]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/filemap.c | |
3 | * | |
4 | * Copyright (C) 1994-1999 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * This file handles the generic file mmap semantics used by | |
9 | * most "normal" filesystems (but you don't /have/ to use this: | |
10 | * the NFS filesystem used to do this differently, for example) | |
11 | */ | |
b95f1b31 | 12 | #include <linux/export.h> |
1da177e4 | 13 | #include <linux/compiler.h> |
f9fe48be | 14 | #include <linux/dax.h> |
1da177e4 | 15 | #include <linux/fs.h> |
3f07c014 | 16 | #include <linux/sched/signal.h> |
c22ce143 | 17 | #include <linux/uaccess.h> |
c59ede7b | 18 | #include <linux/capability.h> |
1da177e4 | 19 | #include <linux/kernel_stat.h> |
5a0e3ad6 | 20 | #include <linux/gfp.h> |
1da177e4 LT |
21 | #include <linux/mm.h> |
22 | #include <linux/swap.h> | |
23 | #include <linux/mman.h> | |
24 | #include <linux/pagemap.h> | |
25 | #include <linux/file.h> | |
26 | #include <linux/uio.h> | |
27 | #include <linux/hash.h> | |
28 | #include <linux/writeback.h> | |
53253383 | 29 | #include <linux/backing-dev.h> |
1da177e4 LT |
30 | #include <linux/pagevec.h> |
31 | #include <linux/blkdev.h> | |
32 | #include <linux/security.h> | |
44110fe3 | 33 | #include <linux/cpuset.h> |
00501b53 | 34 | #include <linux/hugetlb.h> |
8a9f3ccd | 35 | #include <linux/memcontrol.h> |
c515e1fd | 36 | #include <linux/cleancache.h> |
c7df8ad2 | 37 | #include <linux/shmem_fs.h> |
f1820361 | 38 | #include <linux/rmap.h> |
0f8053a5 NP |
39 | #include "internal.h" |
40 | ||
fe0bfaaf RJ |
41 | #define CREATE_TRACE_POINTS |
42 | #include <trace/events/filemap.h> | |
43 | ||
1da177e4 | 44 | /* |
1da177e4 LT |
45 | * FIXME: remove all knowledge of the buffer layer from the core VM |
46 | */ | |
148f948b | 47 | #include <linux/buffer_head.h> /* for try_to_free_buffers */ |
1da177e4 | 48 | |
1da177e4 LT |
49 | #include <asm/mman.h> |
50 | ||
51 | /* | |
52 | * Shared mappings implemented 30.11.1994. It's not fully working yet, | |
53 | * though. | |
54 | * | |
55 | * Shared mappings now work. 15.8.1995 Bruno. | |
56 | * | |
57 | * finished 'unifying' the page and buffer cache and SMP-threaded the | |
58 | * page-cache, 21.05.1999, Ingo Molnar <[email protected]> | |
59 | * | |
60 | * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <[email protected]> | |
61 | */ | |
62 | ||
63 | /* | |
64 | * Lock ordering: | |
65 | * | |
c8c06efa | 66 | * ->i_mmap_rwsem (truncate_pagecache) |
1da177e4 | 67 | * ->private_lock (__free_pte->__set_page_dirty_buffers) |
5d337b91 HD |
68 | * ->swap_lock (exclusive_swap_page, others) |
69 | * ->mapping->tree_lock | |
1da177e4 | 70 | * |
1b1dcc1b | 71 | * ->i_mutex |
c8c06efa | 72 | * ->i_mmap_rwsem (truncate->unmap_mapping_range) |
1da177e4 LT |
73 | * |
74 | * ->mmap_sem | |
c8c06efa | 75 | * ->i_mmap_rwsem |
b8072f09 | 76 | * ->page_table_lock or pte_lock (various, mainly in memory.c) |
1da177e4 LT |
77 | * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) |
78 | * | |
79 | * ->mmap_sem | |
80 | * ->lock_page (access_process_vm) | |
81 | * | |
ccad2365 | 82 | * ->i_mutex (generic_perform_write) |
82591e6e | 83 | * ->mmap_sem (fault_in_pages_readable->do_page_fault) |
1da177e4 | 84 | * |
f758eeab | 85 | * bdi->wb.list_lock |
a66979ab | 86 | * sb_lock (fs/fs-writeback.c) |
1da177e4 LT |
87 | * ->mapping->tree_lock (__sync_single_inode) |
88 | * | |
c8c06efa | 89 | * ->i_mmap_rwsem |
1da177e4 LT |
90 | * ->anon_vma.lock (vma_adjust) |
91 | * | |
92 | * ->anon_vma.lock | |
b8072f09 | 93 | * ->page_table_lock or pte_lock (anon_vma_prepare and various) |
1da177e4 | 94 | * |
b8072f09 | 95 | * ->page_table_lock or pte_lock |
5d337b91 | 96 | * ->swap_lock (try_to_unmap_one) |
1da177e4 LT |
97 | * ->private_lock (try_to_unmap_one) |
98 | * ->tree_lock (try_to_unmap_one) | |
a52633d8 MG |
99 | * ->zone_lru_lock(zone) (follow_page->mark_page_accessed) |
100 | * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page) | |
1da177e4 LT |
101 | * ->private_lock (page_remove_rmap->set_page_dirty) |
102 | * ->tree_lock (page_remove_rmap->set_page_dirty) | |
f758eeab | 103 | * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) |
250df6ed | 104 | * ->inode->i_lock (page_remove_rmap->set_page_dirty) |
81f8c3a4 | 105 | * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) |
f758eeab | 106 | * bdi.wb->list_lock (zap_pte_range->set_page_dirty) |
250df6ed | 107 | * ->inode->i_lock (zap_pte_range->set_page_dirty) |
1da177e4 LT |
108 | * ->private_lock (zap_pte_range->__set_page_dirty_buffers) |
109 | * | |
c8c06efa | 110 | * ->i_mmap_rwsem |
9a3c531d | 111 | * ->tasklist_lock (memory_failure, collect_procs_ao) |
1da177e4 LT |
112 | */ |
113 | ||
22f2ac51 JW |
114 | static int page_cache_tree_insert(struct address_space *mapping, |
115 | struct page *page, void **shadowp) | |
116 | { | |
117 | struct radix_tree_node *node; | |
118 | void **slot; | |
119 | int error; | |
120 | ||
121 | error = __radix_tree_create(&mapping->page_tree, page->index, 0, | |
122 | &node, &slot); | |
123 | if (error) | |
124 | return error; | |
125 | if (*slot) { | |
126 | void *p; | |
127 | ||
128 | p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); | |
129 | if (!radix_tree_exceptional_entry(p)) | |
130 | return -EEXIST; | |
131 | ||
132 | mapping->nrexceptional--; | |
d01ad197 RZ |
133 | if (shadowp) |
134 | *shadowp = p; | |
22f2ac51 | 135 | } |
14b46879 | 136 | __radix_tree_replace(&mapping->page_tree, node, slot, page, |
c7df8ad2 | 137 | workingset_lookup_update(mapping)); |
22f2ac51 | 138 | mapping->nrpages++; |
22f2ac51 JW |
139 | return 0; |
140 | } | |
141 | ||
91b0abe3 JW |
142 | static void page_cache_tree_delete(struct address_space *mapping, |
143 | struct page *page, void *shadow) | |
144 | { | |
c70b647d KS |
145 | int i, nr; |
146 | ||
147 | /* hugetlb pages are represented by one entry in the radix tree */ | |
148 | nr = PageHuge(page) ? 1 : hpage_nr_pages(page); | |
91b0abe3 | 149 | |
83929372 KS |
150 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
151 | VM_BUG_ON_PAGE(PageTail(page), page); | |
152 | VM_BUG_ON_PAGE(nr != 1 && shadow, page); | |
449dd698 | 153 | |
83929372 | 154 | for (i = 0; i < nr; i++) { |
d3798ae8 JW |
155 | struct radix_tree_node *node; |
156 | void **slot; | |
157 | ||
158 | __radix_tree_lookup(&mapping->page_tree, page->index + i, | |
159 | &node, &slot); | |
160 | ||
dbc446b8 | 161 | VM_BUG_ON_PAGE(!node && nr != 1, page); |
449dd698 | 162 | |
14b46879 JW |
163 | radix_tree_clear_tags(&mapping->page_tree, node, slot); |
164 | __radix_tree_replace(&mapping->page_tree, node, slot, shadow, | |
c7df8ad2 | 165 | workingset_lookup_update(mapping)); |
449dd698 | 166 | } |
d3798ae8 | 167 | |
2300638b JK |
168 | page->mapping = NULL; |
169 | /* Leave page->index set: truncation lookup relies upon it */ | |
170 | ||
d3798ae8 JW |
171 | if (shadow) { |
172 | mapping->nrexceptional += nr; | |
173 | /* | |
174 | * Make sure the nrexceptional update is committed before | |
175 | * the nrpages update so that final truncate racing | |
176 | * with reclaim does not see both counters 0 at the | |
177 | * same time and miss a shadow entry. | |
178 | */ | |
179 | smp_wmb(); | |
180 | } | |
181 | mapping->nrpages -= nr; | |
91b0abe3 JW |
182 | } |
183 | ||
5ecc4d85 JK |
184 | static void unaccount_page_cache_page(struct address_space *mapping, |
185 | struct page *page) | |
1da177e4 | 186 | { |
5ecc4d85 | 187 | int nr; |
1da177e4 | 188 | |
c515e1fd DM |
189 | /* |
190 | * if we're uptodate, flush out into the cleancache, otherwise | |
191 | * invalidate any existing cleancache entries. We can't leave | |
192 | * stale data around in the cleancache once our page is gone | |
193 | */ | |
194 | if (PageUptodate(page) && PageMappedToDisk(page)) | |
195 | cleancache_put_page(page); | |
196 | else | |
3167760f | 197 | cleancache_invalidate_page(mapping, page); |
c515e1fd | 198 | |
83929372 | 199 | VM_BUG_ON_PAGE(PageTail(page), page); |
06b241f3 HD |
200 | VM_BUG_ON_PAGE(page_mapped(page), page); |
201 | if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { | |
202 | int mapcount; | |
203 | ||
204 | pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", | |
205 | current->comm, page_to_pfn(page)); | |
206 | dump_page(page, "still mapped when deleted"); | |
207 | dump_stack(); | |
208 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | |
209 | ||
210 | mapcount = page_mapcount(page); | |
211 | if (mapping_exiting(mapping) && | |
212 | page_count(page) >= mapcount + 2) { | |
213 | /* | |
214 | * All vmas have already been torn down, so it's | |
215 | * a good bet that actually the page is unmapped, | |
216 | * and we'd prefer not to leak it: if we're wrong, | |
217 | * some other bad page check should catch it later. | |
218 | */ | |
219 | page_mapcount_reset(page); | |
6d061f9f | 220 | page_ref_sub(page, mapcount); |
06b241f3 HD |
221 | } |
222 | } | |
223 | ||
4165b9b4 | 224 | /* hugetlb pages do not participate in page cache accounting. */ |
5ecc4d85 JK |
225 | if (PageHuge(page)) |
226 | return; | |
09612fa6 | 227 | |
5ecc4d85 JK |
228 | nr = hpage_nr_pages(page); |
229 | ||
230 | __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); | |
231 | if (PageSwapBacked(page)) { | |
232 | __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); | |
233 | if (PageTransHuge(page)) | |
234 | __dec_node_page_state(page, NR_SHMEM_THPS); | |
235 | } else { | |
236 | VM_BUG_ON_PAGE(PageTransHuge(page), page); | |
800d8c63 | 237 | } |
5ecc4d85 JK |
238 | |
239 | /* | |
240 | * At this point page must be either written or cleaned by | |
241 | * truncate. Dirty page here signals a bug and loss of | |
242 | * unwritten data. | |
243 | * | |
244 | * This fixes dirty accounting after removing the page entirely | |
245 | * but leaves PageDirty set: it has no effect for truncated | |
246 | * page and anyway will be cleared before returning page into | |
247 | * buddy allocator. | |
248 | */ | |
249 | if (WARN_ON_ONCE(PageDirty(page))) | |
250 | account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); | |
251 | } | |
252 | ||
253 | /* | |
254 | * Delete a page from the page cache and free it. Caller has to make | |
255 | * sure the page is locked and that nobody else uses it - or that usage | |
256 | * is safe. The caller must hold the mapping's tree_lock. | |
257 | */ | |
258 | void __delete_from_page_cache(struct page *page, void *shadow) | |
259 | { | |
260 | struct address_space *mapping = page->mapping; | |
261 | ||
262 | trace_mm_filemap_delete_from_page_cache(page); | |
263 | ||
264 | unaccount_page_cache_page(mapping, page); | |
76253fbc | 265 | page_cache_tree_delete(mapping, page, shadow); |
1da177e4 LT |
266 | } |
267 | ||
59c66c5f JK |
268 | static void page_cache_free_page(struct address_space *mapping, |
269 | struct page *page) | |
270 | { | |
271 | void (*freepage)(struct page *); | |
272 | ||
273 | freepage = mapping->a_ops->freepage; | |
274 | if (freepage) | |
275 | freepage(page); | |
276 | ||
277 | if (PageTransHuge(page) && !PageHuge(page)) { | |
278 | page_ref_sub(page, HPAGE_PMD_NR); | |
279 | VM_BUG_ON_PAGE(page_count(page) <= 0, page); | |
280 | } else { | |
281 | put_page(page); | |
282 | } | |
283 | } | |
284 | ||
702cfbf9 MK |
285 | /** |
286 | * delete_from_page_cache - delete page from page cache | |
287 | * @page: the page which the kernel is trying to remove from page cache | |
288 | * | |
289 | * This must be called only on pages that have been verified to be in the page | |
290 | * cache and locked. It will never put the page into the free list, the caller | |
291 | * has a reference on the page. | |
292 | */ | |
293 | void delete_from_page_cache(struct page *page) | |
1da177e4 | 294 | { |
83929372 | 295 | struct address_space *mapping = page_mapping(page); |
c4843a75 | 296 | unsigned long flags; |
1da177e4 | 297 | |
cd7619d6 | 298 | BUG_ON(!PageLocked(page)); |
c4843a75 | 299 | spin_lock_irqsave(&mapping->tree_lock, flags); |
62cccb8c | 300 | __delete_from_page_cache(page, NULL); |
c4843a75 | 301 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
6072d13c | 302 | |
59c66c5f | 303 | page_cache_free_page(mapping, page); |
97cecb5a MK |
304 | } |
305 | EXPORT_SYMBOL(delete_from_page_cache); | |
306 | ||
aa65c29c JK |
307 | /* |
308 | * page_cache_tree_delete_batch - delete several pages from page cache | |
309 | * @mapping: the mapping to which pages belong | |
310 | * @pvec: pagevec with pages to delete | |
311 | * | |
312 | * The function walks over mapping->page_tree and removes pages passed in @pvec | |
313 | * from the radix tree. The function expects @pvec to be sorted by page index. | |
314 | * It tolerates holes in @pvec (radix tree entries at those indices are not | |
315 | * modified). The function expects only THP head pages to be present in the | |
316 | * @pvec and takes care to delete all corresponding tail pages from the radix | |
317 | * tree as well. | |
318 | * | |
319 | * The function expects mapping->tree_lock to be held. | |
320 | */ | |
321 | static void | |
322 | page_cache_tree_delete_batch(struct address_space *mapping, | |
323 | struct pagevec *pvec) | |
324 | { | |
325 | struct radix_tree_iter iter; | |
326 | void **slot; | |
327 | int total_pages = 0; | |
328 | int i = 0, tail_pages = 0; | |
329 | struct page *page; | |
330 | pgoff_t start; | |
331 | ||
332 | start = pvec->pages[0]->index; | |
333 | radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { | |
334 | if (i >= pagevec_count(pvec) && !tail_pages) | |
335 | break; | |
336 | page = radix_tree_deref_slot_protected(slot, | |
337 | &mapping->tree_lock); | |
338 | if (radix_tree_exceptional_entry(page)) | |
339 | continue; | |
340 | if (!tail_pages) { | |
341 | /* | |
342 | * Some page got inserted in our range? Skip it. We | |
343 | * have our pages locked so they are protected from | |
344 | * being removed. | |
345 | */ | |
346 | if (page != pvec->pages[i]) | |
347 | continue; | |
348 | WARN_ON_ONCE(!PageLocked(page)); | |
349 | if (PageTransHuge(page) && !PageHuge(page)) | |
350 | tail_pages = HPAGE_PMD_NR - 1; | |
351 | page->mapping = NULL; | |
352 | /* | |
353 | * Leave page->index set: truncation lookup relies | |
354 | * upon it | |
355 | */ | |
356 | i++; | |
357 | } else { | |
358 | tail_pages--; | |
359 | } | |
360 | radix_tree_clear_tags(&mapping->page_tree, iter.node, slot); | |
361 | __radix_tree_replace(&mapping->page_tree, iter.node, slot, NULL, | |
c7df8ad2 | 362 | workingset_lookup_update(mapping)); |
aa65c29c JK |
363 | total_pages++; |
364 | } | |
365 | mapping->nrpages -= total_pages; | |
366 | } | |
367 | ||
368 | void delete_from_page_cache_batch(struct address_space *mapping, | |
369 | struct pagevec *pvec) | |
370 | { | |
371 | int i; | |
372 | unsigned long flags; | |
373 | ||
374 | if (!pagevec_count(pvec)) | |
375 | return; | |
376 | ||
377 | spin_lock_irqsave(&mapping->tree_lock, flags); | |
378 | for (i = 0; i < pagevec_count(pvec); i++) { | |
379 | trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); | |
380 | ||
381 | unaccount_page_cache_page(mapping, pvec->pages[i]); | |
382 | } | |
383 | page_cache_tree_delete_batch(mapping, pvec); | |
384 | spin_unlock_irqrestore(&mapping->tree_lock, flags); | |
385 | ||
386 | for (i = 0; i < pagevec_count(pvec); i++) | |
387 | page_cache_free_page(mapping, pvec->pages[i]); | |
388 | } | |
389 | ||
d72d9e2a | 390 | int filemap_check_errors(struct address_space *mapping) |
865ffef3 DM |
391 | { |
392 | int ret = 0; | |
393 | /* Check for outstanding write errors */ | |
7fcbbaf1 JA |
394 | if (test_bit(AS_ENOSPC, &mapping->flags) && |
395 | test_and_clear_bit(AS_ENOSPC, &mapping->flags)) | |
865ffef3 | 396 | ret = -ENOSPC; |
7fcbbaf1 JA |
397 | if (test_bit(AS_EIO, &mapping->flags) && |
398 | test_and_clear_bit(AS_EIO, &mapping->flags)) | |
865ffef3 DM |
399 | ret = -EIO; |
400 | return ret; | |
401 | } | |
d72d9e2a | 402 | EXPORT_SYMBOL(filemap_check_errors); |
865ffef3 | 403 | |
76341cab JL |
404 | static int filemap_check_and_keep_errors(struct address_space *mapping) |
405 | { | |
406 | /* Check for outstanding write errors */ | |
407 | if (test_bit(AS_EIO, &mapping->flags)) | |
408 | return -EIO; | |
409 | if (test_bit(AS_ENOSPC, &mapping->flags)) | |
410 | return -ENOSPC; | |
411 | return 0; | |
412 | } | |
413 | ||
1da177e4 | 414 | /** |
485bb99b | 415 | * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range |
67be2dd1 MW |
416 | * @mapping: address space structure to write |
417 | * @start: offset in bytes where the range starts | |
469eb4d0 | 418 | * @end: offset in bytes where the range ends (inclusive) |
67be2dd1 | 419 | * @sync_mode: enable synchronous operation |
1da177e4 | 420 | * |
485bb99b RD |
421 | * Start writeback against all of a mapping's dirty pages that lie |
422 | * within the byte offsets <start, end> inclusive. | |
423 | * | |
1da177e4 | 424 | * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as |
485bb99b | 425 | * opposed to a regular memory cleansing writeback. The difference between |
1da177e4 LT |
426 | * these two operations is that if a dirty page/buffer is encountered, it must |
427 | * be waited upon, and not just skipped over. | |
428 | */ | |
ebcf28e1 AM |
429 | int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
430 | loff_t end, int sync_mode) | |
1da177e4 LT |
431 | { |
432 | int ret; | |
433 | struct writeback_control wbc = { | |
434 | .sync_mode = sync_mode, | |
05fe478d | 435 | .nr_to_write = LONG_MAX, |
111ebb6e OH |
436 | .range_start = start, |
437 | .range_end = end, | |
1da177e4 LT |
438 | }; |
439 | ||
440 | if (!mapping_cap_writeback_dirty(mapping)) | |
441 | return 0; | |
442 | ||
b16b1deb | 443 | wbc_attach_fdatawrite_inode(&wbc, mapping->host); |
1da177e4 | 444 | ret = do_writepages(mapping, &wbc); |
b16b1deb | 445 | wbc_detach_inode(&wbc); |
1da177e4 LT |
446 | return ret; |
447 | } | |
448 | ||
449 | static inline int __filemap_fdatawrite(struct address_space *mapping, | |
450 | int sync_mode) | |
451 | { | |
111ebb6e | 452 | return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); |
1da177e4 LT |
453 | } |
454 | ||
455 | int filemap_fdatawrite(struct address_space *mapping) | |
456 | { | |
457 | return __filemap_fdatawrite(mapping, WB_SYNC_ALL); | |
458 | } | |
459 | EXPORT_SYMBOL(filemap_fdatawrite); | |
460 | ||
f4c0a0fd | 461 | int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
ebcf28e1 | 462 | loff_t end) |
1da177e4 LT |
463 | { |
464 | return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); | |
465 | } | |
f4c0a0fd | 466 | EXPORT_SYMBOL(filemap_fdatawrite_range); |
1da177e4 | 467 | |
485bb99b RD |
468 | /** |
469 | * filemap_flush - mostly a non-blocking flush | |
470 | * @mapping: target address_space | |
471 | * | |
1da177e4 LT |
472 | * This is a mostly non-blocking flush. Not suitable for data-integrity |
473 | * purposes - I/O may not be started against all dirty pages. | |
474 | */ | |
475 | int filemap_flush(struct address_space *mapping) | |
476 | { | |
477 | return __filemap_fdatawrite(mapping, WB_SYNC_NONE); | |
478 | } | |
479 | EXPORT_SYMBOL(filemap_flush); | |
480 | ||
7fc9e472 GR |
481 | /** |
482 | * filemap_range_has_page - check if a page exists in range. | |
483 | * @mapping: address space within which to check | |
484 | * @start_byte: offset in bytes where the range starts | |
485 | * @end_byte: offset in bytes where the range ends (inclusive) | |
486 | * | |
487 | * Find at least one page in the range supplied, usually used to check if | |
488 | * direct writing in this range will trigger a writeback. | |
489 | */ | |
490 | bool filemap_range_has_page(struct address_space *mapping, | |
491 | loff_t start_byte, loff_t end_byte) | |
492 | { | |
493 | pgoff_t index = start_byte >> PAGE_SHIFT; | |
494 | pgoff_t end = end_byte >> PAGE_SHIFT; | |
f7b68046 | 495 | struct page *page; |
7fc9e472 GR |
496 | |
497 | if (end_byte < start_byte) | |
498 | return false; | |
499 | ||
500 | if (mapping->nrpages == 0) | |
501 | return false; | |
502 | ||
f7b68046 | 503 | if (!find_get_pages_range(mapping, &index, end, 1, &page)) |
7fc9e472 | 504 | return false; |
f7b68046 JK |
505 | put_page(page); |
506 | return true; | |
7fc9e472 GR |
507 | } |
508 | EXPORT_SYMBOL(filemap_range_has_page); | |
509 | ||
5e8fcc1a | 510 | static void __filemap_fdatawait_range(struct address_space *mapping, |
aa750fd7 | 511 | loff_t start_byte, loff_t end_byte) |
1da177e4 | 512 | { |
09cbfeaf KS |
513 | pgoff_t index = start_byte >> PAGE_SHIFT; |
514 | pgoff_t end = end_byte >> PAGE_SHIFT; | |
1da177e4 LT |
515 | struct pagevec pvec; |
516 | int nr_pages; | |
1da177e4 | 517 | |
94004ed7 | 518 | if (end_byte < start_byte) |
5e8fcc1a | 519 | return; |
1da177e4 | 520 | |
86679820 | 521 | pagevec_init(&pvec); |
312e9d2f | 522 | while (index <= end) { |
1da177e4 LT |
523 | unsigned i; |
524 | ||
312e9d2f | 525 | nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, |
67fd707f | 526 | end, PAGECACHE_TAG_WRITEBACK); |
312e9d2f JK |
527 | if (!nr_pages) |
528 | break; | |
529 | ||
1da177e4 LT |
530 | for (i = 0; i < nr_pages; i++) { |
531 | struct page *page = pvec.pages[i]; | |
532 | ||
1da177e4 | 533 | wait_on_page_writeback(page); |
5e8fcc1a | 534 | ClearPageError(page); |
1da177e4 LT |
535 | } |
536 | pagevec_release(&pvec); | |
537 | cond_resched(); | |
538 | } | |
aa750fd7 JN |
539 | } |
540 | ||
541 | /** | |
542 | * filemap_fdatawait_range - wait for writeback to complete | |
543 | * @mapping: address space structure to wait for | |
544 | * @start_byte: offset in bytes where the range starts | |
545 | * @end_byte: offset in bytes where the range ends (inclusive) | |
546 | * | |
547 | * Walk the list of under-writeback pages of the given address space | |
548 | * in the given range and wait for all of them. Check error status of | |
549 | * the address space and return it. | |
550 | * | |
551 | * Since the error status of the address space is cleared by this function, | |
552 | * callers are responsible for checking the return value and handling and/or | |
553 | * reporting the error. | |
554 | */ | |
555 | int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, | |
556 | loff_t end_byte) | |
557 | { | |
5e8fcc1a JL |
558 | __filemap_fdatawait_range(mapping, start_byte, end_byte); |
559 | return filemap_check_errors(mapping); | |
1da177e4 | 560 | } |
d3bccb6f JK |
561 | EXPORT_SYMBOL(filemap_fdatawait_range); |
562 | ||
a823e458 JL |
563 | /** |
564 | * file_fdatawait_range - wait for writeback to complete | |
565 | * @file: file pointing to address space structure to wait for | |
566 | * @start_byte: offset in bytes where the range starts | |
567 | * @end_byte: offset in bytes where the range ends (inclusive) | |
568 | * | |
569 | * Walk the list of under-writeback pages of the address space that file | |
570 | * refers to, in the given range and wait for all of them. Check error | |
571 | * status of the address space vs. the file->f_wb_err cursor and return it. | |
572 | * | |
573 | * Since the error status of the file is advanced by this function, | |
574 | * callers are responsible for checking the return value and handling and/or | |
575 | * reporting the error. | |
576 | */ | |
577 | int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) | |
578 | { | |
579 | struct address_space *mapping = file->f_mapping; | |
580 | ||
581 | __filemap_fdatawait_range(mapping, start_byte, end_byte); | |
582 | return file_check_and_advance_wb_err(file); | |
583 | } | |
584 | EXPORT_SYMBOL(file_fdatawait_range); | |
d3bccb6f | 585 | |
aa750fd7 JN |
586 | /** |
587 | * filemap_fdatawait_keep_errors - wait for writeback without clearing errors | |
588 | * @mapping: address space structure to wait for | |
589 | * | |
590 | * Walk the list of under-writeback pages of the given address space | |
591 | * and wait for all of them. Unlike filemap_fdatawait(), this function | |
592 | * does not clear error status of the address space. | |
593 | * | |
594 | * Use this function if callers don't handle errors themselves. Expected | |
595 | * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), | |
596 | * fsfreeze(8) | |
597 | */ | |
76341cab | 598 | int filemap_fdatawait_keep_errors(struct address_space *mapping) |
aa750fd7 | 599 | { |
ffb959bb | 600 | __filemap_fdatawait_range(mapping, 0, LLONG_MAX); |
76341cab | 601 | return filemap_check_and_keep_errors(mapping); |
aa750fd7 | 602 | } |
76341cab | 603 | EXPORT_SYMBOL(filemap_fdatawait_keep_errors); |
aa750fd7 | 604 | |
9326c9b2 | 605 | static bool mapping_needs_writeback(struct address_space *mapping) |
1da177e4 | 606 | { |
9326c9b2 JL |
607 | return (!dax_mapping(mapping) && mapping->nrpages) || |
608 | (dax_mapping(mapping) && mapping->nrexceptional); | |
1da177e4 | 609 | } |
1da177e4 LT |
610 | |
611 | int filemap_write_and_wait(struct address_space *mapping) | |
612 | { | |
28fd1298 | 613 | int err = 0; |
1da177e4 | 614 | |
9326c9b2 | 615 | if (mapping_needs_writeback(mapping)) { |
28fd1298 OH |
616 | err = filemap_fdatawrite(mapping); |
617 | /* | |
618 | * Even if the above returned error, the pages may be | |
619 | * written partially (e.g. -ENOSPC), so we wait for it. | |
620 | * But the -EIO is special case, it may indicate the worst | |
621 | * thing (e.g. bug) happened, so we avoid waiting for it. | |
622 | */ | |
623 | if (err != -EIO) { | |
624 | int err2 = filemap_fdatawait(mapping); | |
625 | if (!err) | |
626 | err = err2; | |
cbeaf951 JL |
627 | } else { |
628 | /* Clear any previously stored errors */ | |
629 | filemap_check_errors(mapping); | |
28fd1298 | 630 | } |
865ffef3 DM |
631 | } else { |
632 | err = filemap_check_errors(mapping); | |
1da177e4 | 633 | } |
28fd1298 | 634 | return err; |
1da177e4 | 635 | } |
28fd1298 | 636 | EXPORT_SYMBOL(filemap_write_and_wait); |
1da177e4 | 637 | |
485bb99b RD |
638 | /** |
639 | * filemap_write_and_wait_range - write out & wait on a file range | |
640 | * @mapping: the address_space for the pages | |
641 | * @lstart: offset in bytes where the range starts | |
642 | * @lend: offset in bytes where the range ends (inclusive) | |
643 | * | |
469eb4d0 AM |
644 | * Write out and wait upon file offsets lstart->lend, inclusive. |
645 | * | |
0e056eb5 | 646 | * Note that @lend is inclusive (describes the last byte to be written) so |
469eb4d0 AM |
647 | * that this function can be used to write to the very end-of-file (end = -1). |
648 | */ | |
1da177e4 LT |
649 | int filemap_write_and_wait_range(struct address_space *mapping, |
650 | loff_t lstart, loff_t lend) | |
651 | { | |
28fd1298 | 652 | int err = 0; |
1da177e4 | 653 | |
9326c9b2 | 654 | if (mapping_needs_writeback(mapping)) { |
28fd1298 OH |
655 | err = __filemap_fdatawrite_range(mapping, lstart, lend, |
656 | WB_SYNC_ALL); | |
657 | /* See comment of filemap_write_and_wait() */ | |
658 | if (err != -EIO) { | |
94004ed7 CH |
659 | int err2 = filemap_fdatawait_range(mapping, |
660 | lstart, lend); | |
28fd1298 OH |
661 | if (!err) |
662 | err = err2; | |
cbeaf951 JL |
663 | } else { |
664 | /* Clear any previously stored errors */ | |
665 | filemap_check_errors(mapping); | |
28fd1298 | 666 | } |
865ffef3 DM |
667 | } else { |
668 | err = filemap_check_errors(mapping); | |
1da177e4 | 669 | } |
28fd1298 | 670 | return err; |
1da177e4 | 671 | } |
f6995585 | 672 | EXPORT_SYMBOL(filemap_write_and_wait_range); |
1da177e4 | 673 | |
5660e13d JL |
674 | void __filemap_set_wb_err(struct address_space *mapping, int err) |
675 | { | |
3acdfd28 | 676 | errseq_t eseq = errseq_set(&mapping->wb_err, err); |
5660e13d JL |
677 | |
678 | trace_filemap_set_wb_err(mapping, eseq); | |
679 | } | |
680 | EXPORT_SYMBOL(__filemap_set_wb_err); | |
681 | ||
682 | /** | |
683 | * file_check_and_advance_wb_err - report wb error (if any) that was previously | |
684 | * and advance wb_err to current one | |
685 | * @file: struct file on which the error is being reported | |
686 | * | |
687 | * When userland calls fsync (or something like nfsd does the equivalent), we | |
688 | * want to report any writeback errors that occurred since the last fsync (or | |
689 | * since the file was opened if there haven't been any). | |
690 | * | |
691 | * Grab the wb_err from the mapping. If it matches what we have in the file, | |
692 | * then just quickly return 0. The file is all caught up. | |
693 | * | |
694 | * If it doesn't match, then take the mapping value, set the "seen" flag in | |
695 | * it and try to swap it into place. If it works, or another task beat us | |
696 | * to it with the new value, then update the f_wb_err and return the error | |
697 | * portion. The error at this point must be reported via proper channels | |
698 | * (a'la fsync, or NFS COMMIT operation, etc.). | |
699 | * | |
700 | * While we handle mapping->wb_err with atomic operations, the f_wb_err | |
701 | * value is protected by the f_lock since we must ensure that it reflects | |
702 | * the latest value swapped in for this file descriptor. | |
703 | */ | |
704 | int file_check_and_advance_wb_err(struct file *file) | |
705 | { | |
706 | int err = 0; | |
707 | errseq_t old = READ_ONCE(file->f_wb_err); | |
708 | struct address_space *mapping = file->f_mapping; | |
709 | ||
710 | /* Locklessly handle the common case where nothing has changed */ | |
711 | if (errseq_check(&mapping->wb_err, old)) { | |
712 | /* Something changed, must use slow path */ | |
713 | spin_lock(&file->f_lock); | |
714 | old = file->f_wb_err; | |
715 | err = errseq_check_and_advance(&mapping->wb_err, | |
716 | &file->f_wb_err); | |
717 | trace_file_check_and_advance_wb_err(file, old); | |
718 | spin_unlock(&file->f_lock); | |
719 | } | |
f4e222c5 JL |
720 | |
721 | /* | |
722 | * We're mostly using this function as a drop in replacement for | |
723 | * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect | |
724 | * that the legacy code would have had on these flags. | |
725 | */ | |
726 | clear_bit(AS_EIO, &mapping->flags); | |
727 | clear_bit(AS_ENOSPC, &mapping->flags); | |
5660e13d JL |
728 | return err; |
729 | } | |
730 | EXPORT_SYMBOL(file_check_and_advance_wb_err); | |
731 | ||
732 | /** | |
733 | * file_write_and_wait_range - write out & wait on a file range | |
734 | * @file: file pointing to address_space with pages | |
735 | * @lstart: offset in bytes where the range starts | |
736 | * @lend: offset in bytes where the range ends (inclusive) | |
737 | * | |
738 | * Write out and wait upon file offsets lstart->lend, inclusive. | |
739 | * | |
740 | * Note that @lend is inclusive (describes the last byte to be written) so | |
741 | * that this function can be used to write to the very end-of-file (end = -1). | |
742 | * | |
743 | * After writing out and waiting on the data, we check and advance the | |
744 | * f_wb_err cursor to the latest value, and return any errors detected there. | |
745 | */ | |
746 | int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) | |
747 | { | |
748 | int err = 0, err2; | |
749 | struct address_space *mapping = file->f_mapping; | |
750 | ||
9326c9b2 | 751 | if (mapping_needs_writeback(mapping)) { |
5660e13d JL |
752 | err = __filemap_fdatawrite_range(mapping, lstart, lend, |
753 | WB_SYNC_ALL); | |
754 | /* See comment of filemap_write_and_wait() */ | |
755 | if (err != -EIO) | |
756 | __filemap_fdatawait_range(mapping, lstart, lend); | |
757 | } | |
758 | err2 = file_check_and_advance_wb_err(file); | |
759 | if (!err) | |
760 | err = err2; | |
761 | return err; | |
762 | } | |
763 | EXPORT_SYMBOL(file_write_and_wait_range); | |
764 | ||
ef6a3c63 MS |
765 | /** |
766 | * replace_page_cache_page - replace a pagecache page with a new one | |
767 | * @old: page to be replaced | |
768 | * @new: page to replace with | |
769 | * @gfp_mask: allocation mode | |
770 | * | |
771 | * This function replaces a page in the pagecache with a new one. On | |
772 | * success it acquires the pagecache reference for the new page and | |
773 | * drops it for the old page. Both the old and new pages must be | |
774 | * locked. This function does not add the new page to the LRU, the | |
775 | * caller must do that. | |
776 | * | |
777 | * The remove + add is atomic. The only way this function can fail is | |
778 | * memory allocation failure. | |
779 | */ | |
780 | int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) | |
781 | { | |
782 | int error; | |
ef6a3c63 | 783 | |
309381fe SL |
784 | VM_BUG_ON_PAGE(!PageLocked(old), old); |
785 | VM_BUG_ON_PAGE(!PageLocked(new), new); | |
786 | VM_BUG_ON_PAGE(new->mapping, new); | |
ef6a3c63 | 787 | |
ef6a3c63 MS |
788 | error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); |
789 | if (!error) { | |
790 | struct address_space *mapping = old->mapping; | |
791 | void (*freepage)(struct page *); | |
c4843a75 | 792 | unsigned long flags; |
ef6a3c63 MS |
793 | |
794 | pgoff_t offset = old->index; | |
795 | freepage = mapping->a_ops->freepage; | |
796 | ||
09cbfeaf | 797 | get_page(new); |
ef6a3c63 MS |
798 | new->mapping = mapping; |
799 | new->index = offset; | |
800 | ||
c4843a75 | 801 | spin_lock_irqsave(&mapping->tree_lock, flags); |
62cccb8c | 802 | __delete_from_page_cache(old, NULL); |
22f2ac51 | 803 | error = page_cache_tree_insert(mapping, new, NULL); |
ef6a3c63 | 804 | BUG_ON(error); |
4165b9b4 MH |
805 | |
806 | /* | |
807 | * hugetlb pages do not participate in page cache accounting. | |
808 | */ | |
809 | if (!PageHuge(new)) | |
11fb9989 | 810 | __inc_node_page_state(new, NR_FILE_PAGES); |
ef6a3c63 | 811 | if (PageSwapBacked(new)) |
11fb9989 | 812 | __inc_node_page_state(new, NR_SHMEM); |
c4843a75 | 813 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
6a93ca8f | 814 | mem_cgroup_migrate(old, new); |
ef6a3c63 MS |
815 | radix_tree_preload_end(); |
816 | if (freepage) | |
817 | freepage(old); | |
09cbfeaf | 818 | put_page(old); |
ef6a3c63 MS |
819 | } |
820 | ||
821 | return error; | |
822 | } | |
823 | EXPORT_SYMBOL_GPL(replace_page_cache_page); | |
824 | ||
a528910e JW |
825 | static int __add_to_page_cache_locked(struct page *page, |
826 | struct address_space *mapping, | |
827 | pgoff_t offset, gfp_t gfp_mask, | |
828 | void **shadowp) | |
1da177e4 | 829 | { |
00501b53 JW |
830 | int huge = PageHuge(page); |
831 | struct mem_cgroup *memcg; | |
e286781d NP |
832 | int error; |
833 | ||
309381fe SL |
834 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
835 | VM_BUG_ON_PAGE(PageSwapBacked(page), page); | |
e286781d | 836 | |
00501b53 JW |
837 | if (!huge) { |
838 | error = mem_cgroup_try_charge(page, current->mm, | |
f627c2f5 | 839 | gfp_mask, &memcg, false); |
00501b53 JW |
840 | if (error) |
841 | return error; | |
842 | } | |
1da177e4 | 843 | |
5e4c0d97 | 844 | error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); |
66a0c8ee | 845 | if (error) { |
00501b53 | 846 | if (!huge) |
f627c2f5 | 847 | mem_cgroup_cancel_charge(page, memcg, false); |
66a0c8ee KS |
848 | return error; |
849 | } | |
850 | ||
09cbfeaf | 851 | get_page(page); |
66a0c8ee KS |
852 | page->mapping = mapping; |
853 | page->index = offset; | |
854 | ||
855 | spin_lock_irq(&mapping->tree_lock); | |
a528910e | 856 | error = page_cache_tree_insert(mapping, page, shadowp); |
66a0c8ee KS |
857 | radix_tree_preload_end(); |
858 | if (unlikely(error)) | |
859 | goto err_insert; | |
4165b9b4 MH |
860 | |
861 | /* hugetlb pages do not participate in page cache accounting. */ | |
862 | if (!huge) | |
11fb9989 | 863 | __inc_node_page_state(page, NR_FILE_PAGES); |
66a0c8ee | 864 | spin_unlock_irq(&mapping->tree_lock); |
00501b53 | 865 | if (!huge) |
f627c2f5 | 866 | mem_cgroup_commit_charge(page, memcg, false, false); |
66a0c8ee KS |
867 | trace_mm_filemap_add_to_page_cache(page); |
868 | return 0; | |
869 | err_insert: | |
870 | page->mapping = NULL; | |
871 | /* Leave page->index set: truncation relies upon it */ | |
872 | spin_unlock_irq(&mapping->tree_lock); | |
00501b53 | 873 | if (!huge) |
f627c2f5 | 874 | mem_cgroup_cancel_charge(page, memcg, false); |
09cbfeaf | 875 | put_page(page); |
1da177e4 LT |
876 | return error; |
877 | } | |
a528910e JW |
878 | |
879 | /** | |
880 | * add_to_page_cache_locked - add a locked page to the pagecache | |
881 | * @page: page to add | |
882 | * @mapping: the page's address_space | |
883 | * @offset: page index | |
884 | * @gfp_mask: page allocation mode | |
885 | * | |
886 | * This function is used to add a page to the pagecache. It must be locked. | |
887 | * This function does not add the page to the LRU. The caller must do that. | |
888 | */ | |
889 | int add_to_page_cache_locked(struct page *page, struct address_space *mapping, | |
890 | pgoff_t offset, gfp_t gfp_mask) | |
891 | { | |
892 | return __add_to_page_cache_locked(page, mapping, offset, | |
893 | gfp_mask, NULL); | |
894 | } | |
e286781d | 895 | EXPORT_SYMBOL(add_to_page_cache_locked); |
1da177e4 LT |
896 | |
897 | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, | |
6daa0e28 | 898 | pgoff_t offset, gfp_t gfp_mask) |
1da177e4 | 899 | { |
a528910e | 900 | void *shadow = NULL; |
4f98a2fe RR |
901 | int ret; |
902 | ||
48c935ad | 903 | __SetPageLocked(page); |
a528910e JW |
904 | ret = __add_to_page_cache_locked(page, mapping, offset, |
905 | gfp_mask, &shadow); | |
906 | if (unlikely(ret)) | |
48c935ad | 907 | __ClearPageLocked(page); |
a528910e JW |
908 | else { |
909 | /* | |
910 | * The page might have been evicted from cache only | |
911 | * recently, in which case it should be activated like | |
912 | * any other repeatedly accessed page. | |
f0281a00 RR |
913 | * The exception is pages getting rewritten; evicting other |
914 | * data from the working set, only to cache data that will | |
915 | * get overwritten with something else, is a waste of memory. | |
a528910e | 916 | */ |
f0281a00 RR |
917 | if (!(gfp_mask & __GFP_WRITE) && |
918 | shadow && workingset_refault(shadow)) { | |
a528910e JW |
919 | SetPageActive(page); |
920 | workingset_activation(page); | |
921 | } else | |
922 | ClearPageActive(page); | |
923 | lru_cache_add(page); | |
924 | } | |
1da177e4 LT |
925 | return ret; |
926 | } | |
18bc0bbd | 927 | EXPORT_SYMBOL_GPL(add_to_page_cache_lru); |
1da177e4 | 928 | |
44110fe3 | 929 | #ifdef CONFIG_NUMA |
2ae88149 | 930 | struct page *__page_cache_alloc(gfp_t gfp) |
44110fe3 | 931 | { |
c0ff7453 MX |
932 | int n; |
933 | struct page *page; | |
934 | ||
44110fe3 | 935 | if (cpuset_do_page_mem_spread()) { |
cc9a6c87 MG |
936 | unsigned int cpuset_mems_cookie; |
937 | do { | |
d26914d1 | 938 | cpuset_mems_cookie = read_mems_allowed_begin(); |
cc9a6c87 | 939 | n = cpuset_mem_spread_node(); |
96db800f | 940 | page = __alloc_pages_node(n, gfp, 0); |
d26914d1 | 941 | } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); |
cc9a6c87 | 942 | |
c0ff7453 | 943 | return page; |
44110fe3 | 944 | } |
2ae88149 | 945 | return alloc_pages(gfp, 0); |
44110fe3 | 946 | } |
2ae88149 | 947 | EXPORT_SYMBOL(__page_cache_alloc); |
44110fe3 PJ |
948 | #endif |
949 | ||
1da177e4 LT |
950 | /* |
951 | * In order to wait for pages to become available there must be | |
952 | * waitqueues associated with pages. By using a hash table of | |
953 | * waitqueues where the bucket discipline is to maintain all | |
954 | * waiters on the same queue and wake all when any of the pages | |
955 | * become available, and for the woken contexts to check to be | |
956 | * sure the appropriate page became available, this saves space | |
957 | * at a cost of "thundering herd" phenomena during rare hash | |
958 | * collisions. | |
959 | */ | |
62906027 NP |
960 | #define PAGE_WAIT_TABLE_BITS 8 |
961 | #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) | |
962 | static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; | |
963 | ||
964 | static wait_queue_head_t *page_waitqueue(struct page *page) | |
1da177e4 | 965 | { |
62906027 | 966 | return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; |
1da177e4 | 967 | } |
1da177e4 | 968 | |
62906027 | 969 | void __init pagecache_init(void) |
1da177e4 | 970 | { |
62906027 | 971 | int i; |
1da177e4 | 972 | |
62906027 NP |
973 | for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) |
974 | init_waitqueue_head(&page_wait_table[i]); | |
975 | ||
976 | page_writeback_init(); | |
1da177e4 | 977 | } |
1da177e4 | 978 | |
3510ca20 | 979 | /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ |
62906027 NP |
980 | struct wait_page_key { |
981 | struct page *page; | |
982 | int bit_nr; | |
983 | int page_match; | |
984 | }; | |
985 | ||
986 | struct wait_page_queue { | |
987 | struct page *page; | |
988 | int bit_nr; | |
ac6424b9 | 989 | wait_queue_entry_t wait; |
62906027 NP |
990 | }; |
991 | ||
ac6424b9 | 992 | static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) |
f62e00cc | 993 | { |
62906027 NP |
994 | struct wait_page_key *key = arg; |
995 | struct wait_page_queue *wait_page | |
996 | = container_of(wait, struct wait_page_queue, wait); | |
997 | ||
998 | if (wait_page->page != key->page) | |
999 | return 0; | |
1000 | key->page_match = 1; | |
f62e00cc | 1001 | |
62906027 NP |
1002 | if (wait_page->bit_nr != key->bit_nr) |
1003 | return 0; | |
3510ca20 LT |
1004 | |
1005 | /* Stop walking if it's locked */ | |
62906027 | 1006 | if (test_bit(key->bit_nr, &key->page->flags)) |
3510ca20 | 1007 | return -1; |
f62e00cc | 1008 | |
62906027 | 1009 | return autoremove_wake_function(wait, mode, sync, key); |
f62e00cc KM |
1010 | } |
1011 | ||
74d81bfa | 1012 | static void wake_up_page_bit(struct page *page, int bit_nr) |
cbbce822 | 1013 | { |
62906027 NP |
1014 | wait_queue_head_t *q = page_waitqueue(page); |
1015 | struct wait_page_key key; | |
1016 | unsigned long flags; | |
11a19c7b | 1017 | wait_queue_entry_t bookmark; |
cbbce822 | 1018 | |
62906027 NP |
1019 | key.page = page; |
1020 | key.bit_nr = bit_nr; | |
1021 | key.page_match = 0; | |
1022 | ||
11a19c7b TC |
1023 | bookmark.flags = 0; |
1024 | bookmark.private = NULL; | |
1025 | bookmark.func = NULL; | |
1026 | INIT_LIST_HEAD(&bookmark.entry); | |
1027 | ||
62906027 | 1028 | spin_lock_irqsave(&q->lock, flags); |
11a19c7b TC |
1029 | __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); |
1030 | ||
1031 | while (bookmark.flags & WQ_FLAG_BOOKMARK) { | |
1032 | /* | |
1033 | * Take a breather from holding the lock, | |
1034 | * allow pages that finish wake up asynchronously | |
1035 | * to acquire the lock and remove themselves | |
1036 | * from wait queue | |
1037 | */ | |
1038 | spin_unlock_irqrestore(&q->lock, flags); | |
1039 | cpu_relax(); | |
1040 | spin_lock_irqsave(&q->lock, flags); | |
1041 | __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); | |
1042 | } | |
1043 | ||
62906027 NP |
1044 | /* |
1045 | * It is possible for other pages to have collided on the waitqueue | |
1046 | * hash, so in that case check for a page match. That prevents a long- | |
1047 | * term waiter | |
1048 | * | |
1049 | * It is still possible to miss a case here, when we woke page waiters | |
1050 | * and removed them from the waitqueue, but there are still other | |
1051 | * page waiters. | |
1052 | */ | |
1053 | if (!waitqueue_active(q) || !key.page_match) { | |
1054 | ClearPageWaiters(page); | |
1055 | /* | |
1056 | * It's possible to miss clearing Waiters here, when we woke | |
1057 | * our page waiters, but the hashed waitqueue has waiters for | |
1058 | * other pages on it. | |
1059 | * | |
1060 | * That's okay, it's a rare case. The next waker will clear it. | |
1061 | */ | |
1062 | } | |
1063 | spin_unlock_irqrestore(&q->lock, flags); | |
1064 | } | |
74d81bfa NP |
1065 | |
1066 | static void wake_up_page(struct page *page, int bit) | |
1067 | { | |
1068 | if (!PageWaiters(page)) | |
1069 | return; | |
1070 | wake_up_page_bit(page, bit); | |
1071 | } | |
62906027 NP |
1072 | |
1073 | static inline int wait_on_page_bit_common(wait_queue_head_t *q, | |
1074 | struct page *page, int bit_nr, int state, bool lock) | |
1075 | { | |
1076 | struct wait_page_queue wait_page; | |
ac6424b9 | 1077 | wait_queue_entry_t *wait = &wait_page.wait; |
62906027 NP |
1078 | int ret = 0; |
1079 | ||
1080 | init_wait(wait); | |
3510ca20 | 1081 | wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0; |
62906027 NP |
1082 | wait->func = wake_page_function; |
1083 | wait_page.page = page; | |
1084 | wait_page.bit_nr = bit_nr; | |
1085 | ||
1086 | for (;;) { | |
1087 | spin_lock_irq(&q->lock); | |
1088 | ||
2055da97 | 1089 | if (likely(list_empty(&wait->entry))) { |
3510ca20 | 1090 | __add_wait_queue_entry_tail(q, wait); |
62906027 NP |
1091 | SetPageWaiters(page); |
1092 | } | |
1093 | ||
1094 | set_current_state(state); | |
1095 | ||
1096 | spin_unlock_irq(&q->lock); | |
1097 | ||
1098 | if (likely(test_bit(bit_nr, &page->flags))) { | |
1099 | io_schedule(); | |
62906027 NP |
1100 | } |
1101 | ||
1102 | if (lock) { | |
1103 | if (!test_and_set_bit_lock(bit_nr, &page->flags)) | |
1104 | break; | |
1105 | } else { | |
1106 | if (!test_bit(bit_nr, &page->flags)) | |
1107 | break; | |
1108 | } | |
a8b169af LT |
1109 | |
1110 | if (unlikely(signal_pending_state(state, current))) { | |
1111 | ret = -EINTR; | |
1112 | break; | |
1113 | } | |
62906027 NP |
1114 | } |
1115 | ||
1116 | finish_wait(q, wait); | |
1117 | ||
1118 | /* | |
1119 | * A signal could leave PageWaiters set. Clearing it here if | |
1120 | * !waitqueue_active would be possible (by open-coding finish_wait), | |
1121 | * but still fail to catch it in the case of wait hash collision. We | |
1122 | * already can fail to clear wait hash collision cases, so don't | |
1123 | * bother with signals either. | |
1124 | */ | |
1125 | ||
1126 | return ret; | |
1127 | } | |
1128 | ||
1129 | void wait_on_page_bit(struct page *page, int bit_nr) | |
1130 | { | |
1131 | wait_queue_head_t *q = page_waitqueue(page); | |
1132 | wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false); | |
1133 | } | |
1134 | EXPORT_SYMBOL(wait_on_page_bit); | |
1135 | ||
1136 | int wait_on_page_bit_killable(struct page *page, int bit_nr) | |
1137 | { | |
1138 | wait_queue_head_t *q = page_waitqueue(page); | |
1139 | return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false); | |
cbbce822 | 1140 | } |
4343d008 | 1141 | EXPORT_SYMBOL(wait_on_page_bit_killable); |
cbbce822 | 1142 | |
385e1ca5 DH |
1143 | /** |
1144 | * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue | |
697f619f RD |
1145 | * @page: Page defining the wait queue of interest |
1146 | * @waiter: Waiter to add to the queue | |
385e1ca5 DH |
1147 | * |
1148 | * Add an arbitrary @waiter to the wait queue for the nominated @page. | |
1149 | */ | |
ac6424b9 | 1150 | void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) |
385e1ca5 DH |
1151 | { |
1152 | wait_queue_head_t *q = page_waitqueue(page); | |
1153 | unsigned long flags; | |
1154 | ||
1155 | spin_lock_irqsave(&q->lock, flags); | |
9c3a815f | 1156 | __add_wait_queue_entry_tail(q, waiter); |
62906027 | 1157 | SetPageWaiters(page); |
385e1ca5 DH |
1158 | spin_unlock_irqrestore(&q->lock, flags); |
1159 | } | |
1160 | EXPORT_SYMBOL_GPL(add_page_wait_queue); | |
1161 | ||
b91e1302 LT |
1162 | #ifndef clear_bit_unlock_is_negative_byte |
1163 | ||
1164 | /* | |
1165 | * PG_waiters is the high bit in the same byte as PG_lock. | |
1166 | * | |
1167 | * On x86 (and on many other architectures), we can clear PG_lock and | |
1168 | * test the sign bit at the same time. But if the architecture does | |
1169 | * not support that special operation, we just do this all by hand | |
1170 | * instead. | |
1171 | * | |
1172 | * The read of PG_waiters has to be after (or concurrently with) PG_locked | |
1173 | * being cleared, but a memory barrier should be unneccssary since it is | |
1174 | * in the same byte as PG_locked. | |
1175 | */ | |
1176 | static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) | |
1177 | { | |
1178 | clear_bit_unlock(nr, mem); | |
1179 | /* smp_mb__after_atomic(); */ | |
98473f9f | 1180 | return test_bit(PG_waiters, mem); |
b91e1302 LT |
1181 | } |
1182 | ||
1183 | #endif | |
1184 | ||
1da177e4 | 1185 | /** |
485bb99b | 1186 | * unlock_page - unlock a locked page |
1da177e4 LT |
1187 | * @page: the page |
1188 | * | |
1189 | * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). | |
1190 | * Also wakes sleepers in wait_on_page_writeback() because the wakeup | |
da3dae54 | 1191 | * mechanism between PageLocked pages and PageWriteback pages is shared. |
1da177e4 LT |
1192 | * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. |
1193 | * | |
b91e1302 LT |
1194 | * Note that this depends on PG_waiters being the sign bit in the byte |
1195 | * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to | |
1196 | * clear the PG_locked bit and test PG_waiters at the same time fairly | |
1197 | * portably (architectures that do LL/SC can test any bit, while x86 can | |
1198 | * test the sign bit). | |
1da177e4 | 1199 | */ |
920c7a5d | 1200 | void unlock_page(struct page *page) |
1da177e4 | 1201 | { |
b91e1302 | 1202 | BUILD_BUG_ON(PG_waiters != 7); |
48c935ad | 1203 | page = compound_head(page); |
309381fe | 1204 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
b91e1302 LT |
1205 | if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) |
1206 | wake_up_page_bit(page, PG_locked); | |
1da177e4 LT |
1207 | } |
1208 | EXPORT_SYMBOL(unlock_page); | |
1209 | ||
485bb99b RD |
1210 | /** |
1211 | * end_page_writeback - end writeback against a page | |
1212 | * @page: the page | |
1da177e4 LT |
1213 | */ |
1214 | void end_page_writeback(struct page *page) | |
1215 | { | |
888cf2db MG |
1216 | /* |
1217 | * TestClearPageReclaim could be used here but it is an atomic | |
1218 | * operation and overkill in this particular case. Failing to | |
1219 | * shuffle a page marked for immediate reclaim is too mild to | |
1220 | * justify taking an atomic operation penalty at the end of | |
1221 | * ever page writeback. | |
1222 | */ | |
1223 | if (PageReclaim(page)) { | |
1224 | ClearPageReclaim(page); | |
ac6aadb2 | 1225 | rotate_reclaimable_page(page); |
888cf2db | 1226 | } |
ac6aadb2 MS |
1227 | |
1228 | if (!test_clear_page_writeback(page)) | |
1229 | BUG(); | |
1230 | ||
4e857c58 | 1231 | smp_mb__after_atomic(); |
1da177e4 LT |
1232 | wake_up_page(page, PG_writeback); |
1233 | } | |
1234 | EXPORT_SYMBOL(end_page_writeback); | |
1235 | ||
57d99845 MW |
1236 | /* |
1237 | * After completing I/O on a page, call this routine to update the page | |
1238 | * flags appropriately | |
1239 | */ | |
c11f0c0b | 1240 | void page_endio(struct page *page, bool is_write, int err) |
57d99845 | 1241 | { |
c11f0c0b | 1242 | if (!is_write) { |
57d99845 MW |
1243 | if (!err) { |
1244 | SetPageUptodate(page); | |
1245 | } else { | |
1246 | ClearPageUptodate(page); | |
1247 | SetPageError(page); | |
1248 | } | |
1249 | unlock_page(page); | |
abf54548 | 1250 | } else { |
57d99845 | 1251 | if (err) { |
dd8416c4 MK |
1252 | struct address_space *mapping; |
1253 | ||
57d99845 | 1254 | SetPageError(page); |
dd8416c4 MK |
1255 | mapping = page_mapping(page); |
1256 | if (mapping) | |
1257 | mapping_set_error(mapping, err); | |
57d99845 MW |
1258 | } |
1259 | end_page_writeback(page); | |
1260 | } | |
1261 | } | |
1262 | EXPORT_SYMBOL_GPL(page_endio); | |
1263 | ||
485bb99b RD |
1264 | /** |
1265 | * __lock_page - get a lock on the page, assuming we need to sleep to get it | |
87066755 | 1266 | * @__page: the page to lock |
1da177e4 | 1267 | */ |
62906027 | 1268 | void __lock_page(struct page *__page) |
1da177e4 | 1269 | { |
62906027 NP |
1270 | struct page *page = compound_head(__page); |
1271 | wait_queue_head_t *q = page_waitqueue(page); | |
1272 | wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true); | |
1da177e4 LT |
1273 | } |
1274 | EXPORT_SYMBOL(__lock_page); | |
1275 | ||
62906027 | 1276 | int __lock_page_killable(struct page *__page) |
2687a356 | 1277 | { |
62906027 NP |
1278 | struct page *page = compound_head(__page); |
1279 | wait_queue_head_t *q = page_waitqueue(page); | |
1280 | return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true); | |
2687a356 | 1281 | } |
18bc0bbd | 1282 | EXPORT_SYMBOL_GPL(__lock_page_killable); |
2687a356 | 1283 | |
9a95f3cf PC |
1284 | /* |
1285 | * Return values: | |
1286 | * 1 - page is locked; mmap_sem is still held. | |
1287 | * 0 - page is not locked. | |
1288 | * mmap_sem has been released (up_read()), unless flags had both | |
1289 | * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in | |
1290 | * which case mmap_sem is still held. | |
1291 | * | |
1292 | * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 | |
1293 | * with the page locked and the mmap_sem unperturbed. | |
1294 | */ | |
d065bd81 ML |
1295 | int __lock_page_or_retry(struct page *page, struct mm_struct *mm, |
1296 | unsigned int flags) | |
1297 | { | |
37b23e05 KM |
1298 | if (flags & FAULT_FLAG_ALLOW_RETRY) { |
1299 | /* | |
1300 | * CAUTION! In this case, mmap_sem is not released | |
1301 | * even though return 0. | |
1302 | */ | |
1303 | if (flags & FAULT_FLAG_RETRY_NOWAIT) | |
1304 | return 0; | |
1305 | ||
1306 | up_read(&mm->mmap_sem); | |
1307 | if (flags & FAULT_FLAG_KILLABLE) | |
1308 | wait_on_page_locked_killable(page); | |
1309 | else | |
318b275f | 1310 | wait_on_page_locked(page); |
d065bd81 | 1311 | return 0; |
37b23e05 KM |
1312 | } else { |
1313 | if (flags & FAULT_FLAG_KILLABLE) { | |
1314 | int ret; | |
1315 | ||
1316 | ret = __lock_page_killable(page); | |
1317 | if (ret) { | |
1318 | up_read(&mm->mmap_sem); | |
1319 | return 0; | |
1320 | } | |
1321 | } else | |
1322 | __lock_page(page); | |
1323 | return 1; | |
d065bd81 ML |
1324 | } |
1325 | } | |
1326 | ||
e7b563bb JW |
1327 | /** |
1328 | * page_cache_next_hole - find the next hole (not-present entry) | |
1329 | * @mapping: mapping | |
1330 | * @index: index | |
1331 | * @max_scan: maximum range to search | |
1332 | * | |
1333 | * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the | |
1334 | * lowest indexed hole. | |
1335 | * | |
1336 | * Returns: the index of the hole if found, otherwise returns an index | |
1337 | * outside of the set specified (in which case 'return - index >= | |
1338 | * max_scan' will be true). In rare cases of index wrap-around, 0 will | |
1339 | * be returned. | |
1340 | * | |
1341 | * page_cache_next_hole may be called under rcu_read_lock. However, | |
1342 | * like radix_tree_gang_lookup, this will not atomically search a | |
1343 | * snapshot of the tree at a single point in time. For example, if a | |
1344 | * hole is created at index 5, then subsequently a hole is created at | |
1345 | * index 10, page_cache_next_hole covering both indexes may return 10 | |
1346 | * if called under rcu_read_lock. | |
1347 | */ | |
1348 | pgoff_t page_cache_next_hole(struct address_space *mapping, | |
1349 | pgoff_t index, unsigned long max_scan) | |
1350 | { | |
1351 | unsigned long i; | |
1352 | ||
1353 | for (i = 0; i < max_scan; i++) { | |
0cd6144a JW |
1354 | struct page *page; |
1355 | ||
1356 | page = radix_tree_lookup(&mapping->page_tree, index); | |
1357 | if (!page || radix_tree_exceptional_entry(page)) | |
e7b563bb JW |
1358 | break; |
1359 | index++; | |
1360 | if (index == 0) | |
1361 | break; | |
1362 | } | |
1363 | ||
1364 | return index; | |
1365 | } | |
1366 | EXPORT_SYMBOL(page_cache_next_hole); | |
1367 | ||
1368 | /** | |
1369 | * page_cache_prev_hole - find the prev hole (not-present entry) | |
1370 | * @mapping: mapping | |
1371 | * @index: index | |
1372 | * @max_scan: maximum range to search | |
1373 | * | |
1374 | * Search backwards in the range [max(index-max_scan+1, 0), index] for | |
1375 | * the first hole. | |
1376 | * | |
1377 | * Returns: the index of the hole if found, otherwise returns an index | |
1378 | * outside of the set specified (in which case 'index - return >= | |
1379 | * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX | |
1380 | * will be returned. | |
1381 | * | |
1382 | * page_cache_prev_hole may be called under rcu_read_lock. However, | |
1383 | * like radix_tree_gang_lookup, this will not atomically search a | |
1384 | * snapshot of the tree at a single point in time. For example, if a | |
1385 | * hole is created at index 10, then subsequently a hole is created at | |
1386 | * index 5, page_cache_prev_hole covering both indexes may return 5 if | |
1387 | * called under rcu_read_lock. | |
1388 | */ | |
1389 | pgoff_t page_cache_prev_hole(struct address_space *mapping, | |
1390 | pgoff_t index, unsigned long max_scan) | |
1391 | { | |
1392 | unsigned long i; | |
1393 | ||
1394 | for (i = 0; i < max_scan; i++) { | |
0cd6144a JW |
1395 | struct page *page; |
1396 | ||
1397 | page = radix_tree_lookup(&mapping->page_tree, index); | |
1398 | if (!page || radix_tree_exceptional_entry(page)) | |
e7b563bb JW |
1399 | break; |
1400 | index--; | |
1401 | if (index == ULONG_MAX) | |
1402 | break; | |
1403 | } | |
1404 | ||
1405 | return index; | |
1406 | } | |
1407 | EXPORT_SYMBOL(page_cache_prev_hole); | |
1408 | ||
485bb99b | 1409 | /** |
0cd6144a | 1410 | * find_get_entry - find and get a page cache entry |
485bb99b | 1411 | * @mapping: the address_space to search |
0cd6144a JW |
1412 | * @offset: the page cache index |
1413 | * | |
1414 | * Looks up the page cache slot at @mapping & @offset. If there is a | |
1415 | * page cache page, it is returned with an increased refcount. | |
485bb99b | 1416 | * |
139b6a6f JW |
1417 | * If the slot holds a shadow entry of a previously evicted page, or a |
1418 | * swap entry from shmem/tmpfs, it is returned. | |
0cd6144a JW |
1419 | * |
1420 | * Otherwise, %NULL is returned. | |
1da177e4 | 1421 | */ |
0cd6144a | 1422 | struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) |
1da177e4 | 1423 | { |
a60637c8 | 1424 | void **pagep; |
83929372 | 1425 | struct page *head, *page; |
1da177e4 | 1426 | |
a60637c8 NP |
1427 | rcu_read_lock(); |
1428 | repeat: | |
1429 | page = NULL; | |
1430 | pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); | |
1431 | if (pagep) { | |
1432 | page = radix_tree_deref_slot(pagep); | |
27d20fdd NP |
1433 | if (unlikely(!page)) |
1434 | goto out; | |
a2c16d6c | 1435 | if (radix_tree_exception(page)) { |
8079b1c8 HD |
1436 | if (radix_tree_deref_retry(page)) |
1437 | goto repeat; | |
1438 | /* | |
139b6a6f JW |
1439 | * A shadow entry of a recently evicted page, |
1440 | * or a swap entry from shmem/tmpfs. Return | |
1441 | * it without attempting to raise page count. | |
8079b1c8 HD |
1442 | */ |
1443 | goto out; | |
a2c16d6c | 1444 | } |
83929372 KS |
1445 | |
1446 | head = compound_head(page); | |
1447 | if (!page_cache_get_speculative(head)) | |
1448 | goto repeat; | |
1449 | ||
1450 | /* The page was split under us? */ | |
1451 | if (compound_head(page) != head) { | |
1452 | put_page(head); | |
a60637c8 | 1453 | goto repeat; |
83929372 | 1454 | } |
a60637c8 NP |
1455 | |
1456 | /* | |
1457 | * Has the page moved? | |
1458 | * This is part of the lockless pagecache protocol. See | |
1459 | * include/linux/pagemap.h for details. | |
1460 | */ | |
1461 | if (unlikely(page != *pagep)) { | |
83929372 | 1462 | put_page(head); |
a60637c8 NP |
1463 | goto repeat; |
1464 | } | |
1465 | } | |
27d20fdd | 1466 | out: |
a60637c8 NP |
1467 | rcu_read_unlock(); |
1468 | ||
1da177e4 LT |
1469 | return page; |
1470 | } | |
0cd6144a | 1471 | EXPORT_SYMBOL(find_get_entry); |
1da177e4 | 1472 | |
0cd6144a JW |
1473 | /** |
1474 | * find_lock_entry - locate, pin and lock a page cache entry | |
1475 | * @mapping: the address_space to search | |
1476 | * @offset: the page cache index | |
1477 | * | |
1478 | * Looks up the page cache slot at @mapping & @offset. If there is a | |
1479 | * page cache page, it is returned locked and with an increased | |
1480 | * refcount. | |
1481 | * | |
139b6a6f JW |
1482 | * If the slot holds a shadow entry of a previously evicted page, or a |
1483 | * swap entry from shmem/tmpfs, it is returned. | |
0cd6144a JW |
1484 | * |
1485 | * Otherwise, %NULL is returned. | |
1486 | * | |
1487 | * find_lock_entry() may sleep. | |
1488 | */ | |
1489 | struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) | |
1da177e4 LT |
1490 | { |
1491 | struct page *page; | |
1492 | ||
1da177e4 | 1493 | repeat: |
0cd6144a | 1494 | page = find_get_entry(mapping, offset); |
a2c16d6c | 1495 | if (page && !radix_tree_exception(page)) { |
a60637c8 NP |
1496 | lock_page(page); |
1497 | /* Has the page been truncated? */ | |
83929372 | 1498 | if (unlikely(page_mapping(page) != mapping)) { |
a60637c8 | 1499 | unlock_page(page); |
09cbfeaf | 1500 | put_page(page); |
a60637c8 | 1501 | goto repeat; |
1da177e4 | 1502 | } |
83929372 | 1503 | VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); |
1da177e4 | 1504 | } |
1da177e4 LT |
1505 | return page; |
1506 | } | |
0cd6144a JW |
1507 | EXPORT_SYMBOL(find_lock_entry); |
1508 | ||
1509 | /** | |
2457aec6 | 1510 | * pagecache_get_page - find and get a page reference |
0cd6144a JW |
1511 | * @mapping: the address_space to search |
1512 | * @offset: the page index | |
2457aec6 | 1513 | * @fgp_flags: PCG flags |
45f87de5 | 1514 | * @gfp_mask: gfp mask to use for the page cache data page allocation |
0cd6144a | 1515 | * |
2457aec6 | 1516 | * Looks up the page cache slot at @mapping & @offset. |
1da177e4 | 1517 | * |
75325189 | 1518 | * PCG flags modify how the page is returned. |
0cd6144a | 1519 | * |
0e056eb5 MCC |
1520 | * @fgp_flags can be: |
1521 | * | |
1522 | * - FGP_ACCESSED: the page will be marked accessed | |
1523 | * - FGP_LOCK: Page is return locked | |
1524 | * - FGP_CREAT: If page is not present then a new page is allocated using | |
1525 | * @gfp_mask and added to the page cache and the VM's LRU | |
1526 | * list. The page is returned locked and with an increased | |
1527 | * refcount. Otherwise, NULL is returned. | |
1da177e4 | 1528 | * |
2457aec6 MG |
1529 | * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even |
1530 | * if the GFP flags specified for FGP_CREAT are atomic. | |
1da177e4 | 1531 | * |
2457aec6 | 1532 | * If there is a page cache page, it is returned with an increased refcount. |
1da177e4 | 1533 | */ |
2457aec6 | 1534 | struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, |
45f87de5 | 1535 | int fgp_flags, gfp_t gfp_mask) |
1da177e4 | 1536 | { |
eb2be189 | 1537 | struct page *page; |
2457aec6 | 1538 | |
1da177e4 | 1539 | repeat: |
2457aec6 MG |
1540 | page = find_get_entry(mapping, offset); |
1541 | if (radix_tree_exceptional_entry(page)) | |
1542 | page = NULL; | |
1543 | if (!page) | |
1544 | goto no_page; | |
1545 | ||
1546 | if (fgp_flags & FGP_LOCK) { | |
1547 | if (fgp_flags & FGP_NOWAIT) { | |
1548 | if (!trylock_page(page)) { | |
09cbfeaf | 1549 | put_page(page); |
2457aec6 MG |
1550 | return NULL; |
1551 | } | |
1552 | } else { | |
1553 | lock_page(page); | |
1554 | } | |
1555 | ||
1556 | /* Has the page been truncated? */ | |
1557 | if (unlikely(page->mapping != mapping)) { | |
1558 | unlock_page(page); | |
09cbfeaf | 1559 | put_page(page); |
2457aec6 MG |
1560 | goto repeat; |
1561 | } | |
1562 | VM_BUG_ON_PAGE(page->index != offset, page); | |
1563 | } | |
1564 | ||
1565 | if (page && (fgp_flags & FGP_ACCESSED)) | |
1566 | mark_page_accessed(page); | |
1567 | ||
1568 | no_page: | |
1569 | if (!page && (fgp_flags & FGP_CREAT)) { | |
1570 | int err; | |
1571 | if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) | |
45f87de5 MH |
1572 | gfp_mask |= __GFP_WRITE; |
1573 | if (fgp_flags & FGP_NOFS) | |
1574 | gfp_mask &= ~__GFP_FS; | |
2457aec6 | 1575 | |
45f87de5 | 1576 | page = __page_cache_alloc(gfp_mask); |
eb2be189 NP |
1577 | if (!page) |
1578 | return NULL; | |
2457aec6 MG |
1579 | |
1580 | if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) | |
1581 | fgp_flags |= FGP_LOCK; | |
1582 | ||
eb39d618 | 1583 | /* Init accessed so avoid atomic mark_page_accessed later */ |
2457aec6 | 1584 | if (fgp_flags & FGP_ACCESSED) |
eb39d618 | 1585 | __SetPageReferenced(page); |
2457aec6 | 1586 | |
45f87de5 MH |
1587 | err = add_to_page_cache_lru(page, mapping, offset, |
1588 | gfp_mask & GFP_RECLAIM_MASK); | |
eb2be189 | 1589 | if (unlikely(err)) { |
09cbfeaf | 1590 | put_page(page); |
eb2be189 NP |
1591 | page = NULL; |
1592 | if (err == -EEXIST) | |
1593 | goto repeat; | |
1da177e4 | 1594 | } |
1da177e4 | 1595 | } |
2457aec6 | 1596 | |
1da177e4 LT |
1597 | return page; |
1598 | } | |
2457aec6 | 1599 | EXPORT_SYMBOL(pagecache_get_page); |
1da177e4 | 1600 | |
0cd6144a JW |
1601 | /** |
1602 | * find_get_entries - gang pagecache lookup | |
1603 | * @mapping: The address_space to search | |
1604 | * @start: The starting page cache index | |
1605 | * @nr_entries: The maximum number of entries | |
1606 | * @entries: Where the resulting entries are placed | |
1607 | * @indices: The cache indices corresponding to the entries in @entries | |
1608 | * | |
1609 | * find_get_entries() will search for and return a group of up to | |
1610 | * @nr_entries entries in the mapping. The entries are placed at | |
1611 | * @entries. find_get_entries() takes a reference against any actual | |
1612 | * pages it returns. | |
1613 | * | |
1614 | * The search returns a group of mapping-contiguous page cache entries | |
1615 | * with ascending indexes. There may be holes in the indices due to | |
1616 | * not-present pages. | |
1617 | * | |
139b6a6f JW |
1618 | * Any shadow entries of evicted pages, or swap entries from |
1619 | * shmem/tmpfs, are included in the returned array. | |
0cd6144a JW |
1620 | * |
1621 | * find_get_entries() returns the number of pages and shadow entries | |
1622 | * which were found. | |
1623 | */ | |
1624 | unsigned find_get_entries(struct address_space *mapping, | |
1625 | pgoff_t start, unsigned int nr_entries, | |
1626 | struct page **entries, pgoff_t *indices) | |
1627 | { | |
1628 | void **slot; | |
1629 | unsigned int ret = 0; | |
1630 | struct radix_tree_iter iter; | |
1631 | ||
1632 | if (!nr_entries) | |
1633 | return 0; | |
1634 | ||
1635 | rcu_read_lock(); | |
0cd6144a | 1636 | radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { |
83929372 | 1637 | struct page *head, *page; |
0cd6144a JW |
1638 | repeat: |
1639 | page = radix_tree_deref_slot(slot); | |
1640 | if (unlikely(!page)) | |
1641 | continue; | |
1642 | if (radix_tree_exception(page)) { | |
2cf938aa MW |
1643 | if (radix_tree_deref_retry(page)) { |
1644 | slot = radix_tree_iter_retry(&iter); | |
1645 | continue; | |
1646 | } | |
0cd6144a | 1647 | /* |
f9fe48be RZ |
1648 | * A shadow entry of a recently evicted page, a swap |
1649 | * entry from shmem/tmpfs or a DAX entry. Return it | |
1650 | * without attempting to raise page count. | |
0cd6144a JW |
1651 | */ |
1652 | goto export; | |
1653 | } | |
83929372 KS |
1654 | |
1655 | head = compound_head(page); | |
1656 | if (!page_cache_get_speculative(head)) | |
1657 | goto repeat; | |
1658 | ||
1659 | /* The page was split under us? */ | |
1660 | if (compound_head(page) != head) { | |
1661 | put_page(head); | |
0cd6144a | 1662 | goto repeat; |
83929372 | 1663 | } |
0cd6144a JW |
1664 | |
1665 | /* Has the page moved? */ | |
1666 | if (unlikely(page != *slot)) { | |
83929372 | 1667 | put_page(head); |
0cd6144a JW |
1668 | goto repeat; |
1669 | } | |
1670 | export: | |
1671 | indices[ret] = iter.index; | |
1672 | entries[ret] = page; | |
1673 | if (++ret == nr_entries) | |
1674 | break; | |
1675 | } | |
1676 | rcu_read_unlock(); | |
1677 | return ret; | |
1678 | } | |
1679 | ||
1da177e4 | 1680 | /** |
b947cee4 | 1681 | * find_get_pages_range - gang pagecache lookup |
1da177e4 LT |
1682 | * @mapping: The address_space to search |
1683 | * @start: The starting page index | |
b947cee4 | 1684 | * @end: The final page index (inclusive) |
1da177e4 LT |
1685 | * @nr_pages: The maximum number of pages |
1686 | * @pages: Where the resulting pages are placed | |
1687 | * | |
b947cee4 JK |
1688 | * find_get_pages_range() will search for and return a group of up to @nr_pages |
1689 | * pages in the mapping starting at index @start and up to index @end | |
1690 | * (inclusive). The pages are placed at @pages. find_get_pages_range() takes | |
1691 | * a reference against the returned pages. | |
1da177e4 LT |
1692 | * |
1693 | * The search returns a group of mapping-contiguous pages with ascending | |
1694 | * indexes. There may be holes in the indices due to not-present pages. | |
d72dc8a2 | 1695 | * We also update @start to index the next page for the traversal. |
1da177e4 | 1696 | * |
b947cee4 JK |
1697 | * find_get_pages_range() returns the number of pages which were found. If this |
1698 | * number is smaller than @nr_pages, the end of specified range has been | |
1699 | * reached. | |
1da177e4 | 1700 | */ |
b947cee4 JK |
1701 | unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, |
1702 | pgoff_t end, unsigned int nr_pages, | |
1703 | struct page **pages) | |
1da177e4 | 1704 | { |
0fc9d104 KK |
1705 | struct radix_tree_iter iter; |
1706 | void **slot; | |
1707 | unsigned ret = 0; | |
1708 | ||
1709 | if (unlikely(!nr_pages)) | |
1710 | return 0; | |
a60637c8 NP |
1711 | |
1712 | rcu_read_lock(); | |
d72dc8a2 | 1713 | radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, *start) { |
83929372 | 1714 | struct page *head, *page; |
b947cee4 JK |
1715 | |
1716 | if (iter.index > end) | |
1717 | break; | |
a60637c8 | 1718 | repeat: |
0fc9d104 | 1719 | page = radix_tree_deref_slot(slot); |
a60637c8 NP |
1720 | if (unlikely(!page)) |
1721 | continue; | |
9d8aa4ea | 1722 | |
a2c16d6c | 1723 | if (radix_tree_exception(page)) { |
8079b1c8 | 1724 | if (radix_tree_deref_retry(page)) { |
2cf938aa MW |
1725 | slot = radix_tree_iter_retry(&iter); |
1726 | continue; | |
8079b1c8 | 1727 | } |
a2c16d6c | 1728 | /* |
139b6a6f JW |
1729 | * A shadow entry of a recently evicted page, |
1730 | * or a swap entry from shmem/tmpfs. Skip | |
1731 | * over it. | |
a2c16d6c | 1732 | */ |
8079b1c8 | 1733 | continue; |
27d20fdd | 1734 | } |
a60637c8 | 1735 | |
83929372 KS |
1736 | head = compound_head(page); |
1737 | if (!page_cache_get_speculative(head)) | |
1738 | goto repeat; | |
1739 | ||
1740 | /* The page was split under us? */ | |
1741 | if (compound_head(page) != head) { | |
1742 | put_page(head); | |
a60637c8 | 1743 | goto repeat; |
83929372 | 1744 | } |
a60637c8 NP |
1745 | |
1746 | /* Has the page moved? */ | |
0fc9d104 | 1747 | if (unlikely(page != *slot)) { |
83929372 | 1748 | put_page(head); |
a60637c8 NP |
1749 | goto repeat; |
1750 | } | |
1da177e4 | 1751 | |
a60637c8 | 1752 | pages[ret] = page; |
b947cee4 JK |
1753 | if (++ret == nr_pages) { |
1754 | *start = pages[ret - 1]->index + 1; | |
1755 | goto out; | |
1756 | } | |
a60637c8 | 1757 | } |
5b280c0c | 1758 | |
b947cee4 JK |
1759 | /* |
1760 | * We come here when there is no page beyond @end. We take care to not | |
1761 | * overflow the index @start as it confuses some of the callers. This | |
1762 | * breaks the iteration when there is page at index -1 but that is | |
1763 | * already broken anyway. | |
1764 | */ | |
1765 | if (end == (pgoff_t)-1) | |
1766 | *start = (pgoff_t)-1; | |
1767 | else | |
1768 | *start = end + 1; | |
1769 | out: | |
a60637c8 | 1770 | rcu_read_unlock(); |
d72dc8a2 | 1771 | |
1da177e4 LT |
1772 | return ret; |
1773 | } | |
1774 | ||
ebf43500 JA |
1775 | /** |
1776 | * find_get_pages_contig - gang contiguous pagecache lookup | |
1777 | * @mapping: The address_space to search | |
1778 | * @index: The starting page index | |
1779 | * @nr_pages: The maximum number of pages | |
1780 | * @pages: Where the resulting pages are placed | |
1781 | * | |
1782 | * find_get_pages_contig() works exactly like find_get_pages(), except | |
1783 | * that the returned number of pages are guaranteed to be contiguous. | |
1784 | * | |
1785 | * find_get_pages_contig() returns the number of pages which were found. | |
1786 | */ | |
1787 | unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, | |
1788 | unsigned int nr_pages, struct page **pages) | |
1789 | { | |
0fc9d104 KK |
1790 | struct radix_tree_iter iter; |
1791 | void **slot; | |
1792 | unsigned int ret = 0; | |
1793 | ||
1794 | if (unlikely(!nr_pages)) | |
1795 | return 0; | |
a60637c8 NP |
1796 | |
1797 | rcu_read_lock(); | |
0fc9d104 | 1798 | radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { |
83929372 | 1799 | struct page *head, *page; |
a60637c8 | 1800 | repeat: |
0fc9d104 KK |
1801 | page = radix_tree_deref_slot(slot); |
1802 | /* The hole, there no reason to continue */ | |
a60637c8 | 1803 | if (unlikely(!page)) |
0fc9d104 | 1804 | break; |
9d8aa4ea | 1805 | |
a2c16d6c | 1806 | if (radix_tree_exception(page)) { |
8079b1c8 | 1807 | if (radix_tree_deref_retry(page)) { |
2cf938aa MW |
1808 | slot = radix_tree_iter_retry(&iter); |
1809 | continue; | |
8079b1c8 | 1810 | } |
a2c16d6c | 1811 | /* |
139b6a6f JW |
1812 | * A shadow entry of a recently evicted page, |
1813 | * or a swap entry from shmem/tmpfs. Stop | |
1814 | * looking for contiguous pages. | |
a2c16d6c | 1815 | */ |
8079b1c8 | 1816 | break; |
a2c16d6c | 1817 | } |
ebf43500 | 1818 | |
83929372 KS |
1819 | head = compound_head(page); |
1820 | if (!page_cache_get_speculative(head)) | |
1821 | goto repeat; | |
1822 | ||
1823 | /* The page was split under us? */ | |
1824 | if (compound_head(page) != head) { | |
1825 | put_page(head); | |
a60637c8 | 1826 | goto repeat; |
83929372 | 1827 | } |
a60637c8 NP |
1828 | |
1829 | /* Has the page moved? */ | |
0fc9d104 | 1830 | if (unlikely(page != *slot)) { |
83929372 | 1831 | put_page(head); |
a60637c8 NP |
1832 | goto repeat; |
1833 | } | |
1834 | ||
9cbb4cb2 NP |
1835 | /* |
1836 | * must check mapping and index after taking the ref. | |
1837 | * otherwise we can get both false positives and false | |
1838 | * negatives, which is just confusing to the caller. | |
1839 | */ | |
83929372 | 1840 | if (page->mapping == NULL || page_to_pgoff(page) != iter.index) { |
09cbfeaf | 1841 | put_page(page); |
9cbb4cb2 NP |
1842 | break; |
1843 | } | |
1844 | ||
a60637c8 | 1845 | pages[ret] = page; |
0fc9d104 KK |
1846 | if (++ret == nr_pages) |
1847 | break; | |
ebf43500 | 1848 | } |
a60637c8 NP |
1849 | rcu_read_unlock(); |
1850 | return ret; | |
ebf43500 | 1851 | } |
ef71c15c | 1852 | EXPORT_SYMBOL(find_get_pages_contig); |
ebf43500 | 1853 | |
485bb99b | 1854 | /** |
72b045ae | 1855 | * find_get_pages_range_tag - find and return pages in given range matching @tag |
485bb99b RD |
1856 | * @mapping: the address_space to search |
1857 | * @index: the starting page index | |
72b045ae | 1858 | * @end: The final page index (inclusive) |
485bb99b RD |
1859 | * @tag: the tag index |
1860 | * @nr_pages: the maximum number of pages | |
1861 | * @pages: where the resulting pages are placed | |
1862 | * | |
1da177e4 | 1863 | * Like find_get_pages, except we only return pages which are tagged with |
485bb99b | 1864 | * @tag. We update @index to index the next page for the traversal. |
1da177e4 | 1865 | */ |
72b045ae JK |
1866 | unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, |
1867 | pgoff_t end, int tag, unsigned int nr_pages, | |
1868 | struct page **pages) | |
1da177e4 | 1869 | { |
0fc9d104 KK |
1870 | struct radix_tree_iter iter; |
1871 | void **slot; | |
1872 | unsigned ret = 0; | |
1873 | ||
1874 | if (unlikely(!nr_pages)) | |
1875 | return 0; | |
a60637c8 NP |
1876 | |
1877 | rcu_read_lock(); | |
0fc9d104 KK |
1878 | radix_tree_for_each_tagged(slot, &mapping->page_tree, |
1879 | &iter, *index, tag) { | |
83929372 | 1880 | struct page *head, *page; |
72b045ae JK |
1881 | |
1882 | if (iter.index > end) | |
1883 | break; | |
a60637c8 | 1884 | repeat: |
0fc9d104 | 1885 | page = radix_tree_deref_slot(slot); |
a60637c8 NP |
1886 | if (unlikely(!page)) |
1887 | continue; | |
9d8aa4ea | 1888 | |
a2c16d6c | 1889 | if (radix_tree_exception(page)) { |
8079b1c8 | 1890 | if (radix_tree_deref_retry(page)) { |
2cf938aa MW |
1891 | slot = radix_tree_iter_retry(&iter); |
1892 | continue; | |
8079b1c8 | 1893 | } |
a2c16d6c | 1894 | /* |
139b6a6f JW |
1895 | * A shadow entry of a recently evicted page. |
1896 | * | |
1897 | * Those entries should never be tagged, but | |
1898 | * this tree walk is lockless and the tags are | |
1899 | * looked up in bulk, one radix tree node at a | |
1900 | * time, so there is a sizable window for page | |
1901 | * reclaim to evict a page we saw tagged. | |
1902 | * | |
1903 | * Skip over it. | |
a2c16d6c | 1904 | */ |
139b6a6f | 1905 | continue; |
a2c16d6c | 1906 | } |
a60637c8 | 1907 | |
83929372 KS |
1908 | head = compound_head(page); |
1909 | if (!page_cache_get_speculative(head)) | |
a60637c8 NP |
1910 | goto repeat; |
1911 | ||
83929372 KS |
1912 | /* The page was split under us? */ |
1913 | if (compound_head(page) != head) { | |
1914 | put_page(head); | |
1915 | goto repeat; | |
1916 | } | |
1917 | ||
a60637c8 | 1918 | /* Has the page moved? */ |
0fc9d104 | 1919 | if (unlikely(page != *slot)) { |
83929372 | 1920 | put_page(head); |
a60637c8 NP |
1921 | goto repeat; |
1922 | } | |
1923 | ||
1924 | pages[ret] = page; | |
72b045ae JK |
1925 | if (++ret == nr_pages) { |
1926 | *index = pages[ret - 1]->index + 1; | |
1927 | goto out; | |
1928 | } | |
a60637c8 | 1929 | } |
5b280c0c | 1930 | |
72b045ae JK |
1931 | /* |
1932 | * We come here when we got at @end. We take care to not overflow the | |
1933 | * index @index as it confuses some of the callers. This breaks the | |
1934 | * iteration when there is page at index -1 but that is already broken | |
1935 | * anyway. | |
1936 | */ | |
1937 | if (end == (pgoff_t)-1) | |
1938 | *index = (pgoff_t)-1; | |
1939 | else | |
1940 | *index = end + 1; | |
1941 | out: | |
a60637c8 | 1942 | rcu_read_unlock(); |
1da177e4 | 1943 | |
1da177e4 LT |
1944 | return ret; |
1945 | } | |
72b045ae | 1946 | EXPORT_SYMBOL(find_get_pages_range_tag); |
1da177e4 | 1947 | |
7e7f7749 RZ |
1948 | /** |
1949 | * find_get_entries_tag - find and return entries that match @tag | |
1950 | * @mapping: the address_space to search | |
1951 | * @start: the starting page cache index | |
1952 | * @tag: the tag index | |
1953 | * @nr_entries: the maximum number of entries | |
1954 | * @entries: where the resulting entries are placed | |
1955 | * @indices: the cache indices corresponding to the entries in @entries | |
1956 | * | |
1957 | * Like find_get_entries, except we only return entries which are tagged with | |
1958 | * @tag. | |
1959 | */ | |
1960 | unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, | |
1961 | int tag, unsigned int nr_entries, | |
1962 | struct page **entries, pgoff_t *indices) | |
1963 | { | |
1964 | void **slot; | |
1965 | unsigned int ret = 0; | |
1966 | struct radix_tree_iter iter; | |
1967 | ||
1968 | if (!nr_entries) | |
1969 | return 0; | |
1970 | ||
1971 | rcu_read_lock(); | |
7e7f7749 RZ |
1972 | radix_tree_for_each_tagged(slot, &mapping->page_tree, |
1973 | &iter, start, tag) { | |
83929372 | 1974 | struct page *head, *page; |
7e7f7749 RZ |
1975 | repeat: |
1976 | page = radix_tree_deref_slot(slot); | |
1977 | if (unlikely(!page)) | |
1978 | continue; | |
1979 | if (radix_tree_exception(page)) { | |
1980 | if (radix_tree_deref_retry(page)) { | |
2cf938aa MW |
1981 | slot = radix_tree_iter_retry(&iter); |
1982 | continue; | |
7e7f7749 RZ |
1983 | } |
1984 | ||
1985 | /* | |
1986 | * A shadow entry of a recently evicted page, a swap | |
1987 | * entry from shmem/tmpfs or a DAX entry. Return it | |
1988 | * without attempting to raise page count. | |
1989 | */ | |
1990 | goto export; | |
1991 | } | |
83929372 KS |
1992 | |
1993 | head = compound_head(page); | |
1994 | if (!page_cache_get_speculative(head)) | |
7e7f7749 RZ |
1995 | goto repeat; |
1996 | ||
83929372 KS |
1997 | /* The page was split under us? */ |
1998 | if (compound_head(page) != head) { | |
1999 | put_page(head); | |
2000 | goto repeat; | |
2001 | } | |
2002 | ||
7e7f7749 RZ |
2003 | /* Has the page moved? */ |
2004 | if (unlikely(page != *slot)) { | |
83929372 | 2005 | put_page(head); |
7e7f7749 RZ |
2006 | goto repeat; |
2007 | } | |
2008 | export: | |
2009 | indices[ret] = iter.index; | |
2010 | entries[ret] = page; | |
2011 | if (++ret == nr_entries) | |
2012 | break; | |
2013 | } | |
2014 | rcu_read_unlock(); | |
2015 | return ret; | |
2016 | } | |
2017 | EXPORT_SYMBOL(find_get_entries_tag); | |
2018 | ||
76d42bd9 WF |
2019 | /* |
2020 | * CD/DVDs are error prone. When a medium error occurs, the driver may fail | |
2021 | * a _large_ part of the i/o request. Imagine the worst scenario: | |
2022 | * | |
2023 | * ---R__________________________________________B__________ | |
2024 | * ^ reading here ^ bad block(assume 4k) | |
2025 | * | |
2026 | * read(R) => miss => readahead(R...B) => media error => frustrating retries | |
2027 | * => failing the whole request => read(R) => read(R+1) => | |
2028 | * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => | |
2029 | * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => | |
2030 | * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... | |
2031 | * | |
2032 | * It is going insane. Fix it by quickly scaling down the readahead size. | |
2033 | */ | |
2034 | static void shrink_readahead_size_eio(struct file *filp, | |
2035 | struct file_ra_state *ra) | |
2036 | { | |
76d42bd9 | 2037 | ra->ra_pages /= 4; |
76d42bd9 WF |
2038 | } |
2039 | ||
485bb99b | 2040 | /** |
47c27bc4 CH |
2041 | * generic_file_buffered_read - generic file read routine |
2042 | * @iocb: the iocb to read | |
6e58e79d AV |
2043 | * @iter: data destination |
2044 | * @written: already copied | |
485bb99b | 2045 | * |
1da177e4 | 2046 | * This is a generic file read routine, and uses the |
485bb99b | 2047 | * mapping->a_ops->readpage() function for the actual low-level stuff. |
1da177e4 LT |
2048 | * |
2049 | * This is really ugly. But the goto's actually try to clarify some | |
2050 | * of the logic when it comes to error handling etc. | |
1da177e4 | 2051 | */ |
47c27bc4 | 2052 | static ssize_t generic_file_buffered_read(struct kiocb *iocb, |
6e58e79d | 2053 | struct iov_iter *iter, ssize_t written) |
1da177e4 | 2054 | { |
47c27bc4 | 2055 | struct file *filp = iocb->ki_filp; |
36e78914 | 2056 | struct address_space *mapping = filp->f_mapping; |
1da177e4 | 2057 | struct inode *inode = mapping->host; |
36e78914 | 2058 | struct file_ra_state *ra = &filp->f_ra; |
47c27bc4 | 2059 | loff_t *ppos = &iocb->ki_pos; |
57f6b96c FW |
2060 | pgoff_t index; |
2061 | pgoff_t last_index; | |
2062 | pgoff_t prev_index; | |
2063 | unsigned long offset; /* offset into pagecache page */ | |
ec0f1637 | 2064 | unsigned int prev_offset; |
6e58e79d | 2065 | int error = 0; |
1da177e4 | 2066 | |
c2a9737f | 2067 | if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) |
d05c5f7b | 2068 | return 0; |
c2a9737f WF |
2069 | iov_iter_truncate(iter, inode->i_sb->s_maxbytes); |
2070 | ||
09cbfeaf KS |
2071 | index = *ppos >> PAGE_SHIFT; |
2072 | prev_index = ra->prev_pos >> PAGE_SHIFT; | |
2073 | prev_offset = ra->prev_pos & (PAGE_SIZE-1); | |
2074 | last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; | |
2075 | offset = *ppos & ~PAGE_MASK; | |
1da177e4 | 2076 | |
1da177e4 LT |
2077 | for (;;) { |
2078 | struct page *page; | |
57f6b96c | 2079 | pgoff_t end_index; |
a32ea1e1 | 2080 | loff_t isize; |
1da177e4 LT |
2081 | unsigned long nr, ret; |
2082 | ||
1da177e4 | 2083 | cond_resched(); |
1da177e4 | 2084 | find_page: |
5abf186a MH |
2085 | if (fatal_signal_pending(current)) { |
2086 | error = -EINTR; | |
2087 | goto out; | |
2088 | } | |
2089 | ||
1da177e4 | 2090 | page = find_get_page(mapping, index); |
3ea89ee8 | 2091 | if (!page) { |
3239d834 MT |
2092 | if (iocb->ki_flags & IOCB_NOWAIT) |
2093 | goto would_block; | |
cf914a7d | 2094 | page_cache_sync_readahead(mapping, |
7ff81078 | 2095 | ra, filp, |
3ea89ee8 FW |
2096 | index, last_index - index); |
2097 | page = find_get_page(mapping, index); | |
2098 | if (unlikely(page == NULL)) | |
2099 | goto no_cached_page; | |
2100 | } | |
2101 | if (PageReadahead(page)) { | |
cf914a7d | 2102 | page_cache_async_readahead(mapping, |
7ff81078 | 2103 | ra, filp, page, |
3ea89ee8 | 2104 | index, last_index - index); |
1da177e4 | 2105 | } |
8ab22b9a | 2106 | if (!PageUptodate(page)) { |
3239d834 MT |
2107 | if (iocb->ki_flags & IOCB_NOWAIT) { |
2108 | put_page(page); | |
2109 | goto would_block; | |
2110 | } | |
2111 | ||
ebded027 MG |
2112 | /* |
2113 | * See comment in do_read_cache_page on why | |
2114 | * wait_on_page_locked is used to avoid unnecessarily | |
2115 | * serialisations and why it's safe. | |
2116 | */ | |
c4b209a4 BVA |
2117 | error = wait_on_page_locked_killable(page); |
2118 | if (unlikely(error)) | |
2119 | goto readpage_error; | |
ebded027 MG |
2120 | if (PageUptodate(page)) |
2121 | goto page_ok; | |
2122 | ||
09cbfeaf | 2123 | if (inode->i_blkbits == PAGE_SHIFT || |
8ab22b9a HH |
2124 | !mapping->a_ops->is_partially_uptodate) |
2125 | goto page_not_up_to_date; | |
6d6d36bc EG |
2126 | /* pipes can't handle partially uptodate pages */ |
2127 | if (unlikely(iter->type & ITER_PIPE)) | |
2128 | goto page_not_up_to_date; | |
529ae9aa | 2129 | if (!trylock_page(page)) |
8ab22b9a | 2130 | goto page_not_up_to_date; |
8d056cb9 DH |
2131 | /* Did it get truncated before we got the lock? */ |
2132 | if (!page->mapping) | |
2133 | goto page_not_up_to_date_locked; | |
8ab22b9a | 2134 | if (!mapping->a_ops->is_partially_uptodate(page, |
6e58e79d | 2135 | offset, iter->count)) |
8ab22b9a HH |
2136 | goto page_not_up_to_date_locked; |
2137 | unlock_page(page); | |
2138 | } | |
1da177e4 | 2139 | page_ok: |
a32ea1e1 N |
2140 | /* |
2141 | * i_size must be checked after we know the page is Uptodate. | |
2142 | * | |
2143 | * Checking i_size after the check allows us to calculate | |
2144 | * the correct value for "nr", which means the zero-filled | |
2145 | * part of the page is not copied back to userspace (unless | |
2146 | * another truncate extends the file - this is desired though). | |
2147 | */ | |
2148 | ||
2149 | isize = i_size_read(inode); | |
09cbfeaf | 2150 | end_index = (isize - 1) >> PAGE_SHIFT; |
a32ea1e1 | 2151 | if (unlikely(!isize || index > end_index)) { |
09cbfeaf | 2152 | put_page(page); |
a32ea1e1 N |
2153 | goto out; |
2154 | } | |
2155 | ||
2156 | /* nr is the maximum number of bytes to copy from this page */ | |
09cbfeaf | 2157 | nr = PAGE_SIZE; |
a32ea1e1 | 2158 | if (index == end_index) { |
09cbfeaf | 2159 | nr = ((isize - 1) & ~PAGE_MASK) + 1; |
a32ea1e1 | 2160 | if (nr <= offset) { |
09cbfeaf | 2161 | put_page(page); |
a32ea1e1 N |
2162 | goto out; |
2163 | } | |
2164 | } | |
2165 | nr = nr - offset; | |
1da177e4 LT |
2166 | |
2167 | /* If users can be writing to this page using arbitrary | |
2168 | * virtual addresses, take care about potential aliasing | |
2169 | * before reading the page on the kernel side. | |
2170 | */ | |
2171 | if (mapping_writably_mapped(mapping)) | |
2172 | flush_dcache_page(page); | |
2173 | ||
2174 | /* | |
ec0f1637 JK |
2175 | * When a sequential read accesses a page several times, |
2176 | * only mark it as accessed the first time. | |
1da177e4 | 2177 | */ |
ec0f1637 | 2178 | if (prev_index != index || offset != prev_offset) |
1da177e4 LT |
2179 | mark_page_accessed(page); |
2180 | prev_index = index; | |
2181 | ||
2182 | /* | |
2183 | * Ok, we have the page, and it's up-to-date, so | |
2184 | * now we can copy it to user space... | |
1da177e4 | 2185 | */ |
6e58e79d AV |
2186 | |
2187 | ret = copy_page_to_iter(page, offset, nr, iter); | |
1da177e4 | 2188 | offset += ret; |
09cbfeaf KS |
2189 | index += offset >> PAGE_SHIFT; |
2190 | offset &= ~PAGE_MASK; | |
6ce745ed | 2191 | prev_offset = offset; |
1da177e4 | 2192 | |
09cbfeaf | 2193 | put_page(page); |
6e58e79d AV |
2194 | written += ret; |
2195 | if (!iov_iter_count(iter)) | |
2196 | goto out; | |
2197 | if (ret < nr) { | |
2198 | error = -EFAULT; | |
2199 | goto out; | |
2200 | } | |
2201 | continue; | |
1da177e4 LT |
2202 | |
2203 | page_not_up_to_date: | |
2204 | /* Get exclusive access to the page ... */ | |
85462323 ON |
2205 | error = lock_page_killable(page); |
2206 | if (unlikely(error)) | |
2207 | goto readpage_error; | |
1da177e4 | 2208 | |
8ab22b9a | 2209 | page_not_up_to_date_locked: |
da6052f7 | 2210 | /* Did it get truncated before we got the lock? */ |
1da177e4 LT |
2211 | if (!page->mapping) { |
2212 | unlock_page(page); | |
09cbfeaf | 2213 | put_page(page); |
1da177e4 LT |
2214 | continue; |
2215 | } | |
2216 | ||
2217 | /* Did somebody else fill it already? */ | |
2218 | if (PageUptodate(page)) { | |
2219 | unlock_page(page); | |
2220 | goto page_ok; | |
2221 | } | |
2222 | ||
2223 | readpage: | |
91803b49 JM |
2224 | /* |
2225 | * A previous I/O error may have been due to temporary | |
2226 | * failures, eg. multipath errors. | |
2227 | * PG_error will be set again if readpage fails. | |
2228 | */ | |
2229 | ClearPageError(page); | |
1da177e4 LT |
2230 | /* Start the actual read. The read will unlock the page. */ |
2231 | error = mapping->a_ops->readpage(filp, page); | |
2232 | ||
994fc28c ZB |
2233 | if (unlikely(error)) { |
2234 | if (error == AOP_TRUNCATED_PAGE) { | |
09cbfeaf | 2235 | put_page(page); |
6e58e79d | 2236 | error = 0; |
994fc28c ZB |
2237 | goto find_page; |
2238 | } | |
1da177e4 | 2239 | goto readpage_error; |
994fc28c | 2240 | } |
1da177e4 LT |
2241 | |
2242 | if (!PageUptodate(page)) { | |
85462323 ON |
2243 | error = lock_page_killable(page); |
2244 | if (unlikely(error)) | |
2245 | goto readpage_error; | |
1da177e4 LT |
2246 | if (!PageUptodate(page)) { |
2247 | if (page->mapping == NULL) { | |
2248 | /* | |
2ecdc82e | 2249 | * invalidate_mapping_pages got it |
1da177e4 LT |
2250 | */ |
2251 | unlock_page(page); | |
09cbfeaf | 2252 | put_page(page); |
1da177e4 LT |
2253 | goto find_page; |
2254 | } | |
2255 | unlock_page(page); | |
7ff81078 | 2256 | shrink_readahead_size_eio(filp, ra); |
85462323 ON |
2257 | error = -EIO; |
2258 | goto readpage_error; | |
1da177e4 LT |
2259 | } |
2260 | unlock_page(page); | |
2261 | } | |
2262 | ||
1da177e4 LT |
2263 | goto page_ok; |
2264 | ||
2265 | readpage_error: | |
2266 | /* UHHUH! A synchronous read error occurred. Report it */ | |
09cbfeaf | 2267 | put_page(page); |
1da177e4 LT |
2268 | goto out; |
2269 | ||
2270 | no_cached_page: | |
2271 | /* | |
2272 | * Ok, it wasn't cached, so we need to create a new | |
2273 | * page.. | |
2274 | */ | |
453f85d4 | 2275 | page = page_cache_alloc(mapping); |
eb2be189 | 2276 | if (!page) { |
6e58e79d | 2277 | error = -ENOMEM; |
eb2be189 | 2278 | goto out; |
1da177e4 | 2279 | } |
6afdb859 | 2280 | error = add_to_page_cache_lru(page, mapping, index, |
c62d2555 | 2281 | mapping_gfp_constraint(mapping, GFP_KERNEL)); |
1da177e4 | 2282 | if (error) { |
09cbfeaf | 2283 | put_page(page); |
6e58e79d AV |
2284 | if (error == -EEXIST) { |
2285 | error = 0; | |
1da177e4 | 2286 | goto find_page; |
6e58e79d | 2287 | } |
1da177e4 LT |
2288 | goto out; |
2289 | } | |
1da177e4 LT |
2290 | goto readpage; |
2291 | } | |
2292 | ||
3239d834 MT |
2293 | would_block: |
2294 | error = -EAGAIN; | |
1da177e4 | 2295 | out: |
7ff81078 | 2296 | ra->prev_pos = prev_index; |
09cbfeaf | 2297 | ra->prev_pos <<= PAGE_SHIFT; |
7ff81078 | 2298 | ra->prev_pos |= prev_offset; |
1da177e4 | 2299 | |
09cbfeaf | 2300 | *ppos = ((loff_t)index << PAGE_SHIFT) + offset; |
0c6aa263 | 2301 | file_accessed(filp); |
6e58e79d | 2302 | return written ? written : error; |
1da177e4 LT |
2303 | } |
2304 | ||
485bb99b | 2305 | /** |
6abd2322 | 2306 | * generic_file_read_iter - generic filesystem read routine |
485bb99b | 2307 | * @iocb: kernel I/O control block |
6abd2322 | 2308 | * @iter: destination for the data read |
485bb99b | 2309 | * |
6abd2322 | 2310 | * This is the "read_iter()" routine for all filesystems |
1da177e4 LT |
2311 | * that can use the page cache directly. |
2312 | */ | |
2313 | ssize_t | |
ed978a81 | 2314 | generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) |
1da177e4 | 2315 | { |
e7080a43 | 2316 | size_t count = iov_iter_count(iter); |
47c27bc4 | 2317 | ssize_t retval = 0; |
e7080a43 NS |
2318 | |
2319 | if (!count) | |
2320 | goto out; /* skip atime */ | |
1da177e4 | 2321 | |
2ba48ce5 | 2322 | if (iocb->ki_flags & IOCB_DIRECT) { |
47c27bc4 | 2323 | struct file *file = iocb->ki_filp; |
ed978a81 AV |
2324 | struct address_space *mapping = file->f_mapping; |
2325 | struct inode *inode = mapping->host; | |
543ade1f | 2326 | loff_t size; |
1da177e4 | 2327 | |
1da177e4 | 2328 | size = i_size_read(inode); |
6be96d3a GR |
2329 | if (iocb->ki_flags & IOCB_NOWAIT) { |
2330 | if (filemap_range_has_page(mapping, iocb->ki_pos, | |
2331 | iocb->ki_pos + count - 1)) | |
2332 | return -EAGAIN; | |
2333 | } else { | |
2334 | retval = filemap_write_and_wait_range(mapping, | |
2335 | iocb->ki_pos, | |
2336 | iocb->ki_pos + count - 1); | |
2337 | if (retval < 0) | |
2338 | goto out; | |
2339 | } | |
d8d3d94b | 2340 | |
0d5b0cf2 CH |
2341 | file_accessed(file); |
2342 | ||
5ecda137 | 2343 | retval = mapping->a_ops->direct_IO(iocb, iter); |
c3a69024 | 2344 | if (retval >= 0) { |
c64fb5c7 | 2345 | iocb->ki_pos += retval; |
5ecda137 | 2346 | count -= retval; |
9fe55eea | 2347 | } |
5b47d59a | 2348 | iov_iter_revert(iter, count - iov_iter_count(iter)); |
66f998f6 | 2349 | |
9fe55eea SW |
2350 | /* |
2351 | * Btrfs can have a short DIO read if we encounter | |
2352 | * compressed extents, so if there was an error, or if | |
2353 | * we've already read everything we wanted to, or if | |
2354 | * there was a short read because we hit EOF, go ahead | |
2355 | * and return. Otherwise fallthrough to buffered io for | |
fbbbad4b MW |
2356 | * the rest of the read. Buffered reads will not work for |
2357 | * DAX files, so don't bother trying. | |
9fe55eea | 2358 | */ |
5ecda137 | 2359 | if (retval < 0 || !count || iocb->ki_pos >= size || |
0d5b0cf2 | 2360 | IS_DAX(inode)) |
9fe55eea | 2361 | goto out; |
1da177e4 LT |
2362 | } |
2363 | ||
47c27bc4 | 2364 | retval = generic_file_buffered_read(iocb, iter, retval); |
1da177e4 LT |
2365 | out: |
2366 | return retval; | |
2367 | } | |
ed978a81 | 2368 | EXPORT_SYMBOL(generic_file_read_iter); |
1da177e4 | 2369 | |
1da177e4 | 2370 | #ifdef CONFIG_MMU |
485bb99b RD |
2371 | /** |
2372 | * page_cache_read - adds requested page to the page cache if not already there | |
2373 | * @file: file to read | |
2374 | * @offset: page index | |
62eb320a | 2375 | * @gfp_mask: memory allocation flags |
485bb99b | 2376 | * |
1da177e4 LT |
2377 | * This adds the requested page to the page cache if it isn't already there, |
2378 | * and schedules an I/O to read in its contents from disk. | |
2379 | */ | |
c20cd45e | 2380 | static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) |
1da177e4 LT |
2381 | { |
2382 | struct address_space *mapping = file->f_mapping; | |
99dadfdd | 2383 | struct page *page; |
994fc28c | 2384 | int ret; |
1da177e4 | 2385 | |
994fc28c | 2386 | do { |
453f85d4 | 2387 | page = __page_cache_alloc(gfp_mask); |
994fc28c ZB |
2388 | if (!page) |
2389 | return -ENOMEM; | |
2390 | ||
c20cd45e | 2391 | ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL); |
994fc28c ZB |
2392 | if (ret == 0) |
2393 | ret = mapping->a_ops->readpage(file, page); | |
2394 | else if (ret == -EEXIST) | |
2395 | ret = 0; /* losing race to add is OK */ | |
1da177e4 | 2396 | |
09cbfeaf | 2397 | put_page(page); |
1da177e4 | 2398 | |
994fc28c | 2399 | } while (ret == AOP_TRUNCATED_PAGE); |
99dadfdd | 2400 | |
994fc28c | 2401 | return ret; |
1da177e4 LT |
2402 | } |
2403 | ||
2404 | #define MMAP_LOTSAMISS (100) | |
2405 | ||
ef00e08e LT |
2406 | /* |
2407 | * Synchronous readahead happens when we don't even find | |
2408 | * a page in the page cache at all. | |
2409 | */ | |
2410 | static void do_sync_mmap_readahead(struct vm_area_struct *vma, | |
2411 | struct file_ra_state *ra, | |
2412 | struct file *file, | |
2413 | pgoff_t offset) | |
2414 | { | |
ef00e08e LT |
2415 | struct address_space *mapping = file->f_mapping; |
2416 | ||
2417 | /* If we don't want any read-ahead, don't bother */ | |
64363aad | 2418 | if (vma->vm_flags & VM_RAND_READ) |
ef00e08e | 2419 | return; |
275b12bf WF |
2420 | if (!ra->ra_pages) |
2421 | return; | |
ef00e08e | 2422 | |
64363aad | 2423 | if (vma->vm_flags & VM_SEQ_READ) { |
7ffc59b4 WF |
2424 | page_cache_sync_readahead(mapping, ra, file, offset, |
2425 | ra->ra_pages); | |
ef00e08e LT |
2426 | return; |
2427 | } | |
2428 | ||
207d04ba AK |
2429 | /* Avoid banging the cache line if not needed */ |
2430 | if (ra->mmap_miss < MMAP_LOTSAMISS * 10) | |
ef00e08e LT |
2431 | ra->mmap_miss++; |
2432 | ||
2433 | /* | |
2434 | * Do we miss much more than hit in this file? If so, | |
2435 | * stop bothering with read-ahead. It will only hurt. | |
2436 | */ | |
2437 | if (ra->mmap_miss > MMAP_LOTSAMISS) | |
2438 | return; | |
2439 | ||
d30a1100 WF |
2440 | /* |
2441 | * mmap read-around | |
2442 | */ | |
600e19af RG |
2443 | ra->start = max_t(long, 0, offset - ra->ra_pages / 2); |
2444 | ra->size = ra->ra_pages; | |
2445 | ra->async_size = ra->ra_pages / 4; | |
275b12bf | 2446 | ra_submit(ra, mapping, file); |
ef00e08e LT |
2447 | } |
2448 | ||
2449 | /* | |
2450 | * Asynchronous readahead happens when we find the page and PG_readahead, | |
2451 | * so we want to possibly extend the readahead further.. | |
2452 | */ | |
2453 | static void do_async_mmap_readahead(struct vm_area_struct *vma, | |
2454 | struct file_ra_state *ra, | |
2455 | struct file *file, | |
2456 | struct page *page, | |
2457 | pgoff_t offset) | |
2458 | { | |
2459 | struct address_space *mapping = file->f_mapping; | |
2460 | ||
2461 | /* If we don't want any read-ahead, don't bother */ | |
64363aad | 2462 | if (vma->vm_flags & VM_RAND_READ) |
ef00e08e LT |
2463 | return; |
2464 | if (ra->mmap_miss > 0) | |
2465 | ra->mmap_miss--; | |
2466 | if (PageReadahead(page)) | |
2fad6f5d WF |
2467 | page_cache_async_readahead(mapping, ra, file, |
2468 | page, offset, ra->ra_pages); | |
ef00e08e LT |
2469 | } |
2470 | ||
485bb99b | 2471 | /** |
54cb8821 | 2472 | * filemap_fault - read in file data for page fault handling |
d0217ac0 | 2473 | * @vmf: struct vm_fault containing details of the fault |
485bb99b | 2474 | * |
54cb8821 | 2475 | * filemap_fault() is invoked via the vma operations vector for a |
1da177e4 LT |
2476 | * mapped memory region to read in file data during a page fault. |
2477 | * | |
2478 | * The goto's are kind of ugly, but this streamlines the normal case of having | |
2479 | * it in the page cache, and handles the special cases reasonably without | |
2480 | * having a lot of duplicated code. | |
9a95f3cf PC |
2481 | * |
2482 | * vma->vm_mm->mmap_sem must be held on entry. | |
2483 | * | |
2484 | * If our return value has VM_FAULT_RETRY set, it's because | |
2485 | * lock_page_or_retry() returned 0. | |
2486 | * The mmap_sem has usually been released in this case. | |
2487 | * See __lock_page_or_retry() for the exception. | |
2488 | * | |
2489 | * If our return value does not have VM_FAULT_RETRY set, the mmap_sem | |
2490 | * has not been released. | |
2491 | * | |
2492 | * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. | |
1da177e4 | 2493 | */ |
11bac800 | 2494 | int filemap_fault(struct vm_fault *vmf) |
1da177e4 LT |
2495 | { |
2496 | int error; | |
11bac800 | 2497 | struct file *file = vmf->vma->vm_file; |
1da177e4 LT |
2498 | struct address_space *mapping = file->f_mapping; |
2499 | struct file_ra_state *ra = &file->f_ra; | |
2500 | struct inode *inode = mapping->host; | |
ef00e08e | 2501 | pgoff_t offset = vmf->pgoff; |
9ab2594f | 2502 | pgoff_t max_off; |
1da177e4 | 2503 | struct page *page; |
83c54070 | 2504 | int ret = 0; |
1da177e4 | 2505 | |
9ab2594f MW |
2506 | max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); |
2507 | if (unlikely(offset >= max_off)) | |
5307cc1a | 2508 | return VM_FAULT_SIGBUS; |
1da177e4 | 2509 | |
1da177e4 | 2510 | /* |
49426420 | 2511 | * Do we have something in the page cache already? |
1da177e4 | 2512 | */ |
ef00e08e | 2513 | page = find_get_page(mapping, offset); |
45cac65b | 2514 | if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { |
1da177e4 | 2515 | /* |
ef00e08e LT |
2516 | * We found the page, so try async readahead before |
2517 | * waiting for the lock. | |
1da177e4 | 2518 | */ |
11bac800 | 2519 | do_async_mmap_readahead(vmf->vma, ra, file, page, offset); |
45cac65b | 2520 | } else if (!page) { |
ef00e08e | 2521 | /* No page in the page cache at all */ |
11bac800 | 2522 | do_sync_mmap_readahead(vmf->vma, ra, file, offset); |
ef00e08e | 2523 | count_vm_event(PGMAJFAULT); |
2262185c | 2524 | count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); |
ef00e08e LT |
2525 | ret = VM_FAULT_MAJOR; |
2526 | retry_find: | |
b522c94d | 2527 | page = find_get_page(mapping, offset); |
1da177e4 LT |
2528 | if (!page) |
2529 | goto no_cached_page; | |
2530 | } | |
2531 | ||
11bac800 | 2532 | if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) { |
09cbfeaf | 2533 | put_page(page); |
d065bd81 | 2534 | return ret | VM_FAULT_RETRY; |
d88c0922 | 2535 | } |
b522c94d ML |
2536 | |
2537 | /* Did it get truncated? */ | |
2538 | if (unlikely(page->mapping != mapping)) { | |
2539 | unlock_page(page); | |
2540 | put_page(page); | |
2541 | goto retry_find; | |
2542 | } | |
309381fe | 2543 | VM_BUG_ON_PAGE(page->index != offset, page); |
b522c94d | 2544 | |
1da177e4 | 2545 | /* |
d00806b1 NP |
2546 | * We have a locked page in the page cache, now we need to check |
2547 | * that it's up-to-date. If not, it is going to be due to an error. | |
1da177e4 | 2548 | */ |
d00806b1 | 2549 | if (unlikely(!PageUptodate(page))) |
1da177e4 LT |
2550 | goto page_not_uptodate; |
2551 | ||
ef00e08e LT |
2552 | /* |
2553 | * Found the page and have a reference on it. | |
2554 | * We must recheck i_size under page lock. | |
2555 | */ | |
9ab2594f MW |
2556 | max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); |
2557 | if (unlikely(offset >= max_off)) { | |
d00806b1 | 2558 | unlock_page(page); |
09cbfeaf | 2559 | put_page(page); |
5307cc1a | 2560 | return VM_FAULT_SIGBUS; |
d00806b1 NP |
2561 | } |
2562 | ||
d0217ac0 | 2563 | vmf->page = page; |
83c54070 | 2564 | return ret | VM_FAULT_LOCKED; |
1da177e4 | 2565 | |
1da177e4 LT |
2566 | no_cached_page: |
2567 | /* | |
2568 | * We're only likely to ever get here if MADV_RANDOM is in | |
2569 | * effect. | |
2570 | */ | |
c20cd45e | 2571 | error = page_cache_read(file, offset, vmf->gfp_mask); |
1da177e4 LT |
2572 | |
2573 | /* | |
2574 | * The page we want has now been added to the page cache. | |
2575 | * In the unlikely event that someone removed it in the | |
2576 | * meantime, we'll just come back here and read it again. | |
2577 | */ | |
2578 | if (error >= 0) | |
2579 | goto retry_find; | |
2580 | ||
2581 | /* | |
2582 | * An error return from page_cache_read can result if the | |
2583 | * system is low on memory, or a problem occurs while trying | |
2584 | * to schedule I/O. | |
2585 | */ | |
2586 | if (error == -ENOMEM) | |
d0217ac0 NP |
2587 | return VM_FAULT_OOM; |
2588 | return VM_FAULT_SIGBUS; | |
1da177e4 LT |
2589 | |
2590 | page_not_uptodate: | |
1da177e4 LT |
2591 | /* |
2592 | * Umm, take care of errors if the page isn't up-to-date. | |
2593 | * Try to re-read it _once_. We do this synchronously, | |
2594 | * because there really aren't any performance issues here | |
2595 | * and we need to check for errors. | |
2596 | */ | |
1da177e4 | 2597 | ClearPageError(page); |
994fc28c | 2598 | error = mapping->a_ops->readpage(file, page); |
3ef0f720 MS |
2599 | if (!error) { |
2600 | wait_on_page_locked(page); | |
2601 | if (!PageUptodate(page)) | |
2602 | error = -EIO; | |
2603 | } | |
09cbfeaf | 2604 | put_page(page); |
d00806b1 NP |
2605 | |
2606 | if (!error || error == AOP_TRUNCATED_PAGE) | |
994fc28c | 2607 | goto retry_find; |
1da177e4 | 2608 | |
d00806b1 | 2609 | /* Things didn't work out. Return zero to tell the mm layer so. */ |
76d42bd9 | 2610 | shrink_readahead_size_eio(file, ra); |
d0217ac0 | 2611 | return VM_FAULT_SIGBUS; |
54cb8821 NP |
2612 | } |
2613 | EXPORT_SYMBOL(filemap_fault); | |
2614 | ||
82b0f8c3 | 2615 | void filemap_map_pages(struct vm_fault *vmf, |
bae473a4 | 2616 | pgoff_t start_pgoff, pgoff_t end_pgoff) |
f1820361 KS |
2617 | { |
2618 | struct radix_tree_iter iter; | |
2619 | void **slot; | |
82b0f8c3 | 2620 | struct file *file = vmf->vma->vm_file; |
f1820361 | 2621 | struct address_space *mapping = file->f_mapping; |
bae473a4 | 2622 | pgoff_t last_pgoff = start_pgoff; |
9ab2594f | 2623 | unsigned long max_idx; |
83929372 | 2624 | struct page *head, *page; |
f1820361 KS |
2625 | |
2626 | rcu_read_lock(); | |
bae473a4 KS |
2627 | radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, |
2628 | start_pgoff) { | |
2629 | if (iter.index > end_pgoff) | |
f1820361 KS |
2630 | break; |
2631 | repeat: | |
2632 | page = radix_tree_deref_slot(slot); | |
2633 | if (unlikely(!page)) | |
2634 | goto next; | |
2635 | if (radix_tree_exception(page)) { | |
2cf938aa MW |
2636 | if (radix_tree_deref_retry(page)) { |
2637 | slot = radix_tree_iter_retry(&iter); | |
2638 | continue; | |
2639 | } | |
2640 | goto next; | |
f1820361 KS |
2641 | } |
2642 | ||
83929372 KS |
2643 | head = compound_head(page); |
2644 | if (!page_cache_get_speculative(head)) | |
f1820361 KS |
2645 | goto repeat; |
2646 | ||
83929372 KS |
2647 | /* The page was split under us? */ |
2648 | if (compound_head(page) != head) { | |
2649 | put_page(head); | |
2650 | goto repeat; | |
2651 | } | |
2652 | ||
f1820361 KS |
2653 | /* Has the page moved? */ |
2654 | if (unlikely(page != *slot)) { | |
83929372 | 2655 | put_page(head); |
f1820361 KS |
2656 | goto repeat; |
2657 | } | |
2658 | ||
2659 | if (!PageUptodate(page) || | |
2660 | PageReadahead(page) || | |
2661 | PageHWPoison(page)) | |
2662 | goto skip; | |
2663 | if (!trylock_page(page)) | |
2664 | goto skip; | |
2665 | ||
2666 | if (page->mapping != mapping || !PageUptodate(page)) | |
2667 | goto unlock; | |
2668 | ||
9ab2594f MW |
2669 | max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); |
2670 | if (page->index >= max_idx) | |
f1820361 KS |
2671 | goto unlock; |
2672 | ||
f1820361 KS |
2673 | if (file->f_ra.mmap_miss > 0) |
2674 | file->f_ra.mmap_miss--; | |
7267ec00 | 2675 | |
82b0f8c3 JK |
2676 | vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT; |
2677 | if (vmf->pte) | |
2678 | vmf->pte += iter.index - last_pgoff; | |
7267ec00 | 2679 | last_pgoff = iter.index; |
82b0f8c3 | 2680 | if (alloc_set_pte(vmf, NULL, page)) |
7267ec00 | 2681 | goto unlock; |
f1820361 KS |
2682 | unlock_page(page); |
2683 | goto next; | |
2684 | unlock: | |
2685 | unlock_page(page); | |
2686 | skip: | |
09cbfeaf | 2687 | put_page(page); |
f1820361 | 2688 | next: |
7267ec00 | 2689 | /* Huge page is mapped? No need to proceed. */ |
82b0f8c3 | 2690 | if (pmd_trans_huge(*vmf->pmd)) |
7267ec00 | 2691 | break; |
bae473a4 | 2692 | if (iter.index == end_pgoff) |
f1820361 KS |
2693 | break; |
2694 | } | |
2695 | rcu_read_unlock(); | |
2696 | } | |
2697 | EXPORT_SYMBOL(filemap_map_pages); | |
2698 | ||
11bac800 | 2699 | int filemap_page_mkwrite(struct vm_fault *vmf) |
4fcf1c62 JK |
2700 | { |
2701 | struct page *page = vmf->page; | |
11bac800 | 2702 | struct inode *inode = file_inode(vmf->vma->vm_file); |
4fcf1c62 JK |
2703 | int ret = VM_FAULT_LOCKED; |
2704 | ||
14da9200 | 2705 | sb_start_pagefault(inode->i_sb); |
11bac800 | 2706 | file_update_time(vmf->vma->vm_file); |
4fcf1c62 JK |
2707 | lock_page(page); |
2708 | if (page->mapping != inode->i_mapping) { | |
2709 | unlock_page(page); | |
2710 | ret = VM_FAULT_NOPAGE; | |
2711 | goto out; | |
2712 | } | |
14da9200 JK |
2713 | /* |
2714 | * We mark the page dirty already here so that when freeze is in | |
2715 | * progress, we are guaranteed that writeback during freezing will | |
2716 | * see the dirty page and writeprotect it again. | |
2717 | */ | |
2718 | set_page_dirty(page); | |
1d1d1a76 | 2719 | wait_for_stable_page(page); |
4fcf1c62 | 2720 | out: |
14da9200 | 2721 | sb_end_pagefault(inode->i_sb); |
4fcf1c62 JK |
2722 | return ret; |
2723 | } | |
2724 | EXPORT_SYMBOL(filemap_page_mkwrite); | |
2725 | ||
f0f37e2f | 2726 | const struct vm_operations_struct generic_file_vm_ops = { |
54cb8821 | 2727 | .fault = filemap_fault, |
f1820361 | 2728 | .map_pages = filemap_map_pages, |
4fcf1c62 | 2729 | .page_mkwrite = filemap_page_mkwrite, |
1da177e4 LT |
2730 | }; |
2731 | ||
2732 | /* This is used for a general mmap of a disk file */ | |
2733 | ||
2734 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | |
2735 | { | |
2736 | struct address_space *mapping = file->f_mapping; | |
2737 | ||
2738 | if (!mapping->a_ops->readpage) | |
2739 | return -ENOEXEC; | |
2740 | file_accessed(file); | |
2741 | vma->vm_ops = &generic_file_vm_ops; | |
2742 | return 0; | |
2743 | } | |
1da177e4 LT |
2744 | |
2745 | /* | |
2746 | * This is for filesystems which do not implement ->writepage. | |
2747 | */ | |
2748 | int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) | |
2749 | { | |
2750 | if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) | |
2751 | return -EINVAL; | |
2752 | return generic_file_mmap(file, vma); | |
2753 | } | |
2754 | #else | |
2755 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | |
2756 | { | |
2757 | return -ENOSYS; | |
2758 | } | |
2759 | int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) | |
2760 | { | |
2761 | return -ENOSYS; | |
2762 | } | |
2763 | #endif /* CONFIG_MMU */ | |
2764 | ||
2765 | EXPORT_SYMBOL(generic_file_mmap); | |
2766 | EXPORT_SYMBOL(generic_file_readonly_mmap); | |
2767 | ||
67f9fd91 SL |
2768 | static struct page *wait_on_page_read(struct page *page) |
2769 | { | |
2770 | if (!IS_ERR(page)) { | |
2771 | wait_on_page_locked(page); | |
2772 | if (!PageUptodate(page)) { | |
09cbfeaf | 2773 | put_page(page); |
67f9fd91 SL |
2774 | page = ERR_PTR(-EIO); |
2775 | } | |
2776 | } | |
2777 | return page; | |
2778 | } | |
2779 | ||
32b63529 | 2780 | static struct page *do_read_cache_page(struct address_space *mapping, |
57f6b96c | 2781 | pgoff_t index, |
5e5358e7 | 2782 | int (*filler)(void *, struct page *), |
0531b2aa LT |
2783 | void *data, |
2784 | gfp_t gfp) | |
1da177e4 | 2785 | { |
eb2be189 | 2786 | struct page *page; |
1da177e4 LT |
2787 | int err; |
2788 | repeat: | |
2789 | page = find_get_page(mapping, index); | |
2790 | if (!page) { | |
453f85d4 | 2791 | page = __page_cache_alloc(gfp); |
eb2be189 NP |
2792 | if (!page) |
2793 | return ERR_PTR(-ENOMEM); | |
e6f67b8c | 2794 | err = add_to_page_cache_lru(page, mapping, index, gfp); |
eb2be189 | 2795 | if (unlikely(err)) { |
09cbfeaf | 2796 | put_page(page); |
eb2be189 NP |
2797 | if (err == -EEXIST) |
2798 | goto repeat; | |
1da177e4 | 2799 | /* Presumably ENOMEM for radix tree node */ |
1da177e4 LT |
2800 | return ERR_PTR(err); |
2801 | } | |
32b63529 MG |
2802 | |
2803 | filler: | |
1da177e4 LT |
2804 | err = filler(data, page); |
2805 | if (err < 0) { | |
09cbfeaf | 2806 | put_page(page); |
32b63529 | 2807 | return ERR_PTR(err); |
1da177e4 | 2808 | } |
1da177e4 | 2809 | |
32b63529 MG |
2810 | page = wait_on_page_read(page); |
2811 | if (IS_ERR(page)) | |
2812 | return page; | |
2813 | goto out; | |
2814 | } | |
1da177e4 LT |
2815 | if (PageUptodate(page)) |
2816 | goto out; | |
2817 | ||
ebded027 MG |
2818 | /* |
2819 | * Page is not up to date and may be locked due one of the following | |
2820 | * case a: Page is being filled and the page lock is held | |
2821 | * case b: Read/write error clearing the page uptodate status | |
2822 | * case c: Truncation in progress (page locked) | |
2823 | * case d: Reclaim in progress | |
2824 | * | |
2825 | * Case a, the page will be up to date when the page is unlocked. | |
2826 | * There is no need to serialise on the page lock here as the page | |
2827 | * is pinned so the lock gives no additional protection. Even if the | |
2828 | * the page is truncated, the data is still valid if PageUptodate as | |
2829 | * it's a race vs truncate race. | |
2830 | * Case b, the page will not be up to date | |
2831 | * Case c, the page may be truncated but in itself, the data may still | |
2832 | * be valid after IO completes as it's a read vs truncate race. The | |
2833 | * operation must restart if the page is not uptodate on unlock but | |
2834 | * otherwise serialising on page lock to stabilise the mapping gives | |
2835 | * no additional guarantees to the caller as the page lock is | |
2836 | * released before return. | |
2837 | * Case d, similar to truncation. If reclaim holds the page lock, it | |
2838 | * will be a race with remove_mapping that determines if the mapping | |
2839 | * is valid on unlock but otherwise the data is valid and there is | |
2840 | * no need to serialise with page lock. | |
2841 | * | |
2842 | * As the page lock gives no additional guarantee, we optimistically | |
2843 | * wait on the page to be unlocked and check if it's up to date and | |
2844 | * use the page if it is. Otherwise, the page lock is required to | |
2845 | * distinguish between the different cases. The motivation is that we | |
2846 | * avoid spurious serialisations and wakeups when multiple processes | |
2847 | * wait on the same page for IO to complete. | |
2848 | */ | |
2849 | wait_on_page_locked(page); | |
2850 | if (PageUptodate(page)) | |
2851 | goto out; | |
2852 | ||
2853 | /* Distinguish between all the cases under the safety of the lock */ | |
1da177e4 | 2854 | lock_page(page); |
ebded027 MG |
2855 | |
2856 | /* Case c or d, restart the operation */ | |
1da177e4 LT |
2857 | if (!page->mapping) { |
2858 | unlock_page(page); | |
09cbfeaf | 2859 | put_page(page); |
32b63529 | 2860 | goto repeat; |
1da177e4 | 2861 | } |
ebded027 MG |
2862 | |
2863 | /* Someone else locked and filled the page in a very small window */ | |
1da177e4 LT |
2864 | if (PageUptodate(page)) { |
2865 | unlock_page(page); | |
2866 | goto out; | |
2867 | } | |
32b63529 MG |
2868 | goto filler; |
2869 | ||
c855ff37 | 2870 | out: |
6fe6900e NP |
2871 | mark_page_accessed(page); |
2872 | return page; | |
2873 | } | |
0531b2aa LT |
2874 | |
2875 | /** | |
67f9fd91 | 2876 | * read_cache_page - read into page cache, fill it if needed |
0531b2aa LT |
2877 | * @mapping: the page's address_space |
2878 | * @index: the page index | |
2879 | * @filler: function to perform the read | |
5e5358e7 | 2880 | * @data: first arg to filler(data, page) function, often left as NULL |
0531b2aa | 2881 | * |
0531b2aa | 2882 | * Read into the page cache. If a page already exists, and PageUptodate() is |
67f9fd91 | 2883 | * not set, try to fill the page and wait for it to become unlocked. |
0531b2aa LT |
2884 | * |
2885 | * If the page does not get brought uptodate, return -EIO. | |
2886 | */ | |
67f9fd91 | 2887 | struct page *read_cache_page(struct address_space *mapping, |
0531b2aa | 2888 | pgoff_t index, |
5e5358e7 | 2889 | int (*filler)(void *, struct page *), |
0531b2aa LT |
2890 | void *data) |
2891 | { | |
2892 | return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); | |
2893 | } | |
67f9fd91 | 2894 | EXPORT_SYMBOL(read_cache_page); |
0531b2aa LT |
2895 | |
2896 | /** | |
2897 | * read_cache_page_gfp - read into page cache, using specified page allocation flags. | |
2898 | * @mapping: the page's address_space | |
2899 | * @index: the page index | |
2900 | * @gfp: the page allocator flags to use if allocating | |
2901 | * | |
2902 | * This is the same as "read_mapping_page(mapping, index, NULL)", but with | |
e6f67b8c | 2903 | * any new page allocations done using the specified allocation flags. |
0531b2aa LT |
2904 | * |
2905 | * If the page does not get brought uptodate, return -EIO. | |
2906 | */ | |
2907 | struct page *read_cache_page_gfp(struct address_space *mapping, | |
2908 | pgoff_t index, | |
2909 | gfp_t gfp) | |
2910 | { | |
2911 | filler_t *filler = (filler_t *)mapping->a_ops->readpage; | |
2912 | ||
67f9fd91 | 2913 | return do_read_cache_page(mapping, index, filler, NULL, gfp); |
0531b2aa LT |
2914 | } |
2915 | EXPORT_SYMBOL(read_cache_page_gfp); | |
2916 | ||
1da177e4 LT |
2917 | /* |
2918 | * Performs necessary checks before doing a write | |
2919 | * | |
485bb99b | 2920 | * Can adjust writing position or amount of bytes to write. |
1da177e4 LT |
2921 | * Returns appropriate error code that caller should return or |
2922 | * zero in case that write should be allowed. | |
2923 | */ | |
3309dd04 | 2924 | inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 | 2925 | { |
3309dd04 | 2926 | struct file *file = iocb->ki_filp; |
1da177e4 | 2927 | struct inode *inode = file->f_mapping->host; |
59e99e5b | 2928 | unsigned long limit = rlimit(RLIMIT_FSIZE); |
3309dd04 | 2929 | loff_t pos; |
1da177e4 | 2930 | |
3309dd04 AV |
2931 | if (!iov_iter_count(from)) |
2932 | return 0; | |
1da177e4 | 2933 | |
0fa6b005 | 2934 | /* FIXME: this is for backwards compatibility with 2.4 */ |
2ba48ce5 | 2935 | if (iocb->ki_flags & IOCB_APPEND) |
3309dd04 | 2936 | iocb->ki_pos = i_size_read(inode); |
1da177e4 | 2937 | |
3309dd04 | 2938 | pos = iocb->ki_pos; |
1da177e4 | 2939 | |
6be96d3a GR |
2940 | if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) |
2941 | return -EINVAL; | |
2942 | ||
0fa6b005 | 2943 | if (limit != RLIM_INFINITY) { |
3309dd04 | 2944 | if (iocb->ki_pos >= limit) { |
0fa6b005 AV |
2945 | send_sig(SIGXFSZ, current, 0); |
2946 | return -EFBIG; | |
1da177e4 | 2947 | } |
3309dd04 | 2948 | iov_iter_truncate(from, limit - (unsigned long)pos); |
1da177e4 LT |
2949 | } |
2950 | ||
2951 | /* | |
2952 | * LFS rule | |
2953 | */ | |
3309dd04 | 2954 | if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && |
1da177e4 | 2955 | !(file->f_flags & O_LARGEFILE))) { |
3309dd04 | 2956 | if (pos >= MAX_NON_LFS) |
1da177e4 | 2957 | return -EFBIG; |
3309dd04 | 2958 | iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); |
1da177e4 LT |
2959 | } |
2960 | ||
2961 | /* | |
2962 | * Are we about to exceed the fs block limit ? | |
2963 | * | |
2964 | * If we have written data it becomes a short write. If we have | |
2965 | * exceeded without writing data we send a signal and return EFBIG. | |
2966 | * Linus frestrict idea will clean these up nicely.. | |
2967 | */ | |
3309dd04 AV |
2968 | if (unlikely(pos >= inode->i_sb->s_maxbytes)) |
2969 | return -EFBIG; | |
1da177e4 | 2970 | |
3309dd04 AV |
2971 | iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); |
2972 | return iov_iter_count(from); | |
1da177e4 LT |
2973 | } |
2974 | EXPORT_SYMBOL(generic_write_checks); | |
2975 | ||
afddba49 NP |
2976 | int pagecache_write_begin(struct file *file, struct address_space *mapping, |
2977 | loff_t pos, unsigned len, unsigned flags, | |
2978 | struct page **pagep, void **fsdata) | |
2979 | { | |
2980 | const struct address_space_operations *aops = mapping->a_ops; | |
2981 | ||
4e02ed4b | 2982 | return aops->write_begin(file, mapping, pos, len, flags, |
afddba49 | 2983 | pagep, fsdata); |
afddba49 NP |
2984 | } |
2985 | EXPORT_SYMBOL(pagecache_write_begin); | |
2986 | ||
2987 | int pagecache_write_end(struct file *file, struct address_space *mapping, | |
2988 | loff_t pos, unsigned len, unsigned copied, | |
2989 | struct page *page, void *fsdata) | |
2990 | { | |
2991 | const struct address_space_operations *aops = mapping->a_ops; | |
afddba49 | 2992 | |
4e02ed4b | 2993 | return aops->write_end(file, mapping, pos, len, copied, page, fsdata); |
afddba49 NP |
2994 | } |
2995 | EXPORT_SYMBOL(pagecache_write_end); | |
2996 | ||
1da177e4 | 2997 | ssize_t |
1af5bb49 | 2998 | generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 LT |
2999 | { |
3000 | struct file *file = iocb->ki_filp; | |
3001 | struct address_space *mapping = file->f_mapping; | |
3002 | struct inode *inode = mapping->host; | |
1af5bb49 | 3003 | loff_t pos = iocb->ki_pos; |
1da177e4 | 3004 | ssize_t written; |
a969e903 CH |
3005 | size_t write_len; |
3006 | pgoff_t end; | |
1da177e4 | 3007 | |
0c949334 | 3008 | write_len = iov_iter_count(from); |
09cbfeaf | 3009 | end = (pos + write_len - 1) >> PAGE_SHIFT; |
a969e903 | 3010 | |
6be96d3a GR |
3011 | if (iocb->ki_flags & IOCB_NOWAIT) { |
3012 | /* If there are pages to writeback, return */ | |
3013 | if (filemap_range_has_page(inode->i_mapping, pos, | |
3014 | pos + iov_iter_count(from))) | |
3015 | return -EAGAIN; | |
3016 | } else { | |
3017 | written = filemap_write_and_wait_range(mapping, pos, | |
3018 | pos + write_len - 1); | |
3019 | if (written) | |
3020 | goto out; | |
3021 | } | |
a969e903 CH |
3022 | |
3023 | /* | |
3024 | * After a write we want buffered reads to be sure to go to disk to get | |
3025 | * the new data. We invalidate clean cached page from the region we're | |
3026 | * about to write. We do this *before* the write so that we can return | |
6ccfa806 | 3027 | * without clobbering -EIOCBQUEUED from ->direct_IO(). |
a969e903 | 3028 | */ |
55635ba7 | 3029 | written = invalidate_inode_pages2_range(mapping, |
09cbfeaf | 3030 | pos >> PAGE_SHIFT, end); |
55635ba7 AR |
3031 | /* |
3032 | * If a page can not be invalidated, return 0 to fall back | |
3033 | * to buffered write. | |
3034 | */ | |
3035 | if (written) { | |
3036 | if (written == -EBUSY) | |
3037 | return 0; | |
3038 | goto out; | |
a969e903 CH |
3039 | } |
3040 | ||
639a93a5 | 3041 | written = mapping->a_ops->direct_IO(iocb, from); |
a969e903 CH |
3042 | |
3043 | /* | |
3044 | * Finally, try again to invalidate clean pages which might have been | |
3045 | * cached by non-direct readahead, or faulted in by get_user_pages() | |
3046 | * if the source of the write was an mmap'ed region of the file | |
3047 | * we're writing. Either one is a pretty crazy thing to do, | |
3048 | * so we don't support it 100%. If this invalidation | |
3049 | * fails, tough, the write still worked... | |
332391a9 LC |
3050 | * |
3051 | * Most of the time we do not need this since dio_complete() will do | |
3052 | * the invalidation for us. However there are some file systems that | |
3053 | * do not end up with dio_complete() being called, so let's not break | |
3054 | * them by removing it completely | |
a969e903 | 3055 | */ |
332391a9 LC |
3056 | if (mapping->nrpages) |
3057 | invalidate_inode_pages2_range(mapping, | |
3058 | pos >> PAGE_SHIFT, end); | |
a969e903 | 3059 | |
1da177e4 | 3060 | if (written > 0) { |
0116651c | 3061 | pos += written; |
639a93a5 | 3062 | write_len -= written; |
0116651c NK |
3063 | if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { |
3064 | i_size_write(inode, pos); | |
1da177e4 LT |
3065 | mark_inode_dirty(inode); |
3066 | } | |
5cb6c6c7 | 3067 | iocb->ki_pos = pos; |
1da177e4 | 3068 | } |
639a93a5 | 3069 | iov_iter_revert(from, write_len - iov_iter_count(from)); |
a969e903 | 3070 | out: |
1da177e4 LT |
3071 | return written; |
3072 | } | |
3073 | EXPORT_SYMBOL(generic_file_direct_write); | |
3074 | ||
eb2be189 NP |
3075 | /* |
3076 | * Find or create a page at the given pagecache position. Return the locked | |
3077 | * page. This function is specifically for buffered writes. | |
3078 | */ | |
54566b2c NP |
3079 | struct page *grab_cache_page_write_begin(struct address_space *mapping, |
3080 | pgoff_t index, unsigned flags) | |
eb2be189 | 3081 | { |
eb2be189 | 3082 | struct page *page; |
bbddabe2 | 3083 | int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; |
0faa70cb | 3084 | |
54566b2c | 3085 | if (flags & AOP_FLAG_NOFS) |
2457aec6 MG |
3086 | fgp_flags |= FGP_NOFS; |
3087 | ||
3088 | page = pagecache_get_page(mapping, index, fgp_flags, | |
45f87de5 | 3089 | mapping_gfp_mask(mapping)); |
c585a267 | 3090 | if (page) |
2457aec6 | 3091 | wait_for_stable_page(page); |
eb2be189 | 3092 | |
eb2be189 NP |
3093 | return page; |
3094 | } | |
54566b2c | 3095 | EXPORT_SYMBOL(grab_cache_page_write_begin); |
eb2be189 | 3096 | |
3b93f911 | 3097 | ssize_t generic_perform_write(struct file *file, |
afddba49 NP |
3098 | struct iov_iter *i, loff_t pos) |
3099 | { | |
3100 | struct address_space *mapping = file->f_mapping; | |
3101 | const struct address_space_operations *a_ops = mapping->a_ops; | |
3102 | long status = 0; | |
3103 | ssize_t written = 0; | |
674b892e NP |
3104 | unsigned int flags = 0; |
3105 | ||
afddba49 NP |
3106 | do { |
3107 | struct page *page; | |
afddba49 NP |
3108 | unsigned long offset; /* Offset into pagecache page */ |
3109 | unsigned long bytes; /* Bytes to write to page */ | |
3110 | size_t copied; /* Bytes copied from user */ | |
3111 | void *fsdata; | |
3112 | ||
09cbfeaf KS |
3113 | offset = (pos & (PAGE_SIZE - 1)); |
3114 | bytes = min_t(unsigned long, PAGE_SIZE - offset, | |
afddba49 NP |
3115 | iov_iter_count(i)); |
3116 | ||
3117 | again: | |
00a3d660 LT |
3118 | /* |
3119 | * Bring in the user page that we will copy from _first_. | |
3120 | * Otherwise there's a nasty deadlock on copying from the | |
3121 | * same page as we're writing to, without it being marked | |
3122 | * up-to-date. | |
3123 | * | |
3124 | * Not only is this an optimisation, but it is also required | |
3125 | * to check that the address is actually valid, when atomic | |
3126 | * usercopies are used, below. | |
3127 | */ | |
3128 | if (unlikely(iov_iter_fault_in_readable(i, bytes))) { | |
3129 | status = -EFAULT; | |
3130 | break; | |
3131 | } | |
3132 | ||
296291cd JK |
3133 | if (fatal_signal_pending(current)) { |
3134 | status = -EINTR; | |
3135 | break; | |
3136 | } | |
3137 | ||
674b892e | 3138 | status = a_ops->write_begin(file, mapping, pos, bytes, flags, |
afddba49 | 3139 | &page, &fsdata); |
2457aec6 | 3140 | if (unlikely(status < 0)) |
afddba49 NP |
3141 | break; |
3142 | ||
931e80e4 | 3143 | if (mapping_writably_mapped(mapping)) |
3144 | flush_dcache_page(page); | |
00a3d660 | 3145 | |
afddba49 | 3146 | copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); |
afddba49 NP |
3147 | flush_dcache_page(page); |
3148 | ||
3149 | status = a_ops->write_end(file, mapping, pos, bytes, copied, | |
3150 | page, fsdata); | |
3151 | if (unlikely(status < 0)) | |
3152 | break; | |
3153 | copied = status; | |
3154 | ||
3155 | cond_resched(); | |
3156 | ||
124d3b70 | 3157 | iov_iter_advance(i, copied); |
afddba49 NP |
3158 | if (unlikely(copied == 0)) { |
3159 | /* | |
3160 | * If we were unable to copy any data at all, we must | |
3161 | * fall back to a single segment length write. | |
3162 | * | |
3163 | * If we didn't fallback here, we could livelock | |
3164 | * because not all segments in the iov can be copied at | |
3165 | * once without a pagefault. | |
3166 | */ | |
09cbfeaf | 3167 | bytes = min_t(unsigned long, PAGE_SIZE - offset, |
afddba49 NP |
3168 | iov_iter_single_seg_count(i)); |
3169 | goto again; | |
3170 | } | |
afddba49 NP |
3171 | pos += copied; |
3172 | written += copied; | |
3173 | ||
3174 | balance_dirty_pages_ratelimited(mapping); | |
afddba49 NP |
3175 | } while (iov_iter_count(i)); |
3176 | ||
3177 | return written ? written : status; | |
3178 | } | |
3b93f911 | 3179 | EXPORT_SYMBOL(generic_perform_write); |
1da177e4 | 3180 | |
e4dd9de3 | 3181 | /** |
8174202b | 3182 | * __generic_file_write_iter - write data to a file |
e4dd9de3 | 3183 | * @iocb: IO state structure (file, offset, etc.) |
8174202b | 3184 | * @from: iov_iter with data to write |
e4dd9de3 JK |
3185 | * |
3186 | * This function does all the work needed for actually writing data to a | |
3187 | * file. It does all basic checks, removes SUID from the file, updates | |
3188 | * modification times and calls proper subroutines depending on whether we | |
3189 | * do direct IO or a standard buffered write. | |
3190 | * | |
3191 | * It expects i_mutex to be grabbed unless we work on a block device or similar | |
3192 | * object which does not need locking at all. | |
3193 | * | |
3194 | * This function does *not* take care of syncing data in case of O_SYNC write. | |
3195 | * A caller has to handle it. This is mainly due to the fact that we want to | |
3196 | * avoid syncing under i_mutex. | |
3197 | */ | |
8174202b | 3198 | ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 LT |
3199 | { |
3200 | struct file *file = iocb->ki_filp; | |
fb5527e6 | 3201 | struct address_space * mapping = file->f_mapping; |
1da177e4 | 3202 | struct inode *inode = mapping->host; |
3b93f911 | 3203 | ssize_t written = 0; |
1da177e4 | 3204 | ssize_t err; |
3b93f911 | 3205 | ssize_t status; |
1da177e4 | 3206 | |
1da177e4 | 3207 | /* We can write back this queue in page reclaim */ |
de1414a6 | 3208 | current->backing_dev_info = inode_to_bdi(inode); |
5fa8e0a1 | 3209 | err = file_remove_privs(file); |
1da177e4 LT |
3210 | if (err) |
3211 | goto out; | |
3212 | ||
c3b2da31 JB |
3213 | err = file_update_time(file); |
3214 | if (err) | |
3215 | goto out; | |
1da177e4 | 3216 | |
2ba48ce5 | 3217 | if (iocb->ki_flags & IOCB_DIRECT) { |
0b8def9d | 3218 | loff_t pos, endbyte; |
fb5527e6 | 3219 | |
1af5bb49 | 3220 | written = generic_file_direct_write(iocb, from); |
1da177e4 | 3221 | /* |
fbbbad4b MW |
3222 | * If the write stopped short of completing, fall back to |
3223 | * buffered writes. Some filesystems do this for writes to | |
3224 | * holes, for example. For DAX files, a buffered write will | |
3225 | * not succeed (even if it did, DAX does not handle dirty | |
3226 | * page-cache pages correctly). | |
1da177e4 | 3227 | */ |
0b8def9d | 3228 | if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) |
fbbbad4b MW |
3229 | goto out; |
3230 | ||
0b8def9d | 3231 | status = generic_perform_write(file, from, pos = iocb->ki_pos); |
fb5527e6 | 3232 | /* |
3b93f911 | 3233 | * If generic_perform_write() returned a synchronous error |
fb5527e6 JM |
3234 | * then we want to return the number of bytes which were |
3235 | * direct-written, or the error code if that was zero. Note | |
3236 | * that this differs from normal direct-io semantics, which | |
3237 | * will return -EFOO even if some bytes were written. | |
3238 | */ | |
60bb4529 | 3239 | if (unlikely(status < 0)) { |
3b93f911 | 3240 | err = status; |
fb5527e6 JM |
3241 | goto out; |
3242 | } | |
fb5527e6 JM |
3243 | /* |
3244 | * We need to ensure that the page cache pages are written to | |
3245 | * disk and invalidated to preserve the expected O_DIRECT | |
3246 | * semantics. | |
3247 | */ | |
3b93f911 | 3248 | endbyte = pos + status - 1; |
0b8def9d | 3249 | err = filemap_write_and_wait_range(mapping, pos, endbyte); |
fb5527e6 | 3250 | if (err == 0) { |
0b8def9d | 3251 | iocb->ki_pos = endbyte + 1; |
3b93f911 | 3252 | written += status; |
fb5527e6 | 3253 | invalidate_mapping_pages(mapping, |
09cbfeaf KS |
3254 | pos >> PAGE_SHIFT, |
3255 | endbyte >> PAGE_SHIFT); | |
fb5527e6 JM |
3256 | } else { |
3257 | /* | |
3258 | * We don't know how much we wrote, so just return | |
3259 | * the number of bytes which were direct-written | |
3260 | */ | |
3261 | } | |
3262 | } else { | |
0b8def9d AV |
3263 | written = generic_perform_write(file, from, iocb->ki_pos); |
3264 | if (likely(written > 0)) | |
3265 | iocb->ki_pos += written; | |
fb5527e6 | 3266 | } |
1da177e4 LT |
3267 | out: |
3268 | current->backing_dev_info = NULL; | |
3269 | return written ? written : err; | |
3270 | } | |
8174202b | 3271 | EXPORT_SYMBOL(__generic_file_write_iter); |
e4dd9de3 | 3272 | |
e4dd9de3 | 3273 | /** |
8174202b | 3274 | * generic_file_write_iter - write data to a file |
e4dd9de3 | 3275 | * @iocb: IO state structure |
8174202b | 3276 | * @from: iov_iter with data to write |
e4dd9de3 | 3277 | * |
8174202b | 3278 | * This is a wrapper around __generic_file_write_iter() to be used by most |
e4dd9de3 JK |
3279 | * filesystems. It takes care of syncing the file in case of O_SYNC file |
3280 | * and acquires i_mutex as needed. | |
3281 | */ | |
8174202b | 3282 | ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 LT |
3283 | { |
3284 | struct file *file = iocb->ki_filp; | |
148f948b | 3285 | struct inode *inode = file->f_mapping->host; |
1da177e4 | 3286 | ssize_t ret; |
1da177e4 | 3287 | |
5955102c | 3288 | inode_lock(inode); |
3309dd04 AV |
3289 | ret = generic_write_checks(iocb, from); |
3290 | if (ret > 0) | |
5f380c7f | 3291 | ret = __generic_file_write_iter(iocb, from); |
5955102c | 3292 | inode_unlock(inode); |
1da177e4 | 3293 | |
e2592217 CH |
3294 | if (ret > 0) |
3295 | ret = generic_write_sync(iocb, ret); | |
1da177e4 LT |
3296 | return ret; |
3297 | } | |
8174202b | 3298 | EXPORT_SYMBOL(generic_file_write_iter); |
1da177e4 | 3299 | |
cf9a2ae8 DH |
3300 | /** |
3301 | * try_to_release_page() - release old fs-specific metadata on a page | |
3302 | * | |
3303 | * @page: the page which the kernel is trying to free | |
3304 | * @gfp_mask: memory allocation flags (and I/O mode) | |
3305 | * | |
3306 | * The address_space is to try to release any data against the page | |
0e056eb5 | 3307 | * (presumably at page->private). If the release was successful, return '1'. |
cf9a2ae8 DH |
3308 | * Otherwise return zero. |
3309 | * | |
266cf658 DH |
3310 | * This may also be called if PG_fscache is set on a page, indicating that the |
3311 | * page is known to the local caching routines. | |
3312 | * | |
cf9a2ae8 | 3313 | * The @gfp_mask argument specifies whether I/O may be performed to release |
71baba4b | 3314 | * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). |
cf9a2ae8 | 3315 | * |
cf9a2ae8 DH |
3316 | */ |
3317 | int try_to_release_page(struct page *page, gfp_t gfp_mask) | |
3318 | { | |
3319 | struct address_space * const mapping = page->mapping; | |
3320 | ||
3321 | BUG_ON(!PageLocked(page)); | |
3322 | if (PageWriteback(page)) | |
3323 | return 0; | |
3324 | ||
3325 | if (mapping && mapping->a_ops->releasepage) | |
3326 | return mapping->a_ops->releasepage(page, gfp_mask); | |
3327 | return try_to_free_buffers(page); | |
3328 | } | |
3329 | ||
3330 | EXPORT_SYMBOL(try_to_release_page); |