]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
98f32602 | 17 | * Contributions by Hugh Dickins 2003, 2004 |
1da177e4 LT |
18 | */ |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
1b1dcc1b | 23 | * inode->i_mutex (while writing or truncating, not reading or faulting) |
c1e8d7c6 | 24 | * mm->mmap_lock |
c0d0381a | 25 | * page->flags PG_locked (lock_page) * (see huegtlbfs below) |
88f306b6 KS |
26 | * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) |
27 | * mapping->i_mmap_rwsem | |
c0d0381a | 28 | * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) |
88f306b6 KS |
29 | * anon_vma->rwsem |
30 | * mm->page_table_lock or pte_lock | |
f4b7e272 | 31 | * pgdat->lru_lock (in mark_page_accessed, isolate_lru_page) |
88f306b6 KS |
32 | * swap_lock (in swap_duplicate, swap_info_get) |
33 | * mmlist_lock (in mmput, drain_mmlist and others) | |
34 | * mapping->private_lock (in __set_page_dirty_buffers) | |
35 | * mem_cgroup_{begin,end}_page_stat (memcg->move_lock) | |
b93b0163 | 36 | * i_pages lock (widely used) |
88f306b6 KS |
37 | * inode->i_lock (in set_page_dirty's __mark_inode_dirty) |
38 | * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) | |
39 | * sb_lock (within inode_lock in fs/fs-writeback.c) | |
b93b0163 | 40 | * i_pages lock (widely used, in set_page_dirty, |
88f306b6 KS |
41 | * in arch-dependent flush_dcache_mmap_lock, |
42 | * within bdi.wb->list_lock in __sync_single_inode) | |
6a46079c | 43 | * |
5a505085 | 44 | * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) |
9b679320 | 45 | * ->tasklist_lock |
6a46079c | 46 | * pte map lock |
c0d0381a MK |
47 | * |
48 | * * hugetlbfs PageHuge() pages take locks in this order: | |
49 | * mapping->i_mmap_rwsem | |
50 | * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) | |
51 | * page->flags PG_locked (lock_page) | |
1da177e4 LT |
52 | */ |
53 | ||
54 | #include <linux/mm.h> | |
6e84f315 | 55 | #include <linux/sched/mm.h> |
29930025 | 56 | #include <linux/sched/task.h> |
1da177e4 LT |
57 | #include <linux/pagemap.h> |
58 | #include <linux/swap.h> | |
59 | #include <linux/swapops.h> | |
60 | #include <linux/slab.h> | |
61 | #include <linux/init.h> | |
5ad64688 | 62 | #include <linux/ksm.h> |
1da177e4 LT |
63 | #include <linux/rmap.h> |
64 | #include <linux/rcupdate.h> | |
b95f1b31 | 65 | #include <linux/export.h> |
8a9f3ccd | 66 | #include <linux/memcontrol.h> |
cddb8a5c | 67 | #include <linux/mmu_notifier.h> |
64cdd548 | 68 | #include <linux/migrate.h> |
0fe6e20b | 69 | #include <linux/hugetlb.h> |
444f84fd | 70 | #include <linux/huge_mm.h> |
ef5d437f | 71 | #include <linux/backing-dev.h> |
33c3fc71 | 72 | #include <linux/page_idle.h> |
a5430dda | 73 | #include <linux/memremap.h> |
bce73e48 | 74 | #include <linux/userfaultfd_k.h> |
1da177e4 LT |
75 | |
76 | #include <asm/tlbflush.h> | |
77 | ||
72b252ae MG |
78 | #include <trace/events/tlb.h> |
79 | ||
b291f000 NP |
80 | #include "internal.h" |
81 | ||
fdd2e5f8 | 82 | static struct kmem_cache *anon_vma_cachep; |
5beb4930 | 83 | static struct kmem_cache *anon_vma_chain_cachep; |
fdd2e5f8 AB |
84 | |
85 | static inline struct anon_vma *anon_vma_alloc(void) | |
86 | { | |
01d8b20d PZ |
87 | struct anon_vma *anon_vma; |
88 | ||
89 | anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
90 | if (anon_vma) { | |
91 | atomic_set(&anon_vma->refcount, 1); | |
7a3ef208 KK |
92 | anon_vma->degree = 1; /* Reference for first vma */ |
93 | anon_vma->parent = anon_vma; | |
01d8b20d PZ |
94 | /* |
95 | * Initialise the anon_vma root to point to itself. If called | |
96 | * from fork, the root will be reset to the parents anon_vma. | |
97 | */ | |
98 | anon_vma->root = anon_vma; | |
99 | } | |
100 | ||
101 | return anon_vma; | |
fdd2e5f8 AB |
102 | } |
103 | ||
01d8b20d | 104 | static inline void anon_vma_free(struct anon_vma *anon_vma) |
fdd2e5f8 | 105 | { |
01d8b20d | 106 | VM_BUG_ON(atomic_read(&anon_vma->refcount)); |
88c22088 PZ |
107 | |
108 | /* | |
4fc3f1d6 | 109 | * Synchronize against page_lock_anon_vma_read() such that |
88c22088 PZ |
110 | * we can safely hold the lock without the anon_vma getting |
111 | * freed. | |
112 | * | |
113 | * Relies on the full mb implied by the atomic_dec_and_test() from | |
114 | * put_anon_vma() against the acquire barrier implied by | |
4fc3f1d6 | 115 | * down_read_trylock() from page_lock_anon_vma_read(). This orders: |
88c22088 | 116 | * |
4fc3f1d6 IM |
117 | * page_lock_anon_vma_read() VS put_anon_vma() |
118 | * down_read_trylock() atomic_dec_and_test() | |
88c22088 | 119 | * LOCK MB |
4fc3f1d6 | 120 | * atomic_read() rwsem_is_locked() |
88c22088 PZ |
121 | * |
122 | * LOCK should suffice since the actual taking of the lock must | |
123 | * happen _before_ what follows. | |
124 | */ | |
7f39dda9 | 125 | might_sleep(); |
5a505085 | 126 | if (rwsem_is_locked(&anon_vma->root->rwsem)) { |
4fc3f1d6 | 127 | anon_vma_lock_write(anon_vma); |
08b52706 | 128 | anon_vma_unlock_write(anon_vma); |
88c22088 PZ |
129 | } |
130 | ||
fdd2e5f8 AB |
131 | kmem_cache_free(anon_vma_cachep, anon_vma); |
132 | } | |
1da177e4 | 133 | |
dd34739c | 134 | static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) |
5beb4930 | 135 | { |
dd34739c | 136 | return kmem_cache_alloc(anon_vma_chain_cachep, gfp); |
5beb4930 RR |
137 | } |
138 | ||
e574b5fd | 139 | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) |
5beb4930 RR |
140 | { |
141 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | |
142 | } | |
143 | ||
6583a843 KC |
144 | static void anon_vma_chain_link(struct vm_area_struct *vma, |
145 | struct anon_vma_chain *avc, | |
146 | struct anon_vma *anon_vma) | |
147 | { | |
148 | avc->vma = vma; | |
149 | avc->anon_vma = anon_vma; | |
150 | list_add(&avc->same_vma, &vma->anon_vma_chain); | |
bf181b9f | 151 | anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); |
6583a843 KC |
152 | } |
153 | ||
d9d332e0 | 154 | /** |
d5a187da | 155 | * __anon_vma_prepare - attach an anon_vma to a memory region |
d9d332e0 LT |
156 | * @vma: the memory region in question |
157 | * | |
158 | * This makes sure the memory mapping described by 'vma' has | |
159 | * an 'anon_vma' attached to it, so that we can associate the | |
160 | * anonymous pages mapped into it with that anon_vma. | |
161 | * | |
d5a187da VB |
162 | * The common case will be that we already have one, which |
163 | * is handled inline by anon_vma_prepare(). But if | |
23a0790a | 164 | * not we either need to find an adjacent mapping that we |
d9d332e0 LT |
165 | * can re-use the anon_vma from (very common when the only |
166 | * reason for splitting a vma has been mprotect()), or we | |
167 | * allocate a new one. | |
168 | * | |
169 | * Anon-vma allocations are very subtle, because we may have | |
4fc3f1d6 | 170 | * optimistically looked up an anon_vma in page_lock_anon_vma_read() |
d9d332e0 LT |
171 | * and that may actually touch the spinlock even in the newly |
172 | * allocated vma (it depends on RCU to make sure that the | |
173 | * anon_vma isn't actually destroyed). | |
174 | * | |
175 | * As a result, we need to do proper anon_vma locking even | |
176 | * for the new allocation. At the same time, we do not want | |
177 | * to do any locking for the common case of already having | |
178 | * an anon_vma. | |
179 | * | |
c1e8d7c6 | 180 | * This must be called with the mmap_lock held for reading. |
d9d332e0 | 181 | */ |
d5a187da | 182 | int __anon_vma_prepare(struct vm_area_struct *vma) |
1da177e4 | 183 | { |
d5a187da VB |
184 | struct mm_struct *mm = vma->vm_mm; |
185 | struct anon_vma *anon_vma, *allocated; | |
5beb4930 | 186 | struct anon_vma_chain *avc; |
1da177e4 LT |
187 | |
188 | might_sleep(); | |
1da177e4 | 189 | |
d5a187da VB |
190 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
191 | if (!avc) | |
192 | goto out_enomem; | |
193 | ||
194 | anon_vma = find_mergeable_anon_vma(vma); | |
195 | allocated = NULL; | |
196 | if (!anon_vma) { | |
197 | anon_vma = anon_vma_alloc(); | |
198 | if (unlikely(!anon_vma)) | |
199 | goto out_enomem_free_avc; | |
200 | allocated = anon_vma; | |
201 | } | |
5beb4930 | 202 | |
d5a187da VB |
203 | anon_vma_lock_write(anon_vma); |
204 | /* page_table_lock to protect against threads */ | |
205 | spin_lock(&mm->page_table_lock); | |
206 | if (likely(!vma->anon_vma)) { | |
207 | vma->anon_vma = anon_vma; | |
208 | anon_vma_chain_link(vma, avc, anon_vma); | |
209 | /* vma reference or self-parent link for new root */ | |
210 | anon_vma->degree++; | |
d9d332e0 | 211 | allocated = NULL; |
d5a187da VB |
212 | avc = NULL; |
213 | } | |
214 | spin_unlock(&mm->page_table_lock); | |
215 | anon_vma_unlock_write(anon_vma); | |
1da177e4 | 216 | |
d5a187da VB |
217 | if (unlikely(allocated)) |
218 | put_anon_vma(allocated); | |
219 | if (unlikely(avc)) | |
220 | anon_vma_chain_free(avc); | |
31f2b0eb | 221 | |
1da177e4 | 222 | return 0; |
5beb4930 RR |
223 | |
224 | out_enomem_free_avc: | |
225 | anon_vma_chain_free(avc); | |
226 | out_enomem: | |
227 | return -ENOMEM; | |
1da177e4 LT |
228 | } |
229 | ||
bb4aa396 LT |
230 | /* |
231 | * This is a useful helper function for locking the anon_vma root as | |
232 | * we traverse the vma->anon_vma_chain, looping over anon_vma's that | |
233 | * have the same vma. | |
234 | * | |
235 | * Such anon_vma's should have the same root, so you'd expect to see | |
236 | * just a single mutex_lock for the whole traversal. | |
237 | */ | |
238 | static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) | |
239 | { | |
240 | struct anon_vma *new_root = anon_vma->root; | |
241 | if (new_root != root) { | |
242 | if (WARN_ON_ONCE(root)) | |
5a505085 | 243 | up_write(&root->rwsem); |
bb4aa396 | 244 | root = new_root; |
5a505085 | 245 | down_write(&root->rwsem); |
bb4aa396 LT |
246 | } |
247 | return root; | |
248 | } | |
249 | ||
250 | static inline void unlock_anon_vma_root(struct anon_vma *root) | |
251 | { | |
252 | if (root) | |
5a505085 | 253 | up_write(&root->rwsem); |
bb4aa396 LT |
254 | } |
255 | ||
5beb4930 RR |
256 | /* |
257 | * Attach the anon_vmas from src to dst. | |
258 | * Returns 0 on success, -ENOMEM on failure. | |
7a3ef208 | 259 | * |
47b390d2 WY |
260 | * anon_vma_clone() is called by __vma_split(), __split_vma(), copy_vma() and |
261 | * anon_vma_fork(). The first three want an exact copy of src, while the last | |
262 | * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent | |
263 | * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call, | |
264 | * we can identify this case by checking (!dst->anon_vma && src->anon_vma). | |
265 | * | |
266 | * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find | |
267 | * and reuse existing anon_vma which has no vmas and only one child anon_vma. | |
268 | * This prevents degradation of anon_vma hierarchy to endless linear chain in | |
269 | * case of constantly forking task. On the other hand, an anon_vma with more | |
270 | * than one child isn't reused even if there was no alive vma, thus rmap | |
271 | * walker has a good chance of avoiding scanning the whole hierarchy when it | |
272 | * searches where page is mapped. | |
5beb4930 RR |
273 | */ |
274 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | |
1da177e4 | 275 | { |
5beb4930 | 276 | struct anon_vma_chain *avc, *pavc; |
bb4aa396 | 277 | struct anon_vma *root = NULL; |
5beb4930 | 278 | |
646d87b4 | 279 | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { |
bb4aa396 LT |
280 | struct anon_vma *anon_vma; |
281 | ||
dd34739c LT |
282 | avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); |
283 | if (unlikely(!avc)) { | |
284 | unlock_anon_vma_root(root); | |
285 | root = NULL; | |
286 | avc = anon_vma_chain_alloc(GFP_KERNEL); | |
287 | if (!avc) | |
288 | goto enomem_failure; | |
289 | } | |
bb4aa396 LT |
290 | anon_vma = pavc->anon_vma; |
291 | root = lock_anon_vma_root(root, anon_vma); | |
292 | anon_vma_chain_link(dst, avc, anon_vma); | |
7a3ef208 KK |
293 | |
294 | /* | |
295 | * Reuse existing anon_vma if its degree lower than two, | |
296 | * that means it has no vma and only one anon_vma child. | |
297 | * | |
298 | * Do not chose parent anon_vma, otherwise first child | |
299 | * will always reuse it. Root anon_vma is never reused: | |
300 | * it has self-parent reference and at least one child. | |
301 | */ | |
47b390d2 WY |
302 | if (!dst->anon_vma && src->anon_vma && |
303 | anon_vma != src->anon_vma && anon_vma->degree < 2) | |
7a3ef208 | 304 | dst->anon_vma = anon_vma; |
5beb4930 | 305 | } |
7a3ef208 KK |
306 | if (dst->anon_vma) |
307 | dst->anon_vma->degree++; | |
bb4aa396 | 308 | unlock_anon_vma_root(root); |
5beb4930 | 309 | return 0; |
1da177e4 | 310 | |
5beb4930 | 311 | enomem_failure: |
3fe89b3e LY |
312 | /* |
313 | * dst->anon_vma is dropped here otherwise its degree can be incorrectly | |
314 | * decremented in unlink_anon_vmas(). | |
315 | * We can safely do this because callers of anon_vma_clone() don't care | |
316 | * about dst->anon_vma if anon_vma_clone() failed. | |
317 | */ | |
318 | dst->anon_vma = NULL; | |
5beb4930 RR |
319 | unlink_anon_vmas(dst); |
320 | return -ENOMEM; | |
1da177e4 LT |
321 | } |
322 | ||
5beb4930 RR |
323 | /* |
324 | * Attach vma to its own anon_vma, as well as to the anon_vmas that | |
325 | * the corresponding VMA in the parent process is attached to. | |
326 | * Returns 0 on success, non-zero on failure. | |
327 | */ | |
328 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | |
1da177e4 | 329 | { |
5beb4930 RR |
330 | struct anon_vma_chain *avc; |
331 | struct anon_vma *anon_vma; | |
c4ea95d7 | 332 | int error; |
1da177e4 | 333 | |
5beb4930 RR |
334 | /* Don't bother if the parent process has no anon_vma here. */ |
335 | if (!pvma->anon_vma) | |
336 | return 0; | |
337 | ||
7a3ef208 KK |
338 | /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ |
339 | vma->anon_vma = NULL; | |
340 | ||
5beb4930 RR |
341 | /* |
342 | * First, attach the new VMA to the parent VMA's anon_vmas, | |
343 | * so rmap can find non-COWed pages in child processes. | |
344 | */ | |
c4ea95d7 DF |
345 | error = anon_vma_clone(vma, pvma); |
346 | if (error) | |
347 | return error; | |
5beb4930 | 348 | |
7a3ef208 KK |
349 | /* An existing anon_vma has been reused, all done then. */ |
350 | if (vma->anon_vma) | |
351 | return 0; | |
352 | ||
5beb4930 RR |
353 | /* Then add our own anon_vma. */ |
354 | anon_vma = anon_vma_alloc(); | |
355 | if (!anon_vma) | |
356 | goto out_error; | |
dd34739c | 357 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
5beb4930 RR |
358 | if (!avc) |
359 | goto out_error_free_anon_vma; | |
5c341ee1 RR |
360 | |
361 | /* | |
362 | * The root anon_vma's spinlock is the lock actually used when we | |
363 | * lock any of the anon_vmas in this anon_vma tree. | |
364 | */ | |
365 | anon_vma->root = pvma->anon_vma->root; | |
7a3ef208 | 366 | anon_vma->parent = pvma->anon_vma; |
76545066 | 367 | /* |
01d8b20d PZ |
368 | * With refcounts, an anon_vma can stay around longer than the |
369 | * process it belongs to. The root anon_vma needs to be pinned until | |
370 | * this anon_vma is freed, because the lock lives in the root. | |
76545066 RR |
371 | */ |
372 | get_anon_vma(anon_vma->root); | |
5beb4930 RR |
373 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
374 | vma->anon_vma = anon_vma; | |
4fc3f1d6 | 375 | anon_vma_lock_write(anon_vma); |
5c341ee1 | 376 | anon_vma_chain_link(vma, avc, anon_vma); |
7a3ef208 | 377 | anon_vma->parent->degree++; |
08b52706 | 378 | anon_vma_unlock_write(anon_vma); |
5beb4930 RR |
379 | |
380 | return 0; | |
381 | ||
382 | out_error_free_anon_vma: | |
01d8b20d | 383 | put_anon_vma(anon_vma); |
5beb4930 | 384 | out_error: |
4946d54c | 385 | unlink_anon_vmas(vma); |
5beb4930 | 386 | return -ENOMEM; |
1da177e4 LT |
387 | } |
388 | ||
5beb4930 RR |
389 | void unlink_anon_vmas(struct vm_area_struct *vma) |
390 | { | |
391 | struct anon_vma_chain *avc, *next; | |
eee2acba | 392 | struct anon_vma *root = NULL; |
5beb4930 | 393 | |
5c341ee1 RR |
394 | /* |
395 | * Unlink each anon_vma chained to the VMA. This list is ordered | |
396 | * from newest to oldest, ensuring the root anon_vma gets freed last. | |
397 | */ | |
5beb4930 | 398 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
eee2acba PZ |
399 | struct anon_vma *anon_vma = avc->anon_vma; |
400 | ||
401 | root = lock_anon_vma_root(root, anon_vma); | |
bf181b9f | 402 | anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); |
eee2acba PZ |
403 | |
404 | /* | |
405 | * Leave empty anon_vmas on the list - we'll need | |
406 | * to free them outside the lock. | |
407 | */ | |
f808c13f | 408 | if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { |
7a3ef208 | 409 | anon_vma->parent->degree--; |
eee2acba | 410 | continue; |
7a3ef208 | 411 | } |
eee2acba PZ |
412 | |
413 | list_del(&avc->same_vma); | |
414 | anon_vma_chain_free(avc); | |
415 | } | |
7a3ef208 KK |
416 | if (vma->anon_vma) |
417 | vma->anon_vma->degree--; | |
eee2acba PZ |
418 | unlock_anon_vma_root(root); |
419 | ||
420 | /* | |
421 | * Iterate the list once more, it now only contains empty and unlinked | |
422 | * anon_vmas, destroy them. Could not do before due to __put_anon_vma() | |
5a505085 | 423 | * needing to write-acquire the anon_vma->root->rwsem. |
eee2acba PZ |
424 | */ |
425 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | |
426 | struct anon_vma *anon_vma = avc->anon_vma; | |
427 | ||
e4c5800a | 428 | VM_WARN_ON(anon_vma->degree); |
eee2acba PZ |
429 | put_anon_vma(anon_vma); |
430 | ||
5beb4930 RR |
431 | list_del(&avc->same_vma); |
432 | anon_vma_chain_free(avc); | |
433 | } | |
434 | } | |
435 | ||
51cc5068 | 436 | static void anon_vma_ctor(void *data) |
1da177e4 | 437 | { |
a35afb83 | 438 | struct anon_vma *anon_vma = data; |
1da177e4 | 439 | |
5a505085 | 440 | init_rwsem(&anon_vma->rwsem); |
83813267 | 441 | atomic_set(&anon_vma->refcount, 0); |
f808c13f | 442 | anon_vma->rb_root = RB_ROOT_CACHED; |
1da177e4 LT |
443 | } |
444 | ||
445 | void __init anon_vma_init(void) | |
446 | { | |
447 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
5f0d5a3a | 448 | 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, |
5d097056 VD |
449 | anon_vma_ctor); |
450 | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, | |
451 | SLAB_PANIC|SLAB_ACCOUNT); | |
1da177e4 LT |
452 | } |
453 | ||
454 | /* | |
6111e4ca PZ |
455 | * Getting a lock on a stable anon_vma from a page off the LRU is tricky! |
456 | * | |
457 | * Since there is no serialization what so ever against page_remove_rmap() | |
458 | * the best this function can do is return a locked anon_vma that might | |
459 | * have been relevant to this page. | |
460 | * | |
461 | * The page might have been remapped to a different anon_vma or the anon_vma | |
462 | * returned may already be freed (and even reused). | |
463 | * | |
bc658c96 PZ |
464 | * In case it was remapped to a different anon_vma, the new anon_vma will be a |
465 | * child of the old anon_vma, and the anon_vma lifetime rules will therefore | |
466 | * ensure that any anon_vma obtained from the page will still be valid for as | |
467 | * long as we observe page_mapped() [ hence all those page_mapped() tests ]. | |
468 | * | |
6111e4ca PZ |
469 | * All users of this function must be very careful when walking the anon_vma |
470 | * chain and verify that the page in question is indeed mapped in it | |
471 | * [ something equivalent to page_mapped_in_vma() ]. | |
472 | * | |
091e4299 MC |
473 | * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from |
474 | * page_remove_rmap() that the anon_vma pointer from page->mapping is valid | |
475 | * if there is a mapcount, we can dereference the anon_vma after observing | |
476 | * those. | |
1da177e4 | 477 | */ |
746b18d4 | 478 | struct anon_vma *page_get_anon_vma(struct page *page) |
1da177e4 | 479 | { |
746b18d4 | 480 | struct anon_vma *anon_vma = NULL; |
1da177e4 LT |
481 | unsigned long anon_mapping; |
482 | ||
483 | rcu_read_lock(); | |
4db0c3c2 | 484 | anon_mapping = (unsigned long)READ_ONCE(page->mapping); |
3ca7b3c5 | 485 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
1da177e4 LT |
486 | goto out; |
487 | if (!page_mapped(page)) | |
488 | goto out; | |
489 | ||
490 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
746b18d4 PZ |
491 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { |
492 | anon_vma = NULL; | |
493 | goto out; | |
494 | } | |
f1819427 HD |
495 | |
496 | /* | |
497 | * If this page is still mapped, then its anon_vma cannot have been | |
746b18d4 PZ |
498 | * freed. But if it has been unmapped, we have no security against the |
499 | * anon_vma structure being freed and reused (for another anon_vma: | |
5f0d5a3a | 500 | * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() |
746b18d4 | 501 | * above cannot corrupt). |
f1819427 | 502 | */ |
746b18d4 | 503 | if (!page_mapped(page)) { |
7f39dda9 | 504 | rcu_read_unlock(); |
746b18d4 | 505 | put_anon_vma(anon_vma); |
7f39dda9 | 506 | return NULL; |
746b18d4 | 507 | } |
1da177e4 LT |
508 | out: |
509 | rcu_read_unlock(); | |
746b18d4 PZ |
510 | |
511 | return anon_vma; | |
512 | } | |
513 | ||
88c22088 PZ |
514 | /* |
515 | * Similar to page_get_anon_vma() except it locks the anon_vma. | |
516 | * | |
517 | * Its a little more complex as it tries to keep the fast path to a single | |
518 | * atomic op -- the trylock. If we fail the trylock, we fall back to getting a | |
519 | * reference like with page_get_anon_vma() and then block on the mutex. | |
520 | */ | |
4fc3f1d6 | 521 | struct anon_vma *page_lock_anon_vma_read(struct page *page) |
746b18d4 | 522 | { |
88c22088 | 523 | struct anon_vma *anon_vma = NULL; |
eee0f252 | 524 | struct anon_vma *root_anon_vma; |
88c22088 | 525 | unsigned long anon_mapping; |
746b18d4 | 526 | |
88c22088 | 527 | rcu_read_lock(); |
4db0c3c2 | 528 | anon_mapping = (unsigned long)READ_ONCE(page->mapping); |
88c22088 PZ |
529 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
530 | goto out; | |
531 | if (!page_mapped(page)) | |
532 | goto out; | |
533 | ||
534 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
4db0c3c2 | 535 | root_anon_vma = READ_ONCE(anon_vma->root); |
4fc3f1d6 | 536 | if (down_read_trylock(&root_anon_vma->rwsem)) { |
88c22088 | 537 | /* |
eee0f252 HD |
538 | * If the page is still mapped, then this anon_vma is still |
539 | * its anon_vma, and holding the mutex ensures that it will | |
bc658c96 | 540 | * not go away, see anon_vma_free(). |
88c22088 | 541 | */ |
eee0f252 | 542 | if (!page_mapped(page)) { |
4fc3f1d6 | 543 | up_read(&root_anon_vma->rwsem); |
88c22088 PZ |
544 | anon_vma = NULL; |
545 | } | |
546 | goto out; | |
547 | } | |
746b18d4 | 548 | |
88c22088 PZ |
549 | /* trylock failed, we got to sleep */ |
550 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { | |
551 | anon_vma = NULL; | |
552 | goto out; | |
553 | } | |
554 | ||
555 | if (!page_mapped(page)) { | |
7f39dda9 | 556 | rcu_read_unlock(); |
88c22088 | 557 | put_anon_vma(anon_vma); |
7f39dda9 | 558 | return NULL; |
88c22088 PZ |
559 | } |
560 | ||
561 | /* we pinned the anon_vma, its safe to sleep */ | |
562 | rcu_read_unlock(); | |
4fc3f1d6 | 563 | anon_vma_lock_read(anon_vma); |
88c22088 PZ |
564 | |
565 | if (atomic_dec_and_test(&anon_vma->refcount)) { | |
566 | /* | |
567 | * Oops, we held the last refcount, release the lock | |
568 | * and bail -- can't simply use put_anon_vma() because | |
4fc3f1d6 | 569 | * we'll deadlock on the anon_vma_lock_write() recursion. |
88c22088 | 570 | */ |
4fc3f1d6 | 571 | anon_vma_unlock_read(anon_vma); |
88c22088 PZ |
572 | __put_anon_vma(anon_vma); |
573 | anon_vma = NULL; | |
574 | } | |
575 | ||
576 | return anon_vma; | |
577 | ||
578 | out: | |
579 | rcu_read_unlock(); | |
746b18d4 | 580 | return anon_vma; |
34bbd704 ON |
581 | } |
582 | ||
4fc3f1d6 | 583 | void page_unlock_anon_vma_read(struct anon_vma *anon_vma) |
34bbd704 | 584 | { |
4fc3f1d6 | 585 | anon_vma_unlock_read(anon_vma); |
1da177e4 LT |
586 | } |
587 | ||
72b252ae | 588 | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH |
72b252ae MG |
589 | /* |
590 | * Flush TLB entries for recently unmapped pages from remote CPUs. It is | |
591 | * important if a PTE was dirty when it was unmapped that it's flushed | |
592 | * before any IO is initiated on the page to prevent lost writes. Similarly, | |
593 | * it must be flushed before freeing to prevent data leakage. | |
594 | */ | |
595 | void try_to_unmap_flush(void) | |
596 | { | |
597 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
72b252ae MG |
598 | |
599 | if (!tlb_ubc->flush_required) | |
600 | return; | |
601 | ||
e73ad5ff | 602 | arch_tlbbatch_flush(&tlb_ubc->arch); |
72b252ae | 603 | tlb_ubc->flush_required = false; |
d950c947 | 604 | tlb_ubc->writable = false; |
72b252ae MG |
605 | } |
606 | ||
d950c947 MG |
607 | /* Flush iff there are potentially writable TLB entries that can race with IO */ |
608 | void try_to_unmap_flush_dirty(void) | |
609 | { | |
610 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
611 | ||
612 | if (tlb_ubc->writable) | |
613 | try_to_unmap_flush(); | |
614 | } | |
615 | ||
c7ab0d2f | 616 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) |
72b252ae MG |
617 | { |
618 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
619 | ||
e73ad5ff | 620 | arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); |
72b252ae | 621 | tlb_ubc->flush_required = true; |
d950c947 | 622 | |
3ea27719 MG |
623 | /* |
624 | * Ensure compiler does not re-order the setting of tlb_flush_batched | |
625 | * before the PTE is cleared. | |
626 | */ | |
627 | barrier(); | |
628 | mm->tlb_flush_batched = true; | |
629 | ||
d950c947 MG |
630 | /* |
631 | * If the PTE was dirty then it's best to assume it's writable. The | |
632 | * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() | |
633 | * before the page is queued for IO. | |
634 | */ | |
635 | if (writable) | |
636 | tlb_ubc->writable = true; | |
72b252ae MG |
637 | } |
638 | ||
639 | /* | |
640 | * Returns true if the TLB flush should be deferred to the end of a batch of | |
641 | * unmap operations to reduce IPIs. | |
642 | */ | |
643 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
644 | { | |
645 | bool should_defer = false; | |
646 | ||
647 | if (!(flags & TTU_BATCH_FLUSH)) | |
648 | return false; | |
649 | ||
650 | /* If remote CPUs need to be flushed then defer batch the flush */ | |
651 | if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) | |
652 | should_defer = true; | |
653 | put_cpu(); | |
654 | ||
655 | return should_defer; | |
656 | } | |
3ea27719 MG |
657 | |
658 | /* | |
659 | * Reclaim unmaps pages under the PTL but do not flush the TLB prior to | |
660 | * releasing the PTL if TLB flushes are batched. It's possible for a parallel | |
661 | * operation such as mprotect or munmap to race between reclaim unmapping | |
662 | * the page and flushing the page. If this race occurs, it potentially allows | |
663 | * access to data via a stale TLB entry. Tracking all mm's that have TLB | |
664 | * batching in flight would be expensive during reclaim so instead track | |
665 | * whether TLB batching occurred in the past and if so then do a flush here | |
666 | * if required. This will cost one additional flush per reclaim cycle paid | |
667 | * by the first operation at risk such as mprotect and mumap. | |
668 | * | |
669 | * This must be called under the PTL so that an access to tlb_flush_batched | |
670 | * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise | |
671 | * via the PTL. | |
672 | */ | |
673 | void flush_tlb_batched_pending(struct mm_struct *mm) | |
674 | { | |
675 | if (mm->tlb_flush_batched) { | |
676 | flush_tlb_mm(mm); | |
677 | ||
678 | /* | |
679 | * Do not allow the compiler to re-order the clearing of | |
680 | * tlb_flush_batched before the tlb is flushed. | |
681 | */ | |
682 | barrier(); | |
683 | mm->tlb_flush_batched = false; | |
684 | } | |
685 | } | |
72b252ae | 686 | #else |
c7ab0d2f | 687 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) |
72b252ae MG |
688 | { |
689 | } | |
690 | ||
691 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
692 | { | |
693 | return false; | |
694 | } | |
695 | #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ | |
696 | ||
1da177e4 | 697 | /* |
bf89c8c8 | 698 | * At what user virtual address is page expected in vma? |
ab941e0f | 699 | * Caller should check the page is actually part of the vma. |
1da177e4 LT |
700 | */ |
701 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
702 | { | |
86c2ad19 | 703 | unsigned long address; |
21d0d443 | 704 | if (PageAnon(page)) { |
4829b906 HD |
705 | struct anon_vma *page__anon_vma = page_anon_vma(page); |
706 | /* | |
707 | * Note: swapoff's unuse_vma() is more efficient with this | |
708 | * check, and needs it to match anon_vma when KSM is active. | |
709 | */ | |
710 | if (!vma->anon_vma || !page__anon_vma || | |
711 | vma->anon_vma->root != page__anon_vma->root) | |
21d0d443 | 712 | return -EFAULT; |
27ba0644 KS |
713 | } else if (page->mapping) { |
714 | if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) | |
1da177e4 LT |
715 | return -EFAULT; |
716 | } else | |
717 | return -EFAULT; | |
86c2ad19 ML |
718 | address = __vma_address(page, vma); |
719 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) | |
720 | return -EFAULT; | |
721 | return address; | |
1da177e4 LT |
722 | } |
723 | ||
6219049a BL |
724 | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) |
725 | { | |
726 | pgd_t *pgd; | |
c2febafc | 727 | p4d_t *p4d; |
6219049a BL |
728 | pud_t *pud; |
729 | pmd_t *pmd = NULL; | |
f72e7dcd | 730 | pmd_t pmde; |
6219049a BL |
731 | |
732 | pgd = pgd_offset(mm, address); | |
733 | if (!pgd_present(*pgd)) | |
734 | goto out; | |
735 | ||
c2febafc KS |
736 | p4d = p4d_offset(pgd, address); |
737 | if (!p4d_present(*p4d)) | |
738 | goto out; | |
739 | ||
740 | pud = pud_offset(p4d, address); | |
6219049a BL |
741 | if (!pud_present(*pud)) |
742 | goto out; | |
743 | ||
744 | pmd = pmd_offset(pud, address); | |
f72e7dcd | 745 | /* |
8809aa2d | 746 | * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() |
f72e7dcd HD |
747 | * without holding anon_vma lock for write. So when looking for a |
748 | * genuine pmde (in which to find pte), test present and !THP together. | |
749 | */ | |
e37c6982 CB |
750 | pmde = *pmd; |
751 | barrier(); | |
f72e7dcd | 752 | if (!pmd_present(pmde) || pmd_trans_huge(pmde)) |
6219049a BL |
753 | pmd = NULL; |
754 | out: | |
755 | return pmd; | |
756 | } | |
757 | ||
8749cfea VD |
758 | struct page_referenced_arg { |
759 | int mapcount; | |
760 | int referenced; | |
761 | unsigned long vm_flags; | |
762 | struct mem_cgroup *memcg; | |
763 | }; | |
764 | /* | |
765 | * arg: page_referenced_arg will be passed | |
766 | */ | |
e4b82222 | 767 | static bool page_referenced_one(struct page *page, struct vm_area_struct *vma, |
8749cfea VD |
768 | unsigned long address, void *arg) |
769 | { | |
8749cfea | 770 | struct page_referenced_arg *pra = arg; |
8eaedede KS |
771 | struct page_vma_mapped_walk pvmw = { |
772 | .page = page, | |
773 | .vma = vma, | |
774 | .address = address, | |
775 | }; | |
8749cfea VD |
776 | int referenced = 0; |
777 | ||
8eaedede KS |
778 | while (page_vma_mapped_walk(&pvmw)) { |
779 | address = pvmw.address; | |
b20ce5e0 | 780 | |
8eaedede KS |
781 | if (vma->vm_flags & VM_LOCKED) { |
782 | page_vma_mapped_walk_done(&pvmw); | |
783 | pra->vm_flags |= VM_LOCKED; | |
e4b82222 | 784 | return false; /* To break the loop */ |
8eaedede | 785 | } |
71e3aac0 | 786 | |
8eaedede KS |
787 | if (pvmw.pte) { |
788 | if (ptep_clear_flush_young_notify(vma, address, | |
789 | pvmw.pte)) { | |
790 | /* | |
791 | * Don't treat a reference through | |
792 | * a sequentially read mapping as such. | |
793 | * If the page has been used in another mapping, | |
794 | * we will catch it; if this other mapping is | |
795 | * already gone, the unmap path will have set | |
796 | * PG_referenced or activated the page. | |
797 | */ | |
798 | if (likely(!(vma->vm_flags & VM_SEQ_READ))) | |
799 | referenced++; | |
800 | } | |
801 | } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { | |
802 | if (pmdp_clear_flush_young_notify(vma, address, | |
803 | pvmw.pmd)) | |
8749cfea | 804 | referenced++; |
8eaedede KS |
805 | } else { |
806 | /* unexpected pmd-mapped page? */ | |
807 | WARN_ON_ONCE(1); | |
8749cfea | 808 | } |
8eaedede KS |
809 | |
810 | pra->mapcount--; | |
b20ce5e0 | 811 | } |
b20ce5e0 | 812 | |
33c3fc71 VD |
813 | if (referenced) |
814 | clear_page_idle(page); | |
815 | if (test_and_clear_page_young(page)) | |
816 | referenced++; | |
817 | ||
9f32624b JK |
818 | if (referenced) { |
819 | pra->referenced++; | |
820 | pra->vm_flags |= vma->vm_flags; | |
1da177e4 | 821 | } |
34bbd704 | 822 | |
9f32624b | 823 | if (!pra->mapcount) |
e4b82222 | 824 | return false; /* To break the loop */ |
9f32624b | 825 | |
e4b82222 | 826 | return true; |
1da177e4 LT |
827 | } |
828 | ||
9f32624b | 829 | static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) |
1da177e4 | 830 | { |
9f32624b JK |
831 | struct page_referenced_arg *pra = arg; |
832 | struct mem_cgroup *memcg = pra->memcg; | |
1da177e4 | 833 | |
9f32624b JK |
834 | if (!mm_match_cgroup(vma->vm_mm, memcg)) |
835 | return true; | |
1da177e4 | 836 | |
9f32624b | 837 | return false; |
1da177e4 LT |
838 | } |
839 | ||
840 | /** | |
841 | * page_referenced - test if the page was referenced | |
842 | * @page: the page to test | |
843 | * @is_locked: caller holds lock on the page | |
72835c86 | 844 | * @memcg: target memory cgroup |
6fe6b7e3 | 845 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
1da177e4 LT |
846 | * |
847 | * Quick test_and_clear_referenced for all mappings to a page, | |
848 | * returns the number of ptes which referenced the page. | |
849 | */ | |
6fe6b7e3 WF |
850 | int page_referenced(struct page *page, |
851 | int is_locked, | |
72835c86 | 852 | struct mem_cgroup *memcg, |
6fe6b7e3 | 853 | unsigned long *vm_flags) |
1da177e4 | 854 | { |
5ad64688 | 855 | int we_locked = 0; |
9f32624b | 856 | struct page_referenced_arg pra = { |
b20ce5e0 | 857 | .mapcount = total_mapcount(page), |
9f32624b JK |
858 | .memcg = memcg, |
859 | }; | |
860 | struct rmap_walk_control rwc = { | |
861 | .rmap_one = page_referenced_one, | |
862 | .arg = (void *)&pra, | |
863 | .anon_lock = page_lock_anon_vma_read, | |
864 | }; | |
1da177e4 | 865 | |
6fe6b7e3 | 866 | *vm_flags = 0; |
059d8442 | 867 | if (!pra.mapcount) |
9f32624b JK |
868 | return 0; |
869 | ||
870 | if (!page_rmapping(page)) | |
871 | return 0; | |
872 | ||
873 | if (!is_locked && (!PageAnon(page) || PageKsm(page))) { | |
874 | we_locked = trylock_page(page); | |
875 | if (!we_locked) | |
876 | return 1; | |
1da177e4 | 877 | } |
9f32624b JK |
878 | |
879 | /* | |
880 | * If we are reclaiming on behalf of a cgroup, skip | |
881 | * counting on behalf of references from different | |
882 | * cgroups | |
883 | */ | |
884 | if (memcg) { | |
885 | rwc.invalid_vma = invalid_page_referenced_vma; | |
886 | } | |
887 | ||
c24f386c | 888 | rmap_walk(page, &rwc); |
9f32624b JK |
889 | *vm_flags = pra.vm_flags; |
890 | ||
891 | if (we_locked) | |
892 | unlock_page(page); | |
893 | ||
894 | return pra.referenced; | |
1da177e4 LT |
895 | } |
896 | ||
e4b82222 | 897 | static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma, |
9853a407 | 898 | unsigned long address, void *arg) |
d08b3851 | 899 | { |
f27176cf KS |
900 | struct page_vma_mapped_walk pvmw = { |
901 | .page = page, | |
902 | .vma = vma, | |
903 | .address = address, | |
904 | .flags = PVMW_SYNC, | |
905 | }; | |
ac46d4f3 | 906 | struct mmu_notifier_range range; |
9853a407 | 907 | int *cleaned = arg; |
d08b3851 | 908 | |
369ea824 JG |
909 | /* |
910 | * We have to assume the worse case ie pmd for invalidation. Note that | |
911 | * the page can not be free from this function. | |
912 | */ | |
7269f999 JG |
913 | mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, |
914 | 0, vma, vma->vm_mm, address, | |
a50b854e | 915 | min(vma->vm_end, address + page_size(page))); |
ac46d4f3 | 916 | mmu_notifier_invalidate_range_start(&range); |
369ea824 | 917 | |
f27176cf KS |
918 | while (page_vma_mapped_walk(&pvmw)) { |
919 | int ret = 0; | |
369ea824 | 920 | |
1f18b296 | 921 | address = pvmw.address; |
f27176cf KS |
922 | if (pvmw.pte) { |
923 | pte_t entry; | |
924 | pte_t *pte = pvmw.pte; | |
925 | ||
926 | if (!pte_dirty(*pte) && !pte_write(*pte)) | |
927 | continue; | |
928 | ||
785373b4 LT |
929 | flush_cache_page(vma, address, pte_pfn(*pte)); |
930 | entry = ptep_clear_flush(vma, address, pte); | |
f27176cf KS |
931 | entry = pte_wrprotect(entry); |
932 | entry = pte_mkclean(entry); | |
785373b4 | 933 | set_pte_at(vma->vm_mm, address, pte, entry); |
f27176cf KS |
934 | ret = 1; |
935 | } else { | |
396bcc52 | 936 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
f27176cf KS |
937 | pmd_t *pmd = pvmw.pmd; |
938 | pmd_t entry; | |
939 | ||
940 | if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) | |
941 | continue; | |
942 | ||
785373b4 | 943 | flush_cache_page(vma, address, page_to_pfn(page)); |
024eee0e | 944 | entry = pmdp_invalidate(vma, address, pmd); |
f27176cf KS |
945 | entry = pmd_wrprotect(entry); |
946 | entry = pmd_mkclean(entry); | |
785373b4 | 947 | set_pmd_at(vma->vm_mm, address, pmd, entry); |
f27176cf KS |
948 | ret = 1; |
949 | #else | |
950 | /* unexpected pmd-mapped page? */ | |
951 | WARN_ON_ONCE(1); | |
952 | #endif | |
953 | } | |
d08b3851 | 954 | |
0f10851e JG |
955 | /* |
956 | * No need to call mmu_notifier_invalidate_range() as we are | |
957 | * downgrading page table protection not changing it to point | |
958 | * to a new page. | |
959 | * | |
ad56b738 | 960 | * See Documentation/vm/mmu_notifier.rst |
0f10851e JG |
961 | */ |
962 | if (ret) | |
f27176cf | 963 | (*cleaned)++; |
c2fda5fe | 964 | } |
d08b3851 | 965 | |
ac46d4f3 | 966 | mmu_notifier_invalidate_range_end(&range); |
369ea824 | 967 | |
e4b82222 | 968 | return true; |
d08b3851 PZ |
969 | } |
970 | ||
9853a407 | 971 | static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) |
d08b3851 | 972 | { |
9853a407 | 973 | if (vma->vm_flags & VM_SHARED) |
871beb8c | 974 | return false; |
d08b3851 | 975 | |
871beb8c | 976 | return true; |
d08b3851 PZ |
977 | } |
978 | ||
979 | int page_mkclean(struct page *page) | |
980 | { | |
9853a407 JK |
981 | int cleaned = 0; |
982 | struct address_space *mapping; | |
983 | struct rmap_walk_control rwc = { | |
984 | .arg = (void *)&cleaned, | |
985 | .rmap_one = page_mkclean_one, | |
986 | .invalid_vma = invalid_mkclean_vma, | |
987 | }; | |
d08b3851 PZ |
988 | |
989 | BUG_ON(!PageLocked(page)); | |
990 | ||
9853a407 JK |
991 | if (!page_mapped(page)) |
992 | return 0; | |
993 | ||
994 | mapping = page_mapping(page); | |
995 | if (!mapping) | |
996 | return 0; | |
997 | ||
998 | rmap_walk(page, &rwc); | |
d08b3851 | 999 | |
9853a407 | 1000 | return cleaned; |
d08b3851 | 1001 | } |
60b59bea | 1002 | EXPORT_SYMBOL_GPL(page_mkclean); |
d08b3851 | 1003 | |
c44b6743 RR |
1004 | /** |
1005 | * page_move_anon_rmap - move a page to our anon_vma | |
1006 | * @page: the page to move to our anon_vma | |
1007 | * @vma: the vma the page belongs to | |
c44b6743 RR |
1008 | * |
1009 | * When a page belongs exclusively to one process after a COW event, | |
1010 | * that page can be moved into the anon_vma that belongs to just that | |
1011 | * process, so the rmap code will not search the parent or sibling | |
1012 | * processes. | |
1013 | */ | |
5a49973d | 1014 | void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) |
c44b6743 RR |
1015 | { |
1016 | struct anon_vma *anon_vma = vma->anon_vma; | |
1017 | ||
5a49973d HD |
1018 | page = compound_head(page); |
1019 | ||
309381fe | 1020 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
81d1b09c | 1021 | VM_BUG_ON_VMA(!anon_vma, vma); |
c44b6743 RR |
1022 | |
1023 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
414e2fb8 VD |
1024 | /* |
1025 | * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written | |
1026 | * simultaneously, so a concurrent reader (eg page_referenced()'s | |
1027 | * PageAnon()) will not see one without the other. | |
1028 | */ | |
1029 | WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); | |
c44b6743 RR |
1030 | } |
1031 | ||
9617d95e | 1032 | /** |
4e1c1975 | 1033 | * __page_set_anon_rmap - set up new anonymous rmap |
451b9514 | 1034 | * @page: Page or Hugepage to add to rmap |
4e1c1975 AK |
1035 | * @vma: VM area to add page to. |
1036 | * @address: User virtual address of the mapping | |
e8a03feb | 1037 | * @exclusive: the page is exclusively owned by the current process |
9617d95e NP |
1038 | */ |
1039 | static void __page_set_anon_rmap(struct page *page, | |
e8a03feb | 1040 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
9617d95e | 1041 | { |
e8a03feb | 1042 | struct anon_vma *anon_vma = vma->anon_vma; |
ea90002b | 1043 | |
e8a03feb | 1044 | BUG_ON(!anon_vma); |
ea90002b | 1045 | |
4e1c1975 AK |
1046 | if (PageAnon(page)) |
1047 | return; | |
1048 | ||
ea90002b | 1049 | /* |
e8a03feb RR |
1050 | * If the page isn't exclusively mapped into this vma, |
1051 | * we must use the _oldest_ possible anon_vma for the | |
1052 | * page mapping! | |
ea90002b | 1053 | */ |
4e1c1975 | 1054 | if (!exclusive) |
288468c3 | 1055 | anon_vma = anon_vma->root; |
9617d95e | 1056 | |
9617d95e NP |
1057 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
1058 | page->mapping = (struct address_space *) anon_vma; | |
9617d95e | 1059 | page->index = linear_page_index(vma, address); |
9617d95e NP |
1060 | } |
1061 | ||
c97a9e10 | 1062 | /** |
43d8eac4 | 1063 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
1064 | * @page: the page to add the mapping to |
1065 | * @vma: the vm area in which the mapping is added | |
1066 | * @address: the user virtual address mapped | |
1067 | */ | |
1068 | static void __page_check_anon_rmap(struct page *page, | |
1069 | struct vm_area_struct *vma, unsigned long address) | |
1070 | { | |
c97a9e10 NP |
1071 | /* |
1072 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
1073 | * be set up correctly at this point. | |
1074 | * | |
1075 | * We have exclusion against page_add_anon_rmap because the caller | |
1076 | * always holds the page locked, except if called from page_dup_rmap, | |
1077 | * in which case the page is already known to be setup. | |
1078 | * | |
1079 | * We have exclusion against page_add_new_anon_rmap because those pages | |
1080 | * are initially only visible via the pagetables, and the pte is locked | |
1081 | * over the call to page_add_new_anon_rmap. | |
1082 | */ | |
30c46382 YS |
1083 | VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page); |
1084 | VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), | |
1085 | page); | |
c97a9e10 NP |
1086 | } |
1087 | ||
1da177e4 LT |
1088 | /** |
1089 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
1090 | * @page: the page to add the mapping to | |
1091 | * @vma: the vm area in which the mapping is added | |
1092 | * @address: the user virtual address mapped | |
d281ee61 | 1093 | * @compound: charge the page as compound or small page |
1da177e4 | 1094 | * |
5ad64688 | 1095 | * The caller needs to hold the pte lock, and the page must be locked in |
80e14822 HD |
1096 | * the anon_vma case: to serialize mapping,index checking after setting, |
1097 | * and to ensure that PageAnon is not being upgraded racily to PageKsm | |
1098 | * (but PageKsm is never downgraded to PageAnon). | |
1da177e4 LT |
1099 | */ |
1100 | void page_add_anon_rmap(struct page *page, | |
d281ee61 | 1101 | struct vm_area_struct *vma, unsigned long address, bool compound) |
ad8c2ee8 | 1102 | { |
d281ee61 | 1103 | do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); |
ad8c2ee8 RR |
1104 | } |
1105 | ||
1106 | /* | |
1107 | * Special version of the above for do_swap_page, which often runs | |
1108 | * into pages that are exclusively owned by the current process. | |
1109 | * Everybody else should continue to use page_add_anon_rmap above. | |
1110 | */ | |
1111 | void do_page_add_anon_rmap(struct page *page, | |
d281ee61 | 1112 | struct vm_area_struct *vma, unsigned long address, int flags) |
1da177e4 | 1113 | { |
53f9263b KS |
1114 | bool compound = flags & RMAP_COMPOUND; |
1115 | bool first; | |
1116 | ||
be5d0a74 JW |
1117 | if (unlikely(PageKsm(page))) |
1118 | lock_page_memcg(page); | |
1119 | else | |
1120 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
1121 | ||
e9b61f19 KS |
1122 | if (compound) { |
1123 | atomic_t *mapcount; | |
53f9263b | 1124 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
e9b61f19 KS |
1125 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); |
1126 | mapcount = compound_mapcount_ptr(page); | |
1127 | first = atomic_inc_and_test(mapcount); | |
53f9263b KS |
1128 | } else { |
1129 | first = atomic_inc_and_test(&page->_mapcount); | |
1130 | } | |
1131 | ||
79134171 | 1132 | if (first) { |
d281ee61 | 1133 | int nr = compound ? hpage_nr_pages(page) : 1; |
bea04b07 JZ |
1134 | /* |
1135 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | |
1136 | * these counters are not modified in interrupt context, and | |
1137 | * pte lock(a spinlock) is held, which implies preemption | |
1138 | * disabled. | |
1139 | */ | |
65c45377 | 1140 | if (compound) |
468c3982 | 1141 | __inc_lruvec_page_state(page, NR_ANON_THPS); |
be5d0a74 | 1142 | __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); |
79134171 | 1143 | } |
5ad64688 | 1144 | |
be5d0a74 JW |
1145 | if (unlikely(PageKsm(page))) { |
1146 | unlock_page_memcg(page); | |
1147 | return; | |
1148 | } | |
53f9263b | 1149 | |
5dbe0af4 | 1150 | /* address might be in next vma when migration races vma_adjust */ |
5ad64688 | 1151 | if (first) |
d281ee61 KS |
1152 | __page_set_anon_rmap(page, vma, address, |
1153 | flags & RMAP_EXCLUSIVE); | |
69029cd5 | 1154 | else |
c97a9e10 | 1155 | __page_check_anon_rmap(page, vma, address); |
1da177e4 LT |
1156 | } |
1157 | ||
43d8eac4 | 1158 | /** |
9617d95e NP |
1159 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page |
1160 | * @page: the page to add the mapping to | |
1161 | * @vma: the vm area in which the mapping is added | |
1162 | * @address: the user virtual address mapped | |
d281ee61 | 1163 | * @compound: charge the page as compound or small page |
9617d95e NP |
1164 | * |
1165 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
1166 | * This means the inc-and-test can be bypassed. | |
c97a9e10 | 1167 | * Page does not have to be locked. |
9617d95e NP |
1168 | */ |
1169 | void page_add_new_anon_rmap(struct page *page, | |
d281ee61 | 1170 | struct vm_area_struct *vma, unsigned long address, bool compound) |
9617d95e | 1171 | { |
d281ee61 KS |
1172 | int nr = compound ? hpage_nr_pages(page) : 1; |
1173 | ||
81d1b09c | 1174 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); |
fa9949da | 1175 | __SetPageSwapBacked(page); |
d281ee61 KS |
1176 | if (compound) { |
1177 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
53f9263b KS |
1178 | /* increment count (starts at -1) */ |
1179 | atomic_set(compound_mapcount_ptr(page), 0); | |
47e29d32 JH |
1180 | if (hpage_pincount_available(page)) |
1181 | atomic_set(compound_pincount_ptr(page), 0); | |
1182 | ||
468c3982 | 1183 | __inc_lruvec_page_state(page, NR_ANON_THPS); |
53f9263b KS |
1184 | } else { |
1185 | /* Anon THP always mapped first with PMD */ | |
1186 | VM_BUG_ON_PAGE(PageTransCompound(page), page); | |
1187 | /* increment count (starts at -1) */ | |
1188 | atomic_set(&page->_mapcount, 0); | |
d281ee61 | 1189 | } |
be5d0a74 | 1190 | __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); |
e8a03feb | 1191 | __page_set_anon_rmap(page, vma, address, 1); |
9617d95e NP |
1192 | } |
1193 | ||
1da177e4 LT |
1194 | /** |
1195 | * page_add_file_rmap - add pte mapping to a file page | |
1196 | * @page: the page to add the mapping to | |
e8b098fc | 1197 | * @compound: charge the page as compound or small page |
1da177e4 | 1198 | * |
b8072f09 | 1199 | * The caller needs to hold the pte lock. |
1da177e4 | 1200 | */ |
dd78fedd | 1201 | void page_add_file_rmap(struct page *page, bool compound) |
1da177e4 | 1202 | { |
dd78fedd KS |
1203 | int i, nr = 1; |
1204 | ||
1205 | VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); | |
62cccb8c | 1206 | lock_page_memcg(page); |
dd78fedd KS |
1207 | if (compound && PageTransHuge(page)) { |
1208 | for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | |
1209 | if (atomic_inc_and_test(&page[i]._mapcount)) | |
1210 | nr++; | |
1211 | } | |
1212 | if (!atomic_inc_and_test(compound_mapcount_ptr(page))) | |
1213 | goto out; | |
99cb0dbd SL |
1214 | if (PageSwapBacked(page)) |
1215 | __inc_node_page_state(page, NR_SHMEM_PMDMAPPED); | |
1216 | else | |
1217 | __inc_node_page_state(page, NR_FILE_PMDMAPPED); | |
dd78fedd | 1218 | } else { |
c8efc390 KS |
1219 | if (PageTransCompound(page) && page_mapping(page)) { |
1220 | VM_WARN_ON_ONCE(!PageLocked(page)); | |
1221 | ||
9a73f61b KS |
1222 | SetPageDoubleMap(compound_head(page)); |
1223 | if (PageMlocked(page)) | |
1224 | clear_page_mlock(compound_head(page)); | |
1225 | } | |
dd78fedd KS |
1226 | if (!atomic_inc_and_test(&page->_mapcount)) |
1227 | goto out; | |
d69b042f | 1228 | } |
00f3ca2c | 1229 | __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); |
dd78fedd | 1230 | out: |
62cccb8c | 1231 | unlock_page_memcg(page); |
1da177e4 LT |
1232 | } |
1233 | ||
dd78fedd | 1234 | static void page_remove_file_rmap(struct page *page, bool compound) |
8186eb6a | 1235 | { |
dd78fedd KS |
1236 | int i, nr = 1; |
1237 | ||
57dea93a | 1238 | VM_BUG_ON_PAGE(compound && !PageHead(page), page); |
8186eb6a | 1239 | |
53f9263b KS |
1240 | /* Hugepages are not counted in NR_FILE_MAPPED for now. */ |
1241 | if (unlikely(PageHuge(page))) { | |
1242 | /* hugetlb pages are always mapped with pmds */ | |
1243 | atomic_dec(compound_mapcount_ptr(page)); | |
be5d0a74 | 1244 | return; |
53f9263b | 1245 | } |
8186eb6a | 1246 | |
53f9263b | 1247 | /* page still mapped by someone else? */ |
dd78fedd KS |
1248 | if (compound && PageTransHuge(page)) { |
1249 | for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | |
1250 | if (atomic_add_negative(-1, &page[i]._mapcount)) | |
1251 | nr++; | |
1252 | } | |
1253 | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | |
be5d0a74 | 1254 | return; |
99cb0dbd SL |
1255 | if (PageSwapBacked(page)) |
1256 | __dec_node_page_state(page, NR_SHMEM_PMDMAPPED); | |
1257 | else | |
1258 | __dec_node_page_state(page, NR_FILE_PMDMAPPED); | |
dd78fedd KS |
1259 | } else { |
1260 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
be5d0a74 | 1261 | return; |
dd78fedd | 1262 | } |
8186eb6a JW |
1263 | |
1264 | /* | |
00f3ca2c | 1265 | * We use the irq-unsafe __{inc|mod}_lruvec_page_state because |
8186eb6a JW |
1266 | * these counters are not modified in interrupt context, and |
1267 | * pte lock(a spinlock) is held, which implies preemption disabled. | |
1268 | */ | |
00f3ca2c | 1269 | __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); |
8186eb6a JW |
1270 | |
1271 | if (unlikely(PageMlocked(page))) | |
1272 | clear_page_mlock(page); | |
8186eb6a JW |
1273 | } |
1274 | ||
53f9263b KS |
1275 | static void page_remove_anon_compound_rmap(struct page *page) |
1276 | { | |
1277 | int i, nr; | |
1278 | ||
1279 | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | |
1280 | return; | |
1281 | ||
1282 | /* Hugepages are not counted in NR_ANON_PAGES for now. */ | |
1283 | if (unlikely(PageHuge(page))) | |
1284 | return; | |
1285 | ||
1286 | if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) | |
1287 | return; | |
1288 | ||
468c3982 | 1289 | __dec_lruvec_page_state(page, NR_ANON_THPS); |
53f9263b KS |
1290 | |
1291 | if (TestClearPageDoubleMap(page)) { | |
1292 | /* | |
1293 | * Subpages can be mapped with PTEs too. Check how many of | |
f1fe80d4 | 1294 | * them are still mapped. |
53f9263b KS |
1295 | */ |
1296 | for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | |
1297 | if (atomic_add_negative(-1, &page[i]._mapcount)) | |
1298 | nr++; | |
1299 | } | |
f1fe80d4 KS |
1300 | |
1301 | /* | |
1302 | * Queue the page for deferred split if at least one small | |
1303 | * page of the compound page is unmapped, but at least one | |
1304 | * small page is still mapped. | |
1305 | */ | |
1306 | if (nr && nr < HPAGE_PMD_NR) | |
1307 | deferred_split_huge_page(page); | |
53f9263b KS |
1308 | } else { |
1309 | nr = HPAGE_PMD_NR; | |
1310 | } | |
1311 | ||
e90309c9 KS |
1312 | if (unlikely(PageMlocked(page))) |
1313 | clear_page_mlock(page); | |
1314 | ||
f1fe80d4 | 1315 | if (nr) |
be5d0a74 | 1316 | __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr); |
53f9263b KS |
1317 | } |
1318 | ||
1da177e4 LT |
1319 | /** |
1320 | * page_remove_rmap - take down pte mapping from a page | |
d281ee61 KS |
1321 | * @page: page to remove mapping from |
1322 | * @compound: uncharge the page as compound or small page | |
1da177e4 | 1323 | * |
b8072f09 | 1324 | * The caller needs to hold the pte lock. |
1da177e4 | 1325 | */ |
d281ee61 | 1326 | void page_remove_rmap(struct page *page, bool compound) |
1da177e4 | 1327 | { |
be5d0a74 | 1328 | lock_page_memcg(page); |
89c06bd5 | 1329 | |
be5d0a74 JW |
1330 | if (!PageAnon(page)) { |
1331 | page_remove_file_rmap(page, compound); | |
1332 | goto out; | |
1333 | } | |
1334 | ||
1335 | if (compound) { | |
1336 | page_remove_anon_compound_rmap(page); | |
1337 | goto out; | |
1338 | } | |
53f9263b | 1339 | |
b904dcfe KM |
1340 | /* page still mapped by someone else? */ |
1341 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
be5d0a74 | 1342 | goto out; |
8186eb6a | 1343 | |
0fe6e20b | 1344 | /* |
bea04b07 JZ |
1345 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because |
1346 | * these counters are not modified in interrupt context, and | |
bea04b07 | 1347 | * pte lock(a spinlock) is held, which implies preemption disabled. |
0fe6e20b | 1348 | */ |
be5d0a74 | 1349 | __dec_lruvec_page_state(page, NR_ANON_MAPPED); |
8186eb6a | 1350 | |
e6c509f8 HD |
1351 | if (unlikely(PageMlocked(page))) |
1352 | clear_page_mlock(page); | |
8186eb6a | 1353 | |
9a982250 KS |
1354 | if (PageTransCompound(page)) |
1355 | deferred_split_huge_page(compound_head(page)); | |
1356 | ||
b904dcfe KM |
1357 | /* |
1358 | * It would be tidy to reset the PageAnon mapping here, | |
1359 | * but that might overwrite a racing page_add_anon_rmap | |
1360 | * which increments mapcount after us but sets mapping | |
2d4894b5 | 1361 | * before us: so leave the reset to free_unref_page, |
b904dcfe KM |
1362 | * and remember that it's only reliable while mapped. |
1363 | * Leaving it set also helps swapoff to reinstate ptes | |
1364 | * faster for those pages still in swapcache. | |
1365 | */ | |
be5d0a74 JW |
1366 | out: |
1367 | unlock_page_memcg(page); | |
1da177e4 LT |
1368 | } |
1369 | ||
1370 | /* | |
52629506 | 1371 | * @arg: enum ttu_flags will be passed to this argument |
1da177e4 | 1372 | */ |
e4b82222 | 1373 | static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma, |
52629506 | 1374 | unsigned long address, void *arg) |
1da177e4 LT |
1375 | { |
1376 | struct mm_struct *mm = vma->vm_mm; | |
c7ab0d2f KS |
1377 | struct page_vma_mapped_walk pvmw = { |
1378 | .page = page, | |
1379 | .vma = vma, | |
1380 | .address = address, | |
1381 | }; | |
1da177e4 | 1382 | pte_t pteval; |
c7ab0d2f | 1383 | struct page *subpage; |
785373b4 | 1384 | bool ret = true; |
ac46d4f3 | 1385 | struct mmu_notifier_range range; |
4708f318 | 1386 | enum ttu_flags flags = (enum ttu_flags)(long)arg; |
1da177e4 | 1387 | |
b87537d9 HD |
1388 | /* munlock has nothing to gain from examining un-locked vmas */ |
1389 | if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED)) | |
e4b82222 | 1390 | return true; |
b87537d9 | 1391 | |
a5430dda JG |
1392 | if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) && |
1393 | is_zone_device_page(page) && !is_device_private_page(page)) | |
1394 | return true; | |
1395 | ||
fec89c10 KS |
1396 | if (flags & TTU_SPLIT_HUGE_PMD) { |
1397 | split_huge_pmd_address(vma, address, | |
b5ff8161 | 1398 | flags & TTU_SPLIT_FREEZE, page); |
fec89c10 KS |
1399 | } |
1400 | ||
369ea824 | 1401 | /* |
017b1660 MK |
1402 | * For THP, we have to assume the worse case ie pmd for invalidation. |
1403 | * For hugetlb, it could be much worse if we need to do pud | |
1404 | * invalidation in the case of pmd sharing. | |
1405 | * | |
1406 | * Note that the page can not be free in this function as call of | |
1407 | * try_to_unmap() must hold a reference on the page. | |
369ea824 | 1408 | */ |
7269f999 | 1409 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, |
6f4f13e8 | 1410 | address, |
a50b854e | 1411 | min(vma->vm_end, address + page_size(page))); |
017b1660 MK |
1412 | if (PageHuge(page)) { |
1413 | /* | |
1414 | * If sharing is possible, start and end will be adjusted | |
1415 | * accordingly. | |
c0d0381a MK |
1416 | * |
1417 | * If called for a huge page, caller must hold i_mmap_rwsem | |
1418 | * in write mode as it is possible to call huge_pmd_unshare. | |
017b1660 | 1419 | */ |
ac46d4f3 JG |
1420 | adjust_range_if_pmd_sharing_possible(vma, &range.start, |
1421 | &range.end); | |
017b1660 | 1422 | } |
ac46d4f3 | 1423 | mmu_notifier_invalidate_range_start(&range); |
369ea824 | 1424 | |
c7ab0d2f | 1425 | while (page_vma_mapped_walk(&pvmw)) { |
616b8371 ZY |
1426 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
1427 | /* PMD-mapped THP migration entry */ | |
1428 | if (!pvmw.pte && (flags & TTU_MIGRATION)) { | |
1429 | VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); | |
1430 | ||
616b8371 ZY |
1431 | set_pmd_migration_entry(&pvmw, page); |
1432 | continue; | |
1433 | } | |
1434 | #endif | |
1435 | ||
c7ab0d2f KS |
1436 | /* |
1437 | * If the page is mlock()d, we cannot swap it out. | |
1438 | * If it's recently referenced (perhaps page_referenced | |
1439 | * skipped over this mm) then we should reactivate it. | |
1440 | */ | |
1441 | if (!(flags & TTU_IGNORE_MLOCK)) { | |
1442 | if (vma->vm_flags & VM_LOCKED) { | |
1443 | /* PTE-mapped THP are never mlocked */ | |
1444 | if (!PageTransCompound(page)) { | |
1445 | /* | |
1446 | * Holding pte lock, we do *not* need | |
c1e8d7c6 | 1447 | * mmap_lock here |
c7ab0d2f KS |
1448 | */ |
1449 | mlock_vma_page(page); | |
1450 | } | |
e4b82222 | 1451 | ret = false; |
c7ab0d2f KS |
1452 | page_vma_mapped_walk_done(&pvmw); |
1453 | break; | |
9a73f61b | 1454 | } |
c7ab0d2f KS |
1455 | if (flags & TTU_MUNLOCK) |
1456 | continue; | |
b87537d9 | 1457 | } |
c7ab0d2f | 1458 | |
8346242a KS |
1459 | /* Unexpected PMD-mapped THP? */ |
1460 | VM_BUG_ON_PAGE(!pvmw.pte, page); | |
1461 | ||
1462 | subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); | |
785373b4 LT |
1463 | address = pvmw.address; |
1464 | ||
017b1660 | 1465 | if (PageHuge(page)) { |
c0d0381a MK |
1466 | /* |
1467 | * To call huge_pmd_unshare, i_mmap_rwsem must be | |
1468 | * held in write mode. Caller needs to explicitly | |
1469 | * do this outside rmap routines. | |
1470 | */ | |
1471 | VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); | |
017b1660 MK |
1472 | if (huge_pmd_unshare(mm, &address, pvmw.pte)) { |
1473 | /* | |
1474 | * huge_pmd_unshare unmapped an entire PMD | |
1475 | * page. There is no way of knowing exactly | |
1476 | * which PMDs may be cached for this mm, so | |
1477 | * we must flush them all. start/end were | |
1478 | * already adjusted above to cover this range. | |
1479 | */ | |
ac46d4f3 JG |
1480 | flush_cache_range(vma, range.start, range.end); |
1481 | flush_tlb_range(vma, range.start, range.end); | |
1482 | mmu_notifier_invalidate_range(mm, range.start, | |
1483 | range.end); | |
017b1660 MK |
1484 | |
1485 | /* | |
1486 | * The ref count of the PMD page was dropped | |
1487 | * which is part of the way map counting | |
1488 | * is done for shared PMDs. Return 'true' | |
1489 | * here. When there is no other sharing, | |
1490 | * huge_pmd_unshare returns false and we will | |
1491 | * unmap the actual page and drop map count | |
1492 | * to zero. | |
1493 | */ | |
1494 | page_vma_mapped_walk_done(&pvmw); | |
1495 | break; | |
1496 | } | |
1497 | } | |
8346242a | 1498 | |
a5430dda JG |
1499 | if (IS_ENABLED(CONFIG_MIGRATION) && |
1500 | (flags & TTU_MIGRATION) && | |
1501 | is_zone_device_page(page)) { | |
1502 | swp_entry_t entry; | |
1503 | pte_t swp_pte; | |
1504 | ||
1505 | pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte); | |
1506 | ||
1507 | /* | |
1508 | * Store the pfn of the page in a special migration | |
1509 | * pte. do_swap_page() will wait until the migration | |
1510 | * pte is removed and then restart fault handling. | |
1511 | */ | |
1512 | entry = make_migration_entry(page, 0); | |
1513 | swp_pte = swp_entry_to_pte(entry); | |
1514 | if (pte_soft_dirty(pteval)) | |
1515 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
f45ec5ff PX |
1516 | if (pte_uffd_wp(pteval)) |
1517 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
a5430dda | 1518 | set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); |
0f10851e JG |
1519 | /* |
1520 | * No need to invalidate here it will synchronize on | |
1521 | * against the special swap migration pte. | |
1de13ee5 RC |
1522 | * |
1523 | * The assignment to subpage above was computed from a | |
1524 | * swap PTE which results in an invalid pointer. | |
1525 | * Since only PAGE_SIZE pages can currently be | |
1526 | * migrated, just set it to page. This will need to be | |
1527 | * changed when hugepage migrations to device private | |
1528 | * memory are supported. | |
0f10851e | 1529 | */ |
1de13ee5 | 1530 | subpage = page; |
a5430dda JG |
1531 | goto discard; |
1532 | } | |
1533 | ||
c7ab0d2f | 1534 | if (!(flags & TTU_IGNORE_ACCESS)) { |
785373b4 | 1535 | if (ptep_clear_flush_young_notify(vma, address, |
c7ab0d2f | 1536 | pvmw.pte)) { |
e4b82222 | 1537 | ret = false; |
c7ab0d2f KS |
1538 | page_vma_mapped_walk_done(&pvmw); |
1539 | break; | |
1540 | } | |
b291f000 | 1541 | } |
1da177e4 | 1542 | |
c7ab0d2f | 1543 | /* Nuke the page table entry. */ |
785373b4 | 1544 | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); |
c7ab0d2f KS |
1545 | if (should_defer_flush(mm, flags)) { |
1546 | /* | |
1547 | * We clear the PTE but do not flush so potentially | |
1548 | * a remote CPU could still be writing to the page. | |
1549 | * If the entry was previously clean then the | |
1550 | * architecture must guarantee that a clear->dirty | |
1551 | * transition on a cached TLB entry is written through | |
1552 | * and traps if the PTE is unmapped. | |
1553 | */ | |
785373b4 | 1554 | pteval = ptep_get_and_clear(mm, address, pvmw.pte); |
c7ab0d2f KS |
1555 | |
1556 | set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); | |
1557 | } else { | |
785373b4 | 1558 | pteval = ptep_clear_flush(vma, address, pvmw.pte); |
c7ab0d2f | 1559 | } |
72b252ae | 1560 | |
c7ab0d2f KS |
1561 | /* Move the dirty bit to the page. Now the pte is gone. */ |
1562 | if (pte_dirty(pteval)) | |
1563 | set_page_dirty(page); | |
1da177e4 | 1564 | |
c7ab0d2f KS |
1565 | /* Update high watermark before we lower rss */ |
1566 | update_hiwater_rss(mm); | |
1da177e4 | 1567 | |
c7ab0d2f | 1568 | if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { |
5fd27b8e | 1569 | pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); |
c7ab0d2f | 1570 | if (PageHuge(page)) { |
d8c6546b | 1571 | hugetlb_count_sub(compound_nr(page), mm); |
785373b4 | 1572 | set_huge_swap_pte_at(mm, address, |
5fd27b8e PA |
1573 | pvmw.pte, pteval, |
1574 | vma_mmu_pagesize(vma)); | |
c7ab0d2f KS |
1575 | } else { |
1576 | dec_mm_counter(mm, mm_counter(page)); | |
785373b4 | 1577 | set_pte_at(mm, address, pvmw.pte, pteval); |
c7ab0d2f | 1578 | } |
365e9c87 | 1579 | |
bce73e48 | 1580 | } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { |
c7ab0d2f KS |
1581 | /* |
1582 | * The guest indicated that the page content is of no | |
1583 | * interest anymore. Simply discard the pte, vmscan | |
1584 | * will take care of the rest. | |
bce73e48 CB |
1585 | * A future reference will then fault in a new zero |
1586 | * page. When userfaultfd is active, we must not drop | |
1587 | * this page though, as its main user (postcopy | |
1588 | * migration) will not expect userfaults on already | |
1589 | * copied pages. | |
c7ab0d2f | 1590 | */ |
eca56ff9 | 1591 | dec_mm_counter(mm, mm_counter(page)); |
0f10851e JG |
1592 | /* We have to invalidate as we cleared the pte */ |
1593 | mmu_notifier_invalidate_range(mm, address, | |
1594 | address + PAGE_SIZE); | |
c7ab0d2f | 1595 | } else if (IS_ENABLED(CONFIG_MIGRATION) && |
b5ff8161 | 1596 | (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) { |
c7ab0d2f KS |
1597 | swp_entry_t entry; |
1598 | pte_t swp_pte; | |
ca827d55 KA |
1599 | |
1600 | if (arch_unmap_one(mm, vma, address, pteval) < 0) { | |
1601 | set_pte_at(mm, address, pvmw.pte, pteval); | |
1602 | ret = false; | |
1603 | page_vma_mapped_walk_done(&pvmw); | |
1604 | break; | |
1605 | } | |
1606 | ||
c7ab0d2f KS |
1607 | /* |
1608 | * Store the pfn of the page in a special migration | |
1609 | * pte. do_swap_page() will wait until the migration | |
1610 | * pte is removed and then restart fault handling. | |
1611 | */ | |
1612 | entry = make_migration_entry(subpage, | |
1613 | pte_write(pteval)); | |
1614 | swp_pte = swp_entry_to_pte(entry); | |
1615 | if (pte_soft_dirty(pteval)) | |
1616 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
f45ec5ff PX |
1617 | if (pte_uffd_wp(pteval)) |
1618 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
785373b4 | 1619 | set_pte_at(mm, address, pvmw.pte, swp_pte); |
0f10851e JG |
1620 | /* |
1621 | * No need to invalidate here it will synchronize on | |
1622 | * against the special swap migration pte. | |
1623 | */ | |
c7ab0d2f KS |
1624 | } else if (PageAnon(page)) { |
1625 | swp_entry_t entry = { .val = page_private(subpage) }; | |
1626 | pte_t swp_pte; | |
1627 | /* | |
1628 | * Store the swap location in the pte. | |
1629 | * See handle_pte_fault() ... | |
1630 | */ | |
eb94a878 MK |
1631 | if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) { |
1632 | WARN_ON_ONCE(1); | |
83612a94 | 1633 | ret = false; |
369ea824 | 1634 | /* We have to invalidate as we cleared the pte */ |
0f10851e JG |
1635 | mmu_notifier_invalidate_range(mm, address, |
1636 | address + PAGE_SIZE); | |
eb94a878 MK |
1637 | page_vma_mapped_walk_done(&pvmw); |
1638 | break; | |
1639 | } | |
c7ab0d2f | 1640 | |
802a3a92 SL |
1641 | /* MADV_FREE page check */ |
1642 | if (!PageSwapBacked(page)) { | |
1643 | if (!PageDirty(page)) { | |
0f10851e JG |
1644 | /* Invalidate as we cleared the pte */ |
1645 | mmu_notifier_invalidate_range(mm, | |
1646 | address, address + PAGE_SIZE); | |
802a3a92 SL |
1647 | dec_mm_counter(mm, MM_ANONPAGES); |
1648 | goto discard; | |
1649 | } | |
1650 | ||
1651 | /* | |
1652 | * If the page was redirtied, it cannot be | |
1653 | * discarded. Remap the page to page table. | |
1654 | */ | |
785373b4 | 1655 | set_pte_at(mm, address, pvmw.pte, pteval); |
18863d3a | 1656 | SetPageSwapBacked(page); |
e4b82222 | 1657 | ret = false; |
802a3a92 SL |
1658 | page_vma_mapped_walk_done(&pvmw); |
1659 | break; | |
c7ab0d2f | 1660 | } |
854e9ed0 | 1661 | |
c7ab0d2f | 1662 | if (swap_duplicate(entry) < 0) { |
785373b4 | 1663 | set_pte_at(mm, address, pvmw.pte, pteval); |
e4b82222 | 1664 | ret = false; |
c7ab0d2f KS |
1665 | page_vma_mapped_walk_done(&pvmw); |
1666 | break; | |
1667 | } | |
ca827d55 KA |
1668 | if (arch_unmap_one(mm, vma, address, pteval) < 0) { |
1669 | set_pte_at(mm, address, pvmw.pte, pteval); | |
1670 | ret = false; | |
1671 | page_vma_mapped_walk_done(&pvmw); | |
1672 | break; | |
1673 | } | |
c7ab0d2f KS |
1674 | if (list_empty(&mm->mmlist)) { |
1675 | spin_lock(&mmlist_lock); | |
1676 | if (list_empty(&mm->mmlist)) | |
1677 | list_add(&mm->mmlist, &init_mm.mmlist); | |
1678 | spin_unlock(&mmlist_lock); | |
1679 | } | |
854e9ed0 | 1680 | dec_mm_counter(mm, MM_ANONPAGES); |
c7ab0d2f KS |
1681 | inc_mm_counter(mm, MM_SWAPENTS); |
1682 | swp_pte = swp_entry_to_pte(entry); | |
1683 | if (pte_soft_dirty(pteval)) | |
1684 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
f45ec5ff PX |
1685 | if (pte_uffd_wp(pteval)) |
1686 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
785373b4 | 1687 | set_pte_at(mm, address, pvmw.pte, swp_pte); |
0f10851e JG |
1688 | /* Invalidate as we cleared the pte */ |
1689 | mmu_notifier_invalidate_range(mm, address, | |
1690 | address + PAGE_SIZE); | |
1691 | } else { | |
1692 | /* | |
906f9cdf HD |
1693 | * This is a locked file-backed page, thus it cannot |
1694 | * be removed from the page cache and replaced by a new | |
1695 | * page before mmu_notifier_invalidate_range_end, so no | |
0f10851e JG |
1696 | * concurrent thread might update its page table to |
1697 | * point at new page while a device still is using this | |
1698 | * page. | |
1699 | * | |
ad56b738 | 1700 | * See Documentation/vm/mmu_notifier.rst |
0f10851e | 1701 | */ |
c7ab0d2f | 1702 | dec_mm_counter(mm, mm_counter_file(page)); |
0f10851e | 1703 | } |
854e9ed0 | 1704 | discard: |
0f10851e JG |
1705 | /* |
1706 | * No need to call mmu_notifier_invalidate_range() it has be | |
1707 | * done above for all cases requiring it to happen under page | |
1708 | * table lock before mmu_notifier_invalidate_range_end() | |
1709 | * | |
ad56b738 | 1710 | * See Documentation/vm/mmu_notifier.rst |
0f10851e | 1711 | */ |
c7ab0d2f KS |
1712 | page_remove_rmap(subpage, PageHuge(page)); |
1713 | put_page(page); | |
c7ab0d2f | 1714 | } |
369ea824 | 1715 | |
ac46d4f3 | 1716 | mmu_notifier_invalidate_range_end(&range); |
369ea824 | 1717 | |
caed0f48 | 1718 | return ret; |
1da177e4 LT |
1719 | } |
1720 | ||
52629506 JK |
1721 | static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) |
1722 | { | |
222100ee | 1723 | return vma_is_temporary_stack(vma); |
52629506 JK |
1724 | } |
1725 | ||
2a52bcbc | 1726 | static int page_mapcount_is_zero(struct page *page) |
52629506 | 1727 | { |
c7ab0d2f | 1728 | return !total_mapcount(page); |
2a52bcbc | 1729 | } |
52629506 | 1730 | |
1da177e4 LT |
1731 | /** |
1732 | * try_to_unmap - try to remove all page table mappings to a page | |
1733 | * @page: the page to get unmapped | |
14fa31b8 | 1734 | * @flags: action and flags |
1da177e4 LT |
1735 | * |
1736 | * Tries to remove all the page table entries which are mapping this | |
1737 | * page, used in the pageout path. Caller must hold the page lock. | |
1da177e4 | 1738 | * |
666e5a40 | 1739 | * If unmap is successful, return true. Otherwise, false. |
1da177e4 | 1740 | */ |
666e5a40 | 1741 | bool try_to_unmap(struct page *page, enum ttu_flags flags) |
1da177e4 | 1742 | { |
52629506 JK |
1743 | struct rmap_walk_control rwc = { |
1744 | .rmap_one = try_to_unmap_one, | |
802a3a92 | 1745 | .arg = (void *)flags, |
2a52bcbc | 1746 | .done = page_mapcount_is_zero, |
52629506 JK |
1747 | .anon_lock = page_lock_anon_vma_read, |
1748 | }; | |
1da177e4 | 1749 | |
52629506 JK |
1750 | /* |
1751 | * During exec, a temporary VMA is setup and later moved. | |
1752 | * The VMA is moved under the anon_vma lock but not the | |
1753 | * page tables leading to a race where migration cannot | |
1754 | * find the migration ptes. Rather than increasing the | |
1755 | * locking requirements of exec(), migration skips | |
1756 | * temporary VMAs until after exec() completes. | |
1757 | */ | |
b5ff8161 NH |
1758 | if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE)) |
1759 | && !PageKsm(page) && PageAnon(page)) | |
52629506 JK |
1760 | rwc.invalid_vma = invalid_migration_vma; |
1761 | ||
2a52bcbc | 1762 | if (flags & TTU_RMAP_LOCKED) |
33fc80e2 | 1763 | rmap_walk_locked(page, &rwc); |
2a52bcbc | 1764 | else |
33fc80e2 | 1765 | rmap_walk(page, &rwc); |
52629506 | 1766 | |
666e5a40 | 1767 | return !page_mapcount(page) ? true : false; |
1da177e4 | 1768 | } |
81b4082d | 1769 | |
2a52bcbc KS |
1770 | static int page_not_mapped(struct page *page) |
1771 | { | |
1772 | return !page_mapped(page); | |
1773 | }; | |
1774 | ||
b291f000 NP |
1775 | /** |
1776 | * try_to_munlock - try to munlock a page | |
1777 | * @page: the page to be munlocked | |
1778 | * | |
1779 | * Called from munlock code. Checks all of the VMAs mapping the page | |
1780 | * to make sure nobody else has this page mlocked. The page will be | |
1781 | * returned with PG_mlocked cleared if no other vmas have it mlocked. | |
b291f000 | 1782 | */ |
854e9ed0 | 1783 | |
192d7232 MK |
1784 | void try_to_munlock(struct page *page) |
1785 | { | |
e8351ac9 JK |
1786 | struct rmap_walk_control rwc = { |
1787 | .rmap_one = try_to_unmap_one, | |
802a3a92 | 1788 | .arg = (void *)TTU_MUNLOCK, |
e8351ac9 | 1789 | .done = page_not_mapped, |
e8351ac9 JK |
1790 | .anon_lock = page_lock_anon_vma_read, |
1791 | ||
1792 | }; | |
1793 | ||
309381fe | 1794 | VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); |
192d7232 | 1795 | VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); |
b291f000 | 1796 | |
192d7232 | 1797 | rmap_walk(page, &rwc); |
b291f000 | 1798 | } |
e9995ef9 | 1799 | |
01d8b20d | 1800 | void __put_anon_vma(struct anon_vma *anon_vma) |
76545066 | 1801 | { |
01d8b20d | 1802 | struct anon_vma *root = anon_vma->root; |
76545066 | 1803 | |
624483f3 | 1804 | anon_vma_free(anon_vma); |
01d8b20d PZ |
1805 | if (root != anon_vma && atomic_dec_and_test(&root->refcount)) |
1806 | anon_vma_free(root); | |
76545066 | 1807 | } |
76545066 | 1808 | |
0dd1c7bb JK |
1809 | static struct anon_vma *rmap_walk_anon_lock(struct page *page, |
1810 | struct rmap_walk_control *rwc) | |
faecd8dd JK |
1811 | { |
1812 | struct anon_vma *anon_vma; | |
1813 | ||
0dd1c7bb JK |
1814 | if (rwc->anon_lock) |
1815 | return rwc->anon_lock(page); | |
1816 | ||
faecd8dd JK |
1817 | /* |
1818 | * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() | |
1819 | * because that depends on page_mapped(); but not all its usages | |
c1e8d7c6 | 1820 | * are holding mmap_lock. Users without mmap_lock are required to |
faecd8dd JK |
1821 | * take a reference count to prevent the anon_vma disappearing |
1822 | */ | |
1823 | anon_vma = page_anon_vma(page); | |
1824 | if (!anon_vma) | |
1825 | return NULL; | |
1826 | ||
1827 | anon_vma_lock_read(anon_vma); | |
1828 | return anon_vma; | |
1829 | } | |
1830 | ||
e9995ef9 | 1831 | /* |
e8351ac9 JK |
1832 | * rmap_walk_anon - do something to anonymous page using the object-based |
1833 | * rmap method | |
1834 | * @page: the page to be handled | |
1835 | * @rwc: control variable according to each walk type | |
1836 | * | |
1837 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1838 | * contained in the anon_vma struct it points to. | |
1839 | * | |
c1e8d7c6 | 1840 | * When called from try_to_munlock(), the mmap_lock of the mm containing the vma |
e8351ac9 JK |
1841 | * where the page was found will be held for write. So, we won't recheck |
1842 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1843 | * LOCKED. | |
e9995ef9 | 1844 | */ |
1df631ae | 1845 | static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, |
b9773199 | 1846 | bool locked) |
e9995ef9 HD |
1847 | { |
1848 | struct anon_vma *anon_vma; | |
a8fa41ad | 1849 | pgoff_t pgoff_start, pgoff_end; |
5beb4930 | 1850 | struct anon_vma_chain *avc; |
e9995ef9 | 1851 | |
b9773199 KS |
1852 | if (locked) { |
1853 | anon_vma = page_anon_vma(page); | |
1854 | /* anon_vma disappear under us? */ | |
1855 | VM_BUG_ON_PAGE(!anon_vma, page); | |
1856 | } else { | |
1857 | anon_vma = rmap_walk_anon_lock(page, rwc); | |
1858 | } | |
e9995ef9 | 1859 | if (!anon_vma) |
1df631ae | 1860 | return; |
faecd8dd | 1861 | |
a8fa41ad KS |
1862 | pgoff_start = page_to_pgoff(page); |
1863 | pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; | |
1864 | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, | |
1865 | pgoff_start, pgoff_end) { | |
5beb4930 | 1866 | struct vm_area_struct *vma = avc->vma; |
e9995ef9 | 1867 | unsigned long address = vma_address(page, vma); |
0dd1c7bb | 1868 | |
ad12695f AA |
1869 | cond_resched(); |
1870 | ||
0dd1c7bb JK |
1871 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
1872 | continue; | |
1873 | ||
e4b82222 | 1874 | if (!rwc->rmap_one(page, vma, address, rwc->arg)) |
e9995ef9 | 1875 | break; |
0dd1c7bb JK |
1876 | if (rwc->done && rwc->done(page)) |
1877 | break; | |
e9995ef9 | 1878 | } |
b9773199 KS |
1879 | |
1880 | if (!locked) | |
1881 | anon_vma_unlock_read(anon_vma); | |
e9995ef9 HD |
1882 | } |
1883 | ||
e8351ac9 JK |
1884 | /* |
1885 | * rmap_walk_file - do something to file page using the object-based rmap method | |
1886 | * @page: the page to be handled | |
1887 | * @rwc: control variable according to each walk type | |
1888 | * | |
1889 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1890 | * contained in the address_space struct it points to. | |
1891 | * | |
c1e8d7c6 | 1892 | * When called from try_to_munlock(), the mmap_lock of the mm containing the vma |
e8351ac9 JK |
1893 | * where the page was found will be held for write. So, we won't recheck |
1894 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1895 | * LOCKED. | |
1896 | */ | |
1df631ae | 1897 | static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc, |
b9773199 | 1898 | bool locked) |
e9995ef9 | 1899 | { |
b9773199 | 1900 | struct address_space *mapping = page_mapping(page); |
a8fa41ad | 1901 | pgoff_t pgoff_start, pgoff_end; |
e9995ef9 | 1902 | struct vm_area_struct *vma; |
e9995ef9 | 1903 | |
9f32624b JK |
1904 | /* |
1905 | * The page lock not only makes sure that page->mapping cannot | |
1906 | * suddenly be NULLified by truncation, it makes sure that the | |
1907 | * structure at mapping cannot be freed and reused yet, | |
c8c06efa | 1908 | * so we can safely take mapping->i_mmap_rwsem. |
9f32624b | 1909 | */ |
81d1b09c | 1910 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
9f32624b | 1911 | |
e9995ef9 | 1912 | if (!mapping) |
1df631ae | 1913 | return; |
3dec0ba0 | 1914 | |
a8fa41ad KS |
1915 | pgoff_start = page_to_pgoff(page); |
1916 | pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; | |
b9773199 KS |
1917 | if (!locked) |
1918 | i_mmap_lock_read(mapping); | |
a8fa41ad KS |
1919 | vma_interval_tree_foreach(vma, &mapping->i_mmap, |
1920 | pgoff_start, pgoff_end) { | |
e9995ef9 | 1921 | unsigned long address = vma_address(page, vma); |
0dd1c7bb | 1922 | |
ad12695f AA |
1923 | cond_resched(); |
1924 | ||
0dd1c7bb JK |
1925 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
1926 | continue; | |
1927 | ||
e4b82222 | 1928 | if (!rwc->rmap_one(page, vma, address, rwc->arg)) |
0dd1c7bb JK |
1929 | goto done; |
1930 | if (rwc->done && rwc->done(page)) | |
1931 | goto done; | |
e9995ef9 | 1932 | } |
0dd1c7bb | 1933 | |
0dd1c7bb | 1934 | done: |
b9773199 KS |
1935 | if (!locked) |
1936 | i_mmap_unlock_read(mapping); | |
e9995ef9 HD |
1937 | } |
1938 | ||
1df631ae | 1939 | void rmap_walk(struct page *page, struct rmap_walk_control *rwc) |
e9995ef9 | 1940 | { |
e9995ef9 | 1941 | if (unlikely(PageKsm(page))) |
1df631ae | 1942 | rmap_walk_ksm(page, rwc); |
e9995ef9 | 1943 | else if (PageAnon(page)) |
1df631ae | 1944 | rmap_walk_anon(page, rwc, false); |
b9773199 | 1945 | else |
1df631ae | 1946 | rmap_walk_file(page, rwc, false); |
b9773199 KS |
1947 | } |
1948 | ||
1949 | /* Like rmap_walk, but caller holds relevant rmap lock */ | |
1df631ae | 1950 | void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc) |
b9773199 KS |
1951 | { |
1952 | /* no ksm support for now */ | |
1953 | VM_BUG_ON_PAGE(PageKsm(page), page); | |
1954 | if (PageAnon(page)) | |
1df631ae | 1955 | rmap_walk_anon(page, rwc, true); |
e9995ef9 | 1956 | else |
1df631ae | 1957 | rmap_walk_file(page, rwc, true); |
e9995ef9 | 1958 | } |
0fe6e20b | 1959 | |
e3390f67 | 1960 | #ifdef CONFIG_HUGETLB_PAGE |
0fe6e20b | 1961 | /* |
451b9514 | 1962 | * The following two functions are for anonymous (private mapped) hugepages. |
0fe6e20b NH |
1963 | * Unlike common anonymous pages, anonymous hugepages have no accounting code |
1964 | * and no lru code, because we handle hugepages differently from common pages. | |
1965 | */ | |
0fe6e20b NH |
1966 | void hugepage_add_anon_rmap(struct page *page, |
1967 | struct vm_area_struct *vma, unsigned long address) | |
1968 | { | |
1969 | struct anon_vma *anon_vma = vma->anon_vma; | |
1970 | int first; | |
a850ea30 NH |
1971 | |
1972 | BUG_ON(!PageLocked(page)); | |
0fe6e20b | 1973 | BUG_ON(!anon_vma); |
5dbe0af4 | 1974 | /* address might be in next vma when migration races vma_adjust */ |
53f9263b | 1975 | first = atomic_inc_and_test(compound_mapcount_ptr(page)); |
0fe6e20b | 1976 | if (first) |
451b9514 | 1977 | __page_set_anon_rmap(page, vma, address, 0); |
0fe6e20b NH |
1978 | } |
1979 | ||
1980 | void hugepage_add_new_anon_rmap(struct page *page, | |
1981 | struct vm_area_struct *vma, unsigned long address) | |
1982 | { | |
1983 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
53f9263b | 1984 | atomic_set(compound_mapcount_ptr(page), 0); |
47e29d32 JH |
1985 | if (hpage_pincount_available(page)) |
1986 | atomic_set(compound_pincount_ptr(page), 0); | |
1987 | ||
451b9514 | 1988 | __page_set_anon_rmap(page, vma, address, 1); |
0fe6e20b | 1989 | } |
e3390f67 | 1990 | #endif /* CONFIG_HUGETLB_PAGE */ |