]> Git Repo - linux.git/blame - block/bio.c
net: usb: fix memory leak in smsc75xx_bind
[linux.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <[email protected]>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
b4c5875d 19#include <linux/highmem.h>
de6a78b6 20#include <linux/sched/sysctl.h>
a892c8d5 21#include <linux/blk-crypto.h>
49d1ec85 22#include <linux/xarray.h>
1da177e4 23
55782138 24#include <trace/events/block.h>
9e234eea 25#include "blk.h"
67b42d0b 26#include "blk-rq-qos.h"
0bfc2455 27
de76fd89 28static struct biovec_slab {
6ac0b715
CH
29 int nr_vecs;
30 char *name;
31 struct kmem_cache *slab;
de76fd89
CH
32} bvec_slabs[] __read_mostly = {
33 { .nr_vecs = 16, .name = "biovec-16" },
34 { .nr_vecs = 64, .name = "biovec-64" },
35 { .nr_vecs = 128, .name = "biovec-128" },
a8affc03 36 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
1da177e4 37};
6ac0b715 38
7a800a20
CH
39static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
40{
41 switch (nr_vecs) {
42 /* smaller bios use inline vecs */
43 case 5 ... 16:
44 return &bvec_slabs[0];
45 case 17 ... 64:
46 return &bvec_slabs[1];
47 case 65 ... 128:
48 return &bvec_slabs[2];
a8affc03 49 case 129 ... BIO_MAX_VECS:
7a800a20
CH
50 return &bvec_slabs[3];
51 default:
52 BUG();
53 return NULL;
54 }
55}
1da177e4 56
1da177e4
LT
57/*
58 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
59 * IO code that does not need private memory pools.
60 */
f4f8154a 61struct bio_set fs_bio_set;
3f86a82a 62EXPORT_SYMBOL(fs_bio_set);
1da177e4 63
bb799ca0
JA
64/*
65 * Our slab pool management
66 */
67struct bio_slab {
68 struct kmem_cache *slab;
69 unsigned int slab_ref;
70 unsigned int slab_size;
71 char name[8];
72};
73static DEFINE_MUTEX(bio_slab_lock);
49d1ec85 74static DEFINE_XARRAY(bio_slabs);
bb799ca0 75
49d1ec85 76static struct bio_slab *create_bio_slab(unsigned int size)
bb799ca0 77{
49d1ec85 78 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
bb799ca0 79
49d1ec85
ML
80 if (!bslab)
81 return NULL;
bb799ca0 82
49d1ec85
ML
83 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
84 bslab->slab = kmem_cache_create(bslab->name, size,
85 ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
86 if (!bslab->slab)
87 goto fail_alloc_slab;
bb799ca0 88
49d1ec85
ML
89 bslab->slab_ref = 1;
90 bslab->slab_size = size;
bb799ca0 91
49d1ec85
ML
92 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
93 return bslab;
bb799ca0 94
49d1ec85 95 kmem_cache_destroy(bslab->slab);
bb799ca0 96
49d1ec85
ML
97fail_alloc_slab:
98 kfree(bslab);
99 return NULL;
100}
bb799ca0 101
49d1ec85
ML
102static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
103{
9f180e31 104 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
49d1ec85 105}
bb799ca0 106
49d1ec85
ML
107static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
108{
109 unsigned int size = bs_bio_slab_size(bs);
110 struct bio_slab *bslab;
bb799ca0 111
49d1ec85
ML
112 mutex_lock(&bio_slab_lock);
113 bslab = xa_load(&bio_slabs, size);
114 if (bslab)
115 bslab->slab_ref++;
116 else
117 bslab = create_bio_slab(size);
bb799ca0 118 mutex_unlock(&bio_slab_lock);
49d1ec85
ML
119
120 if (bslab)
121 return bslab->slab;
122 return NULL;
bb799ca0
JA
123}
124
125static void bio_put_slab(struct bio_set *bs)
126{
127 struct bio_slab *bslab = NULL;
49d1ec85 128 unsigned int slab_size = bs_bio_slab_size(bs);
bb799ca0
JA
129
130 mutex_lock(&bio_slab_lock);
131
49d1ec85 132 bslab = xa_load(&bio_slabs, slab_size);
bb799ca0
JA
133 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
134 goto out;
135
49d1ec85
ML
136 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
137
bb799ca0
JA
138 WARN_ON(!bslab->slab_ref);
139
140 if (--bslab->slab_ref)
141 goto out;
142
49d1ec85
ML
143 xa_erase(&bio_slabs, slab_size);
144
bb799ca0 145 kmem_cache_destroy(bslab->slab);
49d1ec85 146 kfree(bslab);
bb799ca0
JA
147
148out:
149 mutex_unlock(&bio_slab_lock);
150}
151
7a800a20 152void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
7ba1ba12 153{
a8affc03 154 BIO_BUG_ON(nr_vecs > BIO_MAX_VECS);
ed996a52 155
a8affc03 156 if (nr_vecs == BIO_MAX_VECS)
9f060e22 157 mempool_free(bv, pool);
7a800a20
CH
158 else if (nr_vecs > BIO_INLINE_VECS)
159 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
bb799ca0 160}
bb799ca0 161
f2c3eb9b
CH
162/*
163 * Make the first allocation restricted and don't dump info on allocation
164 * failures, since we'll fall back to the mempool in case of failure.
165 */
166static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
167{
168 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
169 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
bb799ca0
JA
170}
171
7a800a20
CH
172struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
173 gfp_t gfp_mask)
1da177e4 174{
7a800a20 175 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
1da177e4 176
7a800a20 177 if (WARN_ON_ONCE(!bvs))
7ff9345f 178 return NULL;
7ff9345f
JA
179
180 /*
7a800a20
CH
181 * Upgrade the nr_vecs request to take full advantage of the allocation.
182 * We also rely on this in the bvec_free path.
7ff9345f 183 */
7a800a20 184 *nr_vecs = bvs->nr_vecs;
7ff9345f 185
7ff9345f 186 /*
f007a3d6
CH
187 * Try a slab allocation first for all smaller allocations. If that
188 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
a8affc03 189 * The mempool is sized to handle up to BIO_MAX_VECS entries.
7ff9345f 190 */
a8affc03 191 if (*nr_vecs < BIO_MAX_VECS) {
f007a3d6 192 struct bio_vec *bvl;
1da177e4 193
f2c3eb9b 194 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
7a800a20 195 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
f007a3d6 196 return bvl;
a8affc03 197 *nr_vecs = BIO_MAX_VECS;
7ff9345f
JA
198 }
199
f007a3d6 200 return mempool_alloc(pool, gfp_mask);
1da177e4
LT
201}
202
9ae3b3f5 203void bio_uninit(struct bio *bio)
1da177e4 204{
db9819c7
CH
205#ifdef CONFIG_BLK_CGROUP
206 if (bio->bi_blkg) {
207 blkg_put(bio->bi_blkg);
208 bio->bi_blkg = NULL;
209 }
210#endif
ece841ab
JT
211 if (bio_integrity(bio))
212 bio_integrity_free(bio);
a892c8d5
ST
213
214 bio_crypt_free_ctx(bio);
4254bba1 215}
9ae3b3f5 216EXPORT_SYMBOL(bio_uninit);
7ba1ba12 217
4254bba1
KO
218static void bio_free(struct bio *bio)
219{
220 struct bio_set *bs = bio->bi_pool;
221 void *p;
222
9ae3b3f5 223 bio_uninit(bio);
4254bba1
KO
224
225 if (bs) {
7a800a20 226 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
4254bba1
KO
227
228 /*
229 * If we have front padding, adjust the bio pointer before freeing
230 */
231 p = bio;
bb799ca0
JA
232 p -= bs->front_pad;
233
8aa6ba2f 234 mempool_free(p, &bs->bio_pool);
4254bba1
KO
235 } else {
236 /* Bio was allocated by bio_kmalloc() */
237 kfree(bio);
238 }
3676347a
PO
239}
240
9ae3b3f5
JA
241/*
242 * Users of this function have their own bio allocation. Subsequently,
243 * they must remember to pair any call to bio_init() with bio_uninit()
244 * when IO has completed, or when the bio is released.
245 */
3a83f467
ML
246void bio_init(struct bio *bio, struct bio_vec *table,
247 unsigned short max_vecs)
1da177e4 248{
2b94de55 249 memset(bio, 0, sizeof(*bio));
c4cf5261 250 atomic_set(&bio->__bi_remaining, 1);
dac56212 251 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
252
253 bio->bi_io_vec = table;
254 bio->bi_max_vecs = max_vecs;
1da177e4 255}
a112a71d 256EXPORT_SYMBOL(bio_init);
1da177e4 257
cd2c7545
CL
258unsigned int bio_max_size(struct bio *bio)
259{
260 struct block_device *bdev = bio->bi_bdev;
261
262 return bdev ? bdev->bd_disk->queue->limits.bio_max_bytes : UINT_MAX;
263}
264
f44b48c7
KO
265/**
266 * bio_reset - reinitialize a bio
267 * @bio: bio to reset
268 *
269 * Description:
270 * After calling bio_reset(), @bio will be in the same state as a freshly
271 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
272 * preserved are the ones that are initialized by bio_alloc_bioset(). See
273 * comment in struct bio.
274 */
275void bio_reset(struct bio *bio)
276{
9ae3b3f5 277 bio_uninit(bio);
f44b48c7 278 memset(bio, 0, BIO_RESET_BYTES);
c4cf5261 279 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
280}
281EXPORT_SYMBOL(bio_reset);
282
38f8baae 283static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 284{
4246a0b6
CH
285 struct bio *parent = bio->bi_private;
286
3edf5346 287 if (bio->bi_status && !parent->bi_status)
4e4cbee9 288 parent->bi_status = bio->bi_status;
196d38bc 289 bio_put(bio);
38f8baae
CH
290 return parent;
291}
292
293static void bio_chain_endio(struct bio *bio)
294{
295 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
296}
297
298/**
299 * bio_chain - chain bio completions
1051a902 300 * @bio: the target bio
5b874af6 301 * @parent: the parent bio of @bio
196d38bc
KO
302 *
303 * The caller won't have a bi_end_io called when @bio completes - instead,
304 * @parent's bi_end_io won't be called until both @parent and @bio have
305 * completed; the chained bio will also be freed when it completes.
306 *
307 * The caller must not set bi_private or bi_end_io in @bio.
308 */
309void bio_chain(struct bio *bio, struct bio *parent)
310{
311 BUG_ON(bio->bi_private || bio->bi_end_io);
312
313 bio->bi_private = parent;
314 bio->bi_end_io = bio_chain_endio;
c4cf5261 315 bio_inc_remaining(parent);
196d38bc
KO
316}
317EXPORT_SYMBOL(bio_chain);
318
df2cb6da
KO
319static void bio_alloc_rescue(struct work_struct *work)
320{
321 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
322 struct bio *bio;
323
324 while (1) {
325 spin_lock(&bs->rescue_lock);
326 bio = bio_list_pop(&bs->rescue_list);
327 spin_unlock(&bs->rescue_lock);
328
329 if (!bio)
330 break;
331
ed00aabd 332 submit_bio_noacct(bio);
df2cb6da
KO
333 }
334}
335
336static void punt_bios_to_rescuer(struct bio_set *bs)
337{
338 struct bio_list punt, nopunt;
339 struct bio *bio;
340
47e0fb46
N
341 if (WARN_ON_ONCE(!bs->rescue_workqueue))
342 return;
df2cb6da
KO
343 /*
344 * In order to guarantee forward progress we must punt only bios that
345 * were allocated from this bio_set; otherwise, if there was a bio on
346 * there for a stacking driver higher up in the stack, processing it
347 * could require allocating bios from this bio_set, and doing that from
348 * our own rescuer would be bad.
349 *
350 * Since bio lists are singly linked, pop them all instead of trying to
351 * remove from the middle of the list:
352 */
353
354 bio_list_init(&punt);
355 bio_list_init(&nopunt);
356
f5fe1b51 357 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 358 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 359 current->bio_list[0] = nopunt;
df2cb6da 360
f5fe1b51
N
361 bio_list_init(&nopunt);
362 while ((bio = bio_list_pop(&current->bio_list[1])))
363 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
364 current->bio_list[1] = nopunt;
df2cb6da
KO
365
366 spin_lock(&bs->rescue_lock);
367 bio_list_merge(&bs->rescue_list, &punt);
368 spin_unlock(&bs->rescue_lock);
369
370 queue_work(bs->rescue_workqueue, &bs->rescue_work);
371}
372
1da177e4
LT
373/**
374 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 375 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 376 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 377 * @bs: the bio_set to allocate from.
1da177e4 378 *
3175199a 379 * Allocate a bio from the mempools in @bs.
3f86a82a 380 *
3175199a
CH
381 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
382 * allocate a bio. This is due to the mempool guarantees. To make this work,
383 * callers must never allocate more than 1 bio at a time from the general pool.
384 * Callers that need to allocate more than 1 bio must always submit the
385 * previously allocated bio for IO before attempting to allocate a new one.
386 * Failure to do so can cause deadlocks under memory pressure.
3f86a82a 387 *
3175199a
CH
388 * Note that when running under submit_bio_noacct() (i.e. any block driver),
389 * bios are not submitted until after you return - see the code in
390 * submit_bio_noacct() that converts recursion into iteration, to prevent
391 * stack overflows.
df2cb6da 392 *
3175199a
CH
393 * This would normally mean allocating multiple bios under submit_bio_noacct()
394 * would be susceptible to deadlocks, but we have
395 * deadlock avoidance code that resubmits any blocked bios from a rescuer
396 * thread.
df2cb6da 397 *
3175199a
CH
398 * However, we do not guarantee forward progress for allocations from other
399 * mempools. Doing multiple allocations from the same mempool under
400 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
401 * for per bio allocations.
df2cb6da 402 *
3175199a 403 * Returns: Pointer to new bio on success, NULL on failure.
3f86a82a 404 */
0f2e6ab8 405struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
7a88fa19 406 struct bio_set *bs)
1da177e4 407{
df2cb6da 408 gfp_t saved_gfp = gfp_mask;
451a9ebf
TH
409 struct bio *bio;
410 void *p;
411
3175199a
CH
412 /* should not use nobvec bioset for nr_iovecs > 0 */
413 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
414 return NULL;
df2cb6da 415
3175199a
CH
416 /*
417 * submit_bio_noacct() converts recursion to iteration; this means if
418 * we're running beneath it, any bios we allocate and submit will not be
419 * submitted (and thus freed) until after we return.
420 *
421 * This exposes us to a potential deadlock if we allocate multiple bios
422 * from the same bio_set() while running underneath submit_bio_noacct().
423 * If we were to allocate multiple bios (say a stacking block driver
424 * that was splitting bios), we would deadlock if we exhausted the
425 * mempool's reserve.
426 *
427 * We solve this, and guarantee forward progress, with a rescuer
428 * workqueue per bio_set. If we go to allocate and there are bios on
429 * current->bio_list, we first try the allocation without
430 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
431 * blocking to the rescuer workqueue before we retry with the original
432 * gfp_flags.
433 */
434 if (current->bio_list &&
435 (!bio_list_empty(&current->bio_list[0]) ||
436 !bio_list_empty(&current->bio_list[1])) &&
437 bs->rescue_workqueue)
438 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
439
440 p = mempool_alloc(&bs->bio_pool, gfp_mask);
441 if (!p && gfp_mask != saved_gfp) {
442 punt_bios_to_rescuer(bs);
443 gfp_mask = saved_gfp;
8aa6ba2f 444 p = mempool_alloc(&bs->bio_pool, gfp_mask);
3f86a82a 445 }
451a9ebf
TH
446 if (unlikely(!p))
447 return NULL;
1da177e4 448
3175199a
CH
449 bio = p + bs->front_pad;
450 if (nr_iovecs > BIO_INLINE_VECS) {
3175199a 451 struct bio_vec *bvl = NULL;
34053979 452
7a800a20 453 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
df2cb6da
KO
454 if (!bvl && gfp_mask != saved_gfp) {
455 punt_bios_to_rescuer(bs);
456 gfp_mask = saved_gfp;
7a800a20 457 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
df2cb6da 458 }
34053979
IM
459 if (unlikely(!bvl))
460 goto err_free;
a38352e0 461
7a800a20 462 bio_init(bio, bvl, nr_iovecs);
3f86a82a 463 } else if (nr_iovecs) {
3175199a
CH
464 bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
465 } else {
466 bio_init(bio, NULL, 0);
1da177e4 467 }
3f86a82a
KO
468
469 bio->bi_pool = bs;
1da177e4 470 return bio;
34053979
IM
471
472err_free:
8aa6ba2f 473 mempool_free(p, &bs->bio_pool);
34053979 474 return NULL;
1da177e4 475}
a112a71d 476EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 477
3175199a
CH
478/**
479 * bio_kmalloc - kmalloc a bio for I/O
480 * @gfp_mask: the GFP_* mask given to the slab allocator
481 * @nr_iovecs: number of iovecs to pre-allocate
482 *
483 * Use kmalloc to allocate and initialize a bio.
484 *
485 * Returns: Pointer to new bio on success, NULL on failure.
486 */
0f2e6ab8 487struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
3175199a
CH
488{
489 struct bio *bio;
490
491 if (nr_iovecs > UIO_MAXIOV)
492 return NULL;
493
494 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
495 if (unlikely(!bio))
496 return NULL;
497 bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
498 bio->bi_pool = NULL;
499 return bio;
500}
501EXPORT_SYMBOL(bio_kmalloc);
502
6f822e1b 503void zero_fill_bio(struct bio *bio)
1da177e4
LT
504{
505 unsigned long flags;
7988613b
KO
506 struct bio_vec bv;
507 struct bvec_iter iter;
1da177e4 508
6f822e1b 509 bio_for_each_segment(bv, bio, iter) {
7988613b
KO
510 char *data = bvec_kmap_irq(&bv, &flags);
511 memset(data, 0, bv.bv_len);
512 flush_dcache_page(bv.bv_page);
1da177e4
LT
513 bvec_kunmap_irq(data, &flags);
514 }
515}
6f822e1b 516EXPORT_SYMBOL(zero_fill_bio);
1da177e4 517
83c9c547
ML
518/**
519 * bio_truncate - truncate the bio to small size of @new_size
520 * @bio: the bio to be truncated
521 * @new_size: new size for truncating the bio
522 *
523 * Description:
524 * Truncate the bio to new size of @new_size. If bio_op(bio) is
525 * REQ_OP_READ, zero the truncated part. This function should only
526 * be used for handling corner cases, such as bio eod.
527 */
85a8ce62
ML
528void bio_truncate(struct bio *bio, unsigned new_size)
529{
530 struct bio_vec bv;
531 struct bvec_iter iter;
532 unsigned int done = 0;
533 bool truncated = false;
534
535 if (new_size >= bio->bi_iter.bi_size)
536 return;
537
83c9c547 538 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
539 goto exit;
540
541 bio_for_each_segment(bv, bio, iter) {
542 if (done + bv.bv_len > new_size) {
543 unsigned offset;
544
545 if (!truncated)
546 offset = new_size - done;
547 else
548 offset = 0;
549 zero_user(bv.bv_page, offset, bv.bv_len - offset);
550 truncated = true;
551 }
552 done += bv.bv_len;
553 }
554
555 exit:
556 /*
557 * Don't touch bvec table here and make it really immutable, since
558 * fs bio user has to retrieve all pages via bio_for_each_segment_all
559 * in its .end_bio() callback.
560 *
561 * It is enough to truncate bio by updating .bi_size since we can make
562 * correct bvec with the updated .bi_size for drivers.
563 */
564 bio->bi_iter.bi_size = new_size;
565}
566
29125ed6
CH
567/**
568 * guard_bio_eod - truncate a BIO to fit the block device
569 * @bio: bio to truncate
570 *
571 * This allows us to do IO even on the odd last sectors of a device, even if the
572 * block size is some multiple of the physical sector size.
573 *
574 * We'll just truncate the bio to the size of the device, and clear the end of
575 * the buffer head manually. Truly out-of-range accesses will turn into actual
576 * I/O errors, this only handles the "we need to be able to do I/O at the final
577 * sector" case.
578 */
579void guard_bio_eod(struct bio *bio)
580{
309dca30 581 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
29125ed6
CH
582
583 if (!maxsector)
584 return;
585
586 /*
587 * If the *whole* IO is past the end of the device,
588 * let it through, and the IO layer will turn it into
589 * an EIO.
590 */
591 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
592 return;
593
594 maxsector -= bio->bi_iter.bi_sector;
595 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
596 return;
597
598 bio_truncate(bio, maxsector << 9);
599}
600
1da177e4
LT
601/**
602 * bio_put - release a reference to a bio
603 * @bio: bio to release reference to
604 *
605 * Description:
606 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 607 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
608 **/
609void bio_put(struct bio *bio)
610{
dac56212 611 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 612 bio_free(bio);
dac56212
JA
613 else {
614 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
615
616 /*
617 * last put frees it
618 */
619 if (atomic_dec_and_test(&bio->__bi_cnt))
620 bio_free(bio);
621 }
1da177e4 622}
a112a71d 623EXPORT_SYMBOL(bio_put);
1da177e4 624
59d276fe
KO
625/**
626 * __bio_clone_fast - clone a bio that shares the original bio's biovec
627 * @bio: destination bio
628 * @bio_src: bio to clone
629 *
630 * Clone a &bio. Caller will own the returned bio, but not
631 * the actual data it points to. Reference count of returned
632 * bio will be one.
633 *
634 * Caller must ensure that @bio_src is not freed before @bio.
635 */
636void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
637{
7a800a20 638 WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
59d276fe
KO
639
640 /*
309dca30 641 * most users will be overriding ->bi_bdev with a new target,
59d276fe
KO
642 * so we don't set nor calculate new physical/hw segment counts here
643 */
309dca30 644 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 645 bio_set_flag(bio, BIO_CLONED);
111be883
SL
646 if (bio_flagged(bio_src, BIO_THROTTLED))
647 bio_set_flag(bio, BIO_THROTTLED);
46bbf653
CH
648 if (bio_flagged(bio_src, BIO_REMAPPED))
649 bio_set_flag(bio, BIO_REMAPPED);
1eff9d32 650 bio->bi_opf = bio_src->bi_opf;
ca474b73 651 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 652 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
653 bio->bi_iter = bio_src->bi_iter;
654 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 655
db6638d7 656 bio_clone_blkg_association(bio, bio_src);
e439bedf 657 blkcg_bio_issue_init(bio);
59d276fe
KO
658}
659EXPORT_SYMBOL(__bio_clone_fast);
660
661/**
662 * bio_clone_fast - clone a bio that shares the original bio's biovec
663 * @bio: bio to clone
664 * @gfp_mask: allocation priority
665 * @bs: bio_set to allocate from
666 *
667 * Like __bio_clone_fast, only also allocates the returned bio
668 */
669struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
670{
671 struct bio *b;
672
673 b = bio_alloc_bioset(gfp_mask, 0, bs);
674 if (!b)
675 return NULL;
676
677 __bio_clone_fast(b, bio);
678
07560151
EB
679 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
680 goto err_put;
a892c8d5 681
07560151
EB
682 if (bio_integrity(bio) &&
683 bio_integrity_clone(b, bio, gfp_mask) < 0)
684 goto err_put;
59d276fe
KO
685
686 return b;
07560151
EB
687
688err_put:
689 bio_put(b);
690 return NULL;
59d276fe
KO
691}
692EXPORT_SYMBOL(bio_clone_fast);
693
5cbd28e3
CH
694const char *bio_devname(struct bio *bio, char *buf)
695{
309dca30 696 return bdevname(bio->bi_bdev, buf);
5cbd28e3
CH
697}
698EXPORT_SYMBOL(bio_devname);
699
5919482e
ML
700static inline bool page_is_mergeable(const struct bio_vec *bv,
701 struct page *page, unsigned int len, unsigned int off,
ff896738 702 bool *same_page)
5919482e 703{
d8166519
MWO
704 size_t bv_end = bv->bv_offset + bv->bv_len;
705 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
5919482e
ML
706 phys_addr_t page_addr = page_to_phys(page);
707
708 if (vec_end_addr + 1 != page_addr + off)
709 return false;
710 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
711 return false;
52d52d1c 712
ff896738 713 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
d8166519
MWO
714 if (*same_page)
715 return true;
716 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
5919482e
ML
717}
718
e4581105
CH
719/*
720 * Try to merge a page into a segment, while obeying the hardware segment
721 * size limit. This is not for normal read/write bios, but for passthrough
722 * or Zone Append operations that we can't split.
723 */
724static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
725 struct page *page, unsigned len,
726 unsigned offset, bool *same_page)
489fbbcb 727{
384209cd 728 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
729 unsigned long mask = queue_segment_boundary(q);
730 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
731 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
732
733 if ((addr1 | mask) != (addr2 | mask))
734 return false;
489fbbcb
ML
735 if (bv->bv_len + len > queue_max_segment_size(q))
736 return false;
384209cd 737 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
738}
739
1da177e4 740/**
e4581105
CH
741 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
742 * @q: the target queue
743 * @bio: destination bio
744 * @page: page to add
745 * @len: vec entry length
746 * @offset: vec entry offset
747 * @max_sectors: maximum number of sectors that can be added
748 * @same_page: return if the segment has been merged inside the same page
c66a14d0 749 *
e4581105
CH
750 * Add a page to a bio while respecting the hardware max_sectors, max_segment
751 * and gap limitations.
1da177e4 752 */
e4581105 753int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 754 struct page *page, unsigned int len, unsigned int offset,
e4581105 755 unsigned int max_sectors, bool *same_page)
1da177e4 756{
1da177e4
LT
757 struct bio_vec *bvec;
758
e4581105 759 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
760 return 0;
761
e4581105 762 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
763 return 0;
764
80cfd548 765 if (bio->bi_vcnt > 0) {
e4581105 766 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 767 return len;
320ea869
CH
768
769 /*
770 * If the queue doesn't support SG gaps and adding this segment
771 * would create a gap, disallow it.
772 */
384209cd 773 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
774 if (bvec_gap_to_prev(q, bvec, offset))
775 return 0;
80cfd548
JA
776 }
777
79d08f89 778 if (bio_full(bio, len))
1da177e4
LT
779 return 0;
780
14ccb66b 781 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
782 return 0;
783
fcbf6a08
ML
784 bvec = &bio->bi_io_vec[bio->bi_vcnt];
785 bvec->bv_page = page;
786 bvec->bv_len = len;
787 bvec->bv_offset = offset;
788 bio->bi_vcnt++;
dcdca753 789 bio->bi_iter.bi_size += len;
1da177e4
LT
790 return len;
791}
19047087 792
e4581105
CH
793/**
794 * bio_add_pc_page - attempt to add page to passthrough bio
795 * @q: the target queue
796 * @bio: destination bio
797 * @page: page to add
798 * @len: vec entry length
799 * @offset: vec entry offset
800 *
801 * Attempt to add a page to the bio_vec maplist. This can fail for a
802 * number of reasons, such as the bio being full or target block device
803 * limitations. The target block device must allow bio's up to PAGE_SIZE,
804 * so it is always possible to add a single page to an empty bio.
805 *
806 * This should only be used by passthrough bios.
807 */
19047087
ML
808int bio_add_pc_page(struct request_queue *q, struct bio *bio,
809 struct page *page, unsigned int len, unsigned int offset)
810{
d1916c86 811 bool same_page = false;
e4581105
CH
812 return bio_add_hw_page(q, bio, page, len, offset,
813 queue_max_hw_sectors(q), &same_page);
19047087 814}
a112a71d 815EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 816
ae29333f
JT
817/**
818 * bio_add_zone_append_page - attempt to add page to zone-append bio
819 * @bio: destination bio
820 * @page: page to add
821 * @len: vec entry length
822 * @offset: vec entry offset
823 *
824 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
825 * for a zone-append request. This can fail for a number of reasons, such as the
826 * bio being full or the target block device is not a zoned block device or
827 * other limitations of the target block device. The target block device must
828 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
829 * to an empty bio.
830 *
831 * Returns: number of bytes added to the bio, or 0 in case of a failure.
832 */
833int bio_add_zone_append_page(struct bio *bio, struct page *page,
834 unsigned int len, unsigned int offset)
835{
582cd91f 836 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
ae29333f
JT
837 bool same_page = false;
838
839 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
840 return 0;
841
842 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
843 return 0;
844
845 return bio_add_hw_page(q, bio, page, len, offset,
846 queue_max_zone_append_sectors(q), &same_page);
847}
848EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
849
1da177e4 850/**
0aa69fd3
CH
851 * __bio_try_merge_page - try appending data to an existing bvec.
852 * @bio: destination bio
551879a4 853 * @page: start page to add
0aa69fd3 854 * @len: length of the data to add
551879a4 855 * @off: offset of the data relative to @page
ff896738 856 * @same_page: return if the segment has been merged inside the same page
1da177e4 857 *
0aa69fd3 858 * Try to add the data at @page + @off to the last bvec of @bio. This is a
3cf14889 859 * useful optimisation for file systems with a block size smaller than the
0aa69fd3
CH
860 * page size.
861 *
551879a4
ML
862 * Warn if (@len, @off) crosses pages in case that @same_page is true.
863 *
0aa69fd3 864 * Return %true on success or %false on failure.
1da177e4 865 */
0aa69fd3 866bool __bio_try_merge_page(struct bio *bio, struct page *page,
ff896738 867 unsigned int len, unsigned int off, bool *same_page)
1da177e4 868{
c66a14d0 869 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 870 return false;
762380ad 871
cc90bc68 872 if (bio->bi_vcnt > 0) {
0aa69fd3 873 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
874
875 if (page_is_mergeable(bv, page, len, off, same_page)) {
cd2c7545 876 if (bio->bi_iter.bi_size > bio_max_size(bio) - len) {
2cd896a5 877 *same_page = false;
cc90bc68 878 return false;
2cd896a5 879 }
5919482e
ML
880 bv->bv_len += len;
881 bio->bi_iter.bi_size += len;
882 return true;
883 }
c66a14d0 884 }
0aa69fd3
CH
885 return false;
886}
887EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 888
0aa69fd3 889/**
551879a4 890 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 891 * @bio: destination bio
551879a4
ML
892 * @page: start page to add
893 * @len: length of the data to add, may cross pages
894 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
895 *
896 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
897 * that @bio has space for another bvec.
898 */
899void __bio_add_page(struct bio *bio, struct page *page,
900 unsigned int len, unsigned int off)
901{
902 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 903
0aa69fd3 904 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 905 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
906
907 bv->bv_page = page;
908 bv->bv_offset = off;
909 bv->bv_len = len;
c66a14d0 910
c66a14d0 911 bio->bi_iter.bi_size += len;
0aa69fd3 912 bio->bi_vcnt++;
b8e24a93
JW
913
914 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
915 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
916}
917EXPORT_SYMBOL_GPL(__bio_add_page);
918
919/**
551879a4 920 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 921 * @bio: destination bio
551879a4
ML
922 * @page: start page to add
923 * @len: vec entry length, may cross pages
924 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 925 *
551879a4 926 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
927 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
928 */
929int bio_add_page(struct bio *bio, struct page *page,
930 unsigned int len, unsigned int offset)
931{
ff896738
CH
932 bool same_page = false;
933
934 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 935 if (bio_full(bio, len))
0aa69fd3
CH
936 return 0;
937 __bio_add_page(bio, page, len, offset);
938 }
c66a14d0 939 return len;
1da177e4 940}
a112a71d 941EXPORT_SYMBOL(bio_add_page);
1da177e4 942
d241a95f 943void bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
944{
945 struct bvec_iter_all iter_all;
946 struct bio_vec *bvec;
7321ecbf 947
b2d0d991
CH
948 if (bio_flagged(bio, BIO_NO_PAGE_REF))
949 return;
950
d241a95f
CH
951 bio_for_each_segment_all(bvec, bio, iter_all) {
952 if (mark_dirty && !PageCompound(bvec->bv_page))
953 set_page_dirty_lock(bvec->bv_page);
7321ecbf 954 put_page(bvec->bv_page);
d241a95f 955 }
7321ecbf 956}
29b2a3aa 957EXPORT_SYMBOL_GPL(bio_release_pages);
7321ecbf 958
7de55b7d 959static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
6d0c48ae 960{
7a800a20 961 WARN_ON_ONCE(bio->bi_max_vecs);
c42bca92
PB
962
963 bio->bi_vcnt = iter->nr_segs;
c42bca92
PB
964 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
965 bio->bi_iter.bi_bvec_done = iter->iov_offset;
966 bio->bi_iter.bi_size = iter->count;
ed97ce5e 967 bio_set_flag(bio, BIO_NO_PAGE_REF);
977be012 968 bio_set_flag(bio, BIO_CLONED);
7de55b7d 969}
c42bca92 970
7de55b7d
JT
971static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
972{
973 __bio_iov_bvec_set(bio, iter);
c42bca92 974 iov_iter_advance(iter, iter->count);
a10584c3 975 return 0;
6d0c48ae
JA
976}
977
7de55b7d
JT
978static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter)
979{
980 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
981 struct iov_iter i = *iter;
982
983 iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9);
984 __bio_iov_bvec_set(bio, &i);
985 iov_iter_advance(iter, i.count);
986 return 0;
987}
988
576ed913
CH
989#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
990
2cefe4db 991/**
17d51b10 992 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
993 * @bio: bio to add pages to
994 * @iter: iov iterator describing the region to be mapped
995 *
17d51b10 996 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 997 * pages will have to be released using put_page() when done.
17d51b10 998 * For multi-segment *iter, this function only adds pages from the
3cf14889 999 * next non-empty segment of the iov iterator.
2cefe4db 1000 */
17d51b10 1001static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 1002{
576ed913
CH
1003 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1004 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
cd2c7545 1005 unsigned int bytes_left = bio_max_size(bio) - bio->bi_iter.bi_size;
2cefe4db
KO
1006 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1007 struct page **pages = (struct page **)bv;
45691804 1008 bool same_page = false;
576ed913
CH
1009 ssize_t size, left;
1010 unsigned len, i;
b403ea24 1011 size_t offset;
576ed913
CH
1012
1013 /*
1014 * Move page array up in the allocated memory for the bio vecs as far as
1015 * possible so that we can start filling biovecs from the beginning
1016 * without overwriting the temporary page array.
1017 */
1018 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1019 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db 1020
cd2c7545
CL
1021 size = iov_iter_get_pages(iter, pages, bytes_left, nr_pages,
1022 &offset);
2cefe4db
KO
1023 if (unlikely(size <= 0))
1024 return size ? size : -EFAULT;
2cefe4db 1025
576ed913
CH
1026 for (left = size, i = 0; left > 0; left -= len, i++) {
1027 struct page *page = pages[i];
2cefe4db 1028
576ed913 1029 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
1030
1031 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1032 if (same_page)
1033 put_page(page);
1034 } else {
79d08f89 1035 if (WARN_ON_ONCE(bio_full(bio, len)))
45691804
CH
1036 return -EINVAL;
1037 __bio_add_page(bio, page, len, offset);
1038 }
576ed913 1039 offset = 0;
2cefe4db
KO
1040 }
1041
2cefe4db
KO
1042 iov_iter_advance(iter, size);
1043 return 0;
1044}
17d51b10 1045
0512a75b
KB
1046static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1047{
1048 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1049 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
309dca30 1050 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
0512a75b
KB
1051 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1052 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1053 struct page **pages = (struct page **)bv;
1054 ssize_t size, left;
1055 unsigned len, i;
1056 size_t offset;
4977d121 1057 int ret = 0;
0512a75b
KB
1058
1059 if (WARN_ON_ONCE(!max_append_sectors))
1060 return 0;
1061
1062 /*
1063 * Move page array up in the allocated memory for the bio vecs as far as
1064 * possible so that we can start filling biovecs from the beginning
1065 * without overwriting the temporary page array.
1066 */
1067 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1068 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1069
1070 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1071 if (unlikely(size <= 0))
1072 return size ? size : -EFAULT;
1073
1074 for (left = size, i = 0; left > 0; left -= len, i++) {
1075 struct page *page = pages[i];
1076 bool same_page = false;
1077
1078 len = min_t(size_t, PAGE_SIZE - offset, left);
1079 if (bio_add_hw_page(q, bio, page, len, offset,
4977d121
NA
1080 max_append_sectors, &same_page) != len) {
1081 ret = -EINVAL;
1082 break;
1083 }
0512a75b
KB
1084 if (same_page)
1085 put_page(page);
1086 offset = 0;
1087 }
1088
4977d121
NA
1089 iov_iter_advance(iter, size - left);
1090 return ret;
0512a75b
KB
1091}
1092
17d51b10 1093/**
6d0c48ae 1094 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1095 * @bio: bio to add pages to
6d0c48ae
JA
1096 * @iter: iov iterator describing the region to be added
1097 *
1098 * This takes either an iterator pointing to user memory, or one pointing to
1099 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1100 * map them into the kernel. On IO completion, the caller should put those
c42bca92
PB
1101 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1102 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1103 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1104 * completed by a call to ->ki_complete() or returns with an error other than
1105 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1106 * on IO completion. If it isn't, then pages should be released.
17d51b10 1107 *
17d51b10 1108 * The function tries, but does not guarantee, to pin as many pages as
5cd3ddc1 1109 * fit into the bio, or are requested in @iter, whatever is smaller. If
6d0c48ae
JA
1110 * MM encounters an error pinning the requested pages, it stops. Error
1111 * is returned only if 0 pages could be pinned.
0cf41e5e
PB
1112 *
1113 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1114 * responsible for setting BIO_WORKINGSET if necessary.
17d51b10
MW
1115 */
1116int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1117{
c42bca92 1118 int ret = 0;
14eacf12 1119
c42bca92 1120 if (iov_iter_is_bvec(iter)) {
7de55b7d
JT
1121 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1122 return bio_iov_bvec_set_append(bio, iter);
ed97ce5e 1123 return bio_iov_bvec_set(bio, iter);
c42bca92 1124 }
17d51b10
MW
1125
1126 do {
86004515 1127 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
0512a75b 1128 ret = __bio_iov_append_get_pages(bio, iter);
86004515
CH
1129 else
1130 ret = __bio_iov_iter_get_pages(bio, iter);
79d08f89 1131 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 1132
0cf41e5e
PB
1133 /* don't account direct I/O as memory stall */
1134 bio_clear_flag(bio, BIO_WORKINGSET);
14eacf12 1135 return bio->bi_vcnt ? 0 : ret;
17d51b10 1136}
29b2a3aa 1137EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1138
4246a0b6 1139static void submit_bio_wait_endio(struct bio *bio)
9e882242 1140{
65e53aab 1141 complete(bio->bi_private);
9e882242
KO
1142}
1143
1144/**
1145 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1146 * @bio: The &struct bio which describes the I/O
1147 *
1148 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1149 * bio_endio() on failure.
3d289d68
JK
1150 *
1151 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1152 * result in bio reference to be consumed. The caller must drop the reference
1153 * on his own.
9e882242 1154 */
4e49ea4a 1155int submit_bio_wait(struct bio *bio)
9e882242 1156{
309dca30
CH
1157 DECLARE_COMPLETION_ONSTACK_MAP(done,
1158 bio->bi_bdev->bd_disk->lockdep_map);
de6a78b6 1159 unsigned long hang_check;
9e882242 1160
65e53aab 1161 bio->bi_private = &done;
9e882242 1162 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1163 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1164 submit_bio(bio);
de6a78b6
ML
1165
1166 /* Prevent hang_check timer from firing at us during very long I/O */
1167 hang_check = sysctl_hung_task_timeout_secs;
1168 if (hang_check)
1169 while (!wait_for_completion_io_timeout(&done,
1170 hang_check * (HZ/2)))
1171 ;
1172 else
1173 wait_for_completion_io(&done);
9e882242 1174
65e53aab 1175 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1176}
1177EXPORT_SYMBOL(submit_bio_wait);
1178
054bdf64
KO
1179/**
1180 * bio_advance - increment/complete a bio by some number of bytes
1181 * @bio: bio to advance
1182 * @bytes: number of bytes to complete
1183 *
1184 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1185 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1186 * be updated on the last bvec as well.
1187 *
1188 * @bio will then represent the remaining, uncompleted portion of the io.
1189 */
1190void bio_advance(struct bio *bio, unsigned bytes)
1191{
1192 if (bio_integrity(bio))
1193 bio_integrity_advance(bio, bytes);
1194
a892c8d5 1195 bio_crypt_advance(bio, bytes);
4550dd6c 1196 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1197}
1198EXPORT_SYMBOL(bio_advance);
1199
45db54d5
KO
1200void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1201 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1202{
1cb9dda4 1203 struct bio_vec src_bv, dst_bv;
16ac3d63 1204 void *src_p, *dst_p;
1cb9dda4 1205 unsigned bytes;
16ac3d63 1206
45db54d5
KO
1207 while (src_iter->bi_size && dst_iter->bi_size) {
1208 src_bv = bio_iter_iovec(src, *src_iter);
1209 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1210
1211 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1212
1cb9dda4
KO
1213 src_p = kmap_atomic(src_bv.bv_page);
1214 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1215
1cb9dda4
KO
1216 memcpy(dst_p + dst_bv.bv_offset,
1217 src_p + src_bv.bv_offset,
16ac3d63
KO
1218 bytes);
1219
1220 kunmap_atomic(dst_p);
1221 kunmap_atomic(src_p);
1222
6e6e811d
KO
1223 flush_dcache_page(dst_bv.bv_page);
1224
22b56c29
PB
1225 bio_advance_iter_single(src, src_iter, bytes);
1226 bio_advance_iter_single(dst, dst_iter, bytes);
16ac3d63
KO
1227 }
1228}
38a72dac
KO
1229EXPORT_SYMBOL(bio_copy_data_iter);
1230
1231/**
45db54d5
KO
1232 * bio_copy_data - copy contents of data buffers from one bio to another
1233 * @src: source bio
1234 * @dst: destination bio
38a72dac
KO
1235 *
1236 * Stops when it reaches the end of either @src or @dst - that is, copies
1237 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1238 */
1239void bio_copy_data(struct bio *dst, struct bio *src)
1240{
45db54d5
KO
1241 struct bvec_iter src_iter = src->bi_iter;
1242 struct bvec_iter dst_iter = dst->bi_iter;
1243
1244 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1245}
16ac3d63
KO
1246EXPORT_SYMBOL(bio_copy_data);
1247
491221f8 1248void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1249{
1250 struct bio_vec *bvec;
6dc4f100 1251 struct bvec_iter_all iter_all;
1dfa0f68 1252
2b070cfe 1253 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1254 __free_page(bvec->bv_page);
1255}
491221f8 1256EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1257
1da177e4
LT
1258/*
1259 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1260 * for performing direct-IO in BIOs.
1261 *
1262 * The problem is that we cannot run set_page_dirty() from interrupt context
1263 * because the required locks are not interrupt-safe. So what we can do is to
1264 * mark the pages dirty _before_ performing IO. And in interrupt context,
1265 * check that the pages are still dirty. If so, fine. If not, redirty them
1266 * in process context.
1267 *
1268 * We special-case compound pages here: normally this means reads into hugetlb
1269 * pages. The logic in here doesn't really work right for compound pages
1270 * because the VM does not uniformly chase down the head page in all cases.
1271 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1272 * handle them at all. So we skip compound pages here at an early stage.
1273 *
1274 * Note that this code is very hard to test under normal circumstances because
1275 * direct-io pins the pages with get_user_pages(). This makes
1276 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1277 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1278 * pagecache.
1279 *
1280 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1281 * deferred bio dirtying paths.
1282 */
1283
1284/*
1285 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1286 */
1287void bio_set_pages_dirty(struct bio *bio)
1288{
cb34e057 1289 struct bio_vec *bvec;
6dc4f100 1290 struct bvec_iter_all iter_all;
1da177e4 1291
2b070cfe 1292 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1293 if (!PageCompound(bvec->bv_page))
1294 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1295 }
1296}
1297
1da177e4
LT
1298/*
1299 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1300 * If they are, then fine. If, however, some pages are clean then they must
1301 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1302 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1303 *
1304 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1305 * here on. It will run one put_page() against each page and will run one
1306 * bio_put() against the BIO.
1da177e4
LT
1307 */
1308
65f27f38 1309static void bio_dirty_fn(struct work_struct *work);
1da177e4 1310
65f27f38 1311static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1312static DEFINE_SPINLOCK(bio_dirty_lock);
1313static struct bio *bio_dirty_list;
1314
1315/*
1316 * This runs in process context
1317 */
65f27f38 1318static void bio_dirty_fn(struct work_struct *work)
1da177e4 1319{
24d5493f 1320 struct bio *bio, *next;
1da177e4 1321
24d5493f
CH
1322 spin_lock_irq(&bio_dirty_lock);
1323 next = bio_dirty_list;
1da177e4 1324 bio_dirty_list = NULL;
24d5493f 1325 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1326
24d5493f
CH
1327 while ((bio = next) != NULL) {
1328 next = bio->bi_private;
1da177e4 1329
d241a95f 1330 bio_release_pages(bio, true);
1da177e4 1331 bio_put(bio);
1da177e4
LT
1332 }
1333}
1334
1335void bio_check_pages_dirty(struct bio *bio)
1336{
cb34e057 1337 struct bio_vec *bvec;
24d5493f 1338 unsigned long flags;
6dc4f100 1339 struct bvec_iter_all iter_all;
1da177e4 1340
2b070cfe 1341 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1342 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1343 goto defer;
1da177e4
LT
1344 }
1345
d241a95f 1346 bio_release_pages(bio, false);
24d5493f
CH
1347 bio_put(bio);
1348 return;
1349defer:
1350 spin_lock_irqsave(&bio_dirty_lock, flags);
1351 bio->bi_private = bio_dirty_list;
1352 bio_dirty_list = bio;
1353 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1354 schedule_work(&bio_dirty_work);
1da177e4
LT
1355}
1356
c4cf5261
JA
1357static inline bool bio_remaining_done(struct bio *bio)
1358{
1359 /*
1360 * If we're not chaining, then ->__bi_remaining is always 1 and
1361 * we always end io on the first invocation.
1362 */
1363 if (!bio_flagged(bio, BIO_CHAIN))
1364 return true;
1365
1366 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1367
326e1dbb 1368 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1369 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1370 return true;
326e1dbb 1371 }
c4cf5261
JA
1372
1373 return false;
1374}
1375
1da177e4
LT
1376/**
1377 * bio_endio - end I/O on a bio
1378 * @bio: bio
1da177e4
LT
1379 *
1380 * Description:
4246a0b6
CH
1381 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1382 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1383 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1384 *
1385 * bio_endio() can be called several times on a bio that has been chained
1386 * using bio_chain(). The ->bi_end_io() function will only be called the
1387 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1388 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1389 **/
4246a0b6 1390void bio_endio(struct bio *bio)
1da177e4 1391{
ba8c6967 1392again:
2b885517 1393 if (!bio_remaining_done(bio))
ba8c6967 1394 return;
7c20f116
CH
1395 if (!bio_integrity_endio(bio))
1396 return;
1da177e4 1397
309dca30
CH
1398 if (bio->bi_bdev)
1399 rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
67b42d0b 1400
ba8c6967
CH
1401 /*
1402 * Need to have a real endio function for chained bios, otherwise
1403 * various corner cases will break (like stacking block devices that
1404 * save/restore bi_end_io) - however, we want to avoid unbounded
1405 * recursion and blowing the stack. Tail call optimization would
1406 * handle this, but compiling with frame pointers also disables
1407 * gcc's sibling call optimization.
1408 */
1409 if (bio->bi_end_io == bio_chain_endio) {
1410 bio = __bio_chain_endio(bio);
1411 goto again;
196d38bc 1412 }
ba8c6967 1413
309dca30
CH
1414 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1415 trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
fbbaf700
N
1416 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1417 }
1418
9e234eea 1419 blk_throtl_bio_endio(bio);
b222dd2f
SL
1420 /* release cgroup info */
1421 bio_uninit(bio);
ba8c6967
CH
1422 if (bio->bi_end_io)
1423 bio->bi_end_io(bio);
1da177e4 1424}
a112a71d 1425EXPORT_SYMBOL(bio_endio);
1da177e4 1426
20d0189b
KO
1427/**
1428 * bio_split - split a bio
1429 * @bio: bio to split
1430 * @sectors: number of sectors to split from the front of @bio
1431 * @gfp: gfp mask
1432 * @bs: bio set to allocate from
1433 *
1434 * Allocates and returns a new bio which represents @sectors from the start of
1435 * @bio, and updates @bio to represent the remaining sectors.
1436 *
f3f5da62 1437 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1438 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1439 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1440 */
1441struct bio *bio_split(struct bio *bio, int sectors,
1442 gfp_t gfp, struct bio_set *bs)
1443{
f341a4d3 1444 struct bio *split;
20d0189b
KO
1445
1446 BUG_ON(sectors <= 0);
1447 BUG_ON(sectors >= bio_sectors(bio));
1448
0512a75b
KB
1449 /* Zone append commands cannot be split */
1450 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1451 return NULL;
1452
f9d03f96 1453 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1454 if (!split)
1455 return NULL;
1456
1457 split->bi_iter.bi_size = sectors << 9;
1458
1459 if (bio_integrity(split))
fbd08e76 1460 bio_integrity_trim(split);
20d0189b
KO
1461
1462 bio_advance(bio, split->bi_iter.bi_size);
1463
fbbaf700 1464 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1465 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1466
20d0189b
KO
1467 return split;
1468}
1469EXPORT_SYMBOL(bio_split);
1470
6678d83f
KO
1471/**
1472 * bio_trim - trim a bio
1473 * @bio: bio to trim
1474 * @offset: number of sectors to trim from the front of @bio
1475 * @size: size we want to trim @bio to, in sectors
1476 */
1477void bio_trim(struct bio *bio, int offset, int size)
1478{
1479 /* 'bio' is a cloned bio which we need to trim to match
1480 * the given offset and size.
6678d83f 1481 */
6678d83f
KO
1482
1483 size <<= 9;
4f024f37 1484 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1485 return;
1486
6678d83f 1487 bio_advance(bio, offset << 9);
4f024f37 1488 bio->bi_iter.bi_size = size;
376a78ab
DM
1489
1490 if (bio_integrity(bio))
fbd08e76 1491 bio_integrity_trim(bio);
376a78ab 1492
6678d83f
KO
1493}
1494EXPORT_SYMBOL_GPL(bio_trim);
1495
1da177e4
LT
1496/*
1497 * create memory pools for biovec's in a bio_set.
1498 * use the global biovec slabs created for general use.
1499 */
8aa6ba2f 1500int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1501{
7a800a20 1502 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1da177e4 1503
8aa6ba2f 1504 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1505}
1506
917a38c7
KO
1507/*
1508 * bioset_exit - exit a bioset initialized with bioset_init()
1509 *
1510 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1511 * kzalloc()).
1512 */
1513void bioset_exit(struct bio_set *bs)
1da177e4 1514{
df2cb6da
KO
1515 if (bs->rescue_workqueue)
1516 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1517 bs->rescue_workqueue = NULL;
df2cb6da 1518
8aa6ba2f
KO
1519 mempool_exit(&bs->bio_pool);
1520 mempool_exit(&bs->bvec_pool);
9f060e22 1521
7878cba9 1522 bioset_integrity_free(bs);
917a38c7
KO
1523 if (bs->bio_slab)
1524 bio_put_slab(bs);
1525 bs->bio_slab = NULL;
1526}
1527EXPORT_SYMBOL(bioset_exit);
1da177e4 1528
917a38c7
KO
1529/**
1530 * bioset_init - Initialize a bio_set
dad08527 1531 * @bs: pool to initialize
917a38c7
KO
1532 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1533 * @front_pad: Number of bytes to allocate in front of the returned bio
1534 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1535 * and %BIOSET_NEED_RESCUER
1536 *
dad08527
KO
1537 * Description:
1538 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1539 * to ask for a number of bytes to be allocated in front of the bio.
1540 * Front pad allocation is useful for embedding the bio inside
1541 * another structure, to avoid allocating extra data to go with the bio.
1542 * Note that the bio must be embedded at the END of that structure always,
1543 * or things will break badly.
1544 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1545 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1546 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1547 * dispatch queued requests when the mempool runs out of space.
1548 *
917a38c7
KO
1549 */
1550int bioset_init(struct bio_set *bs,
1551 unsigned int pool_size,
1552 unsigned int front_pad,
1553 int flags)
1554{
917a38c7 1555 bs->front_pad = front_pad;
9f180e31
ML
1556 if (flags & BIOSET_NEED_BVECS)
1557 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1558 else
1559 bs->back_pad = 0;
917a38c7
KO
1560
1561 spin_lock_init(&bs->rescue_lock);
1562 bio_list_init(&bs->rescue_list);
1563 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1564
49d1ec85 1565 bs->bio_slab = bio_find_or_create_slab(bs);
917a38c7
KO
1566 if (!bs->bio_slab)
1567 return -ENOMEM;
1568
1569 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1570 goto bad;
1571
1572 if ((flags & BIOSET_NEED_BVECS) &&
1573 biovec_init_pool(&bs->bvec_pool, pool_size))
1574 goto bad;
1575
1576 if (!(flags & BIOSET_NEED_RESCUER))
1577 return 0;
1578
1579 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1580 if (!bs->rescue_workqueue)
1581 goto bad;
1582
1583 return 0;
1584bad:
1585 bioset_exit(bs);
1586 return -ENOMEM;
1587}
1588EXPORT_SYMBOL(bioset_init);
1589
28e89fd9
JA
1590/*
1591 * Initialize and setup a new bio_set, based on the settings from
1592 * another bio_set.
1593 */
1594int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1595{
1596 int flags;
1597
1598 flags = 0;
1599 if (src->bvec_pool.min_nr)
1600 flags |= BIOSET_NEED_BVECS;
1601 if (src->rescue_workqueue)
1602 flags |= BIOSET_NEED_RESCUER;
1603
1604 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1605}
1606EXPORT_SYMBOL(bioset_init_from_src);
1607
de76fd89 1608static int __init init_bio(void)
1da177e4
LT
1609{
1610 int i;
1611
7878cba9 1612 bio_integrity_init();
1da177e4 1613
de76fd89
CH
1614 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1615 struct biovec_slab *bvs = bvec_slabs + i;
a7fcd37c 1616
de76fd89
CH
1617 bvs->slab = kmem_cache_create(bvs->name,
1618 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1619 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 1620 }
1da177e4 1621
f4f8154a 1622 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1623 panic("bio: can't allocate bios\n");
1624
f4f8154a 1625 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1626 panic("bio: can't create integrity pool\n");
1627
1da177e4
LT
1628 return 0;
1629}
1da177e4 1630subsys_initcall(init_bio);
This page took 1.27129 seconds and 4 git commands to generate.