]> Git Repo - linux.git/blame - mm/rmap.c
mm: Make compound_pincount always available
[linux.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <[email protected]>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <[email protected]> 2001
15 * File methods by Dave McCracken <[email protected]> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <[email protected]> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
9608703e 23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
c1e8d7c6 24 * mm->mmap_lock
730633f0
JK
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page) * (see hugetlbfs below)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28 * mapping->i_mmap_rwsem
29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in __set_page_dirty_buffers)
35 * lock_page_memcg move_lock (in __set_page_dirty_buffers)
36 * i_pages lock (widely used)
e809c3fe 37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
730633f0
JK
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
6a46079c 44 *
9608703e 45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
9b679320 46 * ->tasklist_lock
6a46079c 47 * pte map lock
c0d0381a
MK
48 *
49 * * hugetlbfs PageHuge() pages take locks in this order:
50 * mapping->i_mmap_rwsem
51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52 * page->flags PG_locked (lock_page)
1da177e4
LT
53 */
54
55#include <linux/mm.h>
6e84f315 56#include <linux/sched/mm.h>
29930025 57#include <linux/sched/task.h>
1da177e4
LT
58#include <linux/pagemap.h>
59#include <linux/swap.h>
60#include <linux/swapops.h>
61#include <linux/slab.h>
62#include <linux/init.h>
5ad64688 63#include <linux/ksm.h>
1da177e4
LT
64#include <linux/rmap.h>
65#include <linux/rcupdate.h>
b95f1b31 66#include <linux/export.h>
8a9f3ccd 67#include <linux/memcontrol.h>
cddb8a5c 68#include <linux/mmu_notifier.h>
64cdd548 69#include <linux/migrate.h>
0fe6e20b 70#include <linux/hugetlb.h>
444f84fd 71#include <linux/huge_mm.h>
ef5d437f 72#include <linux/backing-dev.h>
33c3fc71 73#include <linux/page_idle.h>
a5430dda 74#include <linux/memremap.h>
bce73e48 75#include <linux/userfaultfd_k.h>
1da177e4
LT
76
77#include <asm/tlbflush.h>
78
72b252ae
MG
79#include <trace/events/tlb.h>
80
b291f000
NP
81#include "internal.h"
82
fdd2e5f8 83static struct kmem_cache *anon_vma_cachep;
5beb4930 84static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
85
86static inline struct anon_vma *anon_vma_alloc(void)
87{
01d8b20d
PZ
88 struct anon_vma *anon_vma;
89
90 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
91 if (anon_vma) {
92 atomic_set(&anon_vma->refcount, 1);
7a3ef208
KK
93 anon_vma->degree = 1; /* Reference for first vma */
94 anon_vma->parent = anon_vma;
01d8b20d
PZ
95 /*
96 * Initialise the anon_vma root to point to itself. If called
97 * from fork, the root will be reset to the parents anon_vma.
98 */
99 anon_vma->root = anon_vma;
100 }
101
102 return anon_vma;
fdd2e5f8
AB
103}
104
01d8b20d 105static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 106{
01d8b20d 107 VM_BUG_ON(atomic_read(&anon_vma->refcount));
88c22088
PZ
108
109 /*
4fc3f1d6 110 * Synchronize against page_lock_anon_vma_read() such that
88c22088
PZ
111 * we can safely hold the lock without the anon_vma getting
112 * freed.
113 *
114 * Relies on the full mb implied by the atomic_dec_and_test() from
115 * put_anon_vma() against the acquire barrier implied by
4fc3f1d6 116 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
88c22088 117 *
4fc3f1d6
IM
118 * page_lock_anon_vma_read() VS put_anon_vma()
119 * down_read_trylock() atomic_dec_and_test()
88c22088 120 * LOCK MB
4fc3f1d6 121 * atomic_read() rwsem_is_locked()
88c22088
PZ
122 *
123 * LOCK should suffice since the actual taking of the lock must
124 * happen _before_ what follows.
125 */
7f39dda9 126 might_sleep();
5a505085 127 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
4fc3f1d6 128 anon_vma_lock_write(anon_vma);
08b52706 129 anon_vma_unlock_write(anon_vma);
88c22088
PZ
130 }
131
fdd2e5f8
AB
132 kmem_cache_free(anon_vma_cachep, anon_vma);
133}
1da177e4 134
dd34739c 135static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
5beb4930 136{
dd34739c 137 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
5beb4930
RR
138}
139
e574b5fd 140static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
141{
142 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
143}
144
6583a843
KC
145static void anon_vma_chain_link(struct vm_area_struct *vma,
146 struct anon_vma_chain *avc,
147 struct anon_vma *anon_vma)
148{
149 avc->vma = vma;
150 avc->anon_vma = anon_vma;
151 list_add(&avc->same_vma, &vma->anon_vma_chain);
bf181b9f 152 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
6583a843
KC
153}
154
d9d332e0 155/**
d5a187da 156 * __anon_vma_prepare - attach an anon_vma to a memory region
d9d332e0
LT
157 * @vma: the memory region in question
158 *
159 * This makes sure the memory mapping described by 'vma' has
160 * an 'anon_vma' attached to it, so that we can associate the
161 * anonymous pages mapped into it with that anon_vma.
162 *
d5a187da
VB
163 * The common case will be that we already have one, which
164 * is handled inline by anon_vma_prepare(). But if
23a0790a 165 * not we either need to find an adjacent mapping that we
d9d332e0
LT
166 * can re-use the anon_vma from (very common when the only
167 * reason for splitting a vma has been mprotect()), or we
168 * allocate a new one.
169 *
170 * Anon-vma allocations are very subtle, because we may have
4fc3f1d6 171 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
aaf1f990 172 * and that may actually touch the rwsem even in the newly
d9d332e0
LT
173 * allocated vma (it depends on RCU to make sure that the
174 * anon_vma isn't actually destroyed).
175 *
176 * As a result, we need to do proper anon_vma locking even
177 * for the new allocation. At the same time, we do not want
178 * to do any locking for the common case of already having
179 * an anon_vma.
180 *
c1e8d7c6 181 * This must be called with the mmap_lock held for reading.
d9d332e0 182 */
d5a187da 183int __anon_vma_prepare(struct vm_area_struct *vma)
1da177e4 184{
d5a187da
VB
185 struct mm_struct *mm = vma->vm_mm;
186 struct anon_vma *anon_vma, *allocated;
5beb4930 187 struct anon_vma_chain *avc;
1da177e4
LT
188
189 might_sleep();
1da177e4 190
d5a187da
VB
191 avc = anon_vma_chain_alloc(GFP_KERNEL);
192 if (!avc)
193 goto out_enomem;
194
195 anon_vma = find_mergeable_anon_vma(vma);
196 allocated = NULL;
197 if (!anon_vma) {
198 anon_vma = anon_vma_alloc();
199 if (unlikely(!anon_vma))
200 goto out_enomem_free_avc;
201 allocated = anon_vma;
202 }
5beb4930 203
d5a187da
VB
204 anon_vma_lock_write(anon_vma);
205 /* page_table_lock to protect against threads */
206 spin_lock(&mm->page_table_lock);
207 if (likely(!vma->anon_vma)) {
208 vma->anon_vma = anon_vma;
209 anon_vma_chain_link(vma, avc, anon_vma);
210 /* vma reference or self-parent link for new root */
211 anon_vma->degree++;
d9d332e0 212 allocated = NULL;
d5a187da
VB
213 avc = NULL;
214 }
215 spin_unlock(&mm->page_table_lock);
216 anon_vma_unlock_write(anon_vma);
1da177e4 217
d5a187da
VB
218 if (unlikely(allocated))
219 put_anon_vma(allocated);
220 if (unlikely(avc))
221 anon_vma_chain_free(avc);
31f2b0eb 222
1da177e4 223 return 0;
5beb4930
RR
224
225 out_enomem_free_avc:
226 anon_vma_chain_free(avc);
227 out_enomem:
228 return -ENOMEM;
1da177e4
LT
229}
230
bb4aa396
LT
231/*
232 * This is a useful helper function for locking the anon_vma root as
233 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
234 * have the same vma.
235 *
236 * Such anon_vma's should have the same root, so you'd expect to see
237 * just a single mutex_lock for the whole traversal.
238 */
239static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
240{
241 struct anon_vma *new_root = anon_vma->root;
242 if (new_root != root) {
243 if (WARN_ON_ONCE(root))
5a505085 244 up_write(&root->rwsem);
bb4aa396 245 root = new_root;
5a505085 246 down_write(&root->rwsem);
bb4aa396
LT
247 }
248 return root;
249}
250
251static inline void unlock_anon_vma_root(struct anon_vma *root)
252{
253 if (root)
5a505085 254 up_write(&root->rwsem);
bb4aa396
LT
255}
256
5beb4930
RR
257/*
258 * Attach the anon_vmas from src to dst.
259 * Returns 0 on success, -ENOMEM on failure.
7a3ef208 260 *
cb152a1a 261 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
47b390d2
WY
262 * anon_vma_fork(). The first three want an exact copy of src, while the last
263 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
264 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
265 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
266 *
267 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
268 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
269 * This prevents degradation of anon_vma hierarchy to endless linear chain in
270 * case of constantly forking task. On the other hand, an anon_vma with more
271 * than one child isn't reused even if there was no alive vma, thus rmap
272 * walker has a good chance of avoiding scanning the whole hierarchy when it
273 * searches where page is mapped.
5beb4930
RR
274 */
275int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 276{
5beb4930 277 struct anon_vma_chain *avc, *pavc;
bb4aa396 278 struct anon_vma *root = NULL;
5beb4930 279
646d87b4 280 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
bb4aa396
LT
281 struct anon_vma *anon_vma;
282
dd34739c
LT
283 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
284 if (unlikely(!avc)) {
285 unlock_anon_vma_root(root);
286 root = NULL;
287 avc = anon_vma_chain_alloc(GFP_KERNEL);
288 if (!avc)
289 goto enomem_failure;
290 }
bb4aa396
LT
291 anon_vma = pavc->anon_vma;
292 root = lock_anon_vma_root(root, anon_vma);
293 anon_vma_chain_link(dst, avc, anon_vma);
7a3ef208
KK
294
295 /*
296 * Reuse existing anon_vma if its degree lower than two,
297 * that means it has no vma and only one anon_vma child.
298 *
299 * Do not chose parent anon_vma, otherwise first child
300 * will always reuse it. Root anon_vma is never reused:
301 * it has self-parent reference and at least one child.
302 */
47b390d2
WY
303 if (!dst->anon_vma && src->anon_vma &&
304 anon_vma != src->anon_vma && anon_vma->degree < 2)
7a3ef208 305 dst->anon_vma = anon_vma;
5beb4930 306 }
7a3ef208
KK
307 if (dst->anon_vma)
308 dst->anon_vma->degree++;
bb4aa396 309 unlock_anon_vma_root(root);
5beb4930 310 return 0;
1da177e4 311
5beb4930 312 enomem_failure:
3fe89b3e
LY
313 /*
314 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
315 * decremented in unlink_anon_vmas().
316 * We can safely do this because callers of anon_vma_clone() don't care
317 * about dst->anon_vma if anon_vma_clone() failed.
318 */
319 dst->anon_vma = NULL;
5beb4930
RR
320 unlink_anon_vmas(dst);
321 return -ENOMEM;
1da177e4
LT
322}
323
5beb4930
RR
324/*
325 * Attach vma to its own anon_vma, as well as to the anon_vmas that
326 * the corresponding VMA in the parent process is attached to.
327 * Returns 0 on success, non-zero on failure.
328 */
329int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 330{
5beb4930
RR
331 struct anon_vma_chain *avc;
332 struct anon_vma *anon_vma;
c4ea95d7 333 int error;
1da177e4 334
5beb4930
RR
335 /* Don't bother if the parent process has no anon_vma here. */
336 if (!pvma->anon_vma)
337 return 0;
338
7a3ef208
KK
339 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
340 vma->anon_vma = NULL;
341
5beb4930
RR
342 /*
343 * First, attach the new VMA to the parent VMA's anon_vmas,
344 * so rmap can find non-COWed pages in child processes.
345 */
c4ea95d7
DF
346 error = anon_vma_clone(vma, pvma);
347 if (error)
348 return error;
5beb4930 349
7a3ef208
KK
350 /* An existing anon_vma has been reused, all done then. */
351 if (vma->anon_vma)
352 return 0;
353
5beb4930
RR
354 /* Then add our own anon_vma. */
355 anon_vma = anon_vma_alloc();
356 if (!anon_vma)
357 goto out_error;
dd34739c 358 avc = anon_vma_chain_alloc(GFP_KERNEL);
5beb4930
RR
359 if (!avc)
360 goto out_error_free_anon_vma;
5c341ee1
RR
361
362 /*
aaf1f990 363 * The root anon_vma's rwsem is the lock actually used when we
5c341ee1
RR
364 * lock any of the anon_vmas in this anon_vma tree.
365 */
366 anon_vma->root = pvma->anon_vma->root;
7a3ef208 367 anon_vma->parent = pvma->anon_vma;
76545066 368 /*
01d8b20d
PZ
369 * With refcounts, an anon_vma can stay around longer than the
370 * process it belongs to. The root anon_vma needs to be pinned until
371 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
372 */
373 get_anon_vma(anon_vma->root);
5beb4930
RR
374 /* Mark this anon_vma as the one where our new (COWed) pages go. */
375 vma->anon_vma = anon_vma;
4fc3f1d6 376 anon_vma_lock_write(anon_vma);
5c341ee1 377 anon_vma_chain_link(vma, avc, anon_vma);
7a3ef208 378 anon_vma->parent->degree++;
08b52706 379 anon_vma_unlock_write(anon_vma);
5beb4930
RR
380
381 return 0;
382
383 out_error_free_anon_vma:
01d8b20d 384 put_anon_vma(anon_vma);
5beb4930 385 out_error:
4946d54c 386 unlink_anon_vmas(vma);
5beb4930 387 return -ENOMEM;
1da177e4
LT
388}
389
5beb4930
RR
390void unlink_anon_vmas(struct vm_area_struct *vma)
391{
392 struct anon_vma_chain *avc, *next;
eee2acba 393 struct anon_vma *root = NULL;
5beb4930 394
5c341ee1
RR
395 /*
396 * Unlink each anon_vma chained to the VMA. This list is ordered
397 * from newest to oldest, ensuring the root anon_vma gets freed last.
398 */
5beb4930 399 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
eee2acba
PZ
400 struct anon_vma *anon_vma = avc->anon_vma;
401
402 root = lock_anon_vma_root(root, anon_vma);
bf181b9f 403 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
eee2acba
PZ
404
405 /*
406 * Leave empty anon_vmas on the list - we'll need
407 * to free them outside the lock.
408 */
f808c13f 409 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
7a3ef208 410 anon_vma->parent->degree--;
eee2acba 411 continue;
7a3ef208 412 }
eee2acba
PZ
413
414 list_del(&avc->same_vma);
415 anon_vma_chain_free(avc);
416 }
ee8ab190 417 if (vma->anon_vma) {
7a3ef208 418 vma->anon_vma->degree--;
ee8ab190
LX
419
420 /*
421 * vma would still be needed after unlink, and anon_vma will be prepared
422 * when handle fault.
423 */
424 vma->anon_vma = NULL;
425 }
eee2acba
PZ
426 unlock_anon_vma_root(root);
427
428 /*
429 * Iterate the list once more, it now only contains empty and unlinked
430 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
5a505085 431 * needing to write-acquire the anon_vma->root->rwsem.
eee2acba
PZ
432 */
433 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
434 struct anon_vma *anon_vma = avc->anon_vma;
435
e4c5800a 436 VM_WARN_ON(anon_vma->degree);
eee2acba
PZ
437 put_anon_vma(anon_vma);
438
5beb4930
RR
439 list_del(&avc->same_vma);
440 anon_vma_chain_free(avc);
441 }
442}
443
51cc5068 444static void anon_vma_ctor(void *data)
1da177e4 445{
a35afb83 446 struct anon_vma *anon_vma = data;
1da177e4 447
5a505085 448 init_rwsem(&anon_vma->rwsem);
83813267 449 atomic_set(&anon_vma->refcount, 0);
f808c13f 450 anon_vma->rb_root = RB_ROOT_CACHED;
1da177e4
LT
451}
452
453void __init anon_vma_init(void)
454{
455 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
5f0d5a3a 456 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
5d097056
VD
457 anon_vma_ctor);
458 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
459 SLAB_PANIC|SLAB_ACCOUNT);
1da177e4
LT
460}
461
462/*
6111e4ca
PZ
463 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
464 *
465 * Since there is no serialization what so ever against page_remove_rmap()
ad8a20cf
ML
466 * the best this function can do is return a refcount increased anon_vma
467 * that might have been relevant to this page.
6111e4ca
PZ
468 *
469 * The page might have been remapped to a different anon_vma or the anon_vma
470 * returned may already be freed (and even reused).
471 *
bc658c96
PZ
472 * In case it was remapped to a different anon_vma, the new anon_vma will be a
473 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
474 * ensure that any anon_vma obtained from the page will still be valid for as
475 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
476 *
6111e4ca
PZ
477 * All users of this function must be very careful when walking the anon_vma
478 * chain and verify that the page in question is indeed mapped in it
479 * [ something equivalent to page_mapped_in_vma() ].
480 *
091e4299
MC
481 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
482 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
483 * if there is a mapcount, we can dereference the anon_vma after observing
484 * those.
1da177e4 485 */
746b18d4 486struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 487{
746b18d4 488 struct anon_vma *anon_vma = NULL;
1da177e4
LT
489 unsigned long anon_mapping;
490
491 rcu_read_lock();
4db0c3c2 492 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
3ca7b3c5 493 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
494 goto out;
495 if (!page_mapped(page))
496 goto out;
497
498 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
499 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
500 anon_vma = NULL;
501 goto out;
502 }
f1819427
HD
503
504 /*
505 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
506 * freed. But if it has been unmapped, we have no security against the
507 * anon_vma structure being freed and reused (for another anon_vma:
5f0d5a3a 508 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
746b18d4 509 * above cannot corrupt).
f1819427 510 */
746b18d4 511 if (!page_mapped(page)) {
7f39dda9 512 rcu_read_unlock();
746b18d4 513 put_anon_vma(anon_vma);
7f39dda9 514 return NULL;
746b18d4 515 }
1da177e4
LT
516out:
517 rcu_read_unlock();
746b18d4
PZ
518
519 return anon_vma;
520}
521
88c22088
PZ
522/*
523 * Similar to page_get_anon_vma() except it locks the anon_vma.
524 *
525 * Its a little more complex as it tries to keep the fast path to a single
526 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
527 * reference like with page_get_anon_vma() and then block on the mutex.
528 */
4fc3f1d6 529struct anon_vma *page_lock_anon_vma_read(struct page *page)
746b18d4 530{
88c22088 531 struct anon_vma *anon_vma = NULL;
eee0f252 532 struct anon_vma *root_anon_vma;
88c22088 533 unsigned long anon_mapping;
746b18d4 534
88c22088 535 rcu_read_lock();
4db0c3c2 536 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
88c22088
PZ
537 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
538 goto out;
539 if (!page_mapped(page))
540 goto out;
541
542 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
4db0c3c2 543 root_anon_vma = READ_ONCE(anon_vma->root);
4fc3f1d6 544 if (down_read_trylock(&root_anon_vma->rwsem)) {
88c22088 545 /*
eee0f252
HD
546 * If the page is still mapped, then this anon_vma is still
547 * its anon_vma, and holding the mutex ensures that it will
bc658c96 548 * not go away, see anon_vma_free().
88c22088 549 */
eee0f252 550 if (!page_mapped(page)) {
4fc3f1d6 551 up_read(&root_anon_vma->rwsem);
88c22088
PZ
552 anon_vma = NULL;
553 }
554 goto out;
555 }
746b18d4 556
88c22088
PZ
557 /* trylock failed, we got to sleep */
558 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
559 anon_vma = NULL;
560 goto out;
561 }
562
563 if (!page_mapped(page)) {
7f39dda9 564 rcu_read_unlock();
88c22088 565 put_anon_vma(anon_vma);
7f39dda9 566 return NULL;
88c22088
PZ
567 }
568
569 /* we pinned the anon_vma, its safe to sleep */
570 rcu_read_unlock();
4fc3f1d6 571 anon_vma_lock_read(anon_vma);
88c22088
PZ
572
573 if (atomic_dec_and_test(&anon_vma->refcount)) {
574 /*
575 * Oops, we held the last refcount, release the lock
576 * and bail -- can't simply use put_anon_vma() because
4fc3f1d6 577 * we'll deadlock on the anon_vma_lock_write() recursion.
88c22088 578 */
4fc3f1d6 579 anon_vma_unlock_read(anon_vma);
88c22088
PZ
580 __put_anon_vma(anon_vma);
581 anon_vma = NULL;
582 }
583
584 return anon_vma;
585
586out:
587 rcu_read_unlock();
746b18d4 588 return anon_vma;
34bbd704
ON
589}
590
4fc3f1d6 591void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
34bbd704 592{
4fc3f1d6 593 anon_vma_unlock_read(anon_vma);
1da177e4
LT
594}
595
72b252ae 596#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
72b252ae
MG
597/*
598 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
599 * important if a PTE was dirty when it was unmapped that it's flushed
600 * before any IO is initiated on the page to prevent lost writes. Similarly,
601 * it must be flushed before freeing to prevent data leakage.
602 */
603void try_to_unmap_flush(void)
604{
605 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
72b252ae
MG
606
607 if (!tlb_ubc->flush_required)
608 return;
609
e73ad5ff 610 arch_tlbbatch_flush(&tlb_ubc->arch);
72b252ae 611 tlb_ubc->flush_required = false;
d950c947 612 tlb_ubc->writable = false;
72b252ae
MG
613}
614
d950c947
MG
615/* Flush iff there are potentially writable TLB entries that can race with IO */
616void try_to_unmap_flush_dirty(void)
617{
618 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
619
620 if (tlb_ubc->writable)
621 try_to_unmap_flush();
622}
623
5ee2fa2f
YH
624/*
625 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
626 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
627 */
628#define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
629#define TLB_FLUSH_BATCH_PENDING_MASK \
630 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
631#define TLB_FLUSH_BATCH_PENDING_LARGE \
632 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
633
c7ab0d2f 634static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
635{
636 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
5ee2fa2f 637 int batch, nbatch;
72b252ae 638
e73ad5ff 639 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
72b252ae 640 tlb_ubc->flush_required = true;
d950c947 641
3ea27719
MG
642 /*
643 * Ensure compiler does not re-order the setting of tlb_flush_batched
644 * before the PTE is cleared.
645 */
646 barrier();
5ee2fa2f
YH
647 batch = atomic_read(&mm->tlb_flush_batched);
648retry:
649 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
650 /*
651 * Prevent `pending' from catching up with `flushed' because of
652 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
653 * `pending' becomes large.
654 */
655 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
656 if (nbatch != batch) {
657 batch = nbatch;
658 goto retry;
659 }
660 } else {
661 atomic_inc(&mm->tlb_flush_batched);
662 }
3ea27719 663
d950c947
MG
664 /*
665 * If the PTE was dirty then it's best to assume it's writable. The
666 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
667 * before the page is queued for IO.
668 */
669 if (writable)
670 tlb_ubc->writable = true;
72b252ae
MG
671}
672
673/*
674 * Returns true if the TLB flush should be deferred to the end of a batch of
675 * unmap operations to reduce IPIs.
676 */
677static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
678{
679 bool should_defer = false;
680
681 if (!(flags & TTU_BATCH_FLUSH))
682 return false;
683
684 /* If remote CPUs need to be flushed then defer batch the flush */
685 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
686 should_defer = true;
687 put_cpu();
688
689 return should_defer;
690}
3ea27719
MG
691
692/*
693 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
694 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
695 * operation such as mprotect or munmap to race between reclaim unmapping
696 * the page and flushing the page. If this race occurs, it potentially allows
697 * access to data via a stale TLB entry. Tracking all mm's that have TLB
698 * batching in flight would be expensive during reclaim so instead track
699 * whether TLB batching occurred in the past and if so then do a flush here
700 * if required. This will cost one additional flush per reclaim cycle paid
701 * by the first operation at risk such as mprotect and mumap.
702 *
703 * This must be called under the PTL so that an access to tlb_flush_batched
704 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
705 * via the PTL.
706 */
707void flush_tlb_batched_pending(struct mm_struct *mm)
708{
5ee2fa2f
YH
709 int batch = atomic_read(&mm->tlb_flush_batched);
710 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
711 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
3ea27719 712
5ee2fa2f
YH
713 if (pending != flushed) {
714 flush_tlb_mm(mm);
3ea27719 715 /*
5ee2fa2f
YH
716 * If the new TLB flushing is pending during flushing, leave
717 * mm->tlb_flush_batched as is, to avoid losing flushing.
3ea27719 718 */
5ee2fa2f
YH
719 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
720 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
3ea27719
MG
721 }
722}
72b252ae 723#else
c7ab0d2f 724static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
72b252ae
MG
725{
726}
727
728static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
729{
730 return false;
731}
732#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
733
1da177e4 734/*
bf89c8c8 735 * At what user virtual address is page expected in vma?
ab941e0f 736 * Caller should check the page is actually part of the vma.
1da177e4
LT
737 */
738unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
739{
21d0d443 740 if (PageAnon(page)) {
4829b906
HD
741 struct anon_vma *page__anon_vma = page_anon_vma(page);
742 /*
743 * Note: swapoff's unuse_vma() is more efficient with this
744 * check, and needs it to match anon_vma when KSM is active.
745 */
746 if (!vma->anon_vma || !page__anon_vma ||
747 vma->anon_vma->root != page__anon_vma->root)
21d0d443 748 return -EFAULT;
31657170
JW
749 } else if (!vma->vm_file) {
750 return -EFAULT;
751 } else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
1da177e4 752 return -EFAULT;
31657170 753 }
494334e4
HD
754
755 return vma_address(page, vma);
1da177e4
LT
756}
757
6219049a
BL
758pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
759{
760 pgd_t *pgd;
c2febafc 761 p4d_t *p4d;
6219049a
BL
762 pud_t *pud;
763 pmd_t *pmd = NULL;
f72e7dcd 764 pmd_t pmde;
6219049a
BL
765
766 pgd = pgd_offset(mm, address);
767 if (!pgd_present(*pgd))
768 goto out;
769
c2febafc
KS
770 p4d = p4d_offset(pgd, address);
771 if (!p4d_present(*p4d))
772 goto out;
773
774 pud = pud_offset(p4d, address);
6219049a
BL
775 if (!pud_present(*pud))
776 goto out;
777
778 pmd = pmd_offset(pud, address);
f72e7dcd 779 /*
8809aa2d 780 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
f72e7dcd
HD
781 * without holding anon_vma lock for write. So when looking for a
782 * genuine pmde (in which to find pte), test present and !THP together.
783 */
e37c6982
CB
784 pmde = *pmd;
785 barrier();
f72e7dcd 786 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
6219049a
BL
787 pmd = NULL;
788out:
789 return pmd;
790}
791
8749cfea
VD
792struct page_referenced_arg {
793 int mapcount;
794 int referenced;
795 unsigned long vm_flags;
796 struct mem_cgroup *memcg;
797};
798/*
799 * arg: page_referenced_arg will be passed
800 */
e4b82222 801static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
8749cfea
VD
802 unsigned long address, void *arg)
803{
8749cfea 804 struct page_referenced_arg *pra = arg;
8eaedede
KS
805 struct page_vma_mapped_walk pvmw = {
806 .page = page,
807 .vma = vma,
808 .address = address,
809 };
8749cfea
VD
810 int referenced = 0;
811
8eaedede
KS
812 while (page_vma_mapped_walk(&pvmw)) {
813 address = pvmw.address;
b20ce5e0 814
47d4f3ee
HD
815 if ((vma->vm_flags & VM_LOCKED) &&
816 (!PageTransCompound(page) || !pvmw.pte)) {
817 /* Restore the mlock which got missed */
818 mlock_vma_page(page, vma, !pvmw.pte);
8eaedede
KS
819 page_vma_mapped_walk_done(&pvmw);
820 pra->vm_flags |= VM_LOCKED;
e4b82222 821 return false; /* To break the loop */
8eaedede 822 }
71e3aac0 823
8eaedede
KS
824 if (pvmw.pte) {
825 if (ptep_clear_flush_young_notify(vma, address,
826 pvmw.pte)) {
827 /*
828 * Don't treat a reference through
829 * a sequentially read mapping as such.
830 * If the page has been used in another mapping,
831 * we will catch it; if this other mapping is
832 * already gone, the unmap path will have set
833 * PG_referenced or activated the page.
834 */
835 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
836 referenced++;
837 }
838 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
839 if (pmdp_clear_flush_young_notify(vma, address,
840 pvmw.pmd))
8749cfea 841 referenced++;
8eaedede
KS
842 } else {
843 /* unexpected pmd-mapped page? */
844 WARN_ON_ONCE(1);
8749cfea 845 }
8eaedede
KS
846
847 pra->mapcount--;
b20ce5e0 848 }
b20ce5e0 849
33c3fc71
VD
850 if (referenced)
851 clear_page_idle(page);
852 if (test_and_clear_page_young(page))
853 referenced++;
854
9f32624b
JK
855 if (referenced) {
856 pra->referenced++;
47d4f3ee 857 pra->vm_flags |= vma->vm_flags & ~VM_LOCKED;
1da177e4 858 }
34bbd704 859
9f32624b 860 if (!pra->mapcount)
e4b82222 861 return false; /* To break the loop */
9f32624b 862
e4b82222 863 return true;
1da177e4
LT
864}
865
9f32624b 866static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
1da177e4 867{
9f32624b
JK
868 struct page_referenced_arg *pra = arg;
869 struct mem_cgroup *memcg = pra->memcg;
1da177e4 870
9f32624b
JK
871 if (!mm_match_cgroup(vma->vm_mm, memcg))
872 return true;
1da177e4 873
9f32624b 874 return false;
1da177e4
LT
875}
876
877/**
878 * page_referenced - test if the page was referenced
879 * @page: the page to test
880 * @is_locked: caller holds lock on the page
72835c86 881 * @memcg: target memory cgroup
6fe6b7e3 882 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
883 *
884 * Quick test_and_clear_referenced for all mappings to a page,
885 * returns the number of ptes which referenced the page.
886 */
6fe6b7e3
WF
887int page_referenced(struct page *page,
888 int is_locked,
72835c86 889 struct mem_cgroup *memcg,
6fe6b7e3 890 unsigned long *vm_flags)
1da177e4 891{
5ad64688 892 int we_locked = 0;
9f32624b 893 struct page_referenced_arg pra = {
b20ce5e0 894 .mapcount = total_mapcount(page),
9f32624b
JK
895 .memcg = memcg,
896 };
897 struct rmap_walk_control rwc = {
898 .rmap_one = page_referenced_one,
899 .arg = (void *)&pra,
900 .anon_lock = page_lock_anon_vma_read,
901 };
1da177e4 902
6fe6b7e3 903 *vm_flags = 0;
059d8442 904 if (!pra.mapcount)
9f32624b
JK
905 return 0;
906
907 if (!page_rmapping(page))
908 return 0;
909
910 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
911 we_locked = trylock_page(page);
912 if (!we_locked)
913 return 1;
1da177e4 914 }
9f32624b
JK
915
916 /*
917 * If we are reclaiming on behalf of a cgroup, skip
918 * counting on behalf of references from different
919 * cgroups
920 */
921 if (memcg) {
922 rwc.invalid_vma = invalid_page_referenced_vma;
923 }
924
c24f386c 925 rmap_walk(page, &rwc);
9f32624b
JK
926 *vm_flags = pra.vm_flags;
927
928 if (we_locked)
929 unlock_page(page);
930
931 return pra.referenced;
1da177e4
LT
932}
933
e4b82222 934static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
9853a407 935 unsigned long address, void *arg)
d08b3851 936{
f27176cf
KS
937 struct page_vma_mapped_walk pvmw = {
938 .page = page,
939 .vma = vma,
940 .address = address,
941 .flags = PVMW_SYNC,
942 };
ac46d4f3 943 struct mmu_notifier_range range;
9853a407 944 int *cleaned = arg;
d08b3851 945
369ea824
JG
946 /*
947 * We have to assume the worse case ie pmd for invalidation. Note that
948 * the page can not be free from this function.
949 */
7269f999
JG
950 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
951 0, vma, vma->vm_mm, address,
494334e4 952 vma_address_end(page, vma));
ac46d4f3 953 mmu_notifier_invalidate_range_start(&range);
369ea824 954
f27176cf
KS
955 while (page_vma_mapped_walk(&pvmw)) {
956 int ret = 0;
369ea824 957
1f18b296 958 address = pvmw.address;
f27176cf
KS
959 if (pvmw.pte) {
960 pte_t entry;
961 pte_t *pte = pvmw.pte;
962
963 if (!pte_dirty(*pte) && !pte_write(*pte))
964 continue;
965
785373b4
LT
966 flush_cache_page(vma, address, pte_pfn(*pte));
967 entry = ptep_clear_flush(vma, address, pte);
f27176cf
KS
968 entry = pte_wrprotect(entry);
969 entry = pte_mkclean(entry);
785373b4 970 set_pte_at(vma->vm_mm, address, pte, entry);
f27176cf
KS
971 ret = 1;
972 } else {
396bcc52 973#ifdef CONFIG_TRANSPARENT_HUGEPAGE
f27176cf
KS
974 pmd_t *pmd = pvmw.pmd;
975 pmd_t entry;
976
977 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
978 continue;
979
785373b4 980 flush_cache_page(vma, address, page_to_pfn(page));
024eee0e 981 entry = pmdp_invalidate(vma, address, pmd);
f27176cf
KS
982 entry = pmd_wrprotect(entry);
983 entry = pmd_mkclean(entry);
785373b4 984 set_pmd_at(vma->vm_mm, address, pmd, entry);
f27176cf
KS
985 ret = 1;
986#else
987 /* unexpected pmd-mapped page? */
988 WARN_ON_ONCE(1);
989#endif
990 }
d08b3851 991
0f10851e
JG
992 /*
993 * No need to call mmu_notifier_invalidate_range() as we are
994 * downgrading page table protection not changing it to point
995 * to a new page.
996 *
ad56b738 997 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
998 */
999 if (ret)
f27176cf 1000 (*cleaned)++;
c2fda5fe 1001 }
d08b3851 1002
ac46d4f3 1003 mmu_notifier_invalidate_range_end(&range);
369ea824 1004
e4b82222 1005 return true;
d08b3851
PZ
1006}
1007
9853a407 1008static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
d08b3851 1009{
9853a407 1010 if (vma->vm_flags & VM_SHARED)
871beb8c 1011 return false;
d08b3851 1012
871beb8c 1013 return true;
d08b3851
PZ
1014}
1015
d9c08e22 1016int folio_mkclean(struct folio *folio)
d08b3851 1017{
9853a407
JK
1018 int cleaned = 0;
1019 struct address_space *mapping;
1020 struct rmap_walk_control rwc = {
1021 .arg = (void *)&cleaned,
1022 .rmap_one = page_mkclean_one,
1023 .invalid_vma = invalid_mkclean_vma,
1024 };
d08b3851 1025
d9c08e22 1026 BUG_ON(!folio_test_locked(folio));
d08b3851 1027
d9c08e22 1028 if (!folio_mapped(folio))
9853a407
JK
1029 return 0;
1030
d9c08e22 1031 mapping = folio_mapping(folio);
9853a407
JK
1032 if (!mapping)
1033 return 0;
1034
d9c08e22 1035 rmap_walk(&folio->page, &rwc);
d08b3851 1036
9853a407 1037 return cleaned;
d08b3851 1038}
d9c08e22 1039EXPORT_SYMBOL_GPL(folio_mkclean);
d08b3851 1040
c44b6743
RR
1041/**
1042 * page_move_anon_rmap - move a page to our anon_vma
1043 * @page: the page to move to our anon_vma
1044 * @vma: the vma the page belongs to
c44b6743
RR
1045 *
1046 * When a page belongs exclusively to one process after a COW event,
1047 * that page can be moved into the anon_vma that belongs to just that
1048 * process, so the rmap code will not search the parent or sibling
1049 * processes.
1050 */
5a49973d 1051void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
c44b6743
RR
1052{
1053 struct anon_vma *anon_vma = vma->anon_vma;
1054
5a49973d
HD
1055 page = compound_head(page);
1056
309381fe 1057 VM_BUG_ON_PAGE(!PageLocked(page), page);
81d1b09c 1058 VM_BUG_ON_VMA(!anon_vma, vma);
c44b6743
RR
1059
1060 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
414e2fb8
VD
1061 /*
1062 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1063 * simultaneously, so a concurrent reader (eg page_referenced()'s
1064 * PageAnon()) will not see one without the other.
1065 */
1066 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
c44b6743
RR
1067}
1068
9617d95e 1069/**
4e1c1975 1070 * __page_set_anon_rmap - set up new anonymous rmap
451b9514 1071 * @page: Page or Hugepage to add to rmap
4e1c1975
AK
1072 * @vma: VM area to add page to.
1073 * @address: User virtual address of the mapping
e8a03feb 1074 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
1075 */
1076static void __page_set_anon_rmap(struct page *page,
e8a03feb 1077 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 1078{
e8a03feb 1079 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 1080
e8a03feb 1081 BUG_ON(!anon_vma);
ea90002b 1082
4e1c1975
AK
1083 if (PageAnon(page))
1084 return;
1085
ea90002b 1086 /*
e8a03feb
RR
1087 * If the page isn't exclusively mapped into this vma,
1088 * we must use the _oldest_ possible anon_vma for the
1089 * page mapping!
ea90002b 1090 */
4e1c1975 1091 if (!exclusive)
288468c3 1092 anon_vma = anon_vma->root;
9617d95e 1093
16f5e707
AS
1094 /*
1095 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1096 * Make sure the compiler doesn't split the stores of anon_vma and
1097 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1098 * could mistake the mapping for a struct address_space and crash.
1099 */
9617d95e 1100 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
16f5e707 1101 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
9617d95e 1102 page->index = linear_page_index(vma, address);
9617d95e
NP
1103}
1104
c97a9e10 1105/**
43d8eac4 1106 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
1107 * @page: the page to add the mapping to
1108 * @vma: the vm area in which the mapping is added
1109 * @address: the user virtual address mapped
1110 */
1111static void __page_check_anon_rmap(struct page *page,
1112 struct vm_area_struct *vma, unsigned long address)
1113{
c97a9e10
NP
1114 /*
1115 * The page's anon-rmap details (mapping and index) are guaranteed to
1116 * be set up correctly at this point.
1117 *
1118 * We have exclusion against page_add_anon_rmap because the caller
90aaca85 1119 * always holds the page locked.
c97a9e10
NP
1120 *
1121 * We have exclusion against page_add_new_anon_rmap because those pages
1122 * are initially only visible via the pagetables, and the pte is locked
1123 * over the call to page_add_new_anon_rmap.
1124 */
30c46382
YS
1125 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1126 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1127 page);
c97a9e10
NP
1128}
1129
1da177e4
LT
1130/**
1131 * page_add_anon_rmap - add pte mapping to an anonymous page
1132 * @page: the page to add the mapping to
1133 * @vma: the vm area in which the mapping is added
1134 * @address: the user virtual address mapped
d281ee61 1135 * @compound: charge the page as compound or small page
1da177e4 1136 *
5ad64688 1137 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
1138 * the anon_vma case: to serialize mapping,index checking after setting,
1139 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1140 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
1141 */
1142void page_add_anon_rmap(struct page *page,
d281ee61 1143 struct vm_area_struct *vma, unsigned long address, bool compound)
ad8c2ee8 1144{
d281ee61 1145 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
ad8c2ee8
RR
1146}
1147
1148/*
1149 * Special version of the above for do_swap_page, which often runs
1150 * into pages that are exclusively owned by the current process.
1151 * Everybody else should continue to use page_add_anon_rmap above.
1152 */
1153void do_page_add_anon_rmap(struct page *page,
d281ee61 1154 struct vm_area_struct *vma, unsigned long address, int flags)
1da177e4 1155{
53f9263b
KS
1156 bool compound = flags & RMAP_COMPOUND;
1157 bool first;
1158
be5d0a74
JW
1159 if (unlikely(PageKsm(page)))
1160 lock_page_memcg(page);
1161 else
1162 VM_BUG_ON_PAGE(!PageLocked(page), page);
1163
e9b61f19
KS
1164 if (compound) {
1165 atomic_t *mapcount;
53f9263b 1166 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
1167 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1168 mapcount = compound_mapcount_ptr(page);
1169 first = atomic_inc_and_test(mapcount);
53f9263b
KS
1170 } else {
1171 first = atomic_inc_and_test(&page->_mapcount);
1172 }
1173
79134171 1174 if (first) {
6c357848 1175 int nr = compound ? thp_nr_pages(page) : 1;
bea04b07
JZ
1176 /*
1177 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1178 * these counters are not modified in interrupt context, and
1179 * pte lock(a spinlock) is held, which implies preemption
1180 * disabled.
1181 */
65c45377 1182 if (compound)
69473e5d 1183 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
be5d0a74 1184 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
79134171 1185 }
5ad64688 1186
cea86fe2 1187 if (unlikely(PageKsm(page)))
be5d0a74 1188 unlock_page_memcg(page);
53f9263b 1189
5dbe0af4 1190 /* address might be in next vma when migration races vma_adjust */
cea86fe2 1191 else if (first)
d281ee61
KS
1192 __page_set_anon_rmap(page, vma, address,
1193 flags & RMAP_EXCLUSIVE);
69029cd5 1194 else
c97a9e10 1195 __page_check_anon_rmap(page, vma, address);
cea86fe2
HD
1196
1197 mlock_vma_page(page, vma, compound);
1da177e4
LT
1198}
1199
43d8eac4 1200/**
9617d95e
NP
1201 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1202 * @page: the page to add the mapping to
1203 * @vma: the vm area in which the mapping is added
1204 * @address: the user virtual address mapped
d281ee61 1205 * @compound: charge the page as compound or small page
9617d95e
NP
1206 *
1207 * Same as page_add_anon_rmap but must only be called on *new* pages.
1208 * This means the inc-and-test can be bypassed.
c97a9e10 1209 * Page does not have to be locked.
9617d95e
NP
1210 */
1211void page_add_new_anon_rmap(struct page *page,
d281ee61 1212 struct vm_area_struct *vma, unsigned long address, bool compound)
9617d95e 1213{
6c357848 1214 int nr = compound ? thp_nr_pages(page) : 1;
d281ee61 1215
81d1b09c 1216 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
fa9949da 1217 __SetPageSwapBacked(page);
d281ee61
KS
1218 if (compound) {
1219 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
53f9263b
KS
1220 /* increment count (starts at -1) */
1221 atomic_set(compound_mapcount_ptr(page), 0);
5232c63f 1222 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 1223
69473e5d 1224 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
53f9263b
KS
1225 } else {
1226 /* Anon THP always mapped first with PMD */
1227 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1228 /* increment count (starts at -1) */
1229 atomic_set(&page->_mapcount, 0);
d281ee61 1230 }
be5d0a74 1231 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
e8a03feb 1232 __page_set_anon_rmap(page, vma, address, 1);
9617d95e
NP
1233}
1234
1da177e4
LT
1235/**
1236 * page_add_file_rmap - add pte mapping to a file page
cea86fe2
HD
1237 * @page: the page to add the mapping to
1238 * @vma: the vm area in which the mapping is added
1239 * @compound: charge the page as compound or small page
1da177e4 1240 *
b8072f09 1241 * The caller needs to hold the pte lock.
1da177e4 1242 */
cea86fe2
HD
1243void page_add_file_rmap(struct page *page,
1244 struct vm_area_struct *vma, bool compound)
1da177e4 1245{
dd78fedd
KS
1246 int i, nr = 1;
1247
1248 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
62cccb8c 1249 lock_page_memcg(page);
dd78fedd 1250 if (compound && PageTransHuge(page)) {
a1528e21
MS
1251 int nr_pages = thp_nr_pages(page);
1252
1253 for (i = 0, nr = 0; i < nr_pages; i++) {
dd78fedd
KS
1254 if (atomic_inc_and_test(&page[i]._mapcount))
1255 nr++;
1256 }
1257 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1258 goto out;
99cb0dbd 1259 if (PageSwapBacked(page))
a1528e21
MS
1260 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1261 nr_pages);
99cb0dbd 1262 else
380780e7
MS
1263 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1264 nr_pages);
dd78fedd 1265 } else {
c8efc390
KS
1266 if (PageTransCompound(page) && page_mapping(page)) {
1267 VM_WARN_ON_ONCE(!PageLocked(page));
cea86fe2 1268 SetPageDoubleMap(compound_head(page));
9a73f61b 1269 }
dd78fedd
KS
1270 if (!atomic_inc_and_test(&page->_mapcount))
1271 goto out;
d69b042f 1272 }
00f3ca2c 1273 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
dd78fedd 1274out:
62cccb8c 1275 unlock_page_memcg(page);
cea86fe2
HD
1276
1277 mlock_vma_page(page, vma, compound);
1da177e4
LT
1278}
1279
dd78fedd 1280static void page_remove_file_rmap(struct page *page, bool compound)
8186eb6a 1281{
dd78fedd
KS
1282 int i, nr = 1;
1283
57dea93a 1284 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
8186eb6a 1285
53f9263b
KS
1286 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1287 if (unlikely(PageHuge(page))) {
1288 /* hugetlb pages are always mapped with pmds */
1289 atomic_dec(compound_mapcount_ptr(page));
be5d0a74 1290 return;
53f9263b 1291 }
8186eb6a 1292
53f9263b 1293 /* page still mapped by someone else? */
dd78fedd 1294 if (compound && PageTransHuge(page)) {
a1528e21
MS
1295 int nr_pages = thp_nr_pages(page);
1296
1297 for (i = 0, nr = 0; i < nr_pages; i++) {
dd78fedd
KS
1298 if (atomic_add_negative(-1, &page[i]._mapcount))
1299 nr++;
1300 }
1301 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
be5d0a74 1302 return;
99cb0dbd 1303 if (PageSwapBacked(page))
a1528e21
MS
1304 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1305 -nr_pages);
99cb0dbd 1306 else
380780e7
MS
1307 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1308 -nr_pages);
dd78fedd
KS
1309 } else {
1310 if (!atomic_add_negative(-1, &page->_mapcount))
be5d0a74 1311 return;
dd78fedd 1312 }
8186eb6a
JW
1313
1314 /*
00f3ca2c 1315 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
8186eb6a
JW
1316 * these counters are not modified in interrupt context, and
1317 * pte lock(a spinlock) is held, which implies preemption disabled.
1318 */
00f3ca2c 1319 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
8186eb6a
JW
1320}
1321
53f9263b
KS
1322static void page_remove_anon_compound_rmap(struct page *page)
1323{
1324 int i, nr;
1325
1326 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1327 return;
1328
1329 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1330 if (unlikely(PageHuge(page)))
1331 return;
1332
1333 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1334 return;
1335
69473e5d 1336 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
53f9263b
KS
1337
1338 if (TestClearPageDoubleMap(page)) {
1339 /*
1340 * Subpages can be mapped with PTEs too. Check how many of
f1fe80d4 1341 * them are still mapped.
53f9263b 1342 */
5eaf35ab 1343 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
53f9263b
KS
1344 if (atomic_add_negative(-1, &page[i]._mapcount))
1345 nr++;
1346 }
f1fe80d4
KS
1347
1348 /*
1349 * Queue the page for deferred split if at least one small
1350 * page of the compound page is unmapped, but at least one
1351 * small page is still mapped.
1352 */
5eaf35ab 1353 if (nr && nr < thp_nr_pages(page))
f1fe80d4 1354 deferred_split_huge_page(page);
53f9263b 1355 } else {
5eaf35ab 1356 nr = thp_nr_pages(page);
53f9263b
KS
1357 }
1358
f1fe80d4 1359 if (nr)
be5d0a74 1360 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
53f9263b
KS
1361}
1362
1da177e4
LT
1363/**
1364 * page_remove_rmap - take down pte mapping from a page
d281ee61 1365 * @page: page to remove mapping from
cea86fe2 1366 * @vma: the vm area from which the mapping is removed
d281ee61 1367 * @compound: uncharge the page as compound or small page
1da177e4 1368 *
b8072f09 1369 * The caller needs to hold the pte lock.
1da177e4 1370 */
cea86fe2
HD
1371void page_remove_rmap(struct page *page,
1372 struct vm_area_struct *vma, bool compound)
1da177e4 1373{
be5d0a74 1374 lock_page_memcg(page);
89c06bd5 1375
be5d0a74
JW
1376 if (!PageAnon(page)) {
1377 page_remove_file_rmap(page, compound);
1378 goto out;
1379 }
1380
1381 if (compound) {
1382 page_remove_anon_compound_rmap(page);
1383 goto out;
1384 }
53f9263b 1385
b904dcfe
KM
1386 /* page still mapped by someone else? */
1387 if (!atomic_add_negative(-1, &page->_mapcount))
be5d0a74 1388 goto out;
8186eb6a 1389
0fe6e20b 1390 /*
bea04b07
JZ
1391 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1392 * these counters are not modified in interrupt context, and
bea04b07 1393 * pte lock(a spinlock) is held, which implies preemption disabled.
0fe6e20b 1394 */
be5d0a74 1395 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
8186eb6a 1396
9a982250
KS
1397 if (PageTransCompound(page))
1398 deferred_split_huge_page(compound_head(page));
1399
b904dcfe
KM
1400 /*
1401 * It would be tidy to reset the PageAnon mapping here,
1402 * but that might overwrite a racing page_add_anon_rmap
1403 * which increments mapcount after us but sets mapping
2d4894b5 1404 * before us: so leave the reset to free_unref_page,
b904dcfe
KM
1405 * and remember that it's only reliable while mapped.
1406 * Leaving it set also helps swapoff to reinstate ptes
1407 * faster for those pages still in swapcache.
1408 */
be5d0a74
JW
1409out:
1410 unlock_page_memcg(page);
cea86fe2
HD
1411
1412 munlock_vma_page(page, vma, compound);
1da177e4
LT
1413}
1414
1415/*
52629506 1416 * @arg: enum ttu_flags will be passed to this argument
1da177e4 1417 */
e4b82222 1418static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
52629506 1419 unsigned long address, void *arg)
1da177e4
LT
1420{
1421 struct mm_struct *mm = vma->vm_mm;
c7ab0d2f
KS
1422 struct page_vma_mapped_walk pvmw = {
1423 .page = page,
1424 .vma = vma,
1425 .address = address,
1426 };
1da177e4 1427 pte_t pteval;
c7ab0d2f 1428 struct page *subpage;
785373b4 1429 bool ret = true;
ac46d4f3 1430 struct mmu_notifier_range range;
4708f318 1431 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1da177e4 1432
732ed558
HD
1433 /*
1434 * When racing against e.g. zap_pte_range() on another cpu,
1435 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1fb08ac6 1436 * try_to_unmap() may return before page_mapped() has become false,
732ed558
HD
1437 * if page table locking is skipped: use TTU_SYNC to wait for that.
1438 */
1439 if (flags & TTU_SYNC)
1440 pvmw.flags = PVMW_SYNC;
1441
a98a2f0c
AP
1442 if (flags & TTU_SPLIT_HUGE_PMD)
1443 split_huge_pmd_address(vma, address, false, page);
fec89c10 1444
369ea824 1445 /*
017b1660
MK
1446 * For THP, we have to assume the worse case ie pmd for invalidation.
1447 * For hugetlb, it could be much worse if we need to do pud
1448 * invalidation in the case of pmd sharing.
1449 *
1450 * Note that the page can not be free in this function as call of
1451 * try_to_unmap() must hold a reference on the page.
369ea824 1452 */
494334e4
HD
1453 range.end = PageKsm(page) ?
1454 address + PAGE_SIZE : vma_address_end(page, vma);
7269f999 1455 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
494334e4 1456 address, range.end);
017b1660
MK
1457 if (PageHuge(page)) {
1458 /*
1459 * If sharing is possible, start and end will be adjusted
1460 * accordingly.
1461 */
ac46d4f3
JG
1462 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1463 &range.end);
017b1660 1464 }
ac46d4f3 1465 mmu_notifier_invalidate_range_start(&range);
369ea824 1466
c7ab0d2f 1467 while (page_vma_mapped_walk(&pvmw)) {
cea86fe2
HD
1468 /* Unexpected PMD-mapped THP? */
1469 VM_BUG_ON_PAGE(!pvmw.pte, page);
1470
c7ab0d2f 1471 /*
cea86fe2 1472 * If the page is in an mlock()d vma, we must not swap it out.
c7ab0d2f 1473 */
efdb6720
HD
1474 if (!(flags & TTU_IGNORE_MLOCK) &&
1475 (vma->vm_flags & VM_LOCKED)) {
cea86fe2
HD
1476 /* Restore the mlock which got missed */
1477 mlock_vma_page(page, vma, false);
efdb6720
HD
1478 page_vma_mapped_walk_done(&pvmw);
1479 ret = false;
1480 break;
b87537d9 1481 }
c7ab0d2f 1482
8346242a 1483 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
785373b4
LT
1484 address = pvmw.address;
1485
336bf30e 1486 if (PageHuge(page) && !PageAnon(page)) {
c0d0381a
MK
1487 /*
1488 * To call huge_pmd_unshare, i_mmap_rwsem must be
1489 * held in write mode. Caller needs to explicitly
1490 * do this outside rmap routines.
1491 */
1492 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
34ae204f 1493 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
017b1660
MK
1494 /*
1495 * huge_pmd_unshare unmapped an entire PMD
1496 * page. There is no way of knowing exactly
1497 * which PMDs may be cached for this mm, so
1498 * we must flush them all. start/end were
1499 * already adjusted above to cover this range.
1500 */
ac46d4f3
JG
1501 flush_cache_range(vma, range.start, range.end);
1502 flush_tlb_range(vma, range.start, range.end);
1503 mmu_notifier_invalidate_range(mm, range.start,
1504 range.end);
017b1660
MK
1505
1506 /*
1507 * The ref count of the PMD page was dropped
1508 * which is part of the way map counting
1509 * is done for shared PMDs. Return 'true'
1510 * here. When there is no other sharing,
1511 * huge_pmd_unshare returns false and we will
1512 * unmap the actual page and drop map count
1513 * to zero.
1514 */
1515 page_vma_mapped_walk_done(&pvmw);
1516 break;
1517 }
1518 }
8346242a 1519
c7ab0d2f 1520 /* Nuke the page table entry. */
785373b4 1521 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
c7ab0d2f
KS
1522 if (should_defer_flush(mm, flags)) {
1523 /*
1524 * We clear the PTE but do not flush so potentially
1525 * a remote CPU could still be writing to the page.
1526 * If the entry was previously clean then the
1527 * architecture must guarantee that a clear->dirty
1528 * transition on a cached TLB entry is written through
1529 * and traps if the PTE is unmapped.
1530 */
785373b4 1531 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
c7ab0d2f
KS
1532
1533 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1534 } else {
785373b4 1535 pteval = ptep_clear_flush(vma, address, pvmw.pte);
c7ab0d2f 1536 }
72b252ae 1537
c7ab0d2f
KS
1538 /* Move the dirty bit to the page. Now the pte is gone. */
1539 if (pte_dirty(pteval))
1540 set_page_dirty(page);
1da177e4 1541
c7ab0d2f
KS
1542 /* Update high watermark before we lower rss */
1543 update_hiwater_rss(mm);
1da177e4 1544
c7ab0d2f 1545 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
5fd27b8e 1546 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
c7ab0d2f 1547 if (PageHuge(page)) {
d8c6546b 1548 hugetlb_count_sub(compound_nr(page), mm);
785373b4 1549 set_huge_swap_pte_at(mm, address,
5fd27b8e
PA
1550 pvmw.pte, pteval,
1551 vma_mmu_pagesize(vma));
c7ab0d2f
KS
1552 } else {
1553 dec_mm_counter(mm, mm_counter(page));
785373b4 1554 set_pte_at(mm, address, pvmw.pte, pteval);
c7ab0d2f 1555 }
365e9c87 1556
bce73e48 1557 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
c7ab0d2f
KS
1558 /*
1559 * The guest indicated that the page content is of no
1560 * interest anymore. Simply discard the pte, vmscan
1561 * will take care of the rest.
bce73e48
CB
1562 * A future reference will then fault in a new zero
1563 * page. When userfaultfd is active, we must not drop
1564 * this page though, as its main user (postcopy
1565 * migration) will not expect userfaults on already
1566 * copied pages.
c7ab0d2f 1567 */
eca56ff9 1568 dec_mm_counter(mm, mm_counter(page));
0f10851e
JG
1569 /* We have to invalidate as we cleared the pte */
1570 mmu_notifier_invalidate_range(mm, address,
1571 address + PAGE_SIZE);
c7ab0d2f
KS
1572 } else if (PageAnon(page)) {
1573 swp_entry_t entry = { .val = page_private(subpage) };
1574 pte_t swp_pte;
1575 /*
1576 * Store the swap location in the pte.
1577 * See handle_pte_fault() ...
1578 */
eb94a878
MK
1579 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1580 WARN_ON_ONCE(1);
83612a94 1581 ret = false;
369ea824 1582 /* We have to invalidate as we cleared the pte */
0f10851e
JG
1583 mmu_notifier_invalidate_range(mm, address,
1584 address + PAGE_SIZE);
eb94a878
MK
1585 page_vma_mapped_walk_done(&pvmw);
1586 break;
1587 }
c7ab0d2f 1588
802a3a92
SL
1589 /* MADV_FREE page check */
1590 if (!PageSwapBacked(page)) {
1591 if (!PageDirty(page)) {
0f10851e
JG
1592 /* Invalidate as we cleared the pte */
1593 mmu_notifier_invalidate_range(mm,
1594 address, address + PAGE_SIZE);
802a3a92
SL
1595 dec_mm_counter(mm, MM_ANONPAGES);
1596 goto discard;
1597 }
1598
1599 /*
1600 * If the page was redirtied, it cannot be
1601 * discarded. Remap the page to page table.
1602 */
785373b4 1603 set_pte_at(mm, address, pvmw.pte, pteval);
18863d3a 1604 SetPageSwapBacked(page);
e4b82222 1605 ret = false;
802a3a92
SL
1606 page_vma_mapped_walk_done(&pvmw);
1607 break;
c7ab0d2f 1608 }
854e9ed0 1609
c7ab0d2f 1610 if (swap_duplicate(entry) < 0) {
785373b4 1611 set_pte_at(mm, address, pvmw.pte, pteval);
e4b82222 1612 ret = false;
c7ab0d2f
KS
1613 page_vma_mapped_walk_done(&pvmw);
1614 break;
1615 }
ca827d55
KA
1616 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1617 set_pte_at(mm, address, pvmw.pte, pteval);
1618 ret = false;
1619 page_vma_mapped_walk_done(&pvmw);
1620 break;
1621 }
c7ab0d2f
KS
1622 if (list_empty(&mm->mmlist)) {
1623 spin_lock(&mmlist_lock);
1624 if (list_empty(&mm->mmlist))
1625 list_add(&mm->mmlist, &init_mm.mmlist);
1626 spin_unlock(&mmlist_lock);
1627 }
854e9ed0 1628 dec_mm_counter(mm, MM_ANONPAGES);
c7ab0d2f
KS
1629 inc_mm_counter(mm, MM_SWAPENTS);
1630 swp_pte = swp_entry_to_pte(entry);
1631 if (pte_soft_dirty(pteval))
1632 swp_pte = pte_swp_mksoft_dirty(swp_pte);
f45ec5ff
PX
1633 if (pte_uffd_wp(pteval))
1634 swp_pte = pte_swp_mkuffd_wp(swp_pte);
785373b4 1635 set_pte_at(mm, address, pvmw.pte, swp_pte);
0f10851e
JG
1636 /* Invalidate as we cleared the pte */
1637 mmu_notifier_invalidate_range(mm, address,
1638 address + PAGE_SIZE);
1639 } else {
1640 /*
906f9cdf
HD
1641 * This is a locked file-backed page, thus it cannot
1642 * be removed from the page cache and replaced by a new
1643 * page before mmu_notifier_invalidate_range_end, so no
0f10851e
JG
1644 * concurrent thread might update its page table to
1645 * point at new page while a device still is using this
1646 * page.
1647 *
ad56b738 1648 * See Documentation/vm/mmu_notifier.rst
0f10851e 1649 */
c7ab0d2f 1650 dec_mm_counter(mm, mm_counter_file(page));
0f10851e 1651 }
854e9ed0 1652discard:
0f10851e
JG
1653 /*
1654 * No need to call mmu_notifier_invalidate_range() it has be
1655 * done above for all cases requiring it to happen under page
1656 * table lock before mmu_notifier_invalidate_range_end()
1657 *
ad56b738 1658 * See Documentation/vm/mmu_notifier.rst
0f10851e 1659 */
cea86fe2 1660 page_remove_rmap(subpage, vma, PageHuge(page));
b7435507
HD
1661 if (vma->vm_flags & VM_LOCKED)
1662 mlock_page_drain(smp_processor_id());
c7ab0d2f 1663 put_page(page);
c7ab0d2f 1664 }
369ea824 1665
ac46d4f3 1666 mmu_notifier_invalidate_range_end(&range);
369ea824 1667
caed0f48 1668 return ret;
1da177e4
LT
1669}
1670
52629506
JK
1671static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1672{
222100ee 1673 return vma_is_temporary_stack(vma);
52629506
JK
1674}
1675
b7e188ec 1676static int page_not_mapped(struct page *page)
52629506 1677{
b7e188ec 1678 return !page_mapped(page);
2a52bcbc 1679}
52629506 1680
1da177e4
LT
1681/**
1682 * try_to_unmap - try to remove all page table mappings to a page
1683 * @page: the page to get unmapped
14fa31b8 1684 * @flags: action and flags
1da177e4
LT
1685 *
1686 * Tries to remove all the page table entries which are mapping this
1687 * page, used in the pageout path. Caller must hold the page lock.
1da177e4 1688 *
1fb08ac6
YS
1689 * It is the caller's responsibility to check if the page is still
1690 * mapped when needed (use TTU_SYNC to prevent accounting races).
1da177e4 1691 */
1fb08ac6 1692void try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4 1693{
52629506
JK
1694 struct rmap_walk_control rwc = {
1695 .rmap_one = try_to_unmap_one,
802a3a92 1696 .arg = (void *)flags,
b7e188ec 1697 .done = page_not_mapped,
52629506
JK
1698 .anon_lock = page_lock_anon_vma_read,
1699 };
1da177e4 1700
a98a2f0c
AP
1701 if (flags & TTU_RMAP_LOCKED)
1702 rmap_walk_locked(page, &rwc);
1703 else
1704 rmap_walk(page, &rwc);
1705}
1706
1707/*
1708 * @arg: enum ttu_flags will be passed to this argument.
1709 *
1710 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
64b586d1 1711 * containing migration entries.
a98a2f0c
AP
1712 */
1713static bool try_to_migrate_one(struct page *page, struct vm_area_struct *vma,
1714 unsigned long address, void *arg)
1715{
1716 struct mm_struct *mm = vma->vm_mm;
1717 struct page_vma_mapped_walk pvmw = {
1718 .page = page,
1719 .vma = vma,
1720 .address = address,
1721 };
1722 pte_t pteval;
1723 struct page *subpage;
1724 bool ret = true;
1725 struct mmu_notifier_range range;
1726 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1727
a98a2f0c
AP
1728 /*
1729 * When racing against e.g. zap_pte_range() on another cpu,
1730 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1731 * try_to_migrate() may return before page_mapped() has become false,
1732 * if page table locking is skipped: use TTU_SYNC to wait for that.
1733 */
1734 if (flags & TTU_SYNC)
1735 pvmw.flags = PVMW_SYNC;
1736
1737 /*
1738 * unmap_page() in mm/huge_memory.c is the only user of migration with
1739 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1740 */
1741 if (flags & TTU_SPLIT_HUGE_PMD)
1742 split_huge_pmd_address(vma, address, true, page);
1743
1744 /*
1745 * For THP, we have to assume the worse case ie pmd for invalidation.
1746 * For hugetlb, it could be much worse if we need to do pud
1747 * invalidation in the case of pmd sharing.
1748 *
1749 * Note that the page can not be free in this function as call of
1750 * try_to_unmap() must hold a reference on the page.
1751 */
1752 range.end = PageKsm(page) ?
1753 address + PAGE_SIZE : vma_address_end(page, vma);
1754 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1755 address, range.end);
1756 if (PageHuge(page)) {
1757 /*
1758 * If sharing is possible, start and end will be adjusted
1759 * accordingly.
1760 */
1761 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1762 &range.end);
1763 }
1764 mmu_notifier_invalidate_range_start(&range);
1765
1766 while (page_vma_mapped_walk(&pvmw)) {
1767#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1768 /* PMD-mapped THP migration entry */
1769 if (!pvmw.pte) {
1770 VM_BUG_ON_PAGE(PageHuge(page) ||
1771 !PageTransCompound(page), page);
1772
1773 set_pmd_migration_entry(&pvmw, page);
1774 continue;
1775 }
1776#endif
1777
1778 /* Unexpected PMD-mapped THP? */
1779 VM_BUG_ON_PAGE(!pvmw.pte, page);
1780
1781 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1782 address = pvmw.address;
1783
1784 if (PageHuge(page) && !PageAnon(page)) {
1785 /*
1786 * To call huge_pmd_unshare, i_mmap_rwsem must be
1787 * held in write mode. Caller needs to explicitly
1788 * do this outside rmap routines.
1789 */
1790 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1791 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1792 /*
1793 * huge_pmd_unshare unmapped an entire PMD
1794 * page. There is no way of knowing exactly
1795 * which PMDs may be cached for this mm, so
1796 * we must flush them all. start/end were
1797 * already adjusted above to cover this range.
1798 */
1799 flush_cache_range(vma, range.start, range.end);
1800 flush_tlb_range(vma, range.start, range.end);
1801 mmu_notifier_invalidate_range(mm, range.start,
1802 range.end);
1803
1804 /*
1805 * The ref count of the PMD page was dropped
1806 * which is part of the way map counting
1807 * is done for shared PMDs. Return 'true'
1808 * here. When there is no other sharing,
1809 * huge_pmd_unshare returns false and we will
1810 * unmap the actual page and drop map count
1811 * to zero.
1812 */
1813 page_vma_mapped_walk_done(&pvmw);
1814 break;
1815 }
1816 }
1817
1818 /* Nuke the page table entry. */
1819 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1820 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1821
1822 /* Move the dirty bit to the page. Now the pte is gone. */
1823 if (pte_dirty(pteval))
1824 set_page_dirty(page);
1825
1826 /* Update high watermark before we lower rss */
1827 update_hiwater_rss(mm);
1828
1829 if (is_zone_device_page(page)) {
3d88705c 1830 unsigned long pfn = page_to_pfn(page);
a98a2f0c
AP
1831 swp_entry_t entry;
1832 pte_t swp_pte;
1833
1834 /*
1835 * Store the pfn of the page in a special migration
1836 * pte. do_swap_page() will wait until the migration
1837 * pte is removed and then restart fault handling.
1838 */
3d88705c
AP
1839 entry = pte_to_swp_entry(pteval);
1840 if (is_writable_device_private_entry(entry))
1841 entry = make_writable_migration_entry(pfn);
1842 else
1843 entry = make_readable_migration_entry(pfn);
a98a2f0c
AP
1844 swp_pte = swp_entry_to_pte(entry);
1845
1846 /*
1847 * pteval maps a zone device page and is therefore
1848 * a swap pte.
1849 */
1850 if (pte_swp_soft_dirty(pteval))
1851 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1852 if (pte_swp_uffd_wp(pteval))
1853 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1854 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1855 /*
1856 * No need to invalidate here it will synchronize on
1857 * against the special swap migration pte.
1858 *
1859 * The assignment to subpage above was computed from a
1860 * swap PTE which results in an invalid pointer.
1861 * Since only PAGE_SIZE pages can currently be
1862 * migrated, just set it to page. This will need to be
1863 * changed when hugepage migrations to device private
1864 * memory are supported.
1865 */
1866 subpage = page;
1867 } else if (PageHWPoison(page)) {
1868 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1869 if (PageHuge(page)) {
1870 hugetlb_count_sub(compound_nr(page), mm);
1871 set_huge_swap_pte_at(mm, address,
1872 pvmw.pte, pteval,
1873 vma_mmu_pagesize(vma));
1874 } else {
1875 dec_mm_counter(mm, mm_counter(page));
1876 set_pte_at(mm, address, pvmw.pte, pteval);
1877 }
1878
1879 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1880 /*
1881 * The guest indicated that the page content is of no
1882 * interest anymore. Simply discard the pte, vmscan
1883 * will take care of the rest.
1884 * A future reference will then fault in a new zero
1885 * page. When userfaultfd is active, we must not drop
1886 * this page though, as its main user (postcopy
1887 * migration) will not expect userfaults on already
1888 * copied pages.
1889 */
1890 dec_mm_counter(mm, mm_counter(page));
1891 /* We have to invalidate as we cleared the pte */
1892 mmu_notifier_invalidate_range(mm, address,
1893 address + PAGE_SIZE);
1894 } else {
1895 swp_entry_t entry;
1896 pte_t swp_pte;
1897
1898 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1899 set_pte_at(mm, address, pvmw.pte, pteval);
1900 ret = false;
1901 page_vma_mapped_walk_done(&pvmw);
1902 break;
1903 }
1904
1905 /*
1906 * Store the pfn of the page in a special migration
1907 * pte. do_swap_page() will wait until the migration
1908 * pte is removed and then restart fault handling.
1909 */
1910 if (pte_write(pteval))
1911 entry = make_writable_migration_entry(
1912 page_to_pfn(subpage));
1913 else
1914 entry = make_readable_migration_entry(
1915 page_to_pfn(subpage));
1916
1917 swp_pte = swp_entry_to_pte(entry);
1918 if (pte_soft_dirty(pteval))
1919 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1920 if (pte_uffd_wp(pteval))
1921 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1922 set_pte_at(mm, address, pvmw.pte, swp_pte);
1923 /*
1924 * No need to invalidate here it will synchronize on
1925 * against the special swap migration pte.
1926 */
1927 }
1928
1929 /*
1930 * No need to call mmu_notifier_invalidate_range() it has be
1931 * done above for all cases requiring it to happen under page
1932 * table lock before mmu_notifier_invalidate_range_end()
1933 *
1934 * See Documentation/vm/mmu_notifier.rst
1935 */
cea86fe2 1936 page_remove_rmap(subpage, vma, PageHuge(page));
b7435507
HD
1937 if (vma->vm_flags & VM_LOCKED)
1938 mlock_page_drain(smp_processor_id());
a98a2f0c
AP
1939 put_page(page);
1940 }
1941
1942 mmu_notifier_invalidate_range_end(&range);
1943
1944 return ret;
1945}
1946
1947/**
1948 * try_to_migrate - try to replace all page table mappings with swap entries
1949 * @page: the page to replace page table entries for
1950 * @flags: action and flags
1951 *
1952 * Tries to remove all the page table entries which are mapping this page and
1953 * replace them with special swap entries. Caller must hold the page lock.
a98a2f0c
AP
1954 */
1955void try_to_migrate(struct page *page, enum ttu_flags flags)
1956{
1957 struct rmap_walk_control rwc = {
1958 .rmap_one = try_to_migrate_one,
1959 .arg = (void *)flags,
1960 .done = page_not_mapped,
1961 .anon_lock = page_lock_anon_vma_read,
1962 };
1963
1964 /*
1965 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
1966 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
1967 */
1968 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
1969 TTU_SYNC)))
1970 return;
1971
6c855fce
HD
1972 if (is_zone_device_page(page) && !is_device_private_page(page))
1973 return;
1974
52629506
JK
1975 /*
1976 * During exec, a temporary VMA is setup and later moved.
1977 * The VMA is moved under the anon_vma lock but not the
1978 * page tables leading to a race where migration cannot
1979 * find the migration ptes. Rather than increasing the
1980 * locking requirements of exec(), migration skips
1981 * temporary VMAs until after exec() completes.
1982 */
a98a2f0c 1983 if (!PageKsm(page) && PageAnon(page))
52629506
JK
1984 rwc.invalid_vma = invalid_migration_vma;
1985
2a52bcbc 1986 if (flags & TTU_RMAP_LOCKED)
33fc80e2 1987 rmap_walk_locked(page, &rwc);
2a52bcbc 1988 else
33fc80e2 1989 rmap_walk(page, &rwc);
1da177e4 1990}
81b4082d 1991
b756a3b5
AP
1992#ifdef CONFIG_DEVICE_PRIVATE
1993struct make_exclusive_args {
1994 struct mm_struct *mm;
1995 unsigned long address;
1996 void *owner;
1997 bool valid;
1998};
1999
2000static bool page_make_device_exclusive_one(struct page *page,
2001 struct vm_area_struct *vma, unsigned long address, void *priv)
2002{
2003 struct mm_struct *mm = vma->vm_mm;
2004 struct page_vma_mapped_walk pvmw = {
2005 .page = page,
2006 .vma = vma,
2007 .address = address,
2008 };
2009 struct make_exclusive_args *args = priv;
2010 pte_t pteval;
2011 struct page *subpage;
2012 bool ret = true;
2013 struct mmu_notifier_range range;
2014 swp_entry_t entry;
2015 pte_t swp_pte;
2016
2017 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2018 vma->vm_mm, address, min(vma->vm_end,
2019 address + page_size(page)), args->owner);
2020 mmu_notifier_invalidate_range_start(&range);
2021
2022 while (page_vma_mapped_walk(&pvmw)) {
2023 /* Unexpected PMD-mapped THP? */
2024 VM_BUG_ON_PAGE(!pvmw.pte, page);
2025
2026 if (!pte_present(*pvmw.pte)) {
2027 ret = false;
2028 page_vma_mapped_walk_done(&pvmw);
2029 break;
2030 }
2031
2032 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
2033 address = pvmw.address;
2034
2035 /* Nuke the page table entry. */
2036 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2037 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2038
2039 /* Move the dirty bit to the page. Now the pte is gone. */
2040 if (pte_dirty(pteval))
2041 set_page_dirty(page);
2042
2043 /*
2044 * Check that our target page is still mapped at the expected
2045 * address.
2046 */
2047 if (args->mm == mm && args->address == address &&
2048 pte_write(pteval))
2049 args->valid = true;
2050
2051 /*
2052 * Store the pfn of the page in a special migration
2053 * pte. do_swap_page() will wait until the migration
2054 * pte is removed and then restart fault handling.
2055 */
2056 if (pte_write(pteval))
2057 entry = make_writable_device_exclusive_entry(
2058 page_to_pfn(subpage));
2059 else
2060 entry = make_readable_device_exclusive_entry(
2061 page_to_pfn(subpage));
2062 swp_pte = swp_entry_to_pte(entry);
2063 if (pte_soft_dirty(pteval))
2064 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2065 if (pte_uffd_wp(pteval))
2066 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2067
2068 set_pte_at(mm, address, pvmw.pte, swp_pte);
2069
2070 /*
2071 * There is a reference on the page for the swap entry which has
2072 * been removed, so shouldn't take another.
2073 */
cea86fe2 2074 page_remove_rmap(subpage, vma, false);
b756a3b5
AP
2075 }
2076
2077 mmu_notifier_invalidate_range_end(&range);
2078
2079 return ret;
2080}
2081
2082/**
2083 * page_make_device_exclusive - mark the page exclusively owned by a device
2084 * @page: the page to replace page table entries for
2085 * @mm: the mm_struct where the page is expected to be mapped
2086 * @address: address where the page is expected to be mapped
2087 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2088 *
2089 * Tries to remove all the page table entries which are mapping this page and
2090 * replace them with special device exclusive swap entries to grant a device
2091 * exclusive access to the page. Caller must hold the page lock.
2092 *
2093 * Returns false if the page is still mapped, or if it could not be unmapped
2094 * from the expected address. Otherwise returns true (success).
2095 */
2096static bool page_make_device_exclusive(struct page *page, struct mm_struct *mm,
2097 unsigned long address, void *owner)
2098{
2099 struct make_exclusive_args args = {
2100 .mm = mm,
2101 .address = address,
2102 .owner = owner,
2103 .valid = false,
2104 };
2105 struct rmap_walk_control rwc = {
2106 .rmap_one = page_make_device_exclusive_one,
2107 .done = page_not_mapped,
2108 .anon_lock = page_lock_anon_vma_read,
2109 .arg = &args,
2110 };
2111
2112 /*
2113 * Restrict to anonymous pages for now to avoid potential writeback
2114 * issues. Also tail pages shouldn't be passed to rmap_walk so skip
2115 * those.
2116 */
2117 if (!PageAnon(page) || PageTail(page))
2118 return false;
2119
2120 rmap_walk(page, &rwc);
2121
2122 return args.valid && !page_mapcount(page);
2123}
2124
2125/**
2126 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2127 * @mm: mm_struct of assoicated target process
2128 * @start: start of the region to mark for exclusive device access
2129 * @end: end address of region
2130 * @pages: returns the pages which were successfully marked for exclusive access
2131 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2132 *
2133 * Returns: number of pages found in the range by GUP. A page is marked for
2134 * exclusive access only if the page pointer is non-NULL.
2135 *
2136 * This function finds ptes mapping page(s) to the given address range, locks
2137 * them and replaces mappings with special swap entries preventing userspace CPU
2138 * access. On fault these entries are replaced with the original mapping after
2139 * calling MMU notifiers.
2140 *
2141 * A driver using this to program access from a device must use a mmu notifier
2142 * critical section to hold a device specific lock during programming. Once
2143 * programming is complete it should drop the page lock and reference after
2144 * which point CPU access to the page will revoke the exclusive access.
2145 */
2146int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2147 unsigned long end, struct page **pages,
2148 void *owner)
2149{
2150 long npages = (end - start) >> PAGE_SHIFT;
2151 long i;
2152
2153 npages = get_user_pages_remote(mm, start, npages,
2154 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2155 pages, NULL, NULL);
2156 if (npages < 0)
2157 return npages;
2158
2159 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2160 if (!trylock_page(pages[i])) {
2161 put_page(pages[i]);
2162 pages[i] = NULL;
2163 continue;
2164 }
2165
2166 if (!page_make_device_exclusive(pages[i], mm, start, owner)) {
2167 unlock_page(pages[i]);
2168 put_page(pages[i]);
2169 pages[i] = NULL;
2170 }
2171 }
2172
2173 return npages;
2174}
2175EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2176#endif
2177
01d8b20d 2178void __put_anon_vma(struct anon_vma *anon_vma)
76545066 2179{
01d8b20d 2180 struct anon_vma *root = anon_vma->root;
76545066 2181
624483f3 2182 anon_vma_free(anon_vma);
01d8b20d
PZ
2183 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2184 anon_vma_free(root);
76545066 2185}
76545066 2186
0dd1c7bb
JK
2187static struct anon_vma *rmap_walk_anon_lock(struct page *page,
2188 struct rmap_walk_control *rwc)
faecd8dd
JK
2189{
2190 struct anon_vma *anon_vma;
2191
0dd1c7bb
JK
2192 if (rwc->anon_lock)
2193 return rwc->anon_lock(page);
2194
faecd8dd
JK
2195 /*
2196 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
2197 * because that depends on page_mapped(); but not all its usages
c1e8d7c6 2198 * are holding mmap_lock. Users without mmap_lock are required to
faecd8dd
JK
2199 * take a reference count to prevent the anon_vma disappearing
2200 */
2201 anon_vma = page_anon_vma(page);
2202 if (!anon_vma)
2203 return NULL;
2204
2205 anon_vma_lock_read(anon_vma);
2206 return anon_vma;
2207}
2208
e9995ef9 2209/*
e8351ac9
JK
2210 * rmap_walk_anon - do something to anonymous page using the object-based
2211 * rmap method
2212 * @page: the page to be handled
2213 * @rwc: control variable according to each walk type
2214 *
2215 * Find all the mappings of a page using the mapping pointer and the vma chains
2216 * contained in the anon_vma struct it points to.
e9995ef9 2217 */
1df631ae 2218static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
b9773199 2219 bool locked)
e9995ef9
HD
2220{
2221 struct anon_vma *anon_vma;
a8fa41ad 2222 pgoff_t pgoff_start, pgoff_end;
5beb4930 2223 struct anon_vma_chain *avc;
e9995ef9 2224
b9773199
KS
2225 if (locked) {
2226 anon_vma = page_anon_vma(page);
2227 /* anon_vma disappear under us? */
2228 VM_BUG_ON_PAGE(!anon_vma, page);
2229 } else {
2230 anon_vma = rmap_walk_anon_lock(page, rwc);
2231 }
e9995ef9 2232 if (!anon_vma)
1df631ae 2233 return;
faecd8dd 2234
a8fa41ad 2235 pgoff_start = page_to_pgoff(page);
6c357848 2236 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
a8fa41ad
KS
2237 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2238 pgoff_start, pgoff_end) {
5beb4930 2239 struct vm_area_struct *vma = avc->vma;
e9995ef9 2240 unsigned long address = vma_address(page, vma);
0dd1c7bb 2241
494334e4 2242 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
2243 cond_resched();
2244
0dd1c7bb
JK
2245 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2246 continue;
2247
e4b82222 2248 if (!rwc->rmap_one(page, vma, address, rwc->arg))
e9995ef9 2249 break;
0dd1c7bb
JK
2250 if (rwc->done && rwc->done(page))
2251 break;
e9995ef9 2252 }
b9773199
KS
2253
2254 if (!locked)
2255 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2256}
2257
e8351ac9
JK
2258/*
2259 * rmap_walk_file - do something to file page using the object-based rmap method
2260 * @page: the page to be handled
2261 * @rwc: control variable according to each walk type
2262 *
2263 * Find all the mappings of a page using the mapping pointer and the vma chains
2264 * contained in the address_space struct it points to.
e8351ac9 2265 */
1df631ae 2266static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
b9773199 2267 bool locked)
e9995ef9 2268{
b9773199 2269 struct address_space *mapping = page_mapping(page);
a8fa41ad 2270 pgoff_t pgoff_start, pgoff_end;
e9995ef9 2271 struct vm_area_struct *vma;
e9995ef9 2272
9f32624b
JK
2273 /*
2274 * The page lock not only makes sure that page->mapping cannot
2275 * suddenly be NULLified by truncation, it makes sure that the
2276 * structure at mapping cannot be freed and reused yet,
c8c06efa 2277 * so we can safely take mapping->i_mmap_rwsem.
9f32624b 2278 */
81d1b09c 2279 VM_BUG_ON_PAGE(!PageLocked(page), page);
9f32624b 2280
e9995ef9 2281 if (!mapping)
1df631ae 2282 return;
3dec0ba0 2283
a8fa41ad 2284 pgoff_start = page_to_pgoff(page);
6c357848 2285 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
b9773199
KS
2286 if (!locked)
2287 i_mmap_lock_read(mapping);
a8fa41ad
KS
2288 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2289 pgoff_start, pgoff_end) {
e9995ef9 2290 unsigned long address = vma_address(page, vma);
0dd1c7bb 2291
494334e4 2292 VM_BUG_ON_VMA(address == -EFAULT, vma);
ad12695f
AA
2293 cond_resched();
2294
0dd1c7bb
JK
2295 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2296 continue;
2297
e4b82222 2298 if (!rwc->rmap_one(page, vma, address, rwc->arg))
0dd1c7bb
JK
2299 goto done;
2300 if (rwc->done && rwc->done(page))
2301 goto done;
e9995ef9 2302 }
0dd1c7bb 2303
0dd1c7bb 2304done:
b9773199
KS
2305 if (!locked)
2306 i_mmap_unlock_read(mapping);
e9995ef9
HD
2307}
2308
1df631ae 2309void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
e9995ef9 2310{
e9995ef9 2311 if (unlikely(PageKsm(page)))
1df631ae 2312 rmap_walk_ksm(page, rwc);
e9995ef9 2313 else if (PageAnon(page))
1df631ae 2314 rmap_walk_anon(page, rwc, false);
b9773199 2315 else
1df631ae 2316 rmap_walk_file(page, rwc, false);
b9773199
KS
2317}
2318
2319/* Like rmap_walk, but caller holds relevant rmap lock */
1df631ae 2320void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
b9773199
KS
2321{
2322 /* no ksm support for now */
2323 VM_BUG_ON_PAGE(PageKsm(page), page);
2324 if (PageAnon(page))
1df631ae 2325 rmap_walk_anon(page, rwc, true);
e9995ef9 2326 else
1df631ae 2327 rmap_walk_file(page, rwc, true);
e9995ef9 2328}
0fe6e20b 2329
e3390f67 2330#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b 2331/*
451b9514 2332 * The following two functions are for anonymous (private mapped) hugepages.
0fe6e20b
NH
2333 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2334 * and no lru code, because we handle hugepages differently from common pages.
2335 */
0fe6e20b
NH
2336void hugepage_add_anon_rmap(struct page *page,
2337 struct vm_area_struct *vma, unsigned long address)
2338{
2339 struct anon_vma *anon_vma = vma->anon_vma;
2340 int first;
a850ea30
NH
2341
2342 BUG_ON(!PageLocked(page));
0fe6e20b 2343 BUG_ON(!anon_vma);
5dbe0af4 2344 /* address might be in next vma when migration races vma_adjust */
53f9263b 2345 first = atomic_inc_and_test(compound_mapcount_ptr(page));
0fe6e20b 2346 if (first)
451b9514 2347 __page_set_anon_rmap(page, vma, address, 0);
0fe6e20b
NH
2348}
2349
2350void hugepage_add_new_anon_rmap(struct page *page,
2351 struct vm_area_struct *vma, unsigned long address)
2352{
2353 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
53f9263b 2354 atomic_set(compound_mapcount_ptr(page), 0);
5232c63f 2355 atomic_set(compound_pincount_ptr(page), 0);
47e29d32 2356
451b9514 2357 __page_set_anon_rmap(page, vma, address, 1);
0fe6e20b 2358}
e3390f67 2359#endif /* CONFIG_HUGETLB_PAGE */
This page took 1.594293 seconds and 4 git commands to generate.