]> Git Repo - linux.git/blame - block/bio.c
block: rename __bio_add_pc_page to bio_add_hw_page
[linux.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <[email protected]>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
b4c5875d 19#include <linux/highmem.h>
de6a78b6 20#include <linux/sched/sysctl.h>
1da177e4 21
55782138 22#include <trace/events/block.h>
9e234eea 23#include "blk.h"
67b42d0b 24#include "blk-rq-qos.h"
0bfc2455 25
392ddc32
JA
26/*
27 * Test patch to inline a certain number of bi_io_vec's inside the bio
28 * itself, to shrink a bio data allocation from two mempool calls to one
29 */
30#define BIO_INLINE_VECS 4
31
1da177e4
LT
32/*
33 * if you change this list, also change bvec_alloc or things will
34 * break badly! cannot be bigger than what you can fit into an
35 * unsigned short
36 */
bd5c4fac 37#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 38static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 39 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
40};
41#undef BV
42
1da177e4
LT
43/*
44 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
45 * IO code that does not need private memory pools.
46 */
f4f8154a 47struct bio_set fs_bio_set;
3f86a82a 48EXPORT_SYMBOL(fs_bio_set);
1da177e4 49
bb799ca0
JA
50/*
51 * Our slab pool management
52 */
53struct bio_slab {
54 struct kmem_cache *slab;
55 unsigned int slab_ref;
56 unsigned int slab_size;
57 char name[8];
58};
59static DEFINE_MUTEX(bio_slab_lock);
60static struct bio_slab *bio_slabs;
61static unsigned int bio_slab_nr, bio_slab_max;
62
63static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
64{
65 unsigned int sz = sizeof(struct bio) + extra_size;
66 struct kmem_cache *slab = NULL;
389d7b26 67 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 68 unsigned int new_bio_slab_max;
bb799ca0
JA
69 unsigned int i, entry = -1;
70
71 mutex_lock(&bio_slab_lock);
72
73 i = 0;
74 while (i < bio_slab_nr) {
f06f135d 75 bslab = &bio_slabs[i];
bb799ca0
JA
76
77 if (!bslab->slab && entry == -1)
78 entry = i;
79 else if (bslab->slab_size == sz) {
80 slab = bslab->slab;
81 bslab->slab_ref++;
82 break;
83 }
84 i++;
85 }
86
87 if (slab)
88 goto out_unlock;
89
90 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 91 new_bio_slab_max = bio_slab_max << 1;
389d7b26 92 new_bio_slabs = krealloc(bio_slabs,
386bc35a 93 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
94 GFP_KERNEL);
95 if (!new_bio_slabs)
bb799ca0 96 goto out_unlock;
386bc35a 97 bio_slab_max = new_bio_slab_max;
389d7b26 98 bio_slabs = new_bio_slabs;
bb799ca0
JA
99 }
100 if (entry == -1)
101 entry = bio_slab_nr++;
102
103 bslab = &bio_slabs[entry];
104
105 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
106 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
107 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
108 if (!slab)
109 goto out_unlock;
110
bb799ca0
JA
111 bslab->slab = slab;
112 bslab->slab_ref = 1;
113 bslab->slab_size = sz;
114out_unlock:
115 mutex_unlock(&bio_slab_lock);
116 return slab;
117}
118
119static void bio_put_slab(struct bio_set *bs)
120{
121 struct bio_slab *bslab = NULL;
122 unsigned int i;
123
124 mutex_lock(&bio_slab_lock);
125
126 for (i = 0; i < bio_slab_nr; i++) {
127 if (bs->bio_slab == bio_slabs[i].slab) {
128 bslab = &bio_slabs[i];
129 break;
130 }
131 }
132
133 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
134 goto out;
135
136 WARN_ON(!bslab->slab_ref);
137
138 if (--bslab->slab_ref)
139 goto out;
140
141 kmem_cache_destroy(bslab->slab);
142 bslab->slab = NULL;
143
144out:
145 mutex_unlock(&bio_slab_lock);
146}
147
7ba1ba12
MP
148unsigned int bvec_nr_vecs(unsigned short idx)
149{
d6c02a9b 150 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
151}
152
9f060e22 153void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 154{
ed996a52
CH
155 if (!idx)
156 return;
157 idx--;
158
159 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 160
ed996a52 161 if (idx == BVEC_POOL_MAX) {
9f060e22 162 mempool_free(bv, pool);
ed996a52 163 } else {
bb799ca0
JA
164 struct biovec_slab *bvs = bvec_slabs + idx;
165
166 kmem_cache_free(bvs->slab, bv);
167 }
168}
169
9f060e22
KO
170struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
171 mempool_t *pool)
1da177e4
LT
172{
173 struct bio_vec *bvl;
1da177e4 174
7ff9345f
JA
175 /*
176 * see comment near bvec_array define!
177 */
178 switch (nr) {
179 case 1:
180 *idx = 0;
181 break;
182 case 2 ... 4:
183 *idx = 1;
184 break;
185 case 5 ... 16:
186 *idx = 2;
187 break;
188 case 17 ... 64:
189 *idx = 3;
190 break;
191 case 65 ... 128:
192 *idx = 4;
193 break;
194 case 129 ... BIO_MAX_PAGES:
195 *idx = 5;
196 break;
197 default:
198 return NULL;
199 }
200
201 /*
202 * idx now points to the pool we want to allocate from. only the
203 * 1-vec entry pool is mempool backed.
204 */
ed996a52 205 if (*idx == BVEC_POOL_MAX) {
7ff9345f 206fallback:
9f060e22 207 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
208 } else {
209 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 210 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 211
0a0d96b0 212 /*
7ff9345f
JA
213 * Make this allocation restricted and don't dump info on
214 * allocation failures, since we'll fallback to the mempool
215 * in case of failure.
0a0d96b0 216 */
7ff9345f 217 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 218
0a0d96b0 219 /*
d0164adc 220 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 221 * is set, retry with the 1-entry mempool
0a0d96b0 222 */
7ff9345f 223 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 224 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 225 *idx = BVEC_POOL_MAX;
7ff9345f
JA
226 goto fallback;
227 }
228 }
229
ed996a52 230 (*idx)++;
1da177e4
LT
231 return bvl;
232}
233
9ae3b3f5 234void bio_uninit(struct bio *bio)
1da177e4 235{
6f70fb66 236 bio_disassociate_blkg(bio);
ece841ab
JT
237
238 if (bio_integrity(bio))
239 bio_integrity_free(bio);
4254bba1 240}
9ae3b3f5 241EXPORT_SYMBOL(bio_uninit);
7ba1ba12 242
4254bba1
KO
243static void bio_free(struct bio *bio)
244{
245 struct bio_set *bs = bio->bi_pool;
246 void *p;
247
9ae3b3f5 248 bio_uninit(bio);
4254bba1
KO
249
250 if (bs) {
8aa6ba2f 251 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
252
253 /*
254 * If we have front padding, adjust the bio pointer before freeing
255 */
256 p = bio;
bb799ca0
JA
257 p -= bs->front_pad;
258
8aa6ba2f 259 mempool_free(p, &bs->bio_pool);
4254bba1
KO
260 } else {
261 /* Bio was allocated by bio_kmalloc() */
262 kfree(bio);
263 }
3676347a
PO
264}
265
9ae3b3f5
JA
266/*
267 * Users of this function have their own bio allocation. Subsequently,
268 * they must remember to pair any call to bio_init() with bio_uninit()
269 * when IO has completed, or when the bio is released.
270 */
3a83f467
ML
271void bio_init(struct bio *bio, struct bio_vec *table,
272 unsigned short max_vecs)
1da177e4 273{
2b94de55 274 memset(bio, 0, sizeof(*bio));
c4cf5261 275 atomic_set(&bio->__bi_remaining, 1);
dac56212 276 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
277
278 bio->bi_io_vec = table;
279 bio->bi_max_vecs = max_vecs;
1da177e4 280}
a112a71d 281EXPORT_SYMBOL(bio_init);
1da177e4 282
f44b48c7
KO
283/**
284 * bio_reset - reinitialize a bio
285 * @bio: bio to reset
286 *
287 * Description:
288 * After calling bio_reset(), @bio will be in the same state as a freshly
289 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
290 * preserved are the ones that are initialized by bio_alloc_bioset(). See
291 * comment in struct bio.
292 */
293void bio_reset(struct bio *bio)
294{
295 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
296
9ae3b3f5 297 bio_uninit(bio);
f44b48c7
KO
298
299 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 300 bio->bi_flags = flags;
c4cf5261 301 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
302}
303EXPORT_SYMBOL(bio_reset);
304
38f8baae 305static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 306{
4246a0b6
CH
307 struct bio *parent = bio->bi_private;
308
4e4cbee9
CH
309 if (!parent->bi_status)
310 parent->bi_status = bio->bi_status;
196d38bc 311 bio_put(bio);
38f8baae
CH
312 return parent;
313}
314
315static void bio_chain_endio(struct bio *bio)
316{
317 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
318}
319
320/**
321 * bio_chain - chain bio completions
1051a902
RD
322 * @bio: the target bio
323 * @parent: the @bio's parent bio
196d38bc
KO
324 *
325 * The caller won't have a bi_end_io called when @bio completes - instead,
326 * @parent's bi_end_io won't be called until both @parent and @bio have
327 * completed; the chained bio will also be freed when it completes.
328 *
329 * The caller must not set bi_private or bi_end_io in @bio.
330 */
331void bio_chain(struct bio *bio, struct bio *parent)
332{
333 BUG_ON(bio->bi_private || bio->bi_end_io);
334
335 bio->bi_private = parent;
336 bio->bi_end_io = bio_chain_endio;
c4cf5261 337 bio_inc_remaining(parent);
196d38bc
KO
338}
339EXPORT_SYMBOL(bio_chain);
340
df2cb6da
KO
341static void bio_alloc_rescue(struct work_struct *work)
342{
343 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
344 struct bio *bio;
345
346 while (1) {
347 spin_lock(&bs->rescue_lock);
348 bio = bio_list_pop(&bs->rescue_list);
349 spin_unlock(&bs->rescue_lock);
350
351 if (!bio)
352 break;
353
354 generic_make_request(bio);
355 }
356}
357
358static void punt_bios_to_rescuer(struct bio_set *bs)
359{
360 struct bio_list punt, nopunt;
361 struct bio *bio;
362
47e0fb46
N
363 if (WARN_ON_ONCE(!bs->rescue_workqueue))
364 return;
df2cb6da
KO
365 /*
366 * In order to guarantee forward progress we must punt only bios that
367 * were allocated from this bio_set; otherwise, if there was a bio on
368 * there for a stacking driver higher up in the stack, processing it
369 * could require allocating bios from this bio_set, and doing that from
370 * our own rescuer would be bad.
371 *
372 * Since bio lists are singly linked, pop them all instead of trying to
373 * remove from the middle of the list:
374 */
375
376 bio_list_init(&punt);
377 bio_list_init(&nopunt);
378
f5fe1b51 379 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 380 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 381 current->bio_list[0] = nopunt;
df2cb6da 382
f5fe1b51
N
383 bio_list_init(&nopunt);
384 while ((bio = bio_list_pop(&current->bio_list[1])))
385 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
386 current->bio_list[1] = nopunt;
df2cb6da
KO
387
388 spin_lock(&bs->rescue_lock);
389 bio_list_merge(&bs->rescue_list, &punt);
390 spin_unlock(&bs->rescue_lock);
391
392 queue_work(bs->rescue_workqueue, &bs->rescue_work);
393}
394
1da177e4
LT
395/**
396 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 397 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 398 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 399 * @bs: the bio_set to allocate from.
1da177e4
LT
400 *
401 * Description:
3f86a82a
KO
402 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
403 * backed by the @bs's mempool.
404 *
d0164adc
MG
405 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
406 * always be able to allocate a bio. This is due to the mempool guarantees.
407 * To make this work, callers must never allocate more than 1 bio at a time
408 * from this pool. Callers that need to allocate more than 1 bio must always
409 * submit the previously allocated bio for IO before attempting to allocate
410 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 411 *
df2cb6da
KO
412 * Note that when running under generic_make_request() (i.e. any block
413 * driver), bios are not submitted until after you return - see the code in
414 * generic_make_request() that converts recursion into iteration, to prevent
415 * stack overflows.
416 *
417 * This would normally mean allocating multiple bios under
418 * generic_make_request() would be susceptible to deadlocks, but we have
419 * deadlock avoidance code that resubmits any blocked bios from a rescuer
420 * thread.
421 *
422 * However, we do not guarantee forward progress for allocations from other
423 * mempools. Doing multiple allocations from the same mempool under
424 * generic_make_request() should be avoided - instead, use bio_set's front_pad
425 * for per bio allocations.
426 *
3f86a82a
KO
427 * RETURNS:
428 * Pointer to new bio on success, NULL on failure.
429 */
7a88fa19
DC
430struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
431 struct bio_set *bs)
1da177e4 432{
df2cb6da 433 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
434 unsigned front_pad;
435 unsigned inline_vecs;
34053979 436 struct bio_vec *bvl = NULL;
451a9ebf
TH
437 struct bio *bio;
438 void *p;
439
3f86a82a
KO
440 if (!bs) {
441 if (nr_iovecs > UIO_MAXIOV)
442 return NULL;
443
444 p = kmalloc(sizeof(struct bio) +
445 nr_iovecs * sizeof(struct bio_vec),
446 gfp_mask);
447 front_pad = 0;
448 inline_vecs = nr_iovecs;
449 } else {
d8f429e1 450 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
451 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
452 nr_iovecs > 0))
d8f429e1 453 return NULL;
df2cb6da
KO
454 /*
455 * generic_make_request() converts recursion to iteration; this
456 * means if we're running beneath it, any bios we allocate and
457 * submit will not be submitted (and thus freed) until after we
458 * return.
459 *
460 * This exposes us to a potential deadlock if we allocate
461 * multiple bios from the same bio_set() while running
462 * underneath generic_make_request(). If we were to allocate
463 * multiple bios (say a stacking block driver that was splitting
464 * bios), we would deadlock if we exhausted the mempool's
465 * reserve.
466 *
467 * We solve this, and guarantee forward progress, with a rescuer
468 * workqueue per bio_set. If we go to allocate and there are
469 * bios on current->bio_list, we first try the allocation
d0164adc
MG
470 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
471 * bios we would be blocking to the rescuer workqueue before
472 * we retry with the original gfp_flags.
df2cb6da
KO
473 */
474
f5fe1b51
N
475 if (current->bio_list &&
476 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
477 !bio_list_empty(&current->bio_list[1])) &&
478 bs->rescue_workqueue)
d0164adc 479 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 480
8aa6ba2f 481 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
482 if (!p && gfp_mask != saved_gfp) {
483 punt_bios_to_rescuer(bs);
484 gfp_mask = saved_gfp;
8aa6ba2f 485 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
486 }
487
3f86a82a
KO
488 front_pad = bs->front_pad;
489 inline_vecs = BIO_INLINE_VECS;
490 }
491
451a9ebf
TH
492 if (unlikely(!p))
493 return NULL;
1da177e4 494
3f86a82a 495 bio = p + front_pad;
3a83f467 496 bio_init(bio, NULL, 0);
34053979 497
3f86a82a 498 if (nr_iovecs > inline_vecs) {
ed996a52
CH
499 unsigned long idx = 0;
500
8aa6ba2f 501 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
502 if (!bvl && gfp_mask != saved_gfp) {
503 punt_bios_to_rescuer(bs);
504 gfp_mask = saved_gfp;
8aa6ba2f 505 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
506 }
507
34053979
IM
508 if (unlikely(!bvl))
509 goto err_free;
a38352e0 510
ed996a52 511 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
512 } else if (nr_iovecs) {
513 bvl = bio->bi_inline_vecs;
1da177e4 514 }
3f86a82a
KO
515
516 bio->bi_pool = bs;
34053979 517 bio->bi_max_vecs = nr_iovecs;
34053979 518 bio->bi_io_vec = bvl;
1da177e4 519 return bio;
34053979
IM
520
521err_free:
8aa6ba2f 522 mempool_free(p, &bs->bio_pool);
34053979 523 return NULL;
1da177e4 524}
a112a71d 525EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 526
38a72dac 527void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
528{
529 unsigned long flags;
7988613b
KO
530 struct bio_vec bv;
531 struct bvec_iter iter;
1da177e4 532
38a72dac 533 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
534 char *data = bvec_kmap_irq(&bv, &flags);
535 memset(data, 0, bv.bv_len);
536 flush_dcache_page(bv.bv_page);
1da177e4
LT
537 bvec_kunmap_irq(data, &flags);
538 }
539}
38a72dac 540EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4 541
83c9c547
ML
542/**
543 * bio_truncate - truncate the bio to small size of @new_size
544 * @bio: the bio to be truncated
545 * @new_size: new size for truncating the bio
546 *
547 * Description:
548 * Truncate the bio to new size of @new_size. If bio_op(bio) is
549 * REQ_OP_READ, zero the truncated part. This function should only
550 * be used for handling corner cases, such as bio eod.
551 */
85a8ce62
ML
552void bio_truncate(struct bio *bio, unsigned new_size)
553{
554 struct bio_vec bv;
555 struct bvec_iter iter;
556 unsigned int done = 0;
557 bool truncated = false;
558
559 if (new_size >= bio->bi_iter.bi_size)
560 return;
561
83c9c547 562 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
563 goto exit;
564
565 bio_for_each_segment(bv, bio, iter) {
566 if (done + bv.bv_len > new_size) {
567 unsigned offset;
568
569 if (!truncated)
570 offset = new_size - done;
571 else
572 offset = 0;
573 zero_user(bv.bv_page, offset, bv.bv_len - offset);
574 truncated = true;
575 }
576 done += bv.bv_len;
577 }
578
579 exit:
580 /*
581 * Don't touch bvec table here and make it really immutable, since
582 * fs bio user has to retrieve all pages via bio_for_each_segment_all
583 * in its .end_bio() callback.
584 *
585 * It is enough to truncate bio by updating .bi_size since we can make
586 * correct bvec with the updated .bi_size for drivers.
587 */
588 bio->bi_iter.bi_size = new_size;
589}
590
29125ed6
CH
591/**
592 * guard_bio_eod - truncate a BIO to fit the block device
593 * @bio: bio to truncate
594 *
595 * This allows us to do IO even on the odd last sectors of a device, even if the
596 * block size is some multiple of the physical sector size.
597 *
598 * We'll just truncate the bio to the size of the device, and clear the end of
599 * the buffer head manually. Truly out-of-range accesses will turn into actual
600 * I/O errors, this only handles the "we need to be able to do I/O at the final
601 * sector" case.
602 */
603void guard_bio_eod(struct bio *bio)
604{
605 sector_t maxsector;
606 struct hd_struct *part;
607
608 rcu_read_lock();
609 part = __disk_get_part(bio->bi_disk, bio->bi_partno);
610 if (part)
611 maxsector = part_nr_sects_read(part);
612 else
613 maxsector = get_capacity(bio->bi_disk);
614 rcu_read_unlock();
615
616 if (!maxsector)
617 return;
618
619 /*
620 * If the *whole* IO is past the end of the device,
621 * let it through, and the IO layer will turn it into
622 * an EIO.
623 */
624 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
625 return;
626
627 maxsector -= bio->bi_iter.bi_sector;
628 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
629 return;
630
631 bio_truncate(bio, maxsector << 9);
632}
633
1da177e4
LT
634/**
635 * bio_put - release a reference to a bio
636 * @bio: bio to release reference to
637 *
638 * Description:
639 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 640 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
641 **/
642void bio_put(struct bio *bio)
643{
dac56212 644 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 645 bio_free(bio);
dac56212
JA
646 else {
647 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
648
649 /*
650 * last put frees it
651 */
652 if (atomic_dec_and_test(&bio->__bi_cnt))
653 bio_free(bio);
654 }
1da177e4 655}
a112a71d 656EXPORT_SYMBOL(bio_put);
1da177e4 657
59d276fe
KO
658/**
659 * __bio_clone_fast - clone a bio that shares the original bio's biovec
660 * @bio: destination bio
661 * @bio_src: bio to clone
662 *
663 * Clone a &bio. Caller will own the returned bio, but not
664 * the actual data it points to. Reference count of returned
665 * bio will be one.
666 *
667 * Caller must ensure that @bio_src is not freed before @bio.
668 */
669void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
670{
ed996a52 671 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
672
673 /*
74d46992 674 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
675 * so we don't set nor calculate new physical/hw segment counts here
676 */
74d46992 677 bio->bi_disk = bio_src->bi_disk;
62530ed8 678 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 679 bio_set_flag(bio, BIO_CLONED);
111be883
SL
680 if (bio_flagged(bio_src, BIO_THROTTLED))
681 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 682 bio->bi_opf = bio_src->bi_opf;
ca474b73 683 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 684 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
685 bio->bi_iter = bio_src->bi_iter;
686 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 687
db6638d7 688 bio_clone_blkg_association(bio, bio_src);
e439bedf 689 blkcg_bio_issue_init(bio);
59d276fe
KO
690}
691EXPORT_SYMBOL(__bio_clone_fast);
692
693/**
694 * bio_clone_fast - clone a bio that shares the original bio's biovec
695 * @bio: bio to clone
696 * @gfp_mask: allocation priority
697 * @bs: bio_set to allocate from
698 *
699 * Like __bio_clone_fast, only also allocates the returned bio
700 */
701struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
702{
703 struct bio *b;
704
705 b = bio_alloc_bioset(gfp_mask, 0, bs);
706 if (!b)
707 return NULL;
708
709 __bio_clone_fast(b, bio);
710
711 if (bio_integrity(bio)) {
712 int ret;
713
714 ret = bio_integrity_clone(b, bio, gfp_mask);
715
716 if (ret < 0) {
717 bio_put(b);
718 return NULL;
719 }
720 }
721
722 return b;
723}
724EXPORT_SYMBOL(bio_clone_fast);
725
5cbd28e3
CH
726const char *bio_devname(struct bio *bio, char *buf)
727{
728 return disk_name(bio->bi_disk, bio->bi_partno, buf);
729}
730EXPORT_SYMBOL(bio_devname);
731
5919482e
ML
732static inline bool page_is_mergeable(const struct bio_vec *bv,
733 struct page *page, unsigned int len, unsigned int off,
ff896738 734 bool *same_page)
5919482e
ML
735{
736 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
737 bv->bv_offset + bv->bv_len - 1;
738 phys_addr_t page_addr = page_to_phys(page);
739
740 if (vec_end_addr + 1 != page_addr + off)
741 return false;
742 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
743 return false;
52d52d1c 744
ff896738
CH
745 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
746 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
747 return false;
5919482e
ML
748 return true;
749}
750
e4581105
CH
751/*
752 * Try to merge a page into a segment, while obeying the hardware segment
753 * size limit. This is not for normal read/write bios, but for passthrough
754 * or Zone Append operations that we can't split.
755 */
756static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
757 struct page *page, unsigned len,
758 unsigned offset, bool *same_page)
489fbbcb 759{
384209cd 760 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
761 unsigned long mask = queue_segment_boundary(q);
762 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
763 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
764
765 if ((addr1 | mask) != (addr2 | mask))
766 return false;
489fbbcb
ML
767 if (bv->bv_len + len > queue_max_segment_size(q))
768 return false;
384209cd 769 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
770}
771
1da177e4 772/**
e4581105
CH
773 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
774 * @q: the target queue
775 * @bio: destination bio
776 * @page: page to add
777 * @len: vec entry length
778 * @offset: vec entry offset
779 * @max_sectors: maximum number of sectors that can be added
780 * @same_page: return if the segment has been merged inside the same page
c66a14d0 781 *
e4581105
CH
782 * Add a page to a bio while respecting the hardware max_sectors, max_segment
783 * and gap limitations.
1da177e4 784 */
e4581105 785int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 786 struct page *page, unsigned int len, unsigned int offset,
e4581105 787 unsigned int max_sectors, bool *same_page)
1da177e4 788{
1da177e4
LT
789 struct bio_vec *bvec;
790
e4581105 791 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
792 return 0;
793
e4581105 794 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
795 return 0;
796
80cfd548 797 if (bio->bi_vcnt > 0) {
e4581105 798 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 799 return len;
320ea869
CH
800
801 /*
802 * If the queue doesn't support SG gaps and adding this segment
803 * would create a gap, disallow it.
804 */
384209cd 805 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
806 if (bvec_gap_to_prev(q, bvec, offset))
807 return 0;
80cfd548
JA
808 }
809
79d08f89 810 if (bio_full(bio, len))
1da177e4
LT
811 return 0;
812
14ccb66b 813 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
814 return 0;
815
fcbf6a08
ML
816 bvec = &bio->bi_io_vec[bio->bi_vcnt];
817 bvec->bv_page = page;
818 bvec->bv_len = len;
819 bvec->bv_offset = offset;
820 bio->bi_vcnt++;
dcdca753 821 bio->bi_iter.bi_size += len;
1da177e4
LT
822 return len;
823}
19047087 824
e4581105
CH
825/**
826 * bio_add_pc_page - attempt to add page to passthrough bio
827 * @q: the target queue
828 * @bio: destination bio
829 * @page: page to add
830 * @len: vec entry length
831 * @offset: vec entry offset
832 *
833 * Attempt to add a page to the bio_vec maplist. This can fail for a
834 * number of reasons, such as the bio being full or target block device
835 * limitations. The target block device must allow bio's up to PAGE_SIZE,
836 * so it is always possible to add a single page to an empty bio.
837 *
838 * This should only be used by passthrough bios.
839 */
19047087
ML
840int bio_add_pc_page(struct request_queue *q, struct bio *bio,
841 struct page *page, unsigned int len, unsigned int offset)
842{
d1916c86 843 bool same_page = false;
e4581105
CH
844 return bio_add_hw_page(q, bio, page, len, offset,
845 queue_max_hw_sectors(q), &same_page);
19047087 846}
a112a71d 847EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 848
1da177e4 849/**
0aa69fd3
CH
850 * __bio_try_merge_page - try appending data to an existing bvec.
851 * @bio: destination bio
551879a4 852 * @page: start page to add
0aa69fd3 853 * @len: length of the data to add
551879a4 854 * @off: offset of the data relative to @page
ff896738 855 * @same_page: return if the segment has been merged inside the same page
1da177e4 856 *
0aa69fd3
CH
857 * Try to add the data at @page + @off to the last bvec of @bio. This is a
858 * a useful optimisation for file systems with a block size smaller than the
859 * page size.
860 *
551879a4
ML
861 * Warn if (@len, @off) crosses pages in case that @same_page is true.
862 *
0aa69fd3 863 * Return %true on success or %false on failure.
1da177e4 864 */
0aa69fd3 865bool __bio_try_merge_page(struct bio *bio, struct page *page,
ff896738 866 unsigned int len, unsigned int off, bool *same_page)
1da177e4 867{
c66a14d0 868 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 869 return false;
762380ad 870
cc90bc68 871 if (bio->bi_vcnt > 0) {
0aa69fd3 872 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
873
874 if (page_is_mergeable(bv, page, len, off, same_page)) {
cc90bc68
AG
875 if (bio->bi_iter.bi_size > UINT_MAX - len)
876 return false;
5919482e
ML
877 bv->bv_len += len;
878 bio->bi_iter.bi_size += len;
879 return true;
880 }
c66a14d0 881 }
0aa69fd3
CH
882 return false;
883}
884EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 885
0aa69fd3 886/**
551879a4 887 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 888 * @bio: destination bio
551879a4
ML
889 * @page: start page to add
890 * @len: length of the data to add, may cross pages
891 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
892 *
893 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
894 * that @bio has space for another bvec.
895 */
896void __bio_add_page(struct bio *bio, struct page *page,
897 unsigned int len, unsigned int off)
898{
899 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 900
0aa69fd3 901 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 902 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
903
904 bv->bv_page = page;
905 bv->bv_offset = off;
906 bv->bv_len = len;
c66a14d0 907
c66a14d0 908 bio->bi_iter.bi_size += len;
0aa69fd3 909 bio->bi_vcnt++;
b8e24a93
JW
910
911 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
912 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
913}
914EXPORT_SYMBOL_GPL(__bio_add_page);
915
916/**
551879a4 917 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 918 * @bio: destination bio
551879a4
ML
919 * @page: start page to add
920 * @len: vec entry length, may cross pages
921 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 922 *
551879a4 923 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
924 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
925 */
926int bio_add_page(struct bio *bio, struct page *page,
927 unsigned int len, unsigned int offset)
928{
ff896738
CH
929 bool same_page = false;
930
931 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 932 if (bio_full(bio, len))
0aa69fd3
CH
933 return 0;
934 __bio_add_page(bio, page, len, offset);
935 }
c66a14d0 936 return len;
1da177e4 937}
a112a71d 938EXPORT_SYMBOL(bio_add_page);
1da177e4 939
d241a95f 940void bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
941{
942 struct bvec_iter_all iter_all;
943 struct bio_vec *bvec;
7321ecbf 944
b2d0d991
CH
945 if (bio_flagged(bio, BIO_NO_PAGE_REF))
946 return;
947
d241a95f
CH
948 bio_for_each_segment_all(bvec, bio, iter_all) {
949 if (mark_dirty && !PageCompound(bvec->bv_page))
950 set_page_dirty_lock(bvec->bv_page);
7321ecbf 951 put_page(bvec->bv_page);
d241a95f 952 }
7321ecbf
CH
953}
954
6d0c48ae
JA
955static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
956{
957 const struct bio_vec *bv = iter->bvec;
958 unsigned int len;
959 size_t size;
960
961 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
962 return -EINVAL;
963
964 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
965 size = bio_add_page(bio, bv->bv_page, len,
966 bv->bv_offset + iter->iov_offset);
a10584c3
CH
967 if (unlikely(size != len))
968 return -EINVAL;
a10584c3
CH
969 iov_iter_advance(iter, size);
970 return 0;
6d0c48ae
JA
971}
972
576ed913
CH
973#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
974
2cefe4db 975/**
17d51b10 976 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
977 * @bio: bio to add pages to
978 * @iter: iov iterator describing the region to be mapped
979 *
17d51b10 980 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 981 * pages will have to be released using put_page() when done.
17d51b10
MW
982 * For multi-segment *iter, this function only adds pages from the
983 * the next non-empty segment of the iov iterator.
2cefe4db 984 */
17d51b10 985static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 986{
576ed913
CH
987 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
988 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
989 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
990 struct page **pages = (struct page **)bv;
45691804 991 bool same_page = false;
576ed913
CH
992 ssize_t size, left;
993 unsigned len, i;
b403ea24 994 size_t offset;
576ed913
CH
995
996 /*
997 * Move page array up in the allocated memory for the bio vecs as far as
998 * possible so that we can start filling biovecs from the beginning
999 * without overwriting the temporary page array.
1000 */
1001 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1002 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
1003
1004 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1005 if (unlikely(size <= 0))
1006 return size ? size : -EFAULT;
2cefe4db 1007
576ed913
CH
1008 for (left = size, i = 0; left > 0; left -= len, i++) {
1009 struct page *page = pages[i];
2cefe4db 1010
576ed913 1011 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
1012
1013 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1014 if (same_page)
1015 put_page(page);
1016 } else {
79d08f89 1017 if (WARN_ON_ONCE(bio_full(bio, len)))
45691804
CH
1018 return -EINVAL;
1019 __bio_add_page(bio, page, len, offset);
1020 }
576ed913 1021 offset = 0;
2cefe4db
KO
1022 }
1023
2cefe4db
KO
1024 iov_iter_advance(iter, size);
1025 return 0;
1026}
17d51b10
MW
1027
1028/**
6d0c48ae 1029 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1030 * @bio: bio to add pages to
6d0c48ae
JA
1031 * @iter: iov iterator describing the region to be added
1032 *
1033 * This takes either an iterator pointing to user memory, or one pointing to
1034 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1035 * map them into the kernel. On IO completion, the caller should put those
399254aa
JA
1036 * pages. If we're adding kernel pages, and the caller told us it's safe to
1037 * do so, we just have to add the pages to the bio directly. We don't grab an
1038 * extra reference to those pages (the user should already have that), and we
1039 * don't put the page on IO completion. The caller needs to check if the bio is
1040 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
1041 * released.
17d51b10 1042 *
17d51b10 1043 * The function tries, but does not guarantee, to pin as many pages as
6d0c48ae
JA
1044 * fit into the bio, or are requested in *iter, whatever is smaller. If
1045 * MM encounters an error pinning the requested pages, it stops. Error
1046 * is returned only if 0 pages could be pinned.
17d51b10
MW
1047 */
1048int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1049{
6d0c48ae 1050 const bool is_bvec = iov_iter_is_bvec(iter);
14eacf12
CH
1051 int ret;
1052
1053 if (WARN_ON_ONCE(bio->bi_vcnt))
1054 return -EINVAL;
17d51b10
MW
1055
1056 do {
6d0c48ae
JA
1057 if (is_bvec)
1058 ret = __bio_iov_bvec_add_pages(bio, iter);
1059 else
1060 ret = __bio_iov_iter_get_pages(bio, iter);
79d08f89 1061 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 1062
b6207430 1063 if (is_bvec)
7321ecbf 1064 bio_set_flag(bio, BIO_NO_PAGE_REF);
14eacf12 1065 return bio->bi_vcnt ? 0 : ret;
17d51b10 1066}
2cefe4db 1067
4246a0b6 1068static void submit_bio_wait_endio(struct bio *bio)
9e882242 1069{
65e53aab 1070 complete(bio->bi_private);
9e882242
KO
1071}
1072
1073/**
1074 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1075 * @bio: The &struct bio which describes the I/O
1076 *
1077 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1078 * bio_endio() on failure.
3d289d68
JK
1079 *
1080 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1081 * result in bio reference to be consumed. The caller must drop the reference
1082 * on his own.
9e882242 1083 */
4e49ea4a 1084int submit_bio_wait(struct bio *bio)
9e882242 1085{
e319e1fb 1086 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
de6a78b6 1087 unsigned long hang_check;
9e882242 1088
65e53aab 1089 bio->bi_private = &done;
9e882242 1090 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1091 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1092 submit_bio(bio);
de6a78b6
ML
1093
1094 /* Prevent hang_check timer from firing at us during very long I/O */
1095 hang_check = sysctl_hung_task_timeout_secs;
1096 if (hang_check)
1097 while (!wait_for_completion_io_timeout(&done,
1098 hang_check * (HZ/2)))
1099 ;
1100 else
1101 wait_for_completion_io(&done);
9e882242 1102
65e53aab 1103 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1104}
1105EXPORT_SYMBOL(submit_bio_wait);
1106
054bdf64
KO
1107/**
1108 * bio_advance - increment/complete a bio by some number of bytes
1109 * @bio: bio to advance
1110 * @bytes: number of bytes to complete
1111 *
1112 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1113 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1114 * be updated on the last bvec as well.
1115 *
1116 * @bio will then represent the remaining, uncompleted portion of the io.
1117 */
1118void bio_advance(struct bio *bio, unsigned bytes)
1119{
1120 if (bio_integrity(bio))
1121 bio_integrity_advance(bio, bytes);
1122
4550dd6c 1123 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1124}
1125EXPORT_SYMBOL(bio_advance);
1126
45db54d5
KO
1127void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1128 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1129{
1cb9dda4 1130 struct bio_vec src_bv, dst_bv;
16ac3d63 1131 void *src_p, *dst_p;
1cb9dda4 1132 unsigned bytes;
16ac3d63 1133
45db54d5
KO
1134 while (src_iter->bi_size && dst_iter->bi_size) {
1135 src_bv = bio_iter_iovec(src, *src_iter);
1136 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1137
1138 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1139
1cb9dda4
KO
1140 src_p = kmap_atomic(src_bv.bv_page);
1141 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1142
1cb9dda4
KO
1143 memcpy(dst_p + dst_bv.bv_offset,
1144 src_p + src_bv.bv_offset,
16ac3d63
KO
1145 bytes);
1146
1147 kunmap_atomic(dst_p);
1148 kunmap_atomic(src_p);
1149
6e6e811d
KO
1150 flush_dcache_page(dst_bv.bv_page);
1151
45db54d5
KO
1152 bio_advance_iter(src, src_iter, bytes);
1153 bio_advance_iter(dst, dst_iter, bytes);
16ac3d63
KO
1154 }
1155}
38a72dac
KO
1156EXPORT_SYMBOL(bio_copy_data_iter);
1157
1158/**
45db54d5
KO
1159 * bio_copy_data - copy contents of data buffers from one bio to another
1160 * @src: source bio
1161 * @dst: destination bio
38a72dac
KO
1162 *
1163 * Stops when it reaches the end of either @src or @dst - that is, copies
1164 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1165 */
1166void bio_copy_data(struct bio *dst, struct bio *src)
1167{
45db54d5
KO
1168 struct bvec_iter src_iter = src->bi_iter;
1169 struct bvec_iter dst_iter = dst->bi_iter;
1170
1171 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1172}
16ac3d63
KO
1173EXPORT_SYMBOL(bio_copy_data);
1174
45db54d5
KO
1175/**
1176 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1177 * another
1178 * @src: source bio list
1179 * @dst: destination bio list
1180 *
1181 * Stops when it reaches the end of either the @src list or @dst list - that is,
1182 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1183 * bios).
1184 */
1185void bio_list_copy_data(struct bio *dst, struct bio *src)
1186{
1187 struct bvec_iter src_iter = src->bi_iter;
1188 struct bvec_iter dst_iter = dst->bi_iter;
1189
1190 while (1) {
1191 if (!src_iter.bi_size) {
1192 src = src->bi_next;
1193 if (!src)
1194 break;
1195
1196 src_iter = src->bi_iter;
1197 }
1198
1199 if (!dst_iter.bi_size) {
1200 dst = dst->bi_next;
1201 if (!dst)
1202 break;
1203
1204 dst_iter = dst->bi_iter;
1205 }
1206
1207 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1208 }
1209}
1210EXPORT_SYMBOL(bio_list_copy_data);
1211
491221f8 1212void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1213{
1214 struct bio_vec *bvec;
6dc4f100 1215 struct bvec_iter_all iter_all;
1dfa0f68 1216
2b070cfe 1217 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1218 __free_page(bvec->bv_page);
1219}
491221f8 1220EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1221
1da177e4
LT
1222/*
1223 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1224 * for performing direct-IO in BIOs.
1225 *
1226 * The problem is that we cannot run set_page_dirty() from interrupt context
1227 * because the required locks are not interrupt-safe. So what we can do is to
1228 * mark the pages dirty _before_ performing IO. And in interrupt context,
1229 * check that the pages are still dirty. If so, fine. If not, redirty them
1230 * in process context.
1231 *
1232 * We special-case compound pages here: normally this means reads into hugetlb
1233 * pages. The logic in here doesn't really work right for compound pages
1234 * because the VM does not uniformly chase down the head page in all cases.
1235 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1236 * handle them at all. So we skip compound pages here at an early stage.
1237 *
1238 * Note that this code is very hard to test under normal circumstances because
1239 * direct-io pins the pages with get_user_pages(). This makes
1240 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1241 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1242 * pagecache.
1243 *
1244 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1245 * deferred bio dirtying paths.
1246 */
1247
1248/*
1249 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1250 */
1251void bio_set_pages_dirty(struct bio *bio)
1252{
cb34e057 1253 struct bio_vec *bvec;
6dc4f100 1254 struct bvec_iter_all iter_all;
1da177e4 1255
2b070cfe 1256 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1257 if (!PageCompound(bvec->bv_page))
1258 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1259 }
1260}
1261
1da177e4
LT
1262/*
1263 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1264 * If they are, then fine. If, however, some pages are clean then they must
1265 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1266 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1267 *
1268 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1269 * here on. It will run one put_page() against each page and will run one
1270 * bio_put() against the BIO.
1da177e4
LT
1271 */
1272
65f27f38 1273static void bio_dirty_fn(struct work_struct *work);
1da177e4 1274
65f27f38 1275static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1276static DEFINE_SPINLOCK(bio_dirty_lock);
1277static struct bio *bio_dirty_list;
1278
1279/*
1280 * This runs in process context
1281 */
65f27f38 1282static void bio_dirty_fn(struct work_struct *work)
1da177e4 1283{
24d5493f 1284 struct bio *bio, *next;
1da177e4 1285
24d5493f
CH
1286 spin_lock_irq(&bio_dirty_lock);
1287 next = bio_dirty_list;
1da177e4 1288 bio_dirty_list = NULL;
24d5493f 1289 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1290
24d5493f
CH
1291 while ((bio = next) != NULL) {
1292 next = bio->bi_private;
1da177e4 1293
d241a95f 1294 bio_release_pages(bio, true);
1da177e4 1295 bio_put(bio);
1da177e4
LT
1296 }
1297}
1298
1299void bio_check_pages_dirty(struct bio *bio)
1300{
cb34e057 1301 struct bio_vec *bvec;
24d5493f 1302 unsigned long flags;
6dc4f100 1303 struct bvec_iter_all iter_all;
1da177e4 1304
2b070cfe 1305 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1306 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1307 goto defer;
1da177e4
LT
1308 }
1309
d241a95f 1310 bio_release_pages(bio, false);
24d5493f
CH
1311 bio_put(bio);
1312 return;
1313defer:
1314 spin_lock_irqsave(&bio_dirty_lock, flags);
1315 bio->bi_private = bio_dirty_list;
1316 bio_dirty_list = bio;
1317 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1318 schedule_work(&bio_dirty_work);
1da177e4
LT
1319}
1320
2b8bd423 1321void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
5b18b5a7
MP
1322{
1323 unsigned long stamp;
1324again:
1325 stamp = READ_ONCE(part->stamp);
1326 if (unlikely(stamp != now)) {
1327 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
2b8bd423 1328 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
5b18b5a7
MP
1329 }
1330 }
1331 if (part->partno) {
1332 part = &part_to_disk(part)->part0;
1333 goto again;
1334 }
1335}
1da177e4 1336
ddcf35d3 1337void generic_start_io_acct(struct request_queue *q, int op,
d62e26b3 1338 unsigned long sectors, struct hd_struct *part)
394ffa50 1339{
ddcf35d3 1340 const int sgrp = op_stat_group(op);
394ffa50 1341
112f158f
MS
1342 part_stat_lock();
1343
2b8bd423 1344 update_io_ticks(part, jiffies, false);
112f158f
MS
1345 part_stat_inc(part, ios[sgrp]);
1346 part_stat_add(part, sectors[sgrp], sectors);
ddcf35d3 1347 part_inc_in_flight(q, part, op_is_write(op));
394ffa50
GZ
1348
1349 part_stat_unlock();
1350}
1351EXPORT_SYMBOL(generic_start_io_acct);
1352
ddcf35d3 1353void generic_end_io_acct(struct request_queue *q, int req_op,
d62e26b3 1354 struct hd_struct *part, unsigned long start_time)
394ffa50 1355{
5b18b5a7
MP
1356 unsigned long now = jiffies;
1357 unsigned long duration = now - start_time;
ddcf35d3 1358 const int sgrp = op_stat_group(req_op);
394ffa50 1359
112f158f
MS
1360 part_stat_lock();
1361
2b8bd423 1362 update_io_ticks(part, now, true);
112f158f 1363 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
ddcf35d3 1364 part_dec_in_flight(q, part, op_is_write(req_op));
394ffa50
GZ
1365
1366 part_stat_unlock();
1367}
1368EXPORT_SYMBOL(generic_end_io_acct);
1369
c4cf5261
JA
1370static inline bool bio_remaining_done(struct bio *bio)
1371{
1372 /*
1373 * If we're not chaining, then ->__bi_remaining is always 1 and
1374 * we always end io on the first invocation.
1375 */
1376 if (!bio_flagged(bio, BIO_CHAIN))
1377 return true;
1378
1379 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1380
326e1dbb 1381 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1382 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1383 return true;
326e1dbb 1384 }
c4cf5261
JA
1385
1386 return false;
1387}
1388
1da177e4
LT
1389/**
1390 * bio_endio - end I/O on a bio
1391 * @bio: bio
1da177e4
LT
1392 *
1393 * Description:
4246a0b6
CH
1394 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1395 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1396 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1397 *
1398 * bio_endio() can be called several times on a bio that has been chained
1399 * using bio_chain(). The ->bi_end_io() function will only be called the
1400 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1401 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1402 **/
4246a0b6 1403void bio_endio(struct bio *bio)
1da177e4 1404{
ba8c6967 1405again:
2b885517 1406 if (!bio_remaining_done(bio))
ba8c6967 1407 return;
7c20f116
CH
1408 if (!bio_integrity_endio(bio))
1409 return;
1da177e4 1410
67b42d0b
JB
1411 if (bio->bi_disk)
1412 rq_qos_done_bio(bio->bi_disk->queue, bio);
1413
ba8c6967
CH
1414 /*
1415 * Need to have a real endio function for chained bios, otherwise
1416 * various corner cases will break (like stacking block devices that
1417 * save/restore bi_end_io) - however, we want to avoid unbounded
1418 * recursion and blowing the stack. Tail call optimization would
1419 * handle this, but compiling with frame pointers also disables
1420 * gcc's sibling call optimization.
1421 */
1422 if (bio->bi_end_io == bio_chain_endio) {
1423 bio = __bio_chain_endio(bio);
1424 goto again;
196d38bc 1425 }
ba8c6967 1426
74d46992
CH
1427 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1428 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1429 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1430 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1431 }
1432
9e234eea 1433 blk_throtl_bio_endio(bio);
b222dd2f
SL
1434 /* release cgroup info */
1435 bio_uninit(bio);
ba8c6967
CH
1436 if (bio->bi_end_io)
1437 bio->bi_end_io(bio);
1da177e4 1438}
a112a71d 1439EXPORT_SYMBOL(bio_endio);
1da177e4 1440
20d0189b
KO
1441/**
1442 * bio_split - split a bio
1443 * @bio: bio to split
1444 * @sectors: number of sectors to split from the front of @bio
1445 * @gfp: gfp mask
1446 * @bs: bio set to allocate from
1447 *
1448 * Allocates and returns a new bio which represents @sectors from the start of
1449 * @bio, and updates @bio to represent the remaining sectors.
1450 *
f3f5da62 1451 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1452 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1453 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1454 */
1455struct bio *bio_split(struct bio *bio, int sectors,
1456 gfp_t gfp, struct bio_set *bs)
1457{
f341a4d3 1458 struct bio *split;
20d0189b
KO
1459
1460 BUG_ON(sectors <= 0);
1461 BUG_ON(sectors >= bio_sectors(bio));
1462
f9d03f96 1463 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1464 if (!split)
1465 return NULL;
1466
1467 split->bi_iter.bi_size = sectors << 9;
1468
1469 if (bio_integrity(split))
fbd08e76 1470 bio_integrity_trim(split);
20d0189b
KO
1471
1472 bio_advance(bio, split->bi_iter.bi_size);
1473
fbbaf700 1474 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1475 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1476
20d0189b
KO
1477 return split;
1478}
1479EXPORT_SYMBOL(bio_split);
1480
6678d83f
KO
1481/**
1482 * bio_trim - trim a bio
1483 * @bio: bio to trim
1484 * @offset: number of sectors to trim from the front of @bio
1485 * @size: size we want to trim @bio to, in sectors
1486 */
1487void bio_trim(struct bio *bio, int offset, int size)
1488{
1489 /* 'bio' is a cloned bio which we need to trim to match
1490 * the given offset and size.
6678d83f 1491 */
6678d83f
KO
1492
1493 size <<= 9;
4f024f37 1494 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1495 return;
1496
6678d83f 1497 bio_advance(bio, offset << 9);
4f024f37 1498 bio->bi_iter.bi_size = size;
376a78ab
DM
1499
1500 if (bio_integrity(bio))
fbd08e76 1501 bio_integrity_trim(bio);
376a78ab 1502
6678d83f
KO
1503}
1504EXPORT_SYMBOL_GPL(bio_trim);
1505
1da177e4
LT
1506/*
1507 * create memory pools for biovec's in a bio_set.
1508 * use the global biovec slabs created for general use.
1509 */
8aa6ba2f 1510int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1511{
ed996a52 1512 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1513
8aa6ba2f 1514 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1515}
1516
917a38c7
KO
1517/*
1518 * bioset_exit - exit a bioset initialized with bioset_init()
1519 *
1520 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1521 * kzalloc()).
1522 */
1523void bioset_exit(struct bio_set *bs)
1da177e4 1524{
df2cb6da
KO
1525 if (bs->rescue_workqueue)
1526 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1527 bs->rescue_workqueue = NULL;
df2cb6da 1528
8aa6ba2f
KO
1529 mempool_exit(&bs->bio_pool);
1530 mempool_exit(&bs->bvec_pool);
9f060e22 1531
7878cba9 1532 bioset_integrity_free(bs);
917a38c7
KO
1533 if (bs->bio_slab)
1534 bio_put_slab(bs);
1535 bs->bio_slab = NULL;
1536}
1537EXPORT_SYMBOL(bioset_exit);
1da177e4 1538
917a38c7
KO
1539/**
1540 * bioset_init - Initialize a bio_set
dad08527 1541 * @bs: pool to initialize
917a38c7
KO
1542 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1543 * @front_pad: Number of bytes to allocate in front of the returned bio
1544 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1545 * and %BIOSET_NEED_RESCUER
1546 *
dad08527
KO
1547 * Description:
1548 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1549 * to ask for a number of bytes to be allocated in front of the bio.
1550 * Front pad allocation is useful for embedding the bio inside
1551 * another structure, to avoid allocating extra data to go with the bio.
1552 * Note that the bio must be embedded at the END of that structure always,
1553 * or things will break badly.
1554 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1555 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1556 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1557 * dispatch queued requests when the mempool runs out of space.
1558 *
917a38c7
KO
1559 */
1560int bioset_init(struct bio_set *bs,
1561 unsigned int pool_size,
1562 unsigned int front_pad,
1563 int flags)
1564{
1565 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1566
1567 bs->front_pad = front_pad;
1568
1569 spin_lock_init(&bs->rescue_lock);
1570 bio_list_init(&bs->rescue_list);
1571 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1572
1573 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1574 if (!bs->bio_slab)
1575 return -ENOMEM;
1576
1577 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1578 goto bad;
1579
1580 if ((flags & BIOSET_NEED_BVECS) &&
1581 biovec_init_pool(&bs->bvec_pool, pool_size))
1582 goto bad;
1583
1584 if (!(flags & BIOSET_NEED_RESCUER))
1585 return 0;
1586
1587 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1588 if (!bs->rescue_workqueue)
1589 goto bad;
1590
1591 return 0;
1592bad:
1593 bioset_exit(bs);
1594 return -ENOMEM;
1595}
1596EXPORT_SYMBOL(bioset_init);
1597
28e89fd9
JA
1598/*
1599 * Initialize and setup a new bio_set, based on the settings from
1600 * another bio_set.
1601 */
1602int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1603{
1604 int flags;
1605
1606 flags = 0;
1607 if (src->bvec_pool.min_nr)
1608 flags |= BIOSET_NEED_BVECS;
1609 if (src->rescue_workqueue)
1610 flags |= BIOSET_NEED_RESCUER;
1611
1612 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1613}
1614EXPORT_SYMBOL(bioset_init_from_src);
1615
852c788f 1616#ifdef CONFIG_BLK_CGROUP
1d933cf0 1617
74b7c02a 1618/**
2268c0fe 1619 * bio_disassociate_blkg - puts back the blkg reference if associated
74b7c02a 1620 * @bio: target bio
74b7c02a 1621 *
2268c0fe 1622 * Helper to disassociate the blkg from @bio if a blkg is associated.
74b7c02a 1623 */
2268c0fe 1624void bio_disassociate_blkg(struct bio *bio)
74b7c02a 1625{
2268c0fe
DZ
1626 if (bio->bi_blkg) {
1627 blkg_put(bio->bi_blkg);
1628 bio->bi_blkg = NULL;
1629 }
74b7c02a 1630}
892ad71f 1631EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
74b7c02a 1632
a7b39b4e 1633/**
2268c0fe 1634 * __bio_associate_blkg - associate a bio with the a blkg
a7b39b4e 1635 * @bio: target bio
b5f2954d 1636 * @blkg: the blkg to associate
b5f2954d 1637 *
beea9da0
DZ
1638 * This tries to associate @bio with the specified @blkg. Association failure
1639 * is handled by walking up the blkg tree. Therefore, the blkg associated can
1640 * be anything between @blkg and the root_blkg. This situation only happens
1641 * when a cgroup is dying and then the remaining bios will spill to the closest
1642 * alive blkg.
a7b39b4e 1643 *
beea9da0
DZ
1644 * A reference will be taken on the @blkg and will be released when @bio is
1645 * freed.
a7b39b4e 1646 */
2268c0fe 1647static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
a7b39b4e 1648{
2268c0fe
DZ
1649 bio_disassociate_blkg(bio);
1650
7754f669 1651 bio->bi_blkg = blkg_tryget_closest(blkg);
a7b39b4e
DZF
1652}
1653
d459d853 1654/**
fd42df30 1655 * bio_associate_blkg_from_css - associate a bio with a specified css
d459d853 1656 * @bio: target bio
fd42df30 1657 * @css: target css
d459d853 1658 *
fd42df30 1659 * Associate @bio with the blkg found by combining the css's blkg and the
fc5a828b
DZ
1660 * request_queue of the @bio. This falls back to the queue's root_blkg if
1661 * the association fails with the css.
d459d853 1662 */
fd42df30
DZ
1663void bio_associate_blkg_from_css(struct bio *bio,
1664 struct cgroup_subsys_state *css)
d459d853 1665{
fc5a828b
DZ
1666 struct request_queue *q = bio->bi_disk->queue;
1667 struct blkcg_gq *blkg;
1668
1669 rcu_read_lock();
1670
1671 if (!css || !css->parent)
1672 blkg = q->root_blkg;
1673 else
1674 blkg = blkg_lookup_create(css_to_blkcg(css), q);
1675
1676 __bio_associate_blkg(bio, blkg);
1677
1678 rcu_read_unlock();
d459d853 1679}
fd42df30 1680EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
d459d853 1681
6a7f6d86 1682#ifdef CONFIG_MEMCG
852c788f 1683/**
6a7f6d86 1684 * bio_associate_blkg_from_page - associate a bio with the page's blkg
852c788f 1685 * @bio: target bio
6a7f6d86
DZ
1686 * @page: the page to lookup the blkcg from
1687 *
1688 * Associate @bio with the blkg from @page's owning memcg and the respective
fc5a828b
DZ
1689 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
1690 * root_blkg.
852c788f 1691 */
6a7f6d86 1692void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
852c788f 1693{
6a7f6d86
DZ
1694 struct cgroup_subsys_state *css;
1695
6a7f6d86
DZ
1696 if (!page->mem_cgroup)
1697 return;
1698
fc5a828b
DZ
1699 rcu_read_lock();
1700
1701 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
1702 bio_associate_blkg_from_css(bio, css);
1703
1704 rcu_read_unlock();
6a7f6d86
DZ
1705}
1706#endif /* CONFIG_MEMCG */
1707
2268c0fe
DZ
1708/**
1709 * bio_associate_blkg - associate a bio with a blkg
1710 * @bio: target bio
1711 *
1712 * Associate @bio with the blkg found from the bio's css and request_queue.
1713 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
1714 * already associated, the css is reused and association redone as the
1715 * request_queue may have changed.
1716 */
1717void bio_associate_blkg(struct bio *bio)
1718{
fc5a828b 1719 struct cgroup_subsys_state *css;
2268c0fe
DZ
1720
1721 rcu_read_lock();
1722
db6638d7 1723 if (bio->bi_blkg)
fc5a828b 1724 css = &bio_blkcg(bio)->css;
db6638d7 1725 else
fc5a828b 1726 css = blkcg_css();
2268c0fe 1727
fc5a828b 1728 bio_associate_blkg_from_css(bio, css);
2268c0fe
DZ
1729
1730 rcu_read_unlock();
852c788f 1731}
5cdf2e3f 1732EXPORT_SYMBOL_GPL(bio_associate_blkg);
852c788f 1733
20bd723e 1734/**
db6638d7 1735 * bio_clone_blkg_association - clone blkg association from src to dst bio
20bd723e
PV
1736 * @dst: destination bio
1737 * @src: source bio
1738 */
db6638d7 1739void bio_clone_blkg_association(struct bio *dst, struct bio *src)
20bd723e 1740{
6ab21879
DZ
1741 rcu_read_lock();
1742
fc5a828b 1743 if (src->bi_blkg)
2268c0fe 1744 __bio_associate_blkg(dst, src->bi_blkg);
6ab21879
DZ
1745
1746 rcu_read_unlock();
20bd723e 1747}
db6638d7 1748EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
852c788f
TH
1749#endif /* CONFIG_BLK_CGROUP */
1750
1da177e4
LT
1751static void __init biovec_init_slabs(void)
1752{
1753 int i;
1754
ed996a52 1755 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
1756 int size;
1757 struct biovec_slab *bvs = bvec_slabs + i;
1758
a7fcd37c
JA
1759 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1760 bvs->slab = NULL;
1761 continue;
1762 }
a7fcd37c 1763
1da177e4
LT
1764 size = bvs->nr_vecs * sizeof(struct bio_vec);
1765 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1766 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1767 }
1768}
1769
1770static int __init init_bio(void)
1771{
bb799ca0
JA
1772 bio_slab_max = 2;
1773 bio_slab_nr = 0;
6396bb22
KC
1774 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
1775 GFP_KERNEL);
2b24e6f6
JT
1776
1777 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
1778
bb799ca0
JA
1779 if (!bio_slabs)
1780 panic("bio: can't allocate bios\n");
1da177e4 1781
7878cba9 1782 bio_integrity_init();
1da177e4
LT
1783 biovec_init_slabs();
1784
f4f8154a 1785 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1786 panic("bio: can't allocate bios\n");
1787
f4f8154a 1788 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1789 panic("bio: can't create integrity pool\n");
1790
1da177e4
LT
1791 return 0;
1792}
1da177e4 1793subsys_initcall(init_bio);
This page took 1.569948 seconds and 4 git commands to generate.