b0163 | 353 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
aa65c29c JK |
354 | |
355 | for (i = 0; i < pagevec_count(pvec); i++) | |
356 | page_cache_free_page(mapping, pvec->pages[i]); | |
357 | } | |
358 | ||
d72d9e2a | 359 | int filemap_check_errors(struct address_space *mapping) |
865ffef3 DM |
360 | { |
361 | int ret = 0; | |
362 | /* Check for outstanding write errors */ | |
7fcbbaf1 JA |
363 | if (test_bit(AS_ENOSPC, &mapping->flags) && |
364 | test_and_clear_bit(AS_ENOSPC, &mapping->flags)) | |
865ffef3 | 365 | ret = -ENOSPC; |
7fcbbaf1 JA |
366 | if (test_bit(AS_EIO, &mapping->flags) && |
367 | test_and_clear_bit(AS_EIO, &mapping->flags)) | |
865ffef3 DM |
368 | ret = -EIO; |
369 | return ret; | |
370 | } | |
d72d9e2a | 371 | EXPORT_SYMBOL(filemap_check_errors); |
865ffef3 | 372 | |
76341cab JL |
373 | static int filemap_check_and_keep_errors(struct address_space *mapping) |
374 | { | |
375 | /* Check for outstanding write errors */ | |
376 | if (test_bit(AS_EIO, &mapping->flags)) | |
377 | return -EIO; | |
378 | if (test_bit(AS_ENOSPC, &mapping->flags)) | |
379 | return -ENOSPC; | |
380 | return 0; | |
381 | } | |
382 | ||
1da177e4 | 383 | /** |
485bb99b | 384 | * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range |
67be2dd1 MW |
385 | * @mapping: address space structure to write |
386 | * @start: offset in bytes where the range starts | |
469eb4d0 | 387 | * @end: offset in bytes where the range ends (inclusive) |
67be2dd1 | 388 | * @sync_mode: enable synchronous operation |
1da177e4 | 389 | * |
485bb99b RD |
390 | * Start writeback against all of a mapping's dirty pages that lie |
391 | * within the byte offsets <start, end> inclusive. | |
392 | * | |
1da177e4 | 393 | * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as |
485bb99b | 394 | * opposed to a regular memory cleansing writeback. The difference between |
1da177e4 LT |
395 | * these two operations is that if a dirty page/buffer is encountered, it must |
396 | * be waited upon, and not just skipped over. | |
a862f68a MR |
397 | * |
398 | * Return: %0 on success, negative error code otherwise. | |
1da177e4 | 399 | */ |
ebcf28e1 AM |
400 | int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
401 | loff_t end, int sync_mode) | |
1da177e4 LT |
402 | { |
403 | int ret; | |
404 | struct writeback_control wbc = { | |
405 | .sync_mode = sync_mode, | |
05fe478d | 406 | .nr_to_write = LONG_MAX, |
111ebb6e OH |
407 | .range_start = start, |
408 | .range_end = end, | |
1da177e4 LT |
409 | }; |
410 | ||
411 | if (!mapping_cap_writeback_dirty(mapping)) | |
412 | return 0; | |
413 | ||
b16b1deb | 414 | wbc_attach_fdatawrite_inode(&wbc, mapping->host); |
1da177e4 | 415 | ret = do_writepages(mapping, &wbc); |
b16b1deb | 416 | wbc_detach_inode(&wbc); |
1da177e4 LT |
417 | return ret; |
418 | } | |
419 | ||
420 | static inline int __filemap_fdatawrite(struct address_space *mapping, | |
421 | int sync_mode) | |
422 | { | |
111ebb6e | 423 | return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); |
1da177e4 LT |
424 | } |
425 | ||
426 | int filemap_fdatawrite(struct address_space *mapping) | |
427 | { | |
428 | return __filemap_fdatawrite(mapping, WB_SYNC_ALL); | |
429 | } | |
430 | EXPORT_SYMBOL(filemap_fdatawrite); | |
431 | ||
f4c0a0fd | 432 | int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
ebcf28e1 | 433 | loff_t end) |
1da177e4 LT |
434 | { |
435 | return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); | |
436 | } | |
f4c0a0fd | 437 | EXPORT_SYMBOL(filemap_fdatawrite_range); |
1da177e4 | 438 | |
485bb99b RD |
439 | /** |
440 | * filemap_flush - mostly a non-blocking flush | |
441 | * @mapping: target address_space | |
442 | * | |
1da177e4 LT |
443 | * This is a mostly non-blocking flush. Not suitable for data-integrity |
444 | * purposes - I/O may not be started against all dirty pages. | |
a862f68a MR |
445 | * |
446 | * Return: %0 on success, negative error code otherwise. | |
1da177e4 LT |
447 | */ |
448 | int filemap_flush(struct address_space *mapping) | |
449 | { | |
450 | return __filemap_fdatawrite(mapping, WB_SYNC_NONE); | |
451 | } | |
452 | EXPORT_SYMBOL(filemap_flush); | |
453 | ||
7fc9e472 GR |
454 | /** |
455 | * filemap_range_has_page - check if a page exists in range. | |
456 | * @mapping: address space within which to check | |
457 | * @start_byte: offset in bytes where the range starts | |
458 | * @end_byte: offset in bytes where the range ends (inclusive) | |
459 | * | |
460 | * Find at least one page in the range supplied, usually used to check if | |
461 | * direct writing in this range will trigger a writeback. | |
a862f68a MR |
462 | * |
463 | * Return: %true if at least one page exists in the specified range, | |
464 | * %false otherwise. | |
7fc9e472 GR |
465 | */ |
466 | bool filemap_range_has_page(struct address_space *mapping, | |
467 | loff_t start_byte, loff_t end_byte) | |
468 | { | |
f7b68046 | 469 | struct page *page; |
8fa8e538 MW |
470 | XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); |
471 | pgoff_t max = end_byte >> PAGE_SHIFT; | |
7fc9e472 GR |
472 | |
473 | if (end_byte < start_byte) | |
474 | return false; | |
475 | ||
8fa8e538 MW |
476 | rcu_read_lock(); |
477 | for (;;) { | |
478 | page = xas_find(&xas, max); | |
479 | if (xas_retry(&xas, page)) | |
480 | continue; | |
481 | /* Shadow entries don't count */ | |
482 | if (xa_is_value(page)) | |
483 | continue; | |
484 | /* | |
485 | * We don't need to try to pin this page; we're about to | |
486 | * release the RCU lock anyway. It is enough to know that | |
487 | * there was a page here recently. | |
488 | */ | |
489 | break; | |
490 | } | |
491 | rcu_read_unlock(); | |
7fc9e472 | 492 | |
8fa8e538 | 493 | return page != NULL; |
7fc9e472 GR |
494 | } |
495 | EXPORT_SYMBOL(filemap_range_has_page); | |
496 | ||
5e8fcc1a | 497 | static void __filemap_fdatawait_range(struct address_space *mapping, |
aa750fd7 | 498 | loff_t start_byte, loff_t end_byte) |
1da177e4 | 499 | { |
09cbfeaf KS |
500 | pgoff_t index = start_byte >> PAGE_SHIFT; |
501 | pgoff_t end = end_byte >> PAGE_SHIFT; | |
1da177e4 LT |
502 | struct pagevec pvec; |
503 | int nr_pages; | |
1da177e4 | 504 | |
94004ed7 | 505 | if (end_byte < start_byte) |
5e8fcc1a | 506 | return; |
1da177e4 | 507 | |
86679820 | 508 | pagevec_init(&pvec); |
312e9d2f | 509 | while (index <= end) { |
1da177e4 LT |
510 | unsigned i; |
511 | ||
312e9d2f | 512 | nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, |
67fd707f | 513 | end, PAGECACHE_TAG_WRITEBACK); |
312e9d2f JK |
514 | if (!nr_pages) |
515 | break; | |
516 | ||
1da177e4 LT |
517 | for (i = 0; i < nr_pages; i++) { |
518 | struct page *page = pvec.pages[i]; | |
519 | ||
1da177e4 | 520 | wait_on_page_writeback(page); |
5e8fcc1a | 521 | ClearPageError(page); |
1da177e4 LT |
522 | } |
523 | pagevec_release(&pvec); | |
524 | cond_resched(); | |
525 | } | |
aa750fd7 JN |
526 | } |
527 | ||
528 | /** | |
529 | * filemap_fdatawait_range - wait for writeback to complete | |
530 | * @mapping: address space structure to wait for | |
531 | * @start_byte: offset in bytes where the range starts | |
532 | * @end_byte: offset in bytes where the range ends (inclusive) | |
533 | * | |
534 | * Walk the list of under-writeback pages of the given address space | |
535 | * in the given range and wait for all of them. Check error status of | |
536 | * the address space and return it. | |
537 | * | |
538 | * Since the error status of the address space is cleared by this function, | |
539 | * callers are responsible for checking the return value and handling and/or | |
540 | * reporting the error. | |
a862f68a MR |
541 | * |
542 | * Return: error status of the address space. | |
aa750fd7 JN |
543 | */ |
544 | int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, | |
545 | loff_t end_byte) | |
546 | { | |
5e8fcc1a JL |
547 | __filemap_fdatawait_range(mapping, start_byte, end_byte); |
548 | return filemap_check_errors(mapping); | |
1da177e4 | 549 | } |
d3bccb6f JK |
550 | EXPORT_SYMBOL(filemap_fdatawait_range); |
551 | ||
aa0bfcd9 RZ |
552 | /** |
553 | * filemap_fdatawait_range_keep_errors - wait for writeback to complete | |
554 | * @mapping: address space structure to wait for | |
555 | * @start_byte: offset in bytes where the range starts | |
556 | * @end_byte: offset in bytes where the range ends (inclusive) | |
557 | * | |
558 | * Walk the list of under-writeback pages of the given address space in the | |
559 | * given range and wait for all of them. Unlike filemap_fdatawait_range(), | |
560 | * this function does not clear error status of the address space. | |
561 | * | |
562 | * Use this function if callers don't handle errors themselves. Expected | |
563 | * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), | |
564 | * fsfreeze(8) | |
565 | */ | |
566 | int filemap_fdatawait_range_keep_errors(struct address_space *mapping, | |
567 | loff_t start_byte, loff_t end_byte) | |
568 | { | |
569 | __filemap_fdatawait_range(mapping, start_byte, end_byte); | |
570 | return filemap_check_and_keep_errors(mapping); | |
571 | } | |
572 | EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); | |
573 | ||
a823e458 JL |
574 | /** |
575 | * file_fdatawait_range - wait for writeback to complete | |
576 | * @file: file pointing to address space structure to wait for | |
577 | * @start_byte: offset in bytes where the range starts | |
578 | * @end_byte: offset in bytes where the range ends (inclusive) | |
579 | * | |
580 | * Walk the list of under-writeback pages of the address space that file | |
581 | * refers to, in the given range and wait for all of them. Check error | |
582 | * status of the address space vs. the file->f_wb_err cursor and return it. | |
583 | * | |
584 | * Since the error status of the file is advanced by this function, | |
585 | * callers are responsible for checking the return value and handling and/or | |
586 | * reporting the error. | |
a862f68a MR |
587 | * |
588 | * Return: error status of the address space vs. the file->f_wb_err cursor. | |
a823e458 JL |
589 | */ |
590 | int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) | |
591 | { | |
592 | struct address_space *mapping = file->f_mapping; | |
593 | ||
594 | __filemap_fdatawait_range(mapping, start_byte, end_byte); | |
595 | return file_check_and_advance_wb_err(file); | |
596 | } | |
597 | EXPORT_SYMBOL(file_fdatawait_range); | |
d3bccb6f | 598 | |
aa750fd7 JN |
599 | /** |
600 | * filemap_fdatawait_keep_errors - wait for writeback without clearing errors | |
601 | * @mapping: address space structure to wait for | |
602 | * | |
603 | * Walk the list of under-writeback pages of the given address space | |
604 | * and wait for all of them. Unlike filemap_fdatawait(), this function | |
605 | * does not clear error status of the address space. | |
606 | * | |
607 | * Use this function if callers don't handle errors themselves. Expected | |
608 | * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), | |
609 | * fsfreeze(8) | |
a862f68a MR |
610 | * |
611 | * Return: error status of the address space. | |
aa750fd7 | 612 | */ |
76341cab | 613 | int filemap_fdatawait_keep_errors(struct address_space *mapping) |
aa750fd7 | 614 | { |
ffb959bb | 615 | __filemap_fdatawait_range(mapping, 0, LLONG_MAX); |
76341cab | 616 | return filemap_check_and_keep_errors(mapping); |
aa750fd7 | 617 | } |
76341cab | 618 | EXPORT_SYMBOL(filemap_fdatawait_keep_errors); |
aa750fd7 | 619 | |
9326c9b2 | 620 | static bool mapping_needs_writeback(struct address_space *mapping) |
1da177e4 | 621 | { |
9326c9b2 JL |
622 | return (!dax_mapping(mapping) && mapping->nrpages) || |
623 | (dax_mapping(mapping) && mapping->nrexceptional); | |
1da177e4 | 624 | } |
1da177e4 LT |
625 | |
626 | int filemap_write_and_wait(struct address_space *mapping) | |
627 | { | |
28fd1298 | 628 | int err = 0; |
1da177e4 | 629 | |
9326c9b2 | 630 | if (mapping_needs_writeback(mapping)) { |
28fd1298 OH |
631 | err = filemap_fdatawrite(mapping); |
632 | /* | |
633 | * Even if the above returned error, the pages may be | |
634 | * written partially (e.g. -ENOSPC), so we wait for it. | |
635 | * But the -EIO is special case, it may indicate the worst | |
636 | * thing (e.g. bug) happened, so we avoid waiting for it. | |
637 | */ | |
638 | if (err != -EIO) { | |
639 | int err2 = filemap_fdatawait(mapping); | |
640 | if (!err) | |
641 | err = err2; | |
cbeaf951 JL |
642 | } else { |
643 | /* Clear any previously stored errors */ | |
644 | filemap_check_errors(mapping); | |
28fd1298 | 645 | } |
865ffef3 DM |
646 | } else { |
647 | err = filemap_check_errors(mapping); | |
1da177e4 | 648 | } |
28fd1298 | 649 | return err; |
1da177e4 | 650 | } |
28fd1298 | 651 | EXPORT_SYMBOL(filemap_write_and_wait); |
1da177e4 | 652 | |
485bb99b RD |
653 | /** |
654 | * filemap_write_and_wait_range - write out & wait on a file range | |
655 | * @mapping: the address_space for the pages | |
656 | * @lstart: offset in bytes where the range starts | |
657 | * @lend: offset in bytes where the range ends (inclusive) | |
658 | * | |
469eb4d0 AM |
659 | * Write out and wait upon file offsets lstart->lend, inclusive. |
660 | * | |
0e056eb5 | 661 | * Note that @lend is inclusive (describes the last byte to be written) so |
469eb4d0 | 662 | * that this function can be used to write to the very end-of-file (end = -1). |
a862f68a MR |
663 | * |
664 | * Return: error status of the address space. | |
469eb4d0 | 665 | */ |
1da177e4 LT |
666 | int filemap_write_and_wait_range(struct address_space *mapping, |
667 | loff_t lstart, loff_t lend) | |
668 | { | |
28fd1298 | 669 | int err = 0; |
1da177e4 | 670 | |
9326c9b2 | 671 | if (mapping_needs_writeback(mapping)) { |
28fd1298 OH |
672 | err = __filemap_fdatawrite_range(mapping, lstart, lend, |
673 | WB_SYNC_ALL); | |
674 | /* See comment of filemap_write_and_wait() */ | |
675 | if (err != -EIO) { | |
94004ed7 CH |
676 | int err2 = filemap_fdatawait_range(mapping, |
677 | lstart, lend); | |
28fd1298 OH |
678 | if (!err) |
679 | err = err2; | |
cbeaf951 JL |
680 | } else { |
681 | /* Clear any previously stored errors */ | |
682 | filemap_check_errors(mapping); | |
28fd1298 | 683 | } |
865ffef3 DM |
684 | } else { |
685 | err = filemap_check_errors(mapping); | |
1da177e4 | 686 | } |
28fd1298 | 687 | return err; |
1da177e4 | 688 | } |
f6995585 | 689 | EXPORT_SYMBOL(filemap_write_and_wait_range); |
1da177e4 | 690 | |
5660e13d JL |
691 | void __filemap_set_wb_err(struct address_space *mapping, int err) |
692 | { | |
3acdfd28 | 693 | errseq_t eseq = errseq_set(&mapping->wb_err, err); |
5660e13d JL |
694 | |
695 | trace_filemap_set_wb_err(mapping, eseq); | |
696 | } | |
697 | EXPORT_SYMBOL(__filemap_set_wb_err); | |
698 | ||
699 | /** | |
700 | * file_check_and_advance_wb_err - report wb error (if any) that was previously | |
701 | * and advance wb_err to current one | |
702 | * @file: struct file on which the error is being reported | |
703 | * | |
704 | * When userland calls fsync (or something like nfsd does the equivalent), we | |
705 | * want to report any writeback errors that occurred since the last fsync (or | |
706 | * since the file was opened if there haven't been any). | |
707 | * | |
708 | * Grab the wb_err from the mapping. If it matches what we have in the file, | |
709 | * then just quickly return 0. The file is all caught up. | |
710 | * | |
711 | * If it doesn't match, then take the mapping value, set the "seen" flag in | |
712 | * it and try to swap it into place. If it works, or another task beat us | |
713 | * to it with the new value, then update the f_wb_err and return the error | |
714 | * portion. The error at this point must be reported via proper channels | |
715 | * (a'la fsync, or NFS COMMIT operation, etc.). | |
716 | * | |
717 | * While we handle mapping->wb_err with atomic operations, the f_wb_err | |
718 | * value is protected by the f_lock since we must ensure that it reflects | |
719 | * the latest value swapped in for this file descriptor. | |
a862f68a MR |
720 | * |
721 | * Return: %0 on success, negative error code otherwise. | |
5660e13d JL |
722 | */ |
723 | int file_check_and_advance_wb_err(struct file *file) | |
724 | { | |
725 | int err = 0; | |
726 | errseq_t old = READ_ONCE(file->f_wb_err); | |
727 | struct address_space *mapping = file->f_mapping; | |
728 | ||
729 | /* Locklessly handle the common case where nothing has changed */ | |
730 | if (errseq_check(&mapping->wb_err, old)) { | |
731 | /* Something changed, must use slow path */ | |
732 | spin_lock(&file->f_lock); | |
733 | old = file->f_wb_err; | |
734 | err = errseq_check_and_advance(&mapping->wb_err, | |
735 | &file->f_wb_err); | |
736 | trace_file_check_and_advance_wb_err(file, old); | |
737 | spin_unlock(&file->f_lock); | |
738 | } | |
f4e222c5 JL |
739 | |
740 | /* | |
741 | * We're mostly using this function as a drop in replacement for | |
742 | * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect | |
743 | * that the legacy code would have had on these flags. | |
744 | */ | |
745 | clear_bit(AS_EIO, &mapping->flags); | |
746 | clear_bit(AS_ENOSPC, &mapping->flags); | |
5660e13d JL |
747 | return err; |
748 | } | |
749 | EXPORT_SYMBOL(file_check_and_advance_wb_err); | |
750 | ||
751 | /** | |
752 | * file_write_and_wait_range - write out & wait on a file range | |
753 | * @file: file pointing to address_space with pages | |
754 | * @lstart: offset in bytes where the range starts | |
755 | * @lend: offset in bytes where the range ends (inclusive) | |
756 | * | |
757 | * Write out and wait upon file offsets lstart->lend, inclusive. | |
758 | * | |
759 | * Note that @lend is inclusive (describes the last byte to be written) so | |
760 | * that this function can be used to write to the very end-of-file (end = -1). | |
761 | * | |
762 | * After writing out and waiting on the data, we check and advance the | |
763 | * f_wb_err cursor to the latest value, and return any errors detected there. | |
a862f68a MR |
764 | * |
765 | * Return: %0 on success, negative error code otherwise. | |
5660e13d JL |
766 | */ |
767 | int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) | |
768 | { | |
769 | int err = 0, err2; | |
770 | struct address_space *mapping = file->f_mapping; | |
771 | ||
9326c9b2 | 772 | if (mapping_needs_writeback(mapping)) { |
5660e13d JL |
773 | err = __filemap_fdatawrite_range(mapping, lstart, lend, |
774 | WB_SYNC_ALL); | |
775 | /* See comment of filemap_write_and_wait() */ | |
776 | if (err != -EIO) | |
777 | __filemap_fdatawait_range(mapping, lstart, lend); | |
778 | } | |
779 | err2 = file_check_and_advance_wb_err(file); | |
780 | if (!err) | |
781 | err = err2; | |
782 | return err; | |
783 | } | |
784 | EXPORT_SYMBOL(file_write_and_wait_range); | |
785 | ||
ef6a3c63 MS |
786 | /** |
787 | * replace_page_cache_page - replace a pagecache page with a new one | |
788 | * @old: page to be replaced | |
789 | * @new: page to replace with | |
790 | * @gfp_mask: allocation mode | |
791 | * | |
792 | * This function replaces a page in the pagecache with a new one. On | |
793 | * success it acquires the pagecache reference for the new page and | |
794 | * drops it for the old page. Both the old and new pages must be | |
795 | * locked. This function does not add the new page to the LRU, the | |
796 | * caller must do that. | |
797 | * | |
74d60958 | 798 | * The remove + add is atomic. This function cannot fail. |
a862f68a MR |
799 | * |
800 | * Return: %0 | |
ef6a3c63 MS |
801 | */ |
802 | int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) | |
803 | { | |
74d60958 MW |
804 | struct address_space *mapping = old->mapping; |
805 | void (*freepage)(struct page *) = mapping->a_ops->freepage; | |
806 | pgoff_t offset = old->index; | |
807 | XA_STATE(xas, &mapping->i_pages, offset); | |
808 | unsigned long flags; | |
ef6a3c63 | 809 | |
309381fe SL |
810 | VM_BUG_ON_PAGE(!PageLocked(old), old); |
811 | VM_BUG_ON_PAGE(!PageLocked(new), new); | |
812 | VM_BUG_ON_PAGE(new->mapping, new); | |
ef6a3c63 | 813 | |
74d60958 MW |
814 | get_page(new); |
815 | new->mapping = mapping; | |
816 | new->index = offset; | |
ef6a3c63 | 817 | |
74d60958 MW |
818 | xas_lock_irqsave(&xas, flags); |
819 | xas_store(&xas, new); | |
4165b9b4 | 820 | |
74d60958 MW |
821 | old->mapping = NULL; |
822 | /* hugetlb pages do not participate in page cache accounting. */ | |
823 | if (!PageHuge(old)) | |
824 | __dec_node_page_state(new, NR_FILE_PAGES); | |
825 | if (!PageHuge(new)) | |
826 | __inc_node_page_state(new, NR_FILE_PAGES); | |
827 | if (PageSwapBacked(old)) | |
828 | __dec_node_page_state(new, NR_SHMEM); | |
829 | if (PageSwapBacked(new)) | |
830 | __inc_node_page_state(new, NR_SHMEM); | |
831 | xas_unlock_irqrestore(&xas, flags); | |
832 | mem_cgroup_migrate(old, new); | |
833 | if (freepage) | |
834 | freepage(old); | |
835 | put_page(old); | |
ef6a3c63 | 836 | |
74d60958 | 837 | return 0; |
ef6a3c63 MS |
838 | } |
839 | EXPORT_SYMBOL_GPL(replace_page_cache_page); | |
840 | ||
a528910e JW |
841 | static int __add_to_page_cache_locked(struct page *page, |
842 | struct address_space *mapping, | |
843 | pgoff_t offset, gfp_t gfp_mask, | |
844 | void **shadowp) | |
1da177e4 | 845 | { |
74d60958 | 846 | XA_STATE(xas, &mapping->i_pages, offset); |
00501b53 JW |
847 | int huge = PageHuge(page); |
848 | struct mem_cgroup *memcg; | |
e286781d | 849 | int error; |
74d60958 | 850 | void *old; |
e286781d | 851 | |
309381fe SL |
852 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
853 | VM_BUG_ON_PAGE(PageSwapBacked(page), page); | |
74d60958 | 854 | mapping_set_update(&xas, mapping); |
e286781d | 855 | |
00501b53 JW |
856 | if (!huge) { |
857 | error = mem_cgroup_try_charge(page, current->mm, | |
f627c2f5 | 858 | gfp_mask, &memcg, false); |
00501b53 JW |
859 | if (error) |
860 | return error; | |
861 | } | |
1da177e4 | 862 | |
09cbfeaf | 863 | get_page(page); |
66a0c8ee KS |
864 | page->mapping = mapping; |
865 | page->index = offset; | |
866 | ||
74d60958 MW |
867 | do { |
868 | xas_lock_irq(&xas); | |
869 | old = xas_load(&xas); | |
870 | if (old && !xa_is_value(old)) | |
871 | xas_set_err(&xas, -EEXIST); | |
872 | xas_store(&xas, page); | |
873 | if (xas_error(&xas)) | |
874 | goto unlock; | |
875 | ||
876 | if (xa_is_value(old)) { | |
877 | mapping->nrexceptional--; | |
878 | if (shadowp) | |
879 | *shadowp = old; | |
880 | } | |
881 | mapping->nrpages++; | |
882 | ||
883 | /* hugetlb pages do not participate in page cache accounting */ | |
884 | if (!huge) | |
885 | __inc_node_page_state(page, NR_FILE_PAGES); | |
886 | unlock: | |
887 | xas_unlock_irq(&xas); | |
888 | } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK)); | |
889 | ||
890 | if (xas_error(&xas)) | |
891 | goto error; | |
4165b9b4 | 892 | |
00501b53 | 893 | if (!huge) |
f627c2f5 | 894 | mem_cgroup_commit_charge(page, memcg, false, false); |
66a0c8ee KS |
895 | trace_mm_filemap_add_to_page_cache(page); |
896 | return 0; | |
74d60958 | 897 | error: |
66a0c8ee KS |
898 | page->mapping = NULL; |
899 | /* Leave page->index set: truncation relies upon it */ | |
00501b53 | 900 | if (!huge) |
f627c2f5 | 901 | mem_cgroup_cancel_charge(page, memcg, false); |
09cbfeaf | 902 | put_page(page); |
74d60958 | 903 | return xas_error(&xas); |
1da177e4 | 904 | } |
cfcbfb13 | 905 | ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); |
a528910e JW |
906 | |
907 | /** | |
908 | * add_to_page_cache_locked - add a locked page to the pagecache | |
909 | * @page: page to add | |
910 | * @mapping: the page's address_space | |
911 | * @offset: page index | |
912 | * @gfp_mask: page allocation mode | |
913 | * | |
914 | * This function is used to add a page to the pagecache. It must be locked. | |
915 | * This function does not add the page to the LRU. The caller must do that. | |
a862f68a MR |
916 | * |
917 | * Return: %0 on success, negative error code otherwise. | |
a528910e JW |
918 | */ |
919 | int add_to_page_cache_locked(struct page *page, struct address_space *mapping, | |
920 | pgoff_t offset, gfp_t gfp_mask) | |
921 | { | |
922 | return __add_to_page_cache_locked(page, mapping, offset, | |
923 | gfp_mask, NULL); | |
924 | } | |
e286781d | 925 | EXPORT_SYMBOL(add_to_page_cache_locked); |
1da177e4 LT |
926 | |
927 | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, | |
6daa0e28 | 928 | pgoff_t offset, gfp_t gfp_mask) |
1da177e4 | 929 | { |
a528910e | 930 | void *shadow = NULL; |
4f98a2fe RR |
931 | int ret; |
932 | ||
48c935ad | 933 | __SetPageLocked(page); |
a528910e JW |
934 | ret = __add_to_page_cache_locked(page, mapping, offset, |
935 | gfp_mask, &shadow); | |
936 | if (unlikely(ret)) | |
48c935ad | 937 | __ClearPageLocked(page); |
a528910e JW |
938 | else { |
939 | /* | |
940 | * The page might have been evicted from cache only | |
941 | * recently, in which case it should be activated like | |
942 | * any other repeatedly accessed page. | |
f0281a00 RR |
943 | * The exception is pages getting rewritten; evicting other |
944 | * data from the working set, only to cache data that will | |
945 | * get overwritten with something else, is a waste of memory. | |
a528910e | 946 | */ |
1899ad18 JW |
947 | WARN_ON_ONCE(PageActive(page)); |
948 | if (!(gfp_mask & __GFP_WRITE) && shadow) | |
949 | workingset_refault(page, shadow); | |
a528910e JW |
950 | lru_cache_add(page); |
951 | } | |
1da177e4 LT |
952 | return ret; |
953 | } | |
18bc0bbd | 954 | EXPORT_SYMBOL_GPL(add_to_page_cache_lru); |
1da177e4 | 955 | |
44110fe3 | 956 | #ifdef CONFIG_NUMA |
2ae88149 | 957 | struct page *__page_cache_alloc(gfp_t gfp) |
44110fe3 | 958 | { |
c0ff7453 MX |
959 | int n; |
960 | struct page *page; | |
961 | ||
44110fe3 | 962 | if (cpuset_do_page_mem_spread()) { |
cc9a6c87 MG |
963 | unsigned int cpuset_mems_cookie; |
964 | do { | |
d26914d1 | 965 | cpuset_mems_cookie = read_mems_allowed_begin(); |
cc9a6c87 | 966 | n = cpuset_mem_spread_node(); |
96db800f | 967 | page = __alloc_pages_node(n, gfp, 0); |
d26914d1 | 968 | } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); |
cc9a6c87 | 969 | |
c0ff7453 | 970 | return page; |
44110fe3 | 971 | } |
2ae88149 | 972 | return alloc_pages(gfp, 0); |
44110fe3 | 973 | } |
2ae88149 | 974 | EXPORT_SYMBOL(__page_cache_alloc); |
44110fe3 PJ |
975 | #endif |
976 | ||
1da177e4 LT |
977 | /* |
978 | * In order to wait for pages to become available there must be | |
979 | * waitqueues associated with pages. By using a hash table of | |
980 | * waitqueues where the bucket discipline is to maintain all | |
981 | * waiters on the same queue and wake all when any of the pages | |
982 | * become available, and for the woken contexts to check to be | |
983 | * sure the appropriate page became available, this saves space | |
984 | * at a cost of "thundering herd" phenomena during rare hash | |
985 | * collisions. | |
986 | */ | |
62906027 NP |
987 | #define PAGE_WAIT_TABLE_BITS 8 |
988 | #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) | |
989 | static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; | |
990 | ||
991 | static wait_queue_head_t *page_waitqueue(struct page *page) | |
1da177e4 | 992 | { |
62906027 | 993 | return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; |
1da177e4 | 994 | } |
1da177e4 | 995 | |
62906027 | 996 | void __init pagecache_init(void) |
1da177e4 | 997 | { |
62906027 | 998 | int i; |
1da177e4 | 999 | |
62906027 NP |
1000 | for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) |
1001 | init_waitqueue_head(&page_wait_table[i]); | |
1002 | ||
1003 | page_writeback_init(); | |
1da177e4 | 1004 | } |
1da177e4 | 1005 | |
3510ca20 | 1006 | /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ |
62906027 NP |
1007 | struct wait_page_key { |
1008 | struct page *page; | |
1009 | int bit_nr; | |
1010 | int page_match; | |
1011 | }; | |
1012 | ||
1013 | struct wait_page_queue { | |
1014 | struct page *page; | |
1015 | int bit_nr; | |
ac6424b9 | 1016 | wait_queue_entry_t wait; |
62906027 NP |
1017 | }; |
1018 | ||
ac6424b9 | 1019 | static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) |
f62e00cc | 1020 | { |
62906027 NP |
1021 | struct wait_page_key *key = arg; |
1022 | struct wait_page_queue *wait_page | |
1023 | = container_of(wait, struct wait_page_queue, wait); | |
1024 | ||
1025 | if (wait_page->page != key->page) | |
1026 | return 0; | |
1027 | key->page_match = 1; | |
f62e00cc | 1028 | |
62906027 NP |
1029 | if (wait_page->bit_nr != key->bit_nr) |
1030 | return 0; | |
3510ca20 | 1031 | |
9a1ea439 HD |
1032 | /* |
1033 | * Stop walking if it's locked. | |
1034 | * Is this safe if put_and_wait_on_page_locked() is in use? | |
1035 | * Yes: the waker must hold a reference to this page, and if PG_locked | |
1036 | * has now already been set by another task, that task must also hold | |
1037 | * a reference to the *same usage* of this page; so there is no need | |
1038 | * to walk on to wake even the put_and_wait_on_page_locked() callers. | |
1039 | */ | |
62906027 | 1040 | if (test_bit(key->bit_nr, &key->page->flags)) |
3510ca20 | 1041 | return -1; |
f62e00cc | 1042 | |
62906027 | 1043 | return autoremove_wake_function(wait, mode, sync, key); |
f62e00cc KM |
1044 | } |
1045 | ||
74d81bfa | 1046 | static void wake_up_page_bit(struct page *page, int bit_nr) |
cbbce822 | 1047 | { |
62906027 NP |
1048 | wait_queue_head_t *q = page_waitqueue(page); |
1049 | struct wait_page_key key; | |
1050 | unsigned long flags; | |
11a19c7b | 1051 | wait_queue_entry_t bookmark; |
cbbce822 | 1052 | |
62906027 NP |
1053 | key.page = page; |
1054 | key.bit_nr = bit_nr; | |
1055 | key.page_match = 0; | |
1056 | ||
11a19c7b TC |
1057 | bookmark.flags = 0; |
1058 | bookmark.private = NULL; | |
1059 | bookmark.func = NULL; | |
1060 | INIT_LIST_HEAD(&bookmark.entry); | |
1061 | ||
62906027 | 1062 | spin_lock_irqsave(&q->lock, flags); |
11a19c7b TC |
1063 | __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); |
1064 | ||
1065 | while (bookmark.flags & WQ_FLAG_BOOKMARK) { | |
1066 | /* | |
1067 | * Take a breather from holding the lock, | |
1068 | * allow pages that finish wake up asynchronously | |
1069 | * to acquire the lock and remove themselves | |
1070 | * from wait queue | |
1071 | */ | |
1072 | spin_unlock_irqrestore(&q->lock, flags); | |
1073 | cpu_relax(); | |
1074 | spin_lock_irqsave(&q->lock, flags); | |
1075 | __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); | |
1076 | } | |
1077 | ||
62906027 NP |
1078 | /* |
1079 | * It is possible for other pages to have collided on the waitqueue | |
1080 | * hash, so in that case check for a page match. That prevents a long- | |
1081 | * term waiter | |
1082 | * | |
1083 | * It is still possible to miss a case here, when we woke page waiters | |
1084 | * and removed them from the waitqueue, but there are still other | |
1085 | * page waiters. | |
1086 | */ | |
1087 | if (!waitqueue_active(q) || !key.page_match) { | |
1088 | ClearPageWaiters(page); | |
1089 | /* | |
1090 | * It's possible to miss clearing Waiters here, when we woke | |
1091 | * our page waiters, but the hashed waitqueue has waiters for | |
1092 | * other pages on it. | |
1093 | * | |
1094 | * That's okay, it's a rare case. The next waker will clear it. | |
1095 | */ | |
1096 | } | |
1097 | spin_unlock_irqrestore(&q->lock, flags); | |
1098 | } | |
74d81bfa NP |
1099 | |
1100 | static void wake_up_page(struct page *page, int bit) | |
1101 | { | |
1102 | if (!PageWaiters(page)) | |
1103 | return; | |
1104 | wake_up_page_bit(page, bit); | |
1105 | } | |
62906027 | 1106 | |
9a1ea439 HD |
1107 | /* |
1108 | * A choice of three behaviors for wait_on_page_bit_common(): | |
1109 | */ | |
1110 | enum behavior { | |
1111 | EXCLUSIVE, /* Hold ref to page and take the bit when woken, like | |
1112 | * __lock_page() waiting on then setting PG_locked. | |
1113 | */ | |
1114 | SHARED, /* Hold ref to page and check the bit when woken, like | |
1115 | * wait_on_page_writeback() waiting on PG_writeback. | |
1116 | */ | |
1117 | DROP, /* Drop ref to page before wait, no check when woken, | |
1118 | * like put_and_wait_on_page_locked() on PG_locked. | |
1119 | */ | |
1120 | }; | |
1121 | ||
62906027 | 1122 | static inline int wait_on_page_bit_common(wait_queue_head_t *q, |
9a1ea439 | 1123 | struct page *page, int bit_nr, int state, enum behavior behavior) |
62906027 NP |
1124 | { |
1125 | struct wait_page_queue wait_page; | |
ac6424b9 | 1126 | wait_queue_entry_t *wait = &wait_page.wait; |
9a1ea439 | 1127 | bool bit_is_set; |
b1d29ba8 | 1128 | bool thrashing = false; |
9a1ea439 | 1129 | bool delayacct = false; |
eb414681 | 1130 | unsigned long pflags; |
62906027 NP |
1131 | int ret = 0; |
1132 | ||
eb414681 | 1133 | if (bit_nr == PG_locked && |
b1d29ba8 | 1134 | !PageUptodate(page) && PageWorkingset(page)) { |
9a1ea439 | 1135 | if (!PageSwapBacked(page)) { |
eb414681 | 1136 | delayacct_thrashing_start(); |
9a1ea439 HD |
1137 | delayacct = true; |
1138 | } | |
eb414681 | 1139 | psi_memstall_enter(&pflags); |
b1d29ba8 JW |
1140 | thrashing = true; |
1141 | } | |
1142 | ||
62906027 | 1143 | init_wait(wait); |
9a1ea439 | 1144 | wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0; |
62906027 NP |
1145 | wait->func = wake_page_function; |
1146 | wait_page.page = page; | |
1147 | wait_page.bit_nr = bit_nr; | |
1148 | ||
1149 | for (;;) { | |
1150 | spin_lock_irq(&q->lock); | |
1151 | ||
2055da97 | 1152 | if (likely(list_empty(&wait->entry))) { |
3510ca20 | 1153 | __add_wait_queue_entry_tail(q, wait); |
62906027 NP |
1154 | SetPageWaiters(page); |
1155 | } | |
1156 | ||
1157 | set_current_state(state); | |
1158 | ||
1159 | spin_unlock_irq(&q->lock); | |
1160 | ||
9a1ea439 HD |
1161 | bit_is_set = test_bit(bit_nr, &page->flags); |
1162 | if (behavior == DROP) | |
1163 | put_page(page); | |
1164 | ||
1165 | if (likely(bit_is_set)) | |
62906027 | 1166 | io_schedule(); |
62906027 | 1167 | |
9a1ea439 | 1168 | if (behavior == EXCLUSIVE) { |
62906027 NP |
1169 | if (!test_and_set_bit_lock(bit_nr, &page->flags)) |
1170 | break; | |
9a1ea439 | 1171 | } else if (behavior == SHARED) { |
62906027 NP |
1172 | if (!test_bit(bit_nr, &page->flags)) |
1173 | break; | |
1174 | } | |
a8b169af | 1175 | |
fa45f116 | 1176 | if (signal_pending_state(state, current)) { |
a8b169af LT |
1177 | ret = -EINTR; |
1178 | break; | |
1179 | } | |
9a1ea439 HD |
1180 | |
1181 | if (behavior == DROP) { | |
1182 | /* | |
1183 | * We can no longer safely access page->flags: | |
1184 | * even if CONFIG_MEMORY_HOTREMOVE is not enabled, | |
1185 | * there is a risk of waiting forever on a page reused | |
1186 | * for something that keeps it locked indefinitely. | |
1187 | * But best check for -EINTR above before breaking. | |
1188 | */ | |
1189 | break; | |
1190 | } | |
62906027 NP |
1191 | } |
1192 | ||
1193 | finish_wait(q, wait); | |
1194 | ||
eb414681 | 1195 | if (thrashing) { |
9a1ea439 | 1196 | if (delayacct) |
eb414681 JW |
1197 | delayacct_thrashing_end(); |
1198 | psi_memstall_leave(&pflags); | |
1199 | } | |
b1d29ba8 | 1200 | |
62906027 NP |
1201 | /* |
1202 | * A signal could leave PageWaiters set. Clearing it here if | |
1203 | * !waitqueue_active would be possible (by open-coding finish_wait), | |
1204 | * but still fail to catch it in the case of wait hash collision. We | |
1205 | * already can fail to clear wait hash collision cases, so don't | |
1206 | * bother with signals either. | |
1207 | */ | |
1208 | ||
1209 | return ret; | |
1210 | } | |
1211 | ||
1212 | void wait_on_page_bit(struct page *page, int bit_nr) | |
1213 | { | |
1214 | wait_queue_head_t *q = page_waitqueue(page); | |
9a1ea439 | 1215 | wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); |
62906027 NP |
1216 | } |
1217 | EXPORT_SYMBOL(wait_on_page_bit); | |
1218 | ||
1219 | int wait_on_page_bit_killable(struct page *page, int bit_nr) | |
1220 | { | |
1221 | wait_queue_head_t *q = page_waitqueue(page); | |
9a1ea439 | 1222 | return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); |
cbbce822 | 1223 | } |
4343d008 | 1224 | EXPORT_SYMBOL(wait_on_page_bit_killable); |
cbbce822 | 1225 | |
9a1ea439 HD |
1226 | /** |
1227 | * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked | |
1228 | * @page: The page to wait for. | |
1229 | * | |
1230 | * The caller should hold a reference on @page. They expect the page to | |
1231 | * become unlocked relatively soon, but do not wish to hold up migration | |
1232 | * (for example) by holding the reference while waiting for the page to | |
1233 | * come unlocked. After this function returns, the caller should not | |
1234 | * dereference @page. | |
1235 | */ | |
1236 | void put_and_wait_on_page_locked(struct page *page) | |
1237 | { | |
1238 | wait_queue_head_t *q; | |
1239 | ||
1240 | page = compound_head(page); | |
1241 | q = page_waitqueue(page); | |
1242 | wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP); | |
1243 | } | |
1244 | ||
385e1ca5 DH |
1245 | /** |
1246 | * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue | |
697f619f RD |
1247 | * @page: Page defining the wait queue of interest |
1248 | * @waiter: Waiter to add to the queue | |
385e1ca5 DH |
1249 | * |
1250 | * Add an arbitrary @waiter to the wait queue for the nominated @page. | |
1251 | */ | |
ac6424b9 | 1252 | void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) |
385e1ca5 DH |
1253 | { |
1254 | wait_queue_head_t *q = page_waitqueue(page); | |
1255 | unsigned long flags; | |
1256 | ||
1257 | spin_lock_irqsave(&q->lock, flags); | |
9c3a815f | 1258 | __add_wait_queue_entry_tail(q, waiter); |
62906027 | 1259 | SetPageWaiters(page); |
385e1ca5 DH |
1260 | spin_unlock_irqrestore(&q->lock, flags); |
1261 | } | |
1262 | EXPORT_SYMBOL_GPL(add_page_wait_queue); | |
1263 | ||
b91e1302 LT |
1264 | #ifndef clear_bit_unlock_is_negative_byte |
1265 | ||
1266 | /* | |
1267 | * PG_waiters is the high bit in the same byte as PG_lock. | |
1268 | * | |
1269 | * On x86 (and on many other architectures), we can clear PG_lock and | |
1270 | * test the sign bit at the same time. But if the architecture does | |
1271 | * not support that special operation, we just do this all by hand | |
1272 | * instead. | |
1273 | * | |
1274 | * The read of PG_waiters has to be after (or concurrently with) PG_locked | |
1275 | * being cleared, but a memory barrier should be unneccssary since it is | |
1276 | * in the same byte as PG_locked. | |
1277 | */ | |
1278 | static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) | |
1279 | { | |
1280 | clear_bit_unlock(nr, mem); | |
1281 | /* smp_mb__after_atomic(); */ | |
98473f9f | 1282 | return test_bit(PG_waiters, mem); |
b91e1302 LT |
1283 | } |
1284 | ||
1285 | #endif | |
1286 | ||
1da177e4 | 1287 | /** |
485bb99b | 1288 | * unlock_page - unlock a locked page |
1da177e4 LT |
1289 | * @page: the page |
1290 | * | |
1291 | * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). | |
1292 | * Also wakes sleepers in wait_on_page_writeback() because the wakeup | |
da3dae54 | 1293 | * mechanism between PageLocked pages and PageWriteback pages is shared. |
1da177e4 LT |
1294 | * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. |
1295 | * | |
b91e1302 LT |
1296 | * Note that this depends on PG_waiters being the sign bit in the byte |
1297 | * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to | |
1298 | * clear the PG_locked bit and test PG_waiters at the same time fairly | |
1299 | * portably (architectures that do LL/SC can test any bit, while x86 can | |
1300 | * test the sign bit). | |
1da177e4 | 1301 | */ |
920c7a5d | 1302 | void unlock_page(struct page *page) |
1da177e4 | 1303 | { |
b91e1302 | 1304 | BUILD_BUG_ON(PG_waiters != 7); |
48c935ad | 1305 | page = compound_head(page); |
309381fe | 1306 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
b91e1302 LT |
1307 | if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) |
1308 | wake_up_page_bit(page, PG_locked); | |
1da177e4 LT |
1309 | } |
1310 | EXPORT_SYMBOL(unlock_page); | |
1311 | ||
485bb99b RD |
1312 | /** |
1313 | * end_page_writeback - end writeback against a page | |
1314 | * @page: the page | |
1da177e4 LT |
1315 | */ |
1316 | void end_page_writeback(struct page *page) | |
1317 | { | |
888cf2db MG |
1318 | /* |
1319 | * TestClearPageReclaim could be used here but it is an atomic | |
1320 | * operation and overkill in this particular case. Failing to | |
1321 | * shuffle a page marked for immediate reclaim is too mild to | |
1322 | * justify taking an atomic operation penalty at the end of | |
1323 | * ever page writeback. | |
1324 | */ | |
1325 | if (PageReclaim(page)) { | |
1326 | ClearPageReclaim(page); | |
ac6aadb2 | 1327 | rotate_reclaimable_page(page); |
888cf2db | 1328 | } |
ac6aadb2 MS |
1329 | |
1330 | if (!test_clear_page_writeback(page)) | |
1331 | BUG(); | |
1332 | ||
4e857c58 | 1333 | smp_mb__after_atomic(); |
1da177e4 LT |
1334 | wake_up_page(page, PG_writeback); |
1335 | } | |
1336 | EXPORT_SYMBOL(end_page_writeback); | |
1337 | ||
57d99845 MW |
1338 | /* |
1339 | * After completing I/O on a page, call this routine to update the page | |
1340 | * flags appropriately | |
1341 | */ | |
c11f0c0b | 1342 | void page_endio(struct page *page, bool is_write, int err) |
57d99845 | 1343 | { |
c11f0c0b | 1344 | if (!is_write) { |
57d99845 MW |
1345 | if (!err) { |
1346 | SetPageUptodate(page); | |
1347 | } else { | |
1348 | ClearPageUptodate(page); | |
1349 | SetPageError(page); | |
1350 | } | |
1351 | unlock_page(page); | |
abf54548 | 1352 | } else { |
57d99845 | 1353 | if (err) { |
dd8416c4 MK |
1354 | struct address_space *mapping; |
1355 | ||
57d99845 | 1356 | SetPageError(page); |
dd8416c4 MK |
1357 | mapping = page_mapping(page); |
1358 | if (mapping) | |
1359 | mapping_set_error(mapping, err); | |
57d99845 MW |
1360 | } |
1361 | end_page_writeback(page); | |
1362 | } | |
1363 | } | |
1364 | EXPORT_SYMBOL_GPL(page_endio); | |
1365 | ||
485bb99b RD |
1366 | /** |
1367 | * __lock_page - get a lock on the page, assuming we need to sleep to get it | |
87066755 | 1368 | * @__page: the page to lock |
1da177e4 | 1369 | */ |
62906027 | 1370 | void __lock_page(struct page *__page) |
1da177e4 | 1371 | { |
62906027 NP |
1372 | struct page *page = compound_head(__page); |
1373 | wait_queue_head_t *q = page_waitqueue(page); | |
9a1ea439 HD |
1374 | wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, |
1375 | EXCLUSIVE); | |
1da177e4 LT |
1376 | } |
1377 | EXPORT_SYMBOL(__lock_page); | |
1378 | ||
62906027 | 1379 | int __lock_page_killable(struct page *__page) |
2687a356 | 1380 | { |
62906027 NP |
1381 | struct page *page = compound_head(__page); |
1382 | wait_queue_head_t *q = page_waitqueue(page); | |
9a1ea439 HD |
1383 | return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, |
1384 | EXCLUSIVE); | |
2687a356 | 1385 | } |
18bc0bbd | 1386 | EXPORT_SYMBOL_GPL(__lock_page_killable); |
2687a356 | 1387 | |
9a95f3cf PC |
1388 | /* |
1389 | * Return values: | |
1390 | * 1 - page is locked; mmap_sem is still held. | |
1391 | * 0 - page is not locked. | |
1392 | * mmap_sem has been released (up_read()), unless flags had both | |
1393 | * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in | |
1394 | * which case mmap_sem is still held. | |
1395 | * | |
1396 | * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 | |
1397 | * with the page locked and the mmap_sem unperturbed. | |
1398 | */ | |
d065bd81 ML |
1399 | int __lock_page_or_retry(struct page *page, struct mm_struct *mm, |
1400 | unsigned int flags) | |
1401 | { | |
37b23e05 KM |
1402 | if (flags & FAULT_FLAG_ALLOW_RETRY) { |
1403 | /* | |
1404 | * CAUTION! In this case, mmap_sem is not released | |
1405 | * even though return 0. | |
1406 | */ | |
1407 | if (flags & FAULT_FLAG_RETRY_NOWAIT) | |
1408 | return 0; | |
1409 | ||
1410 | up_read(&mm->mmap_sem); | |
1411 | if (flags & FAULT_FLAG_KILLABLE) | |
1412 | wait_on_page_locked_killable(page); | |
1413 | else | |
318b275f | 1414 | wait_on_page_locked(page); |
d065bd81 | 1415 | return 0; |
37b23e05 KM |
1416 | } else { |
1417 | if (flags & FAULT_FLAG_KILLABLE) { | |
1418 | int ret; | |
1419 | ||
1420 | ret = __lock_page_killable(page); | |
1421 | if (ret) { | |
1422 | up_read(&mm->mmap_sem); | |
1423 | return 0; | |
1424 | } | |
1425 | } else | |
1426 | __lock_page(page); | |
1427 | return 1; | |
d065bd81 ML |
1428 | } |
1429 | } | |
1430 | ||
e7b563bb | 1431 | /** |
0d3f9296 MW |
1432 | * page_cache_next_miss() - Find the next gap in the page cache. |
1433 | * @mapping: Mapping. | |
1434 | * @index: Index. | |
1435 | * @max_scan: Maximum range to search. | |
e7b563bb | 1436 | * |
0d3f9296 MW |
1437 | * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the |
1438 | * gap with the lowest index. | |
e7b563bb | 1439 | * |
0d3f9296 MW |
1440 | * This function may be called under the rcu_read_lock. However, this will |
1441 | * not atomically search a snapshot of the cache at a single point in time. | |
1442 | * For example, if a gap is created at index 5, then subsequently a gap is | |
1443 | * created at index 10, page_cache_next_miss covering both indices may | |
1444 | * return 10 if called under the rcu_read_lock. | |
e7b563bb | 1445 | * |
0d3f9296 MW |
1446 | * Return: The index of the gap if found, otherwise an index outside the |
1447 | * range specified (in which case 'return - index >= max_scan' will be true). | |
1448 | * In the rare case of index wrap-around, 0 will be returned. | |
e7b563bb | 1449 | */ |
0d3f9296 | 1450 | pgoff_t page_cache_next_miss(struct address_space *mapping, |
e7b563bb JW |
1451 | pgoff_t index, unsigned long max_scan) |
1452 | { | |
0d3f9296 | 1453 | XA_STATE(xas, &mapping->i_pages, index); |
e7b563bb | 1454 | |
0d3f9296 MW |
1455 | while (max_scan--) { |
1456 | void *entry = xas_next(&xas); | |
1457 | if (!entry || xa_is_value(entry)) | |
e7b563bb | 1458 | break; |
0d3f9296 | 1459 | if (xas.xa_index == 0) |
e7b563bb JW |
1460 | break; |
1461 | } | |
1462 | ||
0d3f9296 | 1463 | return xas.xa_index; |
e7b563bb | 1464 | } |
0d3f9296 | 1465 | EXPORT_SYMBOL(page_cache_next_miss); |
e7b563bb JW |
1466 | |
1467 | /** | |
2346a560 | 1468 | * page_cache_prev_miss() - Find the previous gap in the page cache. |
0d3f9296 MW |
1469 | * @mapping: Mapping. |
1470 | * @index: Index. | |
1471 | * @max_scan: Maximum range to search. | |
e7b563bb | 1472 | * |
0d3f9296 MW |
1473 | * Search the range [max(index - max_scan + 1, 0), index] for the |
1474 | * gap with the highest index. | |
e7b563bb | 1475 | * |
0d3f9296 MW |
1476 | * This function may be called under the rcu_read_lock. However, this will |
1477 | * not atomically search a snapshot of the cache at a single point in time. | |
1478 | * For example, if a gap is created at index 10, then subsequently a gap is | |
1479 | * created at index 5, page_cache_prev_miss() covering both indices may | |
1480 | * return 5 if called under the rcu_read_lock. | |
e7b563bb | 1481 | * |
0d3f9296 MW |
1482 | * Return: The index of the gap if found, otherwise an index outside the |
1483 | * range specified (in which case 'index - return >= max_scan' will be true). | |
1484 | * In the rare case of wrap-around, ULONG_MAX will be returned. | |
e7b563bb | 1485 | */ |
0d3f9296 | 1486 | pgoff_t page_cache_prev_miss(struct address_space *mapping, |
e7b563bb JW |
1487 | pgoff_t index, unsigned long max_scan) |
1488 | { | |
0d3f9296 | 1489 | XA_STATE(xas, &mapping->i_pages, index); |
e7b563bb | 1490 | |
0d3f9296 MW |
1491 | while (max_scan--) { |
1492 | void *entry = xas_prev(&xas); | |
1493 | if (!entry || xa_is_value(entry)) | |
e7b563bb | 1494 | break; |
0d3f9296 | 1495 | if (xas.xa_index == ULONG_MAX) |
e7b563bb JW |
1496 | break; |
1497 | } | |
1498 | ||
0d3f9296 | 1499 | return xas.xa_index; |
e7b563bb | 1500 | } |
0d3f9296 | 1501 | EXPORT_SYMBOL(page_cache_prev_miss); |
e7b563bb | 1502 | |
485bb99b | 1503 | /** |
0cd6144a | 1504 | * find_get_entry - find and get a page cache entry |
485bb99b | 1505 | * @mapping: the address_space to search |
0cd6144a JW |
1506 | * @offset: the page cache index |
1507 | * | |
1508 | * Looks up the page cache slot at @mapping & @offset. If there is a | |
1509 | * page cache page, it is returned with an increased refcount. | |
485bb99b | 1510 | * |
139b6a6f JW |
1511 | * If the slot holds a shadow entry of a previously evicted page, or a |
1512 | * swap entry from shmem/tmpfs, it is returned. | |
0cd6144a | 1513 | * |
a862f68a | 1514 | * Return: the found page or shadow entry, %NULL if nothing is found. |
1da177e4 | 1515 | */ |
0cd6144a | 1516 | struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) |
1da177e4 | 1517 | { |
4c7472c0 | 1518 | XA_STATE(xas, &mapping->i_pages, offset); |
69bf4b6b | 1519 | struct page *head, *page; |
1da177e4 | 1520 | |
a60637c8 NP |
1521 | rcu_read_lock(); |
1522 | repeat: | |
4c7472c0 MW |
1523 | xas_reset(&xas); |
1524 | page = xas_load(&xas); | |
1525 | if (xas_retry(&xas, page)) | |
1526 | goto repeat; | |
1527 | /* | |
1528 | * A shadow entry of a recently evicted page, or a swap entry from | |
1529 | * shmem/tmpfs. Return it without attempting to raise page count. | |
1530 | */ | |
1531 | if (!page || xa_is_value(page)) | |
1532 | goto out; | |
83929372 | 1533 | |
69bf4b6b LT |
1534 | head = compound_head(page); |
1535 | if (!page_cache_get_speculative(head)) | |
1536 | goto repeat; | |
1537 | ||
1538 | /* The page was split under us? */ | |
1539 | if (compound_head(page) != head) { | |
1540 | put_page(head); | |
4c7472c0 | 1541 | goto repeat; |
69bf4b6b | 1542 | } |
83929372 | 1543 | |
4c7472c0 | 1544 | /* |
69bf4b6b | 1545 | * Has the page moved? |
4c7472c0 MW |
1546 | * This is part of the lockless pagecache protocol. See |
1547 | * include/linux/pagemap.h for details. | |
1548 | */ | |
1549 | if (unlikely(page != xas_reload(&xas))) { | |
69bf4b6b | 1550 | put_page(head); |
4c7472c0 | 1551 | goto repeat; |
a60637c8 | 1552 | } |
27d20fdd | 1553 | out: |
a60637c8 NP |
1554 | rcu_read_unlock(); |
1555 | ||
1da177e4 LT |
1556 | return page; |
1557 | } | |
0cd6144a | 1558 | EXPORT_SYMBOL(find_get_entry); |
1da177e4 | 1559 | |
0cd6144a JW |
1560 | /** |
1561 | * find_lock_entry - locate, pin and lock a page cache entry | |
1562 | * @mapping: the address_space to search | |
1563 | * @offset: the page cache index | |
1564 | * | |
1565 | * Looks up the page cache slot at @mapping & @offset. If there is a | |
1566 | * page cache page, it is returned locked and with an increased | |
1567 | * refcount. | |
1568 | * | |
139b6a6f JW |
1569 | * If the slot holds a shadow entry of a previously evicted page, or a |
1570 | * swap entry from shmem/tmpfs, it is returned. | |
0cd6144a | 1571 | * |
0cd6144a | 1572 | * find_lock_entry() may sleep. |
a862f68a MR |
1573 | * |
1574 | * Return: the found page or shadow entry, %NULL if nothing is found. | |
0cd6144a JW |
1575 | */ |
1576 | struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) | |
1da177e4 LT |
1577 | { |
1578 | struct page *page; | |
1579 | ||
1da177e4 | 1580 | repeat: |
0cd6144a | 1581 | page = find_get_entry(mapping, offset); |
4c7472c0 | 1582 | if (page && !xa_is_value(page)) { |
a60637c8 NP |
1583 | lock_page(page); |
1584 | /* Has the page been truncated? */ | |
83929372 | 1585 | if (unlikely(page_mapping(page) != mapping)) { |
a60637c8 | 1586 | unlock_page(page); |
09cbfeaf | 1587 | put_page(page); |
a60637c8 | 1588 | goto repeat; |
1da177e4 | 1589 | } |
83929372 | 1590 | VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); |
1da177e4 | 1591 | } |
1da177e4 LT |
1592 | return page; |
1593 | } | |
0cd6144a JW |
1594 | EXPORT_SYMBOL(find_lock_entry); |
1595 | ||
1596 | /** | |
2457aec6 | 1597 | * pagecache_get_page - find and get a page reference |
0cd6144a JW |
1598 | * @mapping: the address_space to search |
1599 | * @offset: the page index | |
2457aec6 | 1600 | * @fgp_flags: PCG flags |
45f87de5 | 1601 | * @gfp_mask: gfp mask to use for the page cache data page allocation |
0cd6144a | 1602 | * |
2457aec6 | 1603 | * Looks up the page cache slot at @mapping & @offset. |
1da177e4 | 1604 | * |
75325189 | 1605 | * PCG flags modify how the page is returned. |
0cd6144a | 1606 | * |
0e056eb5 MCC |
1607 | * @fgp_flags can be: |
1608 | * | |
1609 | * - FGP_ACCESSED: the page will be marked accessed | |
1610 | * - FGP_LOCK: Page is return locked | |
1611 | * - FGP_CREAT: If page is not present then a new page is allocated using | |
1612 | * @gfp_mask and added to the page cache and the VM's LRU | |
1613 | * list. The page is returned locked and with an increased | |
a862f68a | 1614 | * refcount. |
a75d4c33 JB |
1615 | * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do |
1616 | * its own locking dance if the page is already in cache, or unlock the page | |
1617 | * before returning if we had to add the page to pagecache. | |
1da177e4 | 1618 | * |
2457aec6 MG |
1619 | * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even |
1620 | * if the GFP flags specified for FGP_CREAT are atomic. | |
1da177e4 | 1621 | * |
2457aec6 | 1622 | * If there is a page cache page, it is returned with an increased refcount. |
a862f68a MR |
1623 | * |
1624 | * Return: the found page or %NULL otherwise. | |
1da177e4 | 1625 | */ |
2457aec6 | 1626 | struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, |
45f87de5 | 1627 | int fgp_flags, gfp_t gfp_mask) |
1da177e4 | 1628 | { |
eb2be189 | 1629 | struct page *page; |
2457aec6 | 1630 | |
1da177e4 | 1631 | repeat: |
2457aec6 | 1632 | page = find_get_entry(mapping, offset); |
3159f943 | 1633 | if (xa_is_value(page)) |
2457aec6 MG |
1634 | page = NULL; |
1635 | if (!page) | |
1636 | goto no_page; | |
1637 | ||
1638 | if (fgp_flags & FGP_LOCK) { | |
1639 | if (fgp_flags & FGP_NOWAIT) { | |
1640 | if (!trylock_page(page)) { | |
09cbfeaf | 1641 | put_page(page); |
2457aec6 MG |
1642 | return NULL; |
1643 | } | |
1644 | } else { | |
1645 | lock_page(page); | |
1646 | } | |
1647 | ||
1648 | /* Has the page been truncated? */ | |
1649 | if (unlikely(page->mapping != mapping)) { | |
1650 | unlock_page(page); | |
09cbfeaf | 1651 | put_page(page); |
2457aec6 MG |
1652 | goto repeat; |
1653 | } | |
1654 | VM_BUG_ON_PAGE(page->index != offset, page); | |
1655 | } | |
1656 | ||
c16eb000 | 1657 | if (fgp_flags & FGP_ACCESSED) |
2457aec6 MG |
1658 | mark_page_accessed(page); |
1659 | ||
1660 | no_page: | |
1661 | if (!page && (fgp_flags & FGP_CREAT)) { | |
1662 | int err; | |
1663 | if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) | |
45f87de5 MH |
1664 | gfp_mask |= __GFP_WRITE; |
1665 | if (fgp_flags & FGP_NOFS) | |
1666 | gfp_mask &= ~__GFP_FS; | |
2457aec6 | 1667 | |
45f87de5 | 1668 | page = __page_cache_alloc(gfp_mask); |
eb2be189 NP |
1669 | if (!page) |
1670 | return NULL; | |
2457aec6 | 1671 | |
a75d4c33 | 1672 | if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) |
2457aec6 MG |
1673 | fgp_flags |= FGP_LOCK; |
1674 | ||
eb39d618 | 1675 | /* Init accessed so avoid atomic mark_page_accessed later */ |
2457aec6 | 1676 | if (fgp_flags & FGP_ACCESSED) |
eb39d618 | 1677 | __SetPageReferenced(page); |
2457aec6 | 1678 | |
abc1be13 | 1679 | err = add_to_page_cache_lru(page, mapping, offset, gfp_mask); |
eb2be189 | 1680 | if (unlikely(err)) { |
09cbfeaf | 1681 | put_page(page); |
eb2be189 NP |
1682 | page = NULL; |
1683 | if (err == -EEXIST) | |
1684 | goto repeat; | |
1da177e4 | 1685 | } |
a75d4c33 JB |
1686 | |
1687 | /* | |
1688 | * add_to_page_cache_lru locks the page, and for mmap we expect | |
1689 | * an unlocked page. | |
1690 | */ | |
1691 | if (page && (fgp_flags & FGP_FOR_MMAP)) | |
1692 | unlock_page(page); | |
1da177e4 | 1693 | } |
2457aec6 | 1694 | |
1da177e4 LT |
1695 | return page; |
1696 | } | |
2457aec6 | 1697 | EXPORT_SYMBOL(pagecache_get_page); |
1da177e4 | 1698 | |
0cd6144a JW |
1699 | /** |
1700 | * find_get_entries - gang pagecache lookup | |
1701 | * @mapping: The address_space to search | |
1702 | * @start: The starting page cache index | |
1703 | * @nr_entries: The maximum number of entries | |
1704 | * @entries: Where the resulting entries are placed | |
1705 | * @indices: The cache indices corresponding to the entries in @entries | |
1706 | * | |
1707 | * find_get_entries() will search for and return a group of up to | |
1708 | * @nr_entries entries in the mapping. The entries are placed at | |
1709 | * @entries. find_get_entries() takes a reference against any actual | |
1710 | * pages it returns. | |
1711 | * | |
1712 | * The search returns a group of mapping-contiguous page cache entries | |
1713 | * with ascending indexes. There may be holes in the indices due to | |
1714 | * not-present pages. | |
1715 | * | |
139b6a6f JW |
1716 | * Any shadow entries of evicted pages, or swap entries from |
1717 | * shmem/tmpfs, are included in the returned array. | |
0cd6144a | 1718 | * |
a862f68a | 1719 | * Return: the number of pages and shadow entries which were found. |
0cd6144a JW |
1720 | */ |
1721 | unsigned find_get_entries(struct address_space *mapping, | |
1722 | pgoff_t start, unsigned int nr_entries, | |
1723 | struct page **entries, pgoff_t *indices) | |
1724 | { | |
f280bf09 MW |
1725 | XA_STATE(xas, &mapping->i_pages, start); |
1726 | struct page *page; | |
0cd6144a | 1727 | unsigned int ret = 0; |
0cd6144a JW |
1728 | |
1729 | if (!nr_entries) | |
1730 | return 0; | |
1731 | ||
1732 | rcu_read_lock(); | |
f280bf09 | 1733 | xas_for_each(&xas, page, ULONG_MAX) { |
69bf4b6b | 1734 | struct page *head; |
f280bf09 | 1735 | if (xas_retry(&xas, page)) |
0cd6144a | 1736 | continue; |
f280bf09 MW |
1737 | /* |
1738 | * A shadow entry of a recently evicted page, a swap | |
1739 | * entry from shmem/tmpfs or a DAX entry. Return it | |
1740 | * without attempting to raise page count. | |
1741 | */ | |
1742 | if (xa_is_value(page)) | |
0cd6144a | 1743 | goto export; |
83929372 | 1744 | |
69bf4b6b LT |
1745 | head = compound_head(page); |
1746 | if (!page_cache_get_speculative(head)) | |
f280bf09 | 1747 | goto retry; |
83929372 | 1748 | |
69bf4b6b LT |
1749 | /* The page was split under us? */ |
1750 | if (compound_head(page) != head) | |
1751 | goto put_page; | |
1752 | ||
1753 | /* Has the page moved? */ | |
f280bf09 MW |
1754 | if (unlikely(page != xas_reload(&xas))) |
1755 | goto put_page; | |
1756 | ||
0cd6144a | 1757 | export: |
f280bf09 | 1758 | indices[ret] = xas.xa_index; |
0cd6144a JW |
1759 | entries[ret] = page; |
1760 | if (++ret == nr_entries) | |
1761 | break; | |
f280bf09 MW |
1762 | continue; |
1763 | put_page: | |
69bf4b6b | 1764 | put_page(head); |
f280bf09 MW |
1765 | retry: |
1766 | xas_reset(&xas); | |
0cd6144a JW |
1767 | } |
1768 | rcu_read_unlock(); | |
1769 | return ret; | |
1770 | } | |
1771 | ||
1da177e4 | 1772 | /** |
b947cee4 | 1773 | * find_get_pages_range - gang pagecache lookup |
1da177e4 LT |
1774 | * @mapping: The address_space to search |
1775 | * @start: The starting page index | |
b947cee4 | 1776 | * @end: The final page index (inclusive) |
1da177e4 LT |
1777 | * @nr_pages: The maximum number of pages |
1778 | * @pages: Where the resulting pages are placed | |
1779 | * | |
b947cee4 JK |
1780 | * find_get_pages_range() will search for and return a group of up to @nr_pages |
1781 | * pages in the mapping starting at index @start and up to index @end | |
1782 | * (inclusive). The pages are placed at @pages. find_get_pages_range() takes | |
1783 | * a reference against the returned pages. | |
1da177e4 LT |
1784 | * |
1785 | * The search returns a group of mapping-contiguous pages with ascending | |
1786 | * indexes. There may be holes in the indices due to not-present pages. | |
d72dc8a2 | 1787 | * We also update @start to index the next page for the traversal. |
1da177e4 | 1788 | * |
a862f68a MR |
1789 | * Return: the number of pages which were found. If this number is |
1790 | * smaller than @nr_pages, the end of specified range has been | |
b947cee4 | 1791 | * reached. |
1da177e4 | 1792 | */ |
b947cee4 JK |
1793 | unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, |
1794 | pgoff_t end, unsigned int nr_pages, | |
1795 | struct page **pages) | |
1da177e4 | 1796 | { |
fd1b3cee MW |
1797 | XA_STATE(xas, &mapping->i_pages, *start); |
1798 | struct page *page; | |
0fc9d104 KK |
1799 | unsigned ret = 0; |
1800 | ||
1801 | if (unlikely(!nr_pages)) | |
1802 | return 0; | |
a60637c8 NP |
1803 | |
1804 | rcu_read_lock(); | |
fd1b3cee | 1805 | xas_for_each(&xas, page, end) { |
69bf4b6b | 1806 | struct page *head; |
fd1b3cee | 1807 | if (xas_retry(&xas, page)) |
a60637c8 | 1808 | continue; |
fd1b3cee MW |
1809 | /* Skip over shadow, swap and DAX entries */ |
1810 | if (xa_is_value(page)) | |
8079b1c8 | 1811 | continue; |
a60637c8 | 1812 | |
69bf4b6b LT |
1813 | head = compound_head(page); |
1814 | if (!page_cache_get_speculative(head)) | |
fd1b3cee | 1815 | goto retry; |
83929372 | 1816 | |
69bf4b6b LT |
1817 | /* The page was split under us? */ |
1818 | if (compound_head(page) != head) | |
1819 | goto put_page; | |
1820 | ||
1821 | /* Has the page moved? */ | |
fd1b3cee MW |
1822 | if (unlikely(page != xas_reload(&xas))) |
1823 | goto put_page; | |
1da177e4 | 1824 | |
69bf4b6b | 1825 | pages[ret] = page; |
b947cee4 | 1826 | if (++ret == nr_pages) { |
5d3ee42f | 1827 | *start = xas.xa_index + 1; |
b947cee4 JK |
1828 | goto out; |
1829 | } | |
fd1b3cee MW |
1830 | continue; |
1831 | put_page: | |
69bf4b6b | 1832 | put_page(head); |
fd1b3cee MW |
1833 | retry: |
1834 | xas_reset(&xas); | |
a60637c8 | 1835 | } |
5b280c0c | 1836 | |
b947cee4 JK |
1837 | /* |
1838 | * We come here when there is no page beyond @end. We take care to not | |
1839 | * overflow the index @start as it confuses some of the callers. This | |
fd1b3cee | 1840 | * breaks the iteration when there is a page at index -1 but that is |
b947cee4 JK |
1841 | * already broken anyway. |
1842 | */ | |
1843 | if (end == (pgoff_t)-1) | |
1844 | *start = (pgoff_t)-1; | |
1845 | else | |
1846 | *start = end + 1; | |
1847 | out: | |
a60637c8 | 1848 | rcu_read_unlock(); |
d72dc8a2 | 1849 | |
1da177e4 LT |
1850 | return ret; |
1851 | } | |
1852 | ||
ebf43500 JA |
1853 | /** |
1854 | * find_get_pages_contig - gang contiguous pagecache lookup | |
1855 | * @mapping: The address_space to search | |
1856 | * @index: The starting page index | |
1857 | * @nr_pages: The maximum number of pages | |
1858 | * @pages: Where the resulting pages are placed | |
1859 | * | |
1860 | * find_get_pages_contig() works exactly like find_get_pages(), except | |
1861 | * that the returned number of pages are guaranteed to be contiguous. | |
1862 | * | |
a862f68a | 1863 | * Return: the number of pages which were found. |
ebf43500 JA |
1864 | */ |
1865 | unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, | |
1866 | unsigned int nr_pages, struct page **pages) | |
1867 | { | |
3ece58a2 MW |
1868 | XA_STATE(xas, &mapping->i_pages, index); |
1869 | struct page *page; | |
0fc9d104 KK |
1870 | unsigned int ret = 0; |
1871 | ||
1872 | if (unlikely(!nr_pages)) | |
1873 | return 0; | |
a60637c8 NP |
1874 | |
1875 | rcu_read_lock(); | |
3ece58a2 | 1876 | for (page = xas_load(&xas); page; page = xas_next(&xas)) { |
69bf4b6b | 1877 | struct page *head; |
3ece58a2 MW |
1878 | if (xas_retry(&xas, page)) |
1879 | continue; | |
1880 | /* | |
1881 | * If the entry has been swapped out, we can stop looking. | |
1882 | * No current caller is looking for DAX entries. | |
1883 | */ | |
1884 | if (xa_is_value(page)) | |
8079b1c8 | 1885 | break; |
ebf43500 | 1886 | |
69bf4b6b LT |
1887 | head = compound_head(page); |
1888 | if (!page_cache_get_speculative(head)) | |
3ece58a2 | 1889 | goto retry; |
83929372 | 1890 | |
69bf4b6b LT |
1891 | /* The page was split under us? */ |
1892 | if (compound_head(page) != head) | |
1893 | goto put_page; | |
1894 | ||
1895 | /* Has the page moved? */ | |
3ece58a2 MW |
1896 | if (unlikely(page != xas_reload(&xas))) |
1897 | goto put_page; | |
a60637c8 | 1898 | |
69bf4b6b | 1899 | pages[ret] = page; |
0fc9d104 KK |
1900 | if (++ret == nr_pages) |
1901 | break; | |
3ece58a2 MW |
1902 | continue; |
1903 | put_page: | |
69bf4b6b | 1904 | put_page(head); |
3ece58a2 MW |
1905 | retry: |
1906 | xas_reset(&xas); | |
ebf43500 | 1907 | } |
a60637c8 NP |
1908 | rcu_read_unlock(); |
1909 | return ret; | |
ebf43500 | 1910 | } |
ef71c15c | 1911 | EXPORT_SYMBOL(find_get_pages_contig); |
ebf43500 | 1912 | |
485bb99b | 1913 | /** |
72b045ae | 1914 | * find_get_pages_range_tag - find and return pages in given range matching @tag |
485bb99b RD |
1915 | * @mapping: the address_space to search |
1916 | * @index: the starting page index | |
72b045ae | 1917 | * @end: The final page index (inclusive) |
485bb99b RD |
1918 | * @tag: the tag index |
1919 | * @nr_pages: the maximum number of pages | |
1920 | * @pages: where the resulting pages are placed | |
1921 | * | |
1da177e4 | 1922 | * Like find_get_pages, except we only return pages which are tagged with |
485bb99b | 1923 | * @tag. We update @index to index the next page for the traversal. |
a862f68a MR |
1924 | * |
1925 | * Return: the number of pages which were found. | |
1da177e4 | 1926 | */ |
72b045ae | 1927 | unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, |
a6906972 | 1928 | pgoff_t end, xa_mark_t tag, unsigned int nr_pages, |
72b045ae | 1929 | struct page **pages) |
1da177e4 | 1930 | { |
a6906972 MW |
1931 | XA_STATE(xas, &mapping->i_pages, *index); |
1932 | struct page *page; | |
0fc9d104 KK |
1933 | unsigned ret = 0; |
1934 | ||
1935 | if (unlikely(!nr_pages)) | |
1936 | return 0; | |
a60637c8 NP |
1937 | |
1938 | rcu_read_lock(); | |
a6906972 | 1939 | xas_for_each_marked(&xas, page, end, tag) { |
69bf4b6b | 1940 | struct page *head; |
a6906972 | 1941 | if (xas_retry(&xas, page)) |
a60637c8 | 1942 | continue; |
a6906972 MW |
1943 | /* |
1944 | * Shadow entries should never be tagged, but this iteration | |
1945 | * is lockless so there is a window for page reclaim to evict | |
1946 | * a page we saw tagged. Skip over it. | |
1947 | */ | |
1948 | if (xa_is_value(page)) | |
139b6a6f | 1949 | continue; |
a60637c8 | 1950 | |
69bf4b6b LT |
1951 | head = compound_head(page); |
1952 | if (!page_cache_get_speculative(head)) | |
a6906972 | 1953 | goto retry; |
a60637c8 | 1954 | |
69bf4b6b LT |
1955 | /* The page was split under us? */ |
1956 | if (compound_head(page) != head) | |
1957 | goto put_page; | |
1958 | ||
1959 | /* Has the page moved? */ | |
a6906972 MW |
1960 | if (unlikely(page != xas_reload(&xas))) |
1961 | goto put_page; | |
a60637c8 | 1962 | |
69bf4b6b | 1963 | pages[ret] = page; |
72b045ae | 1964 | if (++ret == nr_pages) { |
5d3ee42f | 1965 | *index = xas.xa_index + 1; |
72b045ae JK |
1966 | goto out; |
1967 | } | |
a6906972 MW |
1968 | continue; |
1969 | put_page: | |
69bf4b6b | 1970 | put_page(head); |
a6906972 MW |
1971 | retry: |
1972 | xas_reset(&xas); | |
a60637c8 | 1973 | } |
5b280c0c | 1974 | |
72b045ae | 1975 | /* |
a6906972 | 1976 | * We come here when we got to @end. We take care to not overflow the |
72b045ae | 1977 | * index @index as it confuses some of the callers. This breaks the |
a6906972 MW |
1978 | * iteration when there is a page at index -1 but that is already |
1979 | * broken anyway. | |
72b045ae JK |
1980 | */ |
1981 | if (end == (pgoff_t)-1) | |
1982 | *index = (pgoff_t)-1; | |
1983 | else | |
1984 | *index = end + 1; | |
1985 | out: | |
a60637c8 | 1986 | rcu_read_unlock(); |
1da177e4 | 1987 | |
1da177e4 LT |
1988 | return ret; |
1989 | } | |
72b045ae | 1990 | EXPORT_SYMBOL(find_get_pages_range_tag); |
1da177e4 | 1991 | |
76d42bd9 WF |
1992 | /* |
1993 | * CD/DVDs are error prone. When a medium error occurs, the driver may fail | |
1994 | * a _large_ part of the i/o request. Imagine the worst scenario: | |
1995 | * | |
1996 | * ---R__________________________________________B__________ | |
1997 | * ^ reading here ^ bad block(assume 4k) | |
1998 | * | |
1999 | * read(R) => miss => readahead(R...B) => media error => frustrating retries | |
2000 | * => failing the whole request => read(R) => read(R+1) => | |
2001 | * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => | |
2002 | * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => | |
2003 | * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... | |
2004 | * | |
2005 | * It is going insane. Fix it by quickly scaling down the readahead size. | |
2006 | */ | |
2007 | static void shrink_readahead_size_eio(struct file *filp, | |
2008 | struct file_ra_state *ra) | |
2009 | { | |
76d42bd9 | 2010 | ra->ra_pages /= 4; |
76d42bd9 WF |
2011 | } |
2012 | ||
485bb99b | 2013 | /** |
47c27bc4 CH |
2014 | * generic_file_buffered_read - generic file read routine |
2015 | * @iocb: the iocb to read | |
6e58e79d AV |
2016 | * @iter: data destination |
2017 | * @written: already copied | |
485bb99b | 2018 | * |
1da177e4 | 2019 | * This is a generic file read routine, and uses the |
485bb99b | 2020 | * mapping->a_ops->readpage() function for the actual low-level stuff. |
1da177e4 LT |
2021 | * |
2022 | * This is really ugly. But the goto's actually try to clarify some | |
2023 | * of the logic when it comes to error handling etc. | |
a862f68a MR |
2024 | * |
2025 | * Return: | |
2026 | * * total number of bytes copied, including those the were already @written | |
2027 | * * negative error code if nothing was copied | |
1da177e4 | 2028 | */ |
47c27bc4 | 2029 | static ssize_t generic_file_buffered_read(struct kiocb *iocb, |
6e58e79d | 2030 | struct iov_iter *iter, ssize_t written) |
1da177e4 | 2031 | { |
47c27bc4 | 2032 | struct file *filp = iocb->ki_filp; |
36e78914 | 2033 | struct address_space *mapping = filp->f_mapping; |
1da177e4 | 2034 | struct inode *inode = mapping->host; |
36e78914 | 2035 | struct file_ra_state *ra = &filp->f_ra; |
47c27bc4 | 2036 | loff_t *ppos = &iocb->ki_pos; |
57f6b96c FW |
2037 | pgoff_t index; |
2038 | pgoff_t last_index; | |
2039 | pgoff_t prev_index; | |
2040 | unsigned long offset; /* offset into pagecache page */ | |
ec0f1637 | 2041 | unsigned int prev_offset; |
6e58e79d | 2042 | int error = 0; |
1da177e4 | 2043 | |
c2a9737f | 2044 | if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) |
d05c5f7b | 2045 | return 0; |
c2a9737f WF |
2046 | iov_iter_truncate(iter, inode->i_sb->s_maxbytes); |
2047 | ||
09cbfeaf KS |
2048 | index = *ppos >> PAGE_SHIFT; |
2049 | prev_index = ra->prev_pos >> PAGE_SHIFT; | |
2050 | prev_offset = ra->prev_pos & (PAGE_SIZE-1); | |
2051 | last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; | |
2052 | offset = *ppos & ~PAGE_MASK; | |
1da177e4 | 2053 | |
1da177e4 LT |
2054 | for (;;) { |
2055 | struct page *page; | |
57f6b96c | 2056 | pgoff_t end_index; |
a32ea1e1 | 2057 | loff_t isize; |
1da177e4 LT |
2058 | unsigned long nr, ret; |
2059 | ||
1da177e4 | 2060 | cond_resched(); |
1da177e4 | 2061 | find_page: |
5abf186a MH |
2062 | if (fatal_signal_pending(current)) { |
2063 | error = -EINTR; | |
2064 | goto out; | |
2065 | } | |
2066 | ||
1da177e4 | 2067 | page = find_get_page(mapping, index); |
3ea89ee8 | 2068 | if (!page) { |
3239d834 MT |
2069 | if (iocb->ki_flags & IOCB_NOWAIT) |
2070 | goto would_block; | |
cf914a7d | 2071 | page_cache_sync_readahead(mapping, |
7ff81078 | 2072 | ra, filp, |
3ea89ee8 FW |
2073 | index, last_index - index); |
2074 | page = find_get_page(mapping, index); | |
2075 | if (unlikely(page == NULL)) | |
2076 | goto no_cached_page; | |
2077 | } | |
2078 | if (PageReadahead(page)) { | |
cf914a7d | 2079 | page_cache_async_readahead(mapping, |
7ff81078 | 2080 | ra, filp, page, |
3ea89ee8 | 2081 | index, last_index - index); |
1da177e4 | 2082 | } |
8ab22b9a | 2083 | if (!PageUptodate(page)) { |
3239d834 MT |
2084 | if (iocb->ki_flags & IOCB_NOWAIT) { |
2085 | put_page(page); | |
2086 | goto would_block; | |
2087 | } | |
2088 | ||
ebded027 MG |
2089 | /* |
2090 | * See comment in do_read_cache_page on why | |
2091 | * wait_on_page_locked is used to avoid unnecessarily | |
2092 | * serialisations and why it's safe. | |
2093 | */ | |
c4b209a4 BVA |
2094 | error = wait_on_page_locked_killable(page); |
2095 | if (unlikely(error)) | |
2096 | goto readpage_error; | |
ebded027 MG |
2097 | if (PageUptodate(page)) |
2098 | goto page_ok; | |
2099 | ||
09cbfeaf | 2100 | if (inode->i_blkbits == PAGE_SHIFT || |
8ab22b9a HH |
2101 | !mapping->a_ops->is_partially_uptodate) |
2102 | goto page_not_up_to_date; | |
6d6d36bc | 2103 | /* pipes can't handle partially uptodate pages */ |
00e23707 | 2104 | if (unlikely(iov_iter_is_pipe(iter))) |
6d6d36bc | 2105 | goto page_not_up_to_date; |
529ae9aa | 2106 | if (!trylock_page(page)) |
8ab22b9a | 2107 | goto page_not_up_to_date; |
8d056cb9 DH |
2108 | /* Did it get truncated before we got the lock? */ |
2109 | if (!page->mapping) | |
2110 | goto page_not_up_to_date_locked; | |
8ab22b9a | 2111 | if (!mapping->a_ops->is_partially_uptodate(page, |
6e58e79d | 2112 | offset, iter->count)) |
8ab22b9a HH |
2113 | goto page_not_up_to_date_locked; |
2114 | unlock_page(page); | |
2115 | } | |
1da177e4 | 2116 | page_ok: |
a32ea1e1 N |
2117 | /* |
2118 | * i_size must be checked after we know the page is Uptodate. | |
2119 | * | |
2120 | * Checking i_size after the check allows us to calculate | |
2121 | * the correct value for "nr", which means the zero-filled | |
2122 | * part of the page is not copied back to userspace (unless | |
2123 | * another truncate extends the file - this is desired though). | |
2124 | */ | |
2125 | ||
2126 | isize = i_size_read(inode); | |
09cbfeaf | 2127 | end_index = (isize - 1) >> PAGE_SHIFT; |
a32ea1e1 | 2128 | if (unlikely(!isize || index > end_index)) { |
09cbfeaf | 2129 | put_page(page); |
a32ea1e1 N |
2130 | goto out; |
2131 | } | |
2132 | ||
2133 | /* nr is the maximum number of bytes to copy from this page */ | |
09cbfeaf | 2134 | nr = PAGE_SIZE; |
a32ea1e1 | 2135 | if (index == end_index) { |
09cbfeaf | 2136 | nr = ((isize - 1) & ~PAGE_MASK) + 1; |
a32ea1e1 | 2137 | if (nr <= offset) { |
09cbfeaf | 2138 | put_page(page); |
a32ea1e1 N |
2139 | goto out; |
2140 | } | |
2141 | } | |
2142 | nr = nr - offset; | |
1da177e4 LT |
2143 | |
2144 | /* If users can be writing to this page using arbitrary | |
2145 | * virtual addresses, take care about potential aliasing | |
2146 | * before reading the page on the kernel side. | |
2147 | */ | |
2148 | if (mapping_writably_mapped(mapping)) | |
2149 | flush_dcache_page(page); | |
2150 | ||
2151 | /* | |
ec0f1637 JK |
2152 | * When a sequential read accesses a page several times, |
2153 | * only mark it as accessed the first time. | |
1da177e4 | 2154 | */ |
ec0f1637 | 2155 | if (prev_index != index || offset != prev_offset) |
1da177e4 LT |
2156 | mark_page_accessed(page); |
2157 | prev_index = index; | |
2158 | ||
2159 | /* | |
2160 | * Ok, we have the page, and it's up-to-date, so | |
2161 | * now we can copy it to user space... | |
1da177e4 | 2162 | */ |
6e58e79d AV |
2163 | |
2164 | ret = copy_page_to_iter(page, offset, nr, iter); | |
1da177e4 | 2165 | offset += ret; |
09cbfeaf KS |
2166 | index += offset >> PAGE_SHIFT; |
2167 | offset &= ~PAGE_MASK; | |
6ce745ed | 2168 | prev_offset = offset; |
1da177e4 | 2169 | |
09cbfeaf | 2170 | put_page(page); |
6e58e79d AV |
2171 | written += ret; |
2172 | if (!iov_iter_count(iter)) | |
2173 | goto out; | |
2174 | if (ret < nr) { | |
2175 | error = -EFAULT; | |
2176 | goto out; | |
2177 | } | |
2178 | continue; | |
1da177e4 LT |
2179 | |
2180 | page_not_up_to_date: | |
2181 | /* Get exclusive access to the page ... */ | |
85462323 ON |
2182 | error = lock_page_killable(page); |
2183 | if (unlikely(error)) | |
2184 | goto readpage_error; | |
1da177e4 | 2185 | |
8ab22b9a | 2186 | page_not_up_to_date_locked: |
da6052f7 | 2187 | /* Did it get truncated before we got the lock? */ |
1da177e4 LT |
2188 | if (!page->mapping) { |
2189 | unlock_page(page); | |
09cbfeaf | 2190 | put_page(page); |
1da177e4 LT |
2191 | continue; |
2192 | } | |
2193 | ||
2194 | /* Did somebody else fill it already? */ | |
2195 | if (PageUptodate(page)) { | |
2196 | unlock_page(page); | |
2197 | goto page_ok; | |
2198 | } | |
2199 | ||
2200 | readpage: | |
91803b49 JM |
2201 | /* |
2202 | * A previous I/O error may have been due to temporary | |
2203 | * failures, eg. multipath errors. | |
2204 | * PG_error will be set again if readpage fails. | |
2205 | */ | |
2206 | ClearPageError(page); | |
1da177e4 LT |
2207 | /* Start the actual read. The read will unlock the page. */ |
2208 | error = mapping->a_ops->readpage(filp, page); | |
2209 | ||
994fc28c ZB |
2210 | if (unlikely(error)) { |
2211 | if (error == AOP_TRUNCATED_PAGE) { | |
09cbfeaf | 2212 | put_page(page); |
6e58e79d | 2213 | error = 0; |
994fc28c ZB |
2214 | goto find_page; |
2215 | } | |
1da177e4 | 2216 | goto readpage_error; |
994fc28c | 2217 | } |
1da177e4 LT |
2218 | |
2219 | if (!PageUptodate(page)) { | |
85462323 ON |
2220 | error = lock_page_killable(page); |
2221 | if (unlikely(error)) | |
2222 | goto readpage_error; | |
1da177e4 LT |
2223 | if (!PageUptodate(page)) { |
2224 | if (page->mapping == NULL) { | |
2225 | /* | |
2ecdc82e | 2226 | * invalidate_mapping_pages got it |
1da177e4 LT |
2227 | */ |
2228 | unlock_page(page); | |
09cbfeaf | 2229 | put_page(page); |
1da177e4 LT |
2230 | goto find_page; |
2231 | } | |
2232 | unlock_page(page); | |
7ff81078 | 2233 | shrink_readahead_size_eio(filp, ra); |
85462323 ON |
2234 | error = -EIO; |
2235 | goto readpage_error; | |
1da177e4 LT |
2236 | } |
2237 | unlock_page(page); | |
2238 | } | |
2239 | ||
1da177e4 LT |
2240 | goto page_ok; |
2241 | ||
2242 | readpage_error: | |
2243 | /* UHHUH! A synchronous read error occurred. Report it */ | |
09cbfeaf | 2244 | put_page(page); |
1da177e4 LT |
2245 | goto out; |
2246 | ||
2247 | no_cached_page: | |
2248 | /* | |
2249 | * Ok, it wasn't cached, so we need to create a new | |
2250 | * page.. | |
2251 | */ | |
453f85d4 | 2252 | page = page_cache_alloc(mapping); |
eb2be189 | 2253 | if (!page) { |
6e58e79d | 2254 | error = -ENOMEM; |
eb2be189 | 2255 | goto out; |
1da177e4 | 2256 | } |
6afdb859 | 2257 | error = add_to_page_cache_lru(page, mapping, index, |
c62d2555 | 2258 | mapping_gfp_constraint(mapping, GFP_KERNEL)); |
1da177e4 | 2259 | if (error) { |
09cbfeaf | 2260 | put_page(page); |
6e58e79d AV |
2261 | if (error == -EEXIST) { |
2262 | error = 0; | |
1da177e4 | 2263 | goto find_page; |
6e58e79d | 2264 | } |
1da177e4 LT |
2265 | goto out; |
2266 | } | |
1da177e4 LT |
2267 | goto readpage; |
2268 | } | |
2269 | ||
3239d834 MT |
2270 | would_block: |
2271 | error = -EAGAIN; | |
1da177e4 | 2272 | out: |
7ff81078 | 2273 | ra->prev_pos = prev_index; |
09cbfeaf | 2274 | ra->prev_pos <<= PAGE_SHIFT; |
7ff81078 | 2275 | ra->prev_pos |= prev_offset; |
1da177e4 | 2276 | |
09cbfeaf | 2277 | *ppos = ((loff_t)index << PAGE_SHIFT) + offset; |
0c6aa263 | 2278 | file_accessed(filp); |
6e58e79d | 2279 | return written ? written : error; |
1da177e4 LT |
2280 | } |
2281 | ||
485bb99b | 2282 | /** |
6abd2322 | 2283 | * generic_file_read_iter - generic filesystem read routine |
485bb99b | 2284 | * @iocb: kernel I/O control block |
6abd2322 | 2285 | * @iter: destination for the data read |
485bb99b | 2286 | * |
6abd2322 | 2287 | * This is the "read_iter()" routine for all filesystems |
1da177e4 | 2288 | * that can use the page cache directly. |
a862f68a MR |
2289 | * Return: |
2290 | * * number of bytes copied, even for partial reads | |
2291 | * * negative error code if nothing was read | |
1da177e4 LT |
2292 | */ |
2293 | ssize_t | |
ed978a81 | 2294 | generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) |
1da177e4 | 2295 | { |
e7080a43 | 2296 | size_t count = iov_iter_count(iter); |
47c27bc4 | 2297 | ssize_t retval = 0; |
e7080a43 NS |
2298 | |
2299 | if (!count) | |
2300 | goto out; /* skip atime */ | |
1da177e4 | 2301 | |
2ba48ce5 | 2302 | if (iocb->ki_flags & IOCB_DIRECT) { |
47c27bc4 | 2303 | struct file *file = iocb->ki_filp; |
ed978a81 AV |
2304 | struct address_space *mapping = file->f_mapping; |
2305 | struct inode *inode = mapping->host; | |
543ade1f | 2306 | loff_t size; |
1da177e4 | 2307 | |
1da177e4 | 2308 | size = i_size_read(inode); |
6be96d3a GR |
2309 | if (iocb->ki_flags & IOCB_NOWAIT) { |
2310 | if (filemap_range_has_page(mapping, iocb->ki_pos, | |
2311 | iocb->ki_pos + count - 1)) | |
2312 | return -EAGAIN; | |
2313 | } else { | |
2314 | retval = filemap_write_and_wait_range(mapping, | |
2315 | iocb->ki_pos, | |
2316 | iocb->ki_pos + count - 1); | |
2317 | if (retval < 0) | |
2318 | goto out; | |
2319 | } | |
d8d3d94b | 2320 | |
0d5b0cf2 CH |
2321 | file_accessed(file); |
2322 | ||
5ecda137 | 2323 | retval = mapping->a_ops->direct_IO(iocb, iter); |
c3a69024 | 2324 | if (retval >= 0) { |
c64fb5c7 | 2325 | iocb->ki_pos += retval; |
5ecda137 | 2326 | count -= retval; |
9fe55eea | 2327 | } |
5b47d59a | 2328 | iov_iter_revert(iter, count - iov_iter_count(iter)); |
66f998f6 | 2329 | |
9fe55eea SW |
2330 | /* |
2331 | * Btrfs can have a short DIO read if we encounter | |
2332 | * compressed extents, so if there was an error, or if | |
2333 | * we've already read everything we wanted to, or if | |
2334 | * there was a short read because we hit EOF, go ahead | |
2335 | * and return. Otherwise fallthrough to buffered io for | |
fbbbad4b MW |
2336 | * the rest of the read. Buffered reads will not work for |
2337 | * DAX files, so don't bother trying. | |
9fe55eea | 2338 | */ |
5ecda137 | 2339 | if (retval < 0 || !count || iocb->ki_pos >= size || |
0d5b0cf2 | 2340 | IS_DAX(inode)) |
9fe55eea | 2341 | goto out; |
1da177e4 LT |
2342 | } |
2343 | ||
47c27bc4 | 2344 | retval = generic_file_buffered_read(iocb, iter, retval); |
1da177e4 LT |
2345 | out: |
2346 | return retval; | |
2347 | } | |
ed978a81 | 2348 | EXPORT_SYMBOL(generic_file_read_iter); |
1da177e4 | 2349 | |
1da177e4 | 2350 | #ifdef CONFIG_MMU |
1da177e4 | 2351 | #define MMAP_LOTSAMISS (100) |
6b4c9f44 JB |
2352 | static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, |
2353 | struct file *fpin) | |
2354 | { | |
2355 | int flags = vmf->flags; | |
2356 | ||
2357 | if (fpin) | |
2358 | return fpin; | |
2359 | ||
2360 | /* | |
2361 | * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or | |
2362 | * anything, so we only pin the file and drop the mmap_sem if only | |
2363 | * FAULT_FLAG_ALLOW_RETRY is set. | |
2364 | */ | |
2365 | if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) == | |
2366 | FAULT_FLAG_ALLOW_RETRY) { | |
2367 | fpin = get_file(vmf->vma->vm_file); | |
2368 | up_read(&vmf->vma->vm_mm->mmap_sem); | |
2369 | } | |
2370 | return fpin; | |
2371 | } | |
2372 | ||
2373 | /* | |
2374 | * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem | |
2375 | * @vmf - the vm_fault for this fault. | |
2376 | * @page - the page to lock. | |
2377 | * @fpin - the pointer to the file we may pin (or is already pinned). | |
2378 | * | |
2379 | * This works similar to lock_page_or_retry in that it can drop the mmap_sem. | |
2380 | * It differs in that it actually returns the page locked if it returns 1 and 0 | |
2381 | * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin | |
2382 | * will point to the pinned file and needs to be fput()'ed at a later point. | |
2383 | */ | |
2384 | static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, | |
2385 | struct file **fpin) | |
2386 | { | |
2387 | if (trylock_page(page)) | |
2388 | return 1; | |
2389 | ||
8b0f9fa2 LT |
2390 | /* |
2391 | * NOTE! This will make us return with VM_FAULT_RETRY, but with | |
2392 | * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT | |
2393 | * is supposed to work. We have way too many special cases.. | |
2394 | */ | |
6b4c9f44 JB |
2395 | if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) |
2396 | return 0; | |
2397 | ||
2398 | *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); | |
2399 | if (vmf->flags & FAULT_FLAG_KILLABLE) { | |
2400 | if (__lock_page_killable(page)) { | |
2401 | /* | |
2402 | * We didn't have the right flags to drop the mmap_sem, | |
2403 | * but all fault_handlers only check for fatal signals | |
2404 | * if we return VM_FAULT_RETRY, so we need to drop the | |
2405 | * mmap_sem here and return 0 if we don't have a fpin. | |
2406 | */ | |
2407 | if (*fpin == NULL) | |
2408 | up_read(&vmf->vma->vm_mm->mmap_sem); | |
2409 | return 0; | |
2410 | } | |
2411 | } else | |
2412 | __lock_page(page); | |
2413 | return 1; | |
2414 | } | |
2415 | ||
1da177e4 | 2416 | |
ef00e08e | 2417 | /* |
6b4c9f44 JB |
2418 | * Synchronous readahead happens when we don't even find a page in the page |
2419 | * cache at all. We don't want to perform IO under the mmap sem, so if we have | |
2420 | * to drop the mmap sem we return the file that was pinned in order for us to do | |
2421 | * that. If we didn't pin a file then we return NULL. The file that is | |
2422 | * returned needs to be fput()'ed when we're done with it. | |
ef00e08e | 2423 | */ |
6b4c9f44 | 2424 | static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) |
ef00e08e | 2425 | { |
2a1180f1 JB |
2426 | struct file *file = vmf->vma->vm_file; |
2427 | struct file_ra_state *ra = &file->f_ra; | |
ef00e08e | 2428 | struct address_space *mapping = file->f_mapping; |
6b4c9f44 | 2429 | struct file *fpin = NULL; |
2a1180f1 | 2430 | pgoff_t offset = vmf->pgoff; |
ef00e08e LT |
2431 | |
2432 | /* If we don't want any read-ahead, don't bother */ | |
2a1180f1 | 2433 | if (vmf->vma->vm_flags & VM_RAND_READ) |
6b4c9f44 | 2434 | return fpin; |
275b12bf | 2435 | if (!ra->ra_pages) |
6b4c9f44 | 2436 | return fpin; |
ef00e08e | 2437 | |
2a1180f1 | 2438 | if (vmf->vma->vm_flags & VM_SEQ_READ) { |
6b4c9f44 | 2439 | fpin = maybe_unlock_mmap_for_io(vmf, fpin); |
7ffc59b4 WF |
2440 | page_cache_sync_readahead(mapping, ra, file, offset, |
2441 | ra->ra_pages); | |
6b4c9f44 | 2442 | return fpin; |
ef00e08e LT |
2443 | } |
2444 | ||
207d04ba AK |
2445 | /* Avoid banging the cache line if not needed */ |
2446 | if (ra->mmap_miss < MMAP_LOTSAMISS * 10) | |
ef00e08e LT |
2447 | ra->mmap_miss++; |
2448 | ||
2449 | /* | |
2450 | * Do we miss much more than hit in this file? If so, | |
2451 | * stop bothering with read-ahead. It will only hurt. | |
2452 | */ | |
2453 | if (ra->mmap_miss > MMAP_LOTSAMISS) | |
6b4c9f44 | 2454 | return fpin; |
ef00e08e | 2455 | |
d30a1100 WF |
2456 | /* |
2457 | * mmap read-around | |
2458 | */ | |
6b4c9f44 | 2459 | fpin = maybe_unlock_mmap_for_io(vmf, fpin); |
600e19af RG |
2460 | ra->start = max_t(long, 0, offset - ra->ra_pages / 2); |
2461 | ra->size = ra->ra_pages; | |
2462 | ra->async_size = ra->ra_pages / 4; | |
275b12bf | 2463 | ra_submit(ra, mapping, file); |
6b4c9f44 | 2464 | return fpin; |
ef00e08e LT |
2465 | } |
2466 | ||
2467 | /* | |
2468 | * Asynchronous readahead happens when we find the page and PG_readahead, | |
6b4c9f44 JB |
2469 | * so we want to possibly extend the readahead further. We return the file that |
2470 | * was pinned if we have to drop the mmap_sem in order to do IO. | |
ef00e08e | 2471 | */ |
6b4c9f44 JB |
2472 | static struct file *do_async_mmap_readahead(struct vm_fault *vmf, |
2473 | struct page *page) | |
ef00e08e | 2474 | { |
2a1180f1 JB |
2475 | struct file *file = vmf->vma->vm_file; |
2476 | struct file_ra_state *ra = &file->f_ra; | |
ef00e08e | 2477 | struct address_space *mapping = file->f_mapping; |
6b4c9f44 | 2478 | struct file *fpin = NULL; |
2a1180f1 | 2479 | pgoff_t offset = vmf->pgoff; |
ef00e08e LT |
2480 | |
2481 | /* If we don't want any read-ahead, don't bother */ | |
2a1180f1 | 2482 | if (vmf->vma->vm_flags & VM_RAND_READ) |
6b4c9f44 | 2483 | return fpin; |
ef00e08e LT |
2484 | if (ra->mmap_miss > 0) |
2485 | ra->mmap_miss--; | |
6b4c9f44 JB |
2486 | if (PageReadahead(page)) { |
2487 | fpin = maybe_unlock_mmap_for_io(vmf, fpin); | |
2fad6f5d WF |
2488 | page_cache_async_readahead(mapping, ra, file, |
2489 | page, offset, ra->ra_pages); | |
6b4c9f44 JB |
2490 | } |
2491 | return fpin; | |
ef00e08e LT |
2492 | } |
2493 | ||
485bb99b | 2494 | /** |
54cb8821 | 2495 | * filemap_fault - read in file data for page fault handling |
d0217ac0 | 2496 | * @vmf: struct vm_fault containing details of the fault |
485bb99b | 2497 | * |
54cb8821 | 2498 | * filemap_fault() is invoked via the vma operations vector for a |
1da177e4 LT |
2499 | * mapped memory region to read in file data during a page fault. |
2500 | * | |
2501 | * The goto's are kind of ugly, but this streamlines the normal case of having | |
2502 | * it in the page cache, and handles the special cases reasonably without | |
2503 | * having a lot of duplicated code. | |
9a95f3cf PC |
2504 | * |
2505 | * vma->vm_mm->mmap_sem must be held on entry. | |
2506 | * | |
a4985833 YS |
2507 | * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem |
2508 | * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). | |
9a95f3cf PC |
2509 | * |
2510 | * If our return value does not have VM_FAULT_RETRY set, the mmap_sem | |
2511 | * has not been released. | |
2512 | * | |
2513 | * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. | |
a862f68a MR |
2514 | * |
2515 | * Return: bitwise-OR of %VM_FAULT_ codes. | |
1da177e4 | 2516 | */ |
2bcd6454 | 2517 | vm_fault_t filemap_fault(struct vm_fault *vmf) |
1da177e4 LT |
2518 | { |
2519 | int error; | |
11bac800 | 2520 | struct file *file = vmf->vma->vm_file; |
6b4c9f44 | 2521 | struct file *fpin = NULL; |
1da177e4 LT |
2522 | struct address_space *mapping = file->f_mapping; |
2523 | struct file_ra_state *ra = &file->f_ra; | |
2524 | struct inode *inode = mapping->host; | |
ef00e08e | 2525 | pgoff_t offset = vmf->pgoff; |
9ab2594f | 2526 | pgoff_t max_off; |
1da177e4 | 2527 | struct page *page; |
2bcd6454 | 2528 | vm_fault_t ret = 0; |
1da177e4 | 2529 | |
9ab2594f MW |
2530 | max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); |
2531 | if (unlikely(offset >= max_off)) | |
5307cc1a | 2532 | return VM_FAULT_SIGBUS; |
1da177e4 | 2533 | |
1da177e4 | 2534 | /* |
49426420 | 2535 | * Do we have something in the page cache already? |
1da177e4 | 2536 | */ |
ef00e08e | 2537 | page = find_get_page(mapping, offset); |
45cac65b | 2538 | if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { |
1da177e4 | 2539 | /* |
ef00e08e LT |
2540 | * We found the page, so try async readahead before |
2541 | * waiting for the lock. | |
1da177e4 | 2542 | */ |
6b4c9f44 | 2543 | fpin = do_async_mmap_readahead(vmf, page); |
45cac65b | 2544 | } else if (!page) { |
ef00e08e | 2545 | /* No page in the page cache at all */ |
ef00e08e | 2546 | count_vm_event(PGMAJFAULT); |
2262185c | 2547 | count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); |
ef00e08e | 2548 | ret = VM_FAULT_MAJOR; |
6b4c9f44 | 2549 | fpin = do_sync_mmap_readahead(vmf); |
ef00e08e | 2550 | retry_find: |
a75d4c33 JB |
2551 | page = pagecache_get_page(mapping, offset, |
2552 | FGP_CREAT|FGP_FOR_MMAP, | |
2553 | vmf->gfp_mask); | |
6b4c9f44 JB |
2554 | if (!page) { |
2555 | if (fpin) | |
2556 | goto out_retry; | |
a75d4c33 | 2557 | return vmf_error(-ENOMEM); |
6b4c9f44 | 2558 | } |
1da177e4 LT |
2559 | } |
2560 | ||
6b4c9f44 JB |
2561 | if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) |
2562 | goto out_retry; | |
b522c94d ML |
2563 | |
2564 | /* Did it get truncated? */ | |
2565 | if (unlikely(page->mapping != mapping)) { | |
2566 | unlock_page(page); | |
2567 | put_page(page); | |
2568 | goto retry_find; | |
2569 | } | |
309381fe | 2570 | VM_BUG_ON_PAGE(page->index != offset, page); |
b522c94d | 2571 | |
1da177e4 | 2572 | /* |
d00806b1 NP |
2573 | * We have a locked page in the page cache, now we need to check |
2574 | * that it's up-to-date. If not, it is going to be due to an error. | |
1da177e4 | 2575 | */ |
d00806b1 | 2576 | if (unlikely(!PageUptodate(page))) |
1da177e4 LT |
2577 | goto page_not_uptodate; |
2578 | ||
6b4c9f44 JB |
2579 | /* |
2580 | * We've made it this far and we had to drop our mmap_sem, now is the | |
2581 | * time to return to the upper layer and have it re-find the vma and | |
2582 | * redo the fault. | |
2583 | */ | |
2584 | if (fpin) { | |
2585 | unlock_page(page); | |
2586 | goto out_retry; | |
2587 | } | |
2588 | ||
ef00e08e LT |
2589 | /* |
2590 | * Found the page and have a reference on it. | |
2591 | * We must recheck i_size under page lock. | |
2592 | */ | |
9ab2594f MW |
2593 | max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); |
2594 | if (unlikely(offset >= max_off)) { | |
d00806b1 | 2595 | unlock_page(page); |
09cbfeaf | 2596 | put_page(page); |
5307cc1a | 2597 | return VM_FAULT_SIGBUS; |
d00806b1 NP |
2598 | } |
2599 | ||
d0217ac0 | 2600 | vmf->page = page; |
83c54070 | 2601 | return ret | VM_FAULT_LOCKED; |
1da177e4 | 2602 | |
1da177e4 | 2603 | page_not_uptodate: |
1da177e4 LT |
2604 | /* |
2605 | * Umm, take care of errors if the page isn't up-to-date. | |
2606 | * Try to re-read it _once_. We do this synchronously, | |
2607 | * because there really aren't any performance issues here | |
2608 | * and we need to check for errors. | |
2609 | */ | |
1da177e4 | 2610 | ClearPageError(page); |
6b4c9f44 | 2611 | fpin = maybe_unlock_mmap_for_io(vmf, fpin); |
994fc28c | 2612 | error = mapping->a_ops->readpage(file, page); |
3ef0f720 MS |
2613 | if (!error) { |
2614 | wait_on_page_locked(page); | |
2615 | if (!PageUptodate(page)) | |
2616 | error = -EIO; | |
2617 | } | |
6b4c9f44 JB |
2618 | if (fpin) |
2619 | goto out_retry; | |
09cbfeaf | 2620 | put_page(page); |
d00806b1 NP |
2621 | |
2622 | if (!error || error == AOP_TRUNCATED_PAGE) | |
994fc28c | 2623 | goto retry_find; |
1da177e4 | 2624 | |
d00806b1 | 2625 | /* Things didn't work out. Return zero to tell the mm layer so. */ |
76d42bd9 | 2626 | shrink_readahead_size_eio(file, ra); |
d0217ac0 | 2627 | return VM_FAULT_SIGBUS; |
6b4c9f44 JB |
2628 | |
2629 | out_retry: | |
2630 | /* | |
2631 | * We dropped the mmap_sem, we need to return to the fault handler to | |
2632 | * re-find the vma and come back and find our hopefully still populated | |
2633 | * page. | |
2634 | */ | |
2635 | if (page) | |
2636 | put_page(page); | |
2637 | if (fpin) | |
2638 | fput(fpin); | |
2639 | return ret | VM_FAULT_RETRY; | |
54cb8821 NP |
2640 | } |
2641 | EXPORT_SYMBOL(filemap_fault); | |
2642 | ||
82b0f8c3 | 2643 | void filemap_map_pages(struct vm_fault *vmf, |
bae473a4 | 2644 | pgoff_t start_pgoff, pgoff_t end_pgoff) |
f1820361 | 2645 | { |
82b0f8c3 | 2646 | struct file *file = vmf->vma->vm_file; |
f1820361 | 2647 | struct address_space *mapping = file->f_mapping; |
bae473a4 | 2648 | pgoff_t last_pgoff = start_pgoff; |
9ab2594f | 2649 | unsigned long max_idx; |
070e807c | 2650 | XA_STATE(xas, &mapping->i_pages, start_pgoff); |
69bf4b6b | 2651 | struct page *head, *page; |
f1820361 KS |
2652 | |
2653 | rcu_read_lock(); | |
070e807c MW |
2654 | xas_for_each(&xas, page, end_pgoff) { |
2655 | if (xas_retry(&xas, page)) | |
2656 | continue; | |
2657 | if (xa_is_value(page)) | |
2cf938aa | 2658 | goto next; |
f1820361 | 2659 | |
69bf4b6b LT |
2660 | head = compound_head(page); |
2661 | ||
e0975b2a MH |
2662 | /* |
2663 | * Check for a locked page first, as a speculative | |
2664 | * reference may adversely influence page migration. | |
2665 | */ | |
69bf4b6b | 2666 | if (PageLocked(head)) |
e0975b2a | 2667 | goto next; |
69bf4b6b | 2668 | if (!page_cache_get_speculative(head)) |
070e807c | 2669 | goto next; |
f1820361 | 2670 | |
69bf4b6b LT |
2671 | /* The page was split under us? */ |
2672 | if (compound_head(page) != head) | |
2673 | goto skip; | |
2674 | ||
2675 | /* Has the page moved? */ | |
070e807c MW |
2676 | if (unlikely(page != xas_reload(&xas))) |
2677 | goto skip; | |
f1820361 KS |
2678 | |
2679 | if (!PageUptodate(page) || | |
2680 | PageReadahead(page) || | |
2681 | PageHWPoison(page)) | |
2682 | goto skip; | |
2683 | if (!trylock_page(page)) | |
2684 | goto skip; | |
2685 | ||
2686 | if (page->mapping != mapping || !PageUptodate(page)) | |
2687 | goto unlock; | |
2688 | ||
9ab2594f MW |
2689 | max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); |
2690 | if (page->index >= max_idx) | |
f1820361 KS |
2691 | goto unlock; |
2692 | ||
f1820361 KS |
2693 | if (file->f_ra.mmap_miss > 0) |
2694 | file->f_ra.mmap_miss--; | |
7267ec00 | 2695 | |
070e807c | 2696 | vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT; |
82b0f8c3 | 2697 | if (vmf->pte) |
070e807c MW |
2698 | vmf->pte += xas.xa_index - last_pgoff; |
2699 | last_pgoff = xas.xa_index; | |
82b0f8c3 | 2700 | if (alloc_set_pte(vmf, NULL, page)) |
7267ec00 | 2701 | goto unlock; |
f1820361 KS |
2702 | unlock_page(page); |
2703 | goto next; | |
2704 | unlock: | |
2705 | unlock_page(page); | |
2706 | skip: | |
09cbfeaf | 2707 | put_page(page); |
f1820361 | 2708 | next: |
7267ec00 | 2709 | /* Huge page is mapped? No need to proceed. */ |
82b0f8c3 | 2710 | if (pmd_trans_huge(*vmf->pmd)) |
7267ec00 | 2711 | break; |
f1820361 KS |
2712 | } |
2713 | rcu_read_unlock(); | |
2714 | } | |
2715 | EXPORT_SYMBOL(filemap_map_pages); | |
2716 | ||
2bcd6454 | 2717 | vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) |
4fcf1c62 JK |
2718 | { |
2719 | struct page *page = vmf->page; | |
11bac800 | 2720 | struct inode *inode = file_inode(vmf->vma->vm_file); |
2bcd6454 | 2721 | vm_fault_t ret = VM_FAULT_LOCKED; |
4fcf1c62 | 2722 | |
14da9200 | 2723 | sb_start_pagefault(inode->i_sb); |
11bac800 | 2724 | file_update_time(vmf->vma->vm_file); |
4fcf1c62 JK |
2725 | lock_page(page); |
2726 | if (page->mapping != inode->i_mapping) { | |
2727 | unlock_page(page); | |
2728 | ret = VM_FAULT_NOPAGE; | |
2729 | goto out; | |
2730 | } | |
14da9200 JK |
2731 | /* |
2732 | * We mark the page dirty already here so that when freeze is in | |
2733 | * progress, we are guaranteed that writeback during freezing will | |
2734 | * see the dirty page and writeprotect it again. | |
2735 | */ | |
2736 | set_page_dirty(page); | |
1d1d1a76 | 2737 | wait_for_stable_page(page); |
4fcf1c62 | 2738 | out: |
14da9200 | 2739 | sb_end_pagefault(inode->i_sb); |
4fcf1c62 JK |
2740 | return ret; |
2741 | } | |
4fcf1c62 | 2742 | |
f0f37e2f | 2743 | const struct vm_operations_struct generic_file_vm_ops = { |
54cb8821 | 2744 | .fault = filemap_fault, |
f1820361 | 2745 | .map_pages = filemap_map_pages, |
4fcf1c62 | 2746 | .page_mkwrite = filemap_page_mkwrite, |
1da177e4 LT |
2747 | }; |
2748 | ||
2749 | /* This is used for a general mmap of a disk file */ | |
2750 | ||
2751 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | |
2752 | { | |
2753 | struct address_space *mapping = file->f_mapping; | |
2754 | ||
2755 | if (!mapping->a_ops->readpage) | |
2756 | return -ENOEXEC; | |
2757 | file_accessed(file); | |
2758 | vma->vm_ops = &generic_file_vm_ops; | |
2759 | return 0; | |
2760 | } | |
1da177e4 LT |
2761 | |
2762 | /* | |
2763 | * This is for filesystems which do not implement ->writepage. | |
2764 | */ | |
2765 | int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) | |
2766 | { | |
2767 | if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) | |
2768 | return -EINVAL; | |
2769 | return generic_file_mmap(file, vma); | |
2770 | } | |
2771 | #else | |
4b96a37d | 2772 | vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) |
45397228 | 2773 | { |
4b96a37d | 2774 | return VM_FAULT_SIGBUS; |
45397228 | 2775 | } |
1da177e4 LT |
2776 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) |
2777 | { | |
2778 | return -ENOSYS; | |
2779 | } | |
2780 | int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) | |
2781 | { | |
2782 | return -ENOSYS; | |
2783 | } | |
2784 | #endif /* CONFIG_MMU */ | |
2785 | ||
45397228 | 2786 | EXPORT_SYMBOL(filemap_page_mkwrite); |
1da177e4 LT |
2787 | EXPORT_SYMBOL(generic_file_mmap); |
2788 | EXPORT_SYMBOL(generic_file_readonly_mmap); | |
2789 | ||
67f9fd91 SL |
2790 | static struct page *wait_on_page_read(struct page *page) |
2791 | { | |
2792 | if (!IS_ERR(page)) { | |
2793 | wait_on_page_locked(page); | |
2794 | if (!PageUptodate(page)) { | |
09cbfeaf | 2795 | put_page(page); |
67f9fd91 SL |
2796 | page = ERR_PTR(-EIO); |
2797 | } | |
2798 | } | |
2799 | return page; | |
2800 | } | |
2801 | ||
32b63529 | 2802 | static struct page *do_read_cache_page(struct address_space *mapping, |
57f6b96c | 2803 | pgoff_t index, |
5e5358e7 | 2804 | int (*filler)(void *, struct page *), |
0531b2aa LT |
2805 | void *data, |
2806 | gfp_t gfp) | |
1da177e4 | 2807 | { |
eb2be189 | 2808 | struct page *page; |
1da177e4 LT |
2809 | int err; |
2810 | repeat: | |
2811 | page = find_get_page(mapping, index); | |
2812 | if (!page) { | |
453f85d4 | 2813 | page = __page_cache_alloc(gfp); |
eb2be189 NP |
2814 | if (!page) |
2815 | return ERR_PTR(-ENOMEM); | |
e6f67b8c | 2816 | err = add_to_page_cache_lru(page, mapping, index, gfp); |
eb2be189 | 2817 | if (unlikely(err)) { |
09cbfeaf | 2818 | put_page(page); |
eb2be189 NP |
2819 | if (err == -EEXIST) |
2820 | goto repeat; | |
22ecdb4f | 2821 | /* Presumably ENOMEM for xarray node */ |
1da177e4 LT |
2822 | return ERR_PTR(err); |
2823 | } | |
32b63529 MG |
2824 | |
2825 | filler: | |
6c45b454 CH |
2826 | if (filler) |
2827 | err = filler(data, page); | |
2828 | else | |
2829 | err = mapping->a_ops->readpage(data, page); | |
2830 | ||
1da177e4 | 2831 | if (err < 0) { |
09cbfeaf | 2832 | put_page(page); |
32b63529 | 2833 | return ERR_PTR(err); |
1da177e4 | 2834 | } |
1da177e4 | 2835 | |
32b63529 MG |
2836 | page = wait_on_page_read(page); |
2837 | if (IS_ERR(page)) | |
2838 | return page; | |
2839 | goto out; | |
2840 | } | |
1da177e4 LT |
2841 | if (PageUptodate(page)) |
2842 | goto out; | |
2843 | ||
ebded027 MG |
2844 | /* |
2845 | * Page is not up to date and may be locked due one of the following | |
2846 | * case a: Page is being filled and the page lock is held | |
2847 | * case b: Read/write error clearing the page uptodate status | |
2848 | * case c: Truncation in progress (page locked) | |
2849 | * case d: Reclaim in progress | |
2850 | * | |
2851 | * Case a, the page will be up to date when the page is unlocked. | |
2852 | * There is no need to serialise on the page lock here as the page | |
2853 | * is pinned so the lock gives no additional protection. Even if the | |
2854 | * the page is truncated, the data is still valid if PageUptodate as | |
2855 | * it's a race vs truncate race. | |
2856 | * Case b, the page will not be up to date | |
2857 | * Case c, the page may be truncated but in itself, the data may still | |
2858 | * be valid after IO completes as it's a read vs truncate race. The | |
2859 | * operation must restart if the page is not uptodate on unlock but | |
2860 | * otherwise serialising on page lock to stabilise the mapping gives | |
2861 | * no additional guarantees to the caller as the page lock is | |
2862 | * released before return. | |
2863 | * Case d, similar to truncation. If reclaim holds the page lock, it | |
2864 | * will be a race with remove_mapping that determines if the mapping | |
2865 | * is valid on unlock but otherwise the data is valid and there is | |
2866 | * no need to serialise with page lock. | |
2867 | * | |
2868 | * As the page lock gives no additional guarantee, we optimistically | |
2869 | * wait on the page to be unlocked and check if it's up to date and | |
2870 | * use the page if it is. Otherwise, the page lock is required to | |
2871 | * distinguish between the different cases. The motivation is that we | |
2872 | * avoid spurious serialisations and wakeups when multiple processes | |
2873 | * wait on the same page for IO to complete. | |
2874 | */ | |
2875 | wait_on_page_locked(page); | |
2876 | if (PageUptodate(page)) | |
2877 | goto out; | |
2878 | ||
2879 | /* Distinguish between all the cases under the safety of the lock */ | |
1da177e4 | 2880 | lock_page(page); |
ebded027 MG |
2881 | |
2882 | /* Case c or d, restart the operation */ | |
1da177e4 LT |
2883 | if (!page->mapping) { |
2884 | unlock_page(page); | |
09cbfeaf | 2885 | put_page(page); |
32b63529 | 2886 | goto repeat; |
1da177e4 | 2887 | } |
ebded027 MG |
2888 | |
2889 | /* Someone else locked and filled the page in a very small window */ | |
1da177e4 LT |
2890 | if (PageUptodate(page)) { |
2891 | unlock_page(page); | |
2892 | goto out; | |
2893 | } | |
32b63529 MG |
2894 | goto filler; |
2895 | ||
c855ff37 | 2896 | out: |
6fe6900e NP |
2897 | mark_page_accessed(page); |
2898 | return page; | |
2899 | } | |
0531b2aa LT |
2900 | |
2901 | /** | |
67f9fd91 | 2902 | * read_cache_page - read into page cache, fill it if needed |
0531b2aa LT |
2903 | * @mapping: the page's address_space |
2904 | * @index: the page index | |
2905 | * @filler: function to perform the read | |
5e5358e7 | 2906 | * @data: first arg to filler(data, page) function, often left as NULL |
0531b2aa | 2907 | * |
0531b2aa | 2908 | * Read into the page cache. If a page already exists, and PageUptodate() is |
67f9fd91 | 2909 | * not set, try to fill the page and wait for it to become unlocked. |
0531b2aa LT |
2910 | * |
2911 | * If the page does not get brought uptodate, return -EIO. | |
a862f68a MR |
2912 | * |
2913 | * Return: up to date page on success, ERR_PTR() on failure. | |
0531b2aa | 2914 | */ |
67f9fd91 | 2915 | struct page *read_cache_page(struct address_space *mapping, |
0531b2aa | 2916 | pgoff_t index, |
5e5358e7 | 2917 | int (*filler)(void *, struct page *), |
0531b2aa LT |
2918 | void *data) |
2919 | { | |
d322a8e5 CH |
2920 | return do_read_cache_page(mapping, index, filler, data, |
2921 | mapping_gfp_mask(mapping)); | |
0531b2aa | 2922 | } |
67f9fd91 | 2923 | EXPORT_SYMBOL(read_cache_page); |
0531b2aa LT |
2924 | |
2925 | /** | |
2926 | * read_cache_page_gfp - read into page cache, using specified page allocation flags. | |
2927 | * @mapping: the page's address_space | |
2928 | * @index: the page index | |
2929 | * @gfp: the page allocator flags to use if allocating | |
2930 | * | |
2931 | * This is the same as "read_mapping_page(mapping, index, NULL)", but with | |
e6f67b8c | 2932 | * any new page allocations done using the specified allocation flags. |
0531b2aa LT |
2933 | * |
2934 | * If the page does not get brought uptodate, return -EIO. | |
a862f68a MR |
2935 | * |
2936 | * Return: up to date page on success, ERR_PTR() on failure. | |
0531b2aa LT |
2937 | */ |
2938 | struct page *read_cache_page_gfp(struct address_space *mapping, | |
2939 | pgoff_t index, | |
2940 | gfp_t gfp) | |
2941 | { | |
6c45b454 | 2942 | return do_read_cache_page(mapping, index, NULL, NULL, gfp); |
0531b2aa LT |
2943 | } |
2944 | EXPORT_SYMBOL(read_cache_page_gfp); | |
2945 | ||
9fd91a90 DW |
2946 | /* |
2947 | * Don't operate on ranges the page cache doesn't support, and don't exceed the | |
2948 | * LFS limits. If pos is under the limit it becomes a short access. If it | |
2949 | * exceeds the limit we return -EFBIG. | |
2950 | */ | |
9fd91a90 DW |
2951 | static int generic_write_check_limits(struct file *file, loff_t pos, |
2952 | loff_t *count) | |
2953 | { | |
646955cd AG |
2954 | struct inode *inode = file->f_mapping->host; |
2955 | loff_t max_size = inode->i_sb->s_maxbytes; | |
9fd91a90 DW |
2956 | loff_t limit = rlimit(RLIMIT_FSIZE); |
2957 | ||
2958 | if (limit != RLIM_INFINITY) { | |
2959 | if (pos >= limit) { | |
2960 | send_sig(SIGXFSZ, current, 0); | |
2961 | return -EFBIG; | |
2962 | } | |
2963 | *count = min(*count, limit - pos); | |
2964 | } | |
2965 | ||
646955cd AG |
2966 | if (!(file->f_flags & O_LARGEFILE)) |
2967 | max_size = MAX_NON_LFS; | |
2968 | ||
2969 | if (unlikely(pos >= max_size)) | |
2970 | return -EFBIG; | |
2971 | ||
2972 | *count = min(*count, max_size - pos); | |
2973 | ||
2974 | return 0; | |
9fd91a90 DW |
2975 | } |
2976 | ||
1da177e4 LT |
2977 | /* |
2978 | * Performs necessary checks before doing a write | |
2979 | * | |
485bb99b | 2980 | * Can adjust writing position or amount of bytes to write. |
1da177e4 LT |
2981 | * Returns appropriate error code that caller should return or |
2982 | * zero in case that write should be allowed. | |
2983 | */ | |
3309dd04 | 2984 | inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 | 2985 | { |
3309dd04 | 2986 | struct file *file = iocb->ki_filp; |
1da177e4 | 2987 | struct inode *inode = file->f_mapping->host; |
9fd91a90 DW |
2988 | loff_t count; |
2989 | int ret; | |
1da177e4 | 2990 | |
3309dd04 AV |
2991 | if (!iov_iter_count(from)) |
2992 | return 0; | |
1da177e4 | 2993 | |
0fa6b005 | 2994 | /* FIXME: this is for backwards compatibility with 2.4 */ |
2ba48ce5 | 2995 | if (iocb->ki_flags & IOCB_APPEND) |
3309dd04 | 2996 | iocb->ki_pos = i_size_read(inode); |
1da177e4 | 2997 | |
6be96d3a GR |
2998 | if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) |
2999 | return -EINVAL; | |
3000 | ||
9fd91a90 DW |
3001 | count = iov_iter_count(from); |
3002 | ret = generic_write_check_limits(file, iocb->ki_pos, &count); | |
3003 | if (ret) | |
3004 | return ret; | |
1da177e4 | 3005 | |
9fd91a90 | 3006 | iov_iter_truncate(from, count); |
3309dd04 | 3007 | return iov_iter_count(from); |
1da177e4 LT |
3008 | } |
3009 | EXPORT_SYMBOL(generic_write_checks); | |
3010 | ||
1383a7ed DW |
3011 | /* |
3012 | * Performs necessary checks before doing a clone. | |
3013 | * | |
646955cd | 3014 | * Can adjust amount of bytes to clone via @req_count argument. |
1383a7ed DW |
3015 | * Returns appropriate error code that caller should return or |
3016 | * zero in case the clone should be allowed. | |
3017 | */ | |
3018 | int generic_remap_checks(struct file *file_in, loff_t pos_in, | |
3019 | struct file *file_out, loff_t pos_out, | |
42ec3d4c | 3020 | loff_t *req_count, unsigned int remap_flags) |
1383a7ed DW |
3021 | { |
3022 | struct inode *inode_in = file_in->f_mapping->host; | |
3023 | struct inode *inode_out = file_out->f_mapping->host; | |
3024 | uint64_t count = *req_count; | |
3025 | uint64_t bcount; | |
3026 | loff_t size_in, size_out; | |
3027 | loff_t bs = inode_out->i_sb->s_blocksize; | |
9fd91a90 | 3028 | int ret; |
1383a7ed DW |
3029 | |
3030 | /* The start of both ranges must be aligned to an fs block. */ | |
3031 | if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs)) | |
3032 | return -EINVAL; | |
3033 | ||
3034 | /* Ensure offsets don't wrap. */ | |
3035 | if (pos_in + count < pos_in || pos_out + count < pos_out) | |
3036 | return -EINVAL; | |
3037 | ||
3038 | size_in = i_size_read(inode_in); | |
3039 | size_out = i_size_read(inode_out); | |
3040 | ||
3041 | /* Dedupe requires both ranges to be within EOF. */ | |
3d28193e | 3042 | if ((remap_flags & REMAP_FILE_DEDUP) && |
1383a7ed DW |
3043 | (pos_in >= size_in || pos_in + count > size_in || |
3044 | pos_out >= size_out || pos_out + count > size_out)) | |
3045 | return -EINVAL; | |
3046 | ||
3047 | /* Ensure the infile range is within the infile. */ | |
3048 | if (pos_in >= size_in) | |
3049 | return -EINVAL; | |
3050 | count = min(count, size_in - (uint64_t)pos_in); | |
3051 | ||
9fd91a90 DW |
3052 | ret = generic_write_check_limits(file_out, pos_out, &count); |
3053 | if (ret) | |
3054 | return ret; | |
1da177e4 LT |
3055 | |
3056 | /* | |
1383a7ed DW |
3057 | * If the user wanted us to link to the infile's EOF, round up to the |
3058 | * next block boundary for this check. | |
3059 | * | |
3060 | * Otherwise, make sure the count is also block-aligned, having | |
3061 | * already confirmed the starting offsets' block alignment. | |
1da177e4 | 3062 | */ |
1383a7ed DW |
3063 | if (pos_in + count == size_in) { |
3064 | bcount = ALIGN(size_in, bs) - pos_in; | |
3065 | } else { | |
3066 | if (!IS_ALIGNED(count, bs)) | |
eca3654e | 3067 | count = ALIGN_DOWN(count, bs); |
1383a7ed | 3068 | bcount = count; |
1da177e4 LT |
3069 | } |
3070 | ||
1383a7ed DW |
3071 | /* Don't allow overlapped cloning within the same file. */ |
3072 | if (inode_in == inode_out && | |
3073 | pos_out + bcount > pos_in && | |
3074 | pos_out < pos_in + bcount) | |
3075 | return -EINVAL; | |
3076 | ||
1da177e4 | 3077 | /* |
eca3654e DW |
3078 | * We shortened the request but the caller can't deal with that, so |
3079 | * bounce the request back to userspace. | |
1da177e4 | 3080 | */ |
eca3654e | 3081 | if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN)) |
1383a7ed | 3082 | return -EINVAL; |
1da177e4 | 3083 | |
eca3654e | 3084 | *req_count = count; |
1383a7ed | 3085 | return 0; |
1da177e4 | 3086 | } |
1da177e4 | 3087 | |
a3171351 AG |
3088 | |
3089 | /* | |
3090 | * Performs common checks before doing a file copy/clone | |
3091 | * from @file_in to @file_out. | |
3092 | */ | |
3093 | int generic_file_rw_checks(struct file *file_in, struct file *file_out) | |
3094 | { | |
3095 | struct inode *inode_in = file_inode(file_in); | |
3096 | struct inode *inode_out = file_inode(file_out); | |
3097 | ||
3098 | /* Don't copy dirs, pipes, sockets... */ | |
3099 | if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode)) | |
3100 | return -EISDIR; | |
3101 | if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode)) | |
3102 | return -EINVAL; | |
3103 | ||
3104 | if (!(file_in->f_mode & FMODE_READ) || | |
3105 | !(file_out->f_mode & FMODE_WRITE) || | |
3106 | (file_out->f_flags & O_APPEND)) | |
3107 | return -EBADF; | |
3108 | ||
3109 | return 0; | |
3110 | } | |
3111 | ||
96e6e8f4 AG |
3112 | /* |
3113 | * Performs necessary checks before doing a file copy | |
3114 | * | |
3115 | * Can adjust amount of bytes to copy via @req_count argument. | |
3116 | * Returns appropriate error code that caller should return or | |
3117 | * zero in case the copy should be allowed. | |
3118 | */ | |
3119 | int generic_copy_file_checks(struct file *file_in, loff_t pos_in, | |
3120 | struct file *file_out, loff_t pos_out, | |
3121 | size_t *req_count, unsigned int flags) | |
3122 | { | |
3123 | struct inode *inode_in = file_inode(file_in); | |
3124 | struct inode *inode_out = file_inode(file_out); | |
3125 | uint64_t count = *req_count; | |
3126 | loff_t size_in; | |
3127 | int ret; | |
3128 | ||
3129 | ret = generic_file_rw_checks(file_in, file_out); | |
3130 | if (ret) | |
3131 | return ret; | |
3132 | ||
3133 | /* Don't touch certain kinds of inodes */ | |
3134 | if (IS_IMMUTABLE(inode_out)) | |
3135 | return -EPERM; | |
3136 | ||
3137 | if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out)) | |
3138 | return -ETXTBSY; | |
3139 | ||
3140 | /* Ensure offsets don't wrap. */ | |
3141 | if (pos_in + count < pos_in || pos_out + count < pos_out) | |
3142 | return -EOVERFLOW; | |
3143 | ||
3144 | /* Shorten the copy to EOF */ | |
3145 | size_in = i_size_read(inode_in); | |
3146 | if (pos_in >= size_in) | |
3147 | count = 0; | |
3148 | else | |
3149 | count = min(count, size_in - (uint64_t)pos_in); | |
3150 | ||
3151 | ret = generic_write_check_limits(file_out, pos_out, &count); | |
3152 | if (ret) | |
3153 | return ret; | |
3154 | ||
3155 | /* Don't allow overlapped copying within the same file. */ | |
3156 | if (inode_in == inode_out && | |
3157 | pos_out + count > pos_in && | |
3158 | pos_out < pos_in + count) | |
3159 | return -EINVAL; | |
3160 | ||
3161 | *req_count = count; | |
3162 | return 0; | |
3163 | } | |
3164 | ||
afddba49 NP |
3165 | int pagecache_write_begin(struct file *file, struct address_space *mapping, |
3166 | loff_t pos, unsigned len, unsigned flags, | |
3167 | struct page **pagep, void **fsdata) | |
3168 | { | |
3169 | const struct address_space_operations *aops = mapping->a_ops; | |
3170 | ||
4e02ed4b | 3171 | return aops->write_begin(file, mapping, pos, len, flags, |
afddba49 | 3172 | pagep, fsdata); |
afddba49 NP |
3173 | } |
3174 | EXPORT_SYMBOL(pagecache_write_begin); | |
3175 | ||
3176 | int pagecache_write_end(struct file *file, struct address_space *mapping, | |
3177 | loff_t pos, unsigned len, unsigned copied, | |
3178 | struct page *page, void *fsdata) | |
3179 | { | |
3180 | const struct address_space_operations *aops = mapping->a_ops; | |
afddba49 | 3181 | |
4e02ed4b | 3182 | return aops->write_end(file, mapping, pos, len, copied, page, fsdata); |
afddba49 NP |
3183 | } |
3184 | EXPORT_SYMBOL(pagecache_write_end); | |
3185 | ||
1da177e4 | 3186 | ssize_t |
1af5bb49 | 3187 | generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 LT |
3188 | { |
3189 | struct file *file = iocb->ki_filp; | |
3190 | struct address_space *mapping = file->f_mapping; | |
3191 | struct inode *inode = mapping->host; | |
1af5bb49 | 3192 | loff_t pos = iocb->ki_pos; |
1da177e4 | 3193 | ssize_t written; |
a969e903 CH |
3194 | size_t write_len; |
3195 | pgoff_t end; | |
1da177e4 | 3196 | |
0c949334 | 3197 | write_len = iov_iter_count(from); |
09cbfeaf | 3198 | end = (pos + write_len - 1) >> PAGE_SHIFT; |
a969e903 | 3199 | |
6be96d3a GR |
3200 | if (iocb->ki_flags & IOCB_NOWAIT) { |
3201 | /* If there are pages to writeback, return */ | |
3202 | if (filemap_range_has_page(inode->i_mapping, pos, | |
35f12f0f | 3203 | pos + write_len - 1)) |
6be96d3a GR |
3204 | return -EAGAIN; |
3205 | } else { | |
3206 | written = filemap_write_and_wait_range(mapping, pos, | |
3207 | pos + write_len - 1); | |
3208 | if (written) | |
3209 | goto out; | |
3210 | } | |
a969e903 CH |
3211 | |
3212 | /* | |
3213 | * After a write we want buffered reads to be sure to go to disk to get | |
3214 | * the new data. We invalidate clean cached page from the region we're | |
3215 | * about to write. We do this *before* the write so that we can return | |
6ccfa806 | 3216 | * without clobbering -EIOCBQUEUED from ->direct_IO(). |
a969e903 | 3217 | */ |
55635ba7 | 3218 | written = invalidate_inode_pages2_range(mapping, |
09cbfeaf | 3219 | pos >> PAGE_SHIFT, end); |
55635ba7 AR |
3220 | /* |
3221 | * If a page can not be invalidated, return 0 to fall back | |
3222 | * to buffered write. | |
3223 | */ | |
3224 | if (written) { | |
3225 | if (written == -EBUSY) | |
3226 | return 0; | |
3227 | goto out; | |
a969e903 CH |
3228 | } |
3229 | ||
639a93a5 | 3230 | written = mapping->a_ops->direct_IO(iocb, from); |
a969e903 CH |
3231 | |
3232 | /* | |
3233 | * Finally, try again to invalidate clean pages which might have been | |
3234 | * cached by non-direct readahead, or faulted in by get_user_pages() | |
3235 | * if the source of the write was an mmap'ed region of the file | |
3236 | * we're writing. Either one is a pretty crazy thing to do, | |
3237 | * so we don't support it 100%. If this invalidation | |
3238 | * fails, tough, the write still worked... | |
332391a9 LC |
3239 | * |
3240 | * Most of the time we do not need this since dio_complete() will do | |
3241 | * the invalidation for us. However there are some file systems that | |
3242 | * do not end up with dio_complete() being called, so let's not break | |
3243 | * them by removing it completely | |
a969e903 | 3244 | */ |
332391a9 LC |
3245 | if (mapping->nrpages) |
3246 | invalidate_inode_pages2_range(mapping, | |
3247 | pos >> PAGE_SHIFT, end); | |
a969e903 | 3248 | |
1da177e4 | 3249 | if (written > 0) { |
0116651c | 3250 | pos += written; |
639a93a5 | 3251 | write_len -= written; |
0116651c NK |
3252 | if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { |
3253 | i_size_write(inode, pos); | |
1da177e4 LT |
3254 | mark_inode_dirty(inode); |
3255 | } | |
5cb6c6c7 | 3256 | iocb->ki_pos = pos; |
1da177e4 | 3257 | } |
639a93a5 | 3258 | iov_iter_revert(from, write_len - iov_iter_count(from)); |
a969e903 | 3259 | out: |
1da177e4 LT |
3260 | return written; |
3261 | } | |
3262 | EXPORT_SYMBOL(generic_file_direct_write); | |
3263 | ||
eb2be189 NP |
3264 | /* |
3265 | * Find or create a page at the given pagecache position. Return the locked | |
3266 | * page. This function is specifically for buffered writes. | |
3267 | */ | |
54566b2c NP |
3268 | struct page *grab_cache_page_write_begin(struct address_space *mapping, |
3269 | pgoff_t index, unsigned flags) | |
eb2be189 | 3270 | { |
eb2be189 | 3271 | struct page *page; |
bbddabe2 | 3272 | int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; |
0faa70cb | 3273 | |
54566b2c | 3274 | if (flags & AOP_FLAG_NOFS) |
2457aec6 MG |
3275 | fgp_flags |= FGP_NOFS; |
3276 | ||
3277 | page = pagecache_get_page(mapping, index, fgp_flags, | |
45f87de5 | 3278 | mapping_gfp_mask(mapping)); |
c585a267 | 3279 | if (page) |
2457aec6 | 3280 | wait_for_stable_page(page); |
eb2be189 | 3281 | |
eb2be189 NP |
3282 | return page; |
3283 | } | |
54566b2c | 3284 | EXPORT_SYMBOL(grab_cache_page_write_begin); |
eb2be189 | 3285 | |
3b93f911 | 3286 | ssize_t generic_perform_write(struct file *file, |
afddba49 NP |
3287 | struct iov_iter *i, loff_t pos) |
3288 | { | |
3289 | struct address_space *mapping = file->f_mapping; | |
3290 | const struct address_space_operations *a_ops = mapping->a_ops; | |
3291 | long status = 0; | |
3292 | ssize_t written = 0; | |
674b892e NP |
3293 | unsigned int flags = 0; |
3294 | ||
afddba49 NP |
3295 | do { |
3296 | struct page *page; | |
afddba49 NP |
3297 | unsigned long offset; /* Offset into pagecache page */ |
3298 | unsigned long bytes; /* Bytes to write to page */ | |
3299 | size_t copied; /* Bytes copied from user */ | |
3300 | void *fsdata; | |
3301 | ||
09cbfeaf KS |
3302 | offset = (pos & (PAGE_SIZE - 1)); |
3303 | bytes = min_t(unsigned long, PAGE_SIZE - offset, | |
afddba49 NP |
3304 | iov_iter_count(i)); |
3305 | ||
3306 | again: | |
00a3d660 LT |
3307 | /* |
3308 | * Bring in the user page that we will copy from _first_. | |
3309 | * Otherwise there's a nasty deadlock on copying from the | |
3310 | * same page as we're writing to, without it being marked | |
3311 | * up-to-date. | |
3312 | * | |
3313 | * Not only is this an optimisation, but it is also required | |
3314 | * to check that the address is actually valid, when atomic | |
3315 | * usercopies are used, below. | |
3316 | */ | |
3317 | if (unlikely(iov_iter_fault_in_readable(i, bytes))) { | |
3318 | status = -EFAULT; | |
3319 | break; | |
3320 | } | |
3321 | ||
296291cd JK |
3322 | if (fatal_signal_pending(current)) { |
3323 | status = -EINTR; | |
3324 | break; | |
3325 | } | |
3326 | ||
674b892e | 3327 | status = a_ops->write_begin(file, mapping, pos, bytes, flags, |
afddba49 | 3328 | &page, &fsdata); |
2457aec6 | 3329 | if (unlikely(status < 0)) |
afddba49 NP |
3330 | break; |
3331 | ||
931e80e4 | 3332 | if (mapping_writably_mapped(mapping)) |
3333 | flush_dcache_page(page); | |
00a3d660 | 3334 | |
afddba49 | 3335 | copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); |
afddba49 NP |
3336 | flush_dcache_page(page); |
3337 | ||
3338 | status = a_ops->write_end(file, mapping, pos, bytes, copied, | |
3339 | page, fsdata); | |
3340 | if (unlikely(status < 0)) | |
3341 | break; | |
3342 | copied = status; | |
3343 | ||
3344 | cond_resched(); | |
3345 | ||
124d3b70 | 3346 | iov_iter_advance(i, copied); |
afddba49 NP |
3347 | if (unlikely(copied == 0)) { |
3348 | /* | |
3349 | * If we were unable to copy any data at all, we must | |
3350 | * fall back to a single segment length write. | |
3351 | * | |
3352 | * If we didn't fallback here, we could livelock | |
3353 | * because not all segments in the iov can be copied at | |
3354 | * once without a pagefault. | |
3355 | */ | |
09cbfeaf | 3356 | bytes = min_t(unsigned long, PAGE_SIZE - offset, |
afddba49 NP |
3357 | iov_iter_single_seg_count(i)); |
3358 | goto again; | |
3359 | } | |
afddba49 NP |
3360 | pos += copied; |
3361 | written += copied; | |
3362 | ||
3363 | balance_dirty_pages_ratelimited(mapping); | |
afddba49 NP |
3364 | } while (iov_iter_count(i)); |
3365 | ||
3366 | return written ? written : status; | |
3367 | } | |
3b93f911 | 3368 | EXPORT_SYMBOL(generic_perform_write); |
1da177e4 | 3369 | |
e4dd9de3 | 3370 | /** |
8174202b | 3371 | * __generic_file_write_iter - write data to a file |
e4dd9de3 | 3372 | * @iocb: IO state structure (file, offset, etc.) |
8174202b | 3373 | * @from: iov_iter with data to write |
e4dd9de3 JK |
3374 | * |
3375 | * This function does all the work needed for actually writing data to a | |
3376 | * file. It does all basic checks, removes SUID from the file, updates | |
3377 | * modification times and calls proper subroutines depending on whether we | |
3378 | * do direct IO or a standard buffered write. | |
3379 | * | |
3380 | * It expects i_mutex to be grabbed unless we work on a block device or similar | |
3381 | * object which does not need locking at all. | |
3382 | * | |
3383 | * This function does *not* take care of syncing data in case of O_SYNC write. | |
3384 | * A caller has to handle it. This is mainly due to the fact that we want to | |
3385 | * avoid syncing under i_mutex. | |
a862f68a MR |
3386 | * |
3387 | * Return: | |
3388 | * * number of bytes written, even for truncated writes | |
3389 | * * negative error code if no data has been written at all | |
e4dd9de3 | 3390 | */ |
8174202b | 3391 | ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 LT |
3392 | { |
3393 | struct file *file = iocb->ki_filp; | |
fb5527e6 | 3394 | struct address_space * mapping = file->f_mapping; |
1da177e4 | 3395 | struct inode *inode = mapping->host; |
3b93f911 | 3396 | ssize_t written = 0; |
1da177e4 | 3397 | ssize_t err; |
3b93f911 | 3398 | ssize_t status; |
1da177e4 | 3399 | |
1da177e4 | 3400 | /* We can write back this queue in page reclaim */ |
de1414a6 | 3401 | current->backing_dev_info = inode_to_bdi(inode); |
5fa8e0a1 | 3402 | err = file_remove_privs(file); |
1da177e4 LT |
3403 | if (err) |
3404 | goto out; | |
3405 | ||
c3b2da31 JB |
3406 | err = file_update_time(file); |
3407 | if (err) | |
3408 | goto out; | |
1da177e4 | 3409 | |
2ba48ce5 | 3410 | if (iocb->ki_flags & IOCB_DIRECT) { |
0b8def9d | 3411 | loff_t pos, endbyte; |
fb5527e6 | 3412 | |
1af5bb49 | 3413 | written = generic_file_direct_write(iocb, from); |
1da177e4 | 3414 | /* |
fbbbad4b MW |
3415 | * If the write stopped short of completing, fall back to |
3416 | * buffered writes. Some filesystems do this for writes to | |
3417 | * holes, for example. For DAX files, a buffered write will | |
3418 | * not succeed (even if it did, DAX does not handle dirty | |
3419 | * page-cache pages correctly). | |
1da177e4 | 3420 | */ |
0b8def9d | 3421 | if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) |
fbbbad4b MW |
3422 | goto out; |
3423 | ||
0b8def9d | 3424 | status = generic_perform_write(file, from, pos = iocb->ki_pos); |
fb5527e6 | 3425 | /* |
3b93f911 | 3426 | * If generic_perform_write() returned a synchronous error |
fb5527e6 JM |
3427 | * then we want to return the number of bytes which were |
3428 | * direct-written, or the error code if that was zero. Note | |
3429 | * that this differs from normal direct-io semantics, which | |
3430 | * will return -EFOO even if some bytes were written. | |
3431 | */ | |
60bb4529 | 3432 | if (unlikely(status < 0)) { |
3b93f911 | 3433 | err = status; |
fb5527e6 JM |
3434 | goto out; |
3435 | } | |
fb5527e6 JM |
3436 | /* |
3437 | * We need to ensure that the page cache pages are written to | |
3438 | * disk and invalidated to preserve the expected O_DIRECT | |
3439 | * semantics. | |
3440 | */ | |
3b93f911 | 3441 | endbyte = pos + status - 1; |
0b8def9d | 3442 | err = filemap_write_and_wait_range(mapping, pos, endbyte); |
fb5527e6 | 3443 | if (err == 0) { |
0b8def9d | 3444 | iocb->ki_pos = endbyte + 1; |
3b93f911 | 3445 | written += status; |
fb5527e6 | 3446 | invalidate_mapping_pages(mapping, |
09cbfeaf KS |
3447 | pos >> PAGE_SHIFT, |
3448 | endbyte >> PAGE_SHIFT); | |
fb5527e6 JM |
3449 | } else { |
3450 | /* | |
3451 | * We don't know how much we wrote, so just return | |
3452 | * the number of bytes which were direct-written | |
3453 | */ | |
3454 | } | |
3455 | } else { | |
0b8def9d AV |
3456 | written = generic_perform_write(file, from, iocb->ki_pos); |
3457 | if (likely(written > 0)) | |
3458 | iocb->ki_pos += written; | |
fb5527e6 | 3459 | } |
1da177e4 LT |
3460 | out: |
3461 | current->backing_dev_info = NULL; | |
3462 | return written ? written : err; | |
3463 | } | |
8174202b | 3464 | EXPORT_SYMBOL(__generic_file_write_iter); |
e4dd9de3 | 3465 | |
e4dd9de3 | 3466 | /** |
8174202b | 3467 | * generic_file_write_iter - write data to a file |
e4dd9de3 | 3468 | * @iocb: IO state structure |
8174202b | 3469 | * @from: iov_iter with data to write |
e4dd9de3 | 3470 | * |
8174202b | 3471 | * This is a wrapper around __generic_file_write_iter() to be used by most |
e4dd9de3 JK |
3472 | * filesystems. It takes care of syncing the file in case of O_SYNC file |
3473 | * and acquires i_mutex as needed. | |
a862f68a MR |
3474 | * Return: |
3475 | * * negative error code if no data has been written at all of | |
3476 | * vfs_fsync_range() failed for a synchronous write | |
3477 | * * number of bytes written, even for truncated writes | |
e4dd9de3 | 3478 | */ |
8174202b | 3479 | ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 LT |
3480 | { |
3481 | struct file *file = iocb->ki_filp; | |
148f948b | 3482 | struct inode *inode = file->f_mapping->host; |
1da177e4 | 3483 | ssize_t ret; |
1da177e4 | 3484 | |
5955102c | 3485 | inode_lock(inode); |
3309dd04 AV |
3486 | ret = generic_write_checks(iocb, from); |
3487 | if (ret > 0) | |
5f380c7f | 3488 | ret = __generic_file_write_iter(iocb, from); |
5955102c | 3489 | inode_unlock(inode); |
1da177e4 | 3490 | |
e2592217 CH |
3491 | if (ret > 0) |
3492 | ret = generic_write_sync(iocb, ret); | |
1da177e4 LT |
3493 | return ret; |
3494 | } | |
8174202b | 3495 | EXPORT_SYMBOL(generic_file_write_iter); |
1da177e4 | 3496 | |
cf9a2ae8 DH |
3497 | /** |
3498 | * try_to_release_page() - release old fs-specific metadata on a page | |
3499 | * | |
3500 | * @page: the page which the kernel is trying to free | |
3501 | * @gfp_mask: memory allocation flags (and I/O mode) | |
3502 | * | |
3503 | * The address_space is to try to release any data against the page | |
a862f68a | 3504 | * (presumably at page->private). |
cf9a2ae8 | 3505 | * |
266cf658 DH |
3506 | * This may also be called if PG_fscache is set on a page, indicating that the |
3507 | * page is known to the local caching routines. | |
3508 | * | |
cf9a2ae8 | 3509 | * The @gfp_mask argument specifies whether I/O may be performed to release |
71baba4b | 3510 | * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). |
cf9a2ae8 | 3511 | * |
a862f68a | 3512 | * Return: %1 if the release was successful, otherwise return zero. |
cf9a2ae8 DH |
3513 | */ |
3514 | int try_to_release_page(struct page *page, gfp_t gfp_mask) | |
3515 | { | |
3516 | struct address_space * const mapping = page->mapping; | |
3517 | ||
3518 | BUG_ON(!PageLocked(page)); | |
3519 | if (PageWriteback(page)) | |
3520 | return 0; | |
3521 | ||
3522 | if (mapping && mapping->a_ops->releasepage) | |
3523 | return mapping->a_ops->releasepage(page, gfp_mask); | |
3524 | return try_to_free_buffers(page); | |
3525 | } | |
3526 | ||
3527 | EXPORT_SYMBOL(try_to_release_page); |