]>
Commit | Line | Data |
---|---|---|
8c16567d | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 | 2 | /* |
0fe23479 | 3 | * Copyright (C) 2001 Jens Axboe <[email protected]> |
1da177e4 LT |
4 | */ |
5 | #include <linux/mm.h> | |
6 | #include <linux/swap.h> | |
7 | #include <linux/bio.h> | |
8 | #include <linux/blkdev.h> | |
a27bb332 | 9 | #include <linux/uio.h> |
852c788f | 10 | #include <linux/iocontext.h> |
1da177e4 LT |
11 | #include <linux/slab.h> |
12 | #include <linux/init.h> | |
13 | #include <linux/kernel.h> | |
630d9c47 | 14 | #include <linux/export.h> |
1da177e4 LT |
15 | #include <linux/mempool.h> |
16 | #include <linux/workqueue.h> | |
852c788f | 17 | #include <linux/cgroup.h> |
08e18eab | 18 | #include <linux/blk-cgroup.h> |
b4c5875d | 19 | #include <linux/highmem.h> |
de6a78b6 | 20 | #include <linux/sched/sysctl.h> |
1da177e4 | 21 | |
55782138 | 22 | #include <trace/events/block.h> |
9e234eea | 23 | #include "blk.h" |
67b42d0b | 24 | #include "blk-rq-qos.h" |
0bfc2455 | 25 | |
392ddc32 JA |
26 | /* |
27 | * Test patch to inline a certain number of bi_io_vec's inside the bio | |
28 | * itself, to shrink a bio data allocation from two mempool calls to one | |
29 | */ | |
30 | #define BIO_INLINE_VECS 4 | |
31 | ||
1da177e4 LT |
32 | /* |
33 | * if you change this list, also change bvec_alloc or things will | |
34 | * break badly! cannot be bigger than what you can fit into an | |
35 | * unsigned short | |
36 | */ | |
bd5c4fac | 37 | #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n } |
ed996a52 | 38 | static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { |
bd5c4fac | 39 | BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max), |
1da177e4 LT |
40 | }; |
41 | #undef BV | |
42 | ||
1da177e4 LT |
43 | /* |
44 | * fs_bio_set is the bio_set containing bio and iovec memory pools used by | |
45 | * IO code that does not need private memory pools. | |
46 | */ | |
f4f8154a | 47 | struct bio_set fs_bio_set; |
3f86a82a | 48 | EXPORT_SYMBOL(fs_bio_set); |
1da177e4 | 49 | |
bb799ca0 JA |
50 | /* |
51 | * Our slab pool management | |
52 | */ | |
53 | struct bio_slab { | |
54 | struct kmem_cache *slab; | |
55 | unsigned int slab_ref; | |
56 | unsigned int slab_size; | |
57 | char name[8]; | |
58 | }; | |
59 | static DEFINE_MUTEX(bio_slab_lock); | |
60 | static struct bio_slab *bio_slabs; | |
61 | static unsigned int bio_slab_nr, bio_slab_max; | |
62 | ||
63 | static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) | |
64 | { | |
65 | unsigned int sz = sizeof(struct bio) + extra_size; | |
66 | struct kmem_cache *slab = NULL; | |
389d7b26 | 67 | struct bio_slab *bslab, *new_bio_slabs; |
386bc35a | 68 | unsigned int new_bio_slab_max; |
bb799ca0 JA |
69 | unsigned int i, entry = -1; |
70 | ||
71 | mutex_lock(&bio_slab_lock); | |
72 | ||
73 | i = 0; | |
74 | while (i < bio_slab_nr) { | |
f06f135d | 75 | bslab = &bio_slabs[i]; |
bb799ca0 JA |
76 | |
77 | if (!bslab->slab && entry == -1) | |
78 | entry = i; | |
79 | else if (bslab->slab_size == sz) { | |
80 | slab = bslab->slab; | |
81 | bslab->slab_ref++; | |
82 | break; | |
83 | } | |
84 | i++; | |
85 | } | |
86 | ||
87 | if (slab) | |
88 | goto out_unlock; | |
89 | ||
90 | if (bio_slab_nr == bio_slab_max && entry == -1) { | |
386bc35a | 91 | new_bio_slab_max = bio_slab_max << 1; |
389d7b26 | 92 | new_bio_slabs = krealloc(bio_slabs, |
386bc35a | 93 | new_bio_slab_max * sizeof(struct bio_slab), |
389d7b26 AK |
94 | GFP_KERNEL); |
95 | if (!new_bio_slabs) | |
bb799ca0 | 96 | goto out_unlock; |
386bc35a | 97 | bio_slab_max = new_bio_slab_max; |
389d7b26 | 98 | bio_slabs = new_bio_slabs; |
bb799ca0 JA |
99 | } |
100 | if (entry == -1) | |
101 | entry = bio_slab_nr++; | |
102 | ||
103 | bslab = &bio_slabs[entry]; | |
104 | ||
105 | snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); | |
6a241483 MP |
106 | slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, |
107 | SLAB_HWCACHE_ALIGN, NULL); | |
bb799ca0 JA |
108 | if (!slab) |
109 | goto out_unlock; | |
110 | ||
bb799ca0 JA |
111 | bslab->slab = slab; |
112 | bslab->slab_ref = 1; | |
113 | bslab->slab_size = sz; | |
114 | out_unlock: | |
115 | mutex_unlock(&bio_slab_lock); | |
116 | return slab; | |
117 | } | |
118 | ||
119 | static void bio_put_slab(struct bio_set *bs) | |
120 | { | |
121 | struct bio_slab *bslab = NULL; | |
122 | unsigned int i; | |
123 | ||
124 | mutex_lock(&bio_slab_lock); | |
125 | ||
126 | for (i = 0; i < bio_slab_nr; i++) { | |
127 | if (bs->bio_slab == bio_slabs[i].slab) { | |
128 | bslab = &bio_slabs[i]; | |
129 | break; | |
130 | } | |
131 | } | |
132 | ||
133 | if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) | |
134 | goto out; | |
135 | ||
136 | WARN_ON(!bslab->slab_ref); | |
137 | ||
138 | if (--bslab->slab_ref) | |
139 | goto out; | |
140 | ||
141 | kmem_cache_destroy(bslab->slab); | |
142 | bslab->slab = NULL; | |
143 | ||
144 | out: | |
145 | mutex_unlock(&bio_slab_lock); | |
146 | } | |
147 | ||
7ba1ba12 MP |
148 | unsigned int bvec_nr_vecs(unsigned short idx) |
149 | { | |
d6c02a9b | 150 | return bvec_slabs[--idx].nr_vecs; |
7ba1ba12 MP |
151 | } |
152 | ||
9f060e22 | 153 | void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) |
bb799ca0 | 154 | { |
ed996a52 CH |
155 | if (!idx) |
156 | return; | |
157 | idx--; | |
158 | ||
159 | BIO_BUG_ON(idx >= BVEC_POOL_NR); | |
bb799ca0 | 160 | |
ed996a52 | 161 | if (idx == BVEC_POOL_MAX) { |
9f060e22 | 162 | mempool_free(bv, pool); |
ed996a52 | 163 | } else { |
bb799ca0 JA |
164 | struct biovec_slab *bvs = bvec_slabs + idx; |
165 | ||
166 | kmem_cache_free(bvs->slab, bv); | |
167 | } | |
168 | } | |
169 | ||
9f060e22 KO |
170 | struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, |
171 | mempool_t *pool) | |
1da177e4 LT |
172 | { |
173 | struct bio_vec *bvl; | |
1da177e4 | 174 | |
7ff9345f JA |
175 | /* |
176 | * see comment near bvec_array define! | |
177 | */ | |
178 | switch (nr) { | |
179 | case 1: | |
180 | *idx = 0; | |
181 | break; | |
182 | case 2 ... 4: | |
183 | *idx = 1; | |
184 | break; | |
185 | case 5 ... 16: | |
186 | *idx = 2; | |
187 | break; | |
188 | case 17 ... 64: | |
189 | *idx = 3; | |
190 | break; | |
191 | case 65 ... 128: | |
192 | *idx = 4; | |
193 | break; | |
194 | case 129 ... BIO_MAX_PAGES: | |
195 | *idx = 5; | |
196 | break; | |
197 | default: | |
198 | return NULL; | |
199 | } | |
200 | ||
201 | /* | |
202 | * idx now points to the pool we want to allocate from. only the | |
203 | * 1-vec entry pool is mempool backed. | |
204 | */ | |
ed996a52 | 205 | if (*idx == BVEC_POOL_MAX) { |
7ff9345f | 206 | fallback: |
9f060e22 | 207 | bvl = mempool_alloc(pool, gfp_mask); |
7ff9345f JA |
208 | } else { |
209 | struct biovec_slab *bvs = bvec_slabs + *idx; | |
d0164adc | 210 | gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); |
7ff9345f | 211 | |
0a0d96b0 | 212 | /* |
7ff9345f JA |
213 | * Make this allocation restricted and don't dump info on |
214 | * allocation failures, since we'll fallback to the mempool | |
215 | * in case of failure. | |
0a0d96b0 | 216 | */ |
7ff9345f | 217 | __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; |
1da177e4 | 218 | |
0a0d96b0 | 219 | /* |
d0164adc | 220 | * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM |
7ff9345f | 221 | * is set, retry with the 1-entry mempool |
0a0d96b0 | 222 | */ |
7ff9345f | 223 | bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); |
d0164adc | 224 | if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { |
ed996a52 | 225 | *idx = BVEC_POOL_MAX; |
7ff9345f JA |
226 | goto fallback; |
227 | } | |
228 | } | |
229 | ||
ed996a52 | 230 | (*idx)++; |
1da177e4 LT |
231 | return bvl; |
232 | } | |
233 | ||
9ae3b3f5 | 234 | void bio_uninit(struct bio *bio) |
1da177e4 | 235 | { |
6f70fb66 | 236 | bio_disassociate_blkg(bio); |
ece841ab JT |
237 | |
238 | if (bio_integrity(bio)) | |
239 | bio_integrity_free(bio); | |
4254bba1 | 240 | } |
9ae3b3f5 | 241 | EXPORT_SYMBOL(bio_uninit); |
7ba1ba12 | 242 | |
4254bba1 KO |
243 | static void bio_free(struct bio *bio) |
244 | { | |
245 | struct bio_set *bs = bio->bi_pool; | |
246 | void *p; | |
247 | ||
9ae3b3f5 | 248 | bio_uninit(bio); |
4254bba1 KO |
249 | |
250 | if (bs) { | |
8aa6ba2f | 251 | bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); |
4254bba1 KO |
252 | |
253 | /* | |
254 | * If we have front padding, adjust the bio pointer before freeing | |
255 | */ | |
256 | p = bio; | |
bb799ca0 JA |
257 | p -= bs->front_pad; |
258 | ||
8aa6ba2f | 259 | mempool_free(p, &bs->bio_pool); |
4254bba1 KO |
260 | } else { |
261 | /* Bio was allocated by bio_kmalloc() */ | |
262 | kfree(bio); | |
263 | } | |
3676347a PO |
264 | } |
265 | ||
9ae3b3f5 JA |
266 | /* |
267 | * Users of this function have their own bio allocation. Subsequently, | |
268 | * they must remember to pair any call to bio_init() with bio_uninit() | |
269 | * when IO has completed, or when the bio is released. | |
270 | */ | |
3a83f467 ML |
271 | void bio_init(struct bio *bio, struct bio_vec *table, |
272 | unsigned short max_vecs) | |
1da177e4 | 273 | { |
2b94de55 | 274 | memset(bio, 0, sizeof(*bio)); |
c4cf5261 | 275 | atomic_set(&bio->__bi_remaining, 1); |
dac56212 | 276 | atomic_set(&bio->__bi_cnt, 1); |
3a83f467 ML |
277 | |
278 | bio->bi_io_vec = table; | |
279 | bio->bi_max_vecs = max_vecs; | |
1da177e4 | 280 | } |
a112a71d | 281 | EXPORT_SYMBOL(bio_init); |
1da177e4 | 282 | |
f44b48c7 KO |
283 | /** |
284 | * bio_reset - reinitialize a bio | |
285 | * @bio: bio to reset | |
286 | * | |
287 | * Description: | |
288 | * After calling bio_reset(), @bio will be in the same state as a freshly | |
289 | * allocated bio returned bio bio_alloc_bioset() - the only fields that are | |
290 | * preserved are the ones that are initialized by bio_alloc_bioset(). See | |
291 | * comment in struct bio. | |
292 | */ | |
293 | void bio_reset(struct bio *bio) | |
294 | { | |
295 | unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); | |
296 | ||
9ae3b3f5 | 297 | bio_uninit(bio); |
f44b48c7 KO |
298 | |
299 | memset(bio, 0, BIO_RESET_BYTES); | |
4246a0b6 | 300 | bio->bi_flags = flags; |
c4cf5261 | 301 | atomic_set(&bio->__bi_remaining, 1); |
f44b48c7 KO |
302 | } |
303 | EXPORT_SYMBOL(bio_reset); | |
304 | ||
38f8baae | 305 | static struct bio *__bio_chain_endio(struct bio *bio) |
196d38bc | 306 | { |
4246a0b6 CH |
307 | struct bio *parent = bio->bi_private; |
308 | ||
4e4cbee9 CH |
309 | if (!parent->bi_status) |
310 | parent->bi_status = bio->bi_status; | |
196d38bc | 311 | bio_put(bio); |
38f8baae CH |
312 | return parent; |
313 | } | |
314 | ||
315 | static void bio_chain_endio(struct bio *bio) | |
316 | { | |
317 | bio_endio(__bio_chain_endio(bio)); | |
196d38bc KO |
318 | } |
319 | ||
320 | /** | |
321 | * bio_chain - chain bio completions | |
1051a902 RD |
322 | * @bio: the target bio |
323 | * @parent: the @bio's parent bio | |
196d38bc KO |
324 | * |
325 | * The caller won't have a bi_end_io called when @bio completes - instead, | |
326 | * @parent's bi_end_io won't be called until both @parent and @bio have | |
327 | * completed; the chained bio will also be freed when it completes. | |
328 | * | |
329 | * The caller must not set bi_private or bi_end_io in @bio. | |
330 | */ | |
331 | void bio_chain(struct bio *bio, struct bio *parent) | |
332 | { | |
333 | BUG_ON(bio->bi_private || bio->bi_end_io); | |
334 | ||
335 | bio->bi_private = parent; | |
336 | bio->bi_end_io = bio_chain_endio; | |
c4cf5261 | 337 | bio_inc_remaining(parent); |
196d38bc KO |
338 | } |
339 | EXPORT_SYMBOL(bio_chain); | |
340 | ||
df2cb6da KO |
341 | static void bio_alloc_rescue(struct work_struct *work) |
342 | { | |
343 | struct bio_set *bs = container_of(work, struct bio_set, rescue_work); | |
344 | struct bio *bio; | |
345 | ||
346 | while (1) { | |
347 | spin_lock(&bs->rescue_lock); | |
348 | bio = bio_list_pop(&bs->rescue_list); | |
349 | spin_unlock(&bs->rescue_lock); | |
350 | ||
351 | if (!bio) | |
352 | break; | |
353 | ||
354 | generic_make_request(bio); | |
355 | } | |
356 | } | |
357 | ||
358 | static void punt_bios_to_rescuer(struct bio_set *bs) | |
359 | { | |
360 | struct bio_list punt, nopunt; | |
361 | struct bio *bio; | |
362 | ||
47e0fb46 N |
363 | if (WARN_ON_ONCE(!bs->rescue_workqueue)) |
364 | return; | |
df2cb6da KO |
365 | /* |
366 | * In order to guarantee forward progress we must punt only bios that | |
367 | * were allocated from this bio_set; otherwise, if there was a bio on | |
368 | * there for a stacking driver higher up in the stack, processing it | |
369 | * could require allocating bios from this bio_set, and doing that from | |
370 | * our own rescuer would be bad. | |
371 | * | |
372 | * Since bio lists are singly linked, pop them all instead of trying to | |
373 | * remove from the middle of the list: | |
374 | */ | |
375 | ||
376 | bio_list_init(&punt); | |
377 | bio_list_init(&nopunt); | |
378 | ||
f5fe1b51 | 379 | while ((bio = bio_list_pop(¤t->bio_list[0]))) |
df2cb6da | 380 | bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); |
f5fe1b51 | 381 | current->bio_list[0] = nopunt; |
df2cb6da | 382 | |
f5fe1b51 N |
383 | bio_list_init(&nopunt); |
384 | while ((bio = bio_list_pop(¤t->bio_list[1]))) | |
385 | bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); | |
386 | current->bio_list[1] = nopunt; | |
df2cb6da KO |
387 | |
388 | spin_lock(&bs->rescue_lock); | |
389 | bio_list_merge(&bs->rescue_list, &punt); | |
390 | spin_unlock(&bs->rescue_lock); | |
391 | ||
392 | queue_work(bs->rescue_workqueue, &bs->rescue_work); | |
393 | } | |
394 | ||
1da177e4 LT |
395 | /** |
396 | * bio_alloc_bioset - allocate a bio for I/O | |
519c8e9f | 397 | * @gfp_mask: the GFP_* mask given to the slab allocator |
1da177e4 | 398 | * @nr_iovecs: number of iovecs to pre-allocate |
db18efac | 399 | * @bs: the bio_set to allocate from. |
1da177e4 LT |
400 | * |
401 | * Description: | |
3f86a82a KO |
402 | * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is |
403 | * backed by the @bs's mempool. | |
404 | * | |
d0164adc MG |
405 | * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will |
406 | * always be able to allocate a bio. This is due to the mempool guarantees. | |
407 | * To make this work, callers must never allocate more than 1 bio at a time | |
408 | * from this pool. Callers that need to allocate more than 1 bio must always | |
409 | * submit the previously allocated bio for IO before attempting to allocate | |
410 | * a new one. Failure to do so can cause deadlocks under memory pressure. | |
3f86a82a | 411 | * |
df2cb6da KO |
412 | * Note that when running under generic_make_request() (i.e. any block |
413 | * driver), bios are not submitted until after you return - see the code in | |
414 | * generic_make_request() that converts recursion into iteration, to prevent | |
415 | * stack overflows. | |
416 | * | |
417 | * This would normally mean allocating multiple bios under | |
418 | * generic_make_request() would be susceptible to deadlocks, but we have | |
419 | * deadlock avoidance code that resubmits any blocked bios from a rescuer | |
420 | * thread. | |
421 | * | |
422 | * However, we do not guarantee forward progress for allocations from other | |
423 | * mempools. Doing multiple allocations from the same mempool under | |
424 | * generic_make_request() should be avoided - instead, use bio_set's front_pad | |
425 | * for per bio allocations. | |
426 | * | |
3f86a82a KO |
427 | * RETURNS: |
428 | * Pointer to new bio on success, NULL on failure. | |
429 | */ | |
7a88fa19 DC |
430 | struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, |
431 | struct bio_set *bs) | |
1da177e4 | 432 | { |
df2cb6da | 433 | gfp_t saved_gfp = gfp_mask; |
3f86a82a KO |
434 | unsigned front_pad; |
435 | unsigned inline_vecs; | |
34053979 | 436 | struct bio_vec *bvl = NULL; |
451a9ebf TH |
437 | struct bio *bio; |
438 | void *p; | |
439 | ||
3f86a82a KO |
440 | if (!bs) { |
441 | if (nr_iovecs > UIO_MAXIOV) | |
442 | return NULL; | |
443 | ||
444 | p = kmalloc(sizeof(struct bio) + | |
445 | nr_iovecs * sizeof(struct bio_vec), | |
446 | gfp_mask); | |
447 | front_pad = 0; | |
448 | inline_vecs = nr_iovecs; | |
449 | } else { | |
d8f429e1 | 450 | /* should not use nobvec bioset for nr_iovecs > 0 */ |
8aa6ba2f KO |
451 | if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && |
452 | nr_iovecs > 0)) | |
d8f429e1 | 453 | return NULL; |
df2cb6da KO |
454 | /* |
455 | * generic_make_request() converts recursion to iteration; this | |
456 | * means if we're running beneath it, any bios we allocate and | |
457 | * submit will not be submitted (and thus freed) until after we | |
458 | * return. | |
459 | * | |
460 | * This exposes us to a potential deadlock if we allocate | |
461 | * multiple bios from the same bio_set() while running | |
462 | * underneath generic_make_request(). If we were to allocate | |
463 | * multiple bios (say a stacking block driver that was splitting | |
464 | * bios), we would deadlock if we exhausted the mempool's | |
465 | * reserve. | |
466 | * | |
467 | * We solve this, and guarantee forward progress, with a rescuer | |
468 | * workqueue per bio_set. If we go to allocate and there are | |
469 | * bios on current->bio_list, we first try the allocation | |
d0164adc MG |
470 | * without __GFP_DIRECT_RECLAIM; if that fails, we punt those |
471 | * bios we would be blocking to the rescuer workqueue before | |
472 | * we retry with the original gfp_flags. | |
df2cb6da KO |
473 | */ |
474 | ||
f5fe1b51 N |
475 | if (current->bio_list && |
476 | (!bio_list_empty(¤t->bio_list[0]) || | |
47e0fb46 N |
477 | !bio_list_empty(¤t->bio_list[1])) && |
478 | bs->rescue_workqueue) | |
d0164adc | 479 | gfp_mask &= ~__GFP_DIRECT_RECLAIM; |
df2cb6da | 480 | |
8aa6ba2f | 481 | p = mempool_alloc(&bs->bio_pool, gfp_mask); |
df2cb6da KO |
482 | if (!p && gfp_mask != saved_gfp) { |
483 | punt_bios_to_rescuer(bs); | |
484 | gfp_mask = saved_gfp; | |
8aa6ba2f | 485 | p = mempool_alloc(&bs->bio_pool, gfp_mask); |
df2cb6da KO |
486 | } |
487 | ||
3f86a82a KO |
488 | front_pad = bs->front_pad; |
489 | inline_vecs = BIO_INLINE_VECS; | |
490 | } | |
491 | ||
451a9ebf TH |
492 | if (unlikely(!p)) |
493 | return NULL; | |
1da177e4 | 494 | |
3f86a82a | 495 | bio = p + front_pad; |
3a83f467 | 496 | bio_init(bio, NULL, 0); |
34053979 | 497 | |
3f86a82a | 498 | if (nr_iovecs > inline_vecs) { |
ed996a52 CH |
499 | unsigned long idx = 0; |
500 | ||
8aa6ba2f | 501 | bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); |
df2cb6da KO |
502 | if (!bvl && gfp_mask != saved_gfp) { |
503 | punt_bios_to_rescuer(bs); | |
504 | gfp_mask = saved_gfp; | |
8aa6ba2f | 505 | bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); |
df2cb6da KO |
506 | } |
507 | ||
34053979 IM |
508 | if (unlikely(!bvl)) |
509 | goto err_free; | |
a38352e0 | 510 | |
ed996a52 | 511 | bio->bi_flags |= idx << BVEC_POOL_OFFSET; |
3f86a82a KO |
512 | } else if (nr_iovecs) { |
513 | bvl = bio->bi_inline_vecs; | |
1da177e4 | 514 | } |
3f86a82a KO |
515 | |
516 | bio->bi_pool = bs; | |
34053979 | 517 | bio->bi_max_vecs = nr_iovecs; |
34053979 | 518 | bio->bi_io_vec = bvl; |
1da177e4 | 519 | return bio; |
34053979 IM |
520 | |
521 | err_free: | |
8aa6ba2f | 522 | mempool_free(p, &bs->bio_pool); |
34053979 | 523 | return NULL; |
1da177e4 | 524 | } |
a112a71d | 525 | EXPORT_SYMBOL(bio_alloc_bioset); |
1da177e4 | 526 | |
38a72dac | 527 | void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) |
1da177e4 LT |
528 | { |
529 | unsigned long flags; | |
7988613b KO |
530 | struct bio_vec bv; |
531 | struct bvec_iter iter; | |
1da177e4 | 532 | |
38a72dac | 533 | __bio_for_each_segment(bv, bio, iter, start) { |
7988613b KO |
534 | char *data = bvec_kmap_irq(&bv, &flags); |
535 | memset(data, 0, bv.bv_len); | |
536 | flush_dcache_page(bv.bv_page); | |
1da177e4 LT |
537 | bvec_kunmap_irq(data, &flags); |
538 | } | |
539 | } | |
38a72dac | 540 | EXPORT_SYMBOL(zero_fill_bio_iter); |
1da177e4 | 541 | |
83c9c547 ML |
542 | /** |
543 | * bio_truncate - truncate the bio to small size of @new_size | |
544 | * @bio: the bio to be truncated | |
545 | * @new_size: new size for truncating the bio | |
546 | * | |
547 | * Description: | |
548 | * Truncate the bio to new size of @new_size. If bio_op(bio) is | |
549 | * REQ_OP_READ, zero the truncated part. This function should only | |
550 | * be used for handling corner cases, such as bio eod. | |
551 | */ | |
85a8ce62 ML |
552 | void bio_truncate(struct bio *bio, unsigned new_size) |
553 | { | |
554 | struct bio_vec bv; | |
555 | struct bvec_iter iter; | |
556 | unsigned int done = 0; | |
557 | bool truncated = false; | |
558 | ||
559 | if (new_size >= bio->bi_iter.bi_size) | |
560 | return; | |
561 | ||
83c9c547 | 562 | if (bio_op(bio) != REQ_OP_READ) |
85a8ce62 ML |
563 | goto exit; |
564 | ||
565 | bio_for_each_segment(bv, bio, iter) { | |
566 | if (done + bv.bv_len > new_size) { | |
567 | unsigned offset; | |
568 | ||
569 | if (!truncated) | |
570 | offset = new_size - done; | |
571 | else | |
572 | offset = 0; | |
573 | zero_user(bv.bv_page, offset, bv.bv_len - offset); | |
574 | truncated = true; | |
575 | } | |
576 | done += bv.bv_len; | |
577 | } | |
578 | ||
579 | exit: | |
580 | /* | |
581 | * Don't touch bvec table here and make it really immutable, since | |
582 | * fs bio user has to retrieve all pages via bio_for_each_segment_all | |
583 | * in its .end_bio() callback. | |
584 | * | |
585 | * It is enough to truncate bio by updating .bi_size since we can make | |
586 | * correct bvec with the updated .bi_size for drivers. | |
587 | */ | |
588 | bio->bi_iter.bi_size = new_size; | |
589 | } | |
590 | ||
29125ed6 CH |
591 | /** |
592 | * guard_bio_eod - truncate a BIO to fit the block device | |
593 | * @bio: bio to truncate | |
594 | * | |
595 | * This allows us to do IO even on the odd last sectors of a device, even if the | |
596 | * block size is some multiple of the physical sector size. | |
597 | * | |
598 | * We'll just truncate the bio to the size of the device, and clear the end of | |
599 | * the buffer head manually. Truly out-of-range accesses will turn into actual | |
600 | * I/O errors, this only handles the "we need to be able to do I/O at the final | |
601 | * sector" case. | |
602 | */ | |
603 | void guard_bio_eod(struct bio *bio) | |
604 | { | |
605 | sector_t maxsector; | |
606 | struct hd_struct *part; | |
607 | ||
608 | rcu_read_lock(); | |
609 | part = __disk_get_part(bio->bi_disk, bio->bi_partno); | |
610 | if (part) | |
611 | maxsector = part_nr_sects_read(part); | |
612 | else | |
613 | maxsector = get_capacity(bio->bi_disk); | |
614 | rcu_read_unlock(); | |
615 | ||
616 | if (!maxsector) | |
617 | return; | |
618 | ||
619 | /* | |
620 | * If the *whole* IO is past the end of the device, | |
621 | * let it through, and the IO layer will turn it into | |
622 | * an EIO. | |
623 | */ | |
624 | if (unlikely(bio->bi_iter.bi_sector >= maxsector)) | |
625 | return; | |
626 | ||
627 | maxsector -= bio->bi_iter.bi_sector; | |
628 | if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) | |
629 | return; | |
630 | ||
631 | bio_truncate(bio, maxsector << 9); | |
632 | } | |
633 | ||
1da177e4 LT |
634 | /** |
635 | * bio_put - release a reference to a bio | |
636 | * @bio: bio to release reference to | |
637 | * | |
638 | * Description: | |
639 | * Put a reference to a &struct bio, either one you have gotten with | |
9b10f6a9 | 640 | * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. |
1da177e4 LT |
641 | **/ |
642 | void bio_put(struct bio *bio) | |
643 | { | |
dac56212 | 644 | if (!bio_flagged(bio, BIO_REFFED)) |
4254bba1 | 645 | bio_free(bio); |
dac56212 JA |
646 | else { |
647 | BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); | |
648 | ||
649 | /* | |
650 | * last put frees it | |
651 | */ | |
652 | if (atomic_dec_and_test(&bio->__bi_cnt)) | |
653 | bio_free(bio); | |
654 | } | |
1da177e4 | 655 | } |
a112a71d | 656 | EXPORT_SYMBOL(bio_put); |
1da177e4 | 657 | |
59d276fe KO |
658 | /** |
659 | * __bio_clone_fast - clone a bio that shares the original bio's biovec | |
660 | * @bio: destination bio | |
661 | * @bio_src: bio to clone | |
662 | * | |
663 | * Clone a &bio. Caller will own the returned bio, but not | |
664 | * the actual data it points to. Reference count of returned | |
665 | * bio will be one. | |
666 | * | |
667 | * Caller must ensure that @bio_src is not freed before @bio. | |
668 | */ | |
669 | void __bio_clone_fast(struct bio *bio, struct bio *bio_src) | |
670 | { | |
ed996a52 | 671 | BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); |
59d276fe KO |
672 | |
673 | /* | |
74d46992 | 674 | * most users will be overriding ->bi_disk with a new target, |
59d276fe KO |
675 | * so we don't set nor calculate new physical/hw segment counts here |
676 | */ | |
74d46992 | 677 | bio->bi_disk = bio_src->bi_disk; |
62530ed8 | 678 | bio->bi_partno = bio_src->bi_partno; |
b7c44ed9 | 679 | bio_set_flag(bio, BIO_CLONED); |
111be883 SL |
680 | if (bio_flagged(bio_src, BIO_THROTTLED)) |
681 | bio_set_flag(bio, BIO_THROTTLED); | |
1eff9d32 | 682 | bio->bi_opf = bio_src->bi_opf; |
ca474b73 | 683 | bio->bi_ioprio = bio_src->bi_ioprio; |
cb6934f8 | 684 | bio->bi_write_hint = bio_src->bi_write_hint; |
59d276fe KO |
685 | bio->bi_iter = bio_src->bi_iter; |
686 | bio->bi_io_vec = bio_src->bi_io_vec; | |
20bd723e | 687 | |
db6638d7 | 688 | bio_clone_blkg_association(bio, bio_src); |
e439bedf | 689 | blkcg_bio_issue_init(bio); |
59d276fe KO |
690 | } |
691 | EXPORT_SYMBOL(__bio_clone_fast); | |
692 | ||
693 | /** | |
694 | * bio_clone_fast - clone a bio that shares the original bio's biovec | |
695 | * @bio: bio to clone | |
696 | * @gfp_mask: allocation priority | |
697 | * @bs: bio_set to allocate from | |
698 | * | |
699 | * Like __bio_clone_fast, only also allocates the returned bio | |
700 | */ | |
701 | struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) | |
702 | { | |
703 | struct bio *b; | |
704 | ||
705 | b = bio_alloc_bioset(gfp_mask, 0, bs); | |
706 | if (!b) | |
707 | return NULL; | |
708 | ||
709 | __bio_clone_fast(b, bio); | |
710 | ||
711 | if (bio_integrity(bio)) { | |
712 | int ret; | |
713 | ||
714 | ret = bio_integrity_clone(b, bio, gfp_mask); | |
715 | ||
716 | if (ret < 0) { | |
717 | bio_put(b); | |
718 | return NULL; | |
719 | } | |
720 | } | |
721 | ||
722 | return b; | |
723 | } | |
724 | EXPORT_SYMBOL(bio_clone_fast); | |
725 | ||
5cbd28e3 CH |
726 | const char *bio_devname(struct bio *bio, char *buf) |
727 | { | |
728 | return disk_name(bio->bi_disk, bio->bi_partno, buf); | |
729 | } | |
730 | EXPORT_SYMBOL(bio_devname); | |
731 | ||
5919482e ML |
732 | static inline bool page_is_mergeable(const struct bio_vec *bv, |
733 | struct page *page, unsigned int len, unsigned int off, | |
ff896738 | 734 | bool *same_page) |
5919482e ML |
735 | { |
736 | phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + | |
737 | bv->bv_offset + bv->bv_len - 1; | |
738 | phys_addr_t page_addr = page_to_phys(page); | |
739 | ||
740 | if (vec_end_addr + 1 != page_addr + off) | |
741 | return false; | |
742 | if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) | |
743 | return false; | |
52d52d1c | 744 | |
ff896738 CH |
745 | *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); |
746 | if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page) | |
747 | return false; | |
5919482e ML |
748 | return true; |
749 | } | |
750 | ||
e4581105 CH |
751 | /* |
752 | * Try to merge a page into a segment, while obeying the hardware segment | |
753 | * size limit. This is not for normal read/write bios, but for passthrough | |
754 | * or Zone Append operations that we can't split. | |
755 | */ | |
756 | static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio, | |
757 | struct page *page, unsigned len, | |
758 | unsigned offset, bool *same_page) | |
489fbbcb | 759 | { |
384209cd | 760 | struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; |
489fbbcb ML |
761 | unsigned long mask = queue_segment_boundary(q); |
762 | phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; | |
763 | phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; | |
764 | ||
765 | if ((addr1 | mask) != (addr2 | mask)) | |
766 | return false; | |
489fbbcb ML |
767 | if (bv->bv_len + len > queue_max_segment_size(q)) |
768 | return false; | |
384209cd | 769 | return __bio_try_merge_page(bio, page, len, offset, same_page); |
489fbbcb ML |
770 | } |
771 | ||
1da177e4 | 772 | /** |
e4581105 CH |
773 | * bio_add_hw_page - attempt to add a page to a bio with hw constraints |
774 | * @q: the target queue | |
775 | * @bio: destination bio | |
776 | * @page: page to add | |
777 | * @len: vec entry length | |
778 | * @offset: vec entry offset | |
779 | * @max_sectors: maximum number of sectors that can be added | |
780 | * @same_page: return if the segment has been merged inside the same page | |
c66a14d0 | 781 | * |
e4581105 CH |
782 | * Add a page to a bio while respecting the hardware max_sectors, max_segment |
783 | * and gap limitations. | |
1da177e4 | 784 | */ |
e4581105 | 785 | int bio_add_hw_page(struct request_queue *q, struct bio *bio, |
19047087 | 786 | struct page *page, unsigned int len, unsigned int offset, |
e4581105 | 787 | unsigned int max_sectors, bool *same_page) |
1da177e4 | 788 | { |
1da177e4 LT |
789 | struct bio_vec *bvec; |
790 | ||
e4581105 | 791 | if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) |
1da177e4 LT |
792 | return 0; |
793 | ||
e4581105 | 794 | if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) |
1da177e4 LT |
795 | return 0; |
796 | ||
80cfd548 | 797 | if (bio->bi_vcnt > 0) { |
e4581105 | 798 | if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page)) |
384209cd | 799 | return len; |
320ea869 CH |
800 | |
801 | /* | |
802 | * If the queue doesn't support SG gaps and adding this segment | |
803 | * would create a gap, disallow it. | |
804 | */ | |
384209cd | 805 | bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; |
320ea869 CH |
806 | if (bvec_gap_to_prev(q, bvec, offset)) |
807 | return 0; | |
80cfd548 JA |
808 | } |
809 | ||
79d08f89 | 810 | if (bio_full(bio, len)) |
1da177e4 LT |
811 | return 0; |
812 | ||
14ccb66b | 813 | if (bio->bi_vcnt >= queue_max_segments(q)) |
489fbbcb ML |
814 | return 0; |
815 | ||
fcbf6a08 ML |
816 | bvec = &bio->bi_io_vec[bio->bi_vcnt]; |
817 | bvec->bv_page = page; | |
818 | bvec->bv_len = len; | |
819 | bvec->bv_offset = offset; | |
820 | bio->bi_vcnt++; | |
dcdca753 | 821 | bio->bi_iter.bi_size += len; |
1da177e4 LT |
822 | return len; |
823 | } | |
19047087 | 824 | |
e4581105 CH |
825 | /** |
826 | * bio_add_pc_page - attempt to add page to passthrough bio | |
827 | * @q: the target queue | |
828 | * @bio: destination bio | |
829 | * @page: page to add | |
830 | * @len: vec entry length | |
831 | * @offset: vec entry offset | |
832 | * | |
833 | * Attempt to add a page to the bio_vec maplist. This can fail for a | |
834 | * number of reasons, such as the bio being full or target block device | |
835 | * limitations. The target block device must allow bio's up to PAGE_SIZE, | |
836 | * so it is always possible to add a single page to an empty bio. | |
837 | * | |
838 | * This should only be used by passthrough bios. | |
839 | */ | |
19047087 ML |
840 | int bio_add_pc_page(struct request_queue *q, struct bio *bio, |
841 | struct page *page, unsigned int len, unsigned int offset) | |
842 | { | |
d1916c86 | 843 | bool same_page = false; |
e4581105 CH |
844 | return bio_add_hw_page(q, bio, page, len, offset, |
845 | queue_max_hw_sectors(q), &same_page); | |
19047087 | 846 | } |
a112a71d | 847 | EXPORT_SYMBOL(bio_add_pc_page); |
6e68af66 | 848 | |
1da177e4 | 849 | /** |
0aa69fd3 CH |
850 | * __bio_try_merge_page - try appending data to an existing bvec. |
851 | * @bio: destination bio | |
551879a4 | 852 | * @page: start page to add |
0aa69fd3 | 853 | * @len: length of the data to add |
551879a4 | 854 | * @off: offset of the data relative to @page |
ff896738 | 855 | * @same_page: return if the segment has been merged inside the same page |
1da177e4 | 856 | * |
0aa69fd3 CH |
857 | * Try to add the data at @page + @off to the last bvec of @bio. This is a |
858 | * a useful optimisation for file systems with a block size smaller than the | |
859 | * page size. | |
860 | * | |
551879a4 ML |
861 | * Warn if (@len, @off) crosses pages in case that @same_page is true. |
862 | * | |
0aa69fd3 | 863 | * Return %true on success or %false on failure. |
1da177e4 | 864 | */ |
0aa69fd3 | 865 | bool __bio_try_merge_page(struct bio *bio, struct page *page, |
ff896738 | 866 | unsigned int len, unsigned int off, bool *same_page) |
1da177e4 | 867 | { |
c66a14d0 | 868 | if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) |
0aa69fd3 | 869 | return false; |
762380ad | 870 | |
cc90bc68 | 871 | if (bio->bi_vcnt > 0) { |
0aa69fd3 | 872 | struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; |
5919482e ML |
873 | |
874 | if (page_is_mergeable(bv, page, len, off, same_page)) { | |
cc90bc68 AG |
875 | if (bio->bi_iter.bi_size > UINT_MAX - len) |
876 | return false; | |
5919482e ML |
877 | bv->bv_len += len; |
878 | bio->bi_iter.bi_size += len; | |
879 | return true; | |
880 | } | |
c66a14d0 | 881 | } |
0aa69fd3 CH |
882 | return false; |
883 | } | |
884 | EXPORT_SYMBOL_GPL(__bio_try_merge_page); | |
c66a14d0 | 885 | |
0aa69fd3 | 886 | /** |
551879a4 | 887 | * __bio_add_page - add page(s) to a bio in a new segment |
0aa69fd3 | 888 | * @bio: destination bio |
551879a4 ML |
889 | * @page: start page to add |
890 | * @len: length of the data to add, may cross pages | |
891 | * @off: offset of the data relative to @page, may cross pages | |
0aa69fd3 CH |
892 | * |
893 | * Add the data at @page + @off to @bio as a new bvec. The caller must ensure | |
894 | * that @bio has space for another bvec. | |
895 | */ | |
896 | void __bio_add_page(struct bio *bio, struct page *page, | |
897 | unsigned int len, unsigned int off) | |
898 | { | |
899 | struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; | |
c66a14d0 | 900 | |
0aa69fd3 | 901 | WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); |
79d08f89 | 902 | WARN_ON_ONCE(bio_full(bio, len)); |
0aa69fd3 CH |
903 | |
904 | bv->bv_page = page; | |
905 | bv->bv_offset = off; | |
906 | bv->bv_len = len; | |
c66a14d0 | 907 | |
c66a14d0 | 908 | bio->bi_iter.bi_size += len; |
0aa69fd3 | 909 | bio->bi_vcnt++; |
b8e24a93 JW |
910 | |
911 | if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page))) | |
912 | bio_set_flag(bio, BIO_WORKINGSET); | |
0aa69fd3 CH |
913 | } |
914 | EXPORT_SYMBOL_GPL(__bio_add_page); | |
915 | ||
916 | /** | |
551879a4 | 917 | * bio_add_page - attempt to add page(s) to bio |
0aa69fd3 | 918 | * @bio: destination bio |
551879a4 ML |
919 | * @page: start page to add |
920 | * @len: vec entry length, may cross pages | |
921 | * @offset: vec entry offset relative to @page, may cross pages | |
0aa69fd3 | 922 | * |
551879a4 | 923 | * Attempt to add page(s) to the bio_vec maplist. This will only fail |
0aa69fd3 CH |
924 | * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. |
925 | */ | |
926 | int bio_add_page(struct bio *bio, struct page *page, | |
927 | unsigned int len, unsigned int offset) | |
928 | { | |
ff896738 CH |
929 | bool same_page = false; |
930 | ||
931 | if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { | |
79d08f89 | 932 | if (bio_full(bio, len)) |
0aa69fd3 CH |
933 | return 0; |
934 | __bio_add_page(bio, page, len, offset); | |
935 | } | |
c66a14d0 | 936 | return len; |
1da177e4 | 937 | } |
a112a71d | 938 | EXPORT_SYMBOL(bio_add_page); |
1da177e4 | 939 | |
d241a95f | 940 | void bio_release_pages(struct bio *bio, bool mark_dirty) |
7321ecbf CH |
941 | { |
942 | struct bvec_iter_all iter_all; | |
943 | struct bio_vec *bvec; | |
7321ecbf | 944 | |
b2d0d991 CH |
945 | if (bio_flagged(bio, BIO_NO_PAGE_REF)) |
946 | return; | |
947 | ||
d241a95f CH |
948 | bio_for_each_segment_all(bvec, bio, iter_all) { |
949 | if (mark_dirty && !PageCompound(bvec->bv_page)) | |
950 | set_page_dirty_lock(bvec->bv_page); | |
7321ecbf | 951 | put_page(bvec->bv_page); |
d241a95f | 952 | } |
7321ecbf CH |
953 | } |
954 | ||
6d0c48ae JA |
955 | static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter) |
956 | { | |
957 | const struct bio_vec *bv = iter->bvec; | |
958 | unsigned int len; | |
959 | size_t size; | |
960 | ||
961 | if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len)) | |
962 | return -EINVAL; | |
963 | ||
964 | len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count); | |
965 | size = bio_add_page(bio, bv->bv_page, len, | |
966 | bv->bv_offset + iter->iov_offset); | |
a10584c3 CH |
967 | if (unlikely(size != len)) |
968 | return -EINVAL; | |
a10584c3 CH |
969 | iov_iter_advance(iter, size); |
970 | return 0; | |
6d0c48ae JA |
971 | } |
972 | ||
576ed913 CH |
973 | #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) |
974 | ||
2cefe4db | 975 | /** |
17d51b10 | 976 | * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio |
2cefe4db KO |
977 | * @bio: bio to add pages to |
978 | * @iter: iov iterator describing the region to be mapped | |
979 | * | |
17d51b10 | 980 | * Pins pages from *iter and appends them to @bio's bvec array. The |
2cefe4db | 981 | * pages will have to be released using put_page() when done. |
17d51b10 MW |
982 | * For multi-segment *iter, this function only adds pages from the |
983 | * the next non-empty segment of the iov iterator. | |
2cefe4db | 984 | */ |
17d51b10 | 985 | static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) |
2cefe4db | 986 | { |
576ed913 CH |
987 | unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; |
988 | unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; | |
2cefe4db KO |
989 | struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; |
990 | struct page **pages = (struct page **)bv; | |
45691804 | 991 | bool same_page = false; |
576ed913 CH |
992 | ssize_t size, left; |
993 | unsigned len, i; | |
b403ea24 | 994 | size_t offset; |
576ed913 CH |
995 | |
996 | /* | |
997 | * Move page array up in the allocated memory for the bio vecs as far as | |
998 | * possible so that we can start filling biovecs from the beginning | |
999 | * without overwriting the temporary page array. | |
1000 | */ | |
1001 | BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); | |
1002 | pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); | |
2cefe4db KO |
1003 | |
1004 | size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); | |
1005 | if (unlikely(size <= 0)) | |
1006 | return size ? size : -EFAULT; | |
2cefe4db | 1007 | |
576ed913 CH |
1008 | for (left = size, i = 0; left > 0; left -= len, i++) { |
1009 | struct page *page = pages[i]; | |
2cefe4db | 1010 | |
576ed913 | 1011 | len = min_t(size_t, PAGE_SIZE - offset, left); |
45691804 CH |
1012 | |
1013 | if (__bio_try_merge_page(bio, page, len, offset, &same_page)) { | |
1014 | if (same_page) | |
1015 | put_page(page); | |
1016 | } else { | |
79d08f89 | 1017 | if (WARN_ON_ONCE(bio_full(bio, len))) |
45691804 CH |
1018 | return -EINVAL; |
1019 | __bio_add_page(bio, page, len, offset); | |
1020 | } | |
576ed913 | 1021 | offset = 0; |
2cefe4db KO |
1022 | } |
1023 | ||
2cefe4db KO |
1024 | iov_iter_advance(iter, size); |
1025 | return 0; | |
1026 | } | |
17d51b10 MW |
1027 | |
1028 | /** | |
6d0c48ae | 1029 | * bio_iov_iter_get_pages - add user or kernel pages to a bio |
17d51b10 | 1030 | * @bio: bio to add pages to |
6d0c48ae JA |
1031 | * @iter: iov iterator describing the region to be added |
1032 | * | |
1033 | * This takes either an iterator pointing to user memory, or one pointing to | |
1034 | * kernel pages (BVEC iterator). If we're adding user pages, we pin them and | |
1035 | * map them into the kernel. On IO completion, the caller should put those | |
399254aa JA |
1036 | * pages. If we're adding kernel pages, and the caller told us it's safe to |
1037 | * do so, we just have to add the pages to the bio directly. We don't grab an | |
1038 | * extra reference to those pages (the user should already have that), and we | |
1039 | * don't put the page on IO completion. The caller needs to check if the bio is | |
1040 | * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be | |
1041 | * released. | |
17d51b10 | 1042 | * |
17d51b10 | 1043 | * The function tries, but does not guarantee, to pin as many pages as |
6d0c48ae JA |
1044 | * fit into the bio, or are requested in *iter, whatever is smaller. If |
1045 | * MM encounters an error pinning the requested pages, it stops. Error | |
1046 | * is returned only if 0 pages could be pinned. | |
17d51b10 MW |
1047 | */ |
1048 | int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) | |
1049 | { | |
6d0c48ae | 1050 | const bool is_bvec = iov_iter_is_bvec(iter); |
14eacf12 CH |
1051 | int ret; |
1052 | ||
1053 | if (WARN_ON_ONCE(bio->bi_vcnt)) | |
1054 | return -EINVAL; | |
17d51b10 MW |
1055 | |
1056 | do { | |
6d0c48ae JA |
1057 | if (is_bvec) |
1058 | ret = __bio_iov_bvec_add_pages(bio, iter); | |
1059 | else | |
1060 | ret = __bio_iov_iter_get_pages(bio, iter); | |
79d08f89 | 1061 | } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); |
17d51b10 | 1062 | |
b6207430 | 1063 | if (is_bvec) |
7321ecbf | 1064 | bio_set_flag(bio, BIO_NO_PAGE_REF); |
14eacf12 | 1065 | return bio->bi_vcnt ? 0 : ret; |
17d51b10 | 1066 | } |
2cefe4db | 1067 | |
4246a0b6 | 1068 | static void submit_bio_wait_endio(struct bio *bio) |
9e882242 | 1069 | { |
65e53aab | 1070 | complete(bio->bi_private); |
9e882242 KO |
1071 | } |
1072 | ||
1073 | /** | |
1074 | * submit_bio_wait - submit a bio, and wait until it completes | |
9e882242 KO |
1075 | * @bio: The &struct bio which describes the I/O |
1076 | * | |
1077 | * Simple wrapper around submit_bio(). Returns 0 on success, or the error from | |
1078 | * bio_endio() on failure. | |
3d289d68 JK |
1079 | * |
1080 | * WARNING: Unlike to how submit_bio() is usually used, this function does not | |
1081 | * result in bio reference to be consumed. The caller must drop the reference | |
1082 | * on his own. | |
9e882242 | 1083 | */ |
4e49ea4a | 1084 | int submit_bio_wait(struct bio *bio) |
9e882242 | 1085 | { |
e319e1fb | 1086 | DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map); |
de6a78b6 | 1087 | unsigned long hang_check; |
9e882242 | 1088 | |
65e53aab | 1089 | bio->bi_private = &done; |
9e882242 | 1090 | bio->bi_end_io = submit_bio_wait_endio; |
1eff9d32 | 1091 | bio->bi_opf |= REQ_SYNC; |
4e49ea4a | 1092 | submit_bio(bio); |
de6a78b6 ML |
1093 | |
1094 | /* Prevent hang_check timer from firing at us during very long I/O */ | |
1095 | hang_check = sysctl_hung_task_timeout_secs; | |
1096 | if (hang_check) | |
1097 | while (!wait_for_completion_io_timeout(&done, | |
1098 | hang_check * (HZ/2))) | |
1099 | ; | |
1100 | else | |
1101 | wait_for_completion_io(&done); | |
9e882242 | 1102 | |
65e53aab | 1103 | return blk_status_to_errno(bio->bi_status); |
9e882242 KO |
1104 | } |
1105 | EXPORT_SYMBOL(submit_bio_wait); | |
1106 | ||
054bdf64 KO |
1107 | /** |
1108 | * bio_advance - increment/complete a bio by some number of bytes | |
1109 | * @bio: bio to advance | |
1110 | * @bytes: number of bytes to complete | |
1111 | * | |
1112 | * This updates bi_sector, bi_size and bi_idx; if the number of bytes to | |
1113 | * complete doesn't align with a bvec boundary, then bv_len and bv_offset will | |
1114 | * be updated on the last bvec as well. | |
1115 | * | |
1116 | * @bio will then represent the remaining, uncompleted portion of the io. | |
1117 | */ | |
1118 | void bio_advance(struct bio *bio, unsigned bytes) | |
1119 | { | |
1120 | if (bio_integrity(bio)) | |
1121 | bio_integrity_advance(bio, bytes); | |
1122 | ||
4550dd6c | 1123 | bio_advance_iter(bio, &bio->bi_iter, bytes); |
054bdf64 KO |
1124 | } |
1125 | EXPORT_SYMBOL(bio_advance); | |
1126 | ||
45db54d5 KO |
1127 | void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, |
1128 | struct bio *src, struct bvec_iter *src_iter) | |
16ac3d63 | 1129 | { |
1cb9dda4 | 1130 | struct bio_vec src_bv, dst_bv; |
16ac3d63 | 1131 | void *src_p, *dst_p; |
1cb9dda4 | 1132 | unsigned bytes; |
16ac3d63 | 1133 | |
45db54d5 KO |
1134 | while (src_iter->bi_size && dst_iter->bi_size) { |
1135 | src_bv = bio_iter_iovec(src, *src_iter); | |
1136 | dst_bv = bio_iter_iovec(dst, *dst_iter); | |
1cb9dda4 KO |
1137 | |
1138 | bytes = min(src_bv.bv_len, dst_bv.bv_len); | |
16ac3d63 | 1139 | |
1cb9dda4 KO |
1140 | src_p = kmap_atomic(src_bv.bv_page); |
1141 | dst_p = kmap_atomic(dst_bv.bv_page); | |
16ac3d63 | 1142 | |
1cb9dda4 KO |
1143 | memcpy(dst_p + dst_bv.bv_offset, |
1144 | src_p + src_bv.bv_offset, | |
16ac3d63 KO |
1145 | bytes); |
1146 | ||
1147 | kunmap_atomic(dst_p); | |
1148 | kunmap_atomic(src_p); | |
1149 | ||
6e6e811d KO |
1150 | flush_dcache_page(dst_bv.bv_page); |
1151 | ||
45db54d5 KO |
1152 | bio_advance_iter(src, src_iter, bytes); |
1153 | bio_advance_iter(dst, dst_iter, bytes); | |
16ac3d63 KO |
1154 | } |
1155 | } | |
38a72dac KO |
1156 | EXPORT_SYMBOL(bio_copy_data_iter); |
1157 | ||
1158 | /** | |
45db54d5 KO |
1159 | * bio_copy_data - copy contents of data buffers from one bio to another |
1160 | * @src: source bio | |
1161 | * @dst: destination bio | |
38a72dac KO |
1162 | * |
1163 | * Stops when it reaches the end of either @src or @dst - that is, copies | |
1164 | * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). | |
1165 | */ | |
1166 | void bio_copy_data(struct bio *dst, struct bio *src) | |
1167 | { | |
45db54d5 KO |
1168 | struct bvec_iter src_iter = src->bi_iter; |
1169 | struct bvec_iter dst_iter = dst->bi_iter; | |
1170 | ||
1171 | bio_copy_data_iter(dst, &dst_iter, src, &src_iter); | |
38a72dac | 1172 | } |
16ac3d63 KO |
1173 | EXPORT_SYMBOL(bio_copy_data); |
1174 | ||
45db54d5 KO |
1175 | /** |
1176 | * bio_list_copy_data - copy contents of data buffers from one chain of bios to | |
1177 | * another | |
1178 | * @src: source bio list | |
1179 | * @dst: destination bio list | |
1180 | * | |
1181 | * Stops when it reaches the end of either the @src list or @dst list - that is, | |
1182 | * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of | |
1183 | * bios). | |
1184 | */ | |
1185 | void bio_list_copy_data(struct bio *dst, struct bio *src) | |
1186 | { | |
1187 | struct bvec_iter src_iter = src->bi_iter; | |
1188 | struct bvec_iter dst_iter = dst->bi_iter; | |
1189 | ||
1190 | while (1) { | |
1191 | if (!src_iter.bi_size) { | |
1192 | src = src->bi_next; | |
1193 | if (!src) | |
1194 | break; | |
1195 | ||
1196 | src_iter = src->bi_iter; | |
1197 | } | |
1198 | ||
1199 | if (!dst_iter.bi_size) { | |
1200 | dst = dst->bi_next; | |
1201 | if (!dst) | |
1202 | break; | |
1203 | ||
1204 | dst_iter = dst->bi_iter; | |
1205 | } | |
1206 | ||
1207 | bio_copy_data_iter(dst, &dst_iter, src, &src_iter); | |
1208 | } | |
1209 | } | |
1210 | EXPORT_SYMBOL(bio_list_copy_data); | |
1211 | ||
491221f8 | 1212 | void bio_free_pages(struct bio *bio) |
1dfa0f68 CH |
1213 | { |
1214 | struct bio_vec *bvec; | |
6dc4f100 | 1215 | struct bvec_iter_all iter_all; |
1dfa0f68 | 1216 | |
2b070cfe | 1217 | bio_for_each_segment_all(bvec, bio, iter_all) |
1dfa0f68 CH |
1218 | __free_page(bvec->bv_page); |
1219 | } | |
491221f8 | 1220 | EXPORT_SYMBOL(bio_free_pages); |
1dfa0f68 | 1221 | |
1da177e4 LT |
1222 | /* |
1223 | * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions | |
1224 | * for performing direct-IO in BIOs. | |
1225 | * | |
1226 | * The problem is that we cannot run set_page_dirty() from interrupt context | |
1227 | * because the required locks are not interrupt-safe. So what we can do is to | |
1228 | * mark the pages dirty _before_ performing IO. And in interrupt context, | |
1229 | * check that the pages are still dirty. If so, fine. If not, redirty them | |
1230 | * in process context. | |
1231 | * | |
1232 | * We special-case compound pages here: normally this means reads into hugetlb | |
1233 | * pages. The logic in here doesn't really work right for compound pages | |
1234 | * because the VM does not uniformly chase down the head page in all cases. | |
1235 | * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't | |
1236 | * handle them at all. So we skip compound pages here at an early stage. | |
1237 | * | |
1238 | * Note that this code is very hard to test under normal circumstances because | |
1239 | * direct-io pins the pages with get_user_pages(). This makes | |
1240 | * is_page_cache_freeable return false, and the VM will not clean the pages. | |
0d5c3eba | 1241 | * But other code (eg, flusher threads) could clean the pages if they are mapped |
1da177e4 LT |
1242 | * pagecache. |
1243 | * | |
1244 | * Simply disabling the call to bio_set_pages_dirty() is a good way to test the | |
1245 | * deferred bio dirtying paths. | |
1246 | */ | |
1247 | ||
1248 | /* | |
1249 | * bio_set_pages_dirty() will mark all the bio's pages as dirty. | |
1250 | */ | |
1251 | void bio_set_pages_dirty(struct bio *bio) | |
1252 | { | |
cb34e057 | 1253 | struct bio_vec *bvec; |
6dc4f100 | 1254 | struct bvec_iter_all iter_all; |
1da177e4 | 1255 | |
2b070cfe | 1256 | bio_for_each_segment_all(bvec, bio, iter_all) { |
3bb50983 CH |
1257 | if (!PageCompound(bvec->bv_page)) |
1258 | set_page_dirty_lock(bvec->bv_page); | |
1da177e4 LT |
1259 | } |
1260 | } | |
1261 | ||
1da177e4 LT |
1262 | /* |
1263 | * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. | |
1264 | * If they are, then fine. If, however, some pages are clean then they must | |
1265 | * have been written out during the direct-IO read. So we take another ref on | |
24d5493f | 1266 | * the BIO and re-dirty the pages in process context. |
1da177e4 LT |
1267 | * |
1268 | * It is expected that bio_check_pages_dirty() will wholly own the BIO from | |
ea1754a0 KS |
1269 | * here on. It will run one put_page() against each page and will run one |
1270 | * bio_put() against the BIO. | |
1da177e4 LT |
1271 | */ |
1272 | ||
65f27f38 | 1273 | static void bio_dirty_fn(struct work_struct *work); |
1da177e4 | 1274 | |
65f27f38 | 1275 | static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); |
1da177e4 LT |
1276 | static DEFINE_SPINLOCK(bio_dirty_lock); |
1277 | static struct bio *bio_dirty_list; | |
1278 | ||
1279 | /* | |
1280 | * This runs in process context | |
1281 | */ | |
65f27f38 | 1282 | static void bio_dirty_fn(struct work_struct *work) |
1da177e4 | 1283 | { |
24d5493f | 1284 | struct bio *bio, *next; |
1da177e4 | 1285 | |
24d5493f CH |
1286 | spin_lock_irq(&bio_dirty_lock); |
1287 | next = bio_dirty_list; | |
1da177e4 | 1288 | bio_dirty_list = NULL; |
24d5493f | 1289 | spin_unlock_irq(&bio_dirty_lock); |
1da177e4 | 1290 | |
24d5493f CH |
1291 | while ((bio = next) != NULL) { |
1292 | next = bio->bi_private; | |
1da177e4 | 1293 | |
d241a95f | 1294 | bio_release_pages(bio, true); |
1da177e4 | 1295 | bio_put(bio); |
1da177e4 LT |
1296 | } |
1297 | } | |
1298 | ||
1299 | void bio_check_pages_dirty(struct bio *bio) | |
1300 | { | |
cb34e057 | 1301 | struct bio_vec *bvec; |
24d5493f | 1302 | unsigned long flags; |
6dc4f100 | 1303 | struct bvec_iter_all iter_all; |
1da177e4 | 1304 | |
2b070cfe | 1305 | bio_for_each_segment_all(bvec, bio, iter_all) { |
24d5493f CH |
1306 | if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) |
1307 | goto defer; | |
1da177e4 LT |
1308 | } |
1309 | ||
d241a95f | 1310 | bio_release_pages(bio, false); |
24d5493f CH |
1311 | bio_put(bio); |
1312 | return; | |
1313 | defer: | |
1314 | spin_lock_irqsave(&bio_dirty_lock, flags); | |
1315 | bio->bi_private = bio_dirty_list; | |
1316 | bio_dirty_list = bio; | |
1317 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | |
1318 | schedule_work(&bio_dirty_work); | |
1da177e4 LT |
1319 | } |
1320 | ||
2b8bd423 | 1321 | void update_io_ticks(struct hd_struct *part, unsigned long now, bool end) |
5b18b5a7 MP |
1322 | { |
1323 | unsigned long stamp; | |
1324 | again: | |
1325 | stamp = READ_ONCE(part->stamp); | |
1326 | if (unlikely(stamp != now)) { | |
1327 | if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) { | |
2b8bd423 | 1328 | __part_stat_add(part, io_ticks, end ? now - stamp : 1); |
5b18b5a7 MP |
1329 | } |
1330 | } | |
1331 | if (part->partno) { | |
1332 | part = &part_to_disk(part)->part0; | |
1333 | goto again; | |
1334 | } | |
1335 | } | |
1da177e4 | 1336 | |
ddcf35d3 | 1337 | void generic_start_io_acct(struct request_queue *q, int op, |
d62e26b3 | 1338 | unsigned long sectors, struct hd_struct *part) |
394ffa50 | 1339 | { |
ddcf35d3 | 1340 | const int sgrp = op_stat_group(op); |
394ffa50 | 1341 | |
112f158f MS |
1342 | part_stat_lock(); |
1343 | ||
2b8bd423 | 1344 | update_io_ticks(part, jiffies, false); |
112f158f MS |
1345 | part_stat_inc(part, ios[sgrp]); |
1346 | part_stat_add(part, sectors[sgrp], sectors); | |
ddcf35d3 | 1347 | part_inc_in_flight(q, part, op_is_write(op)); |
394ffa50 GZ |
1348 | |
1349 | part_stat_unlock(); | |
1350 | } | |
1351 | EXPORT_SYMBOL(generic_start_io_acct); | |
1352 | ||
ddcf35d3 | 1353 | void generic_end_io_acct(struct request_queue *q, int req_op, |
d62e26b3 | 1354 | struct hd_struct *part, unsigned long start_time) |
394ffa50 | 1355 | { |
5b18b5a7 MP |
1356 | unsigned long now = jiffies; |
1357 | unsigned long duration = now - start_time; | |
ddcf35d3 | 1358 | const int sgrp = op_stat_group(req_op); |
394ffa50 | 1359 | |
112f158f MS |
1360 | part_stat_lock(); |
1361 | ||
2b8bd423 | 1362 | update_io_ticks(part, now, true); |
112f158f | 1363 | part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration)); |
ddcf35d3 | 1364 | part_dec_in_flight(q, part, op_is_write(req_op)); |
394ffa50 GZ |
1365 | |
1366 | part_stat_unlock(); | |
1367 | } | |
1368 | EXPORT_SYMBOL(generic_end_io_acct); | |
1369 | ||
c4cf5261 JA |
1370 | static inline bool bio_remaining_done(struct bio *bio) |
1371 | { | |
1372 | /* | |
1373 | * If we're not chaining, then ->__bi_remaining is always 1 and | |
1374 | * we always end io on the first invocation. | |
1375 | */ | |
1376 | if (!bio_flagged(bio, BIO_CHAIN)) | |
1377 | return true; | |
1378 | ||
1379 | BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); | |
1380 | ||
326e1dbb | 1381 | if (atomic_dec_and_test(&bio->__bi_remaining)) { |
b7c44ed9 | 1382 | bio_clear_flag(bio, BIO_CHAIN); |
c4cf5261 | 1383 | return true; |
326e1dbb | 1384 | } |
c4cf5261 JA |
1385 | |
1386 | return false; | |
1387 | } | |
1388 | ||
1da177e4 LT |
1389 | /** |
1390 | * bio_endio - end I/O on a bio | |
1391 | * @bio: bio | |
1da177e4 LT |
1392 | * |
1393 | * Description: | |
4246a0b6 CH |
1394 | * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred |
1395 | * way to end I/O on a bio. No one should call bi_end_io() directly on a | |
1396 | * bio unless they own it and thus know that it has an end_io function. | |
fbbaf700 N |
1397 | * |
1398 | * bio_endio() can be called several times on a bio that has been chained | |
1399 | * using bio_chain(). The ->bi_end_io() function will only be called the | |
1400 | * last time. At this point the BLK_TA_COMPLETE tracing event will be | |
1401 | * generated if BIO_TRACE_COMPLETION is set. | |
1da177e4 | 1402 | **/ |
4246a0b6 | 1403 | void bio_endio(struct bio *bio) |
1da177e4 | 1404 | { |
ba8c6967 | 1405 | again: |
2b885517 | 1406 | if (!bio_remaining_done(bio)) |
ba8c6967 | 1407 | return; |
7c20f116 CH |
1408 | if (!bio_integrity_endio(bio)) |
1409 | return; | |
1da177e4 | 1410 | |
67b42d0b JB |
1411 | if (bio->bi_disk) |
1412 | rq_qos_done_bio(bio->bi_disk->queue, bio); | |
1413 | ||
ba8c6967 CH |
1414 | /* |
1415 | * Need to have a real endio function for chained bios, otherwise | |
1416 | * various corner cases will break (like stacking block devices that | |
1417 | * save/restore bi_end_io) - however, we want to avoid unbounded | |
1418 | * recursion and blowing the stack. Tail call optimization would | |
1419 | * handle this, but compiling with frame pointers also disables | |
1420 | * gcc's sibling call optimization. | |
1421 | */ | |
1422 | if (bio->bi_end_io == bio_chain_endio) { | |
1423 | bio = __bio_chain_endio(bio); | |
1424 | goto again; | |
196d38bc | 1425 | } |
ba8c6967 | 1426 | |
74d46992 CH |
1427 | if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) { |
1428 | trace_block_bio_complete(bio->bi_disk->queue, bio, | |
a462b950 | 1429 | blk_status_to_errno(bio->bi_status)); |
fbbaf700 N |
1430 | bio_clear_flag(bio, BIO_TRACE_COMPLETION); |
1431 | } | |
1432 | ||
9e234eea | 1433 | blk_throtl_bio_endio(bio); |
b222dd2f SL |
1434 | /* release cgroup info */ |
1435 | bio_uninit(bio); | |
ba8c6967 CH |
1436 | if (bio->bi_end_io) |
1437 | bio->bi_end_io(bio); | |
1da177e4 | 1438 | } |
a112a71d | 1439 | EXPORT_SYMBOL(bio_endio); |
1da177e4 | 1440 | |
20d0189b KO |
1441 | /** |
1442 | * bio_split - split a bio | |
1443 | * @bio: bio to split | |
1444 | * @sectors: number of sectors to split from the front of @bio | |
1445 | * @gfp: gfp mask | |
1446 | * @bs: bio set to allocate from | |
1447 | * | |
1448 | * Allocates and returns a new bio which represents @sectors from the start of | |
1449 | * @bio, and updates @bio to represent the remaining sectors. | |
1450 | * | |
f3f5da62 | 1451 | * Unless this is a discard request the newly allocated bio will point |
dad77584 BVA |
1452 | * to @bio's bi_io_vec. It is the caller's responsibility to ensure that |
1453 | * neither @bio nor @bs are freed before the split bio. | |
20d0189b KO |
1454 | */ |
1455 | struct bio *bio_split(struct bio *bio, int sectors, | |
1456 | gfp_t gfp, struct bio_set *bs) | |
1457 | { | |
f341a4d3 | 1458 | struct bio *split; |
20d0189b KO |
1459 | |
1460 | BUG_ON(sectors <= 0); | |
1461 | BUG_ON(sectors >= bio_sectors(bio)); | |
1462 | ||
f9d03f96 | 1463 | split = bio_clone_fast(bio, gfp, bs); |
20d0189b KO |
1464 | if (!split) |
1465 | return NULL; | |
1466 | ||
1467 | split->bi_iter.bi_size = sectors << 9; | |
1468 | ||
1469 | if (bio_integrity(split)) | |
fbd08e76 | 1470 | bio_integrity_trim(split); |
20d0189b KO |
1471 | |
1472 | bio_advance(bio, split->bi_iter.bi_size); | |
1473 | ||
fbbaf700 | 1474 | if (bio_flagged(bio, BIO_TRACE_COMPLETION)) |
20d59023 | 1475 | bio_set_flag(split, BIO_TRACE_COMPLETION); |
fbbaf700 | 1476 | |
20d0189b KO |
1477 | return split; |
1478 | } | |
1479 | EXPORT_SYMBOL(bio_split); | |
1480 | ||
6678d83f KO |
1481 | /** |
1482 | * bio_trim - trim a bio | |
1483 | * @bio: bio to trim | |
1484 | * @offset: number of sectors to trim from the front of @bio | |
1485 | * @size: size we want to trim @bio to, in sectors | |
1486 | */ | |
1487 | void bio_trim(struct bio *bio, int offset, int size) | |
1488 | { | |
1489 | /* 'bio' is a cloned bio which we need to trim to match | |
1490 | * the given offset and size. | |
6678d83f | 1491 | */ |
6678d83f KO |
1492 | |
1493 | size <<= 9; | |
4f024f37 | 1494 | if (offset == 0 && size == bio->bi_iter.bi_size) |
6678d83f KO |
1495 | return; |
1496 | ||
6678d83f | 1497 | bio_advance(bio, offset << 9); |
4f024f37 | 1498 | bio->bi_iter.bi_size = size; |
376a78ab DM |
1499 | |
1500 | if (bio_integrity(bio)) | |
fbd08e76 | 1501 | bio_integrity_trim(bio); |
376a78ab | 1502 | |
6678d83f KO |
1503 | } |
1504 | EXPORT_SYMBOL_GPL(bio_trim); | |
1505 | ||
1da177e4 LT |
1506 | /* |
1507 | * create memory pools for biovec's in a bio_set. | |
1508 | * use the global biovec slabs created for general use. | |
1509 | */ | |
8aa6ba2f | 1510 | int biovec_init_pool(mempool_t *pool, int pool_entries) |
1da177e4 | 1511 | { |
ed996a52 | 1512 | struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; |
1da177e4 | 1513 | |
8aa6ba2f | 1514 | return mempool_init_slab_pool(pool, pool_entries, bp->slab); |
1da177e4 LT |
1515 | } |
1516 | ||
917a38c7 KO |
1517 | /* |
1518 | * bioset_exit - exit a bioset initialized with bioset_init() | |
1519 | * | |
1520 | * May be called on a zeroed but uninitialized bioset (i.e. allocated with | |
1521 | * kzalloc()). | |
1522 | */ | |
1523 | void bioset_exit(struct bio_set *bs) | |
1da177e4 | 1524 | { |
df2cb6da KO |
1525 | if (bs->rescue_workqueue) |
1526 | destroy_workqueue(bs->rescue_workqueue); | |
917a38c7 | 1527 | bs->rescue_workqueue = NULL; |
df2cb6da | 1528 | |
8aa6ba2f KO |
1529 | mempool_exit(&bs->bio_pool); |
1530 | mempool_exit(&bs->bvec_pool); | |
9f060e22 | 1531 | |
7878cba9 | 1532 | bioset_integrity_free(bs); |
917a38c7 KO |
1533 | if (bs->bio_slab) |
1534 | bio_put_slab(bs); | |
1535 | bs->bio_slab = NULL; | |
1536 | } | |
1537 | EXPORT_SYMBOL(bioset_exit); | |
1da177e4 | 1538 | |
917a38c7 KO |
1539 | /** |
1540 | * bioset_init - Initialize a bio_set | |
dad08527 | 1541 | * @bs: pool to initialize |
917a38c7 KO |
1542 | * @pool_size: Number of bio and bio_vecs to cache in the mempool |
1543 | * @front_pad: Number of bytes to allocate in front of the returned bio | |
1544 | * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS | |
1545 | * and %BIOSET_NEED_RESCUER | |
1546 | * | |
dad08527 KO |
1547 | * Description: |
1548 | * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller | |
1549 | * to ask for a number of bytes to be allocated in front of the bio. | |
1550 | * Front pad allocation is useful for embedding the bio inside | |
1551 | * another structure, to avoid allocating extra data to go with the bio. | |
1552 | * Note that the bio must be embedded at the END of that structure always, | |
1553 | * or things will break badly. | |
1554 | * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated | |
1555 | * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). | |
1556 | * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to | |
1557 | * dispatch queued requests when the mempool runs out of space. | |
1558 | * | |
917a38c7 KO |
1559 | */ |
1560 | int bioset_init(struct bio_set *bs, | |
1561 | unsigned int pool_size, | |
1562 | unsigned int front_pad, | |
1563 | int flags) | |
1564 | { | |
1565 | unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); | |
1566 | ||
1567 | bs->front_pad = front_pad; | |
1568 | ||
1569 | spin_lock_init(&bs->rescue_lock); | |
1570 | bio_list_init(&bs->rescue_list); | |
1571 | INIT_WORK(&bs->rescue_work, bio_alloc_rescue); | |
1572 | ||
1573 | bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); | |
1574 | if (!bs->bio_slab) | |
1575 | return -ENOMEM; | |
1576 | ||
1577 | if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) | |
1578 | goto bad; | |
1579 | ||
1580 | if ((flags & BIOSET_NEED_BVECS) && | |
1581 | biovec_init_pool(&bs->bvec_pool, pool_size)) | |
1582 | goto bad; | |
1583 | ||
1584 | if (!(flags & BIOSET_NEED_RESCUER)) | |
1585 | return 0; | |
1586 | ||
1587 | bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); | |
1588 | if (!bs->rescue_workqueue) | |
1589 | goto bad; | |
1590 | ||
1591 | return 0; | |
1592 | bad: | |
1593 | bioset_exit(bs); | |
1594 | return -ENOMEM; | |
1595 | } | |
1596 | EXPORT_SYMBOL(bioset_init); | |
1597 | ||
28e89fd9 JA |
1598 | /* |
1599 | * Initialize and setup a new bio_set, based on the settings from | |
1600 | * another bio_set. | |
1601 | */ | |
1602 | int bioset_init_from_src(struct bio_set *bs, struct bio_set *src) | |
1603 | { | |
1604 | int flags; | |
1605 | ||
1606 | flags = 0; | |
1607 | if (src->bvec_pool.min_nr) | |
1608 | flags |= BIOSET_NEED_BVECS; | |
1609 | if (src->rescue_workqueue) | |
1610 | flags |= BIOSET_NEED_RESCUER; | |
1611 | ||
1612 | return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags); | |
1613 | } | |
1614 | EXPORT_SYMBOL(bioset_init_from_src); | |
1615 | ||
852c788f | 1616 | #ifdef CONFIG_BLK_CGROUP |
1d933cf0 | 1617 | |
74b7c02a | 1618 | /** |
2268c0fe | 1619 | * bio_disassociate_blkg - puts back the blkg reference if associated |
74b7c02a | 1620 | * @bio: target bio |
74b7c02a | 1621 | * |
2268c0fe | 1622 | * Helper to disassociate the blkg from @bio if a blkg is associated. |
74b7c02a | 1623 | */ |
2268c0fe | 1624 | void bio_disassociate_blkg(struct bio *bio) |
74b7c02a | 1625 | { |
2268c0fe DZ |
1626 | if (bio->bi_blkg) { |
1627 | blkg_put(bio->bi_blkg); | |
1628 | bio->bi_blkg = NULL; | |
1629 | } | |
74b7c02a | 1630 | } |
892ad71f | 1631 | EXPORT_SYMBOL_GPL(bio_disassociate_blkg); |
74b7c02a | 1632 | |
a7b39b4e | 1633 | /** |
2268c0fe | 1634 | * __bio_associate_blkg - associate a bio with the a blkg |
a7b39b4e | 1635 | * @bio: target bio |
b5f2954d | 1636 | * @blkg: the blkg to associate |
b5f2954d | 1637 | * |
beea9da0 DZ |
1638 | * This tries to associate @bio with the specified @blkg. Association failure |
1639 | * is handled by walking up the blkg tree. Therefore, the blkg associated can | |
1640 | * be anything between @blkg and the root_blkg. This situation only happens | |
1641 | * when a cgroup is dying and then the remaining bios will spill to the closest | |
1642 | * alive blkg. | |
a7b39b4e | 1643 | * |
beea9da0 DZ |
1644 | * A reference will be taken on the @blkg and will be released when @bio is |
1645 | * freed. | |
a7b39b4e | 1646 | */ |
2268c0fe | 1647 | static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg) |
a7b39b4e | 1648 | { |
2268c0fe DZ |
1649 | bio_disassociate_blkg(bio); |
1650 | ||
7754f669 | 1651 | bio->bi_blkg = blkg_tryget_closest(blkg); |
a7b39b4e DZF |
1652 | } |
1653 | ||
d459d853 | 1654 | /** |
fd42df30 | 1655 | * bio_associate_blkg_from_css - associate a bio with a specified css |
d459d853 | 1656 | * @bio: target bio |
fd42df30 | 1657 | * @css: target css |
d459d853 | 1658 | * |
fd42df30 | 1659 | * Associate @bio with the blkg found by combining the css's blkg and the |
fc5a828b DZ |
1660 | * request_queue of the @bio. This falls back to the queue's root_blkg if |
1661 | * the association fails with the css. | |
d459d853 | 1662 | */ |
fd42df30 DZ |
1663 | void bio_associate_blkg_from_css(struct bio *bio, |
1664 | struct cgroup_subsys_state *css) | |
d459d853 | 1665 | { |
fc5a828b DZ |
1666 | struct request_queue *q = bio->bi_disk->queue; |
1667 | struct blkcg_gq *blkg; | |
1668 | ||
1669 | rcu_read_lock(); | |
1670 | ||
1671 | if (!css || !css->parent) | |
1672 | blkg = q->root_blkg; | |
1673 | else | |
1674 | blkg = blkg_lookup_create(css_to_blkcg(css), q); | |
1675 | ||
1676 | __bio_associate_blkg(bio, blkg); | |
1677 | ||
1678 | rcu_read_unlock(); | |
d459d853 | 1679 | } |
fd42df30 | 1680 | EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); |
d459d853 | 1681 | |
6a7f6d86 | 1682 | #ifdef CONFIG_MEMCG |
852c788f | 1683 | /** |
6a7f6d86 | 1684 | * bio_associate_blkg_from_page - associate a bio with the page's blkg |
852c788f | 1685 | * @bio: target bio |
6a7f6d86 DZ |
1686 | * @page: the page to lookup the blkcg from |
1687 | * | |
1688 | * Associate @bio with the blkg from @page's owning memcg and the respective | |
fc5a828b DZ |
1689 | * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's |
1690 | * root_blkg. | |
852c788f | 1691 | */ |
6a7f6d86 | 1692 | void bio_associate_blkg_from_page(struct bio *bio, struct page *page) |
852c788f | 1693 | { |
6a7f6d86 DZ |
1694 | struct cgroup_subsys_state *css; |
1695 | ||
6a7f6d86 DZ |
1696 | if (!page->mem_cgroup) |
1697 | return; | |
1698 | ||
fc5a828b DZ |
1699 | rcu_read_lock(); |
1700 | ||
1701 | css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys); | |
1702 | bio_associate_blkg_from_css(bio, css); | |
1703 | ||
1704 | rcu_read_unlock(); | |
6a7f6d86 DZ |
1705 | } |
1706 | #endif /* CONFIG_MEMCG */ | |
1707 | ||
2268c0fe DZ |
1708 | /** |
1709 | * bio_associate_blkg - associate a bio with a blkg | |
1710 | * @bio: target bio | |
1711 | * | |
1712 | * Associate @bio with the blkg found from the bio's css and request_queue. | |
1713 | * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is | |
1714 | * already associated, the css is reused and association redone as the | |
1715 | * request_queue may have changed. | |
1716 | */ | |
1717 | void bio_associate_blkg(struct bio *bio) | |
1718 | { | |
fc5a828b | 1719 | struct cgroup_subsys_state *css; |
2268c0fe DZ |
1720 | |
1721 | rcu_read_lock(); | |
1722 | ||
db6638d7 | 1723 | if (bio->bi_blkg) |
fc5a828b | 1724 | css = &bio_blkcg(bio)->css; |
db6638d7 | 1725 | else |
fc5a828b | 1726 | css = blkcg_css(); |
2268c0fe | 1727 | |
fc5a828b | 1728 | bio_associate_blkg_from_css(bio, css); |
2268c0fe DZ |
1729 | |
1730 | rcu_read_unlock(); | |
852c788f | 1731 | } |
5cdf2e3f | 1732 | EXPORT_SYMBOL_GPL(bio_associate_blkg); |
852c788f | 1733 | |
20bd723e | 1734 | /** |
db6638d7 | 1735 | * bio_clone_blkg_association - clone blkg association from src to dst bio |
20bd723e PV |
1736 | * @dst: destination bio |
1737 | * @src: source bio | |
1738 | */ | |
db6638d7 | 1739 | void bio_clone_blkg_association(struct bio *dst, struct bio *src) |
20bd723e | 1740 | { |
6ab21879 DZ |
1741 | rcu_read_lock(); |
1742 | ||
fc5a828b | 1743 | if (src->bi_blkg) |
2268c0fe | 1744 | __bio_associate_blkg(dst, src->bi_blkg); |
6ab21879 DZ |
1745 | |
1746 | rcu_read_unlock(); | |
20bd723e | 1747 | } |
db6638d7 | 1748 | EXPORT_SYMBOL_GPL(bio_clone_blkg_association); |
852c788f TH |
1749 | #endif /* CONFIG_BLK_CGROUP */ |
1750 | ||
1da177e4 LT |
1751 | static void __init biovec_init_slabs(void) |
1752 | { | |
1753 | int i; | |
1754 | ||
ed996a52 | 1755 | for (i = 0; i < BVEC_POOL_NR; i++) { |
1da177e4 LT |
1756 | int size; |
1757 | struct biovec_slab *bvs = bvec_slabs + i; | |
1758 | ||
a7fcd37c JA |
1759 | if (bvs->nr_vecs <= BIO_INLINE_VECS) { |
1760 | bvs->slab = NULL; | |
1761 | continue; | |
1762 | } | |
a7fcd37c | 1763 | |
1da177e4 LT |
1764 | size = bvs->nr_vecs * sizeof(struct bio_vec); |
1765 | bvs->slab = kmem_cache_create(bvs->name, size, 0, | |
20c2df83 | 1766 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); |
1da177e4 LT |
1767 | } |
1768 | } | |
1769 | ||
1770 | static int __init init_bio(void) | |
1771 | { | |
bb799ca0 JA |
1772 | bio_slab_max = 2; |
1773 | bio_slab_nr = 0; | |
6396bb22 KC |
1774 | bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab), |
1775 | GFP_KERNEL); | |
2b24e6f6 JT |
1776 | |
1777 | BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET); | |
1778 | ||
bb799ca0 JA |
1779 | if (!bio_slabs) |
1780 | panic("bio: can't allocate bios\n"); | |
1da177e4 | 1781 | |
7878cba9 | 1782 | bio_integrity_init(); |
1da177e4 LT |
1783 | biovec_init_slabs(); |
1784 | ||
f4f8154a | 1785 | if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) |
1da177e4 LT |
1786 | panic("bio: can't allocate bios\n"); |
1787 | ||
f4f8154a | 1788 | if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) |
a91a2785 MP |
1789 | panic("bio: can't create integrity pool\n"); |
1790 | ||
1da177e4 LT |
1791 | return 0; |
1792 | } | |
1da177e4 | 1793 | subsys_initcall(init_bio); |