]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
1da177e4 LT |
2 | /* |
3 | * linux/mm/filemap.c | |
4 | * | |
5 | * Copyright (C) 1994-1999 Linus Torvalds | |
6 | */ | |
7 | ||
8 | /* | |
9 | * This file handles the generic file mmap semantics used by | |
10 | * most "normal" filesystems (but you don't /have/ to use this: | |
11 | * the NFS filesystem used to do this differently, for example) | |
12 | */ | |
b95f1b31 | 13 | #include <linux/export.h> |
1da177e4 | 14 | #include <linux/compiler.h> |
f9fe48be | 15 | #include <linux/dax.h> |
1da177e4 | 16 | #include <linux/fs.h> |
3f07c014 | 17 | #include <linux/sched/signal.h> |
c22ce143 | 18 | #include <linux/uaccess.h> |
c59ede7b | 19 | #include <linux/capability.h> |
1da177e4 | 20 | #include <linux/kernel_stat.h> |
5a0e3ad6 | 21 | #include <linux/gfp.h> |
1da177e4 LT |
22 | #include <linux/mm.h> |
23 | #include <linux/swap.h> | |
24 | #include <linux/mman.h> | |
25 | #include <linux/pagemap.h> | |
26 | #include <linux/file.h> | |
27 | #include <linux/uio.h> | |
cfcbfb13 | 28 | #include <linux/error-injection.h> |
1da177e4 LT |
29 | #include <linux/hash.h> |
30 | #include <linux/writeback.h> | |
53253383 | 31 | #include <linux/backing-dev.h> |
1da177e4 LT |
32 | #include <linux/pagevec.h> |
33 | #include <linux/blkdev.h> | |
34 | #include <linux/security.h> | |
44110fe3 | 35 | #include <linux/cpuset.h> |
00501b53 | 36 | #include <linux/hugetlb.h> |
8a9f3ccd | 37 | #include <linux/memcontrol.h> |
c515e1fd | 38 | #include <linux/cleancache.h> |
c7df8ad2 | 39 | #include <linux/shmem_fs.h> |
f1820361 | 40 | #include <linux/rmap.h> |
b1d29ba8 | 41 | #include <linux/delayacct.h> |
eb414681 | 42 | #include <linux/psi.h> |
0f8053a5 NP |
43 | #include "internal.h" |
44 | ||
fe0bfaaf RJ |
45 | #define CREATE_TRACE_POINTS |
46 | #include <trace/events/filemap.h> | |
47 | ||
1da177e4 | 48 | /* |
1da177e4 LT |
49 | * FIXME: remove all knowledge of the buffer layer from the core VM |
50 | */ | |
148f948b | 51 | #include <linux/buffer_head.h> /* for try_to_free_buffers */ |
1da177e4 | 52 | |
1da177e4 LT |
53 | #include <asm/mman.h> |
54 | ||
55 | /* | |
56 | * Shared mappings implemented 30.11.1994. It's not fully working yet, | |
57 | * though. | |
58 | * | |
59 | * Shared mappings now work. 15.8.1995 Bruno. | |
60 | * | |
61 | * finished 'unifying' the page and buffer cache and SMP-threaded the | |
62 | * page-cache, 21.05.1999, Ingo Molnar <[email protected]> | |
63 | * | |
64 | * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <[email protected]> | |
65 | */ | |
66 | ||
67 | /* | |
68 | * Lock ordering: | |
69 | * | |
c8c06efa | 70 | * ->i_mmap_rwsem (truncate_pagecache) |
1da177e4 | 71 | * ->private_lock (__free_pte->__set_page_dirty_buffers) |
5d337b91 | 72 | * ->swap_lock (exclusive_swap_page, others) |
b93b0163 | 73 | * ->i_pages lock |
1da177e4 | 74 | * |
1b1dcc1b | 75 | * ->i_mutex |
c8c06efa | 76 | * ->i_mmap_rwsem (truncate->unmap_mapping_range) |
1da177e4 LT |
77 | * |
78 | * ->mmap_sem | |
c8c06efa | 79 | * ->i_mmap_rwsem |
b8072f09 | 80 | * ->page_table_lock or pte_lock (various, mainly in memory.c) |
b93b0163 | 81 | * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) |
1da177e4 LT |
82 | * |
83 | * ->mmap_sem | |
84 | * ->lock_page (access_process_vm) | |
85 | * | |
ccad2365 | 86 | * ->i_mutex (generic_perform_write) |
82591e6e | 87 | * ->mmap_sem (fault_in_pages_readable->do_page_fault) |
1da177e4 | 88 | * |
f758eeab | 89 | * bdi->wb.list_lock |
a66979ab | 90 | * sb_lock (fs/fs-writeback.c) |
b93b0163 | 91 | * ->i_pages lock (__sync_single_inode) |
1da177e4 | 92 | * |
c8c06efa | 93 | * ->i_mmap_rwsem |
1da177e4 LT |
94 | * ->anon_vma.lock (vma_adjust) |
95 | * | |
96 | * ->anon_vma.lock | |
b8072f09 | 97 | * ->page_table_lock or pte_lock (anon_vma_prepare and various) |
1da177e4 | 98 | * |
b8072f09 | 99 | * ->page_table_lock or pte_lock |
5d337b91 | 100 | * ->swap_lock (try_to_unmap_one) |
1da177e4 | 101 | * ->private_lock (try_to_unmap_one) |
b93b0163 | 102 | * ->i_pages lock (try_to_unmap_one) |
f4b7e272 AR |
103 | * ->pgdat->lru_lock (follow_page->mark_page_accessed) |
104 | * ->pgdat->lru_lock (check_pte_range->isolate_lru_page) | |
1da177e4 | 105 | * ->private_lock (page_remove_rmap->set_page_dirty) |
b93b0163 | 106 | * ->i_pages lock (page_remove_rmap->set_page_dirty) |
f758eeab | 107 | * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) |
250df6ed | 108 | * ->inode->i_lock (page_remove_rmap->set_page_dirty) |
81f8c3a4 | 109 | * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) |
f758eeab | 110 | * bdi.wb->list_lock (zap_pte_range->set_page_dirty) |
250df6ed | 111 | * ->inode->i_lock (zap_pte_range->set_page_dirty) |
1da177e4 LT |
112 | * ->private_lock (zap_pte_range->__set_page_dirty_buffers) |
113 | * | |
c8c06efa | 114 | * ->i_mmap_rwsem |
9a3c531d | 115 | * ->tasklist_lock (memory_failure, collect_procs_ao) |
1da177e4 LT |
116 | */ |
117 | ||
5c024e6a | 118 | static void page_cache_delete(struct address_space *mapping, |
91b0abe3 JW |
119 | struct page *page, void *shadow) |
120 | { | |
5c024e6a MW |
121 | XA_STATE(xas, &mapping->i_pages, page->index); |
122 | unsigned int nr = 1; | |
c70b647d | 123 | |
5c024e6a | 124 | mapping_set_update(&xas, mapping); |
c70b647d | 125 | |
5c024e6a MW |
126 | /* hugetlb pages are represented by a single entry in the xarray */ |
127 | if (!PageHuge(page)) { | |
128 | xas_set_order(&xas, page->index, compound_order(page)); | |
d8c6546b | 129 | nr = compound_nr(page); |
5c024e6a | 130 | } |
91b0abe3 | 131 | |
83929372 KS |
132 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
133 | VM_BUG_ON_PAGE(PageTail(page), page); | |
134 | VM_BUG_ON_PAGE(nr != 1 && shadow, page); | |
449dd698 | 135 | |
5c024e6a MW |
136 | xas_store(&xas, shadow); |
137 | xas_init_marks(&xas); | |
d3798ae8 | 138 | |
2300638b JK |
139 | page->mapping = NULL; |
140 | /* Leave page->index set: truncation lookup relies upon it */ | |
141 | ||
d3798ae8 JW |
142 | if (shadow) { |
143 | mapping->nrexceptional += nr; | |
144 | /* | |
145 | * Make sure the nrexceptional update is committed before | |
146 | * the nrpages update so that final truncate racing | |
147 | * with reclaim does not see both counters 0 at the | |
148 | * same time and miss a shadow entry. | |
149 | */ | |
150 | smp_wmb(); | |
151 | } | |
152 | mapping->nrpages -= nr; | |
91b0abe3 JW |
153 | } |
154 | ||
5ecc4d85 JK |
155 | static void unaccount_page_cache_page(struct address_space *mapping, |
156 | struct page *page) | |
1da177e4 | 157 | { |
5ecc4d85 | 158 | int nr; |
1da177e4 | 159 | |
c515e1fd DM |
160 | /* |
161 | * if we're uptodate, flush out into the cleancache, otherwise | |
162 | * invalidate any existing cleancache entries. We can't leave | |
163 | * stale data around in the cleancache once our page is gone | |
164 | */ | |
165 | if (PageUptodate(page) && PageMappedToDisk(page)) | |
166 | cleancache_put_page(page); | |
167 | else | |
3167760f | 168 | cleancache_invalidate_page(mapping, page); |
c515e1fd | 169 | |
83929372 | 170 | VM_BUG_ON_PAGE(PageTail(page), page); |
06b241f3 HD |
171 | VM_BUG_ON_PAGE(page_mapped(page), page); |
172 | if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { | |
173 | int mapcount; | |
174 | ||
175 | pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", | |
176 | current->comm, page_to_pfn(page)); | |
177 | dump_page(page, "still mapped when deleted"); | |
178 | dump_stack(); | |
179 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); | |
180 | ||
181 | mapcount = page_mapcount(page); | |
182 | if (mapping_exiting(mapping) && | |
183 | page_count(page) >= mapcount + 2) { | |
184 | /* | |
185 | * All vmas have already been torn down, so it's | |
186 | * a good bet that actually the page is unmapped, | |
187 | * and we'd prefer not to leak it: if we're wrong, | |
188 | * some other bad page check should catch it later. | |
189 | */ | |
190 | page_mapcount_reset(page); | |
6d061f9f | 191 | page_ref_sub(page, mapcount); |
06b241f3 HD |
192 | } |
193 | } | |
194 | ||
4165b9b4 | 195 | /* hugetlb pages do not participate in page cache accounting. */ |
5ecc4d85 JK |
196 | if (PageHuge(page)) |
197 | return; | |
09612fa6 | 198 | |
5ecc4d85 JK |
199 | nr = hpage_nr_pages(page); |
200 | ||
201 | __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); | |
202 | if (PageSwapBacked(page)) { | |
203 | __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); | |
204 | if (PageTransHuge(page)) | |
205 | __dec_node_page_state(page, NR_SHMEM_THPS); | |
206 | } else { | |
207 | VM_BUG_ON_PAGE(PageTransHuge(page), page); | |
800d8c63 | 208 | } |
5ecc4d85 JK |
209 | |
210 | /* | |
211 | * At this point page must be either written or cleaned by | |
212 | * truncate. Dirty page here signals a bug and loss of | |
213 | * unwritten data. | |
214 | * | |
215 | * This fixes dirty accounting after removing the page entirely | |
216 | * but leaves PageDirty set: it has no effect for truncated | |
217 | * page and anyway will be cleared before returning page into | |
218 | * buddy allocator. | |
219 | */ | |
220 | if (WARN_ON_ONCE(PageDirty(page))) | |
221 | account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); | |
222 | } | |
223 | ||
224 | /* | |
225 | * Delete a page from the page cache and free it. Caller has to make | |
226 | * sure the page is locked and that nobody else uses it - or that usage | |
b93b0163 | 227 | * is safe. The caller must hold the i_pages lock. |
5ecc4d85 JK |
228 | */ |
229 | void __delete_from_page_cache(struct page *page, void *shadow) | |
230 | { | |
231 | struct address_space *mapping = page->mapping; | |
232 | ||
233 | trace_mm_filemap_delete_from_page_cache(page); | |
234 | ||
235 | unaccount_page_cache_page(mapping, page); | |
5c024e6a | 236 | page_cache_delete(mapping, page, shadow); |
1da177e4 LT |
237 | } |
238 | ||
59c66c5f JK |
239 | static void page_cache_free_page(struct address_space *mapping, |
240 | struct page *page) | |
241 | { | |
242 | void (*freepage)(struct page *); | |
243 | ||
244 | freepage = mapping->a_ops->freepage; | |
245 | if (freepage) | |
246 | freepage(page); | |
247 | ||
248 | if (PageTransHuge(page) && !PageHuge(page)) { | |
249 | page_ref_sub(page, HPAGE_PMD_NR); | |
250 | VM_BUG_ON_PAGE(page_count(page) <= 0, page); | |
251 | } else { | |
252 | put_page(page); | |
253 | } | |
254 | } | |
255 | ||
702cfbf9 MK |
256 | /** |
257 | * delete_from_page_cache - delete page from page cache | |
258 | * @page: the page which the kernel is trying to remove from page cache | |
259 | * | |
260 | * This must be called only on pages that have been verified to be in the page | |
261 | * cache and locked. It will never put the page into the free list, the caller | |
262 | * has a reference on the page. | |
263 | */ | |
264 | void delete_from_page_cache(struct page *page) | |
1da177e4 | 265 | { |
83929372 | 266 | struct address_space *mapping = page_mapping(page); |
c4843a75 | 267 | unsigned long flags; |
1da177e4 | 268 | |
cd7619d6 | 269 | BUG_ON(!PageLocked(page)); |
b93b0163 | 270 | xa_lock_irqsave(&mapping->i_pages, flags); |
62cccb8c | 271 | __delete_from_page_cache(page, NULL); |
b93b0163 | 272 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
6072d13c | 273 | |
59c66c5f | 274 | page_cache_free_page(mapping, page); |
97cecb5a MK |
275 | } |
276 | EXPORT_SYMBOL(delete_from_page_cache); | |
277 | ||
aa65c29c | 278 | /* |
ef8e5717 | 279 | * page_cache_delete_batch - delete several pages from page cache |
aa65c29c JK |
280 | * @mapping: the mapping to which pages belong |
281 | * @pvec: pagevec with pages to delete | |
282 | * | |
b93b0163 | 283 | * The function walks over mapping->i_pages and removes pages passed in @pvec |
4101196b MWO |
284 | * from the mapping. The function expects @pvec to be sorted by page index |
285 | * and is optimised for it to be dense. | |
b93b0163 | 286 | * It tolerates holes in @pvec (mapping entries at those indices are not |
aa65c29c | 287 | * modified). The function expects only THP head pages to be present in the |
4101196b | 288 | * @pvec. |
aa65c29c | 289 | * |
b93b0163 | 290 | * The function expects the i_pages lock to be held. |
aa65c29c | 291 | */ |
ef8e5717 | 292 | static void page_cache_delete_batch(struct address_space *mapping, |
aa65c29c JK |
293 | struct pagevec *pvec) |
294 | { | |
ef8e5717 | 295 | XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); |
aa65c29c | 296 | int total_pages = 0; |
4101196b | 297 | int i = 0; |
aa65c29c | 298 | struct page *page; |
aa65c29c | 299 | |
ef8e5717 MW |
300 | mapping_set_update(&xas, mapping); |
301 | xas_for_each(&xas, page, ULONG_MAX) { | |
4101196b | 302 | if (i >= pagevec_count(pvec)) |
aa65c29c | 303 | break; |
4101196b MWO |
304 | |
305 | /* A swap/dax/shadow entry got inserted? Skip it. */ | |
3159f943 | 306 | if (xa_is_value(page)) |
aa65c29c | 307 | continue; |
4101196b MWO |
308 | /* |
309 | * A page got inserted in our range? Skip it. We have our | |
310 | * pages locked so they are protected from being removed. | |
311 | * If we see a page whose index is higher than ours, it | |
312 | * means our page has been removed, which shouldn't be | |
313 | * possible because we're holding the PageLock. | |
314 | */ | |
315 | if (page != pvec->pages[i]) { | |
316 | VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index, | |
317 | page); | |
318 | continue; | |
319 | } | |
320 | ||
321 | WARN_ON_ONCE(!PageLocked(page)); | |
322 | ||
323 | if (page->index == xas.xa_index) | |
aa65c29c | 324 | page->mapping = NULL; |
4101196b MWO |
325 | /* Leave page->index set: truncation lookup relies on it */ |
326 | ||
327 | /* | |
328 | * Move to the next page in the vector if this is a regular | |
329 | * page or the index is of the last sub-page of this compound | |
330 | * page. | |
331 | */ | |
332 | if (page->index + compound_nr(page) - 1 == xas.xa_index) | |
aa65c29c | 333 | i++; |
ef8e5717 | 334 | xas_store(&xas, NULL); |
aa65c29c JK |
335 | total_pages++; |
336 | } | |
337 | mapping->nrpages -= total_pages; | |
338 | } | |
339 | ||
340 | void delete_from_page_cache_batch(struct address_space *mapping, | |
341 | struct pagevec *pvec) | |
342 | { | |
343 | int i; | |
344 | unsigned long flags; | |
345 | ||
346 | if (!pagevec_count(pvec)) | |
347 | return; | |
348 | ||
b93b0163 | 349 | xa_lock_irqsave(&mapping->i_pages, flags); |
aa65c29c JK |
350 | for (i = 0; i < pagevec_count(pvec); i++) { |
351 | trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); | |
352 | ||
353 | unaccount_page_cache_page(mapping, pvec->pages[i]); | |
354 | } | |
ef8e5717 | 355 | page_cache_delete_batch(mapping, pvec); |
b93b0163 | 356 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
aa65c29c JK |
357 | |
358 | for (i = 0; i < pagevec_count(pvec); i++) | |
359 | page_cache_free_page(mapping, pvec->pages[i]); | |
360 | } | |
361 | ||
d72d9e2a | 362 | int filemap_check_errors(struct address_space *mapping) |
865ffef3 DM |
363 | { |
364 | int ret = 0; | |
365 | /* Check for outstanding write errors */ | |
7fcbbaf1 JA |
366 | if (test_bit(AS_ENOSPC, &mapping->flags) && |
367 | test_and_clear_bit(AS_ENOSPC, &mapping->flags)) | |
865ffef3 | 368 | ret = -ENOSPC; |
7fcbbaf1 JA |
369 | if (test_bit(AS_EIO, &mapping->flags) && |
370 | test_and_clear_bit(AS_EIO, &mapping->flags)) | |
865ffef3 DM |
371 | ret = -EIO; |
372 | return ret; | |
373 | } | |
d72d9e2a | 374 | EXPORT_SYMBOL(filemap_check_errors); |
865ffef3 | 375 | |
76341cab JL |
376 | static int filemap_check_and_keep_errors(struct address_space *mapping) |
377 | { | |
378 | /* Check for outstanding write errors */ | |
379 | if (test_bit(AS_EIO, &mapping->flags)) | |
380 | return -EIO; | |
381 | if (test_bit(AS_ENOSPC, &mapping->flags)) | |
382 | return -ENOSPC; | |
383 | return 0; | |
384 | } | |
385 | ||
1da177e4 | 386 | /** |
485bb99b | 387 | * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range |
67be2dd1 MW |
388 | * @mapping: address space structure to write |
389 | * @start: offset in bytes where the range starts | |
469eb4d0 | 390 | * @end: offset in bytes where the range ends (inclusive) |
67be2dd1 | 391 | * @sync_mode: enable synchronous operation |
1da177e4 | 392 | * |
485bb99b RD |
393 | * Start writeback against all of a mapping's dirty pages that lie |
394 | * within the byte offsets <start, end> inclusive. | |
395 | * | |
1da177e4 | 396 | * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as |
485bb99b | 397 | * opposed to a regular memory cleansing writeback. The difference between |
1da177e4 LT |
398 | * these two operations is that if a dirty page/buffer is encountered, it must |
399 | * be waited upon, and not just skipped over. | |
a862f68a MR |
400 | * |
401 | * Return: %0 on success, negative error code otherwise. | |
1da177e4 | 402 | */ |
ebcf28e1 AM |
403 | int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
404 | loff_t end, int sync_mode) | |
1da177e4 LT |
405 | { |
406 | int ret; | |
407 | struct writeback_control wbc = { | |
408 | .sync_mode = sync_mode, | |
05fe478d | 409 | .nr_to_write = LONG_MAX, |
111ebb6e OH |
410 | .range_start = start, |
411 | .range_end = end, | |
1da177e4 LT |
412 | }; |
413 | ||
c3aab9a0 KK |
414 | if (!mapping_cap_writeback_dirty(mapping) || |
415 | !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) | |
1da177e4 LT |
416 | return 0; |
417 | ||
b16b1deb | 418 | wbc_attach_fdatawrite_inode(&wbc, mapping->host); |
1da177e4 | 419 | ret = do_writepages(mapping, &wbc); |
b16b1deb | 420 | wbc_detach_inode(&wbc); |
1da177e4 LT |
421 | return ret; |
422 | } | |
423 | ||
424 | static inline int __filemap_fdatawrite(struct address_space *mapping, | |
425 | int sync_mode) | |
426 | { | |
111ebb6e | 427 | return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); |
1da177e4 LT |
428 | } |
429 | ||
430 | int filemap_fdatawrite(struct address_space *mapping) | |
431 | { | |
432 | return __filemap_fdatawrite(mapping, WB_SYNC_ALL); | |
433 | } | |
434 | EXPORT_SYMBOL(filemap_fdatawrite); | |
435 | ||
f4c0a0fd | 436 | int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
ebcf28e1 | 437 | loff_t end) |
1da177e4 LT |
438 | { |
439 | return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); | |
440 | } | |
f4c0a0fd | 441 | EXPORT_SYMBOL(filemap_fdatawrite_range); |
1da177e4 | 442 | |
485bb99b RD |
443 | /** |
444 | * filemap_flush - mostly a non-blocking flush | |
445 | * @mapping: target address_space | |
446 | * | |
1da177e4 LT |
447 | * This is a mostly non-blocking flush. Not suitable for data-integrity |
448 | * purposes - I/O may not be started against all dirty pages. | |
a862f68a MR |
449 | * |
450 | * Return: %0 on success, negative error code otherwise. | |
1da177e4 LT |
451 | */ |
452 | int filemap_flush(struct address_space *mapping) | |
453 | { | |
454 | return __filemap_fdatawrite(mapping, WB_SYNC_NONE); | |
455 | } | |
456 | EXPORT_SYMBOL(filemap_flush); | |
457 | ||
7fc9e472 GR |
458 | /** |
459 | * filemap_range_has_page - check if a page exists in range. | |
460 | * @mapping: address space within which to check | |
461 | * @start_byte: offset in bytes where the range starts | |
462 | * @end_byte: offset in bytes where the range ends (inclusive) | |
463 | * | |
464 | * Find at least one page in the range supplied, usually used to check if | |
465 | * direct writing in this range will trigger a writeback. | |
a862f68a MR |
466 | * |
467 | * Return: %true if at least one page exists in the specified range, | |
468 | * %false otherwise. | |
7fc9e472 GR |
469 | */ |
470 | bool filemap_range_has_page(struct address_space *mapping, | |
471 | loff_t start_byte, loff_t end_byte) | |
472 | { | |
f7b68046 | 473 | struct page *page; |
8fa8e538 MW |
474 | XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); |
475 | pgoff_t max = end_byte >> PAGE_SHIFT; | |
7fc9e472 GR |
476 | |
477 | if (end_byte < start_byte) | |
478 | return false; | |
479 | ||
8fa8e538 MW |
480 | rcu_read_lock(); |
481 | for (;;) { | |
482 | page = xas_find(&xas, max); | |
483 | if (xas_retry(&xas, page)) | |
484 | continue; | |
485 | /* Shadow entries don't count */ | |
486 | if (xa_is_value(page)) | |
487 | continue; | |
488 | /* | |
489 | * We don't need to try to pin this page; we're about to | |
490 | * release the RCU lock anyway. It is enough to know that | |
491 | * there was a page here recently. | |
492 | */ | |
493 | break; | |
494 | } | |
495 | rcu_read_unlock(); | |
7fc9e472 | 496 | |
8fa8e538 | 497 | return page != NULL; |
7fc9e472 GR |
498 | } |
499 | EXPORT_SYMBOL(filemap_range_has_page); | |
500 | ||
5e8fcc1a | 501 | static void __filemap_fdatawait_range(struct address_space *mapping, |
aa750fd7 | 502 | loff_t start_byte, loff_t end_byte) |
1da177e4 | 503 | { |
09cbfeaf KS |
504 | pgoff_t index = start_byte >> PAGE_SHIFT; |
505 | pgoff_t end = end_byte >> PAGE_SHIFT; | |
1da177e4 LT |
506 | struct pagevec pvec; |
507 | int nr_pages; | |
1da177e4 | 508 | |
94004ed7 | 509 | if (end_byte < start_byte) |
5e8fcc1a | 510 | return; |
1da177e4 | 511 | |
86679820 | 512 | pagevec_init(&pvec); |
312e9d2f | 513 | while (index <= end) { |
1da177e4 LT |
514 | unsigned i; |
515 | ||
312e9d2f | 516 | nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, |
67fd707f | 517 | end, PAGECACHE_TAG_WRITEBACK); |
312e9d2f JK |
518 | if (!nr_pages) |
519 | break; | |
520 | ||
1da177e4 LT |
521 | for (i = 0; i < nr_pages; i++) { |
522 | struct page *page = pvec.pages[i]; | |
523 | ||
1da177e4 | 524 | wait_on_page_writeback(page); |
5e8fcc1a | 525 | ClearPageError(page); |
1da177e4 LT |
526 | } |
527 | pagevec_release(&pvec); | |
528 | cond_resched(); | |
529 | } | |
aa750fd7 JN |
530 | } |
531 | ||
532 | /** | |
533 | * filemap_fdatawait_range - wait for writeback to complete | |
534 | * @mapping: address space structure to wait for | |
535 | * @start_byte: offset in bytes where the range starts | |
536 | * @end_byte: offset in bytes where the range ends (inclusive) | |
537 | * | |
538 | * Walk the list of under-writeback pages of the given address space | |
539 | * in the given range and wait for all of them. Check error status of | |
540 | * the address space and return it. | |
541 | * | |
542 | * Since the error status of the address space is cleared by this function, | |
543 | * callers are responsible for checking the return value and handling and/or | |
544 | * reporting the error. | |
a862f68a MR |
545 | * |
546 | * Return: error status of the address space. | |
aa750fd7 JN |
547 | */ |
548 | int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, | |
549 | loff_t end_byte) | |
550 | { | |
5e8fcc1a JL |
551 | __filemap_fdatawait_range(mapping, start_byte, end_byte); |
552 | return filemap_check_errors(mapping); | |
1da177e4 | 553 | } |
d3bccb6f JK |
554 | EXPORT_SYMBOL(filemap_fdatawait_range); |
555 | ||
aa0bfcd9 RZ |
556 | /** |
557 | * filemap_fdatawait_range_keep_errors - wait for writeback to complete | |
558 | * @mapping: address space structure to wait for | |
559 | * @start_byte: offset in bytes where the range starts | |
560 | * @end_byte: offset in bytes where the range ends (inclusive) | |
561 | * | |
562 | * Walk the list of under-writeback pages of the given address space in the | |
563 | * given range and wait for all of them. Unlike filemap_fdatawait_range(), | |
564 | * this function does not clear error status of the address space. | |
565 | * | |
566 | * Use this function if callers don't handle errors themselves. Expected | |
567 | * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), | |
568 | * fsfreeze(8) | |
569 | */ | |
570 | int filemap_fdatawait_range_keep_errors(struct address_space *mapping, | |
571 | loff_t start_byte, loff_t end_byte) | |
572 | { | |
573 | __filemap_fdatawait_range(mapping, start_byte, end_byte); | |
574 | return filemap_check_and_keep_errors(mapping); | |
575 | } | |
576 | EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); | |
577 | ||
a823e458 JL |
578 | /** |
579 | * file_fdatawait_range - wait for writeback to complete | |
580 | * @file: file pointing to address space structure to wait for | |
581 | * @start_byte: offset in bytes where the range starts | |
582 | * @end_byte: offset in bytes where the range ends (inclusive) | |
583 | * | |
584 | * Walk the list of under-writeback pages of the address space that file | |
585 | * refers to, in the given range and wait for all of them. Check error | |
586 | * status of the address space vs. the file->f_wb_err cursor and return it. | |
587 | * | |
588 | * Since the error status of the file is advanced by this function, | |
589 | * callers are responsible for checking the return value and handling and/or | |
590 | * reporting the error. | |
a862f68a MR |
591 | * |
592 | * Return: error status of the address space vs. the file->f_wb_err cursor. | |
a823e458 JL |
593 | */ |
594 | int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) | |
595 | { | |
596 | struct address_space *mapping = file->f_mapping; | |
597 | ||
598 | __filemap_fdatawait_range(mapping, start_byte, end_byte); | |
599 | return file_check_and_advance_wb_err(file); | |
600 | } | |
601 | EXPORT_SYMBOL(file_fdatawait_range); | |
d3bccb6f | 602 | |
aa750fd7 JN |
603 | /** |
604 | * filemap_fdatawait_keep_errors - wait for writeback without clearing errors | |
605 | * @mapping: address space structure to wait for | |
606 | * | |
607 | * Walk the list of under-writeback pages of the given address space | |
608 | * and wait for all of them. Unlike filemap_fdatawait(), this function | |
609 | * does not clear error status of the address space. | |
610 | * | |
611 | * Use this function if callers don't handle errors themselves. Expected | |
612 | * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), | |
613 | * fsfreeze(8) | |
a862f68a MR |
614 | * |
615 | * Return: error status of the address space. | |
aa750fd7 | 616 | */ |
76341cab | 617 | int filemap_fdatawait_keep_errors(struct address_space *mapping) |
aa750fd7 | 618 | { |
ffb959bb | 619 | __filemap_fdatawait_range(mapping, 0, LLONG_MAX); |
76341cab | 620 | return filemap_check_and_keep_errors(mapping); |
aa750fd7 | 621 | } |
76341cab | 622 | EXPORT_SYMBOL(filemap_fdatawait_keep_errors); |
aa750fd7 | 623 | |
875d91b1 | 624 | /* Returns true if writeback might be needed or already in progress. */ |
9326c9b2 | 625 | static bool mapping_needs_writeback(struct address_space *mapping) |
1da177e4 | 626 | { |
875d91b1 KK |
627 | if (dax_mapping(mapping)) |
628 | return mapping->nrexceptional; | |
629 | ||
630 | return mapping->nrpages; | |
1da177e4 | 631 | } |
1da177e4 LT |
632 | |
633 | int filemap_write_and_wait(struct address_space *mapping) | |
634 | { | |
28fd1298 | 635 | int err = 0; |
1da177e4 | 636 | |
9326c9b2 | 637 | if (mapping_needs_writeback(mapping)) { |
28fd1298 OH |
638 | err = filemap_fdatawrite(mapping); |
639 | /* | |
640 | * Even if the above returned error, the pages may be | |
641 | * written partially (e.g. -ENOSPC), so we wait for it. | |
642 | * But the -EIO is special case, it may indicate the worst | |
643 | * thing (e.g. bug) happened, so we avoid waiting for it. | |
644 | */ | |
645 | if (err != -EIO) { | |
646 | int err2 = filemap_fdatawait(mapping); | |
647 | if (!err) | |
648 | err = err2; | |
cbeaf951 JL |
649 | } else { |
650 | /* Clear any previously stored errors */ | |
651 | filemap_check_errors(mapping); | |
28fd1298 | 652 | } |
865ffef3 DM |
653 | } else { |
654 | err = filemap_check_errors(mapping); | |
1da177e4 | 655 | } |
28fd1298 | 656 | return err; |
1da177e4 | 657 | } |
28fd1298 | 658 | EXPORT_SYMBOL(filemap_write_and_wait); |
1da177e4 | 659 | |
485bb99b RD |
660 | /** |
661 | * filemap_write_and_wait_range - write out & wait on a file range | |
662 | * @mapping: the address_space for the pages | |
663 | * @lstart: offset in bytes where the range starts | |
664 | * @lend: offset in bytes where the range ends (inclusive) | |
665 | * | |
469eb4d0 AM |
666 | * Write out and wait upon file offsets lstart->lend, inclusive. |
667 | * | |
0e056eb5 | 668 | * Note that @lend is inclusive (describes the last byte to be written) so |
469eb4d0 | 669 | * that this function can be used to write to the very end-of-file (end = -1). |
a862f68a MR |
670 | * |
671 | * Return: error status of the address space. | |
469eb4d0 | 672 | */ |
1da177e4 LT |
673 | int filemap_write_and_wait_range(struct address_space *mapping, |
674 | loff_t lstart, loff_t lend) | |
675 | { | |
28fd1298 | 676 | int err = 0; |
1da177e4 | 677 | |
9326c9b2 | 678 | if (mapping_needs_writeback(mapping)) { |
28fd1298 OH |
679 | err = __filemap_fdatawrite_range(mapping, lstart, lend, |
680 | WB_SYNC_ALL); | |
681 | /* See comment of filemap_write_and_wait() */ | |
682 | if (err != -EIO) { | |
94004ed7 CH |
683 | int err2 = filemap_fdatawait_range(mapping, |
684 | lstart, lend); | |
28fd1298 OH |
685 | if (!err) |
686 | err = err2; | |
cbeaf951 JL |
687 | } else { |
688 | /* Clear any previously stored errors */ | |
689 | filemap_check_errors(mapping); | |
28fd1298 | 690 | } |
865ffef3 DM |
691 | } else { |
692 | err = filemap_check_errors(mapping); | |
1da177e4 | 693 | } |
28fd1298 | 694 | return err; |
1da177e4 | 695 | } |
f6995585 | 696 | EXPORT_SYMBOL(filemap_write_and_wait_range); |
1da177e4 | 697 | |
5660e13d JL |
698 | void __filemap_set_wb_err(struct address_space *mapping, int err) |
699 | { | |
3acdfd28 | 700 | errseq_t eseq = errseq_set(&mapping->wb_err, err); |
5660e13d JL |
701 | |
702 | trace_filemap_set_wb_err(mapping, eseq); | |
703 | } | |
704 | EXPORT_SYMBOL(__filemap_set_wb_err); | |
705 | ||
706 | /** | |
707 | * file_check_and_advance_wb_err - report wb error (if any) that was previously | |
708 | * and advance wb_err to current one | |
709 | * @file: struct file on which the error is being reported | |
710 | * | |
711 | * When userland calls fsync (or something like nfsd does the equivalent), we | |
712 | * want to report any writeback errors that occurred since the last fsync (or | |
713 | * since the file was opened if there haven't been any). | |
714 | * | |
715 | * Grab the wb_err from the mapping. If it matches what we have in the file, | |
716 | * then just quickly return 0. The file is all caught up. | |
717 | * | |
718 | * If it doesn't match, then take the mapping value, set the "seen" flag in | |
719 | * it and try to swap it into place. If it works, or another task beat us | |
720 | * to it with the new value, then update the f_wb_err and return the error | |
721 | * portion. The error at this point must be reported via proper channels | |
722 | * (a'la fsync, or NFS COMMIT operation, etc.). | |
723 | * | |
724 | * While we handle mapping->wb_err with atomic operations, the f_wb_err | |
725 | * value is protected by the f_lock since we must ensure that it reflects | |
726 | * the latest value swapped in for this file descriptor. | |
a862f68a MR |
727 | * |
728 | * Return: %0 on success, negative error code otherwise. | |
5660e13d JL |
729 | */ |
730 | int file_check_and_advance_wb_err(struct file *file) | |
731 | { | |
732 | int err = 0; | |
733 | errseq_t old = READ_ONCE(file->f_wb_err); | |
734 | struct address_space *mapping = file->f_mapping; | |
735 | ||
736 | /* Locklessly handle the common case where nothing has changed */ | |
737 | if (errseq_check(&mapping->wb_err, old)) { | |
738 | /* Something changed, must use slow path */ | |
739 | spin_lock(&file->f_lock); | |
740 | old = file->f_wb_err; | |
741 | err = errseq_check_and_advance(&mapping->wb_err, | |
742 | &file->f_wb_err); | |
743 | trace_file_check_and_advance_wb_err(file, old); | |
744 | spin_unlock(&file->f_lock); | |
745 | } | |
f4e222c5 JL |
746 | |
747 | /* | |
748 | * We're mostly using this function as a drop in replacement for | |
749 | * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect | |
750 | * that the legacy code would have had on these flags. | |
751 | */ | |
752 | clear_bit(AS_EIO, &mapping->flags); | |
753 | clear_bit(AS_ENOSPC, &mapping->flags); | |
5660e13d JL |
754 | return err; |
755 | } | |
756 | EXPORT_SYMBOL(file_check_and_advance_wb_err); | |
757 | ||
758 | /** | |
759 | * file_write_and_wait_range - write out & wait on a file range | |
760 | * @file: file pointing to address_space with pages | |
761 | * @lstart: offset in bytes where the range starts | |
762 | * @lend: offset in bytes where the range ends (inclusive) | |
763 | * | |
764 | * Write out and wait upon file offsets lstart->lend, inclusive. | |
765 | * | |
766 | * Note that @lend is inclusive (describes the last byte to be written) so | |
767 | * that this function can be used to write to the very end-of-file (end = -1). | |
768 | * | |
769 | * After writing out and waiting on the data, we check and advance the | |
770 | * f_wb_err cursor to the latest value, and return any errors detected there. | |
a862f68a MR |
771 | * |
772 | * Return: %0 on success, negative error code otherwise. | |
5660e13d JL |
773 | */ |
774 | int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) | |
775 | { | |
776 | int err = 0, err2; | |
777 | struct address_space *mapping = file->f_mapping; | |
778 | ||
9326c9b2 | 779 | if (mapping_needs_writeback(mapping)) { |
5660e13d JL |
780 | err = __filemap_fdatawrite_range(mapping, lstart, lend, |
781 | WB_SYNC_ALL); | |
782 | /* See comment of filemap_write_and_wait() */ | |
783 | if (err != -EIO) | |
784 | __filemap_fdatawait_range(mapping, lstart, lend); | |
785 | } | |
786 | err2 = file_check_and_advance_wb_err(file); | |
787 | if (!err) | |
788 | err = err2; | |
789 | return err; | |
790 | } | |
791 | EXPORT_SYMBOL(file_write_and_wait_range); | |
792 | ||
ef6a3c63 MS |
793 | /** |
794 | * replace_page_cache_page - replace a pagecache page with a new one | |
795 | * @old: page to be replaced | |
796 | * @new: page to replace with | |
797 | * @gfp_mask: allocation mode | |
798 | * | |
799 | * This function replaces a page in the pagecache with a new one. On | |
800 | * success it acquires the pagecache reference for the new page and | |
801 | * drops it for the old page. Both the old and new pages must be | |
802 | * locked. This function does not add the new page to the LRU, the | |
803 | * caller must do that. | |
804 | * | |
74d60958 | 805 | * The remove + add is atomic. This function cannot fail. |
a862f68a MR |
806 | * |
807 | * Return: %0 | |
ef6a3c63 MS |
808 | */ |
809 | int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) | |
810 | { | |
74d60958 MW |
811 | struct address_space *mapping = old->mapping; |
812 | void (*freepage)(struct page *) = mapping->a_ops->freepage; | |
813 | pgoff_t offset = old->index; | |
814 | XA_STATE(xas, &mapping->i_pages, offset); | |
815 | unsigned long flags; | |
ef6a3c63 | 816 | |
309381fe SL |
817 | VM_BUG_ON_PAGE(!PageLocked(old), old); |
818 | VM_BUG_ON_PAGE(!PageLocked(new), new); | |
819 | VM_BUG_ON_PAGE(new->mapping, new); | |
ef6a3c63 | 820 | |
74d60958 MW |
821 | get_page(new); |
822 | new->mapping = mapping; | |
823 | new->index = offset; | |
ef6a3c63 | 824 | |
74d60958 MW |
825 | xas_lock_irqsave(&xas, flags); |
826 | xas_store(&xas, new); | |
4165b9b4 | 827 | |
74d60958 MW |
828 | old->mapping = NULL; |
829 | /* hugetlb pages do not participate in page cache accounting. */ | |
830 | if (!PageHuge(old)) | |
831 | __dec_node_page_state(new, NR_FILE_PAGES); | |
832 | if (!PageHuge(new)) | |
833 | __inc_node_page_state(new, NR_FILE_PAGES); | |
834 | if (PageSwapBacked(old)) | |
835 | __dec_node_page_state(new, NR_SHMEM); | |
836 | if (PageSwapBacked(new)) | |
837 | __inc_node_page_state(new, NR_SHMEM); | |
838 | xas_unlock_irqrestore(&xas, flags); | |
839 | mem_cgroup_migrate(old, new); | |
840 | if (freepage) | |
841 | freepage(old); | |
842 | put_page(old); | |
ef6a3c63 | 843 | |
74d60958 | 844 | return 0; |
ef6a3c63 MS |
845 | } |
846 | EXPORT_SYMBOL_GPL(replace_page_cache_page); | |
847 | ||
a528910e JW |
848 | static int __add_to_page_cache_locked(struct page *page, |
849 | struct address_space *mapping, | |
850 | pgoff_t offset, gfp_t gfp_mask, | |
851 | void **shadowp) | |
1da177e4 | 852 | { |
74d60958 | 853 | XA_STATE(xas, &mapping->i_pages, offset); |
00501b53 JW |
854 | int huge = PageHuge(page); |
855 | struct mem_cgroup *memcg; | |
e286781d | 856 | int error; |
74d60958 | 857 | void *old; |
e286781d | 858 | |
309381fe SL |
859 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
860 | VM_BUG_ON_PAGE(PageSwapBacked(page), page); | |
74d60958 | 861 | mapping_set_update(&xas, mapping); |
e286781d | 862 | |
00501b53 JW |
863 | if (!huge) { |
864 | error = mem_cgroup_try_charge(page, current->mm, | |
f627c2f5 | 865 | gfp_mask, &memcg, false); |
00501b53 JW |
866 | if (error) |
867 | return error; | |
868 | } | |
1da177e4 | 869 | |
09cbfeaf | 870 | get_page(page); |
66a0c8ee KS |
871 | page->mapping = mapping; |
872 | page->index = offset; | |
873 | ||
74d60958 MW |
874 | do { |
875 | xas_lock_irq(&xas); | |
876 | old = xas_load(&xas); | |
877 | if (old && !xa_is_value(old)) | |
878 | xas_set_err(&xas, -EEXIST); | |
879 | xas_store(&xas, page); | |
880 | if (xas_error(&xas)) | |
881 | goto unlock; | |
882 | ||
883 | if (xa_is_value(old)) { | |
884 | mapping->nrexceptional--; | |
885 | if (shadowp) | |
886 | *shadowp = old; | |
887 | } | |
888 | mapping->nrpages++; | |
889 | ||
890 | /* hugetlb pages do not participate in page cache accounting */ | |
891 | if (!huge) | |
892 | __inc_node_page_state(page, NR_FILE_PAGES); | |
893 | unlock: | |
894 | xas_unlock_irq(&xas); | |
895 | } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK)); | |
896 | ||
897 | if (xas_error(&xas)) | |
898 | goto error; | |
4165b9b4 | 899 | |
00501b53 | 900 | if (!huge) |
f627c2f5 | 901 | mem_cgroup_commit_charge(page, memcg, false, false); |
66a0c8ee KS |
902 | trace_mm_filemap_add_to_page_cache(page); |
903 | return 0; | |
74d60958 | 904 | error: |
66a0c8ee KS |
905 | page->mapping = NULL; |
906 | /* Leave page->index set: truncation relies upon it */ | |
00501b53 | 907 | if (!huge) |
f627c2f5 | 908 | mem_cgroup_cancel_charge(page, memcg, false); |
09cbfeaf | 909 | put_page(page); |
74d60958 | 910 | return xas_error(&xas); |
1da177e4 | 911 | } |
cfcbfb13 | 912 | ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO); |
a528910e JW |
913 | |
914 | /** | |
915 | * add_to_page_cache_locked - add a locked page to the pagecache | |
916 | * @page: page to add | |
917 | * @mapping: the page's address_space | |
918 | * @offset: page index | |
919 | * @gfp_mask: page allocation mode | |
920 | * | |
921 | * This function is used to add a page to the pagecache. It must be locked. | |
922 | * This function does not add the page to the LRU. The caller must do that. | |
a862f68a MR |
923 | * |
924 | * Return: %0 on success, negative error code otherwise. | |
a528910e JW |
925 | */ |
926 | int add_to_page_cache_locked(struct page *page, struct address_space *mapping, | |
927 | pgoff_t offset, gfp_t gfp_mask) | |
928 | { | |
929 | return __add_to_page_cache_locked(page, mapping, offset, | |
930 | gfp_mask, NULL); | |
931 | } | |
e286781d | 932 | EXPORT_SYMBOL(add_to_page_cache_locked); |
1da177e4 LT |
933 | |
934 | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, | |
6daa0e28 | 935 | pgoff_t offset, gfp_t gfp_mask) |
1da177e4 | 936 | { |
a528910e | 937 | void *shadow = NULL; |
4f98a2fe RR |
938 | int ret; |
939 | ||
48c935ad | 940 | __SetPageLocked(page); |
a528910e JW |
941 | ret = __add_to_page_cache_locked(page, mapping, offset, |
942 | gfp_mask, &shadow); | |
943 | if (unlikely(ret)) | |
48c935ad | 944 | __ClearPageLocked(page); |
a528910e JW |
945 | else { |
946 | /* | |
947 | * The page might have been evicted from cache only | |
948 | * recently, in which case it should be activated like | |
949 | * any other repeatedly accessed page. | |
f0281a00 RR |
950 | * The exception is pages getting rewritten; evicting other |
951 | * data from the working set, only to cache data that will | |
952 | * get overwritten with something else, is a waste of memory. | |
a528910e | 953 | */ |
1899ad18 JW |
954 | WARN_ON_ONCE(PageActive(page)); |
955 | if (!(gfp_mask & __GFP_WRITE) && shadow) | |
956 | workingset_refault(page, shadow); | |
a528910e JW |
957 | lru_cache_add(page); |
958 | } | |
1da177e4 LT |
959 | return ret; |
960 | } | |
18bc0bbd | 961 | EXPORT_SYMBOL_GPL(add_to_page_cache_lru); |
1da177e4 | 962 | |
44110fe3 | 963 | #ifdef CONFIG_NUMA |
2ae88149 | 964 | struct page *__page_cache_alloc(gfp_t gfp) |
44110fe3 | 965 | { |
c0ff7453 MX |
966 | int n; |
967 | struct page *page; | |
968 | ||
44110fe3 | 969 | if (cpuset_do_page_mem_spread()) { |
cc9a6c87 MG |
970 | unsigned int cpuset_mems_cookie; |
971 | do { | |
d26914d1 | 972 | cpuset_mems_cookie = read_mems_allowed_begin(); |
cc9a6c87 | 973 | n = cpuset_mem_spread_node(); |
96db800f | 974 | page = __alloc_pages_node(n, gfp, 0); |
d26914d1 | 975 | } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); |
cc9a6c87 | 976 | |
c0ff7453 | 977 | return page; |
44110fe3 | 978 | } |
2ae88149 | 979 | return alloc_pages(gfp, 0); |
44110fe3 | 980 | } |
2ae88149 | 981 | EXPORT_SYMBOL(__page_cache_alloc); |
44110fe3 PJ |
982 | #endif |
983 | ||
1da177e4 LT |
984 | /* |
985 | * In order to wait for pages to become available there must be | |
986 | * waitqueues associated with pages. By using a hash table of | |
987 | * waitqueues where the bucket discipline is to maintain all | |
988 | * waiters on the same queue and wake all when any of the pages | |
989 | * become available, and for the woken contexts to check to be | |
990 | * sure the appropriate page became available, this saves space | |
991 | * at a cost of "thundering herd" phenomena during rare hash | |
992 | * collisions. | |
993 | */ | |
62906027 NP |
994 | #define PAGE_WAIT_TABLE_BITS 8 |
995 | #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) | |
996 | static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; | |
997 | ||
998 | static wait_queue_head_t *page_waitqueue(struct page *page) | |
1da177e4 | 999 | { |
62906027 | 1000 | return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; |
1da177e4 | 1001 | } |
1da177e4 | 1002 | |
62906027 | 1003 | void __init pagecache_init(void) |
1da177e4 | 1004 | { |
62906027 | 1005 | int i; |
1da177e4 | 1006 | |
62906027 NP |
1007 | for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) |
1008 | init_waitqueue_head(&page_wait_table[i]); | |
1009 | ||
1010 | page_writeback_init(); | |
1da177e4 | 1011 | } |
1da177e4 | 1012 | |
3510ca20 | 1013 | /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ |
62906027 NP |
1014 | struct wait_page_key { |
1015 | struct page *page; | |
1016 | int bit_nr; | |
1017 | int page_match; | |
1018 | }; | |
1019 | ||
1020 | struct wait_page_queue { | |
1021 | struct page *page; | |
1022 | int bit_nr; | |
ac6424b9 | 1023 | wait_queue_entry_t wait; |
62906027 NP |
1024 | }; |
1025 | ||
ac6424b9 | 1026 | static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) |
f62e00cc | 1027 | { |
62906027 NP |
1028 | struct wait_page_key *key = arg; |
1029 | struct wait_page_queue *wait_page | |
1030 | = container_of(wait, struct wait_page_queue, wait); | |
1031 | ||
1032 | if (wait_page->page != key->page) | |
1033 | return 0; | |
1034 | key->page_match = 1; | |
f62e00cc | 1035 | |
62906027 NP |
1036 | if (wait_page->bit_nr != key->bit_nr) |
1037 | return 0; | |
3510ca20 | 1038 | |
9a1ea439 HD |
1039 | /* |
1040 | * Stop walking if it's locked. | |
1041 | * Is this safe if put_and_wait_on_page_locked() is in use? | |
1042 | * Yes: the waker must hold a reference to this page, and if PG_locked | |
1043 | * has now already been set by another task, that task must also hold | |
1044 | * a reference to the *same usage* of this page; so there is no need | |
1045 | * to walk on to wake even the put_and_wait_on_page_locked() callers. | |
1046 | */ | |
62906027 | 1047 | if (test_bit(key->bit_nr, &key->page->flags)) |
3510ca20 | 1048 | return -1; |
f62e00cc | 1049 | |
62906027 | 1050 | return autoremove_wake_function(wait, mode, sync, key); |
f62e00cc KM |
1051 | } |
1052 | ||
74d81bfa | 1053 | static void wake_up_page_bit(struct page *page, int bit_nr) |
cbbce822 | 1054 | { |
62906027 NP |
1055 | wait_queue_head_t *q = page_waitqueue(page); |
1056 | struct wait_page_key key; | |
1057 | unsigned long flags; | |
11a19c7b | 1058 | wait_queue_entry_t bookmark; |
cbbce822 | 1059 | |
62906027 NP |
1060 | key.page = page; |
1061 | key.bit_nr = bit_nr; | |
1062 | key.page_match = 0; | |
1063 | ||
11a19c7b TC |
1064 | bookmark.flags = 0; |
1065 | bookmark.private = NULL; | |
1066 | bookmark.func = NULL; | |
1067 | INIT_LIST_HEAD(&bookmark.entry); | |
1068 | ||
62906027 | 1069 | spin_lock_irqsave(&q->lock, flags); |
11a19c7b TC |
1070 | __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); |
1071 | ||
1072 | while (bookmark.flags & WQ_FLAG_BOOKMARK) { | |
1073 | /* | |
1074 | * Take a breather from holding the lock, | |
1075 | * allow pages that finish wake up asynchronously | |
1076 | * to acquire the lock and remove themselves | |
1077 | * from wait queue | |
1078 | */ | |
1079 | spin_unlock_irqrestore(&q->lock, flags); | |
1080 | cpu_relax(); | |
1081 | spin_lock_irqsave(&q->lock, flags); | |
1082 | __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); | |
1083 | } | |
1084 | ||
62906027 NP |
1085 | /* |
1086 | * It is possible for other pages to have collided on the waitqueue | |
1087 | * hash, so in that case check for a page match. That prevents a long- | |
1088 | * term waiter | |
1089 | * | |
1090 | * It is still possible to miss a case here, when we woke page waiters | |
1091 | * and removed them from the waitqueue, but there are still other | |
1092 | * page waiters. | |
1093 | */ | |
1094 | if (!waitqueue_active(q) || !key.page_match) { | |
1095 | ClearPageWaiters(page); | |
1096 | /* | |
1097 | * It's possible to miss clearing Waiters here, when we woke | |
1098 | * our page waiters, but the hashed waitqueue has waiters for | |
1099 | * other pages on it. | |
1100 | * | |
1101 | * That's okay, it's a rare case. The next waker will clear it. | |
1102 | */ | |
1103 | } | |
1104 | spin_unlock_irqrestore(&q->lock, flags); | |
1105 | } | |
74d81bfa NP |
1106 | |
1107 | static void wake_up_page(struct page *page, int bit) | |
1108 | { | |
1109 | if (!PageWaiters(page)) | |
1110 | return; | |
1111 | wake_up_page_bit(page, bit); | |
1112 | } | |
62906027 | 1113 | |
9a1ea439 HD |
1114 | /* |
1115 | * A choice of three behaviors for wait_on_page_bit_common(): | |
1116 | */ | |
1117 | enum behavior { | |
1118 | EXCLUSIVE, /* Hold ref to page and take the bit when woken, like | |
1119 | * __lock_page() waiting on then setting PG_locked. | |
1120 | */ | |
1121 | SHARED, /* Hold ref to page and check the bit when woken, like | |
1122 | * wait_on_page_writeback() waiting on PG_writeback. | |
1123 | */ | |
1124 | DROP, /* Drop ref to page before wait, no check when woken, | |
1125 | * like put_and_wait_on_page_locked() on PG_locked. | |
1126 | */ | |
1127 | }; | |
1128 | ||
62906027 | 1129 | static inline int wait_on_page_bit_common(wait_queue_head_t *q, |
9a1ea439 | 1130 | struct page *page, int bit_nr, int state, enum behavior behavior) |
62906027 NP |
1131 | { |
1132 | struct wait_page_queue wait_page; | |
ac6424b9 | 1133 | wait_queue_entry_t *wait = &wait_page.wait; |
9a1ea439 | 1134 | bool bit_is_set; |
b1d29ba8 | 1135 | bool thrashing = false; |
9a1ea439 | 1136 | bool delayacct = false; |
eb414681 | 1137 | unsigned long pflags; |
62906027 NP |
1138 | int ret = 0; |
1139 | ||
eb414681 | 1140 | if (bit_nr == PG_locked && |
b1d29ba8 | 1141 | !PageUptodate(page) && PageWorkingset(page)) { |
9a1ea439 | 1142 | if (!PageSwapBacked(page)) { |
eb414681 | 1143 | delayacct_thrashing_start(); |
9a1ea439 HD |
1144 | delayacct = true; |
1145 | } | |
eb414681 | 1146 | psi_memstall_enter(&pflags); |
b1d29ba8 JW |
1147 | thrashing = true; |
1148 | } | |
1149 | ||
62906027 | 1150 | init_wait(wait); |
9a1ea439 | 1151 | wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0; |
62906027 NP |
1152 | wait->func = wake_page_function; |
1153 | wait_page.page = page; | |
1154 | wait_page.bit_nr = bit_nr; | |
1155 | ||
1156 | for (;;) { | |
1157 | spin_lock_irq(&q->lock); | |
1158 | ||
2055da97 | 1159 | if (likely(list_empty(&wait->entry))) { |
3510ca20 | 1160 | __add_wait_queue_entry_tail(q, wait); |
62906027 NP |
1161 | SetPageWaiters(page); |
1162 | } | |
1163 | ||
1164 | set_current_state(state); | |
1165 | ||
1166 | spin_unlock_irq(&q->lock); | |
1167 | ||
9a1ea439 HD |
1168 | bit_is_set = test_bit(bit_nr, &page->flags); |
1169 | if (behavior == DROP) | |
1170 | put_page(page); | |
1171 | ||
1172 | if (likely(bit_is_set)) | |
62906027 | 1173 | io_schedule(); |
62906027 | 1174 | |
9a1ea439 | 1175 | if (behavior == EXCLUSIVE) { |
62906027 NP |
1176 | if (!test_and_set_bit_lock(bit_nr, &page->flags)) |
1177 | break; | |
9a1ea439 | 1178 | } else if (behavior == SHARED) { |
62906027 NP |
1179 | if (!test_bit(bit_nr, &page->flags)) |
1180 | break; | |
1181 | } | |
a8b169af | 1182 | |
fa45f116 | 1183 | if (signal_pending_state(state, current)) { |
a8b169af LT |
1184 | ret = -EINTR; |
1185 | break; | |
1186 | } | |
9a1ea439 HD |
1187 | |
1188 | if (behavior == DROP) { | |
1189 | /* | |
1190 | * We can no longer safely access page->flags: | |
1191 | * even if CONFIG_MEMORY_HOTREMOVE is not enabled, | |
1192 | * there is a risk of waiting forever on a page reused | |
1193 | * for something that keeps it locked indefinitely. | |
1194 | * But best check for -EINTR above before breaking. | |
1195 | */ | |
1196 | break; | |
1197 | } | |
62906027 NP |
1198 | } |
1199 | ||
1200 | finish_wait(q, wait); | |
1201 | ||
eb414681 | 1202 | if (thrashing) { |
9a1ea439 | 1203 | if (delayacct) |
eb414681 JW |
1204 | delayacct_thrashing_end(); |
1205 | psi_memstall_leave(&pflags); | |
1206 | } | |
b1d29ba8 | 1207 | |
62906027 NP |
1208 | /* |
1209 | * A signal could leave PageWaiters set. Clearing it here if | |
1210 | * !waitqueue_active would be possible (by open-coding finish_wait), | |
1211 | * but still fail to catch it in the case of wait hash collision. We | |
1212 | * already can fail to clear wait hash collision cases, so don't | |
1213 | * bother with signals either. | |
1214 | */ | |
1215 | ||
1216 | return ret; | |
1217 | } | |
1218 | ||
1219 | void wait_on_page_bit(struct page *page, int bit_nr) | |
1220 | { | |
1221 | wait_queue_head_t *q = page_waitqueue(page); | |
9a1ea439 | 1222 | wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); |
62906027 NP |
1223 | } |
1224 | EXPORT_SYMBOL(wait_on_page_bit); | |
1225 | ||
1226 | int wait_on_page_bit_killable(struct page *page, int bit_nr) | |
1227 | { | |
1228 | wait_queue_head_t *q = page_waitqueue(page); | |
9a1ea439 | 1229 | return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); |
cbbce822 | 1230 | } |
4343d008 | 1231 | EXPORT_SYMBOL(wait_on_page_bit_killable); |
cbbce822 | 1232 | |
9a1ea439 HD |
1233 | /** |
1234 | * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked | |
1235 | * @page: The page to wait for. | |
1236 | * | |
1237 | * The caller should hold a reference on @page. They expect the page to | |
1238 | * become unlocked relatively soon, but do not wish to hold up migration | |
1239 | * (for example) by holding the reference while waiting for the page to | |
1240 | * come unlocked. After this function returns, the caller should not | |
1241 | * dereference @page. | |
1242 | */ | |
1243 | void put_and_wait_on_page_locked(struct page *page) | |
1244 | { | |
1245 | wait_queue_head_t *q; | |
1246 | ||
1247 | page = compound_head(page); | |
1248 | q = page_waitqueue(page); | |
1249 | wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP); | |
1250 | } | |
1251 | ||
385e1ca5 DH |
1252 | /** |
1253 | * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue | |
697f619f RD |
1254 | * @page: Page defining the wait queue of interest |
1255 | * @waiter: Waiter to add to the queue | |
385e1ca5 DH |
1256 | * |
1257 | * Add an arbitrary @waiter to the wait queue for the nominated @page. | |
1258 | */ | |
ac6424b9 | 1259 | void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) |
385e1ca5 DH |
1260 | { |
1261 | wait_queue_head_t *q = page_waitqueue(page); | |
1262 | unsigned long flags; | |
1263 | ||
1264 | spin_lock_irqsave(&q->lock, flags); | |
9c3a815f | 1265 | __add_wait_queue_entry_tail(q, waiter); |
62906027 | 1266 | SetPageWaiters(page); |
385e1ca5 DH |
1267 | spin_unlock_irqrestore(&q->lock, flags); |
1268 | } | |
1269 | EXPORT_SYMBOL_GPL(add_page_wait_queue); | |
1270 | ||
b91e1302 LT |
1271 | #ifndef clear_bit_unlock_is_negative_byte |
1272 | ||
1273 | /* | |
1274 | * PG_waiters is the high bit in the same byte as PG_lock. | |
1275 | * | |
1276 | * On x86 (and on many other architectures), we can clear PG_lock and | |
1277 | * test the sign bit at the same time. But if the architecture does | |
1278 | * not support that special operation, we just do this all by hand | |
1279 | * instead. | |
1280 | * | |
1281 | * The read of PG_waiters has to be after (or concurrently with) PG_locked | |
1282 | * being cleared, but a memory barrier should be unneccssary since it is | |
1283 | * in the same byte as PG_locked. | |
1284 | */ | |
1285 | static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) | |
1286 | { | |
1287 | clear_bit_unlock(nr, mem); | |
1288 | /* smp_mb__after_atomic(); */ | |
98473f9f | 1289 | return test_bit(PG_waiters, mem); |
b91e1302 LT |
1290 | } |
1291 | ||
1292 | #endif | |
1293 | ||
1da177e4 | 1294 | /** |
485bb99b | 1295 | * unlock_page - unlock a locked page |
1da177e4 LT |
1296 | * @page: the page |
1297 | * | |
1298 | * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). | |
1299 | * Also wakes sleepers in wait_on_page_writeback() because the wakeup | |
da3dae54 | 1300 | * mechanism between PageLocked pages and PageWriteback pages is shared. |
1da177e4 LT |
1301 | * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. |
1302 | * | |
b91e1302 LT |
1303 | * Note that this depends on PG_waiters being the sign bit in the byte |
1304 | * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to | |
1305 | * clear the PG_locked bit and test PG_waiters at the same time fairly | |
1306 | * portably (architectures that do LL/SC can test any bit, while x86 can | |
1307 | * test the sign bit). | |
1da177e4 | 1308 | */ |
920c7a5d | 1309 | void unlock_page(struct page *page) |
1da177e4 | 1310 | { |
b91e1302 | 1311 | BUILD_BUG_ON(PG_waiters != 7); |
48c935ad | 1312 | page = compound_head(page); |
309381fe | 1313 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
b91e1302 LT |
1314 | if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) |
1315 | wake_up_page_bit(page, PG_locked); | |
1da177e4 LT |
1316 | } |
1317 | EXPORT_SYMBOL(unlock_page); | |
1318 | ||
485bb99b RD |
1319 | /** |
1320 | * end_page_writeback - end writeback against a page | |
1321 | * @page: the page | |
1da177e4 LT |
1322 | */ |
1323 | void end_page_writeback(struct page *page) | |
1324 | { | |
888cf2db MG |
1325 | /* |
1326 | * TestClearPageReclaim could be used here but it is an atomic | |
1327 | * operation and overkill in this particular case. Failing to | |
1328 | * shuffle a page marked for immediate reclaim is too mild to | |
1329 | * justify taking an atomic operation penalty at the end of | |
1330 | * ever page writeback. | |
1331 | */ | |
1332 | if (PageReclaim(page)) { | |
1333 | ClearPageReclaim(page); | |
ac6aadb2 | 1334 | rotate_reclaimable_page(page); |
888cf2db | 1335 | } |
ac6aadb2 MS |
1336 | |
1337 | if (!test_clear_page_writeback(page)) | |
1338 | BUG(); | |
1339 | ||
4e857c58 | 1340 | smp_mb__after_atomic(); |
1da177e4 LT |
1341 | wake_up_page(page, PG_writeback); |
1342 | } | |
1343 | EXPORT_SYMBOL(end_page_writeback); | |
1344 | ||
57d99845 MW |
1345 | /* |
1346 | * After completing I/O on a page, call this routine to update the page | |
1347 | * flags appropriately | |
1348 | */ | |
c11f0c0b | 1349 | void page_endio(struct page *page, bool is_write, int err) |
57d99845 | 1350 | { |
c11f0c0b | 1351 | if (!is_write) { |
57d99845 MW |
1352 | if (!err) { |
1353 | SetPageUptodate(page); | |
1354 | } else { | |
1355 | ClearPageUptodate(page); | |
1356 | SetPageError(page); | |
1357 | } | |
1358 | unlock_page(page); | |
abf54548 | 1359 | } else { |
57d99845 | 1360 | if (err) { |
dd8416c4 MK |
1361 | struct address_space *mapping; |
1362 | ||
57d99845 | 1363 | SetPageError(page); |
dd8416c4 MK |
1364 | mapping = page_mapping(page); |
1365 | if (mapping) | |
1366 | mapping_set_error(mapping, err); | |
57d99845 MW |
1367 | } |
1368 | end_page_writeback(page); | |
1369 | } | |
1370 | } | |
1371 | EXPORT_SYMBOL_GPL(page_endio); | |
1372 | ||
485bb99b RD |
1373 | /** |
1374 | * __lock_page - get a lock on the page, assuming we need to sleep to get it | |
87066755 | 1375 | * @__page: the page to lock |
1da177e4 | 1376 | */ |
62906027 | 1377 | void __lock_page(struct page *__page) |
1da177e4 | 1378 | { |
62906027 NP |
1379 | struct page *page = compound_head(__page); |
1380 | wait_queue_head_t *q = page_waitqueue(page); | |
9a1ea439 HD |
1381 | wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, |
1382 | EXCLUSIVE); | |
1da177e4 LT |
1383 | } |
1384 | EXPORT_SYMBOL(__lock_page); | |
1385 | ||
62906027 | 1386 | int __lock_page_killable(struct page *__page) |
2687a356 | 1387 | { |
62906027 NP |
1388 | struct page *page = compound_head(__page); |
1389 | wait_queue_head_t *q = page_waitqueue(page); | |
9a1ea439 HD |
1390 | return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, |
1391 | EXCLUSIVE); | |
2687a356 | 1392 | } |
18bc0bbd | 1393 | EXPORT_SYMBOL_GPL(__lock_page_killable); |
2687a356 | 1394 | |
9a95f3cf PC |
1395 | /* |
1396 | * Return values: | |
1397 | * 1 - page is locked; mmap_sem is still held. | |
1398 | * 0 - page is not locked. | |
1399 | * mmap_sem has been released (up_read()), unless flags had both | |
1400 | * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in | |
1401 | * which case mmap_sem is still held. | |
1402 | * | |
1403 | * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 | |
1404 | * with the page locked and the mmap_sem unperturbed. | |
1405 | */ | |
d065bd81 ML |
1406 | int __lock_page_or_retry(struct page *page, struct mm_struct *mm, |
1407 | unsigned int flags) | |
1408 | { | |
37b23e05 KM |
1409 | if (flags & FAULT_FLAG_ALLOW_RETRY) { |
1410 | /* | |
1411 | * CAUTION! In this case, mmap_sem is not released | |
1412 | * even though return 0. | |
1413 | */ | |
1414 | if (flags & FAULT_FLAG_RETRY_NOWAIT) | |
1415 | return 0; | |
1416 | ||
1417 | up_read(&mm->mmap_sem); | |
1418 | if (flags & FAULT_FLAG_KILLABLE) | |
1419 | wait_on_page_locked_killable(page); | |
1420 | else | |
318b275f | 1421 | wait_on_page_locked(page); |
d065bd81 | 1422 | return 0; |
37b23e05 KM |
1423 | } else { |
1424 | if (flags & FAULT_FLAG_KILLABLE) { | |
1425 | int ret; | |
1426 | ||
1427 | ret = __lock_page_killable(page); | |
1428 | if (ret) { | |
1429 | up_read(&mm->mmap_sem); | |
1430 | return 0; | |
1431 | } | |
1432 | } else | |
1433 | __lock_page(page); | |
1434 | return 1; | |
d065bd81 ML |
1435 | } |
1436 | } | |
1437 | ||
e7b563bb | 1438 | /** |
0d3f9296 MW |
1439 | * page_cache_next_miss() - Find the next gap in the page cache. |
1440 | * @mapping: Mapping. | |
1441 | * @index: Index. | |
1442 | * @max_scan: Maximum range to search. | |
e7b563bb | 1443 | * |
0d3f9296 MW |
1444 | * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the |
1445 | * gap with the lowest index. | |
e7b563bb | 1446 | * |
0d3f9296 MW |
1447 | * This function may be called under the rcu_read_lock. However, this will |
1448 | * not atomically search a snapshot of the cache at a single point in time. | |
1449 | * For example, if a gap is created at index 5, then subsequently a gap is | |
1450 | * created at index 10, page_cache_next_miss covering both indices may | |
1451 | * return 10 if called under the rcu_read_lock. | |
e7b563bb | 1452 | * |
0d3f9296 MW |
1453 | * Return: The index of the gap if found, otherwise an index outside the |
1454 | * range specified (in which case 'return - index >= max_scan' will be true). | |
1455 | * In the rare case of index wrap-around, 0 will be returned. | |
e7b563bb | 1456 | */ |
0d3f9296 | 1457 | pgoff_t page_cache_next_miss(struct address_space *mapping, |
e7b563bb JW |
1458 | pgoff_t index, unsigned long max_scan) |
1459 | { | |
0d3f9296 | 1460 | XA_STATE(xas, &mapping->i_pages, index); |
e7b563bb | 1461 | |
0d3f9296 MW |
1462 | while (max_scan--) { |
1463 | void *entry = xas_next(&xas); | |
1464 | if (!entry || xa_is_value(entry)) | |
e7b563bb | 1465 | break; |
0d3f9296 | 1466 | if (xas.xa_index == 0) |
e7b563bb JW |
1467 | break; |
1468 | } | |
1469 | ||
0d3f9296 | 1470 | return xas.xa_index; |
e7b563bb | 1471 | } |
0d3f9296 | 1472 | EXPORT_SYMBOL(page_cache_next_miss); |
e7b563bb JW |
1473 | |
1474 | /** | |
2346a560 | 1475 | * page_cache_prev_miss() - Find the previous gap in the page cache. |
0d3f9296 MW |
1476 | * @mapping: Mapping. |
1477 | * @index: Index. | |
1478 | * @max_scan: Maximum range to search. | |
e7b563bb | 1479 | * |
0d3f9296 MW |
1480 | * Search the range [max(index - max_scan + 1, 0), index] for the |
1481 | * gap with the highest index. | |
e7b563bb | 1482 | * |
0d3f9296 MW |
1483 | * This function may be called under the rcu_read_lock. However, this will |
1484 | * not atomically search a snapshot of the cache at a single point in time. | |
1485 | * For example, if a gap is created at index 10, then subsequently a gap is | |
1486 | * created at index 5, page_cache_prev_miss() covering both indices may | |
1487 | * return 5 if called under the rcu_read_lock. | |
e7b563bb | 1488 | * |
0d3f9296 MW |
1489 | * Return: The index of the gap if found, otherwise an index outside the |
1490 | * range specified (in which case 'index - return >= max_scan' will be true). | |
1491 | * In the rare case of wrap-around, ULONG_MAX will be returned. | |
e7b563bb | 1492 | */ |
0d3f9296 | 1493 | pgoff_t page_cache_prev_miss(struct address_space *mapping, |
e7b563bb JW |
1494 | pgoff_t index, unsigned long max_scan) |
1495 | { | |
0d3f9296 | 1496 | XA_STATE(xas, &mapping->i_pages, index); |
e7b563bb | 1497 | |
0d3f9296 MW |
1498 | while (max_scan--) { |
1499 | void *entry = xas_prev(&xas); | |
1500 | if (!entry || xa_is_value(entry)) | |
e7b563bb | 1501 | break; |
0d3f9296 | 1502 | if (xas.xa_index == ULONG_MAX) |
e7b563bb JW |
1503 | break; |
1504 | } | |
1505 | ||
0d3f9296 | 1506 | return xas.xa_index; |
e7b563bb | 1507 | } |
0d3f9296 | 1508 | EXPORT_SYMBOL(page_cache_prev_miss); |
e7b563bb | 1509 | |
485bb99b | 1510 | /** |
0cd6144a | 1511 | * find_get_entry - find and get a page cache entry |
485bb99b | 1512 | * @mapping: the address_space to search |
0cd6144a JW |
1513 | * @offset: the page cache index |
1514 | * | |
1515 | * Looks up the page cache slot at @mapping & @offset. If there is a | |
1516 | * page cache page, it is returned with an increased refcount. | |
485bb99b | 1517 | * |
139b6a6f JW |
1518 | * If the slot holds a shadow entry of a previously evicted page, or a |
1519 | * swap entry from shmem/tmpfs, it is returned. | |
0cd6144a | 1520 | * |
a862f68a | 1521 | * Return: the found page or shadow entry, %NULL if nothing is found. |
1da177e4 | 1522 | */ |
0cd6144a | 1523 | struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) |
1da177e4 | 1524 | { |
4c7472c0 | 1525 | XA_STATE(xas, &mapping->i_pages, offset); |
4101196b | 1526 | struct page *page; |
1da177e4 | 1527 | |
a60637c8 NP |
1528 | rcu_read_lock(); |
1529 | repeat: | |
4c7472c0 MW |
1530 | xas_reset(&xas); |
1531 | page = xas_load(&xas); | |
1532 | if (xas_retry(&xas, page)) | |
1533 | goto repeat; | |
1534 | /* | |
1535 | * A shadow entry of a recently evicted page, or a swap entry from | |
1536 | * shmem/tmpfs. Return it without attempting to raise page count. | |
1537 | */ | |
1538 | if (!page || xa_is_value(page)) | |
1539 | goto out; | |
83929372 | 1540 | |
4101196b | 1541 | if (!page_cache_get_speculative(page)) |
4c7472c0 | 1542 | goto repeat; |
83929372 | 1543 | |
4c7472c0 | 1544 | /* |
4101196b | 1545 | * Has the page moved or been split? |
4c7472c0 MW |
1546 | * This is part of the lockless pagecache protocol. See |
1547 | * include/linux/pagemap.h for details. | |
1548 | */ | |
1549 | if (unlikely(page != xas_reload(&xas))) { | |
4101196b | 1550 | put_page(page); |
4c7472c0 | 1551 | goto repeat; |
a60637c8 | 1552 | } |
4101196b | 1553 | page = find_subpage(page, offset); |
27d20fdd | 1554 | out: |
a60637c8 NP |
1555 | rcu_read_unlock(); |
1556 | ||
1da177e4 LT |
1557 | return page; |
1558 | } | |
0cd6144a | 1559 | EXPORT_SYMBOL(find_get_entry); |
1da177e4 | 1560 | |
0cd6144a JW |
1561 | /** |
1562 | * find_lock_entry - locate, pin and lock a page cache entry | |
1563 | * @mapping: the address_space to search | |
1564 | * @offset: the page cache index | |
1565 | * | |
1566 | * Looks up the page cache slot at @mapping & @offset. If there is a | |
1567 | * page cache page, it is returned locked and with an increased | |
1568 | * refcount. | |
1569 | * | |
139b6a6f JW |
1570 | * If the slot holds a shadow entry of a previously evicted page, or a |
1571 | * swap entry from shmem/tmpfs, it is returned. | |
0cd6144a | 1572 | * |
0cd6144a | 1573 | * find_lock_entry() may sleep. |
a862f68a MR |
1574 | * |
1575 | * Return: the found page or shadow entry, %NULL if nothing is found. | |
0cd6144a JW |
1576 | */ |
1577 | struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) | |
1da177e4 LT |
1578 | { |
1579 | struct page *page; | |
1580 | ||
1da177e4 | 1581 | repeat: |
0cd6144a | 1582 | page = find_get_entry(mapping, offset); |
4c7472c0 | 1583 | if (page && !xa_is_value(page)) { |
a60637c8 NP |
1584 | lock_page(page); |
1585 | /* Has the page been truncated? */ | |
83929372 | 1586 | if (unlikely(page_mapping(page) != mapping)) { |
a60637c8 | 1587 | unlock_page(page); |
09cbfeaf | 1588 | put_page(page); |
a60637c8 | 1589 | goto repeat; |
1da177e4 | 1590 | } |
83929372 | 1591 | VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); |
1da177e4 | 1592 | } |
1da177e4 LT |
1593 | return page; |
1594 | } | |
0cd6144a JW |
1595 | EXPORT_SYMBOL(find_lock_entry); |
1596 | ||
1597 | /** | |
2457aec6 | 1598 | * pagecache_get_page - find and get a page reference |
0cd6144a JW |
1599 | * @mapping: the address_space to search |
1600 | * @offset: the page index | |
2457aec6 | 1601 | * @fgp_flags: PCG flags |
45f87de5 | 1602 | * @gfp_mask: gfp mask to use for the page cache data page allocation |
0cd6144a | 1603 | * |
2457aec6 | 1604 | * Looks up the page cache slot at @mapping & @offset. |
1da177e4 | 1605 | * |
75325189 | 1606 | * PCG flags modify how the page is returned. |
0cd6144a | 1607 | * |
0e056eb5 MCC |
1608 | * @fgp_flags can be: |
1609 | * | |
1610 | * - FGP_ACCESSED: the page will be marked accessed | |
1611 | * - FGP_LOCK: Page is return locked | |
1612 | * - FGP_CREAT: If page is not present then a new page is allocated using | |
1613 | * @gfp_mask and added to the page cache and the VM's LRU | |
1614 | * list. The page is returned locked and with an increased | |
a862f68a | 1615 | * refcount. |
a75d4c33 JB |
1616 | * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do |
1617 | * its own locking dance if the page is already in cache, or unlock the page | |
1618 | * before returning if we had to add the page to pagecache. | |
1da177e4 | 1619 | * |
2457aec6 MG |
1620 | * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even |
1621 | * if the GFP flags specified for FGP_CREAT are atomic. | |
1da177e4 | 1622 | * |
2457aec6 | 1623 | * If there is a page cache page, it is returned with an increased refcount. |
a862f68a MR |
1624 | * |
1625 | * Return: the found page or %NULL otherwise. | |
1da177e4 | 1626 | */ |
2457aec6 | 1627 | struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, |
45f87de5 | 1628 | int fgp_flags, gfp_t gfp_mask) |
1da177e4 | 1629 | { |
eb2be189 | 1630 | struct page *page; |
2457aec6 | 1631 | |
1da177e4 | 1632 | repeat: |
2457aec6 | 1633 | page = find_get_entry(mapping, offset); |
3159f943 | 1634 | if (xa_is_value(page)) |
2457aec6 MG |
1635 | page = NULL; |
1636 | if (!page) | |
1637 | goto no_page; | |
1638 | ||
1639 | if (fgp_flags & FGP_LOCK) { | |
1640 | if (fgp_flags & FGP_NOWAIT) { | |
1641 | if (!trylock_page(page)) { | |
09cbfeaf | 1642 | put_page(page); |
2457aec6 MG |
1643 | return NULL; |
1644 | } | |
1645 | } else { | |
1646 | lock_page(page); | |
1647 | } | |
1648 | ||
1649 | /* Has the page been truncated? */ | |
1650 | if (unlikely(page->mapping != mapping)) { | |
1651 | unlock_page(page); | |
09cbfeaf | 1652 | put_page(page); |
2457aec6 MG |
1653 | goto repeat; |
1654 | } | |
1655 | VM_BUG_ON_PAGE(page->index != offset, page); | |
1656 | } | |
1657 | ||
c16eb000 | 1658 | if (fgp_flags & FGP_ACCESSED) |
2457aec6 MG |
1659 | mark_page_accessed(page); |
1660 | ||
1661 | no_page: | |
1662 | if (!page && (fgp_flags & FGP_CREAT)) { | |
1663 | int err; | |
1664 | if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) | |
45f87de5 MH |
1665 | gfp_mask |= __GFP_WRITE; |
1666 | if (fgp_flags & FGP_NOFS) | |
1667 | gfp_mask &= ~__GFP_FS; | |
2457aec6 | 1668 | |
45f87de5 | 1669 | page = __page_cache_alloc(gfp_mask); |
eb2be189 NP |
1670 | if (!page) |
1671 | return NULL; | |
2457aec6 | 1672 | |
a75d4c33 | 1673 | if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) |
2457aec6 MG |
1674 | fgp_flags |= FGP_LOCK; |
1675 | ||
eb39d618 | 1676 | /* Init accessed so avoid atomic mark_page_accessed later */ |
2457aec6 | 1677 | if (fgp_flags & FGP_ACCESSED) |
eb39d618 | 1678 | __SetPageReferenced(page); |
2457aec6 | 1679 | |
abc1be13 | 1680 | err = add_to_page_cache_lru(page, mapping, offset, gfp_mask); |
eb2be189 | 1681 | if (unlikely(err)) { |
09cbfeaf | 1682 | put_page(page); |
eb2be189 NP |
1683 | page = NULL; |
1684 | if (err == -EEXIST) | |
1685 | goto repeat; | |
1da177e4 | 1686 | } |
a75d4c33 JB |
1687 | |
1688 | /* | |
1689 | * add_to_page_cache_lru locks the page, and for mmap we expect | |
1690 | * an unlocked page. | |
1691 | */ | |
1692 | if (page && (fgp_flags & FGP_FOR_MMAP)) | |
1693 | unlock_page(page); | |
1da177e4 | 1694 | } |
2457aec6 | 1695 | |
1da177e4 LT |
1696 | return page; |
1697 | } | |
2457aec6 | 1698 | EXPORT_SYMBOL(pagecache_get_page); |
1da177e4 | 1699 | |
0cd6144a JW |
1700 | /** |
1701 | * find_get_entries - gang pagecache lookup | |
1702 | * @mapping: The address_space to search | |
1703 | * @start: The starting page cache index | |
1704 | * @nr_entries: The maximum number of entries | |
1705 | * @entries: Where the resulting entries are placed | |
1706 | * @indices: The cache indices corresponding to the entries in @entries | |
1707 | * | |
1708 | * find_get_entries() will search for and return a group of up to | |
1709 | * @nr_entries entries in the mapping. The entries are placed at | |
1710 | * @entries. find_get_entries() takes a reference against any actual | |
1711 | * pages it returns. | |
1712 | * | |
1713 | * The search returns a group of mapping-contiguous page cache entries | |
1714 | * with ascending indexes. There may be holes in the indices due to | |
1715 | * not-present pages. | |
1716 | * | |
139b6a6f JW |
1717 | * Any shadow entries of evicted pages, or swap entries from |
1718 | * shmem/tmpfs, are included in the returned array. | |
0cd6144a | 1719 | * |
a862f68a | 1720 | * Return: the number of pages and shadow entries which were found. |
0cd6144a JW |
1721 | */ |
1722 | unsigned find_get_entries(struct address_space *mapping, | |
1723 | pgoff_t start, unsigned int nr_entries, | |
1724 | struct page **entries, pgoff_t *indices) | |
1725 | { | |
f280bf09 MW |
1726 | XA_STATE(xas, &mapping->i_pages, start); |
1727 | struct page *page; | |
0cd6144a | 1728 | unsigned int ret = 0; |
0cd6144a JW |
1729 | |
1730 | if (!nr_entries) | |
1731 | return 0; | |
1732 | ||
1733 | rcu_read_lock(); | |
f280bf09 | 1734 | xas_for_each(&xas, page, ULONG_MAX) { |
f280bf09 | 1735 | if (xas_retry(&xas, page)) |
0cd6144a | 1736 | continue; |
f280bf09 MW |
1737 | /* |
1738 | * A shadow entry of a recently evicted page, a swap | |
1739 | * entry from shmem/tmpfs or a DAX entry. Return it | |
1740 | * without attempting to raise page count. | |
1741 | */ | |
1742 | if (xa_is_value(page)) | |
0cd6144a | 1743 | goto export; |
83929372 | 1744 | |
4101196b | 1745 | if (!page_cache_get_speculative(page)) |
f280bf09 | 1746 | goto retry; |
83929372 | 1747 | |
4101196b | 1748 | /* Has the page moved or been split? */ |
f280bf09 MW |
1749 | if (unlikely(page != xas_reload(&xas))) |
1750 | goto put_page; | |
4101196b | 1751 | page = find_subpage(page, xas.xa_index); |
f280bf09 | 1752 | |
0cd6144a | 1753 | export: |
f280bf09 | 1754 | indices[ret] = xas.xa_index; |
0cd6144a JW |
1755 | entries[ret] = page; |
1756 | if (++ret == nr_entries) | |
1757 | break; | |
f280bf09 MW |
1758 | continue; |
1759 | put_page: | |
4101196b | 1760 | put_page(page); |
f280bf09 MW |
1761 | retry: |
1762 | xas_reset(&xas); | |
0cd6144a JW |
1763 | } |
1764 | rcu_read_unlock(); | |
1765 | return ret; | |
1766 | } | |
1767 | ||
1da177e4 | 1768 | /** |
b947cee4 | 1769 | * find_get_pages_range - gang pagecache lookup |
1da177e4 LT |
1770 | * @mapping: The address_space to search |
1771 | * @start: The starting page index | |
b947cee4 | 1772 | * @end: The final page index (inclusive) |
1da177e4 LT |
1773 | * @nr_pages: The maximum number of pages |
1774 | * @pages: Where the resulting pages are placed | |
1775 | * | |
b947cee4 JK |
1776 | * find_get_pages_range() will search for and return a group of up to @nr_pages |
1777 | * pages in the mapping starting at index @start and up to index @end | |
1778 | * (inclusive). The pages are placed at @pages. find_get_pages_range() takes | |
1779 | * a reference against the returned pages. | |
1da177e4 LT |
1780 | * |
1781 | * The search returns a group of mapping-contiguous pages with ascending | |
1782 | * indexes. There may be holes in the indices due to not-present pages. | |
d72dc8a2 | 1783 | * We also update @start to index the next page for the traversal. |
1da177e4 | 1784 | * |
a862f68a MR |
1785 | * Return: the number of pages which were found. If this number is |
1786 | * smaller than @nr_pages, the end of specified range has been | |
b947cee4 | 1787 | * reached. |
1da177e4 | 1788 | */ |
b947cee4 JK |
1789 | unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, |
1790 | pgoff_t end, unsigned int nr_pages, | |
1791 | struct page **pages) | |
1da177e4 | 1792 | { |
fd1b3cee MW |
1793 | XA_STATE(xas, &mapping->i_pages, *start); |
1794 | struct page *page; | |
0fc9d104 KK |
1795 | unsigned ret = 0; |
1796 | ||
1797 | if (unlikely(!nr_pages)) | |
1798 | return 0; | |
a60637c8 NP |
1799 | |
1800 | rcu_read_lock(); | |
fd1b3cee | 1801 | xas_for_each(&xas, page, end) { |
fd1b3cee | 1802 | if (xas_retry(&xas, page)) |
a60637c8 | 1803 | continue; |
fd1b3cee MW |
1804 | /* Skip over shadow, swap and DAX entries */ |
1805 | if (xa_is_value(page)) | |
8079b1c8 | 1806 | continue; |
a60637c8 | 1807 | |
4101196b | 1808 | if (!page_cache_get_speculative(page)) |
fd1b3cee | 1809 | goto retry; |
83929372 | 1810 | |
4101196b | 1811 | /* Has the page moved or been split? */ |
fd1b3cee MW |
1812 | if (unlikely(page != xas_reload(&xas))) |
1813 | goto put_page; | |
1da177e4 | 1814 | |
4101196b | 1815 | pages[ret] = find_subpage(page, xas.xa_index); |
b947cee4 | 1816 | if (++ret == nr_pages) { |
5d3ee42f | 1817 | *start = xas.xa_index + 1; |
b947cee4 JK |
1818 | goto out; |
1819 | } | |
fd1b3cee MW |
1820 | continue; |
1821 | put_page: | |
4101196b | 1822 | put_page(page); |
fd1b3cee MW |
1823 | retry: |
1824 | xas_reset(&xas); | |
a60637c8 | 1825 | } |
5b280c0c | 1826 | |
b947cee4 JK |
1827 | /* |
1828 | * We come here when there is no page beyond @end. We take care to not | |
1829 | * overflow the index @start as it confuses some of the callers. This | |
fd1b3cee | 1830 | * breaks the iteration when there is a page at index -1 but that is |
b947cee4 JK |
1831 | * already broken anyway. |
1832 | */ | |
1833 | if (end == (pgoff_t)-1) | |
1834 | *start = (pgoff_t)-1; | |
1835 | else | |
1836 | *start = end + 1; | |
1837 | out: | |
a60637c8 | 1838 | rcu_read_unlock(); |
d72dc8a2 | 1839 | |
1da177e4 LT |
1840 | return ret; |
1841 | } | |
1842 | ||
ebf43500 JA |
1843 | /** |
1844 | * find_get_pages_contig - gang contiguous pagecache lookup | |
1845 | * @mapping: The address_space to search | |
1846 | * @index: The starting page index | |
1847 | * @nr_pages: The maximum number of pages | |
1848 | * @pages: Where the resulting pages are placed | |
1849 | * | |
1850 | * find_get_pages_contig() works exactly like find_get_pages(), except | |
1851 | * that the returned number of pages are guaranteed to be contiguous. | |
1852 | * | |
a862f68a | 1853 | * Return: the number of pages which were found. |
ebf43500 JA |
1854 | */ |
1855 | unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, | |
1856 | unsigned int nr_pages, struct page **pages) | |
1857 | { | |
3ece58a2 MW |
1858 | XA_STATE(xas, &mapping->i_pages, index); |
1859 | struct page *page; | |
0fc9d104 KK |
1860 | unsigned int ret = 0; |
1861 | ||
1862 | if (unlikely(!nr_pages)) | |
1863 | return 0; | |
a60637c8 NP |
1864 | |
1865 | rcu_read_lock(); | |
3ece58a2 | 1866 | for (page = xas_load(&xas); page; page = xas_next(&xas)) { |
3ece58a2 MW |
1867 | if (xas_retry(&xas, page)) |
1868 | continue; | |
1869 | /* | |
1870 | * If the entry has been swapped out, we can stop looking. | |
1871 | * No current caller is looking for DAX entries. | |
1872 | */ | |
1873 | if (xa_is_value(page)) | |
8079b1c8 | 1874 | break; |
ebf43500 | 1875 | |
4101196b | 1876 | if (!page_cache_get_speculative(page)) |
3ece58a2 | 1877 | goto retry; |
83929372 | 1878 | |
4101196b | 1879 | /* Has the page moved or been split? */ |
3ece58a2 MW |
1880 | if (unlikely(page != xas_reload(&xas))) |
1881 | goto put_page; | |
a60637c8 | 1882 | |
4101196b | 1883 | pages[ret] = find_subpage(page, xas.xa_index); |
0fc9d104 KK |
1884 | if (++ret == nr_pages) |
1885 | break; | |
3ece58a2 MW |
1886 | continue; |
1887 | put_page: | |
4101196b | 1888 | put_page(page); |
3ece58a2 MW |
1889 | retry: |
1890 | xas_reset(&xas); | |
ebf43500 | 1891 | } |
a60637c8 NP |
1892 | rcu_read_unlock(); |
1893 | return ret; | |
ebf43500 | 1894 | } |
ef71c15c | 1895 | EXPORT_SYMBOL(find_get_pages_contig); |
ebf43500 | 1896 | |
485bb99b | 1897 | /** |
72b045ae | 1898 | * find_get_pages_range_tag - find and return pages in given range matching @tag |
485bb99b RD |
1899 | * @mapping: the address_space to search |
1900 | * @index: the starting page index | |
72b045ae | 1901 | * @end: The final page index (inclusive) |
485bb99b RD |
1902 | * @tag: the tag index |
1903 | * @nr_pages: the maximum number of pages | |
1904 | * @pages: where the resulting pages are placed | |
1905 | * | |
1da177e4 | 1906 | * Like find_get_pages, except we only return pages which are tagged with |
485bb99b | 1907 | * @tag. We update @index to index the next page for the traversal. |
a862f68a MR |
1908 | * |
1909 | * Return: the number of pages which were found. | |
1da177e4 | 1910 | */ |
72b045ae | 1911 | unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, |
a6906972 | 1912 | pgoff_t end, xa_mark_t tag, unsigned int nr_pages, |
72b045ae | 1913 | struct page **pages) |
1da177e4 | 1914 | { |
a6906972 MW |
1915 | XA_STATE(xas, &mapping->i_pages, *index); |
1916 | struct page *page; | |
0fc9d104 KK |
1917 | unsigned ret = 0; |
1918 | ||
1919 | if (unlikely(!nr_pages)) | |
1920 | return 0; | |
a60637c8 NP |
1921 | |
1922 | rcu_read_lock(); | |
a6906972 | 1923 | xas_for_each_marked(&xas, page, end, tag) { |
a6906972 | 1924 | if (xas_retry(&xas, page)) |
a60637c8 | 1925 | continue; |
a6906972 MW |
1926 | /* |
1927 | * Shadow entries should never be tagged, but this iteration | |
1928 | * is lockless so there is a window for page reclaim to evict | |
1929 | * a page we saw tagged. Skip over it. | |
1930 | */ | |
1931 | if (xa_is_value(page)) | |
139b6a6f | 1932 | continue; |
a60637c8 | 1933 | |
4101196b | 1934 | if (!page_cache_get_speculative(page)) |
a6906972 | 1935 | goto retry; |
a60637c8 | 1936 | |
4101196b | 1937 | /* Has the page moved or been split? */ |
a6906972 MW |
1938 | if (unlikely(page != xas_reload(&xas))) |
1939 | goto put_page; | |
a60637c8 | 1940 | |
4101196b | 1941 | pages[ret] = find_subpage(page, xas.xa_index); |
72b045ae | 1942 | if (++ret == nr_pages) { |
5d3ee42f | 1943 | *index = xas.xa_index + 1; |
72b045ae JK |
1944 | goto out; |
1945 | } | |
a6906972 MW |
1946 | continue; |
1947 | put_page: | |
4101196b | 1948 | put_page(page); |
a6906972 MW |
1949 | retry: |
1950 | xas_reset(&xas); | |
a60637c8 | 1951 | } |
5b280c0c | 1952 | |
72b045ae | 1953 | /* |
a6906972 | 1954 | * We come here when we got to @end. We take care to not overflow the |
72b045ae | 1955 | * index @index as it confuses some of the callers. This breaks the |
a6906972 MW |
1956 | * iteration when there is a page at index -1 but that is already |
1957 | * broken anyway. | |
72b045ae JK |
1958 | */ |
1959 | if (end == (pgoff_t)-1) | |
1960 | *index = (pgoff_t)-1; | |
1961 | else | |
1962 | *index = end + 1; | |
1963 | out: | |
a60637c8 | 1964 | rcu_read_unlock(); |
1da177e4 | 1965 | |
1da177e4 LT |
1966 | return ret; |
1967 | } | |
72b045ae | 1968 | EXPORT_SYMBOL(find_get_pages_range_tag); |
1da177e4 | 1969 | |
76d42bd9 WF |
1970 | /* |
1971 | * CD/DVDs are error prone. When a medium error occurs, the driver may fail | |
1972 | * a _large_ part of the i/o request. Imagine the worst scenario: | |
1973 | * | |
1974 | * ---R__________________________________________B__________ | |
1975 | * ^ reading here ^ bad block(assume 4k) | |
1976 | * | |
1977 | * read(R) => miss => readahead(R...B) => media error => frustrating retries | |
1978 | * => failing the whole request => read(R) => read(R+1) => | |
1979 | * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => | |
1980 | * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => | |
1981 | * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... | |
1982 | * | |
1983 | * It is going insane. Fix it by quickly scaling down the readahead size. | |
1984 | */ | |
1985 | static void shrink_readahead_size_eio(struct file *filp, | |
1986 | struct file_ra_state *ra) | |
1987 | { | |
76d42bd9 | 1988 | ra->ra_pages /= 4; |
76d42bd9 WF |
1989 | } |
1990 | ||
485bb99b | 1991 | /** |
47c27bc4 CH |
1992 | * generic_file_buffered_read - generic file read routine |
1993 | * @iocb: the iocb to read | |
6e58e79d AV |
1994 | * @iter: data destination |
1995 | * @written: already copied | |
485bb99b | 1996 | * |
1da177e4 | 1997 | * This is a generic file read routine, and uses the |
485bb99b | 1998 | * mapping->a_ops->readpage() function for the actual low-level stuff. |
1da177e4 LT |
1999 | * |
2000 | * This is really ugly. But the goto's actually try to clarify some | |
2001 | * of the logic when it comes to error handling etc. | |
a862f68a MR |
2002 | * |
2003 | * Return: | |
2004 | * * total number of bytes copied, including those the were already @written | |
2005 | * * negative error code if nothing was copied | |
1da177e4 | 2006 | */ |
47c27bc4 | 2007 | static ssize_t generic_file_buffered_read(struct kiocb *iocb, |
6e58e79d | 2008 | struct iov_iter *iter, ssize_t written) |
1da177e4 | 2009 | { |
47c27bc4 | 2010 | struct file *filp = iocb->ki_filp; |
36e78914 | 2011 | struct address_space *mapping = filp->f_mapping; |
1da177e4 | 2012 | struct inode *inode = mapping->host; |
36e78914 | 2013 | struct file_ra_state *ra = &filp->f_ra; |
47c27bc4 | 2014 | loff_t *ppos = &iocb->ki_pos; |
57f6b96c FW |
2015 | pgoff_t index; |
2016 | pgoff_t last_index; | |
2017 | pgoff_t prev_index; | |
2018 | unsigned long offset; /* offset into pagecache page */ | |
ec0f1637 | 2019 | unsigned int prev_offset; |
6e58e79d | 2020 | int error = 0; |
1da177e4 | 2021 | |
c2a9737f | 2022 | if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) |
d05c5f7b | 2023 | return 0; |
c2a9737f WF |
2024 | iov_iter_truncate(iter, inode->i_sb->s_maxbytes); |
2025 | ||
09cbfeaf KS |
2026 | index = *ppos >> PAGE_SHIFT; |
2027 | prev_index = ra->prev_pos >> PAGE_SHIFT; | |
2028 | prev_offset = ra->prev_pos & (PAGE_SIZE-1); | |
2029 | last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; | |
2030 | offset = *ppos & ~PAGE_MASK; | |
1da177e4 | 2031 | |
1da177e4 LT |
2032 | for (;;) { |
2033 | struct page *page; | |
57f6b96c | 2034 | pgoff_t end_index; |
a32ea1e1 | 2035 | loff_t isize; |
1da177e4 LT |
2036 | unsigned long nr, ret; |
2037 | ||
1da177e4 | 2038 | cond_resched(); |
1da177e4 | 2039 | find_page: |
5abf186a MH |
2040 | if (fatal_signal_pending(current)) { |
2041 | error = -EINTR; | |
2042 | goto out; | |
2043 | } | |
2044 | ||
1da177e4 | 2045 | page = find_get_page(mapping, index); |
3ea89ee8 | 2046 | if (!page) { |
3239d834 MT |
2047 | if (iocb->ki_flags & IOCB_NOWAIT) |
2048 | goto would_block; | |
cf914a7d | 2049 | page_cache_sync_readahead(mapping, |
7ff81078 | 2050 | ra, filp, |
3ea89ee8 FW |
2051 | index, last_index - index); |
2052 | page = find_get_page(mapping, index); | |
2053 | if (unlikely(page == NULL)) | |
2054 | goto no_cached_page; | |
2055 | } | |
2056 | if (PageReadahead(page)) { | |
cf914a7d | 2057 | page_cache_async_readahead(mapping, |
7ff81078 | 2058 | ra, filp, page, |
3ea89ee8 | 2059 | index, last_index - index); |
1da177e4 | 2060 | } |
8ab22b9a | 2061 | if (!PageUptodate(page)) { |
3239d834 MT |
2062 | if (iocb->ki_flags & IOCB_NOWAIT) { |
2063 | put_page(page); | |
2064 | goto would_block; | |
2065 | } | |
2066 | ||
ebded027 MG |
2067 | /* |
2068 | * See comment in do_read_cache_page on why | |
2069 | * wait_on_page_locked is used to avoid unnecessarily | |
2070 | * serialisations and why it's safe. | |
2071 | */ | |
c4b209a4 BVA |
2072 | error = wait_on_page_locked_killable(page); |
2073 | if (unlikely(error)) | |
2074 | goto readpage_error; | |
ebded027 MG |
2075 | if (PageUptodate(page)) |
2076 | goto page_ok; | |
2077 | ||
09cbfeaf | 2078 | if (inode->i_blkbits == PAGE_SHIFT || |
8ab22b9a HH |
2079 | !mapping->a_ops->is_partially_uptodate) |
2080 | goto page_not_up_to_date; | |
6d6d36bc | 2081 | /* pipes can't handle partially uptodate pages */ |
00e23707 | 2082 | if (unlikely(iov_iter_is_pipe(iter))) |
6d6d36bc | 2083 | goto page_not_up_to_date; |
529ae9aa | 2084 | if (!trylock_page(page)) |
8ab22b9a | 2085 | goto page_not_up_to_date; |
8d056cb9 DH |
2086 | /* Did it get truncated before we got the lock? */ |
2087 | if (!page->mapping) | |
2088 | goto page_not_up_to_date_locked; | |
8ab22b9a | 2089 | if (!mapping->a_ops->is_partially_uptodate(page, |
6e58e79d | 2090 | offset, iter->count)) |
8ab22b9a HH |
2091 | goto page_not_up_to_date_locked; |
2092 | unlock_page(page); | |
2093 | } | |
1da177e4 | 2094 | page_ok: |
a32ea1e1 N |
2095 | /* |
2096 | * i_size must be checked after we know the page is Uptodate. | |
2097 | * | |
2098 | * Checking i_size after the check allows us to calculate | |
2099 | * the correct value for "nr", which means the zero-filled | |
2100 | * part of the page is not copied back to userspace (unless | |
2101 | * another truncate extends the file - this is desired though). | |
2102 | */ | |
2103 | ||
2104 | isize = i_size_read(inode); | |
09cbfeaf | 2105 | end_index = (isize - 1) >> PAGE_SHIFT; |
a32ea1e1 | 2106 | if (unlikely(!isize || index > end_index)) { |
09cbfeaf | 2107 | put_page(page); |
a32ea1e1 N |
2108 | goto out; |
2109 | } | |
2110 | ||
2111 | /* nr is the maximum number of bytes to copy from this page */ | |
09cbfeaf | 2112 | nr = PAGE_SIZE; |
a32ea1e1 | 2113 | if (index == end_index) { |
09cbfeaf | 2114 | nr = ((isize - 1) & ~PAGE_MASK) + 1; |
a32ea1e1 | 2115 | if (nr <= offset) { |
09cbfeaf | 2116 | put_page(page); |
a32ea1e1 N |
2117 | goto out; |
2118 | } | |
2119 | } | |
2120 | nr = nr - offset; | |
1da177e4 LT |
2121 | |
2122 | /* If users can be writing to this page using arbitrary | |
2123 | * virtual addresses, take care about potential aliasing | |
2124 | * before reading the page on the kernel side. | |
2125 | */ | |
2126 | if (mapping_writably_mapped(mapping)) | |
2127 | flush_dcache_page(page); | |
2128 | ||
2129 | /* | |
ec0f1637 JK |
2130 | * When a sequential read accesses a page several times, |
2131 | * only mark it as accessed the first time. | |
1da177e4 | 2132 | */ |
ec0f1637 | 2133 | if (prev_index != index || offset != prev_offset) |
1da177e4 LT |
2134 | mark_page_accessed(page); |
2135 | prev_index = index; | |
2136 | ||
2137 | /* | |
2138 | * Ok, we have the page, and it's up-to-date, so | |
2139 | * now we can copy it to user space... | |
1da177e4 | 2140 | */ |
6e58e79d AV |
2141 | |
2142 | ret = copy_page_to_iter(page, offset, nr, iter); | |
1da177e4 | 2143 | offset += ret; |
09cbfeaf KS |
2144 | index += offset >> PAGE_SHIFT; |
2145 | offset &= ~PAGE_MASK; | |
6ce745ed | 2146 | prev_offset = offset; |
1da177e4 | 2147 | |
09cbfeaf | 2148 | put_page(page); |
6e58e79d AV |
2149 | written += ret; |
2150 | if (!iov_iter_count(iter)) | |
2151 | goto out; | |
2152 | if (ret < nr) { | |
2153 | error = -EFAULT; | |
2154 | goto out; | |
2155 | } | |
2156 | continue; | |
1da177e4 LT |
2157 | |
2158 | page_not_up_to_date: | |
2159 | /* Get exclusive access to the page ... */ | |
85462323 ON |
2160 | error = lock_page_killable(page); |
2161 | if (unlikely(error)) | |
2162 | goto readpage_error; | |
1da177e4 | 2163 | |
8ab22b9a | 2164 | page_not_up_to_date_locked: |
da6052f7 | 2165 | /* Did it get truncated before we got the lock? */ |
1da177e4 LT |
2166 | if (!page->mapping) { |
2167 | unlock_page(page); | |
09cbfeaf | 2168 | put_page(page); |
1da177e4 LT |
2169 | continue; |
2170 | } | |
2171 | ||
2172 | /* Did somebody else fill it already? */ | |
2173 | if (PageUptodate(page)) { | |
2174 | unlock_page(page); | |
2175 | goto page_ok; | |
2176 | } | |
2177 | ||
2178 | readpage: | |
91803b49 JM |
2179 | /* |
2180 | * A previous I/O error may have been due to temporary | |
2181 | * failures, eg. multipath errors. | |
2182 | * PG_error will be set again if readpage fails. | |
2183 | */ | |
2184 | ClearPageError(page); | |
1da177e4 LT |
2185 | /* Start the actual read. The read will unlock the page. */ |
2186 | error = mapping->a_ops->readpage(filp, page); | |
2187 | ||
994fc28c ZB |
2188 | if (unlikely(error)) { |
2189 | if (error == AOP_TRUNCATED_PAGE) { | |
09cbfeaf | 2190 | put_page(page); |
6e58e79d | 2191 | error = 0; |
994fc28c ZB |
2192 | goto find_page; |
2193 | } | |
1da177e4 | 2194 | goto readpage_error; |
994fc28c | 2195 | } |
1da177e4 LT |
2196 | |
2197 | if (!PageUptodate(page)) { | |
85462323 ON |
2198 | error = lock_page_killable(page); |
2199 | if (unlikely(error)) | |
2200 | goto readpage_error; | |
1da177e4 LT |
2201 | if (!PageUptodate(page)) { |
2202 | if (page->mapping == NULL) { | |
2203 | /* | |
2ecdc82e | 2204 | * invalidate_mapping_pages got it |
1da177e4 LT |
2205 | */ |
2206 | unlock_page(page); | |
09cbfeaf | 2207 | put_page(page); |
1da177e4 LT |
2208 | goto find_page; |
2209 | } | |
2210 | unlock_page(page); | |
7ff81078 | 2211 | shrink_readahead_size_eio(filp, ra); |
85462323 ON |
2212 | error = -EIO; |
2213 | goto readpage_error; | |
1da177e4 LT |
2214 | } |
2215 | unlock_page(page); | |
2216 | } | |
2217 | ||
1da177e4 LT |
2218 | goto page_ok; |
2219 | ||
2220 | readpage_error: | |
2221 | /* UHHUH! A synchronous read error occurred. Report it */ | |
09cbfeaf | 2222 | put_page(page); |
1da177e4 LT |
2223 | goto out; |
2224 | ||
2225 | no_cached_page: | |
2226 | /* | |
2227 | * Ok, it wasn't cached, so we need to create a new | |
2228 | * page.. | |
2229 | */ | |
453f85d4 | 2230 | page = page_cache_alloc(mapping); |
eb2be189 | 2231 | if (!page) { |
6e58e79d | 2232 | error = -ENOMEM; |
eb2be189 | 2233 | goto out; |
1da177e4 | 2234 | } |
6afdb859 | 2235 | error = add_to_page_cache_lru(page, mapping, index, |
c62d2555 | 2236 | mapping_gfp_constraint(mapping, GFP_KERNEL)); |
1da177e4 | 2237 | if (error) { |
09cbfeaf | 2238 | put_page(page); |
6e58e79d AV |
2239 | if (error == -EEXIST) { |
2240 | error = 0; | |
1da177e4 | 2241 | goto find_page; |
6e58e79d | 2242 | } |
1da177e4 LT |
2243 | goto out; |
2244 | } | |
1da177e4 LT |
2245 | goto readpage; |
2246 | } | |
2247 | ||
3239d834 MT |
2248 | would_block: |
2249 | error = -EAGAIN; | |
1da177e4 | 2250 | out: |
7ff81078 | 2251 | ra->prev_pos = prev_index; |
09cbfeaf | 2252 | ra->prev_pos <<= PAGE_SHIFT; |
7ff81078 | 2253 | ra->prev_pos |= prev_offset; |
1da177e4 | 2254 | |
09cbfeaf | 2255 | *ppos = ((loff_t)index << PAGE_SHIFT) + offset; |
0c6aa263 | 2256 | file_accessed(filp); |
6e58e79d | 2257 | return written ? written : error; |
1da177e4 LT |
2258 | } |
2259 | ||
485bb99b | 2260 | /** |
6abd2322 | 2261 | * generic_file_read_iter - generic filesystem read routine |
485bb99b | 2262 | * @iocb: kernel I/O control block |
6abd2322 | 2263 | * @iter: destination for the data read |
485bb99b | 2264 | * |
6abd2322 | 2265 | * This is the "read_iter()" routine for all filesystems |
1da177e4 | 2266 | * that can use the page cache directly. |
a862f68a MR |
2267 | * Return: |
2268 | * * number of bytes copied, even for partial reads | |
2269 | * * negative error code if nothing was read | |
1da177e4 LT |
2270 | */ |
2271 | ssize_t | |
ed978a81 | 2272 | generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) |
1da177e4 | 2273 | { |
e7080a43 | 2274 | size_t count = iov_iter_count(iter); |
47c27bc4 | 2275 | ssize_t retval = 0; |
e7080a43 NS |
2276 | |
2277 | if (!count) | |
2278 | goto out; /* skip atime */ | |
1da177e4 | 2279 | |
2ba48ce5 | 2280 | if (iocb->ki_flags & IOCB_DIRECT) { |
47c27bc4 | 2281 | struct file *file = iocb->ki_filp; |
ed978a81 AV |
2282 | struct address_space *mapping = file->f_mapping; |
2283 | struct inode *inode = mapping->host; | |
543ade1f | 2284 | loff_t size; |
1da177e4 | 2285 | |
1da177e4 | 2286 | size = i_size_read(inode); |
6be96d3a GR |
2287 | if (iocb->ki_flags & IOCB_NOWAIT) { |
2288 | if (filemap_range_has_page(mapping, iocb->ki_pos, | |
2289 | iocb->ki_pos + count - 1)) | |
2290 | return -EAGAIN; | |
2291 | } else { | |
2292 | retval = filemap_write_and_wait_range(mapping, | |
2293 | iocb->ki_pos, | |
2294 | iocb->ki_pos + count - 1); | |
2295 | if (retval < 0) | |
2296 | goto out; | |
2297 | } | |
d8d3d94b | 2298 | |
0d5b0cf2 CH |
2299 | file_accessed(file); |
2300 | ||
5ecda137 | 2301 | retval = mapping->a_ops->direct_IO(iocb, iter); |
c3a69024 | 2302 | if (retval >= 0) { |
c64fb5c7 | 2303 | iocb->ki_pos += retval; |
5ecda137 | 2304 | count -= retval; |
9fe55eea | 2305 | } |
5b47d59a | 2306 | iov_iter_revert(iter, count - iov_iter_count(iter)); |
66f998f6 | 2307 | |
9fe55eea SW |
2308 | /* |
2309 | * Btrfs can have a short DIO read if we encounter | |
2310 | * compressed extents, so if there was an error, or if | |
2311 | * we've already read everything we wanted to, or if | |
2312 | * there was a short read because we hit EOF, go ahead | |
2313 | * and return. Otherwise fallthrough to buffered io for | |
fbbbad4b MW |
2314 | * the rest of the read. Buffered reads will not work for |
2315 | * DAX files, so don't bother trying. | |
9fe55eea | 2316 | */ |
5ecda137 | 2317 | if (retval < 0 || !count || iocb->ki_pos >= size || |
0d5b0cf2 | 2318 | IS_DAX(inode)) |
9fe55eea | 2319 | goto out; |
1da177e4 LT |
2320 | } |
2321 | ||
47c27bc4 | 2322 | retval = generic_file_buffered_read(iocb, iter, retval); |
1da177e4 LT |
2323 | out: |
2324 | return retval; | |
2325 | } | |
ed978a81 | 2326 | EXPORT_SYMBOL(generic_file_read_iter); |
1da177e4 | 2327 | |
1da177e4 | 2328 | #ifdef CONFIG_MMU |
1da177e4 | 2329 | #define MMAP_LOTSAMISS (100) |
6b4c9f44 JB |
2330 | static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, |
2331 | struct file *fpin) | |
2332 | { | |
2333 | int flags = vmf->flags; | |
2334 | ||
2335 | if (fpin) | |
2336 | return fpin; | |
2337 | ||
2338 | /* | |
2339 | * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or | |
2340 | * anything, so we only pin the file and drop the mmap_sem if only | |
2341 | * FAULT_FLAG_ALLOW_RETRY is set. | |
2342 | */ | |
2343 | if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) == | |
2344 | FAULT_FLAG_ALLOW_RETRY) { | |
2345 | fpin = get_file(vmf->vma->vm_file); | |
2346 | up_read(&vmf->vma->vm_mm->mmap_sem); | |
2347 | } | |
2348 | return fpin; | |
2349 | } | |
2350 | ||
2351 | /* | |
2352 | * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem | |
2353 | * @vmf - the vm_fault for this fault. | |
2354 | * @page - the page to lock. | |
2355 | * @fpin - the pointer to the file we may pin (or is already pinned). | |
2356 | * | |
2357 | * This works similar to lock_page_or_retry in that it can drop the mmap_sem. | |
2358 | * It differs in that it actually returns the page locked if it returns 1 and 0 | |
2359 | * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin | |
2360 | * will point to the pinned file and needs to be fput()'ed at a later point. | |
2361 | */ | |
2362 | static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page, | |
2363 | struct file **fpin) | |
2364 | { | |
2365 | if (trylock_page(page)) | |
2366 | return 1; | |
2367 | ||
8b0f9fa2 LT |
2368 | /* |
2369 | * NOTE! This will make us return with VM_FAULT_RETRY, but with | |
2370 | * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT | |
2371 | * is supposed to work. We have way too many special cases.. | |
2372 | */ | |
6b4c9f44 JB |
2373 | if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) |
2374 | return 0; | |
2375 | ||
2376 | *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); | |
2377 | if (vmf->flags & FAULT_FLAG_KILLABLE) { | |
2378 | if (__lock_page_killable(page)) { | |
2379 | /* | |
2380 | * We didn't have the right flags to drop the mmap_sem, | |
2381 | * but all fault_handlers only check for fatal signals | |
2382 | * if we return VM_FAULT_RETRY, so we need to drop the | |
2383 | * mmap_sem here and return 0 if we don't have a fpin. | |
2384 | */ | |
2385 | if (*fpin == NULL) | |
2386 | up_read(&vmf->vma->vm_mm->mmap_sem); | |
2387 | return 0; | |
2388 | } | |
2389 | } else | |
2390 | __lock_page(page); | |
2391 | return 1; | |
2392 | } | |
2393 | ||
1da177e4 | 2394 | |
ef00e08e | 2395 | /* |
6b4c9f44 JB |
2396 | * Synchronous readahead happens when we don't even find a page in the page |
2397 | * cache at all. We don't want to perform IO under the mmap sem, so if we have | |
2398 | * to drop the mmap sem we return the file that was pinned in order for us to do | |
2399 | * that. If we didn't pin a file then we return NULL. The file that is | |
2400 | * returned needs to be fput()'ed when we're done with it. | |
ef00e08e | 2401 | */ |
6b4c9f44 | 2402 | static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) |
ef00e08e | 2403 | { |
2a1180f1 JB |
2404 | struct file *file = vmf->vma->vm_file; |
2405 | struct file_ra_state *ra = &file->f_ra; | |
ef00e08e | 2406 | struct address_space *mapping = file->f_mapping; |
6b4c9f44 | 2407 | struct file *fpin = NULL; |
2a1180f1 | 2408 | pgoff_t offset = vmf->pgoff; |
ef00e08e LT |
2409 | |
2410 | /* If we don't want any read-ahead, don't bother */ | |
2a1180f1 | 2411 | if (vmf->vma->vm_flags & VM_RAND_READ) |
6b4c9f44 | 2412 | return fpin; |
275b12bf | 2413 | if (!ra->ra_pages) |
6b4c9f44 | 2414 | return fpin; |
ef00e08e | 2415 | |
2a1180f1 | 2416 | if (vmf->vma->vm_flags & VM_SEQ_READ) { |
6b4c9f44 | 2417 | fpin = maybe_unlock_mmap_for_io(vmf, fpin); |
7ffc59b4 WF |
2418 | page_cache_sync_readahead(mapping, ra, file, offset, |
2419 | ra->ra_pages); | |
6b4c9f44 | 2420 | return fpin; |
ef00e08e LT |
2421 | } |
2422 | ||
207d04ba AK |
2423 | /* Avoid banging the cache line if not needed */ |
2424 | if (ra->mmap_miss < MMAP_LOTSAMISS * 10) | |
ef00e08e LT |
2425 | ra->mmap_miss++; |
2426 | ||
2427 | /* | |
2428 | * Do we miss much more than hit in this file? If so, | |
2429 | * stop bothering with read-ahead. It will only hurt. | |
2430 | */ | |
2431 | if (ra->mmap_miss > MMAP_LOTSAMISS) | |
6b4c9f44 | 2432 | return fpin; |
ef00e08e | 2433 | |
d30a1100 WF |
2434 | /* |
2435 | * mmap read-around | |
2436 | */ | |
6b4c9f44 | 2437 | fpin = maybe_unlock_mmap_for_io(vmf, fpin); |
600e19af RG |
2438 | ra->start = max_t(long, 0, offset - ra->ra_pages / 2); |
2439 | ra->size = ra->ra_pages; | |
2440 | ra->async_size = ra->ra_pages / 4; | |
275b12bf | 2441 | ra_submit(ra, mapping, file); |
6b4c9f44 | 2442 | return fpin; |
ef00e08e LT |
2443 | } |
2444 | ||
2445 | /* | |
2446 | * Asynchronous readahead happens when we find the page and PG_readahead, | |
6b4c9f44 JB |
2447 | * so we want to possibly extend the readahead further. We return the file that |
2448 | * was pinned if we have to drop the mmap_sem in order to do IO. | |
ef00e08e | 2449 | */ |
6b4c9f44 JB |
2450 | static struct file *do_async_mmap_readahead(struct vm_fault *vmf, |
2451 | struct page *page) | |
ef00e08e | 2452 | { |
2a1180f1 JB |
2453 | struct file *file = vmf->vma->vm_file; |
2454 | struct file_ra_state *ra = &file->f_ra; | |
ef00e08e | 2455 | struct address_space *mapping = file->f_mapping; |
6b4c9f44 | 2456 | struct file *fpin = NULL; |
2a1180f1 | 2457 | pgoff_t offset = vmf->pgoff; |
ef00e08e LT |
2458 | |
2459 | /* If we don't want any read-ahead, don't bother */ | |
2a1180f1 | 2460 | if (vmf->vma->vm_flags & VM_RAND_READ) |
6b4c9f44 | 2461 | return fpin; |
ef00e08e LT |
2462 | if (ra->mmap_miss > 0) |
2463 | ra->mmap_miss--; | |
6b4c9f44 JB |
2464 | if (PageReadahead(page)) { |
2465 | fpin = maybe_unlock_mmap_for_io(vmf, fpin); | |
2fad6f5d WF |
2466 | page_cache_async_readahead(mapping, ra, file, |
2467 | page, offset, ra->ra_pages); | |
6b4c9f44 JB |
2468 | } |
2469 | return fpin; | |
ef00e08e LT |
2470 | } |
2471 | ||
485bb99b | 2472 | /** |
54cb8821 | 2473 | * filemap_fault - read in file data for page fault handling |
d0217ac0 | 2474 | * @vmf: struct vm_fault containing details of the fault |
485bb99b | 2475 | * |
54cb8821 | 2476 | * filemap_fault() is invoked via the vma operations vector for a |
1da177e4 LT |
2477 | * mapped memory region to read in file data during a page fault. |
2478 | * | |
2479 | * The goto's are kind of ugly, but this streamlines the normal case of having | |
2480 | * it in the page cache, and handles the special cases reasonably without | |
2481 | * having a lot of duplicated code. | |
9a95f3cf PC |
2482 | * |
2483 | * vma->vm_mm->mmap_sem must be held on entry. | |
2484 | * | |
a4985833 YS |
2485 | * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem |
2486 | * may be dropped before doing I/O or by lock_page_maybe_drop_mmap(). | |
9a95f3cf PC |
2487 | * |
2488 | * If our return value does not have VM_FAULT_RETRY set, the mmap_sem | |
2489 | * has not been released. | |
2490 | * | |
2491 | * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. | |
a862f68a MR |
2492 | * |
2493 | * Return: bitwise-OR of %VM_FAULT_ codes. | |
1da177e4 | 2494 | */ |
2bcd6454 | 2495 | vm_fault_t filemap_fault(struct vm_fault *vmf) |
1da177e4 LT |
2496 | { |
2497 | int error; | |
11bac800 | 2498 | struct file *file = vmf->vma->vm_file; |
6b4c9f44 | 2499 | struct file *fpin = NULL; |
1da177e4 LT |
2500 | struct address_space *mapping = file->f_mapping; |
2501 | struct file_ra_state *ra = &file->f_ra; | |
2502 | struct inode *inode = mapping->host; | |
ef00e08e | 2503 | pgoff_t offset = vmf->pgoff; |
9ab2594f | 2504 | pgoff_t max_off; |
1da177e4 | 2505 | struct page *page; |
2bcd6454 | 2506 | vm_fault_t ret = 0; |
1da177e4 | 2507 | |
9ab2594f MW |
2508 | max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); |
2509 | if (unlikely(offset >= max_off)) | |
5307cc1a | 2510 | return VM_FAULT_SIGBUS; |
1da177e4 | 2511 | |
1da177e4 | 2512 | /* |
49426420 | 2513 | * Do we have something in the page cache already? |
1da177e4 | 2514 | */ |
ef00e08e | 2515 | page = find_get_page(mapping, offset); |
45cac65b | 2516 | if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { |
1da177e4 | 2517 | /* |
ef00e08e LT |
2518 | * We found the page, so try async readahead before |
2519 | * waiting for the lock. | |
1da177e4 | 2520 | */ |
6b4c9f44 | 2521 | fpin = do_async_mmap_readahead(vmf, page); |
45cac65b | 2522 | } else if (!page) { |
ef00e08e | 2523 | /* No page in the page cache at all */ |
ef00e08e | 2524 | count_vm_event(PGMAJFAULT); |
2262185c | 2525 | count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); |
ef00e08e | 2526 | ret = VM_FAULT_MAJOR; |
6b4c9f44 | 2527 | fpin = do_sync_mmap_readahead(vmf); |
ef00e08e | 2528 | retry_find: |
a75d4c33 JB |
2529 | page = pagecache_get_page(mapping, offset, |
2530 | FGP_CREAT|FGP_FOR_MMAP, | |
2531 | vmf->gfp_mask); | |
6b4c9f44 JB |
2532 | if (!page) { |
2533 | if (fpin) | |
2534 | goto out_retry; | |
a75d4c33 | 2535 | return vmf_error(-ENOMEM); |
6b4c9f44 | 2536 | } |
1da177e4 LT |
2537 | } |
2538 | ||
6b4c9f44 JB |
2539 | if (!lock_page_maybe_drop_mmap(vmf, page, &fpin)) |
2540 | goto out_retry; | |
b522c94d ML |
2541 | |
2542 | /* Did it get truncated? */ | |
2543 | if (unlikely(page->mapping != mapping)) { | |
2544 | unlock_page(page); | |
2545 | put_page(page); | |
2546 | goto retry_find; | |
2547 | } | |
309381fe | 2548 | VM_BUG_ON_PAGE(page->index != offset, page); |
b522c94d | 2549 | |
1da177e4 | 2550 | /* |
d00806b1 NP |
2551 | * We have a locked page in the page cache, now we need to check |
2552 | * that it's up-to-date. If not, it is going to be due to an error. | |
1da177e4 | 2553 | */ |
d00806b1 | 2554 | if (unlikely(!PageUptodate(page))) |
1da177e4 LT |
2555 | goto page_not_uptodate; |
2556 | ||
6b4c9f44 JB |
2557 | /* |
2558 | * We've made it this far and we had to drop our mmap_sem, now is the | |
2559 | * time to return to the upper layer and have it re-find the vma and | |
2560 | * redo the fault. | |
2561 | */ | |
2562 | if (fpin) { | |
2563 | unlock_page(page); | |
2564 | goto out_retry; | |
2565 | } | |
2566 | ||
ef00e08e LT |
2567 | /* |
2568 | * Found the page and have a reference on it. | |
2569 | * We must recheck i_size under page lock. | |
2570 | */ | |
9ab2594f MW |
2571 | max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); |
2572 | if (unlikely(offset >= max_off)) { | |
d00806b1 | 2573 | unlock_page(page); |
09cbfeaf | 2574 | put_page(page); |
5307cc1a | 2575 | return VM_FAULT_SIGBUS; |
d00806b1 NP |
2576 | } |
2577 | ||
d0217ac0 | 2578 | vmf->page = page; |
83c54070 | 2579 | return ret | VM_FAULT_LOCKED; |
1da177e4 | 2580 | |
1da177e4 | 2581 | page_not_uptodate: |
1da177e4 LT |
2582 | /* |
2583 | * Umm, take care of errors if the page isn't up-to-date. | |
2584 | * Try to re-read it _once_. We do this synchronously, | |
2585 | * because there really aren't any performance issues here | |
2586 | * and we need to check for errors. | |
2587 | */ | |
1da177e4 | 2588 | ClearPageError(page); |
6b4c9f44 | 2589 | fpin = maybe_unlock_mmap_for_io(vmf, fpin); |
994fc28c | 2590 | error = mapping->a_ops->readpage(file, page); |
3ef0f720 MS |
2591 | if (!error) { |
2592 | wait_on_page_locked(page); | |
2593 | if (!PageUptodate(page)) | |
2594 | error = -EIO; | |
2595 | } | |
6b4c9f44 JB |
2596 | if (fpin) |
2597 | goto out_retry; | |
09cbfeaf | 2598 | put_page(page); |
d00806b1 NP |
2599 | |
2600 | if (!error || error == AOP_TRUNCATED_PAGE) | |
994fc28c | 2601 | goto retry_find; |
1da177e4 | 2602 | |
d00806b1 | 2603 | /* Things didn't work out. Return zero to tell the mm layer so. */ |
76d42bd9 | 2604 | shrink_readahead_size_eio(file, ra); |
d0217ac0 | 2605 | return VM_FAULT_SIGBUS; |
6b4c9f44 JB |
2606 | |
2607 | out_retry: | |
2608 | /* | |
2609 | * We dropped the mmap_sem, we need to return to the fault handler to | |
2610 | * re-find the vma and come back and find our hopefully still populated | |
2611 | * page. | |
2612 | */ | |
2613 | if (page) | |
2614 | put_page(page); | |
2615 | if (fpin) | |
2616 | fput(fpin); | |
2617 | return ret | VM_FAULT_RETRY; | |
54cb8821 NP |
2618 | } |
2619 | EXPORT_SYMBOL(filemap_fault); | |
2620 | ||
82b0f8c3 | 2621 | void filemap_map_pages(struct vm_fault *vmf, |
bae473a4 | 2622 | pgoff_t start_pgoff, pgoff_t end_pgoff) |
f1820361 | 2623 | { |
82b0f8c3 | 2624 | struct file *file = vmf->vma->vm_file; |
f1820361 | 2625 | struct address_space *mapping = file->f_mapping; |
bae473a4 | 2626 | pgoff_t last_pgoff = start_pgoff; |
9ab2594f | 2627 | unsigned long max_idx; |
070e807c | 2628 | XA_STATE(xas, &mapping->i_pages, start_pgoff); |
4101196b | 2629 | struct page *page; |
f1820361 KS |
2630 | |
2631 | rcu_read_lock(); | |
070e807c MW |
2632 | xas_for_each(&xas, page, end_pgoff) { |
2633 | if (xas_retry(&xas, page)) | |
2634 | continue; | |
2635 | if (xa_is_value(page)) | |
2cf938aa | 2636 | goto next; |
f1820361 | 2637 | |
e0975b2a MH |
2638 | /* |
2639 | * Check for a locked page first, as a speculative | |
2640 | * reference may adversely influence page migration. | |
2641 | */ | |
4101196b | 2642 | if (PageLocked(page)) |
e0975b2a | 2643 | goto next; |
4101196b | 2644 | if (!page_cache_get_speculative(page)) |
070e807c | 2645 | goto next; |
f1820361 | 2646 | |
4101196b | 2647 | /* Has the page moved or been split? */ |
070e807c MW |
2648 | if (unlikely(page != xas_reload(&xas))) |
2649 | goto skip; | |
4101196b | 2650 | page = find_subpage(page, xas.xa_index); |
f1820361 KS |
2651 | |
2652 | if (!PageUptodate(page) || | |
2653 | PageReadahead(page) || | |
2654 | PageHWPoison(page)) | |
2655 | goto skip; | |
2656 | if (!trylock_page(page)) | |
2657 | goto skip; | |
2658 | ||
2659 | if (page->mapping != mapping || !PageUptodate(page)) | |
2660 | goto unlock; | |
2661 | ||
9ab2594f MW |
2662 | max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); |
2663 | if (page->index >= max_idx) | |
f1820361 KS |
2664 | goto unlock; |
2665 | ||
f1820361 KS |
2666 | if (file->f_ra.mmap_miss > 0) |
2667 | file->f_ra.mmap_miss--; | |
7267ec00 | 2668 | |
070e807c | 2669 | vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT; |
82b0f8c3 | 2670 | if (vmf->pte) |
070e807c MW |
2671 | vmf->pte += xas.xa_index - last_pgoff; |
2672 | last_pgoff = xas.xa_index; | |
82b0f8c3 | 2673 | if (alloc_set_pte(vmf, NULL, page)) |
7267ec00 | 2674 | goto unlock; |
f1820361 KS |
2675 | unlock_page(page); |
2676 | goto next; | |
2677 | unlock: | |
2678 | unlock_page(page); | |
2679 | skip: | |
09cbfeaf | 2680 | put_page(page); |
f1820361 | 2681 | next: |
7267ec00 | 2682 | /* Huge page is mapped? No need to proceed. */ |
82b0f8c3 | 2683 | if (pmd_trans_huge(*vmf->pmd)) |
7267ec00 | 2684 | break; |
f1820361 KS |
2685 | } |
2686 | rcu_read_unlock(); | |
2687 | } | |
2688 | EXPORT_SYMBOL(filemap_map_pages); | |
2689 | ||
2bcd6454 | 2690 | vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) |
4fcf1c62 JK |
2691 | { |
2692 | struct page *page = vmf->page; | |
11bac800 | 2693 | struct inode *inode = file_inode(vmf->vma->vm_file); |
2bcd6454 | 2694 | vm_fault_t ret = VM_FAULT_LOCKED; |
4fcf1c62 | 2695 | |
14da9200 | 2696 | sb_start_pagefault(inode->i_sb); |
11bac800 | 2697 | file_update_time(vmf->vma->vm_file); |
4fcf1c62 JK |
2698 | lock_page(page); |
2699 | if (page->mapping != inode->i_mapping) { | |
2700 | unlock_page(page); | |
2701 | ret = VM_FAULT_NOPAGE; | |
2702 | goto out; | |
2703 | } | |
14da9200 JK |
2704 | /* |
2705 | * We mark the page dirty already here so that when freeze is in | |
2706 | * progress, we are guaranteed that writeback during freezing will | |
2707 | * see the dirty page and writeprotect it again. | |
2708 | */ | |
2709 | set_page_dirty(page); | |
1d1d1a76 | 2710 | wait_for_stable_page(page); |
4fcf1c62 | 2711 | out: |
14da9200 | 2712 | sb_end_pagefault(inode->i_sb); |
4fcf1c62 JK |
2713 | return ret; |
2714 | } | |
4fcf1c62 | 2715 | |
f0f37e2f | 2716 | const struct vm_operations_struct generic_file_vm_ops = { |
54cb8821 | 2717 | .fault = filemap_fault, |
f1820361 | 2718 | .map_pages = filemap_map_pages, |
4fcf1c62 | 2719 | .page_mkwrite = filemap_page_mkwrite, |
1da177e4 LT |
2720 | }; |
2721 | ||
2722 | /* This is used for a general mmap of a disk file */ | |
2723 | ||
2724 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | |
2725 | { | |
2726 | struct address_space *mapping = file->f_mapping; | |
2727 | ||
2728 | if (!mapping->a_ops->readpage) | |
2729 | return -ENOEXEC; | |
2730 | file_accessed(file); | |
2731 | vma->vm_ops = &generic_file_vm_ops; | |
2732 | return 0; | |
2733 | } | |
1da177e4 LT |
2734 | |
2735 | /* | |
2736 | * This is for filesystems which do not implement ->writepage. | |
2737 | */ | |
2738 | int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) | |
2739 | { | |
2740 | if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) | |
2741 | return -EINVAL; | |
2742 | return generic_file_mmap(file, vma); | |
2743 | } | |
2744 | #else | |
4b96a37d | 2745 | vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) |
45397228 | 2746 | { |
4b96a37d | 2747 | return VM_FAULT_SIGBUS; |
45397228 | 2748 | } |
1da177e4 LT |
2749 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) |
2750 | { | |
2751 | return -ENOSYS; | |
2752 | } | |
2753 | int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) | |
2754 | { | |
2755 | return -ENOSYS; | |
2756 | } | |
2757 | #endif /* CONFIG_MMU */ | |
2758 | ||
45397228 | 2759 | EXPORT_SYMBOL(filemap_page_mkwrite); |
1da177e4 LT |
2760 | EXPORT_SYMBOL(generic_file_mmap); |
2761 | EXPORT_SYMBOL(generic_file_readonly_mmap); | |
2762 | ||
67f9fd91 SL |
2763 | static struct page *wait_on_page_read(struct page *page) |
2764 | { | |
2765 | if (!IS_ERR(page)) { | |
2766 | wait_on_page_locked(page); | |
2767 | if (!PageUptodate(page)) { | |
09cbfeaf | 2768 | put_page(page); |
67f9fd91 SL |
2769 | page = ERR_PTR(-EIO); |
2770 | } | |
2771 | } | |
2772 | return page; | |
2773 | } | |
2774 | ||
32b63529 | 2775 | static struct page *do_read_cache_page(struct address_space *mapping, |
57f6b96c | 2776 | pgoff_t index, |
5e5358e7 | 2777 | int (*filler)(void *, struct page *), |
0531b2aa LT |
2778 | void *data, |
2779 | gfp_t gfp) | |
1da177e4 | 2780 | { |
eb2be189 | 2781 | struct page *page; |
1da177e4 LT |
2782 | int err; |
2783 | repeat: | |
2784 | page = find_get_page(mapping, index); | |
2785 | if (!page) { | |
453f85d4 | 2786 | page = __page_cache_alloc(gfp); |
eb2be189 NP |
2787 | if (!page) |
2788 | return ERR_PTR(-ENOMEM); | |
e6f67b8c | 2789 | err = add_to_page_cache_lru(page, mapping, index, gfp); |
eb2be189 | 2790 | if (unlikely(err)) { |
09cbfeaf | 2791 | put_page(page); |
eb2be189 NP |
2792 | if (err == -EEXIST) |
2793 | goto repeat; | |
22ecdb4f | 2794 | /* Presumably ENOMEM for xarray node */ |
1da177e4 LT |
2795 | return ERR_PTR(err); |
2796 | } | |
32b63529 MG |
2797 | |
2798 | filler: | |
6c45b454 CH |
2799 | if (filler) |
2800 | err = filler(data, page); | |
2801 | else | |
2802 | err = mapping->a_ops->readpage(data, page); | |
2803 | ||
1da177e4 | 2804 | if (err < 0) { |
09cbfeaf | 2805 | put_page(page); |
32b63529 | 2806 | return ERR_PTR(err); |
1da177e4 | 2807 | } |
1da177e4 | 2808 | |
32b63529 MG |
2809 | page = wait_on_page_read(page); |
2810 | if (IS_ERR(page)) | |
2811 | return page; | |
2812 | goto out; | |
2813 | } | |
1da177e4 LT |
2814 | if (PageUptodate(page)) |
2815 | goto out; | |
2816 | ||
ebded027 MG |
2817 | /* |
2818 | * Page is not up to date and may be locked due one of the following | |
2819 | * case a: Page is being filled and the page lock is held | |
2820 | * case b: Read/write error clearing the page uptodate status | |
2821 | * case c: Truncation in progress (page locked) | |
2822 | * case d: Reclaim in progress | |
2823 | * | |
2824 | * Case a, the page will be up to date when the page is unlocked. | |
2825 | * There is no need to serialise on the page lock here as the page | |
2826 | * is pinned so the lock gives no additional protection. Even if the | |
2827 | * the page is truncated, the data is still valid if PageUptodate as | |
2828 | * it's a race vs truncate race. | |
2829 | * Case b, the page will not be up to date | |
2830 | * Case c, the page may be truncated but in itself, the data may still | |
2831 | * be valid after IO completes as it's a read vs truncate race. The | |
2832 | * operation must restart if the page is not uptodate on unlock but | |
2833 | * otherwise serialising on page lock to stabilise the mapping gives | |
2834 | * no additional guarantees to the caller as the page lock is | |
2835 | * released before return. | |
2836 | * Case d, similar to truncation. If reclaim holds the page lock, it | |
2837 | * will be a race with remove_mapping that determines if the mapping | |
2838 | * is valid on unlock but otherwise the data is valid and there is | |
2839 | * no need to serialise with page lock. | |
2840 | * | |
2841 | * As the page lock gives no additional guarantee, we optimistically | |
2842 | * wait on the page to be unlocked and check if it's up to date and | |
2843 | * use the page if it is. Otherwise, the page lock is required to | |
2844 | * distinguish between the different cases. The motivation is that we | |
2845 | * avoid spurious serialisations and wakeups when multiple processes | |
2846 | * wait on the same page for IO to complete. | |
2847 | */ | |
2848 | wait_on_page_locked(page); | |
2849 | if (PageUptodate(page)) | |
2850 | goto out; | |
2851 | ||
2852 | /* Distinguish between all the cases under the safety of the lock */ | |
1da177e4 | 2853 | lock_page(page); |
ebded027 MG |
2854 | |
2855 | /* Case c or d, restart the operation */ | |
1da177e4 LT |
2856 | if (!page->mapping) { |
2857 | unlock_page(page); | |
09cbfeaf | 2858 | put_page(page); |
32b63529 | 2859 | goto repeat; |
1da177e4 | 2860 | } |
ebded027 MG |
2861 | |
2862 | /* Someone else locked and filled the page in a very small window */ | |
1da177e4 LT |
2863 | if (PageUptodate(page)) { |
2864 | unlock_page(page); | |
2865 | goto out; | |
2866 | } | |
32b63529 MG |
2867 | goto filler; |
2868 | ||
c855ff37 | 2869 | out: |
6fe6900e NP |
2870 | mark_page_accessed(page); |
2871 | return page; | |
2872 | } | |
0531b2aa LT |
2873 | |
2874 | /** | |
67f9fd91 | 2875 | * read_cache_page - read into page cache, fill it if needed |
0531b2aa LT |
2876 | * @mapping: the page's address_space |
2877 | * @index: the page index | |
2878 | * @filler: function to perform the read | |
5e5358e7 | 2879 | * @data: first arg to filler(data, page) function, often left as NULL |
0531b2aa | 2880 | * |
0531b2aa | 2881 | * Read into the page cache. If a page already exists, and PageUptodate() is |
67f9fd91 | 2882 | * not set, try to fill the page and wait for it to become unlocked. |
0531b2aa LT |
2883 | * |
2884 | * If the page does not get brought uptodate, return -EIO. | |
a862f68a MR |
2885 | * |
2886 | * Return: up to date page on success, ERR_PTR() on failure. | |
0531b2aa | 2887 | */ |
67f9fd91 | 2888 | struct page *read_cache_page(struct address_space *mapping, |
0531b2aa | 2889 | pgoff_t index, |
5e5358e7 | 2890 | int (*filler)(void *, struct page *), |
0531b2aa LT |
2891 | void *data) |
2892 | { | |
d322a8e5 CH |
2893 | return do_read_cache_page(mapping, index, filler, data, |
2894 | mapping_gfp_mask(mapping)); | |
0531b2aa | 2895 | } |
67f9fd91 | 2896 | EXPORT_SYMBOL(read_cache_page); |
0531b2aa LT |
2897 | |
2898 | /** | |
2899 | * read_cache_page_gfp - read into page cache, using specified page allocation flags. | |
2900 | * @mapping: the page's address_space | |
2901 | * @index: the page index | |
2902 | * @gfp: the page allocator flags to use if allocating | |
2903 | * | |
2904 | * This is the same as "read_mapping_page(mapping, index, NULL)", but with | |
e6f67b8c | 2905 | * any new page allocations done using the specified allocation flags. |
0531b2aa LT |
2906 | * |
2907 | * If the page does not get brought uptodate, return -EIO. | |
a862f68a MR |
2908 | * |
2909 | * Return: up to date page on success, ERR_PTR() on failure. | |
0531b2aa LT |
2910 | */ |
2911 | struct page *read_cache_page_gfp(struct address_space *mapping, | |
2912 | pgoff_t index, | |
2913 | gfp_t gfp) | |
2914 | { | |
6c45b454 | 2915 | return do_read_cache_page(mapping, index, NULL, NULL, gfp); |
0531b2aa LT |
2916 | } |
2917 | EXPORT_SYMBOL(read_cache_page_gfp); | |
2918 | ||
9fd91a90 DW |
2919 | /* |
2920 | * Don't operate on ranges the page cache doesn't support, and don't exceed the | |
2921 | * LFS limits. If pos is under the limit it becomes a short access. If it | |
2922 | * exceeds the limit we return -EFBIG. | |
2923 | */ | |
9fd91a90 DW |
2924 | static int generic_write_check_limits(struct file *file, loff_t pos, |
2925 | loff_t *count) | |
2926 | { | |
646955cd AG |
2927 | struct inode *inode = file->f_mapping->host; |
2928 | loff_t max_size = inode->i_sb->s_maxbytes; | |
9fd91a90 DW |
2929 | loff_t limit = rlimit(RLIMIT_FSIZE); |
2930 | ||
2931 | if (limit != RLIM_INFINITY) { | |
2932 | if (pos >= limit) { | |
2933 | send_sig(SIGXFSZ, current, 0); | |
2934 | return -EFBIG; | |
2935 | } | |
2936 | *count = min(*count, limit - pos); | |
2937 | } | |
2938 | ||
646955cd AG |
2939 | if (!(file->f_flags & O_LARGEFILE)) |
2940 | max_size = MAX_NON_LFS; | |
2941 | ||
2942 | if (unlikely(pos >= max_size)) | |
2943 | return -EFBIG; | |
2944 | ||
2945 | *count = min(*count, max_size - pos); | |
2946 | ||
2947 | return 0; | |
9fd91a90 DW |
2948 | } |
2949 | ||
1da177e4 LT |
2950 | /* |
2951 | * Performs necessary checks before doing a write | |
2952 | * | |
485bb99b | 2953 | * Can adjust writing position or amount of bytes to write. |
1da177e4 LT |
2954 | * Returns appropriate error code that caller should return or |
2955 | * zero in case that write should be allowed. | |
2956 | */ | |
3309dd04 | 2957 | inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 | 2958 | { |
3309dd04 | 2959 | struct file *file = iocb->ki_filp; |
1da177e4 | 2960 | struct inode *inode = file->f_mapping->host; |
9fd91a90 DW |
2961 | loff_t count; |
2962 | int ret; | |
1da177e4 | 2963 | |
dc617f29 DW |
2964 | if (IS_SWAPFILE(inode)) |
2965 | return -ETXTBSY; | |
2966 | ||
3309dd04 AV |
2967 | if (!iov_iter_count(from)) |
2968 | return 0; | |
1da177e4 | 2969 | |
0fa6b005 | 2970 | /* FIXME: this is for backwards compatibility with 2.4 */ |
2ba48ce5 | 2971 | if (iocb->ki_flags & IOCB_APPEND) |
3309dd04 | 2972 | iocb->ki_pos = i_size_read(inode); |
1da177e4 | 2973 | |
6be96d3a GR |
2974 | if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) |
2975 | return -EINVAL; | |
2976 | ||
9fd91a90 DW |
2977 | count = iov_iter_count(from); |
2978 | ret = generic_write_check_limits(file, iocb->ki_pos, &count); | |
2979 | if (ret) | |
2980 | return ret; | |
1da177e4 | 2981 | |
9fd91a90 | 2982 | iov_iter_truncate(from, count); |
3309dd04 | 2983 | return iov_iter_count(from); |
1da177e4 LT |
2984 | } |
2985 | EXPORT_SYMBOL(generic_write_checks); | |
2986 | ||
1383a7ed DW |
2987 | /* |
2988 | * Performs necessary checks before doing a clone. | |
2989 | * | |
646955cd | 2990 | * Can adjust amount of bytes to clone via @req_count argument. |
1383a7ed DW |
2991 | * Returns appropriate error code that caller should return or |
2992 | * zero in case the clone should be allowed. | |
2993 | */ | |
2994 | int generic_remap_checks(struct file *file_in, loff_t pos_in, | |
2995 | struct file *file_out, loff_t pos_out, | |
42ec3d4c | 2996 | loff_t *req_count, unsigned int remap_flags) |
1383a7ed DW |
2997 | { |
2998 | struct inode *inode_in = file_in->f_mapping->host; | |
2999 | struct inode *inode_out = file_out->f_mapping->host; | |
3000 | uint64_t count = *req_count; | |
3001 | uint64_t bcount; | |
3002 | loff_t size_in, size_out; | |
3003 | loff_t bs = inode_out->i_sb->s_blocksize; | |
9fd91a90 | 3004 | int ret; |
1383a7ed DW |
3005 | |
3006 | /* The start of both ranges must be aligned to an fs block. */ | |
3007 | if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs)) | |
3008 | return -EINVAL; | |
3009 | ||
3010 | /* Ensure offsets don't wrap. */ | |
3011 | if (pos_in + count < pos_in || pos_out + count < pos_out) | |
3012 | return -EINVAL; | |
3013 | ||
3014 | size_in = i_size_read(inode_in); | |
3015 | size_out = i_size_read(inode_out); | |
3016 | ||
3017 | /* Dedupe requires both ranges to be within EOF. */ | |
3d28193e | 3018 | if ((remap_flags & REMAP_FILE_DEDUP) && |
1383a7ed DW |
3019 | (pos_in >= size_in || pos_in + count > size_in || |
3020 | pos_out >= size_out || pos_out + count > size_out)) | |
3021 | return -EINVAL; | |
3022 | ||
3023 | /* Ensure the infile range is within the infile. */ | |
3024 | if (pos_in >= size_in) | |
3025 | return -EINVAL; | |
3026 | count = min(count, size_in - (uint64_t)pos_in); | |
3027 | ||
9fd91a90 DW |
3028 | ret = generic_write_check_limits(file_out, pos_out, &count); |
3029 | if (ret) | |
3030 | return ret; | |
1da177e4 LT |
3031 | |
3032 | /* | |
1383a7ed DW |
3033 | * If the user wanted us to link to the infile's EOF, round up to the |
3034 | * next block boundary for this check. | |
3035 | * | |
3036 | * Otherwise, make sure the count is also block-aligned, having | |
3037 | * already confirmed the starting offsets' block alignment. | |
1da177e4 | 3038 | */ |
1383a7ed DW |
3039 | if (pos_in + count == size_in) { |
3040 | bcount = ALIGN(size_in, bs) - pos_in; | |
3041 | } else { | |
3042 | if (!IS_ALIGNED(count, bs)) | |
eca3654e | 3043 | count = ALIGN_DOWN(count, bs); |
1383a7ed | 3044 | bcount = count; |
1da177e4 LT |
3045 | } |
3046 | ||
1383a7ed DW |
3047 | /* Don't allow overlapped cloning within the same file. */ |
3048 | if (inode_in == inode_out && | |
3049 | pos_out + bcount > pos_in && | |
3050 | pos_out < pos_in + bcount) | |
3051 | return -EINVAL; | |
3052 | ||
1da177e4 | 3053 | /* |
eca3654e DW |
3054 | * We shortened the request but the caller can't deal with that, so |
3055 | * bounce the request back to userspace. | |
1da177e4 | 3056 | */ |
eca3654e | 3057 | if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN)) |
1383a7ed | 3058 | return -EINVAL; |
1da177e4 | 3059 | |
eca3654e | 3060 | *req_count = count; |
1383a7ed | 3061 | return 0; |
1da177e4 | 3062 | } |
1da177e4 | 3063 | |
a3171351 AG |
3064 | |
3065 | /* | |
3066 | * Performs common checks before doing a file copy/clone | |
3067 | * from @file_in to @file_out. | |
3068 | */ | |
3069 | int generic_file_rw_checks(struct file *file_in, struct file *file_out) | |
3070 | { | |
3071 | struct inode *inode_in = file_inode(file_in); | |
3072 | struct inode *inode_out = file_inode(file_out); | |
3073 | ||
3074 | /* Don't copy dirs, pipes, sockets... */ | |
3075 | if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode)) | |
3076 | return -EISDIR; | |
3077 | if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode)) | |
3078 | return -EINVAL; | |
3079 | ||
3080 | if (!(file_in->f_mode & FMODE_READ) || | |
3081 | !(file_out->f_mode & FMODE_WRITE) || | |
3082 | (file_out->f_flags & O_APPEND)) | |
3083 | return -EBADF; | |
3084 | ||
3085 | return 0; | |
3086 | } | |
3087 | ||
96e6e8f4 AG |
3088 | /* |
3089 | * Performs necessary checks before doing a file copy | |
3090 | * | |
3091 | * Can adjust amount of bytes to copy via @req_count argument. | |
3092 | * Returns appropriate error code that caller should return or | |
3093 | * zero in case the copy should be allowed. | |
3094 | */ | |
3095 | int generic_copy_file_checks(struct file *file_in, loff_t pos_in, | |
3096 | struct file *file_out, loff_t pos_out, | |
3097 | size_t *req_count, unsigned int flags) | |
3098 | { | |
3099 | struct inode *inode_in = file_inode(file_in); | |
3100 | struct inode *inode_out = file_inode(file_out); | |
3101 | uint64_t count = *req_count; | |
3102 | loff_t size_in; | |
3103 | int ret; | |
3104 | ||
3105 | ret = generic_file_rw_checks(file_in, file_out); | |
3106 | if (ret) | |
3107 | return ret; | |
3108 | ||
3109 | /* Don't touch certain kinds of inodes */ | |
3110 | if (IS_IMMUTABLE(inode_out)) | |
3111 | return -EPERM; | |
3112 | ||
3113 | if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out)) | |
3114 | return -ETXTBSY; | |
3115 | ||
3116 | /* Ensure offsets don't wrap. */ | |
3117 | if (pos_in + count < pos_in || pos_out + count < pos_out) | |
3118 | return -EOVERFLOW; | |
3119 | ||
3120 | /* Shorten the copy to EOF */ | |
3121 | size_in = i_size_read(inode_in); | |
3122 | if (pos_in >= size_in) | |
3123 | count = 0; | |
3124 | else | |
3125 | count = min(count, size_in - (uint64_t)pos_in); | |
3126 | ||
3127 | ret = generic_write_check_limits(file_out, pos_out, &count); | |
3128 | if (ret) | |
3129 | return ret; | |
3130 | ||
3131 | /* Don't allow overlapped copying within the same file. */ | |
3132 | if (inode_in == inode_out && | |
3133 | pos_out + count > pos_in && | |
3134 | pos_out < pos_in + count) | |
3135 | return -EINVAL; | |
3136 | ||
3137 | *req_count = count; | |
3138 | return 0; | |
3139 | } | |
3140 | ||
afddba49 NP |
3141 | int pagecache_write_begin(struct file *file, struct address_space *mapping, |
3142 | loff_t pos, unsigned len, unsigned flags, | |
3143 | struct page **pagep, void **fsdata) | |
3144 | { | |
3145 | const struct address_space_operations *aops = mapping->a_ops; | |
3146 | ||
4e02ed4b | 3147 | return aops->write_begin(file, mapping, pos, len, flags, |
afddba49 | 3148 | pagep, fsdata); |
afddba49 NP |
3149 | } |
3150 | EXPORT_SYMBOL(pagecache_write_begin); | |
3151 | ||
3152 | int pagecache_write_end(struct file *file, struct address_space *mapping, | |
3153 | loff_t pos, unsigned len, unsigned copied, | |
3154 | struct page *page, void *fsdata) | |
3155 | { | |
3156 | const struct address_space_operations *aops = mapping->a_ops; | |
afddba49 | 3157 | |
4e02ed4b | 3158 | return aops->write_end(file, mapping, pos, len, copied, page, fsdata); |
afddba49 NP |
3159 | } |
3160 | EXPORT_SYMBOL(pagecache_write_end); | |
3161 | ||
1da177e4 | 3162 | ssize_t |
1af5bb49 | 3163 | generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 LT |
3164 | { |
3165 | struct file *file = iocb->ki_filp; | |
3166 | struct address_space *mapping = file->f_mapping; | |
3167 | struct inode *inode = mapping->host; | |
1af5bb49 | 3168 | loff_t pos = iocb->ki_pos; |
1da177e4 | 3169 | ssize_t written; |
a969e903 CH |
3170 | size_t write_len; |
3171 | pgoff_t end; | |
1da177e4 | 3172 | |
0c949334 | 3173 | write_len = iov_iter_count(from); |
09cbfeaf | 3174 | end = (pos + write_len - 1) >> PAGE_SHIFT; |
a969e903 | 3175 | |
6be96d3a GR |
3176 | if (iocb->ki_flags & IOCB_NOWAIT) { |
3177 | /* If there are pages to writeback, return */ | |
3178 | if (filemap_range_has_page(inode->i_mapping, pos, | |
35f12f0f | 3179 | pos + write_len - 1)) |
6be96d3a GR |
3180 | return -EAGAIN; |
3181 | } else { | |
3182 | written = filemap_write_and_wait_range(mapping, pos, | |
3183 | pos + write_len - 1); | |
3184 | if (written) | |
3185 | goto out; | |
3186 | } | |
a969e903 CH |
3187 | |
3188 | /* | |
3189 | * After a write we want buffered reads to be sure to go to disk to get | |
3190 | * the new data. We invalidate clean cached page from the region we're | |
3191 | * about to write. We do this *before* the write so that we can return | |
6ccfa806 | 3192 | * without clobbering -EIOCBQUEUED from ->direct_IO(). |
a969e903 | 3193 | */ |
55635ba7 | 3194 | written = invalidate_inode_pages2_range(mapping, |
09cbfeaf | 3195 | pos >> PAGE_SHIFT, end); |
55635ba7 AR |
3196 | /* |
3197 | * If a page can not be invalidated, return 0 to fall back | |
3198 | * to buffered write. | |
3199 | */ | |
3200 | if (written) { | |
3201 | if (written == -EBUSY) | |
3202 | return 0; | |
3203 | goto out; | |
a969e903 CH |
3204 | } |
3205 | ||
639a93a5 | 3206 | written = mapping->a_ops->direct_IO(iocb, from); |
a969e903 CH |
3207 | |
3208 | /* | |
3209 | * Finally, try again to invalidate clean pages which might have been | |
3210 | * cached by non-direct readahead, or faulted in by get_user_pages() | |
3211 | * if the source of the write was an mmap'ed region of the file | |
3212 | * we're writing. Either one is a pretty crazy thing to do, | |
3213 | * so we don't support it 100%. If this invalidation | |
3214 | * fails, tough, the write still worked... | |
332391a9 LC |
3215 | * |
3216 | * Most of the time we do not need this since dio_complete() will do | |
3217 | * the invalidation for us. However there are some file systems that | |
3218 | * do not end up with dio_complete() being called, so let's not break | |
3219 | * them by removing it completely | |
a969e903 | 3220 | */ |
332391a9 LC |
3221 | if (mapping->nrpages) |
3222 | invalidate_inode_pages2_range(mapping, | |
3223 | pos >> PAGE_SHIFT, end); | |
a969e903 | 3224 | |
1da177e4 | 3225 | if (written > 0) { |
0116651c | 3226 | pos += written; |
639a93a5 | 3227 | write_len -= written; |
0116651c NK |
3228 | if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { |
3229 | i_size_write(inode, pos); | |
1da177e4 LT |
3230 | mark_inode_dirty(inode); |
3231 | } | |
5cb6c6c7 | 3232 | iocb->ki_pos = pos; |
1da177e4 | 3233 | } |
639a93a5 | 3234 | iov_iter_revert(from, write_len - iov_iter_count(from)); |
a969e903 | 3235 | out: |
1da177e4 LT |
3236 | return written; |
3237 | } | |
3238 | EXPORT_SYMBOL(generic_file_direct_write); | |
3239 | ||
eb2be189 NP |
3240 | /* |
3241 | * Find or create a page at the given pagecache position. Return the locked | |
3242 | * page. This function is specifically for buffered writes. | |
3243 | */ | |
54566b2c NP |
3244 | struct page *grab_cache_page_write_begin(struct address_space *mapping, |
3245 | pgoff_t index, unsigned flags) | |
eb2be189 | 3246 | { |
eb2be189 | 3247 | struct page *page; |
bbddabe2 | 3248 | int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; |
0faa70cb | 3249 | |
54566b2c | 3250 | if (flags & AOP_FLAG_NOFS) |
2457aec6 MG |
3251 | fgp_flags |= FGP_NOFS; |
3252 | ||
3253 | page = pagecache_get_page(mapping, index, fgp_flags, | |
45f87de5 | 3254 | mapping_gfp_mask(mapping)); |
c585a267 | 3255 | if (page) |
2457aec6 | 3256 | wait_for_stable_page(page); |
eb2be189 | 3257 | |
eb2be189 NP |
3258 | return page; |
3259 | } | |
54566b2c | 3260 | EXPORT_SYMBOL(grab_cache_page_write_begin); |
eb2be189 | 3261 | |
3b93f911 | 3262 | ssize_t generic_perform_write(struct file *file, |
afddba49 NP |
3263 | struct iov_iter *i, loff_t pos) |
3264 | { | |
3265 | struct address_space *mapping = file->f_mapping; | |
3266 | const struct address_space_operations *a_ops = mapping->a_ops; | |
3267 | long status = 0; | |
3268 | ssize_t written = 0; | |
674b892e NP |
3269 | unsigned int flags = 0; |
3270 | ||
afddba49 NP |
3271 | do { |
3272 | struct page *page; | |
afddba49 NP |
3273 | unsigned long offset; /* Offset into pagecache page */ |
3274 | unsigned long bytes; /* Bytes to write to page */ | |
3275 | size_t copied; /* Bytes copied from user */ | |
3276 | void *fsdata; | |
3277 | ||
09cbfeaf KS |
3278 | offset = (pos & (PAGE_SIZE - 1)); |
3279 | bytes = min_t(unsigned long, PAGE_SIZE - offset, | |
afddba49 NP |
3280 | iov_iter_count(i)); |
3281 | ||
3282 | again: | |
00a3d660 LT |
3283 | /* |
3284 | * Bring in the user page that we will copy from _first_. | |
3285 | * Otherwise there's a nasty deadlock on copying from the | |
3286 | * same page as we're writing to, without it being marked | |
3287 | * up-to-date. | |
3288 | * | |
3289 | * Not only is this an optimisation, but it is also required | |
3290 | * to check that the address is actually valid, when atomic | |
3291 | * usercopies are used, below. | |
3292 | */ | |
3293 | if (unlikely(iov_iter_fault_in_readable(i, bytes))) { | |
3294 | status = -EFAULT; | |
3295 | break; | |
3296 | } | |
3297 | ||
296291cd JK |
3298 | if (fatal_signal_pending(current)) { |
3299 | status = -EINTR; | |
3300 | break; | |
3301 | } | |
3302 | ||
674b892e | 3303 | status = a_ops->write_begin(file, mapping, pos, bytes, flags, |
afddba49 | 3304 | &page, &fsdata); |
2457aec6 | 3305 | if (unlikely(status < 0)) |
afddba49 NP |
3306 | break; |
3307 | ||
931e80e4 | 3308 | if (mapping_writably_mapped(mapping)) |
3309 | flush_dcache_page(page); | |
00a3d660 | 3310 | |
afddba49 | 3311 | copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); |
afddba49 NP |
3312 | flush_dcache_page(page); |
3313 | ||
3314 | status = a_ops->write_end(file, mapping, pos, bytes, copied, | |
3315 | page, fsdata); | |
3316 | if (unlikely(status < 0)) | |
3317 | break; | |
3318 | copied = status; | |
3319 | ||
3320 | cond_resched(); | |
3321 | ||
124d3b70 | 3322 | iov_iter_advance(i, copied); |
afddba49 NP |
3323 | if (unlikely(copied == 0)) { |
3324 | /* | |
3325 | * If we were unable to copy any data at all, we must | |
3326 | * fall back to a single segment length write. | |
3327 | * | |
3328 | * If we didn't fallback here, we could livelock | |
3329 | * because not all segments in the iov can be copied at | |
3330 | * once without a pagefault. | |
3331 | */ | |
09cbfeaf | 3332 | bytes = min_t(unsigned long, PAGE_SIZE - offset, |
afddba49 NP |
3333 | iov_iter_single_seg_count(i)); |
3334 | goto again; | |
3335 | } | |
afddba49 NP |
3336 | pos += copied; |
3337 | written += copied; | |
3338 | ||
3339 | balance_dirty_pages_ratelimited(mapping); | |
afddba49 NP |
3340 | } while (iov_iter_count(i)); |
3341 | ||
3342 | return written ? written : status; | |
3343 | } | |
3b93f911 | 3344 | EXPORT_SYMBOL(generic_perform_write); |
1da177e4 | 3345 | |
e4dd9de3 | 3346 | /** |
8174202b | 3347 | * __generic_file_write_iter - write data to a file |
e4dd9de3 | 3348 | * @iocb: IO state structure (file, offset, etc.) |
8174202b | 3349 | * @from: iov_iter with data to write |
e4dd9de3 JK |
3350 | * |
3351 | * This function does all the work needed for actually writing data to a | |
3352 | * file. It does all basic checks, removes SUID from the file, updates | |
3353 | * modification times and calls proper subroutines depending on whether we | |
3354 | * do direct IO or a standard buffered write. | |
3355 | * | |
3356 | * It expects i_mutex to be grabbed unless we work on a block device or similar | |
3357 | * object which does not need locking at all. | |
3358 | * | |
3359 | * This function does *not* take care of syncing data in case of O_SYNC write. | |
3360 | * A caller has to handle it. This is mainly due to the fact that we want to | |
3361 | * avoid syncing under i_mutex. | |
a862f68a MR |
3362 | * |
3363 | * Return: | |
3364 | * * number of bytes written, even for truncated writes | |
3365 | * * negative error code if no data has been written at all | |
e4dd9de3 | 3366 | */ |
8174202b | 3367 | ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 LT |
3368 | { |
3369 | struct file *file = iocb->ki_filp; | |
fb5527e6 | 3370 | struct address_space * mapping = file->f_mapping; |
1da177e4 | 3371 | struct inode *inode = mapping->host; |
3b93f911 | 3372 | ssize_t written = 0; |
1da177e4 | 3373 | ssize_t err; |
3b93f911 | 3374 | ssize_t status; |
1da177e4 | 3375 | |
1da177e4 | 3376 | /* We can write back this queue in page reclaim */ |
de1414a6 | 3377 | current->backing_dev_info = inode_to_bdi(inode); |
5fa8e0a1 | 3378 | err = file_remove_privs(file); |
1da177e4 LT |
3379 | if (err) |
3380 | goto out; | |
3381 | ||
c3b2da31 JB |
3382 | err = file_update_time(file); |
3383 | if (err) | |
3384 | goto out; | |
1da177e4 | 3385 | |
2ba48ce5 | 3386 | if (iocb->ki_flags & IOCB_DIRECT) { |
0b8def9d | 3387 | loff_t pos, endbyte; |
fb5527e6 | 3388 | |
1af5bb49 | 3389 | written = generic_file_direct_write(iocb, from); |
1da177e4 | 3390 | /* |
fbbbad4b MW |
3391 | * If the write stopped short of completing, fall back to |
3392 | * buffered writes. Some filesystems do this for writes to | |
3393 | * holes, for example. For DAX files, a buffered write will | |
3394 | * not succeed (even if it did, DAX does not handle dirty | |
3395 | * page-cache pages correctly). | |
1da177e4 | 3396 | */ |
0b8def9d | 3397 | if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) |
fbbbad4b MW |
3398 | goto out; |
3399 | ||
0b8def9d | 3400 | status = generic_perform_write(file, from, pos = iocb->ki_pos); |
fb5527e6 | 3401 | /* |
3b93f911 | 3402 | * If generic_perform_write() returned a synchronous error |
fb5527e6 JM |
3403 | * then we want to return the number of bytes which were |
3404 | * direct-written, or the error code if that was zero. Note | |
3405 | * that this differs from normal direct-io semantics, which | |
3406 | * will return -EFOO even if some bytes were written. | |
3407 | */ | |
60bb4529 | 3408 | if (unlikely(status < 0)) { |
3b93f911 | 3409 | err = status; |
fb5527e6 JM |
3410 | goto out; |
3411 | } | |
fb5527e6 JM |
3412 | /* |
3413 | * We need to ensure that the page cache pages are written to | |
3414 | * disk and invalidated to preserve the expected O_DIRECT | |
3415 | * semantics. | |
3416 | */ | |
3b93f911 | 3417 | endbyte = pos + status - 1; |
0b8def9d | 3418 | err = filemap_write_and_wait_range(mapping, pos, endbyte); |
fb5527e6 | 3419 | if (err == 0) { |
0b8def9d | 3420 | iocb->ki_pos = endbyte + 1; |
3b93f911 | 3421 | written += status; |
fb5527e6 | 3422 | invalidate_mapping_pages(mapping, |
09cbfeaf KS |
3423 | pos >> PAGE_SHIFT, |
3424 | endbyte >> PAGE_SHIFT); | |
fb5527e6 JM |
3425 | } else { |
3426 | /* | |
3427 | * We don't know how much we wrote, so just return | |
3428 | * the number of bytes which were direct-written | |
3429 | */ | |
3430 | } | |
3431 | } else { | |
0b8def9d AV |
3432 | written = generic_perform_write(file, from, iocb->ki_pos); |
3433 | if (likely(written > 0)) | |
3434 | iocb->ki_pos += written; | |
fb5527e6 | 3435 | } |
1da177e4 LT |
3436 | out: |
3437 | current->backing_dev_info = NULL; | |
3438 | return written ? written : err; | |
3439 | } | |
8174202b | 3440 | EXPORT_SYMBOL(__generic_file_write_iter); |
e4dd9de3 | 3441 | |
e4dd9de3 | 3442 | /** |
8174202b | 3443 | * generic_file_write_iter - write data to a file |
e4dd9de3 | 3444 | * @iocb: IO state structure |
8174202b | 3445 | * @from: iov_iter with data to write |
e4dd9de3 | 3446 | * |
8174202b | 3447 | * This is a wrapper around __generic_file_write_iter() to be used by most |
e4dd9de3 JK |
3448 | * filesystems. It takes care of syncing the file in case of O_SYNC file |
3449 | * and acquires i_mutex as needed. | |
a862f68a MR |
3450 | * Return: |
3451 | * * negative error code if no data has been written at all of | |
3452 | * vfs_fsync_range() failed for a synchronous write | |
3453 | * * number of bytes written, even for truncated writes | |
e4dd9de3 | 3454 | */ |
8174202b | 3455 | ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) |
1da177e4 LT |
3456 | { |
3457 | struct file *file = iocb->ki_filp; | |
148f948b | 3458 | struct inode *inode = file->f_mapping->host; |
1da177e4 | 3459 | ssize_t ret; |
1da177e4 | 3460 | |
5955102c | 3461 | inode_lock(inode); |
3309dd04 AV |
3462 | ret = generic_write_checks(iocb, from); |
3463 | if (ret > 0) | |
5f380c7f | 3464 | ret = __generic_file_write_iter(iocb, from); |
5955102c | 3465 | inode_unlock(inode); |
1da177e4 | 3466 | |
e2592217 CH |
3467 | if (ret > 0) |
3468 | ret = generic_write_sync(iocb, ret); | |
1da177e4 LT |
3469 | return ret; |
3470 | } | |
8174202b | 3471 | EXPORT_SYMBOL(generic_file_write_iter); |
1da177e4 | 3472 | |
cf9a2ae8 DH |
3473 | /** |
3474 | * try_to_release_page() - release old fs-specific metadata on a page | |
3475 | * | |
3476 | * @page: the page which the kernel is trying to free | |
3477 | * @gfp_mask: memory allocation flags (and I/O mode) | |
3478 | * | |
3479 | * The address_space is to try to release any data against the page | |
a862f68a | 3480 | * (presumably at page->private). |
cf9a2ae8 | 3481 | * |
266cf658 DH |
3482 | * This may also be called if PG_fscache is set on a page, indicating that the |
3483 | * page is known to the local caching routines. | |
3484 | * | |
cf9a2ae8 | 3485 | * The @gfp_mask argument specifies whether I/O may be performed to release |
71baba4b | 3486 | * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). |
cf9a2ae8 | 3487 | * |
a862f68a | 3488 | * Return: %1 if the release was successful, otherwise return zero. |
cf9a2ae8 DH |
3489 | */ |
3490 | int try_to_release_page(struct page *page, gfp_t gfp_mask) | |
3491 | { | |
3492 | struct address_space * const mapping = page->mapping; | |
3493 | ||
3494 | BUG_ON(!PageLocked(page)); | |
3495 | if (PageWriteback(page)) | |
3496 | return 0; | |
3497 | ||
3498 | if (mapping && mapping->a_ops->releasepage) | |
3499 | return mapping->a_ops->releasepage(page, gfp_mask); | |
3500 | return try_to_free_buffers(page); | |
3501 | } | |
3502 | ||
3503 | EXPORT_SYMBOL(try_to_release_page); |