]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
98f32602 | 17 | * Contributions by Hugh Dickins 2003, 2004 |
1da177e4 LT |
18 | */ |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
9608703e | 23 | * inode->i_rwsem (while writing or truncating, not reading or faulting) |
c1e8d7c6 | 24 | * mm->mmap_lock |
730633f0 JK |
25 | * mapping->invalidate_lock (in filemap_fault) |
26 | * page->flags PG_locked (lock_page) * (see hugetlbfs below) | |
27 | * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) | |
28 | * mapping->i_mmap_rwsem | |
29 | * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) | |
30 | * anon_vma->rwsem | |
31 | * mm->page_table_lock or pte_lock | |
32 | * swap_lock (in swap_duplicate, swap_info_get) | |
33 | * mmlist_lock (in mmput, drain_mmlist and others) | |
34 | * mapping->private_lock (in __set_page_dirty_buffers) | |
35 | * lock_page_memcg move_lock (in __set_page_dirty_buffers) | |
36 | * i_pages lock (widely used) | |
e809c3fe | 37 | * lruvec->lru_lock (in folio_lruvec_lock_irq) |
730633f0 JK |
38 | * inode->i_lock (in set_page_dirty's __mark_inode_dirty) |
39 | * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) | |
40 | * sb_lock (within inode_lock in fs/fs-writeback.c) | |
41 | * i_pages lock (widely used, in set_page_dirty, | |
42 | * in arch-dependent flush_dcache_mmap_lock, | |
43 | * within bdi.wb->list_lock in __sync_single_inode) | |
6a46079c | 44 | * |
9608703e | 45 | * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) |
9b679320 | 46 | * ->tasklist_lock |
6a46079c | 47 | * pte map lock |
c0d0381a MK |
48 | * |
49 | * * hugetlbfs PageHuge() pages take locks in this order: | |
50 | * mapping->i_mmap_rwsem | |
51 | * hugetlb_fault_mutex (hugetlbfs specific page fault mutex) | |
52 | * page->flags PG_locked (lock_page) | |
1da177e4 LT |
53 | */ |
54 | ||
55 | #include <linux/mm.h> | |
6e84f315 | 56 | #include <linux/sched/mm.h> |
29930025 | 57 | #include <linux/sched/task.h> |
1da177e4 LT |
58 | #include <linux/pagemap.h> |
59 | #include <linux/swap.h> | |
60 | #include <linux/swapops.h> | |
61 | #include <linux/slab.h> | |
62 | #include <linux/init.h> | |
5ad64688 | 63 | #include <linux/ksm.h> |
1da177e4 LT |
64 | #include <linux/rmap.h> |
65 | #include <linux/rcupdate.h> | |
b95f1b31 | 66 | #include <linux/export.h> |
8a9f3ccd | 67 | #include <linux/memcontrol.h> |
cddb8a5c | 68 | #include <linux/mmu_notifier.h> |
64cdd548 | 69 | #include <linux/migrate.h> |
0fe6e20b | 70 | #include <linux/hugetlb.h> |
444f84fd | 71 | #include <linux/huge_mm.h> |
ef5d437f | 72 | #include <linux/backing-dev.h> |
33c3fc71 | 73 | #include <linux/page_idle.h> |
a5430dda | 74 | #include <linux/memremap.h> |
bce73e48 | 75 | #include <linux/userfaultfd_k.h> |
1da177e4 LT |
76 | |
77 | #include <asm/tlbflush.h> | |
78 | ||
72b252ae MG |
79 | #include <trace/events/tlb.h> |
80 | ||
b291f000 NP |
81 | #include "internal.h" |
82 | ||
fdd2e5f8 | 83 | static struct kmem_cache *anon_vma_cachep; |
5beb4930 | 84 | static struct kmem_cache *anon_vma_chain_cachep; |
fdd2e5f8 AB |
85 | |
86 | static inline struct anon_vma *anon_vma_alloc(void) | |
87 | { | |
01d8b20d PZ |
88 | struct anon_vma *anon_vma; |
89 | ||
90 | anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
91 | if (anon_vma) { | |
92 | atomic_set(&anon_vma->refcount, 1); | |
7a3ef208 KK |
93 | anon_vma->degree = 1; /* Reference for first vma */ |
94 | anon_vma->parent = anon_vma; | |
01d8b20d PZ |
95 | /* |
96 | * Initialise the anon_vma root to point to itself. If called | |
97 | * from fork, the root will be reset to the parents anon_vma. | |
98 | */ | |
99 | anon_vma->root = anon_vma; | |
100 | } | |
101 | ||
102 | return anon_vma; | |
fdd2e5f8 AB |
103 | } |
104 | ||
01d8b20d | 105 | static inline void anon_vma_free(struct anon_vma *anon_vma) |
fdd2e5f8 | 106 | { |
01d8b20d | 107 | VM_BUG_ON(atomic_read(&anon_vma->refcount)); |
88c22088 PZ |
108 | |
109 | /* | |
4fc3f1d6 | 110 | * Synchronize against page_lock_anon_vma_read() such that |
88c22088 PZ |
111 | * we can safely hold the lock without the anon_vma getting |
112 | * freed. | |
113 | * | |
114 | * Relies on the full mb implied by the atomic_dec_and_test() from | |
115 | * put_anon_vma() against the acquire barrier implied by | |
4fc3f1d6 | 116 | * down_read_trylock() from page_lock_anon_vma_read(). This orders: |
88c22088 | 117 | * |
4fc3f1d6 IM |
118 | * page_lock_anon_vma_read() VS put_anon_vma() |
119 | * down_read_trylock() atomic_dec_and_test() | |
88c22088 | 120 | * LOCK MB |
4fc3f1d6 | 121 | * atomic_read() rwsem_is_locked() |
88c22088 PZ |
122 | * |
123 | * LOCK should suffice since the actual taking of the lock must | |
124 | * happen _before_ what follows. | |
125 | */ | |
7f39dda9 | 126 | might_sleep(); |
5a505085 | 127 | if (rwsem_is_locked(&anon_vma->root->rwsem)) { |
4fc3f1d6 | 128 | anon_vma_lock_write(anon_vma); |
08b52706 | 129 | anon_vma_unlock_write(anon_vma); |
88c22088 PZ |
130 | } |
131 | ||
fdd2e5f8 AB |
132 | kmem_cache_free(anon_vma_cachep, anon_vma); |
133 | } | |
1da177e4 | 134 | |
dd34739c | 135 | static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) |
5beb4930 | 136 | { |
dd34739c | 137 | return kmem_cache_alloc(anon_vma_chain_cachep, gfp); |
5beb4930 RR |
138 | } |
139 | ||
e574b5fd | 140 | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) |
5beb4930 RR |
141 | { |
142 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | |
143 | } | |
144 | ||
6583a843 KC |
145 | static void anon_vma_chain_link(struct vm_area_struct *vma, |
146 | struct anon_vma_chain *avc, | |
147 | struct anon_vma *anon_vma) | |
148 | { | |
149 | avc->vma = vma; | |
150 | avc->anon_vma = anon_vma; | |
151 | list_add(&avc->same_vma, &vma->anon_vma_chain); | |
bf181b9f | 152 | anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); |
6583a843 KC |
153 | } |
154 | ||
d9d332e0 | 155 | /** |
d5a187da | 156 | * __anon_vma_prepare - attach an anon_vma to a memory region |
d9d332e0 LT |
157 | * @vma: the memory region in question |
158 | * | |
159 | * This makes sure the memory mapping described by 'vma' has | |
160 | * an 'anon_vma' attached to it, so that we can associate the | |
161 | * anonymous pages mapped into it with that anon_vma. | |
162 | * | |
d5a187da VB |
163 | * The common case will be that we already have one, which |
164 | * is handled inline by anon_vma_prepare(). But if | |
23a0790a | 165 | * not we either need to find an adjacent mapping that we |
d9d332e0 LT |
166 | * can re-use the anon_vma from (very common when the only |
167 | * reason for splitting a vma has been mprotect()), or we | |
168 | * allocate a new one. | |
169 | * | |
170 | * Anon-vma allocations are very subtle, because we may have | |
4fc3f1d6 | 171 | * optimistically looked up an anon_vma in page_lock_anon_vma_read() |
aaf1f990 | 172 | * and that may actually touch the rwsem even in the newly |
d9d332e0 LT |
173 | * allocated vma (it depends on RCU to make sure that the |
174 | * anon_vma isn't actually destroyed). | |
175 | * | |
176 | * As a result, we need to do proper anon_vma locking even | |
177 | * for the new allocation. At the same time, we do not want | |
178 | * to do any locking for the common case of already having | |
179 | * an anon_vma. | |
180 | * | |
c1e8d7c6 | 181 | * This must be called with the mmap_lock held for reading. |
d9d332e0 | 182 | */ |
d5a187da | 183 | int __anon_vma_prepare(struct vm_area_struct *vma) |
1da177e4 | 184 | { |
d5a187da VB |
185 | struct mm_struct *mm = vma->vm_mm; |
186 | struct anon_vma *anon_vma, *allocated; | |
5beb4930 | 187 | struct anon_vma_chain *avc; |
1da177e4 LT |
188 | |
189 | might_sleep(); | |
1da177e4 | 190 | |
d5a187da VB |
191 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
192 | if (!avc) | |
193 | goto out_enomem; | |
194 | ||
195 | anon_vma = find_mergeable_anon_vma(vma); | |
196 | allocated = NULL; | |
197 | if (!anon_vma) { | |
198 | anon_vma = anon_vma_alloc(); | |
199 | if (unlikely(!anon_vma)) | |
200 | goto out_enomem_free_avc; | |
201 | allocated = anon_vma; | |
202 | } | |
5beb4930 | 203 | |
d5a187da VB |
204 | anon_vma_lock_write(anon_vma); |
205 | /* page_table_lock to protect against threads */ | |
206 | spin_lock(&mm->page_table_lock); | |
207 | if (likely(!vma->anon_vma)) { | |
208 | vma->anon_vma = anon_vma; | |
209 | anon_vma_chain_link(vma, avc, anon_vma); | |
210 | /* vma reference or self-parent link for new root */ | |
211 | anon_vma->degree++; | |
d9d332e0 | 212 | allocated = NULL; |
d5a187da VB |
213 | avc = NULL; |
214 | } | |
215 | spin_unlock(&mm->page_table_lock); | |
216 | anon_vma_unlock_write(anon_vma); | |
1da177e4 | 217 | |
d5a187da VB |
218 | if (unlikely(allocated)) |
219 | put_anon_vma(allocated); | |
220 | if (unlikely(avc)) | |
221 | anon_vma_chain_free(avc); | |
31f2b0eb | 222 | |
1da177e4 | 223 | return 0; |
5beb4930 RR |
224 | |
225 | out_enomem_free_avc: | |
226 | anon_vma_chain_free(avc); | |
227 | out_enomem: | |
228 | return -ENOMEM; | |
1da177e4 LT |
229 | } |
230 | ||
bb4aa396 LT |
231 | /* |
232 | * This is a useful helper function for locking the anon_vma root as | |
233 | * we traverse the vma->anon_vma_chain, looping over anon_vma's that | |
234 | * have the same vma. | |
235 | * | |
236 | * Such anon_vma's should have the same root, so you'd expect to see | |
237 | * just a single mutex_lock for the whole traversal. | |
238 | */ | |
239 | static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) | |
240 | { | |
241 | struct anon_vma *new_root = anon_vma->root; | |
242 | if (new_root != root) { | |
243 | if (WARN_ON_ONCE(root)) | |
5a505085 | 244 | up_write(&root->rwsem); |
bb4aa396 | 245 | root = new_root; |
5a505085 | 246 | down_write(&root->rwsem); |
bb4aa396 LT |
247 | } |
248 | return root; | |
249 | } | |
250 | ||
251 | static inline void unlock_anon_vma_root(struct anon_vma *root) | |
252 | { | |
253 | if (root) | |
5a505085 | 254 | up_write(&root->rwsem); |
bb4aa396 LT |
255 | } |
256 | ||
5beb4930 RR |
257 | /* |
258 | * Attach the anon_vmas from src to dst. | |
259 | * Returns 0 on success, -ENOMEM on failure. | |
7a3ef208 | 260 | * |
cb152a1a | 261 | * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and |
47b390d2 WY |
262 | * anon_vma_fork(). The first three want an exact copy of src, while the last |
263 | * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent | |
264 | * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call, | |
265 | * we can identify this case by checking (!dst->anon_vma && src->anon_vma). | |
266 | * | |
267 | * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find | |
268 | * and reuse existing anon_vma which has no vmas and only one child anon_vma. | |
269 | * This prevents degradation of anon_vma hierarchy to endless linear chain in | |
270 | * case of constantly forking task. On the other hand, an anon_vma with more | |
271 | * than one child isn't reused even if there was no alive vma, thus rmap | |
272 | * walker has a good chance of avoiding scanning the whole hierarchy when it | |
273 | * searches where page is mapped. | |
5beb4930 RR |
274 | */ |
275 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | |
1da177e4 | 276 | { |
5beb4930 | 277 | struct anon_vma_chain *avc, *pavc; |
bb4aa396 | 278 | struct anon_vma *root = NULL; |
5beb4930 | 279 | |
646d87b4 | 280 | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { |
bb4aa396 LT |
281 | struct anon_vma *anon_vma; |
282 | ||
dd34739c LT |
283 | avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); |
284 | if (unlikely(!avc)) { | |
285 | unlock_anon_vma_root(root); | |
286 | root = NULL; | |
287 | avc = anon_vma_chain_alloc(GFP_KERNEL); | |
288 | if (!avc) | |
289 | goto enomem_failure; | |
290 | } | |
bb4aa396 LT |
291 | anon_vma = pavc->anon_vma; |
292 | root = lock_anon_vma_root(root, anon_vma); | |
293 | anon_vma_chain_link(dst, avc, anon_vma); | |
7a3ef208 KK |
294 | |
295 | /* | |
296 | * Reuse existing anon_vma if its degree lower than two, | |
297 | * that means it has no vma and only one anon_vma child. | |
298 | * | |
299 | * Do not chose parent anon_vma, otherwise first child | |
300 | * will always reuse it. Root anon_vma is never reused: | |
301 | * it has self-parent reference and at least one child. | |
302 | */ | |
47b390d2 WY |
303 | if (!dst->anon_vma && src->anon_vma && |
304 | anon_vma != src->anon_vma && anon_vma->degree < 2) | |
7a3ef208 | 305 | dst->anon_vma = anon_vma; |
5beb4930 | 306 | } |
7a3ef208 KK |
307 | if (dst->anon_vma) |
308 | dst->anon_vma->degree++; | |
bb4aa396 | 309 | unlock_anon_vma_root(root); |
5beb4930 | 310 | return 0; |
1da177e4 | 311 | |
5beb4930 | 312 | enomem_failure: |
3fe89b3e LY |
313 | /* |
314 | * dst->anon_vma is dropped here otherwise its degree can be incorrectly | |
315 | * decremented in unlink_anon_vmas(). | |
316 | * We can safely do this because callers of anon_vma_clone() don't care | |
317 | * about dst->anon_vma if anon_vma_clone() failed. | |
318 | */ | |
319 | dst->anon_vma = NULL; | |
5beb4930 RR |
320 | unlink_anon_vmas(dst); |
321 | return -ENOMEM; | |
1da177e4 LT |
322 | } |
323 | ||
5beb4930 RR |
324 | /* |
325 | * Attach vma to its own anon_vma, as well as to the anon_vmas that | |
326 | * the corresponding VMA in the parent process is attached to. | |
327 | * Returns 0 on success, non-zero on failure. | |
328 | */ | |
329 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | |
1da177e4 | 330 | { |
5beb4930 RR |
331 | struct anon_vma_chain *avc; |
332 | struct anon_vma *anon_vma; | |
c4ea95d7 | 333 | int error; |
1da177e4 | 334 | |
5beb4930 RR |
335 | /* Don't bother if the parent process has no anon_vma here. */ |
336 | if (!pvma->anon_vma) | |
337 | return 0; | |
338 | ||
7a3ef208 KK |
339 | /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ |
340 | vma->anon_vma = NULL; | |
341 | ||
5beb4930 RR |
342 | /* |
343 | * First, attach the new VMA to the parent VMA's anon_vmas, | |
344 | * so rmap can find non-COWed pages in child processes. | |
345 | */ | |
c4ea95d7 DF |
346 | error = anon_vma_clone(vma, pvma); |
347 | if (error) | |
348 | return error; | |
5beb4930 | 349 | |
7a3ef208 KK |
350 | /* An existing anon_vma has been reused, all done then. */ |
351 | if (vma->anon_vma) | |
352 | return 0; | |
353 | ||
5beb4930 RR |
354 | /* Then add our own anon_vma. */ |
355 | anon_vma = anon_vma_alloc(); | |
356 | if (!anon_vma) | |
357 | goto out_error; | |
dd34739c | 358 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
5beb4930 RR |
359 | if (!avc) |
360 | goto out_error_free_anon_vma; | |
5c341ee1 RR |
361 | |
362 | /* | |
aaf1f990 | 363 | * The root anon_vma's rwsem is the lock actually used when we |
5c341ee1 RR |
364 | * lock any of the anon_vmas in this anon_vma tree. |
365 | */ | |
366 | anon_vma->root = pvma->anon_vma->root; | |
7a3ef208 | 367 | anon_vma->parent = pvma->anon_vma; |
76545066 | 368 | /* |
01d8b20d PZ |
369 | * With refcounts, an anon_vma can stay around longer than the |
370 | * process it belongs to. The root anon_vma needs to be pinned until | |
371 | * this anon_vma is freed, because the lock lives in the root. | |
76545066 RR |
372 | */ |
373 | get_anon_vma(anon_vma->root); | |
5beb4930 RR |
374 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
375 | vma->anon_vma = anon_vma; | |
4fc3f1d6 | 376 | anon_vma_lock_write(anon_vma); |
5c341ee1 | 377 | anon_vma_chain_link(vma, avc, anon_vma); |
7a3ef208 | 378 | anon_vma->parent->degree++; |
08b52706 | 379 | anon_vma_unlock_write(anon_vma); |
5beb4930 RR |
380 | |
381 | return 0; | |
382 | ||
383 | out_error_free_anon_vma: | |
01d8b20d | 384 | put_anon_vma(anon_vma); |
5beb4930 | 385 | out_error: |
4946d54c | 386 | unlink_anon_vmas(vma); |
5beb4930 | 387 | return -ENOMEM; |
1da177e4 LT |
388 | } |
389 | ||
5beb4930 RR |
390 | void unlink_anon_vmas(struct vm_area_struct *vma) |
391 | { | |
392 | struct anon_vma_chain *avc, *next; | |
eee2acba | 393 | struct anon_vma *root = NULL; |
5beb4930 | 394 | |
5c341ee1 RR |
395 | /* |
396 | * Unlink each anon_vma chained to the VMA. This list is ordered | |
397 | * from newest to oldest, ensuring the root anon_vma gets freed last. | |
398 | */ | |
5beb4930 | 399 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
eee2acba PZ |
400 | struct anon_vma *anon_vma = avc->anon_vma; |
401 | ||
402 | root = lock_anon_vma_root(root, anon_vma); | |
bf181b9f | 403 | anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); |
eee2acba PZ |
404 | |
405 | /* | |
406 | * Leave empty anon_vmas on the list - we'll need | |
407 | * to free them outside the lock. | |
408 | */ | |
f808c13f | 409 | if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { |
7a3ef208 | 410 | anon_vma->parent->degree--; |
eee2acba | 411 | continue; |
7a3ef208 | 412 | } |
eee2acba PZ |
413 | |
414 | list_del(&avc->same_vma); | |
415 | anon_vma_chain_free(avc); | |
416 | } | |
ee8ab190 | 417 | if (vma->anon_vma) { |
7a3ef208 | 418 | vma->anon_vma->degree--; |
ee8ab190 LX |
419 | |
420 | /* | |
421 | * vma would still be needed after unlink, and anon_vma will be prepared | |
422 | * when handle fault. | |
423 | */ | |
424 | vma->anon_vma = NULL; | |
425 | } | |
eee2acba PZ |
426 | unlock_anon_vma_root(root); |
427 | ||
428 | /* | |
429 | * Iterate the list once more, it now only contains empty and unlinked | |
430 | * anon_vmas, destroy them. Could not do before due to __put_anon_vma() | |
5a505085 | 431 | * needing to write-acquire the anon_vma->root->rwsem. |
eee2acba PZ |
432 | */ |
433 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | |
434 | struct anon_vma *anon_vma = avc->anon_vma; | |
435 | ||
e4c5800a | 436 | VM_WARN_ON(anon_vma->degree); |
eee2acba PZ |
437 | put_anon_vma(anon_vma); |
438 | ||
5beb4930 RR |
439 | list_del(&avc->same_vma); |
440 | anon_vma_chain_free(avc); | |
441 | } | |
442 | } | |
443 | ||
51cc5068 | 444 | static void anon_vma_ctor(void *data) |
1da177e4 | 445 | { |
a35afb83 | 446 | struct anon_vma *anon_vma = data; |
1da177e4 | 447 | |
5a505085 | 448 | init_rwsem(&anon_vma->rwsem); |
83813267 | 449 | atomic_set(&anon_vma->refcount, 0); |
f808c13f | 450 | anon_vma->rb_root = RB_ROOT_CACHED; |
1da177e4 LT |
451 | } |
452 | ||
453 | void __init anon_vma_init(void) | |
454 | { | |
455 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
5f0d5a3a | 456 | 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, |
5d097056 VD |
457 | anon_vma_ctor); |
458 | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, | |
459 | SLAB_PANIC|SLAB_ACCOUNT); | |
1da177e4 LT |
460 | } |
461 | ||
462 | /* | |
6111e4ca PZ |
463 | * Getting a lock on a stable anon_vma from a page off the LRU is tricky! |
464 | * | |
465 | * Since there is no serialization what so ever against page_remove_rmap() | |
ad8a20cf ML |
466 | * the best this function can do is return a refcount increased anon_vma |
467 | * that might have been relevant to this page. | |
6111e4ca PZ |
468 | * |
469 | * The page might have been remapped to a different anon_vma or the anon_vma | |
470 | * returned may already be freed (and even reused). | |
471 | * | |
bc658c96 PZ |
472 | * In case it was remapped to a different anon_vma, the new anon_vma will be a |
473 | * child of the old anon_vma, and the anon_vma lifetime rules will therefore | |
474 | * ensure that any anon_vma obtained from the page will still be valid for as | |
475 | * long as we observe page_mapped() [ hence all those page_mapped() tests ]. | |
476 | * | |
6111e4ca PZ |
477 | * All users of this function must be very careful when walking the anon_vma |
478 | * chain and verify that the page in question is indeed mapped in it | |
479 | * [ something equivalent to page_mapped_in_vma() ]. | |
480 | * | |
091e4299 MC |
481 | * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from |
482 | * page_remove_rmap() that the anon_vma pointer from page->mapping is valid | |
483 | * if there is a mapcount, we can dereference the anon_vma after observing | |
484 | * those. | |
1da177e4 | 485 | */ |
746b18d4 | 486 | struct anon_vma *page_get_anon_vma(struct page *page) |
1da177e4 | 487 | { |
746b18d4 | 488 | struct anon_vma *anon_vma = NULL; |
1da177e4 LT |
489 | unsigned long anon_mapping; |
490 | ||
491 | rcu_read_lock(); | |
4db0c3c2 | 492 | anon_mapping = (unsigned long)READ_ONCE(page->mapping); |
3ca7b3c5 | 493 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
1da177e4 LT |
494 | goto out; |
495 | if (!page_mapped(page)) | |
496 | goto out; | |
497 | ||
498 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
746b18d4 PZ |
499 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { |
500 | anon_vma = NULL; | |
501 | goto out; | |
502 | } | |
f1819427 HD |
503 | |
504 | /* | |
505 | * If this page is still mapped, then its anon_vma cannot have been | |
746b18d4 PZ |
506 | * freed. But if it has been unmapped, we have no security against the |
507 | * anon_vma structure being freed and reused (for another anon_vma: | |
5f0d5a3a | 508 | * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() |
746b18d4 | 509 | * above cannot corrupt). |
f1819427 | 510 | */ |
746b18d4 | 511 | if (!page_mapped(page)) { |
7f39dda9 | 512 | rcu_read_unlock(); |
746b18d4 | 513 | put_anon_vma(anon_vma); |
7f39dda9 | 514 | return NULL; |
746b18d4 | 515 | } |
1da177e4 LT |
516 | out: |
517 | rcu_read_unlock(); | |
746b18d4 PZ |
518 | |
519 | return anon_vma; | |
520 | } | |
521 | ||
88c22088 PZ |
522 | /* |
523 | * Similar to page_get_anon_vma() except it locks the anon_vma. | |
524 | * | |
525 | * Its a little more complex as it tries to keep the fast path to a single | |
526 | * atomic op -- the trylock. If we fail the trylock, we fall back to getting a | |
527 | * reference like with page_get_anon_vma() and then block on the mutex. | |
528 | */ | |
4fc3f1d6 | 529 | struct anon_vma *page_lock_anon_vma_read(struct page *page) |
746b18d4 | 530 | { |
88c22088 | 531 | struct anon_vma *anon_vma = NULL; |
eee0f252 | 532 | struct anon_vma *root_anon_vma; |
88c22088 | 533 | unsigned long anon_mapping; |
746b18d4 | 534 | |
88c22088 | 535 | rcu_read_lock(); |
4db0c3c2 | 536 | anon_mapping = (unsigned long)READ_ONCE(page->mapping); |
88c22088 PZ |
537 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
538 | goto out; | |
539 | if (!page_mapped(page)) | |
540 | goto out; | |
541 | ||
542 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
4db0c3c2 | 543 | root_anon_vma = READ_ONCE(anon_vma->root); |
4fc3f1d6 | 544 | if (down_read_trylock(&root_anon_vma->rwsem)) { |
88c22088 | 545 | /* |
eee0f252 HD |
546 | * If the page is still mapped, then this anon_vma is still |
547 | * its anon_vma, and holding the mutex ensures that it will | |
bc658c96 | 548 | * not go away, see anon_vma_free(). |
88c22088 | 549 | */ |
eee0f252 | 550 | if (!page_mapped(page)) { |
4fc3f1d6 | 551 | up_read(&root_anon_vma->rwsem); |
88c22088 PZ |
552 | anon_vma = NULL; |
553 | } | |
554 | goto out; | |
555 | } | |
746b18d4 | 556 | |
88c22088 PZ |
557 | /* trylock failed, we got to sleep */ |
558 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { | |
559 | anon_vma = NULL; | |
560 | goto out; | |
561 | } | |
562 | ||
563 | if (!page_mapped(page)) { | |
7f39dda9 | 564 | rcu_read_unlock(); |
88c22088 | 565 | put_anon_vma(anon_vma); |
7f39dda9 | 566 | return NULL; |
88c22088 PZ |
567 | } |
568 | ||
569 | /* we pinned the anon_vma, its safe to sleep */ | |
570 | rcu_read_unlock(); | |
4fc3f1d6 | 571 | anon_vma_lock_read(anon_vma); |
88c22088 PZ |
572 | |
573 | if (atomic_dec_and_test(&anon_vma->refcount)) { | |
574 | /* | |
575 | * Oops, we held the last refcount, release the lock | |
576 | * and bail -- can't simply use put_anon_vma() because | |
4fc3f1d6 | 577 | * we'll deadlock on the anon_vma_lock_write() recursion. |
88c22088 | 578 | */ |
4fc3f1d6 | 579 | anon_vma_unlock_read(anon_vma); |
88c22088 PZ |
580 | __put_anon_vma(anon_vma); |
581 | anon_vma = NULL; | |
582 | } | |
583 | ||
584 | return anon_vma; | |
585 | ||
586 | out: | |
587 | rcu_read_unlock(); | |
746b18d4 | 588 | return anon_vma; |
34bbd704 ON |
589 | } |
590 | ||
4fc3f1d6 | 591 | void page_unlock_anon_vma_read(struct anon_vma *anon_vma) |
34bbd704 | 592 | { |
4fc3f1d6 | 593 | anon_vma_unlock_read(anon_vma); |
1da177e4 LT |
594 | } |
595 | ||
72b252ae | 596 | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH |
72b252ae MG |
597 | /* |
598 | * Flush TLB entries for recently unmapped pages from remote CPUs. It is | |
599 | * important if a PTE was dirty when it was unmapped that it's flushed | |
600 | * before any IO is initiated on the page to prevent lost writes. Similarly, | |
601 | * it must be flushed before freeing to prevent data leakage. | |
602 | */ | |
603 | void try_to_unmap_flush(void) | |
604 | { | |
605 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
72b252ae MG |
606 | |
607 | if (!tlb_ubc->flush_required) | |
608 | return; | |
609 | ||
e73ad5ff | 610 | arch_tlbbatch_flush(&tlb_ubc->arch); |
72b252ae | 611 | tlb_ubc->flush_required = false; |
d950c947 | 612 | tlb_ubc->writable = false; |
72b252ae MG |
613 | } |
614 | ||
d950c947 MG |
615 | /* Flush iff there are potentially writable TLB entries that can race with IO */ |
616 | void try_to_unmap_flush_dirty(void) | |
617 | { | |
618 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
619 | ||
620 | if (tlb_ubc->writable) | |
621 | try_to_unmap_flush(); | |
622 | } | |
623 | ||
5ee2fa2f YH |
624 | /* |
625 | * Bits 0-14 of mm->tlb_flush_batched record pending generations. | |
626 | * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations. | |
627 | */ | |
628 | #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16 | |
629 | #define TLB_FLUSH_BATCH_PENDING_MASK \ | |
630 | ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1) | |
631 | #define TLB_FLUSH_BATCH_PENDING_LARGE \ | |
632 | (TLB_FLUSH_BATCH_PENDING_MASK / 2) | |
633 | ||
c7ab0d2f | 634 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) |
72b252ae MG |
635 | { |
636 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
5ee2fa2f | 637 | int batch, nbatch; |
72b252ae | 638 | |
e73ad5ff | 639 | arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); |
72b252ae | 640 | tlb_ubc->flush_required = true; |
d950c947 | 641 | |
3ea27719 MG |
642 | /* |
643 | * Ensure compiler does not re-order the setting of tlb_flush_batched | |
644 | * before the PTE is cleared. | |
645 | */ | |
646 | barrier(); | |
5ee2fa2f YH |
647 | batch = atomic_read(&mm->tlb_flush_batched); |
648 | retry: | |
649 | if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) { | |
650 | /* | |
651 | * Prevent `pending' from catching up with `flushed' because of | |
652 | * overflow. Reset `pending' and `flushed' to be 1 and 0 if | |
653 | * `pending' becomes large. | |
654 | */ | |
655 | nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1); | |
656 | if (nbatch != batch) { | |
657 | batch = nbatch; | |
658 | goto retry; | |
659 | } | |
660 | } else { | |
661 | atomic_inc(&mm->tlb_flush_batched); | |
662 | } | |
3ea27719 | 663 | |
d950c947 MG |
664 | /* |
665 | * If the PTE was dirty then it's best to assume it's writable. The | |
666 | * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() | |
667 | * before the page is queued for IO. | |
668 | */ | |
669 | if (writable) | |
670 | tlb_ubc->writable = true; | |
72b252ae MG |
671 | } |
672 | ||
673 | /* | |
674 | * Returns true if the TLB flush should be deferred to the end of a batch of | |
675 | * unmap operations to reduce IPIs. | |
676 | */ | |
677 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
678 | { | |
679 | bool should_defer = false; | |
680 | ||
681 | if (!(flags & TTU_BATCH_FLUSH)) | |
682 | return false; | |
683 | ||
684 | /* If remote CPUs need to be flushed then defer batch the flush */ | |
685 | if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) | |
686 | should_defer = true; | |
687 | put_cpu(); | |
688 | ||
689 | return should_defer; | |
690 | } | |
3ea27719 MG |
691 | |
692 | /* | |
693 | * Reclaim unmaps pages under the PTL but do not flush the TLB prior to | |
694 | * releasing the PTL if TLB flushes are batched. It's possible for a parallel | |
695 | * operation such as mprotect or munmap to race between reclaim unmapping | |
696 | * the page and flushing the page. If this race occurs, it potentially allows | |
697 | * access to data via a stale TLB entry. Tracking all mm's that have TLB | |
698 | * batching in flight would be expensive during reclaim so instead track | |
699 | * whether TLB batching occurred in the past and if so then do a flush here | |
700 | * if required. This will cost one additional flush per reclaim cycle paid | |
701 | * by the first operation at risk such as mprotect and mumap. | |
702 | * | |
703 | * This must be called under the PTL so that an access to tlb_flush_batched | |
704 | * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise | |
705 | * via the PTL. | |
706 | */ | |
707 | void flush_tlb_batched_pending(struct mm_struct *mm) | |
708 | { | |
5ee2fa2f YH |
709 | int batch = atomic_read(&mm->tlb_flush_batched); |
710 | int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK; | |
711 | int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT; | |
3ea27719 | 712 | |
5ee2fa2f YH |
713 | if (pending != flushed) { |
714 | flush_tlb_mm(mm); | |
3ea27719 | 715 | /* |
5ee2fa2f YH |
716 | * If the new TLB flushing is pending during flushing, leave |
717 | * mm->tlb_flush_batched as is, to avoid losing flushing. | |
3ea27719 | 718 | */ |
5ee2fa2f YH |
719 | atomic_cmpxchg(&mm->tlb_flush_batched, batch, |
720 | pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT)); | |
3ea27719 MG |
721 | } |
722 | } | |
72b252ae | 723 | #else |
c7ab0d2f | 724 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) |
72b252ae MG |
725 | { |
726 | } | |
727 | ||
728 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
729 | { | |
730 | return false; | |
731 | } | |
732 | #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ | |
733 | ||
1da177e4 | 734 | /* |
bf89c8c8 | 735 | * At what user virtual address is page expected in vma? |
ab941e0f | 736 | * Caller should check the page is actually part of the vma. |
1da177e4 LT |
737 | */ |
738 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
739 | { | |
21d0d443 | 740 | if (PageAnon(page)) { |
4829b906 HD |
741 | struct anon_vma *page__anon_vma = page_anon_vma(page); |
742 | /* | |
743 | * Note: swapoff's unuse_vma() is more efficient with this | |
744 | * check, and needs it to match anon_vma when KSM is active. | |
745 | */ | |
746 | if (!vma->anon_vma || !page__anon_vma || | |
747 | vma->anon_vma->root != page__anon_vma->root) | |
21d0d443 | 748 | return -EFAULT; |
31657170 JW |
749 | } else if (!vma->vm_file) { |
750 | return -EFAULT; | |
751 | } else if (vma->vm_file->f_mapping != compound_head(page)->mapping) { | |
1da177e4 | 752 | return -EFAULT; |
31657170 | 753 | } |
494334e4 HD |
754 | |
755 | return vma_address(page, vma); | |
1da177e4 LT |
756 | } |
757 | ||
6219049a BL |
758 | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) |
759 | { | |
760 | pgd_t *pgd; | |
c2febafc | 761 | p4d_t *p4d; |
6219049a BL |
762 | pud_t *pud; |
763 | pmd_t *pmd = NULL; | |
f72e7dcd | 764 | pmd_t pmde; |
6219049a BL |
765 | |
766 | pgd = pgd_offset(mm, address); | |
767 | if (!pgd_present(*pgd)) | |
768 | goto out; | |
769 | ||
c2febafc KS |
770 | p4d = p4d_offset(pgd, address); |
771 | if (!p4d_present(*p4d)) | |
772 | goto out; | |
773 | ||
774 | pud = pud_offset(p4d, address); | |
6219049a BL |
775 | if (!pud_present(*pud)) |
776 | goto out; | |
777 | ||
778 | pmd = pmd_offset(pud, address); | |
f72e7dcd | 779 | /* |
8809aa2d | 780 | * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() |
f72e7dcd HD |
781 | * without holding anon_vma lock for write. So when looking for a |
782 | * genuine pmde (in which to find pte), test present and !THP together. | |
783 | */ | |
e37c6982 CB |
784 | pmde = *pmd; |
785 | barrier(); | |
f72e7dcd | 786 | if (!pmd_present(pmde) || pmd_trans_huge(pmde)) |
6219049a BL |
787 | pmd = NULL; |
788 | out: | |
789 | return pmd; | |
790 | } | |
791 | ||
8749cfea VD |
792 | struct page_referenced_arg { |
793 | int mapcount; | |
794 | int referenced; | |
795 | unsigned long vm_flags; | |
796 | struct mem_cgroup *memcg; | |
797 | }; | |
798 | /* | |
799 | * arg: page_referenced_arg will be passed | |
800 | */ | |
e4b82222 | 801 | static bool page_referenced_one(struct page *page, struct vm_area_struct *vma, |
8749cfea VD |
802 | unsigned long address, void *arg) |
803 | { | |
8749cfea | 804 | struct page_referenced_arg *pra = arg; |
8eaedede KS |
805 | struct page_vma_mapped_walk pvmw = { |
806 | .page = page, | |
807 | .vma = vma, | |
808 | .address = address, | |
809 | }; | |
8749cfea VD |
810 | int referenced = 0; |
811 | ||
8eaedede KS |
812 | while (page_vma_mapped_walk(&pvmw)) { |
813 | address = pvmw.address; | |
b20ce5e0 | 814 | |
47d4f3ee HD |
815 | if ((vma->vm_flags & VM_LOCKED) && |
816 | (!PageTransCompound(page) || !pvmw.pte)) { | |
817 | /* Restore the mlock which got missed */ | |
818 | mlock_vma_page(page, vma, !pvmw.pte); | |
8eaedede KS |
819 | page_vma_mapped_walk_done(&pvmw); |
820 | pra->vm_flags |= VM_LOCKED; | |
e4b82222 | 821 | return false; /* To break the loop */ |
8eaedede | 822 | } |
71e3aac0 | 823 | |
8eaedede KS |
824 | if (pvmw.pte) { |
825 | if (ptep_clear_flush_young_notify(vma, address, | |
826 | pvmw.pte)) { | |
827 | /* | |
828 | * Don't treat a reference through | |
829 | * a sequentially read mapping as such. | |
830 | * If the page has been used in another mapping, | |
831 | * we will catch it; if this other mapping is | |
832 | * already gone, the unmap path will have set | |
833 | * PG_referenced or activated the page. | |
834 | */ | |
835 | if (likely(!(vma->vm_flags & VM_SEQ_READ))) | |
836 | referenced++; | |
837 | } | |
838 | } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { | |
839 | if (pmdp_clear_flush_young_notify(vma, address, | |
840 | pvmw.pmd)) | |
8749cfea | 841 | referenced++; |
8eaedede KS |
842 | } else { |
843 | /* unexpected pmd-mapped page? */ | |
844 | WARN_ON_ONCE(1); | |
8749cfea | 845 | } |
8eaedede KS |
846 | |
847 | pra->mapcount--; | |
b20ce5e0 | 848 | } |
b20ce5e0 | 849 | |
33c3fc71 VD |
850 | if (referenced) |
851 | clear_page_idle(page); | |
852 | if (test_and_clear_page_young(page)) | |
853 | referenced++; | |
854 | ||
9f32624b JK |
855 | if (referenced) { |
856 | pra->referenced++; | |
47d4f3ee | 857 | pra->vm_flags |= vma->vm_flags & ~VM_LOCKED; |
1da177e4 | 858 | } |
34bbd704 | 859 | |
9f32624b | 860 | if (!pra->mapcount) |
e4b82222 | 861 | return false; /* To break the loop */ |
9f32624b | 862 | |
e4b82222 | 863 | return true; |
1da177e4 LT |
864 | } |
865 | ||
9f32624b | 866 | static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) |
1da177e4 | 867 | { |
9f32624b JK |
868 | struct page_referenced_arg *pra = arg; |
869 | struct mem_cgroup *memcg = pra->memcg; | |
1da177e4 | 870 | |
9f32624b JK |
871 | if (!mm_match_cgroup(vma->vm_mm, memcg)) |
872 | return true; | |
1da177e4 | 873 | |
9f32624b | 874 | return false; |
1da177e4 LT |
875 | } |
876 | ||
877 | /** | |
878 | * page_referenced - test if the page was referenced | |
879 | * @page: the page to test | |
880 | * @is_locked: caller holds lock on the page | |
72835c86 | 881 | * @memcg: target memory cgroup |
6fe6b7e3 | 882 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
1da177e4 LT |
883 | * |
884 | * Quick test_and_clear_referenced for all mappings to a page, | |
885 | * returns the number of ptes which referenced the page. | |
886 | */ | |
6fe6b7e3 WF |
887 | int page_referenced(struct page *page, |
888 | int is_locked, | |
72835c86 | 889 | struct mem_cgroup *memcg, |
6fe6b7e3 | 890 | unsigned long *vm_flags) |
1da177e4 | 891 | { |
5ad64688 | 892 | int we_locked = 0; |
9f32624b | 893 | struct page_referenced_arg pra = { |
b20ce5e0 | 894 | .mapcount = total_mapcount(page), |
9f32624b JK |
895 | .memcg = memcg, |
896 | }; | |
897 | struct rmap_walk_control rwc = { | |
898 | .rmap_one = page_referenced_one, | |
899 | .arg = (void *)&pra, | |
900 | .anon_lock = page_lock_anon_vma_read, | |
901 | }; | |
1da177e4 | 902 | |
6fe6b7e3 | 903 | *vm_flags = 0; |
059d8442 | 904 | if (!pra.mapcount) |
9f32624b JK |
905 | return 0; |
906 | ||
907 | if (!page_rmapping(page)) | |
908 | return 0; | |
909 | ||
910 | if (!is_locked && (!PageAnon(page) || PageKsm(page))) { | |
911 | we_locked = trylock_page(page); | |
912 | if (!we_locked) | |
913 | return 1; | |
1da177e4 | 914 | } |
9f32624b JK |
915 | |
916 | /* | |
917 | * If we are reclaiming on behalf of a cgroup, skip | |
918 | * counting on behalf of references from different | |
919 | * cgroups | |
920 | */ | |
921 | if (memcg) { | |
922 | rwc.invalid_vma = invalid_page_referenced_vma; | |
923 | } | |
924 | ||
c24f386c | 925 | rmap_walk(page, &rwc); |
9f32624b JK |
926 | *vm_flags = pra.vm_flags; |
927 | ||
928 | if (we_locked) | |
929 | unlock_page(page); | |
930 | ||
931 | return pra.referenced; | |
1da177e4 LT |
932 | } |
933 | ||
e4b82222 | 934 | static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma, |
9853a407 | 935 | unsigned long address, void *arg) |
d08b3851 | 936 | { |
f27176cf KS |
937 | struct page_vma_mapped_walk pvmw = { |
938 | .page = page, | |
939 | .vma = vma, | |
940 | .address = address, | |
941 | .flags = PVMW_SYNC, | |
942 | }; | |
ac46d4f3 | 943 | struct mmu_notifier_range range; |
9853a407 | 944 | int *cleaned = arg; |
d08b3851 | 945 | |
369ea824 JG |
946 | /* |
947 | * We have to assume the worse case ie pmd for invalidation. Note that | |
948 | * the page can not be free from this function. | |
949 | */ | |
7269f999 JG |
950 | mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, |
951 | 0, vma, vma->vm_mm, address, | |
494334e4 | 952 | vma_address_end(page, vma)); |
ac46d4f3 | 953 | mmu_notifier_invalidate_range_start(&range); |
369ea824 | 954 | |
f27176cf KS |
955 | while (page_vma_mapped_walk(&pvmw)) { |
956 | int ret = 0; | |
369ea824 | 957 | |
1f18b296 | 958 | address = pvmw.address; |
f27176cf KS |
959 | if (pvmw.pte) { |
960 | pte_t entry; | |
961 | pte_t *pte = pvmw.pte; | |
962 | ||
963 | if (!pte_dirty(*pte) && !pte_write(*pte)) | |
964 | continue; | |
965 | ||
785373b4 LT |
966 | flush_cache_page(vma, address, pte_pfn(*pte)); |
967 | entry = ptep_clear_flush(vma, address, pte); | |
f27176cf KS |
968 | entry = pte_wrprotect(entry); |
969 | entry = pte_mkclean(entry); | |
785373b4 | 970 | set_pte_at(vma->vm_mm, address, pte, entry); |
f27176cf KS |
971 | ret = 1; |
972 | } else { | |
396bcc52 | 973 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
f27176cf KS |
974 | pmd_t *pmd = pvmw.pmd; |
975 | pmd_t entry; | |
976 | ||
977 | if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) | |
978 | continue; | |
979 | ||
785373b4 | 980 | flush_cache_page(vma, address, page_to_pfn(page)); |
024eee0e | 981 | entry = pmdp_invalidate(vma, address, pmd); |
f27176cf KS |
982 | entry = pmd_wrprotect(entry); |
983 | entry = pmd_mkclean(entry); | |
785373b4 | 984 | set_pmd_at(vma->vm_mm, address, pmd, entry); |
f27176cf KS |
985 | ret = 1; |
986 | #else | |
987 | /* unexpected pmd-mapped page? */ | |
988 | WARN_ON_ONCE(1); | |
989 | #endif | |
990 | } | |
d08b3851 | 991 | |
0f10851e JG |
992 | /* |
993 | * No need to call mmu_notifier_invalidate_range() as we are | |
994 | * downgrading page table protection not changing it to point | |
995 | * to a new page. | |
996 | * | |
ad56b738 | 997 | * See Documentation/vm/mmu_notifier.rst |
0f10851e JG |
998 | */ |
999 | if (ret) | |
f27176cf | 1000 | (*cleaned)++; |
c2fda5fe | 1001 | } |
d08b3851 | 1002 | |
ac46d4f3 | 1003 | mmu_notifier_invalidate_range_end(&range); |
369ea824 | 1004 | |
e4b82222 | 1005 | return true; |
d08b3851 PZ |
1006 | } |
1007 | ||
9853a407 | 1008 | static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) |
d08b3851 | 1009 | { |
9853a407 | 1010 | if (vma->vm_flags & VM_SHARED) |
871beb8c | 1011 | return false; |
d08b3851 | 1012 | |
871beb8c | 1013 | return true; |
d08b3851 PZ |
1014 | } |
1015 | ||
d9c08e22 | 1016 | int folio_mkclean(struct folio *folio) |
d08b3851 | 1017 | { |
9853a407 JK |
1018 | int cleaned = 0; |
1019 | struct address_space *mapping; | |
1020 | struct rmap_walk_control rwc = { | |
1021 | .arg = (void *)&cleaned, | |
1022 | .rmap_one = page_mkclean_one, | |
1023 | .invalid_vma = invalid_mkclean_vma, | |
1024 | }; | |
d08b3851 | 1025 | |
d9c08e22 | 1026 | BUG_ON(!folio_test_locked(folio)); |
d08b3851 | 1027 | |
d9c08e22 | 1028 | if (!folio_mapped(folio)) |
9853a407 JK |
1029 | return 0; |
1030 | ||
d9c08e22 | 1031 | mapping = folio_mapping(folio); |
9853a407 JK |
1032 | if (!mapping) |
1033 | return 0; | |
1034 | ||
d9c08e22 | 1035 | rmap_walk(&folio->page, &rwc); |
d08b3851 | 1036 | |
9853a407 | 1037 | return cleaned; |
d08b3851 | 1038 | } |
d9c08e22 | 1039 | EXPORT_SYMBOL_GPL(folio_mkclean); |
d08b3851 | 1040 | |
c44b6743 RR |
1041 | /** |
1042 | * page_move_anon_rmap - move a page to our anon_vma | |
1043 | * @page: the page to move to our anon_vma | |
1044 | * @vma: the vma the page belongs to | |
c44b6743 RR |
1045 | * |
1046 | * When a page belongs exclusively to one process after a COW event, | |
1047 | * that page can be moved into the anon_vma that belongs to just that | |
1048 | * process, so the rmap code will not search the parent or sibling | |
1049 | * processes. | |
1050 | */ | |
5a49973d | 1051 | void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) |
c44b6743 RR |
1052 | { |
1053 | struct anon_vma *anon_vma = vma->anon_vma; | |
1054 | ||
5a49973d HD |
1055 | page = compound_head(page); |
1056 | ||
309381fe | 1057 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
81d1b09c | 1058 | VM_BUG_ON_VMA(!anon_vma, vma); |
c44b6743 RR |
1059 | |
1060 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
414e2fb8 VD |
1061 | /* |
1062 | * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written | |
1063 | * simultaneously, so a concurrent reader (eg page_referenced()'s | |
1064 | * PageAnon()) will not see one without the other. | |
1065 | */ | |
1066 | WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); | |
c44b6743 RR |
1067 | } |
1068 | ||
9617d95e | 1069 | /** |
4e1c1975 | 1070 | * __page_set_anon_rmap - set up new anonymous rmap |
451b9514 | 1071 | * @page: Page or Hugepage to add to rmap |
4e1c1975 AK |
1072 | * @vma: VM area to add page to. |
1073 | * @address: User virtual address of the mapping | |
e8a03feb | 1074 | * @exclusive: the page is exclusively owned by the current process |
9617d95e NP |
1075 | */ |
1076 | static void __page_set_anon_rmap(struct page *page, | |
e8a03feb | 1077 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
9617d95e | 1078 | { |
e8a03feb | 1079 | struct anon_vma *anon_vma = vma->anon_vma; |
ea90002b | 1080 | |
e8a03feb | 1081 | BUG_ON(!anon_vma); |
ea90002b | 1082 | |
4e1c1975 AK |
1083 | if (PageAnon(page)) |
1084 | return; | |
1085 | ||
ea90002b | 1086 | /* |
e8a03feb RR |
1087 | * If the page isn't exclusively mapped into this vma, |
1088 | * we must use the _oldest_ possible anon_vma for the | |
1089 | * page mapping! | |
ea90002b | 1090 | */ |
4e1c1975 | 1091 | if (!exclusive) |
288468c3 | 1092 | anon_vma = anon_vma->root; |
9617d95e | 1093 | |
16f5e707 AS |
1094 | /* |
1095 | * page_idle does a lockless/optimistic rmap scan on page->mapping. | |
1096 | * Make sure the compiler doesn't split the stores of anon_vma and | |
1097 | * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code | |
1098 | * could mistake the mapping for a struct address_space and crash. | |
1099 | */ | |
9617d95e | 1100 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
16f5e707 | 1101 | WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); |
9617d95e | 1102 | page->index = linear_page_index(vma, address); |
9617d95e NP |
1103 | } |
1104 | ||
c97a9e10 | 1105 | /** |
43d8eac4 | 1106 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
1107 | * @page: the page to add the mapping to |
1108 | * @vma: the vm area in which the mapping is added | |
1109 | * @address: the user virtual address mapped | |
1110 | */ | |
1111 | static void __page_check_anon_rmap(struct page *page, | |
1112 | struct vm_area_struct *vma, unsigned long address) | |
1113 | { | |
c97a9e10 NP |
1114 | /* |
1115 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
1116 | * be set up correctly at this point. | |
1117 | * | |
1118 | * We have exclusion against page_add_anon_rmap because the caller | |
90aaca85 | 1119 | * always holds the page locked. |
c97a9e10 NP |
1120 | * |
1121 | * We have exclusion against page_add_new_anon_rmap because those pages | |
1122 | * are initially only visible via the pagetables, and the pte is locked | |
1123 | * over the call to page_add_new_anon_rmap. | |
1124 | */ | |
30c46382 YS |
1125 | VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page); |
1126 | VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address), | |
1127 | page); | |
c97a9e10 NP |
1128 | } |
1129 | ||
1da177e4 LT |
1130 | /** |
1131 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
1132 | * @page: the page to add the mapping to | |
1133 | * @vma: the vm area in which the mapping is added | |
1134 | * @address: the user virtual address mapped | |
d281ee61 | 1135 | * @compound: charge the page as compound or small page |
1da177e4 | 1136 | * |
5ad64688 | 1137 | * The caller needs to hold the pte lock, and the page must be locked in |
80e14822 HD |
1138 | * the anon_vma case: to serialize mapping,index checking after setting, |
1139 | * and to ensure that PageAnon is not being upgraded racily to PageKsm | |
1140 | * (but PageKsm is never downgraded to PageAnon). | |
1da177e4 LT |
1141 | */ |
1142 | void page_add_anon_rmap(struct page *page, | |
d281ee61 | 1143 | struct vm_area_struct *vma, unsigned long address, bool compound) |
ad8c2ee8 | 1144 | { |
d281ee61 | 1145 | do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); |
ad8c2ee8 RR |
1146 | } |
1147 | ||
1148 | /* | |
1149 | * Special version of the above for do_swap_page, which often runs | |
1150 | * into pages that are exclusively owned by the current process. | |
1151 | * Everybody else should continue to use page_add_anon_rmap above. | |
1152 | */ | |
1153 | void do_page_add_anon_rmap(struct page *page, | |
d281ee61 | 1154 | struct vm_area_struct *vma, unsigned long address, int flags) |
1da177e4 | 1155 | { |
53f9263b KS |
1156 | bool compound = flags & RMAP_COMPOUND; |
1157 | bool first; | |
1158 | ||
be5d0a74 JW |
1159 | if (unlikely(PageKsm(page))) |
1160 | lock_page_memcg(page); | |
1161 | else | |
1162 | VM_BUG_ON_PAGE(!PageLocked(page), page); | |
1163 | ||
e9b61f19 KS |
1164 | if (compound) { |
1165 | atomic_t *mapcount; | |
53f9263b | 1166 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
e9b61f19 KS |
1167 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); |
1168 | mapcount = compound_mapcount_ptr(page); | |
1169 | first = atomic_inc_and_test(mapcount); | |
53f9263b KS |
1170 | } else { |
1171 | first = atomic_inc_and_test(&page->_mapcount); | |
1172 | } | |
1173 | ||
79134171 | 1174 | if (first) { |
6c357848 | 1175 | int nr = compound ? thp_nr_pages(page) : 1; |
bea04b07 JZ |
1176 | /* |
1177 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | |
1178 | * these counters are not modified in interrupt context, and | |
1179 | * pte lock(a spinlock) is held, which implies preemption | |
1180 | * disabled. | |
1181 | */ | |
65c45377 | 1182 | if (compound) |
69473e5d | 1183 | __mod_lruvec_page_state(page, NR_ANON_THPS, nr); |
be5d0a74 | 1184 | __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); |
79134171 | 1185 | } |
5ad64688 | 1186 | |
cea86fe2 | 1187 | if (unlikely(PageKsm(page))) |
be5d0a74 | 1188 | unlock_page_memcg(page); |
53f9263b | 1189 | |
5dbe0af4 | 1190 | /* address might be in next vma when migration races vma_adjust */ |
cea86fe2 | 1191 | else if (first) |
d281ee61 KS |
1192 | __page_set_anon_rmap(page, vma, address, |
1193 | flags & RMAP_EXCLUSIVE); | |
69029cd5 | 1194 | else |
c97a9e10 | 1195 | __page_check_anon_rmap(page, vma, address); |
cea86fe2 HD |
1196 | |
1197 | mlock_vma_page(page, vma, compound); | |
1da177e4 LT |
1198 | } |
1199 | ||
43d8eac4 | 1200 | /** |
9617d95e NP |
1201 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page |
1202 | * @page: the page to add the mapping to | |
1203 | * @vma: the vm area in which the mapping is added | |
1204 | * @address: the user virtual address mapped | |
d281ee61 | 1205 | * @compound: charge the page as compound or small page |
9617d95e NP |
1206 | * |
1207 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
1208 | * This means the inc-and-test can be bypassed. | |
c97a9e10 | 1209 | * Page does not have to be locked. |
9617d95e NP |
1210 | */ |
1211 | void page_add_new_anon_rmap(struct page *page, | |
d281ee61 | 1212 | struct vm_area_struct *vma, unsigned long address, bool compound) |
9617d95e | 1213 | { |
6c357848 | 1214 | int nr = compound ? thp_nr_pages(page) : 1; |
d281ee61 | 1215 | |
81d1b09c | 1216 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); |
fa9949da | 1217 | __SetPageSwapBacked(page); |
d281ee61 KS |
1218 | if (compound) { |
1219 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
53f9263b KS |
1220 | /* increment count (starts at -1) */ |
1221 | atomic_set(compound_mapcount_ptr(page), 0); | |
5232c63f | 1222 | atomic_set(compound_pincount_ptr(page), 0); |
47e29d32 | 1223 | |
69473e5d | 1224 | __mod_lruvec_page_state(page, NR_ANON_THPS, nr); |
53f9263b KS |
1225 | } else { |
1226 | /* Anon THP always mapped first with PMD */ | |
1227 | VM_BUG_ON_PAGE(PageTransCompound(page), page); | |
1228 | /* increment count (starts at -1) */ | |
1229 | atomic_set(&page->_mapcount, 0); | |
d281ee61 | 1230 | } |
be5d0a74 | 1231 | __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr); |
e8a03feb | 1232 | __page_set_anon_rmap(page, vma, address, 1); |
9617d95e NP |
1233 | } |
1234 | ||
1da177e4 LT |
1235 | /** |
1236 | * page_add_file_rmap - add pte mapping to a file page | |
cea86fe2 HD |
1237 | * @page: the page to add the mapping to |
1238 | * @vma: the vm area in which the mapping is added | |
1239 | * @compound: charge the page as compound or small page | |
1da177e4 | 1240 | * |
b8072f09 | 1241 | * The caller needs to hold the pte lock. |
1da177e4 | 1242 | */ |
cea86fe2 HD |
1243 | void page_add_file_rmap(struct page *page, |
1244 | struct vm_area_struct *vma, bool compound) | |
1da177e4 | 1245 | { |
dd78fedd KS |
1246 | int i, nr = 1; |
1247 | ||
1248 | VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); | |
62cccb8c | 1249 | lock_page_memcg(page); |
dd78fedd | 1250 | if (compound && PageTransHuge(page)) { |
a1528e21 MS |
1251 | int nr_pages = thp_nr_pages(page); |
1252 | ||
1253 | for (i = 0, nr = 0; i < nr_pages; i++) { | |
dd78fedd KS |
1254 | if (atomic_inc_and_test(&page[i]._mapcount)) |
1255 | nr++; | |
1256 | } | |
1257 | if (!atomic_inc_and_test(compound_mapcount_ptr(page))) | |
1258 | goto out; | |
99cb0dbd | 1259 | if (PageSwapBacked(page)) |
a1528e21 MS |
1260 | __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, |
1261 | nr_pages); | |
99cb0dbd | 1262 | else |
380780e7 MS |
1263 | __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, |
1264 | nr_pages); | |
dd78fedd | 1265 | } else { |
c8efc390 KS |
1266 | if (PageTransCompound(page) && page_mapping(page)) { |
1267 | VM_WARN_ON_ONCE(!PageLocked(page)); | |
cea86fe2 | 1268 | SetPageDoubleMap(compound_head(page)); |
9a73f61b | 1269 | } |
dd78fedd KS |
1270 | if (!atomic_inc_and_test(&page->_mapcount)) |
1271 | goto out; | |
d69b042f | 1272 | } |
00f3ca2c | 1273 | __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); |
dd78fedd | 1274 | out: |
62cccb8c | 1275 | unlock_page_memcg(page); |
cea86fe2 HD |
1276 | |
1277 | mlock_vma_page(page, vma, compound); | |
1da177e4 LT |
1278 | } |
1279 | ||
dd78fedd | 1280 | static void page_remove_file_rmap(struct page *page, bool compound) |
8186eb6a | 1281 | { |
dd78fedd KS |
1282 | int i, nr = 1; |
1283 | ||
57dea93a | 1284 | VM_BUG_ON_PAGE(compound && !PageHead(page), page); |
8186eb6a | 1285 | |
53f9263b KS |
1286 | /* Hugepages are not counted in NR_FILE_MAPPED for now. */ |
1287 | if (unlikely(PageHuge(page))) { | |
1288 | /* hugetlb pages are always mapped with pmds */ | |
1289 | atomic_dec(compound_mapcount_ptr(page)); | |
be5d0a74 | 1290 | return; |
53f9263b | 1291 | } |
8186eb6a | 1292 | |
53f9263b | 1293 | /* page still mapped by someone else? */ |
dd78fedd | 1294 | if (compound && PageTransHuge(page)) { |
a1528e21 MS |
1295 | int nr_pages = thp_nr_pages(page); |
1296 | ||
1297 | for (i = 0, nr = 0; i < nr_pages; i++) { | |
dd78fedd KS |
1298 | if (atomic_add_negative(-1, &page[i]._mapcount)) |
1299 | nr++; | |
1300 | } | |
1301 | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | |
be5d0a74 | 1302 | return; |
99cb0dbd | 1303 | if (PageSwapBacked(page)) |
a1528e21 MS |
1304 | __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED, |
1305 | -nr_pages); | |
99cb0dbd | 1306 | else |
380780e7 MS |
1307 | __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED, |
1308 | -nr_pages); | |
dd78fedd KS |
1309 | } else { |
1310 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
be5d0a74 | 1311 | return; |
dd78fedd | 1312 | } |
8186eb6a JW |
1313 | |
1314 | /* | |
00f3ca2c | 1315 | * We use the irq-unsafe __{inc|mod}_lruvec_page_state because |
8186eb6a JW |
1316 | * these counters are not modified in interrupt context, and |
1317 | * pte lock(a spinlock) is held, which implies preemption disabled. | |
1318 | */ | |
00f3ca2c | 1319 | __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); |
8186eb6a JW |
1320 | } |
1321 | ||
53f9263b KS |
1322 | static void page_remove_anon_compound_rmap(struct page *page) |
1323 | { | |
1324 | int i, nr; | |
1325 | ||
1326 | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | |
1327 | return; | |
1328 | ||
1329 | /* Hugepages are not counted in NR_ANON_PAGES for now. */ | |
1330 | if (unlikely(PageHuge(page))) | |
1331 | return; | |
1332 | ||
1333 | if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) | |
1334 | return; | |
1335 | ||
69473e5d | 1336 | __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page)); |
53f9263b KS |
1337 | |
1338 | if (TestClearPageDoubleMap(page)) { | |
1339 | /* | |
1340 | * Subpages can be mapped with PTEs too. Check how many of | |
f1fe80d4 | 1341 | * them are still mapped. |
53f9263b | 1342 | */ |
5eaf35ab | 1343 | for (i = 0, nr = 0; i < thp_nr_pages(page); i++) { |
53f9263b KS |
1344 | if (atomic_add_negative(-1, &page[i]._mapcount)) |
1345 | nr++; | |
1346 | } | |
f1fe80d4 KS |
1347 | |
1348 | /* | |
1349 | * Queue the page for deferred split if at least one small | |
1350 | * page of the compound page is unmapped, but at least one | |
1351 | * small page is still mapped. | |
1352 | */ | |
5eaf35ab | 1353 | if (nr && nr < thp_nr_pages(page)) |
f1fe80d4 | 1354 | deferred_split_huge_page(page); |
53f9263b | 1355 | } else { |
5eaf35ab | 1356 | nr = thp_nr_pages(page); |
53f9263b KS |
1357 | } |
1358 | ||
f1fe80d4 | 1359 | if (nr) |
be5d0a74 | 1360 | __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr); |
53f9263b KS |
1361 | } |
1362 | ||
1da177e4 LT |
1363 | /** |
1364 | * page_remove_rmap - take down pte mapping from a page | |
d281ee61 | 1365 | * @page: page to remove mapping from |
cea86fe2 | 1366 | * @vma: the vm area from which the mapping is removed |
d281ee61 | 1367 | * @compound: uncharge the page as compound or small page |
1da177e4 | 1368 | * |
b8072f09 | 1369 | * The caller needs to hold the pte lock. |
1da177e4 | 1370 | */ |
cea86fe2 HD |
1371 | void page_remove_rmap(struct page *page, |
1372 | struct vm_area_struct *vma, bool compound) | |
1da177e4 | 1373 | { |
be5d0a74 | 1374 | lock_page_memcg(page); |
89c06bd5 | 1375 | |
be5d0a74 JW |
1376 | if (!PageAnon(page)) { |
1377 | page_remove_file_rmap(page, compound); | |
1378 | goto out; | |
1379 | } | |
1380 | ||
1381 | if (compound) { | |
1382 | page_remove_anon_compound_rmap(page); | |
1383 | goto out; | |
1384 | } | |
53f9263b | 1385 | |
b904dcfe KM |
1386 | /* page still mapped by someone else? */ |
1387 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
be5d0a74 | 1388 | goto out; |
8186eb6a | 1389 | |
0fe6e20b | 1390 | /* |
bea04b07 JZ |
1391 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because |
1392 | * these counters are not modified in interrupt context, and | |
bea04b07 | 1393 | * pte lock(a spinlock) is held, which implies preemption disabled. |
0fe6e20b | 1394 | */ |
be5d0a74 | 1395 | __dec_lruvec_page_state(page, NR_ANON_MAPPED); |
8186eb6a | 1396 | |
9a982250 KS |
1397 | if (PageTransCompound(page)) |
1398 | deferred_split_huge_page(compound_head(page)); | |
1399 | ||
b904dcfe KM |
1400 | /* |
1401 | * It would be tidy to reset the PageAnon mapping here, | |
1402 | * but that might overwrite a racing page_add_anon_rmap | |
1403 | * which increments mapcount after us but sets mapping | |
2d4894b5 | 1404 | * before us: so leave the reset to free_unref_page, |
b904dcfe KM |
1405 | * and remember that it's only reliable while mapped. |
1406 | * Leaving it set also helps swapoff to reinstate ptes | |
1407 | * faster for those pages still in swapcache. | |
1408 | */ | |
be5d0a74 JW |
1409 | out: |
1410 | unlock_page_memcg(page); | |
cea86fe2 HD |
1411 | |
1412 | munlock_vma_page(page, vma, compound); | |
1da177e4 LT |
1413 | } |
1414 | ||
1415 | /* | |
52629506 | 1416 | * @arg: enum ttu_flags will be passed to this argument |
1da177e4 | 1417 | */ |
e4b82222 | 1418 | static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma, |
52629506 | 1419 | unsigned long address, void *arg) |
1da177e4 LT |
1420 | { |
1421 | struct mm_struct *mm = vma->vm_mm; | |
c7ab0d2f KS |
1422 | struct page_vma_mapped_walk pvmw = { |
1423 | .page = page, | |
1424 | .vma = vma, | |
1425 | .address = address, | |
1426 | }; | |
1da177e4 | 1427 | pte_t pteval; |
c7ab0d2f | 1428 | struct page *subpage; |
785373b4 | 1429 | bool ret = true; |
ac46d4f3 | 1430 | struct mmu_notifier_range range; |
4708f318 | 1431 | enum ttu_flags flags = (enum ttu_flags)(long)arg; |
1da177e4 | 1432 | |
732ed558 HD |
1433 | /* |
1434 | * When racing against e.g. zap_pte_range() on another cpu, | |
1435 | * in between its ptep_get_and_clear_full() and page_remove_rmap(), | |
1fb08ac6 | 1436 | * try_to_unmap() may return before page_mapped() has become false, |
732ed558 HD |
1437 | * if page table locking is skipped: use TTU_SYNC to wait for that. |
1438 | */ | |
1439 | if (flags & TTU_SYNC) | |
1440 | pvmw.flags = PVMW_SYNC; | |
1441 | ||
a98a2f0c AP |
1442 | if (flags & TTU_SPLIT_HUGE_PMD) |
1443 | split_huge_pmd_address(vma, address, false, page); | |
fec89c10 | 1444 | |
369ea824 | 1445 | /* |
017b1660 MK |
1446 | * For THP, we have to assume the worse case ie pmd for invalidation. |
1447 | * For hugetlb, it could be much worse if we need to do pud | |
1448 | * invalidation in the case of pmd sharing. | |
1449 | * | |
1450 | * Note that the page can not be free in this function as call of | |
1451 | * try_to_unmap() must hold a reference on the page. | |
369ea824 | 1452 | */ |
494334e4 HD |
1453 | range.end = PageKsm(page) ? |
1454 | address + PAGE_SIZE : vma_address_end(page, vma); | |
7269f999 | 1455 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, |
494334e4 | 1456 | address, range.end); |
017b1660 MK |
1457 | if (PageHuge(page)) { |
1458 | /* | |
1459 | * If sharing is possible, start and end will be adjusted | |
1460 | * accordingly. | |
1461 | */ | |
ac46d4f3 JG |
1462 | adjust_range_if_pmd_sharing_possible(vma, &range.start, |
1463 | &range.end); | |
017b1660 | 1464 | } |
ac46d4f3 | 1465 | mmu_notifier_invalidate_range_start(&range); |
369ea824 | 1466 | |
c7ab0d2f | 1467 | while (page_vma_mapped_walk(&pvmw)) { |
cea86fe2 HD |
1468 | /* Unexpected PMD-mapped THP? */ |
1469 | VM_BUG_ON_PAGE(!pvmw.pte, page); | |
1470 | ||
c7ab0d2f | 1471 | /* |
cea86fe2 | 1472 | * If the page is in an mlock()d vma, we must not swap it out. |
c7ab0d2f | 1473 | */ |
efdb6720 HD |
1474 | if (!(flags & TTU_IGNORE_MLOCK) && |
1475 | (vma->vm_flags & VM_LOCKED)) { | |
cea86fe2 HD |
1476 | /* Restore the mlock which got missed */ |
1477 | mlock_vma_page(page, vma, false); | |
efdb6720 HD |
1478 | page_vma_mapped_walk_done(&pvmw); |
1479 | ret = false; | |
1480 | break; | |
b87537d9 | 1481 | } |
c7ab0d2f | 1482 | |
8346242a | 1483 | subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); |
785373b4 LT |
1484 | address = pvmw.address; |
1485 | ||
336bf30e | 1486 | if (PageHuge(page) && !PageAnon(page)) { |
c0d0381a MK |
1487 | /* |
1488 | * To call huge_pmd_unshare, i_mmap_rwsem must be | |
1489 | * held in write mode. Caller needs to explicitly | |
1490 | * do this outside rmap routines. | |
1491 | */ | |
1492 | VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); | |
34ae204f | 1493 | if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) { |
017b1660 MK |
1494 | /* |
1495 | * huge_pmd_unshare unmapped an entire PMD | |
1496 | * page. There is no way of knowing exactly | |
1497 | * which PMDs may be cached for this mm, so | |
1498 | * we must flush them all. start/end were | |
1499 | * already adjusted above to cover this range. | |
1500 | */ | |
ac46d4f3 JG |
1501 | flush_cache_range(vma, range.start, range.end); |
1502 | flush_tlb_range(vma, range.start, range.end); | |
1503 | mmu_notifier_invalidate_range(mm, range.start, | |
1504 | range.end); | |
017b1660 MK |
1505 | |
1506 | /* | |
1507 | * The ref count of the PMD page was dropped | |
1508 | * which is part of the way map counting | |
1509 | * is done for shared PMDs. Return 'true' | |
1510 | * here. When there is no other sharing, | |
1511 | * huge_pmd_unshare returns false and we will | |
1512 | * unmap the actual page and drop map count | |
1513 | * to zero. | |
1514 | */ | |
1515 | page_vma_mapped_walk_done(&pvmw); | |
1516 | break; | |
1517 | } | |
1518 | } | |
8346242a | 1519 | |
c7ab0d2f | 1520 | /* Nuke the page table entry. */ |
785373b4 | 1521 | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); |
c7ab0d2f KS |
1522 | if (should_defer_flush(mm, flags)) { |
1523 | /* | |
1524 | * We clear the PTE but do not flush so potentially | |
1525 | * a remote CPU could still be writing to the page. | |
1526 | * If the entry was previously clean then the | |
1527 | * architecture must guarantee that a clear->dirty | |
1528 | * transition on a cached TLB entry is written through | |
1529 | * and traps if the PTE is unmapped. | |
1530 | */ | |
785373b4 | 1531 | pteval = ptep_get_and_clear(mm, address, pvmw.pte); |
c7ab0d2f KS |
1532 | |
1533 | set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); | |
1534 | } else { | |
785373b4 | 1535 | pteval = ptep_clear_flush(vma, address, pvmw.pte); |
c7ab0d2f | 1536 | } |
72b252ae | 1537 | |
c7ab0d2f KS |
1538 | /* Move the dirty bit to the page. Now the pte is gone. */ |
1539 | if (pte_dirty(pteval)) | |
1540 | set_page_dirty(page); | |
1da177e4 | 1541 | |
c7ab0d2f KS |
1542 | /* Update high watermark before we lower rss */ |
1543 | update_hiwater_rss(mm); | |
1da177e4 | 1544 | |
c7ab0d2f | 1545 | if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { |
5fd27b8e | 1546 | pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); |
c7ab0d2f | 1547 | if (PageHuge(page)) { |
d8c6546b | 1548 | hugetlb_count_sub(compound_nr(page), mm); |
785373b4 | 1549 | set_huge_swap_pte_at(mm, address, |
5fd27b8e PA |
1550 | pvmw.pte, pteval, |
1551 | vma_mmu_pagesize(vma)); | |
c7ab0d2f KS |
1552 | } else { |
1553 | dec_mm_counter(mm, mm_counter(page)); | |
785373b4 | 1554 | set_pte_at(mm, address, pvmw.pte, pteval); |
c7ab0d2f | 1555 | } |
365e9c87 | 1556 | |
bce73e48 | 1557 | } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { |
c7ab0d2f KS |
1558 | /* |
1559 | * The guest indicated that the page content is of no | |
1560 | * interest anymore. Simply discard the pte, vmscan | |
1561 | * will take care of the rest. | |
bce73e48 CB |
1562 | * A future reference will then fault in a new zero |
1563 | * page. When userfaultfd is active, we must not drop | |
1564 | * this page though, as its main user (postcopy | |
1565 | * migration) will not expect userfaults on already | |
1566 | * copied pages. | |
c7ab0d2f | 1567 | */ |
eca56ff9 | 1568 | dec_mm_counter(mm, mm_counter(page)); |
0f10851e JG |
1569 | /* We have to invalidate as we cleared the pte */ |
1570 | mmu_notifier_invalidate_range(mm, address, | |
1571 | address + PAGE_SIZE); | |
c7ab0d2f KS |
1572 | } else if (PageAnon(page)) { |
1573 | swp_entry_t entry = { .val = page_private(subpage) }; | |
1574 | pte_t swp_pte; | |
1575 | /* | |
1576 | * Store the swap location in the pte. | |
1577 | * See handle_pte_fault() ... | |
1578 | */ | |
eb94a878 MK |
1579 | if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) { |
1580 | WARN_ON_ONCE(1); | |
83612a94 | 1581 | ret = false; |
369ea824 | 1582 | /* We have to invalidate as we cleared the pte */ |
0f10851e JG |
1583 | mmu_notifier_invalidate_range(mm, address, |
1584 | address + PAGE_SIZE); | |
eb94a878 MK |
1585 | page_vma_mapped_walk_done(&pvmw); |
1586 | break; | |
1587 | } | |
c7ab0d2f | 1588 | |
802a3a92 SL |
1589 | /* MADV_FREE page check */ |
1590 | if (!PageSwapBacked(page)) { | |
1591 | if (!PageDirty(page)) { | |
0f10851e JG |
1592 | /* Invalidate as we cleared the pte */ |
1593 | mmu_notifier_invalidate_range(mm, | |
1594 | address, address + PAGE_SIZE); | |
802a3a92 SL |
1595 | dec_mm_counter(mm, MM_ANONPAGES); |
1596 | goto discard; | |
1597 | } | |
1598 | ||
1599 | /* | |
1600 | * If the page was redirtied, it cannot be | |
1601 | * discarded. Remap the page to page table. | |
1602 | */ | |
785373b4 | 1603 | set_pte_at(mm, address, pvmw.pte, pteval); |
18863d3a | 1604 | SetPageSwapBacked(page); |
e4b82222 | 1605 | ret = false; |
802a3a92 SL |
1606 | page_vma_mapped_walk_done(&pvmw); |
1607 | break; | |
c7ab0d2f | 1608 | } |
854e9ed0 | 1609 | |
c7ab0d2f | 1610 | if (swap_duplicate(entry) < 0) { |
785373b4 | 1611 | set_pte_at(mm, address, pvmw.pte, pteval); |
e4b82222 | 1612 | ret = false; |
c7ab0d2f KS |
1613 | page_vma_mapped_walk_done(&pvmw); |
1614 | break; | |
1615 | } | |
ca827d55 KA |
1616 | if (arch_unmap_one(mm, vma, address, pteval) < 0) { |
1617 | set_pte_at(mm, address, pvmw.pte, pteval); | |
1618 | ret = false; | |
1619 | page_vma_mapped_walk_done(&pvmw); | |
1620 | break; | |
1621 | } | |
c7ab0d2f KS |
1622 | if (list_empty(&mm->mmlist)) { |
1623 | spin_lock(&mmlist_lock); | |
1624 | if (list_empty(&mm->mmlist)) | |
1625 | list_add(&mm->mmlist, &init_mm.mmlist); | |
1626 | spin_unlock(&mmlist_lock); | |
1627 | } | |
854e9ed0 | 1628 | dec_mm_counter(mm, MM_ANONPAGES); |
c7ab0d2f KS |
1629 | inc_mm_counter(mm, MM_SWAPENTS); |
1630 | swp_pte = swp_entry_to_pte(entry); | |
1631 | if (pte_soft_dirty(pteval)) | |
1632 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
f45ec5ff PX |
1633 | if (pte_uffd_wp(pteval)) |
1634 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
785373b4 | 1635 | set_pte_at(mm, address, pvmw.pte, swp_pte); |
0f10851e JG |
1636 | /* Invalidate as we cleared the pte */ |
1637 | mmu_notifier_invalidate_range(mm, address, | |
1638 | address + PAGE_SIZE); | |
1639 | } else { | |
1640 | /* | |
906f9cdf HD |
1641 | * This is a locked file-backed page, thus it cannot |
1642 | * be removed from the page cache and replaced by a new | |
1643 | * page before mmu_notifier_invalidate_range_end, so no | |
0f10851e JG |
1644 | * concurrent thread might update its page table to |
1645 | * point at new page while a device still is using this | |
1646 | * page. | |
1647 | * | |
ad56b738 | 1648 | * See Documentation/vm/mmu_notifier.rst |
0f10851e | 1649 | */ |
c7ab0d2f | 1650 | dec_mm_counter(mm, mm_counter_file(page)); |
0f10851e | 1651 | } |
854e9ed0 | 1652 | discard: |
0f10851e JG |
1653 | /* |
1654 | * No need to call mmu_notifier_invalidate_range() it has be | |
1655 | * done above for all cases requiring it to happen under page | |
1656 | * table lock before mmu_notifier_invalidate_range_end() | |
1657 | * | |
ad56b738 | 1658 | * See Documentation/vm/mmu_notifier.rst |
0f10851e | 1659 | */ |
cea86fe2 | 1660 | page_remove_rmap(subpage, vma, PageHuge(page)); |
b7435507 HD |
1661 | if (vma->vm_flags & VM_LOCKED) |
1662 | mlock_page_drain(smp_processor_id()); | |
c7ab0d2f | 1663 | put_page(page); |
c7ab0d2f | 1664 | } |
369ea824 | 1665 | |
ac46d4f3 | 1666 | mmu_notifier_invalidate_range_end(&range); |
369ea824 | 1667 | |
caed0f48 | 1668 | return ret; |
1da177e4 LT |
1669 | } |
1670 | ||
52629506 JK |
1671 | static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) |
1672 | { | |
222100ee | 1673 | return vma_is_temporary_stack(vma); |
52629506 JK |
1674 | } |
1675 | ||
b7e188ec | 1676 | static int page_not_mapped(struct page *page) |
52629506 | 1677 | { |
b7e188ec | 1678 | return !page_mapped(page); |
2a52bcbc | 1679 | } |
52629506 | 1680 | |
1da177e4 LT |
1681 | /** |
1682 | * try_to_unmap - try to remove all page table mappings to a page | |
1683 | * @page: the page to get unmapped | |
14fa31b8 | 1684 | * @flags: action and flags |
1da177e4 LT |
1685 | * |
1686 | * Tries to remove all the page table entries which are mapping this | |
1687 | * page, used in the pageout path. Caller must hold the page lock. | |
1da177e4 | 1688 | * |
1fb08ac6 YS |
1689 | * It is the caller's responsibility to check if the page is still |
1690 | * mapped when needed (use TTU_SYNC to prevent accounting races). | |
1da177e4 | 1691 | */ |
1fb08ac6 | 1692 | void try_to_unmap(struct page *page, enum ttu_flags flags) |
1da177e4 | 1693 | { |
52629506 JK |
1694 | struct rmap_walk_control rwc = { |
1695 | .rmap_one = try_to_unmap_one, | |
802a3a92 | 1696 | .arg = (void *)flags, |
b7e188ec | 1697 | .done = page_not_mapped, |
52629506 JK |
1698 | .anon_lock = page_lock_anon_vma_read, |
1699 | }; | |
1da177e4 | 1700 | |
a98a2f0c AP |
1701 | if (flags & TTU_RMAP_LOCKED) |
1702 | rmap_walk_locked(page, &rwc); | |
1703 | else | |
1704 | rmap_walk(page, &rwc); | |
1705 | } | |
1706 | ||
1707 | /* | |
1708 | * @arg: enum ttu_flags will be passed to this argument. | |
1709 | * | |
1710 | * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs | |
64b586d1 | 1711 | * containing migration entries. |
a98a2f0c AP |
1712 | */ |
1713 | static bool try_to_migrate_one(struct page *page, struct vm_area_struct *vma, | |
1714 | unsigned long address, void *arg) | |
1715 | { | |
1716 | struct mm_struct *mm = vma->vm_mm; | |
1717 | struct page_vma_mapped_walk pvmw = { | |
1718 | .page = page, | |
1719 | .vma = vma, | |
1720 | .address = address, | |
1721 | }; | |
1722 | pte_t pteval; | |
1723 | struct page *subpage; | |
1724 | bool ret = true; | |
1725 | struct mmu_notifier_range range; | |
1726 | enum ttu_flags flags = (enum ttu_flags)(long)arg; | |
1727 | ||
a98a2f0c AP |
1728 | /* |
1729 | * When racing against e.g. zap_pte_range() on another cpu, | |
1730 | * in between its ptep_get_and_clear_full() and page_remove_rmap(), | |
1731 | * try_to_migrate() may return before page_mapped() has become false, | |
1732 | * if page table locking is skipped: use TTU_SYNC to wait for that. | |
1733 | */ | |
1734 | if (flags & TTU_SYNC) | |
1735 | pvmw.flags = PVMW_SYNC; | |
1736 | ||
1737 | /* | |
1738 | * unmap_page() in mm/huge_memory.c is the only user of migration with | |
1739 | * TTU_SPLIT_HUGE_PMD and it wants to freeze. | |
1740 | */ | |
1741 | if (flags & TTU_SPLIT_HUGE_PMD) | |
1742 | split_huge_pmd_address(vma, address, true, page); | |
1743 | ||
1744 | /* | |
1745 | * For THP, we have to assume the worse case ie pmd for invalidation. | |
1746 | * For hugetlb, it could be much worse if we need to do pud | |
1747 | * invalidation in the case of pmd sharing. | |
1748 | * | |
1749 | * Note that the page can not be free in this function as call of | |
1750 | * try_to_unmap() must hold a reference on the page. | |
1751 | */ | |
1752 | range.end = PageKsm(page) ? | |
1753 | address + PAGE_SIZE : vma_address_end(page, vma); | |
1754 | mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, | |
1755 | address, range.end); | |
1756 | if (PageHuge(page)) { | |
1757 | /* | |
1758 | * If sharing is possible, start and end will be adjusted | |
1759 | * accordingly. | |
1760 | */ | |
1761 | adjust_range_if_pmd_sharing_possible(vma, &range.start, | |
1762 | &range.end); | |
1763 | } | |
1764 | mmu_notifier_invalidate_range_start(&range); | |
1765 | ||
1766 | while (page_vma_mapped_walk(&pvmw)) { | |
1767 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION | |
1768 | /* PMD-mapped THP migration entry */ | |
1769 | if (!pvmw.pte) { | |
1770 | VM_BUG_ON_PAGE(PageHuge(page) || | |
1771 | !PageTransCompound(page), page); | |
1772 | ||
1773 | set_pmd_migration_entry(&pvmw, page); | |
1774 | continue; | |
1775 | } | |
1776 | #endif | |
1777 | ||
1778 | /* Unexpected PMD-mapped THP? */ | |
1779 | VM_BUG_ON_PAGE(!pvmw.pte, page); | |
1780 | ||
1781 | subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); | |
1782 | address = pvmw.address; | |
1783 | ||
1784 | if (PageHuge(page) && !PageAnon(page)) { | |
1785 | /* | |
1786 | * To call huge_pmd_unshare, i_mmap_rwsem must be | |
1787 | * held in write mode. Caller needs to explicitly | |
1788 | * do this outside rmap routines. | |
1789 | */ | |
1790 | VM_BUG_ON(!(flags & TTU_RMAP_LOCKED)); | |
1791 | if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) { | |
1792 | /* | |
1793 | * huge_pmd_unshare unmapped an entire PMD | |
1794 | * page. There is no way of knowing exactly | |
1795 | * which PMDs may be cached for this mm, so | |
1796 | * we must flush them all. start/end were | |
1797 | * already adjusted above to cover this range. | |
1798 | */ | |
1799 | flush_cache_range(vma, range.start, range.end); | |
1800 | flush_tlb_range(vma, range.start, range.end); | |
1801 | mmu_notifier_invalidate_range(mm, range.start, | |
1802 | range.end); | |
1803 | ||
1804 | /* | |
1805 | * The ref count of the PMD page was dropped | |
1806 | * which is part of the way map counting | |
1807 | * is done for shared PMDs. Return 'true' | |
1808 | * here. When there is no other sharing, | |
1809 | * huge_pmd_unshare returns false and we will | |
1810 | * unmap the actual page and drop map count | |
1811 | * to zero. | |
1812 | */ | |
1813 | page_vma_mapped_walk_done(&pvmw); | |
1814 | break; | |
1815 | } | |
1816 | } | |
1817 | ||
1818 | /* Nuke the page table entry. */ | |
1819 | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); | |
1820 | pteval = ptep_clear_flush(vma, address, pvmw.pte); | |
1821 | ||
1822 | /* Move the dirty bit to the page. Now the pte is gone. */ | |
1823 | if (pte_dirty(pteval)) | |
1824 | set_page_dirty(page); | |
1825 | ||
1826 | /* Update high watermark before we lower rss */ | |
1827 | update_hiwater_rss(mm); | |
1828 | ||
1829 | if (is_zone_device_page(page)) { | |
3d88705c | 1830 | unsigned long pfn = page_to_pfn(page); |
a98a2f0c AP |
1831 | swp_entry_t entry; |
1832 | pte_t swp_pte; | |
1833 | ||
1834 | /* | |
1835 | * Store the pfn of the page in a special migration | |
1836 | * pte. do_swap_page() will wait until the migration | |
1837 | * pte is removed and then restart fault handling. | |
1838 | */ | |
3d88705c AP |
1839 | entry = pte_to_swp_entry(pteval); |
1840 | if (is_writable_device_private_entry(entry)) | |
1841 | entry = make_writable_migration_entry(pfn); | |
1842 | else | |
1843 | entry = make_readable_migration_entry(pfn); | |
a98a2f0c AP |
1844 | swp_pte = swp_entry_to_pte(entry); |
1845 | ||
1846 | /* | |
1847 | * pteval maps a zone device page and is therefore | |
1848 | * a swap pte. | |
1849 | */ | |
1850 | if (pte_swp_soft_dirty(pteval)) | |
1851 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
1852 | if (pte_swp_uffd_wp(pteval)) | |
1853 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
1854 | set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); | |
1855 | /* | |
1856 | * No need to invalidate here it will synchronize on | |
1857 | * against the special swap migration pte. | |
1858 | * | |
1859 | * The assignment to subpage above was computed from a | |
1860 | * swap PTE which results in an invalid pointer. | |
1861 | * Since only PAGE_SIZE pages can currently be | |
1862 | * migrated, just set it to page. This will need to be | |
1863 | * changed when hugepage migrations to device private | |
1864 | * memory are supported. | |
1865 | */ | |
1866 | subpage = page; | |
1867 | } else if (PageHWPoison(page)) { | |
1868 | pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); | |
1869 | if (PageHuge(page)) { | |
1870 | hugetlb_count_sub(compound_nr(page), mm); | |
1871 | set_huge_swap_pte_at(mm, address, | |
1872 | pvmw.pte, pteval, | |
1873 | vma_mmu_pagesize(vma)); | |
1874 | } else { | |
1875 | dec_mm_counter(mm, mm_counter(page)); | |
1876 | set_pte_at(mm, address, pvmw.pte, pteval); | |
1877 | } | |
1878 | ||
1879 | } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) { | |
1880 | /* | |
1881 | * The guest indicated that the page content is of no | |
1882 | * interest anymore. Simply discard the pte, vmscan | |
1883 | * will take care of the rest. | |
1884 | * A future reference will then fault in a new zero | |
1885 | * page. When userfaultfd is active, we must not drop | |
1886 | * this page though, as its main user (postcopy | |
1887 | * migration) will not expect userfaults on already | |
1888 | * copied pages. | |
1889 | */ | |
1890 | dec_mm_counter(mm, mm_counter(page)); | |
1891 | /* We have to invalidate as we cleared the pte */ | |
1892 | mmu_notifier_invalidate_range(mm, address, | |
1893 | address + PAGE_SIZE); | |
1894 | } else { | |
1895 | swp_entry_t entry; | |
1896 | pte_t swp_pte; | |
1897 | ||
1898 | if (arch_unmap_one(mm, vma, address, pteval) < 0) { | |
1899 | set_pte_at(mm, address, pvmw.pte, pteval); | |
1900 | ret = false; | |
1901 | page_vma_mapped_walk_done(&pvmw); | |
1902 | break; | |
1903 | } | |
1904 | ||
1905 | /* | |
1906 | * Store the pfn of the page in a special migration | |
1907 | * pte. do_swap_page() will wait until the migration | |
1908 | * pte is removed and then restart fault handling. | |
1909 | */ | |
1910 | if (pte_write(pteval)) | |
1911 | entry = make_writable_migration_entry( | |
1912 | page_to_pfn(subpage)); | |
1913 | else | |
1914 | entry = make_readable_migration_entry( | |
1915 | page_to_pfn(subpage)); | |
1916 | ||
1917 | swp_pte = swp_entry_to_pte(entry); | |
1918 | if (pte_soft_dirty(pteval)) | |
1919 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
1920 | if (pte_uffd_wp(pteval)) | |
1921 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
1922 | set_pte_at(mm, address, pvmw.pte, swp_pte); | |
1923 | /* | |
1924 | * No need to invalidate here it will synchronize on | |
1925 | * against the special swap migration pte. | |
1926 | */ | |
1927 | } | |
1928 | ||
1929 | /* | |
1930 | * No need to call mmu_notifier_invalidate_range() it has be | |
1931 | * done above for all cases requiring it to happen under page | |
1932 | * table lock before mmu_notifier_invalidate_range_end() | |
1933 | * | |
1934 | * See Documentation/vm/mmu_notifier.rst | |
1935 | */ | |
cea86fe2 | 1936 | page_remove_rmap(subpage, vma, PageHuge(page)); |
b7435507 HD |
1937 | if (vma->vm_flags & VM_LOCKED) |
1938 | mlock_page_drain(smp_processor_id()); | |
a98a2f0c AP |
1939 | put_page(page); |
1940 | } | |
1941 | ||
1942 | mmu_notifier_invalidate_range_end(&range); | |
1943 | ||
1944 | return ret; | |
1945 | } | |
1946 | ||
1947 | /** | |
1948 | * try_to_migrate - try to replace all page table mappings with swap entries | |
1949 | * @page: the page to replace page table entries for | |
1950 | * @flags: action and flags | |
1951 | * | |
1952 | * Tries to remove all the page table entries which are mapping this page and | |
1953 | * replace them with special swap entries. Caller must hold the page lock. | |
a98a2f0c AP |
1954 | */ |
1955 | void try_to_migrate(struct page *page, enum ttu_flags flags) | |
1956 | { | |
1957 | struct rmap_walk_control rwc = { | |
1958 | .rmap_one = try_to_migrate_one, | |
1959 | .arg = (void *)flags, | |
1960 | .done = page_not_mapped, | |
1961 | .anon_lock = page_lock_anon_vma_read, | |
1962 | }; | |
1963 | ||
1964 | /* | |
1965 | * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and | |
1966 | * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags. | |
1967 | */ | |
1968 | if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD | | |
1969 | TTU_SYNC))) | |
1970 | return; | |
1971 | ||
6c855fce HD |
1972 | if (is_zone_device_page(page) && !is_device_private_page(page)) |
1973 | return; | |
1974 | ||
52629506 JK |
1975 | /* |
1976 | * During exec, a temporary VMA is setup and later moved. | |
1977 | * The VMA is moved under the anon_vma lock but not the | |
1978 | * page tables leading to a race where migration cannot | |
1979 | * find the migration ptes. Rather than increasing the | |
1980 | * locking requirements of exec(), migration skips | |
1981 | * temporary VMAs until after exec() completes. | |
1982 | */ | |
a98a2f0c | 1983 | if (!PageKsm(page) && PageAnon(page)) |
52629506 JK |
1984 | rwc.invalid_vma = invalid_migration_vma; |
1985 | ||
2a52bcbc | 1986 | if (flags & TTU_RMAP_LOCKED) |
33fc80e2 | 1987 | rmap_walk_locked(page, &rwc); |
2a52bcbc | 1988 | else |
33fc80e2 | 1989 | rmap_walk(page, &rwc); |
1da177e4 | 1990 | } |
81b4082d | 1991 | |
b756a3b5 AP |
1992 | #ifdef CONFIG_DEVICE_PRIVATE |
1993 | struct make_exclusive_args { | |
1994 | struct mm_struct *mm; | |
1995 | unsigned long address; | |
1996 | void *owner; | |
1997 | bool valid; | |
1998 | }; | |
1999 | ||
2000 | static bool page_make_device_exclusive_one(struct page *page, | |
2001 | struct vm_area_struct *vma, unsigned long address, void *priv) | |
2002 | { | |
2003 | struct mm_struct *mm = vma->vm_mm; | |
2004 | struct page_vma_mapped_walk pvmw = { | |
2005 | .page = page, | |
2006 | .vma = vma, | |
2007 | .address = address, | |
2008 | }; | |
2009 | struct make_exclusive_args *args = priv; | |
2010 | pte_t pteval; | |
2011 | struct page *subpage; | |
2012 | bool ret = true; | |
2013 | struct mmu_notifier_range range; | |
2014 | swp_entry_t entry; | |
2015 | pte_t swp_pte; | |
2016 | ||
2017 | mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma, | |
2018 | vma->vm_mm, address, min(vma->vm_end, | |
2019 | address + page_size(page)), args->owner); | |
2020 | mmu_notifier_invalidate_range_start(&range); | |
2021 | ||
2022 | while (page_vma_mapped_walk(&pvmw)) { | |
2023 | /* Unexpected PMD-mapped THP? */ | |
2024 | VM_BUG_ON_PAGE(!pvmw.pte, page); | |
2025 | ||
2026 | if (!pte_present(*pvmw.pte)) { | |
2027 | ret = false; | |
2028 | page_vma_mapped_walk_done(&pvmw); | |
2029 | break; | |
2030 | } | |
2031 | ||
2032 | subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); | |
2033 | address = pvmw.address; | |
2034 | ||
2035 | /* Nuke the page table entry. */ | |
2036 | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); | |
2037 | pteval = ptep_clear_flush(vma, address, pvmw.pte); | |
2038 | ||
2039 | /* Move the dirty bit to the page. Now the pte is gone. */ | |
2040 | if (pte_dirty(pteval)) | |
2041 | set_page_dirty(page); | |
2042 | ||
2043 | /* | |
2044 | * Check that our target page is still mapped at the expected | |
2045 | * address. | |
2046 | */ | |
2047 | if (args->mm == mm && args->address == address && | |
2048 | pte_write(pteval)) | |
2049 | args->valid = true; | |
2050 | ||
2051 | /* | |
2052 | * Store the pfn of the page in a special migration | |
2053 | * pte. do_swap_page() will wait until the migration | |
2054 | * pte is removed and then restart fault handling. | |
2055 | */ | |
2056 | if (pte_write(pteval)) | |
2057 | entry = make_writable_device_exclusive_entry( | |
2058 | page_to_pfn(subpage)); | |
2059 | else | |
2060 | entry = make_readable_device_exclusive_entry( | |
2061 | page_to_pfn(subpage)); | |
2062 | swp_pte = swp_entry_to_pte(entry); | |
2063 | if (pte_soft_dirty(pteval)) | |
2064 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
2065 | if (pte_uffd_wp(pteval)) | |
2066 | swp_pte = pte_swp_mkuffd_wp(swp_pte); | |
2067 | ||
2068 | set_pte_at(mm, address, pvmw.pte, swp_pte); | |
2069 | ||
2070 | /* | |
2071 | * There is a reference on the page for the swap entry which has | |
2072 | * been removed, so shouldn't take another. | |
2073 | */ | |
cea86fe2 | 2074 | page_remove_rmap(subpage, vma, false); |
b756a3b5 AP |
2075 | } |
2076 | ||
2077 | mmu_notifier_invalidate_range_end(&range); | |
2078 | ||
2079 | return ret; | |
2080 | } | |
2081 | ||
2082 | /** | |
2083 | * page_make_device_exclusive - mark the page exclusively owned by a device | |
2084 | * @page: the page to replace page table entries for | |
2085 | * @mm: the mm_struct where the page is expected to be mapped | |
2086 | * @address: address where the page is expected to be mapped | |
2087 | * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks | |
2088 | * | |
2089 | * Tries to remove all the page table entries which are mapping this page and | |
2090 | * replace them with special device exclusive swap entries to grant a device | |
2091 | * exclusive access to the page. Caller must hold the page lock. | |
2092 | * | |
2093 | * Returns false if the page is still mapped, or if it could not be unmapped | |
2094 | * from the expected address. Otherwise returns true (success). | |
2095 | */ | |
2096 | static bool page_make_device_exclusive(struct page *page, struct mm_struct *mm, | |
2097 | unsigned long address, void *owner) | |
2098 | { | |
2099 | struct make_exclusive_args args = { | |
2100 | .mm = mm, | |
2101 | .address = address, | |
2102 | .owner = owner, | |
2103 | .valid = false, | |
2104 | }; | |
2105 | struct rmap_walk_control rwc = { | |
2106 | .rmap_one = page_make_device_exclusive_one, | |
2107 | .done = page_not_mapped, | |
2108 | .anon_lock = page_lock_anon_vma_read, | |
2109 | .arg = &args, | |
2110 | }; | |
2111 | ||
2112 | /* | |
2113 | * Restrict to anonymous pages for now to avoid potential writeback | |
2114 | * issues. Also tail pages shouldn't be passed to rmap_walk so skip | |
2115 | * those. | |
2116 | */ | |
2117 | if (!PageAnon(page) || PageTail(page)) | |
2118 | return false; | |
2119 | ||
2120 | rmap_walk(page, &rwc); | |
2121 | ||
2122 | return args.valid && !page_mapcount(page); | |
2123 | } | |
2124 | ||
2125 | /** | |
2126 | * make_device_exclusive_range() - Mark a range for exclusive use by a device | |
2127 | * @mm: mm_struct of assoicated target process | |
2128 | * @start: start of the region to mark for exclusive device access | |
2129 | * @end: end address of region | |
2130 | * @pages: returns the pages which were successfully marked for exclusive access | |
2131 | * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering | |
2132 | * | |
2133 | * Returns: number of pages found in the range by GUP. A page is marked for | |
2134 | * exclusive access only if the page pointer is non-NULL. | |
2135 | * | |
2136 | * This function finds ptes mapping page(s) to the given address range, locks | |
2137 | * them and replaces mappings with special swap entries preventing userspace CPU | |
2138 | * access. On fault these entries are replaced with the original mapping after | |
2139 | * calling MMU notifiers. | |
2140 | * | |
2141 | * A driver using this to program access from a device must use a mmu notifier | |
2142 | * critical section to hold a device specific lock during programming. Once | |
2143 | * programming is complete it should drop the page lock and reference after | |
2144 | * which point CPU access to the page will revoke the exclusive access. | |
2145 | */ | |
2146 | int make_device_exclusive_range(struct mm_struct *mm, unsigned long start, | |
2147 | unsigned long end, struct page **pages, | |
2148 | void *owner) | |
2149 | { | |
2150 | long npages = (end - start) >> PAGE_SHIFT; | |
2151 | long i; | |
2152 | ||
2153 | npages = get_user_pages_remote(mm, start, npages, | |
2154 | FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD, | |
2155 | pages, NULL, NULL); | |
2156 | if (npages < 0) | |
2157 | return npages; | |
2158 | ||
2159 | for (i = 0; i < npages; i++, start += PAGE_SIZE) { | |
2160 | if (!trylock_page(pages[i])) { | |
2161 | put_page(pages[i]); | |
2162 | pages[i] = NULL; | |
2163 | continue; | |
2164 | } | |
2165 | ||
2166 | if (!page_make_device_exclusive(pages[i], mm, start, owner)) { | |
2167 | unlock_page(pages[i]); | |
2168 | put_page(pages[i]); | |
2169 | pages[i] = NULL; | |
2170 | } | |
2171 | } | |
2172 | ||
2173 | return npages; | |
2174 | } | |
2175 | EXPORT_SYMBOL_GPL(make_device_exclusive_range); | |
2176 | #endif | |
2177 | ||
01d8b20d | 2178 | void __put_anon_vma(struct anon_vma *anon_vma) |
76545066 | 2179 | { |
01d8b20d | 2180 | struct anon_vma *root = anon_vma->root; |
76545066 | 2181 | |
624483f3 | 2182 | anon_vma_free(anon_vma); |
01d8b20d PZ |
2183 | if (root != anon_vma && atomic_dec_and_test(&root->refcount)) |
2184 | anon_vma_free(root); | |
76545066 | 2185 | } |
76545066 | 2186 | |
0dd1c7bb JK |
2187 | static struct anon_vma *rmap_walk_anon_lock(struct page *page, |
2188 | struct rmap_walk_control *rwc) | |
faecd8dd JK |
2189 | { |
2190 | struct anon_vma *anon_vma; | |
2191 | ||
0dd1c7bb JK |
2192 | if (rwc->anon_lock) |
2193 | return rwc->anon_lock(page); | |
2194 | ||
faecd8dd JK |
2195 | /* |
2196 | * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() | |
2197 | * because that depends on page_mapped(); but not all its usages | |
c1e8d7c6 | 2198 | * are holding mmap_lock. Users without mmap_lock are required to |
faecd8dd JK |
2199 | * take a reference count to prevent the anon_vma disappearing |
2200 | */ | |
2201 | anon_vma = page_anon_vma(page); | |
2202 | if (!anon_vma) | |
2203 | return NULL; | |
2204 | ||
2205 | anon_vma_lock_read(anon_vma); | |
2206 | return anon_vma; | |
2207 | } | |
2208 | ||
e9995ef9 | 2209 | /* |
e8351ac9 JK |
2210 | * rmap_walk_anon - do something to anonymous page using the object-based |
2211 | * rmap method | |
2212 | * @page: the page to be handled | |
2213 | * @rwc: control variable according to each walk type | |
2214 | * | |
2215 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
2216 | * contained in the anon_vma struct it points to. | |
e9995ef9 | 2217 | */ |
1df631ae | 2218 | static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, |
b9773199 | 2219 | bool locked) |
e9995ef9 HD |
2220 | { |
2221 | struct anon_vma *anon_vma; | |
a8fa41ad | 2222 | pgoff_t pgoff_start, pgoff_end; |
5beb4930 | 2223 | struct anon_vma_chain *avc; |
e9995ef9 | 2224 | |
b9773199 KS |
2225 | if (locked) { |
2226 | anon_vma = page_anon_vma(page); | |
2227 | /* anon_vma disappear under us? */ | |
2228 | VM_BUG_ON_PAGE(!anon_vma, page); | |
2229 | } else { | |
2230 | anon_vma = rmap_walk_anon_lock(page, rwc); | |
2231 | } | |
e9995ef9 | 2232 | if (!anon_vma) |
1df631ae | 2233 | return; |
faecd8dd | 2234 | |
a8fa41ad | 2235 | pgoff_start = page_to_pgoff(page); |
6c357848 | 2236 | pgoff_end = pgoff_start + thp_nr_pages(page) - 1; |
a8fa41ad KS |
2237 | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, |
2238 | pgoff_start, pgoff_end) { | |
5beb4930 | 2239 | struct vm_area_struct *vma = avc->vma; |
e9995ef9 | 2240 | unsigned long address = vma_address(page, vma); |
0dd1c7bb | 2241 | |
494334e4 | 2242 | VM_BUG_ON_VMA(address == -EFAULT, vma); |
ad12695f AA |
2243 | cond_resched(); |
2244 | ||
0dd1c7bb JK |
2245 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
2246 | continue; | |
2247 | ||
e4b82222 | 2248 | if (!rwc->rmap_one(page, vma, address, rwc->arg)) |
e9995ef9 | 2249 | break; |
0dd1c7bb JK |
2250 | if (rwc->done && rwc->done(page)) |
2251 | break; | |
e9995ef9 | 2252 | } |
b9773199 KS |
2253 | |
2254 | if (!locked) | |
2255 | anon_vma_unlock_read(anon_vma); | |
e9995ef9 HD |
2256 | } |
2257 | ||
e8351ac9 JK |
2258 | /* |
2259 | * rmap_walk_file - do something to file page using the object-based rmap method | |
2260 | * @page: the page to be handled | |
2261 | * @rwc: control variable according to each walk type | |
2262 | * | |
2263 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
2264 | * contained in the address_space struct it points to. | |
e8351ac9 | 2265 | */ |
1df631ae | 2266 | static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc, |
b9773199 | 2267 | bool locked) |
e9995ef9 | 2268 | { |
b9773199 | 2269 | struct address_space *mapping = page_mapping(page); |
a8fa41ad | 2270 | pgoff_t pgoff_start, pgoff_end; |
e9995ef9 | 2271 | struct vm_area_struct *vma; |
e9995ef9 | 2272 | |
9f32624b JK |
2273 | /* |
2274 | * The page lock not only makes sure that page->mapping cannot | |
2275 | * suddenly be NULLified by truncation, it makes sure that the | |
2276 | * structure at mapping cannot be freed and reused yet, | |
c8c06efa | 2277 | * so we can safely take mapping->i_mmap_rwsem. |
9f32624b | 2278 | */ |
81d1b09c | 2279 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
9f32624b | 2280 | |
e9995ef9 | 2281 | if (!mapping) |
1df631ae | 2282 | return; |
3dec0ba0 | 2283 | |
a8fa41ad | 2284 | pgoff_start = page_to_pgoff(page); |
6c357848 | 2285 | pgoff_end = pgoff_start + thp_nr_pages(page) - 1; |
b9773199 KS |
2286 | if (!locked) |
2287 | i_mmap_lock_read(mapping); | |
a8fa41ad KS |
2288 | vma_interval_tree_foreach(vma, &mapping->i_mmap, |
2289 | pgoff_start, pgoff_end) { | |
e9995ef9 | 2290 | unsigned long address = vma_address(page, vma); |
0dd1c7bb | 2291 | |
494334e4 | 2292 | VM_BUG_ON_VMA(address == -EFAULT, vma); |
ad12695f AA |
2293 | cond_resched(); |
2294 | ||
0dd1c7bb JK |
2295 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
2296 | continue; | |
2297 | ||
e4b82222 | 2298 | if (!rwc->rmap_one(page, vma, address, rwc->arg)) |
0dd1c7bb JK |
2299 | goto done; |
2300 | if (rwc->done && rwc->done(page)) | |
2301 | goto done; | |
e9995ef9 | 2302 | } |
0dd1c7bb | 2303 | |
0dd1c7bb | 2304 | done: |
b9773199 KS |
2305 | if (!locked) |
2306 | i_mmap_unlock_read(mapping); | |
e9995ef9 HD |
2307 | } |
2308 | ||
1df631ae | 2309 | void rmap_walk(struct page *page, struct rmap_walk_control *rwc) |
e9995ef9 | 2310 | { |
e9995ef9 | 2311 | if (unlikely(PageKsm(page))) |
1df631ae | 2312 | rmap_walk_ksm(page, rwc); |
e9995ef9 | 2313 | else if (PageAnon(page)) |
1df631ae | 2314 | rmap_walk_anon(page, rwc, false); |
b9773199 | 2315 | else |
1df631ae | 2316 | rmap_walk_file(page, rwc, false); |
b9773199 KS |
2317 | } |
2318 | ||
2319 | /* Like rmap_walk, but caller holds relevant rmap lock */ | |
1df631ae | 2320 | void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc) |
b9773199 KS |
2321 | { |
2322 | /* no ksm support for now */ | |
2323 | VM_BUG_ON_PAGE(PageKsm(page), page); | |
2324 | if (PageAnon(page)) | |
1df631ae | 2325 | rmap_walk_anon(page, rwc, true); |
e9995ef9 | 2326 | else |
1df631ae | 2327 | rmap_walk_file(page, rwc, true); |
e9995ef9 | 2328 | } |
0fe6e20b | 2329 | |
e3390f67 | 2330 | #ifdef CONFIG_HUGETLB_PAGE |
0fe6e20b | 2331 | /* |
451b9514 | 2332 | * The following two functions are for anonymous (private mapped) hugepages. |
0fe6e20b NH |
2333 | * Unlike common anonymous pages, anonymous hugepages have no accounting code |
2334 | * and no lru code, because we handle hugepages differently from common pages. | |
2335 | */ | |
0fe6e20b NH |
2336 | void hugepage_add_anon_rmap(struct page *page, |
2337 | struct vm_area_struct *vma, unsigned long address) | |
2338 | { | |
2339 | struct anon_vma *anon_vma = vma->anon_vma; | |
2340 | int first; | |
a850ea30 NH |
2341 | |
2342 | BUG_ON(!PageLocked(page)); | |
0fe6e20b | 2343 | BUG_ON(!anon_vma); |
5dbe0af4 | 2344 | /* address might be in next vma when migration races vma_adjust */ |
53f9263b | 2345 | first = atomic_inc_and_test(compound_mapcount_ptr(page)); |
0fe6e20b | 2346 | if (first) |
451b9514 | 2347 | __page_set_anon_rmap(page, vma, address, 0); |
0fe6e20b NH |
2348 | } |
2349 | ||
2350 | void hugepage_add_new_anon_rmap(struct page *page, | |
2351 | struct vm_area_struct *vma, unsigned long address) | |
2352 | { | |
2353 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
53f9263b | 2354 | atomic_set(compound_mapcount_ptr(page), 0); |
5232c63f | 2355 | atomic_set(compound_pincount_ptr(page), 0); |
47e29d32 | 2356 | |
451b9514 | 2357 | __page_set_anon_rmap(page, vma, address, 1); |
0fe6e20b | 2358 | } |
e3390f67 | 2359 | #endif /* CONFIG_HUGETLB_PAGE */ |