]>
Commit | Line | Data |
---|---|---|
8c16567d | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 | 2 | /* |
0fe23479 | 3 | * Copyright (C) 2001 Jens Axboe <[email protected]> |
1da177e4 LT |
4 | */ |
5 | #include <linux/mm.h> | |
6 | #include <linux/swap.h> | |
7 | #include <linux/bio.h> | |
8 | #include <linux/blkdev.h> | |
a27bb332 | 9 | #include <linux/uio.h> |
852c788f | 10 | #include <linux/iocontext.h> |
1da177e4 LT |
11 | #include <linux/slab.h> |
12 | #include <linux/init.h> | |
13 | #include <linux/kernel.h> | |
630d9c47 | 14 | #include <linux/export.h> |
1da177e4 LT |
15 | #include <linux/mempool.h> |
16 | #include <linux/workqueue.h> | |
852c788f | 17 | #include <linux/cgroup.h> |
08e18eab | 18 | #include <linux/blk-cgroup.h> |
b4c5875d | 19 | #include <linux/highmem.h> |
de6a78b6 | 20 | #include <linux/sched/sysctl.h> |
a892c8d5 | 21 | #include <linux/blk-crypto.h> |
49d1ec85 | 22 | #include <linux/xarray.h> |
1da177e4 | 23 | |
55782138 | 24 | #include <trace/events/block.h> |
9e234eea | 25 | #include "blk.h" |
67b42d0b | 26 | #include "blk-rq-qos.h" |
0bfc2455 | 27 | |
6ac0b715 CH |
28 | struct biovec_slab { |
29 | int nr_vecs; | |
30 | char *name; | |
31 | struct kmem_cache *slab; | |
32 | }; | |
33 | ||
1da177e4 LT |
34 | /* |
35 | * if you change this list, also change bvec_alloc or things will | |
36 | * break badly! cannot be bigger than what you can fit into an | |
37 | * unsigned short | |
38 | */ | |
bd5c4fac | 39 | #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n } |
ed996a52 | 40 | static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { |
bd5c4fac | 41 | BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max), |
1da177e4 LT |
42 | }; |
43 | #undef BV | |
44 | ||
1da177e4 LT |
45 | /* |
46 | * fs_bio_set is the bio_set containing bio and iovec memory pools used by | |
47 | * IO code that does not need private memory pools. | |
48 | */ | |
f4f8154a | 49 | struct bio_set fs_bio_set; |
3f86a82a | 50 | EXPORT_SYMBOL(fs_bio_set); |
1da177e4 | 51 | |
bb799ca0 JA |
52 | /* |
53 | * Our slab pool management | |
54 | */ | |
55 | struct bio_slab { | |
56 | struct kmem_cache *slab; | |
57 | unsigned int slab_ref; | |
58 | unsigned int slab_size; | |
59 | char name[8]; | |
60 | }; | |
61 | static DEFINE_MUTEX(bio_slab_lock); | |
49d1ec85 | 62 | static DEFINE_XARRAY(bio_slabs); |
bb799ca0 | 63 | |
49d1ec85 | 64 | static struct bio_slab *create_bio_slab(unsigned int size) |
bb799ca0 | 65 | { |
49d1ec85 | 66 | struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL); |
bb799ca0 | 67 | |
49d1ec85 ML |
68 | if (!bslab) |
69 | return NULL; | |
bb799ca0 | 70 | |
49d1ec85 ML |
71 | snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size); |
72 | bslab->slab = kmem_cache_create(bslab->name, size, | |
73 | ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL); | |
74 | if (!bslab->slab) | |
75 | goto fail_alloc_slab; | |
bb799ca0 | 76 | |
49d1ec85 ML |
77 | bslab->slab_ref = 1; |
78 | bslab->slab_size = size; | |
bb799ca0 | 79 | |
49d1ec85 ML |
80 | if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL))) |
81 | return bslab; | |
bb799ca0 | 82 | |
49d1ec85 | 83 | kmem_cache_destroy(bslab->slab); |
bb799ca0 | 84 | |
49d1ec85 ML |
85 | fail_alloc_slab: |
86 | kfree(bslab); | |
87 | return NULL; | |
88 | } | |
bb799ca0 | 89 | |
49d1ec85 ML |
90 | static inline unsigned int bs_bio_slab_size(struct bio_set *bs) |
91 | { | |
9f180e31 | 92 | return bs->front_pad + sizeof(struct bio) + bs->back_pad; |
49d1ec85 ML |
93 | } |
94 | ||
95 | static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs) | |
96 | { | |
97 | unsigned int size = bs_bio_slab_size(bs); | |
98 | struct bio_slab *bslab; | |
99 | ||
100 | mutex_lock(&bio_slab_lock); | |
101 | bslab = xa_load(&bio_slabs, size); | |
102 | if (bslab) | |
103 | bslab->slab_ref++; | |
104 | else | |
105 | bslab = create_bio_slab(size); | |
bb799ca0 | 106 | mutex_unlock(&bio_slab_lock); |
49d1ec85 ML |
107 | |
108 | if (bslab) | |
109 | return bslab->slab; | |
110 | return NULL; | |
bb799ca0 JA |
111 | } |
112 | ||
113 | static void bio_put_slab(struct bio_set *bs) | |
114 | { | |
115 | struct bio_slab *bslab = NULL; | |
49d1ec85 | 116 | unsigned int slab_size = bs_bio_slab_size(bs); |
bb799ca0 JA |
117 | |
118 | mutex_lock(&bio_slab_lock); | |
119 | ||
49d1ec85 | 120 | bslab = xa_load(&bio_slabs, slab_size); |
bb799ca0 JA |
121 | if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) |
122 | goto out; | |
123 | ||
49d1ec85 ML |
124 | WARN_ON_ONCE(bslab->slab != bs->bio_slab); |
125 | ||
bb799ca0 JA |
126 | WARN_ON(!bslab->slab_ref); |
127 | ||
128 | if (--bslab->slab_ref) | |
129 | goto out; | |
130 | ||
49d1ec85 ML |
131 | xa_erase(&bio_slabs, slab_size); |
132 | ||
bb799ca0 | 133 | kmem_cache_destroy(bslab->slab); |
49d1ec85 | 134 | kfree(bslab); |
bb799ca0 JA |
135 | |
136 | out: | |
137 | mutex_unlock(&bio_slab_lock); | |
138 | } | |
139 | ||
7ba1ba12 MP |
140 | unsigned int bvec_nr_vecs(unsigned short idx) |
141 | { | |
d6c02a9b | 142 | return bvec_slabs[--idx].nr_vecs; |
7ba1ba12 MP |
143 | } |
144 | ||
9f060e22 | 145 | void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) |
bb799ca0 | 146 | { |
ed996a52 CH |
147 | if (!idx) |
148 | return; | |
149 | idx--; | |
150 | ||
151 | BIO_BUG_ON(idx >= BVEC_POOL_NR); | |
bb799ca0 | 152 | |
ed996a52 | 153 | if (idx == BVEC_POOL_MAX) { |
9f060e22 | 154 | mempool_free(bv, pool); |
ed996a52 | 155 | } else { |
bb799ca0 JA |
156 | struct biovec_slab *bvs = bvec_slabs + idx; |
157 | ||
158 | kmem_cache_free(bvs->slab, bv); | |
159 | } | |
160 | } | |
161 | ||
9f060e22 KO |
162 | struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, |
163 | mempool_t *pool) | |
1da177e4 LT |
164 | { |
165 | struct bio_vec *bvl; | |
1da177e4 | 166 | |
7ff9345f JA |
167 | /* |
168 | * see comment near bvec_array define! | |
169 | */ | |
170 | switch (nr) { | |
171 | case 1: | |
172 | *idx = 0; | |
173 | break; | |
174 | case 2 ... 4: | |
175 | *idx = 1; | |
176 | break; | |
177 | case 5 ... 16: | |
178 | *idx = 2; | |
179 | break; | |
180 | case 17 ... 64: | |
181 | *idx = 3; | |
182 | break; | |
183 | case 65 ... 128: | |
184 | *idx = 4; | |
185 | break; | |
186 | case 129 ... BIO_MAX_PAGES: | |
187 | *idx = 5; | |
188 | break; | |
189 | default: | |
190 | return NULL; | |
191 | } | |
192 | ||
193 | /* | |
194 | * idx now points to the pool we want to allocate from. only the | |
195 | * 1-vec entry pool is mempool backed. | |
196 | */ | |
ed996a52 | 197 | if (*idx == BVEC_POOL_MAX) { |
7ff9345f | 198 | fallback: |
9f060e22 | 199 | bvl = mempool_alloc(pool, gfp_mask); |
7ff9345f JA |
200 | } else { |
201 | struct biovec_slab *bvs = bvec_slabs + *idx; | |
d0164adc | 202 | gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); |
7ff9345f | 203 | |
0a0d96b0 | 204 | /* |
7ff9345f JA |
205 | * Make this allocation restricted and don't dump info on |
206 | * allocation failures, since we'll fallback to the mempool | |
207 | * in case of failure. | |
0a0d96b0 | 208 | */ |
7ff9345f | 209 | __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; |
1da177e4 | 210 | |
0a0d96b0 | 211 | /* |
d0164adc | 212 | * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM |
7ff9345f | 213 | * is set, retry with the 1-entry mempool |
0a0d96b0 | 214 | */ |
7ff9345f | 215 | bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); |
d0164adc | 216 | if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { |
ed996a52 | 217 | *idx = BVEC_POOL_MAX; |
7ff9345f JA |
218 | goto fallback; |
219 | } | |
220 | } | |
221 | ||
ed996a52 | 222 | (*idx)++; |
1da177e4 LT |
223 | return bvl; |
224 | } | |
225 | ||
9ae3b3f5 | 226 | void bio_uninit(struct bio *bio) |
1da177e4 | 227 | { |
db9819c7 CH |
228 | #ifdef CONFIG_BLK_CGROUP |
229 | if (bio->bi_blkg) { | |
230 | blkg_put(bio->bi_blkg); | |
231 | bio->bi_blkg = NULL; | |
232 | } | |
233 | #endif | |
ece841ab JT |
234 | if (bio_integrity(bio)) |
235 | bio_integrity_free(bio); | |
a892c8d5 ST |
236 | |
237 | bio_crypt_free_ctx(bio); | |
4254bba1 | 238 | } |
9ae3b3f5 | 239 | EXPORT_SYMBOL(bio_uninit); |
7ba1ba12 | 240 | |
4254bba1 KO |
241 | static void bio_free(struct bio *bio) |
242 | { | |
243 | struct bio_set *bs = bio->bi_pool; | |
244 | void *p; | |
245 | ||
9ae3b3f5 | 246 | bio_uninit(bio); |
4254bba1 KO |
247 | |
248 | if (bs) { | |
8aa6ba2f | 249 | bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); |
4254bba1 KO |
250 | |
251 | /* | |
252 | * If we have front padding, adjust the bio pointer before freeing | |
253 | */ | |
254 | p = bio; | |
bb799ca0 JA |
255 | p -= bs->front_pad; |
256 | ||
8aa6ba2f | 257 | mempool_free(p, &bs->bio_pool); |
4254bba1 KO |
258 | } else { |
259 | /* Bio was allocated by bio_kmalloc() */ | |
260 | kfree(bio); | |
261 | } | |
3676347a PO |
262 | } |
263 | ||
9ae3b3f5 JA |
264 | /* |
265 | * Users of this function have their own bio allocation. Subsequently, | |
266 | * they must remember to pair any call to bio_init() with bio_uninit() | |
267 | * when IO has completed, or when the bio is released. | |
268 | */ | |
3a83f467 ML |
269 | void bio_init(struct bio *bio, struct bio_vec *table, |
270 | unsigned short max_vecs) | |
1da177e4 | 271 | { |
2b94de55 | 272 | memset(bio, 0, sizeof(*bio)); |
c4cf5261 | 273 | atomic_set(&bio->__bi_remaining, 1); |
dac56212 | 274 | atomic_set(&bio->__bi_cnt, 1); |
3a83f467 ML |
275 | |
276 | bio->bi_io_vec = table; | |
277 | bio->bi_max_vecs = max_vecs; | |
1da177e4 | 278 | } |
a112a71d | 279 | EXPORT_SYMBOL(bio_init); |
1da177e4 | 280 | |
f44b48c7 KO |
281 | /** |
282 | * bio_reset - reinitialize a bio | |
283 | * @bio: bio to reset | |
284 | * | |
285 | * Description: | |
286 | * After calling bio_reset(), @bio will be in the same state as a freshly | |
287 | * allocated bio returned bio bio_alloc_bioset() - the only fields that are | |
288 | * preserved are the ones that are initialized by bio_alloc_bioset(). See | |
289 | * comment in struct bio. | |
290 | */ | |
291 | void bio_reset(struct bio *bio) | |
292 | { | |
293 | unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); | |
294 | ||
9ae3b3f5 | 295 | bio_uninit(bio); |
f44b48c7 KO |
296 | |
297 | memset(bio, 0, BIO_RESET_BYTES); | |
4246a0b6 | 298 | bio->bi_flags = flags; |
c4cf5261 | 299 | atomic_set(&bio->__bi_remaining, 1); |
f44b48c7 KO |
300 | } |
301 | EXPORT_SYMBOL(bio_reset); | |
302 | ||
38f8baae | 303 | static struct bio *__bio_chain_endio(struct bio *bio) |
196d38bc | 304 | { |
4246a0b6 CH |
305 | struct bio *parent = bio->bi_private; |
306 | ||
4e4cbee9 CH |
307 | if (!parent->bi_status) |
308 | parent->bi_status = bio->bi_status; | |
196d38bc | 309 | bio_put(bio); |
38f8baae CH |
310 | return parent; |
311 | } | |
312 | ||
313 | static void bio_chain_endio(struct bio *bio) | |
314 | { | |
315 | bio_endio(__bio_chain_endio(bio)); | |
196d38bc KO |
316 | } |
317 | ||
318 | /** | |
319 | * bio_chain - chain bio completions | |
1051a902 | 320 | * @bio: the target bio |
5b874af6 | 321 | * @parent: the parent bio of @bio |
196d38bc KO |
322 | * |
323 | * The caller won't have a bi_end_io called when @bio completes - instead, | |
324 | * @parent's bi_end_io won't be called until both @parent and @bio have | |
325 | * completed; the chained bio will also be freed when it completes. | |
326 | * | |
327 | * The caller must not set bi_private or bi_end_io in @bio. | |
328 | */ | |
329 | void bio_chain(struct bio *bio, struct bio *parent) | |
330 | { | |
331 | BUG_ON(bio->bi_private || bio->bi_end_io); | |
332 | ||
333 | bio->bi_private = parent; | |
334 | bio->bi_end_io = bio_chain_endio; | |
c4cf5261 | 335 | bio_inc_remaining(parent); |
196d38bc KO |
336 | } |
337 | EXPORT_SYMBOL(bio_chain); | |
338 | ||
df2cb6da KO |
339 | static void bio_alloc_rescue(struct work_struct *work) |
340 | { | |
341 | struct bio_set *bs = container_of(work, struct bio_set, rescue_work); | |
342 | struct bio *bio; | |
343 | ||
344 | while (1) { | |
345 | spin_lock(&bs->rescue_lock); | |
346 | bio = bio_list_pop(&bs->rescue_list); | |
347 | spin_unlock(&bs->rescue_lock); | |
348 | ||
349 | if (!bio) | |
350 | break; | |
351 | ||
ed00aabd | 352 | submit_bio_noacct(bio); |
df2cb6da KO |
353 | } |
354 | } | |
355 | ||
356 | static void punt_bios_to_rescuer(struct bio_set *bs) | |
357 | { | |
358 | struct bio_list punt, nopunt; | |
359 | struct bio *bio; | |
360 | ||
47e0fb46 N |
361 | if (WARN_ON_ONCE(!bs->rescue_workqueue)) |
362 | return; | |
df2cb6da KO |
363 | /* |
364 | * In order to guarantee forward progress we must punt only bios that | |
365 | * were allocated from this bio_set; otherwise, if there was a bio on | |
366 | * there for a stacking driver higher up in the stack, processing it | |
367 | * could require allocating bios from this bio_set, and doing that from | |
368 | * our own rescuer would be bad. | |
369 | * | |
370 | * Since bio lists are singly linked, pop them all instead of trying to | |
371 | * remove from the middle of the list: | |
372 | */ | |
373 | ||
374 | bio_list_init(&punt); | |
375 | bio_list_init(&nopunt); | |
376 | ||
f5fe1b51 | 377 | while ((bio = bio_list_pop(¤t->bio_list[0]))) |
df2cb6da | 378 | bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); |
f5fe1b51 | 379 | current->bio_list[0] = nopunt; |
df2cb6da | 380 | |
f5fe1b51 N |
381 | bio_list_init(&nopunt); |
382 | while ((bio = bio_list_pop(¤t->bio_list[1]))) | |
383 | bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); | |
384 | current->bio_list[1] = nopunt; | |
df2cb6da KO |
385 | |
386 | spin_lock(&bs->rescue_lock); | |
387 | bio_list_merge(&bs->rescue_list, &punt); | |
388 | spin_unlock(&bs->rescue_lock); | |
389 | ||
390 | queue_work(bs->rescue_workqueue, &bs->rescue_work); | |
391 | } | |
392 | ||
1da177e4 LT |
393 | /** |
394 | * bio_alloc_bioset - allocate a bio for I/O | |
519c8e9f | 395 | * @gfp_mask: the GFP_* mask given to the slab allocator |
1da177e4 | 396 | * @nr_iovecs: number of iovecs to pre-allocate |
db18efac | 397 | * @bs: the bio_set to allocate from. |
1da177e4 | 398 | * |
3175199a | 399 | * Allocate a bio from the mempools in @bs. |
3f86a82a | 400 | * |
3175199a CH |
401 | * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to |
402 | * allocate a bio. This is due to the mempool guarantees. To make this work, | |
403 | * callers must never allocate more than 1 bio at a time from the general pool. | |
404 | * Callers that need to allocate more than 1 bio must always submit the | |
405 | * previously allocated bio for IO before attempting to allocate a new one. | |
406 | * Failure to do so can cause deadlocks under memory pressure. | |
3f86a82a | 407 | * |
3175199a CH |
408 | * Note that when running under submit_bio_noacct() (i.e. any block driver), |
409 | * bios are not submitted until after you return - see the code in | |
410 | * submit_bio_noacct() that converts recursion into iteration, to prevent | |
411 | * stack overflows. | |
df2cb6da | 412 | * |
3175199a CH |
413 | * This would normally mean allocating multiple bios under submit_bio_noacct() |
414 | * would be susceptible to deadlocks, but we have | |
415 | * deadlock avoidance code that resubmits any blocked bios from a rescuer | |
416 | * thread. | |
df2cb6da | 417 | * |
3175199a CH |
418 | * However, we do not guarantee forward progress for allocations from other |
419 | * mempools. Doing multiple allocations from the same mempool under | |
420 | * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad | |
421 | * for per bio allocations. | |
df2cb6da | 422 | * |
3175199a | 423 | * Returns: Pointer to new bio on success, NULL on failure. |
3f86a82a | 424 | */ |
7a88fa19 DC |
425 | struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, |
426 | struct bio_set *bs) | |
1da177e4 | 427 | { |
df2cb6da | 428 | gfp_t saved_gfp = gfp_mask; |
451a9ebf TH |
429 | struct bio *bio; |
430 | void *p; | |
431 | ||
3175199a CH |
432 | /* should not use nobvec bioset for nr_iovecs > 0 */ |
433 | if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0)) | |
434 | return NULL; | |
df2cb6da | 435 | |
3175199a CH |
436 | /* |
437 | * submit_bio_noacct() converts recursion to iteration; this means if | |
438 | * we're running beneath it, any bios we allocate and submit will not be | |
439 | * submitted (and thus freed) until after we return. | |
440 | * | |
441 | * This exposes us to a potential deadlock if we allocate multiple bios | |
442 | * from the same bio_set() while running underneath submit_bio_noacct(). | |
443 | * If we were to allocate multiple bios (say a stacking block driver | |
444 | * that was splitting bios), we would deadlock if we exhausted the | |
445 | * mempool's reserve. | |
446 | * | |
447 | * We solve this, and guarantee forward progress, with a rescuer | |
448 | * workqueue per bio_set. If we go to allocate and there are bios on | |
449 | * current->bio_list, we first try the allocation without | |
450 | * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be | |
451 | * blocking to the rescuer workqueue before we retry with the original | |
452 | * gfp_flags. | |
453 | */ | |
454 | if (current->bio_list && | |
455 | (!bio_list_empty(¤t->bio_list[0]) || | |
456 | !bio_list_empty(¤t->bio_list[1])) && | |
457 | bs->rescue_workqueue) | |
458 | gfp_mask &= ~__GFP_DIRECT_RECLAIM; | |
459 | ||
460 | p = mempool_alloc(&bs->bio_pool, gfp_mask); | |
461 | if (!p && gfp_mask != saved_gfp) { | |
462 | punt_bios_to_rescuer(bs); | |
463 | gfp_mask = saved_gfp; | |
8aa6ba2f | 464 | p = mempool_alloc(&bs->bio_pool, gfp_mask); |
3f86a82a | 465 | } |
451a9ebf TH |
466 | if (unlikely(!p)) |
467 | return NULL; | |
1da177e4 | 468 | |
3175199a CH |
469 | bio = p + bs->front_pad; |
470 | if (nr_iovecs > BIO_INLINE_VECS) { | |
ed996a52 | 471 | unsigned long idx = 0; |
3175199a | 472 | struct bio_vec *bvl = NULL; |
ed996a52 | 473 | |
8aa6ba2f | 474 | bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); |
df2cb6da KO |
475 | if (!bvl && gfp_mask != saved_gfp) { |
476 | punt_bios_to_rescuer(bs); | |
477 | gfp_mask = saved_gfp; | |
3175199a CH |
478 | bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, |
479 | &bs->bvec_pool); | |
df2cb6da KO |
480 | } |
481 | ||
34053979 IM |
482 | if (unlikely(!bvl)) |
483 | goto err_free; | |
a38352e0 | 484 | |
3175199a | 485 | bio_init(bio, bvl, bvec_nr_vecs(idx)); |
8358c28a | 486 | bio->bi_flags |= idx << BVEC_POOL_OFFSET; |
3f86a82a | 487 | } else if (nr_iovecs) { |
3175199a CH |
488 | bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS); |
489 | } else { | |
490 | bio_init(bio, NULL, 0); | |
1da177e4 | 491 | } |
3f86a82a KO |
492 | |
493 | bio->bi_pool = bs; | |
1da177e4 | 494 | return bio; |
34053979 IM |
495 | |
496 | err_free: | |
8aa6ba2f | 497 | mempool_free(p, &bs->bio_pool); |
34053979 | 498 | return NULL; |
1da177e4 | 499 | } |
a112a71d | 500 | EXPORT_SYMBOL(bio_alloc_bioset); |
1da177e4 | 501 | |
3175199a CH |
502 | /** |
503 | * bio_kmalloc - kmalloc a bio for I/O | |
504 | * @gfp_mask: the GFP_* mask given to the slab allocator | |
505 | * @nr_iovecs: number of iovecs to pre-allocate | |
506 | * | |
507 | * Use kmalloc to allocate and initialize a bio. | |
508 | * | |
509 | * Returns: Pointer to new bio on success, NULL on failure. | |
510 | */ | |
511 | struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs) | |
512 | { | |
513 | struct bio *bio; | |
514 | ||
515 | if (nr_iovecs > UIO_MAXIOV) | |
516 | return NULL; | |
517 | ||
518 | bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask); | |
519 | if (unlikely(!bio)) | |
520 | return NULL; | |
521 | bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs); | |
522 | bio->bi_pool = NULL; | |
523 | return bio; | |
524 | } | |
525 | EXPORT_SYMBOL(bio_kmalloc); | |
526 | ||
38a72dac | 527 | void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) |
1da177e4 LT |
528 | { |
529 | unsigned long flags; | |
7988613b KO |
530 | struct bio_vec bv; |
531 | struct bvec_iter iter; | |
1da177e4 | 532 | |
38a72dac | 533 | __bio_for_each_segment(bv, bio, iter, start) { |
7988613b KO |
534 | char *data = bvec_kmap_irq(&bv, &flags); |
535 | memset(data, 0, bv.bv_len); | |
536 | flush_dcache_page(bv.bv_page); | |
1da177e4 LT |
537 | bvec_kunmap_irq(data, &flags); |
538 | } | |
539 | } | |
38a72dac | 540 | EXPORT_SYMBOL(zero_fill_bio_iter); |
1da177e4 | 541 | |
83c9c547 ML |
542 | /** |
543 | * bio_truncate - truncate the bio to small size of @new_size | |
544 | * @bio: the bio to be truncated | |
545 | * @new_size: new size for truncating the bio | |
546 | * | |
547 | * Description: | |
548 | * Truncate the bio to new size of @new_size. If bio_op(bio) is | |
549 | * REQ_OP_READ, zero the truncated part. This function should only | |
550 | * be used for handling corner cases, such as bio eod. | |
551 | */ | |
85a8ce62 ML |
552 | void bio_truncate(struct bio *bio, unsigned new_size) |
553 | { | |
554 | struct bio_vec bv; | |
555 | struct bvec_iter iter; | |
556 | unsigned int done = 0; | |
557 | bool truncated = false; | |
558 | ||
559 | if (new_size >= bio->bi_iter.bi_size) | |
560 | return; | |
561 | ||
83c9c547 | 562 | if (bio_op(bio) != REQ_OP_READ) |
85a8ce62 ML |
563 | goto exit; |
564 | ||
565 | bio_for_each_segment(bv, bio, iter) { | |
566 | if (done + bv.bv_len > new_size) { | |
567 | unsigned offset; | |
568 | ||
569 | if (!truncated) | |
570 | offset = new_size - done; | |
571 | else | |
572 | offset = 0; | |
573 | zero_user(bv.bv_page, offset, bv.bv_len - offset); | |
574 | truncated = true; | |
575 | } | |
576 | done += bv.bv_len; | |
577 | } | |
578 | ||
579 | exit: | |
580 | /* | |
581 | * Don't touch bvec table here and make it really immutable, since | |
582 | * fs bio user has to retrieve all pages via bio_for_each_segment_all | |
583 | * in its .end_bio() callback. | |
584 | * | |
585 | * It is enough to truncate bio by updating .bi_size since we can make | |
586 | * correct bvec with the updated .bi_size for drivers. | |
587 | */ | |
588 | bio->bi_iter.bi_size = new_size; | |
589 | } | |
590 | ||
29125ed6 CH |
591 | /** |
592 | * guard_bio_eod - truncate a BIO to fit the block device | |
593 | * @bio: bio to truncate | |
594 | * | |
595 | * This allows us to do IO even on the odd last sectors of a device, even if the | |
596 | * block size is some multiple of the physical sector size. | |
597 | * | |
598 | * We'll just truncate the bio to the size of the device, and clear the end of | |
599 | * the buffer head manually. Truly out-of-range accesses will turn into actual | |
600 | * I/O errors, this only handles the "we need to be able to do I/O at the final | |
601 | * sector" case. | |
602 | */ | |
603 | void guard_bio_eod(struct bio *bio) | |
604 | { | |
309dca30 | 605 | sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); |
29125ed6 CH |
606 | |
607 | if (!maxsector) | |
608 | return; | |
609 | ||
610 | /* | |
611 | * If the *whole* IO is past the end of the device, | |
612 | * let it through, and the IO layer will turn it into | |
613 | * an EIO. | |
614 | */ | |
615 | if (unlikely(bio->bi_iter.bi_sector >= maxsector)) | |
616 | return; | |
617 | ||
618 | maxsector -= bio->bi_iter.bi_sector; | |
619 | if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) | |
620 | return; | |
621 | ||
622 | bio_truncate(bio, maxsector << 9); | |
623 | } | |
624 | ||
1da177e4 LT |
625 | /** |
626 | * bio_put - release a reference to a bio | |
627 | * @bio: bio to release reference to | |
628 | * | |
629 | * Description: | |
630 | * Put a reference to a &struct bio, either one you have gotten with | |
9b10f6a9 | 631 | * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. |
1da177e4 LT |
632 | **/ |
633 | void bio_put(struct bio *bio) | |
634 | { | |
dac56212 | 635 | if (!bio_flagged(bio, BIO_REFFED)) |
4254bba1 | 636 | bio_free(bio); |
dac56212 JA |
637 | else { |
638 | BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); | |
639 | ||
640 | /* | |
641 | * last put frees it | |
642 | */ | |
643 | if (atomic_dec_and_test(&bio->__bi_cnt)) | |
644 | bio_free(bio); | |
645 | } | |
1da177e4 | 646 | } |
a112a71d | 647 | EXPORT_SYMBOL(bio_put); |
1da177e4 | 648 | |
59d276fe KO |
649 | /** |
650 | * __bio_clone_fast - clone a bio that shares the original bio's biovec | |
651 | * @bio: destination bio | |
652 | * @bio_src: bio to clone | |
653 | * | |
654 | * Clone a &bio. Caller will own the returned bio, but not | |
655 | * the actual data it points to. Reference count of returned | |
656 | * bio will be one. | |
657 | * | |
658 | * Caller must ensure that @bio_src is not freed before @bio. | |
659 | */ | |
660 | void __bio_clone_fast(struct bio *bio, struct bio *bio_src) | |
661 | { | |
ed996a52 | 662 | BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); |
59d276fe KO |
663 | |
664 | /* | |
309dca30 | 665 | * most users will be overriding ->bi_bdev with a new target, |
59d276fe KO |
666 | * so we don't set nor calculate new physical/hw segment counts here |
667 | */ | |
309dca30 | 668 | bio->bi_bdev = bio_src->bi_bdev; |
b7c44ed9 | 669 | bio_set_flag(bio, BIO_CLONED); |
111be883 SL |
670 | if (bio_flagged(bio_src, BIO_THROTTLED)) |
671 | bio_set_flag(bio, BIO_THROTTLED); | |
46bbf653 CH |
672 | if (bio_flagged(bio_src, BIO_REMAPPED)) |
673 | bio_set_flag(bio, BIO_REMAPPED); | |
1eff9d32 | 674 | bio->bi_opf = bio_src->bi_opf; |
ca474b73 | 675 | bio->bi_ioprio = bio_src->bi_ioprio; |
cb6934f8 | 676 | bio->bi_write_hint = bio_src->bi_write_hint; |
59d276fe KO |
677 | bio->bi_iter = bio_src->bi_iter; |
678 | bio->bi_io_vec = bio_src->bi_io_vec; | |
20bd723e | 679 | |
db6638d7 | 680 | bio_clone_blkg_association(bio, bio_src); |
e439bedf | 681 | blkcg_bio_issue_init(bio); |
59d276fe KO |
682 | } |
683 | EXPORT_SYMBOL(__bio_clone_fast); | |
684 | ||
685 | /** | |
686 | * bio_clone_fast - clone a bio that shares the original bio's biovec | |
687 | * @bio: bio to clone | |
688 | * @gfp_mask: allocation priority | |
689 | * @bs: bio_set to allocate from | |
690 | * | |
691 | * Like __bio_clone_fast, only also allocates the returned bio | |
692 | */ | |
693 | struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) | |
694 | { | |
695 | struct bio *b; | |
696 | ||
697 | b = bio_alloc_bioset(gfp_mask, 0, bs); | |
698 | if (!b) | |
699 | return NULL; | |
700 | ||
701 | __bio_clone_fast(b, bio); | |
702 | ||
07560151 EB |
703 | if (bio_crypt_clone(b, bio, gfp_mask) < 0) |
704 | goto err_put; | |
a892c8d5 | 705 | |
07560151 EB |
706 | if (bio_integrity(bio) && |
707 | bio_integrity_clone(b, bio, gfp_mask) < 0) | |
708 | goto err_put; | |
59d276fe KO |
709 | |
710 | return b; | |
07560151 EB |
711 | |
712 | err_put: | |
713 | bio_put(b); | |
714 | return NULL; | |
59d276fe KO |
715 | } |
716 | EXPORT_SYMBOL(bio_clone_fast); | |
717 | ||
5cbd28e3 CH |
718 | const char *bio_devname(struct bio *bio, char *buf) |
719 | { | |
309dca30 | 720 | return bdevname(bio->bi_bdev, buf); |
5cbd28e3 CH |
721 | } |
722 | EXPORT_SYMBOL(bio_devname); | |
723 | ||
5919482e ML |
724 | static inline bool page_is_mergeable(const struct bio_vec *bv, |
725 | struct page *page, unsigned int len, unsigned int off, | |
ff896738 | 726 | bool *same_page) |
5919482e | 727 | { |
d8166519 MWO |
728 | size_t bv_end = bv->bv_offset + bv->bv_len; |
729 | phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1; | |
5919482e ML |
730 | phys_addr_t page_addr = page_to_phys(page); |
731 | ||
732 | if (vec_end_addr + 1 != page_addr + off) | |
733 | return false; | |
734 | if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) | |
735 | return false; | |
52d52d1c | 736 | |
ff896738 | 737 | *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); |
d8166519 MWO |
738 | if (*same_page) |
739 | return true; | |
740 | return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE); | |
5919482e ML |
741 | } |
742 | ||
e4581105 CH |
743 | /* |
744 | * Try to merge a page into a segment, while obeying the hardware segment | |
745 | * size limit. This is not for normal read/write bios, but for passthrough | |
746 | * or Zone Append operations that we can't split. | |
747 | */ | |
748 | static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio, | |
749 | struct page *page, unsigned len, | |
750 | unsigned offset, bool *same_page) | |
489fbbcb | 751 | { |
384209cd | 752 | struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; |
489fbbcb ML |
753 | unsigned long mask = queue_segment_boundary(q); |
754 | phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; | |
755 | phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; | |
756 | ||
757 | if ((addr1 | mask) != (addr2 | mask)) | |
758 | return false; | |
489fbbcb ML |
759 | if (bv->bv_len + len > queue_max_segment_size(q)) |
760 | return false; | |
384209cd | 761 | return __bio_try_merge_page(bio, page, len, offset, same_page); |
489fbbcb ML |
762 | } |
763 | ||
1da177e4 | 764 | /** |
e4581105 CH |
765 | * bio_add_hw_page - attempt to add a page to a bio with hw constraints |
766 | * @q: the target queue | |
767 | * @bio: destination bio | |
768 | * @page: page to add | |
769 | * @len: vec entry length | |
770 | * @offset: vec entry offset | |
771 | * @max_sectors: maximum number of sectors that can be added | |
772 | * @same_page: return if the segment has been merged inside the same page | |
c66a14d0 | 773 | * |
e4581105 CH |
774 | * Add a page to a bio while respecting the hardware max_sectors, max_segment |
775 | * and gap limitations. | |
1da177e4 | 776 | */ |
e4581105 | 777 | int bio_add_hw_page(struct request_queue *q, struct bio *bio, |
19047087 | 778 | struct page *page, unsigned int len, unsigned int offset, |
e4581105 | 779 | unsigned int max_sectors, bool *same_page) |
1da177e4 | 780 | { |
1da177e4 LT |
781 | struct bio_vec *bvec; |
782 | ||
e4581105 | 783 | if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) |
1da177e4 LT |
784 | return 0; |
785 | ||
e4581105 | 786 | if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) |
1da177e4 LT |
787 | return 0; |
788 | ||
80cfd548 | 789 | if (bio->bi_vcnt > 0) { |
e4581105 | 790 | if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page)) |
384209cd | 791 | return len; |
320ea869 CH |
792 | |
793 | /* | |
794 | * If the queue doesn't support SG gaps and adding this segment | |
795 | * would create a gap, disallow it. | |
796 | */ | |
384209cd | 797 | bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; |
320ea869 CH |
798 | if (bvec_gap_to_prev(q, bvec, offset)) |
799 | return 0; | |
80cfd548 JA |
800 | } |
801 | ||
79d08f89 | 802 | if (bio_full(bio, len)) |
1da177e4 LT |
803 | return 0; |
804 | ||
14ccb66b | 805 | if (bio->bi_vcnt >= queue_max_segments(q)) |
489fbbcb ML |
806 | return 0; |
807 | ||
fcbf6a08 ML |
808 | bvec = &bio->bi_io_vec[bio->bi_vcnt]; |
809 | bvec->bv_page = page; | |
810 | bvec->bv_len = len; | |
811 | bvec->bv_offset = offset; | |
812 | bio->bi_vcnt++; | |
dcdca753 | 813 | bio->bi_iter.bi_size += len; |
1da177e4 LT |
814 | return len; |
815 | } | |
19047087 | 816 | |
e4581105 CH |
817 | /** |
818 | * bio_add_pc_page - attempt to add page to passthrough bio | |
819 | * @q: the target queue | |
820 | * @bio: destination bio | |
821 | * @page: page to add | |
822 | * @len: vec entry length | |
823 | * @offset: vec entry offset | |
824 | * | |
825 | * Attempt to add a page to the bio_vec maplist. This can fail for a | |
826 | * number of reasons, such as the bio being full or target block device | |
827 | * limitations. The target block device must allow bio's up to PAGE_SIZE, | |
828 | * so it is always possible to add a single page to an empty bio. | |
829 | * | |
830 | * This should only be used by passthrough bios. | |
831 | */ | |
19047087 ML |
832 | int bio_add_pc_page(struct request_queue *q, struct bio *bio, |
833 | struct page *page, unsigned int len, unsigned int offset) | |
834 | { | |
d1916c86 | 835 | bool same_page = false; |
e4581105 CH |
836 | return bio_add_hw_page(q, bio, page, len, offset, |
837 | queue_max_hw_sectors(q), &same_page); | |
19047087 | 838 | } |
a112a71d | 839 | EXPORT_SYMBOL(bio_add_pc_page); |
6e68af66 | 840 | |
1da177e4 | 841 | /** |
0aa69fd3 CH |
842 | * __bio_try_merge_page - try appending data to an existing bvec. |
843 | * @bio: destination bio | |
551879a4 | 844 | * @page: start page to add |
0aa69fd3 | 845 | * @len: length of the data to add |
551879a4 | 846 | * @off: offset of the data relative to @page |
ff896738 | 847 | * @same_page: return if the segment has been merged inside the same page |
1da177e4 | 848 | * |
0aa69fd3 | 849 | * Try to add the data at @page + @off to the last bvec of @bio. This is a |
3cf14889 | 850 | * useful optimisation for file systems with a block size smaller than the |
0aa69fd3 CH |
851 | * page size. |
852 | * | |
551879a4 ML |
853 | * Warn if (@len, @off) crosses pages in case that @same_page is true. |
854 | * | |
0aa69fd3 | 855 | * Return %true on success or %false on failure. |
1da177e4 | 856 | */ |
0aa69fd3 | 857 | bool __bio_try_merge_page(struct bio *bio, struct page *page, |
ff896738 | 858 | unsigned int len, unsigned int off, bool *same_page) |
1da177e4 | 859 | { |
c66a14d0 | 860 | if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) |
0aa69fd3 | 861 | return false; |
762380ad | 862 | |
cc90bc68 | 863 | if (bio->bi_vcnt > 0) { |
0aa69fd3 | 864 | struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; |
5919482e ML |
865 | |
866 | if (page_is_mergeable(bv, page, len, off, same_page)) { | |
2cd896a5 RH |
867 | if (bio->bi_iter.bi_size > UINT_MAX - len) { |
868 | *same_page = false; | |
cc90bc68 | 869 | return false; |
2cd896a5 | 870 | } |
5919482e ML |
871 | bv->bv_len += len; |
872 | bio->bi_iter.bi_size += len; | |
873 | return true; | |
874 | } | |
c66a14d0 | 875 | } |
0aa69fd3 CH |
876 | return false; |
877 | } | |
878 | EXPORT_SYMBOL_GPL(__bio_try_merge_page); | |
c66a14d0 | 879 | |
0aa69fd3 | 880 | /** |
551879a4 | 881 | * __bio_add_page - add page(s) to a bio in a new segment |
0aa69fd3 | 882 | * @bio: destination bio |
551879a4 ML |
883 | * @page: start page to add |
884 | * @len: length of the data to add, may cross pages | |
885 | * @off: offset of the data relative to @page, may cross pages | |
0aa69fd3 CH |
886 | * |
887 | * Add the data at @page + @off to @bio as a new bvec. The caller must ensure | |
888 | * that @bio has space for another bvec. | |
889 | */ | |
890 | void __bio_add_page(struct bio *bio, struct page *page, | |
891 | unsigned int len, unsigned int off) | |
892 | { | |
893 | struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; | |
c66a14d0 | 894 | |
0aa69fd3 | 895 | WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); |
79d08f89 | 896 | WARN_ON_ONCE(bio_full(bio, len)); |
0aa69fd3 CH |
897 | |
898 | bv->bv_page = page; | |
899 | bv->bv_offset = off; | |
900 | bv->bv_len = len; | |
c66a14d0 | 901 | |
c66a14d0 | 902 | bio->bi_iter.bi_size += len; |
0aa69fd3 | 903 | bio->bi_vcnt++; |
b8e24a93 JW |
904 | |
905 | if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page))) | |
906 | bio_set_flag(bio, BIO_WORKINGSET); | |
0aa69fd3 CH |
907 | } |
908 | EXPORT_SYMBOL_GPL(__bio_add_page); | |
909 | ||
910 | /** | |
551879a4 | 911 | * bio_add_page - attempt to add page(s) to bio |
0aa69fd3 | 912 | * @bio: destination bio |
551879a4 ML |
913 | * @page: start page to add |
914 | * @len: vec entry length, may cross pages | |
915 | * @offset: vec entry offset relative to @page, may cross pages | |
0aa69fd3 | 916 | * |
551879a4 | 917 | * Attempt to add page(s) to the bio_vec maplist. This will only fail |
0aa69fd3 CH |
918 | * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. |
919 | */ | |
920 | int bio_add_page(struct bio *bio, struct page *page, | |
921 | unsigned int len, unsigned int offset) | |
922 | { | |
ff896738 CH |
923 | bool same_page = false; |
924 | ||
925 | if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { | |
79d08f89 | 926 | if (bio_full(bio, len)) |
0aa69fd3 CH |
927 | return 0; |
928 | __bio_add_page(bio, page, len, offset); | |
929 | } | |
c66a14d0 | 930 | return len; |
1da177e4 | 931 | } |
a112a71d | 932 | EXPORT_SYMBOL(bio_add_page); |
1da177e4 | 933 | |
d241a95f | 934 | void bio_release_pages(struct bio *bio, bool mark_dirty) |
7321ecbf CH |
935 | { |
936 | struct bvec_iter_all iter_all; | |
937 | struct bio_vec *bvec; | |
7321ecbf | 938 | |
b2d0d991 CH |
939 | if (bio_flagged(bio, BIO_NO_PAGE_REF)) |
940 | return; | |
941 | ||
d241a95f CH |
942 | bio_for_each_segment_all(bvec, bio, iter_all) { |
943 | if (mark_dirty && !PageCompound(bvec->bv_page)) | |
944 | set_page_dirty_lock(bvec->bv_page); | |
7321ecbf | 945 | put_page(bvec->bv_page); |
d241a95f | 946 | } |
7321ecbf | 947 | } |
29b2a3aa | 948 | EXPORT_SYMBOL_GPL(bio_release_pages); |
7321ecbf | 949 | |
c42bca92 | 950 | static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter) |
6d0c48ae | 951 | { |
c42bca92 PB |
952 | WARN_ON_ONCE(BVEC_POOL_IDX(bio) != 0); |
953 | ||
954 | bio->bi_vcnt = iter->nr_segs; | |
955 | bio->bi_max_vecs = iter->nr_segs; | |
956 | bio->bi_io_vec = (struct bio_vec *)iter->bvec; | |
957 | bio->bi_iter.bi_bvec_done = iter->iov_offset; | |
958 | bio->bi_iter.bi_size = iter->count; | |
959 | ||
960 | iov_iter_advance(iter, iter->count); | |
a10584c3 | 961 | return 0; |
6d0c48ae JA |
962 | } |
963 | ||
576ed913 CH |
964 | #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) |
965 | ||
2cefe4db | 966 | /** |
17d51b10 | 967 | * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio |
2cefe4db KO |
968 | * @bio: bio to add pages to |
969 | * @iter: iov iterator describing the region to be mapped | |
970 | * | |
17d51b10 | 971 | * Pins pages from *iter and appends them to @bio's bvec array. The |
2cefe4db | 972 | * pages will have to be released using put_page() when done. |
17d51b10 | 973 | * For multi-segment *iter, this function only adds pages from the |
3cf14889 | 974 | * next non-empty segment of the iov iterator. |
2cefe4db | 975 | */ |
17d51b10 | 976 | static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) |
2cefe4db | 977 | { |
576ed913 CH |
978 | unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; |
979 | unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; | |
2cefe4db KO |
980 | struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; |
981 | struct page **pages = (struct page **)bv; | |
45691804 | 982 | bool same_page = false; |
576ed913 CH |
983 | ssize_t size, left; |
984 | unsigned len, i; | |
b403ea24 | 985 | size_t offset; |
576ed913 CH |
986 | |
987 | /* | |
988 | * Move page array up in the allocated memory for the bio vecs as far as | |
989 | * possible so that we can start filling biovecs from the beginning | |
990 | * without overwriting the temporary page array. | |
991 | */ | |
992 | BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); | |
993 | pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); | |
2cefe4db KO |
994 | |
995 | size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); | |
996 | if (unlikely(size <= 0)) | |
997 | return size ? size : -EFAULT; | |
2cefe4db | 998 | |
576ed913 CH |
999 | for (left = size, i = 0; left > 0; left -= len, i++) { |
1000 | struct page *page = pages[i]; | |
2cefe4db | 1001 | |
576ed913 | 1002 | len = min_t(size_t, PAGE_SIZE - offset, left); |
45691804 CH |
1003 | |
1004 | if (__bio_try_merge_page(bio, page, len, offset, &same_page)) { | |
1005 | if (same_page) | |
1006 | put_page(page); | |
1007 | } else { | |
79d08f89 | 1008 | if (WARN_ON_ONCE(bio_full(bio, len))) |
45691804 CH |
1009 | return -EINVAL; |
1010 | __bio_add_page(bio, page, len, offset); | |
1011 | } | |
576ed913 | 1012 | offset = 0; |
2cefe4db KO |
1013 | } |
1014 | ||
2cefe4db KO |
1015 | iov_iter_advance(iter, size); |
1016 | return 0; | |
1017 | } | |
17d51b10 | 1018 | |
0512a75b KB |
1019 | static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter) |
1020 | { | |
1021 | unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; | |
1022 | unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; | |
309dca30 | 1023 | struct request_queue *q = bio->bi_bdev->bd_disk->queue; |
0512a75b KB |
1024 | unsigned int max_append_sectors = queue_max_zone_append_sectors(q); |
1025 | struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; | |
1026 | struct page **pages = (struct page **)bv; | |
1027 | ssize_t size, left; | |
1028 | unsigned len, i; | |
1029 | size_t offset; | |
4977d121 | 1030 | int ret = 0; |
0512a75b KB |
1031 | |
1032 | if (WARN_ON_ONCE(!max_append_sectors)) | |
1033 | return 0; | |
1034 | ||
1035 | /* | |
1036 | * Move page array up in the allocated memory for the bio vecs as far as | |
1037 | * possible so that we can start filling biovecs from the beginning | |
1038 | * without overwriting the temporary page array. | |
1039 | */ | |
1040 | BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); | |
1041 | pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); | |
1042 | ||
1043 | size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); | |
1044 | if (unlikely(size <= 0)) | |
1045 | return size ? size : -EFAULT; | |
1046 | ||
1047 | for (left = size, i = 0; left > 0; left -= len, i++) { | |
1048 | struct page *page = pages[i]; | |
1049 | bool same_page = false; | |
1050 | ||
1051 | len = min_t(size_t, PAGE_SIZE - offset, left); | |
1052 | if (bio_add_hw_page(q, bio, page, len, offset, | |
4977d121 NA |
1053 | max_append_sectors, &same_page) != len) { |
1054 | ret = -EINVAL; | |
1055 | break; | |
1056 | } | |
0512a75b KB |
1057 | if (same_page) |
1058 | put_page(page); | |
1059 | offset = 0; | |
1060 | } | |
1061 | ||
4977d121 NA |
1062 | iov_iter_advance(iter, size - left); |
1063 | return ret; | |
0512a75b KB |
1064 | } |
1065 | ||
17d51b10 | 1066 | /** |
6d0c48ae | 1067 | * bio_iov_iter_get_pages - add user or kernel pages to a bio |
17d51b10 | 1068 | * @bio: bio to add pages to |
6d0c48ae JA |
1069 | * @iter: iov iterator describing the region to be added |
1070 | * | |
1071 | * This takes either an iterator pointing to user memory, or one pointing to | |
1072 | * kernel pages (BVEC iterator). If we're adding user pages, we pin them and | |
1073 | * map them into the kernel. On IO completion, the caller should put those | |
c42bca92 PB |
1074 | * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided |
1075 | * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs | |
1076 | * to ensure the bvecs and pages stay referenced until the submitted I/O is | |
1077 | * completed by a call to ->ki_complete() or returns with an error other than | |
1078 | * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF | |
1079 | * on IO completion. If it isn't, then pages should be released. | |
17d51b10 | 1080 | * |
17d51b10 | 1081 | * The function tries, but does not guarantee, to pin as many pages as |
5cd3ddc1 | 1082 | * fit into the bio, or are requested in @iter, whatever is smaller. If |
6d0c48ae JA |
1083 | * MM encounters an error pinning the requested pages, it stops. Error |
1084 | * is returned only if 0 pages could be pinned. | |
0cf41e5e PB |
1085 | * |
1086 | * It's intended for direct IO, so doesn't do PSI tracking, the caller is | |
1087 | * responsible for setting BIO_WORKINGSET if necessary. | |
17d51b10 MW |
1088 | */ |
1089 | int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) | |
1090 | { | |
c42bca92 | 1091 | int ret = 0; |
17d51b10 | 1092 | |
c42bca92 PB |
1093 | if (iov_iter_is_bvec(iter)) { |
1094 | if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) | |
1095 | return -EINVAL; | |
1096 | bio_iov_bvec_set(bio, iter); | |
1097 | bio_set_flag(bio, BIO_NO_PAGE_REF); | |
1098 | return 0; | |
1099 | } else { | |
1100 | do { | |
1101 | if (bio_op(bio) == REQ_OP_ZONE_APPEND) | |
1102 | ret = __bio_iov_append_get_pages(bio, iter); | |
0512a75b KB |
1103 | else |
1104 | ret = __bio_iov_iter_get_pages(bio, iter); | |
c42bca92 PB |
1105 | } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); |
1106 | } | |
0cf41e5e PB |
1107 | |
1108 | /* don't account direct I/O as memory stall */ | |
1109 | bio_clear_flag(bio, BIO_WORKINGSET); | |
14eacf12 | 1110 | return bio->bi_vcnt ? 0 : ret; |
17d51b10 | 1111 | } |
29b2a3aa | 1112 | EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); |
2cefe4db | 1113 | |
4246a0b6 | 1114 | static void submit_bio_wait_endio(struct bio *bio) |
9e882242 | 1115 | { |
65e53aab | 1116 | complete(bio->bi_private); |
9e882242 KO |
1117 | } |
1118 | ||
1119 | /** | |
1120 | * submit_bio_wait - submit a bio, and wait until it completes | |
9e882242 KO |
1121 | * @bio: The &struct bio which describes the I/O |
1122 | * | |
1123 | * Simple wrapper around submit_bio(). Returns 0 on success, or the error from | |
1124 | * bio_endio() on failure. | |
3d289d68 JK |
1125 | * |
1126 | * WARNING: Unlike to how submit_bio() is usually used, this function does not | |
1127 | * result in bio reference to be consumed. The caller must drop the reference | |
1128 | * on his own. | |
9e882242 | 1129 | */ |
4e49ea4a | 1130 | int submit_bio_wait(struct bio *bio) |
9e882242 | 1131 | { |
309dca30 CH |
1132 | DECLARE_COMPLETION_ONSTACK_MAP(done, |
1133 | bio->bi_bdev->bd_disk->lockdep_map); | |
de6a78b6 | 1134 | unsigned long hang_check; |
9e882242 | 1135 | |
65e53aab | 1136 | bio->bi_private = &done; |
9e882242 | 1137 | bio->bi_end_io = submit_bio_wait_endio; |
1eff9d32 | 1138 | bio->bi_opf |= REQ_SYNC; |
4e49ea4a | 1139 | submit_bio(bio); |
de6a78b6 ML |
1140 | |
1141 | /* Prevent hang_check timer from firing at us during very long I/O */ | |
1142 | hang_check = sysctl_hung_task_timeout_secs; | |
1143 | if (hang_check) | |
1144 | while (!wait_for_completion_io_timeout(&done, | |
1145 | hang_check * (HZ/2))) | |
1146 | ; | |
1147 | else | |
1148 | wait_for_completion_io(&done); | |
9e882242 | 1149 | |
65e53aab | 1150 | return blk_status_to_errno(bio->bi_status); |
9e882242 KO |
1151 | } |
1152 | EXPORT_SYMBOL(submit_bio_wait); | |
1153 | ||
054bdf64 KO |
1154 | /** |
1155 | * bio_advance - increment/complete a bio by some number of bytes | |
1156 | * @bio: bio to advance | |
1157 | * @bytes: number of bytes to complete | |
1158 | * | |
1159 | * This updates bi_sector, bi_size and bi_idx; if the number of bytes to | |
1160 | * complete doesn't align with a bvec boundary, then bv_len and bv_offset will | |
1161 | * be updated on the last bvec as well. | |
1162 | * | |
1163 | * @bio will then represent the remaining, uncompleted portion of the io. | |
1164 | */ | |
1165 | void bio_advance(struct bio *bio, unsigned bytes) | |
1166 | { | |
1167 | if (bio_integrity(bio)) | |
1168 | bio_integrity_advance(bio, bytes); | |
1169 | ||
a892c8d5 | 1170 | bio_crypt_advance(bio, bytes); |
4550dd6c | 1171 | bio_advance_iter(bio, &bio->bi_iter, bytes); |
054bdf64 KO |
1172 | } |
1173 | EXPORT_SYMBOL(bio_advance); | |
1174 | ||
45db54d5 KO |
1175 | void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, |
1176 | struct bio *src, struct bvec_iter *src_iter) | |
16ac3d63 | 1177 | { |
1cb9dda4 | 1178 | struct bio_vec src_bv, dst_bv; |
16ac3d63 | 1179 | void *src_p, *dst_p; |
1cb9dda4 | 1180 | unsigned bytes; |
16ac3d63 | 1181 | |
45db54d5 KO |
1182 | while (src_iter->bi_size && dst_iter->bi_size) { |
1183 | src_bv = bio_iter_iovec(src, *src_iter); | |
1184 | dst_bv = bio_iter_iovec(dst, *dst_iter); | |
1cb9dda4 KO |
1185 | |
1186 | bytes = min(src_bv.bv_len, dst_bv.bv_len); | |
16ac3d63 | 1187 | |
1cb9dda4 KO |
1188 | src_p = kmap_atomic(src_bv.bv_page); |
1189 | dst_p = kmap_atomic(dst_bv.bv_page); | |
16ac3d63 | 1190 | |
1cb9dda4 KO |
1191 | memcpy(dst_p + dst_bv.bv_offset, |
1192 | src_p + src_bv.bv_offset, | |
16ac3d63 KO |
1193 | bytes); |
1194 | ||
1195 | kunmap_atomic(dst_p); | |
1196 | kunmap_atomic(src_p); | |
1197 | ||
6e6e811d KO |
1198 | flush_dcache_page(dst_bv.bv_page); |
1199 | ||
22b56c29 PB |
1200 | bio_advance_iter_single(src, src_iter, bytes); |
1201 | bio_advance_iter_single(dst, dst_iter, bytes); | |
16ac3d63 KO |
1202 | } |
1203 | } | |
38a72dac KO |
1204 | EXPORT_SYMBOL(bio_copy_data_iter); |
1205 | ||
1206 | /** | |
45db54d5 KO |
1207 | * bio_copy_data - copy contents of data buffers from one bio to another |
1208 | * @src: source bio | |
1209 | * @dst: destination bio | |
38a72dac KO |
1210 | * |
1211 | * Stops when it reaches the end of either @src or @dst - that is, copies | |
1212 | * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). | |
1213 | */ | |
1214 | void bio_copy_data(struct bio *dst, struct bio *src) | |
1215 | { | |
45db54d5 KO |
1216 | struct bvec_iter src_iter = src->bi_iter; |
1217 | struct bvec_iter dst_iter = dst->bi_iter; | |
1218 | ||
1219 | bio_copy_data_iter(dst, &dst_iter, src, &src_iter); | |
38a72dac | 1220 | } |
16ac3d63 KO |
1221 | EXPORT_SYMBOL(bio_copy_data); |
1222 | ||
45db54d5 KO |
1223 | /** |
1224 | * bio_list_copy_data - copy contents of data buffers from one chain of bios to | |
1225 | * another | |
1226 | * @src: source bio list | |
1227 | * @dst: destination bio list | |
1228 | * | |
1229 | * Stops when it reaches the end of either the @src list or @dst list - that is, | |
1230 | * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of | |
1231 | * bios). | |
1232 | */ | |
1233 | void bio_list_copy_data(struct bio *dst, struct bio *src) | |
1234 | { | |
1235 | struct bvec_iter src_iter = src->bi_iter; | |
1236 | struct bvec_iter dst_iter = dst->bi_iter; | |
1237 | ||
1238 | while (1) { | |
1239 | if (!src_iter.bi_size) { | |
1240 | src = src->bi_next; | |
1241 | if (!src) | |
1242 | break; | |
1243 | ||
1244 | src_iter = src->bi_iter; | |
1245 | } | |
1246 | ||
1247 | if (!dst_iter.bi_size) { | |
1248 | dst = dst->bi_next; | |
1249 | if (!dst) | |
1250 | break; | |
1251 | ||
1252 | dst_iter = dst->bi_iter; | |
1253 | } | |
1254 | ||
1255 | bio_copy_data_iter(dst, &dst_iter, src, &src_iter); | |
1256 | } | |
1257 | } | |
1258 | EXPORT_SYMBOL(bio_list_copy_data); | |
1259 | ||
491221f8 | 1260 | void bio_free_pages(struct bio *bio) |
1dfa0f68 CH |
1261 | { |
1262 | struct bio_vec *bvec; | |
6dc4f100 | 1263 | struct bvec_iter_all iter_all; |
1dfa0f68 | 1264 | |
2b070cfe | 1265 | bio_for_each_segment_all(bvec, bio, iter_all) |
1dfa0f68 CH |
1266 | __free_page(bvec->bv_page); |
1267 | } | |
491221f8 | 1268 | EXPORT_SYMBOL(bio_free_pages); |
1dfa0f68 | 1269 | |
1da177e4 LT |
1270 | /* |
1271 | * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions | |
1272 | * for performing direct-IO in BIOs. | |
1273 | * | |
1274 | * The problem is that we cannot run set_page_dirty() from interrupt context | |
1275 | * because the required locks are not interrupt-safe. So what we can do is to | |
1276 | * mark the pages dirty _before_ performing IO. And in interrupt context, | |
1277 | * check that the pages are still dirty. If so, fine. If not, redirty them | |
1278 | * in process context. | |
1279 | * | |
1280 | * We special-case compound pages here: normally this means reads into hugetlb | |
1281 | * pages. The logic in here doesn't really work right for compound pages | |
1282 | * because the VM does not uniformly chase down the head page in all cases. | |
1283 | * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't | |
1284 | * handle them at all. So we skip compound pages here at an early stage. | |
1285 | * | |
1286 | * Note that this code is very hard to test under normal circumstances because | |
1287 | * direct-io pins the pages with get_user_pages(). This makes | |
1288 | * is_page_cache_freeable return false, and the VM will not clean the pages. | |
0d5c3eba | 1289 | * But other code (eg, flusher threads) could clean the pages if they are mapped |
1da177e4 LT |
1290 | * pagecache. |
1291 | * | |
1292 | * Simply disabling the call to bio_set_pages_dirty() is a good way to test the | |
1293 | * deferred bio dirtying paths. | |
1294 | */ | |
1295 | ||
1296 | /* | |
1297 | * bio_set_pages_dirty() will mark all the bio's pages as dirty. | |
1298 | */ | |
1299 | void bio_set_pages_dirty(struct bio *bio) | |
1300 | { | |
cb34e057 | 1301 | struct bio_vec *bvec; |
6dc4f100 | 1302 | struct bvec_iter_all iter_all; |
1da177e4 | 1303 | |
2b070cfe | 1304 | bio_for_each_segment_all(bvec, bio, iter_all) { |
3bb50983 CH |
1305 | if (!PageCompound(bvec->bv_page)) |
1306 | set_page_dirty_lock(bvec->bv_page); | |
1da177e4 LT |
1307 | } |
1308 | } | |
1309 | ||
1da177e4 LT |
1310 | /* |
1311 | * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. | |
1312 | * If they are, then fine. If, however, some pages are clean then they must | |
1313 | * have been written out during the direct-IO read. So we take another ref on | |
24d5493f | 1314 | * the BIO and re-dirty the pages in process context. |
1da177e4 LT |
1315 | * |
1316 | * It is expected that bio_check_pages_dirty() will wholly own the BIO from | |
ea1754a0 KS |
1317 | * here on. It will run one put_page() against each page and will run one |
1318 | * bio_put() against the BIO. | |
1da177e4 LT |
1319 | */ |
1320 | ||
65f27f38 | 1321 | static void bio_dirty_fn(struct work_struct *work); |
1da177e4 | 1322 | |
65f27f38 | 1323 | static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); |
1da177e4 LT |
1324 | static DEFINE_SPINLOCK(bio_dirty_lock); |
1325 | static struct bio *bio_dirty_list; | |
1326 | ||
1327 | /* | |
1328 | * This runs in process context | |
1329 | */ | |
65f27f38 | 1330 | static void bio_dirty_fn(struct work_struct *work) |
1da177e4 | 1331 | { |
24d5493f | 1332 | struct bio *bio, *next; |
1da177e4 | 1333 | |
24d5493f CH |
1334 | spin_lock_irq(&bio_dirty_lock); |
1335 | next = bio_dirty_list; | |
1da177e4 | 1336 | bio_dirty_list = NULL; |
24d5493f | 1337 | spin_unlock_irq(&bio_dirty_lock); |
1da177e4 | 1338 | |
24d5493f CH |
1339 | while ((bio = next) != NULL) { |
1340 | next = bio->bi_private; | |
1da177e4 | 1341 | |
d241a95f | 1342 | bio_release_pages(bio, true); |
1da177e4 | 1343 | bio_put(bio); |
1da177e4 LT |
1344 | } |
1345 | } | |
1346 | ||
1347 | void bio_check_pages_dirty(struct bio *bio) | |
1348 | { | |
cb34e057 | 1349 | struct bio_vec *bvec; |
24d5493f | 1350 | unsigned long flags; |
6dc4f100 | 1351 | struct bvec_iter_all iter_all; |
1da177e4 | 1352 | |
2b070cfe | 1353 | bio_for_each_segment_all(bvec, bio, iter_all) { |
24d5493f CH |
1354 | if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) |
1355 | goto defer; | |
1da177e4 LT |
1356 | } |
1357 | ||
d241a95f | 1358 | bio_release_pages(bio, false); |
24d5493f CH |
1359 | bio_put(bio); |
1360 | return; | |
1361 | defer: | |
1362 | spin_lock_irqsave(&bio_dirty_lock, flags); | |
1363 | bio->bi_private = bio_dirty_list; | |
1364 | bio_dirty_list = bio; | |
1365 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | |
1366 | schedule_work(&bio_dirty_work); | |
1da177e4 LT |
1367 | } |
1368 | ||
c4cf5261 JA |
1369 | static inline bool bio_remaining_done(struct bio *bio) |
1370 | { | |
1371 | /* | |
1372 | * If we're not chaining, then ->__bi_remaining is always 1 and | |
1373 | * we always end io on the first invocation. | |
1374 | */ | |
1375 | if (!bio_flagged(bio, BIO_CHAIN)) | |
1376 | return true; | |
1377 | ||
1378 | BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); | |
1379 | ||
326e1dbb | 1380 | if (atomic_dec_and_test(&bio->__bi_remaining)) { |
b7c44ed9 | 1381 | bio_clear_flag(bio, BIO_CHAIN); |
c4cf5261 | 1382 | return true; |
326e1dbb | 1383 | } |
c4cf5261 JA |
1384 | |
1385 | return false; | |
1386 | } | |
1387 | ||
1da177e4 LT |
1388 | /** |
1389 | * bio_endio - end I/O on a bio | |
1390 | * @bio: bio | |
1da177e4 LT |
1391 | * |
1392 | * Description: | |
4246a0b6 CH |
1393 | * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred |
1394 | * way to end I/O on a bio. No one should call bi_end_io() directly on a | |
1395 | * bio unless they own it and thus know that it has an end_io function. | |
fbbaf700 N |
1396 | * |
1397 | * bio_endio() can be called several times on a bio that has been chained | |
1398 | * using bio_chain(). The ->bi_end_io() function will only be called the | |
1399 | * last time. At this point the BLK_TA_COMPLETE tracing event will be | |
1400 | * generated if BIO_TRACE_COMPLETION is set. | |
1da177e4 | 1401 | **/ |
4246a0b6 | 1402 | void bio_endio(struct bio *bio) |
1da177e4 | 1403 | { |
ba8c6967 | 1404 | again: |
2b885517 | 1405 | if (!bio_remaining_done(bio)) |
ba8c6967 | 1406 | return; |
7c20f116 CH |
1407 | if (!bio_integrity_endio(bio)) |
1408 | return; | |
1da177e4 | 1409 | |
309dca30 CH |
1410 | if (bio->bi_bdev) |
1411 | rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio); | |
67b42d0b | 1412 | |
ba8c6967 CH |
1413 | /* |
1414 | * Need to have a real endio function for chained bios, otherwise | |
1415 | * various corner cases will break (like stacking block devices that | |
1416 | * save/restore bi_end_io) - however, we want to avoid unbounded | |
1417 | * recursion and blowing the stack. Tail call optimization would | |
1418 | * handle this, but compiling with frame pointers also disables | |
1419 | * gcc's sibling call optimization. | |
1420 | */ | |
1421 | if (bio->bi_end_io == bio_chain_endio) { | |
1422 | bio = __bio_chain_endio(bio); | |
1423 | goto again; | |
196d38bc | 1424 | } |
ba8c6967 | 1425 | |
309dca30 CH |
1426 | if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { |
1427 | trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio); | |
fbbaf700 N |
1428 | bio_clear_flag(bio, BIO_TRACE_COMPLETION); |
1429 | } | |
1430 | ||
9e234eea | 1431 | blk_throtl_bio_endio(bio); |
b222dd2f SL |
1432 | /* release cgroup info */ |
1433 | bio_uninit(bio); | |
ba8c6967 CH |
1434 | if (bio->bi_end_io) |
1435 | bio->bi_end_io(bio); | |
1da177e4 | 1436 | } |
a112a71d | 1437 | EXPORT_SYMBOL(bio_endio); |
1da177e4 | 1438 | |
20d0189b KO |
1439 | /** |
1440 | * bio_split - split a bio | |
1441 | * @bio: bio to split | |
1442 | * @sectors: number of sectors to split from the front of @bio | |
1443 | * @gfp: gfp mask | |
1444 | * @bs: bio set to allocate from | |
1445 | * | |
1446 | * Allocates and returns a new bio which represents @sectors from the start of | |
1447 | * @bio, and updates @bio to represent the remaining sectors. | |
1448 | * | |
f3f5da62 | 1449 | * Unless this is a discard request the newly allocated bio will point |
dad77584 BVA |
1450 | * to @bio's bi_io_vec. It is the caller's responsibility to ensure that |
1451 | * neither @bio nor @bs are freed before the split bio. | |
20d0189b KO |
1452 | */ |
1453 | struct bio *bio_split(struct bio *bio, int sectors, | |
1454 | gfp_t gfp, struct bio_set *bs) | |
1455 | { | |
f341a4d3 | 1456 | struct bio *split; |
20d0189b KO |
1457 | |
1458 | BUG_ON(sectors <= 0); | |
1459 | BUG_ON(sectors >= bio_sectors(bio)); | |
1460 | ||
0512a75b KB |
1461 | /* Zone append commands cannot be split */ |
1462 | if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) | |
1463 | return NULL; | |
1464 | ||
f9d03f96 | 1465 | split = bio_clone_fast(bio, gfp, bs); |
20d0189b KO |
1466 | if (!split) |
1467 | return NULL; | |
1468 | ||
1469 | split->bi_iter.bi_size = sectors << 9; | |
1470 | ||
1471 | if (bio_integrity(split)) | |
fbd08e76 | 1472 | bio_integrity_trim(split); |
20d0189b KO |
1473 | |
1474 | bio_advance(bio, split->bi_iter.bi_size); | |
1475 | ||
fbbaf700 | 1476 | if (bio_flagged(bio, BIO_TRACE_COMPLETION)) |
20d59023 | 1477 | bio_set_flag(split, BIO_TRACE_COMPLETION); |
fbbaf700 | 1478 | |
20d0189b KO |
1479 | return split; |
1480 | } | |
1481 | EXPORT_SYMBOL(bio_split); | |
1482 | ||
6678d83f KO |
1483 | /** |
1484 | * bio_trim - trim a bio | |
1485 | * @bio: bio to trim | |
1486 | * @offset: number of sectors to trim from the front of @bio | |
1487 | * @size: size we want to trim @bio to, in sectors | |
1488 | */ | |
1489 | void bio_trim(struct bio *bio, int offset, int size) | |
1490 | { | |
1491 | /* 'bio' is a cloned bio which we need to trim to match | |
1492 | * the given offset and size. | |
6678d83f | 1493 | */ |
6678d83f KO |
1494 | |
1495 | size <<= 9; | |
4f024f37 | 1496 | if (offset == 0 && size == bio->bi_iter.bi_size) |
6678d83f KO |
1497 | return; |
1498 | ||
6678d83f | 1499 | bio_advance(bio, offset << 9); |
4f024f37 | 1500 | bio->bi_iter.bi_size = size; |
376a78ab DM |
1501 | |
1502 | if (bio_integrity(bio)) | |
fbd08e76 | 1503 | bio_integrity_trim(bio); |
376a78ab | 1504 | |
6678d83f KO |
1505 | } |
1506 | EXPORT_SYMBOL_GPL(bio_trim); | |
1507 | ||
1da177e4 LT |
1508 | /* |
1509 | * create memory pools for biovec's in a bio_set. | |
1510 | * use the global biovec slabs created for general use. | |
1511 | */ | |
8aa6ba2f | 1512 | int biovec_init_pool(mempool_t *pool, int pool_entries) |
1da177e4 | 1513 | { |
ed996a52 | 1514 | struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; |
1da177e4 | 1515 | |
8aa6ba2f | 1516 | return mempool_init_slab_pool(pool, pool_entries, bp->slab); |
1da177e4 LT |
1517 | } |
1518 | ||
917a38c7 KO |
1519 | /* |
1520 | * bioset_exit - exit a bioset initialized with bioset_init() | |
1521 | * | |
1522 | * May be called on a zeroed but uninitialized bioset (i.e. allocated with | |
1523 | * kzalloc()). | |
1524 | */ | |
1525 | void bioset_exit(struct bio_set *bs) | |
1da177e4 | 1526 | { |
df2cb6da KO |
1527 | if (bs->rescue_workqueue) |
1528 | destroy_workqueue(bs->rescue_workqueue); | |
917a38c7 | 1529 | bs->rescue_workqueue = NULL; |
df2cb6da | 1530 | |
8aa6ba2f KO |
1531 | mempool_exit(&bs->bio_pool); |
1532 | mempool_exit(&bs->bvec_pool); | |
9f060e22 | 1533 | |
7878cba9 | 1534 | bioset_integrity_free(bs); |
917a38c7 KO |
1535 | if (bs->bio_slab) |
1536 | bio_put_slab(bs); | |
1537 | bs->bio_slab = NULL; | |
1538 | } | |
1539 | EXPORT_SYMBOL(bioset_exit); | |
1da177e4 | 1540 | |
917a38c7 KO |
1541 | /** |
1542 | * bioset_init - Initialize a bio_set | |
dad08527 | 1543 | * @bs: pool to initialize |
917a38c7 KO |
1544 | * @pool_size: Number of bio and bio_vecs to cache in the mempool |
1545 | * @front_pad: Number of bytes to allocate in front of the returned bio | |
1546 | * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS | |
1547 | * and %BIOSET_NEED_RESCUER | |
1548 | * | |
dad08527 KO |
1549 | * Description: |
1550 | * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller | |
1551 | * to ask for a number of bytes to be allocated in front of the bio. | |
1552 | * Front pad allocation is useful for embedding the bio inside | |
1553 | * another structure, to avoid allocating extra data to go with the bio. | |
1554 | * Note that the bio must be embedded at the END of that structure always, | |
1555 | * or things will break badly. | |
1556 | * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated | |
1557 | * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). | |
1558 | * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to | |
1559 | * dispatch queued requests when the mempool runs out of space. | |
1560 | * | |
917a38c7 KO |
1561 | */ |
1562 | int bioset_init(struct bio_set *bs, | |
1563 | unsigned int pool_size, | |
1564 | unsigned int front_pad, | |
1565 | int flags) | |
1566 | { | |
917a38c7 | 1567 | bs->front_pad = front_pad; |
9f180e31 ML |
1568 | if (flags & BIOSET_NEED_BVECS) |
1569 | bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); | |
1570 | else | |
1571 | bs->back_pad = 0; | |
917a38c7 KO |
1572 | |
1573 | spin_lock_init(&bs->rescue_lock); | |
1574 | bio_list_init(&bs->rescue_list); | |
1575 | INIT_WORK(&bs->rescue_work, bio_alloc_rescue); | |
1576 | ||
49d1ec85 | 1577 | bs->bio_slab = bio_find_or_create_slab(bs); |
917a38c7 KO |
1578 | if (!bs->bio_slab) |
1579 | return -ENOMEM; | |
1580 | ||
1581 | if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) | |
1582 | goto bad; | |
1583 | ||
1584 | if ((flags & BIOSET_NEED_BVECS) && | |
1585 | biovec_init_pool(&bs->bvec_pool, pool_size)) | |
1586 | goto bad; | |
1587 | ||
1588 | if (!(flags & BIOSET_NEED_RESCUER)) | |
1589 | return 0; | |
1590 | ||
1591 | bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); | |
1592 | if (!bs->rescue_workqueue) | |
1593 | goto bad; | |
1594 | ||
1595 | return 0; | |
1596 | bad: | |
1597 | bioset_exit(bs); | |
1598 | return -ENOMEM; | |
1599 | } | |
1600 | EXPORT_SYMBOL(bioset_init); | |
1601 | ||
28e89fd9 JA |
1602 | /* |
1603 | * Initialize and setup a new bio_set, based on the settings from | |
1604 | * another bio_set. | |
1605 | */ | |
1606 | int bioset_init_from_src(struct bio_set *bs, struct bio_set *src) | |
1607 | { | |
1608 | int flags; | |
1609 | ||
1610 | flags = 0; | |
1611 | if (src->bvec_pool.min_nr) | |
1612 | flags |= BIOSET_NEED_BVECS; | |
1613 | if (src->rescue_workqueue) | |
1614 | flags |= BIOSET_NEED_RESCUER; | |
1615 | ||
1616 | return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags); | |
1617 | } | |
1618 | EXPORT_SYMBOL(bioset_init_from_src); | |
1619 | ||
1da177e4 LT |
1620 | static void __init biovec_init_slabs(void) |
1621 | { | |
1622 | int i; | |
1623 | ||
ed996a52 | 1624 | for (i = 0; i < BVEC_POOL_NR; i++) { |
1da177e4 LT |
1625 | int size; |
1626 | struct biovec_slab *bvs = bvec_slabs + i; | |
1627 | ||
a7fcd37c JA |
1628 | if (bvs->nr_vecs <= BIO_INLINE_VECS) { |
1629 | bvs->slab = NULL; | |
1630 | continue; | |
1631 | } | |
a7fcd37c | 1632 | |
1da177e4 LT |
1633 | size = bvs->nr_vecs * sizeof(struct bio_vec); |
1634 | bvs->slab = kmem_cache_create(bvs->name, size, 0, | |
20c2df83 | 1635 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); |
1da177e4 LT |
1636 | } |
1637 | } | |
1638 | ||
1639 | static int __init init_bio(void) | |
1640 | { | |
2b24e6f6 JT |
1641 | BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET); |
1642 | ||
7878cba9 | 1643 | bio_integrity_init(); |
1da177e4 LT |
1644 | biovec_init_slabs(); |
1645 | ||
f4f8154a | 1646 | if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) |
1da177e4 LT |
1647 | panic("bio: can't allocate bios\n"); |
1648 | ||
f4f8154a | 1649 | if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) |
a91a2785 MP |
1650 | panic("bio: can't create integrity pool\n"); |
1651 | ||
1da177e4 LT |
1652 | return 0; |
1653 | } | |
1da177e4 | 1654 | subsys_initcall(init_bio); |