]>
Commit | Line | Data |
---|---|---|
8c16567d | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 | 2 | /* |
0fe23479 | 3 | * Copyright (C) 2001 Jens Axboe <[email protected]> |
1da177e4 LT |
4 | */ |
5 | #include <linux/mm.h> | |
6 | #include <linux/swap.h> | |
7 | #include <linux/bio.h> | |
8 | #include <linux/blkdev.h> | |
a27bb332 | 9 | #include <linux/uio.h> |
852c788f | 10 | #include <linux/iocontext.h> |
1da177e4 LT |
11 | #include <linux/slab.h> |
12 | #include <linux/init.h> | |
13 | #include <linux/kernel.h> | |
630d9c47 | 14 | #include <linux/export.h> |
1da177e4 LT |
15 | #include <linux/mempool.h> |
16 | #include <linux/workqueue.h> | |
852c788f | 17 | #include <linux/cgroup.h> |
08e18eab | 18 | #include <linux/blk-cgroup.h> |
b4c5875d | 19 | #include <linux/highmem.h> |
de6a78b6 | 20 | #include <linux/sched/sysctl.h> |
a892c8d5 | 21 | #include <linux/blk-crypto.h> |
49d1ec85 | 22 | #include <linux/xarray.h> |
1da177e4 | 23 | |
55782138 | 24 | #include <trace/events/block.h> |
9e234eea | 25 | #include "blk.h" |
67b42d0b | 26 | #include "blk-rq-qos.h" |
0bfc2455 | 27 | |
de76fd89 | 28 | static struct biovec_slab { |
6ac0b715 CH |
29 | int nr_vecs; |
30 | char *name; | |
31 | struct kmem_cache *slab; | |
de76fd89 CH |
32 | } bvec_slabs[] __read_mostly = { |
33 | { .nr_vecs = 16, .name = "biovec-16" }, | |
34 | { .nr_vecs = 64, .name = "biovec-64" }, | |
35 | { .nr_vecs = 128, .name = "biovec-128" }, | |
a8affc03 | 36 | { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" }, |
1da177e4 | 37 | }; |
6ac0b715 | 38 | |
7a800a20 CH |
39 | static struct biovec_slab *biovec_slab(unsigned short nr_vecs) |
40 | { | |
41 | switch (nr_vecs) { | |
42 | /* smaller bios use inline vecs */ | |
43 | case 5 ... 16: | |
44 | return &bvec_slabs[0]; | |
45 | case 17 ... 64: | |
46 | return &bvec_slabs[1]; | |
47 | case 65 ... 128: | |
48 | return &bvec_slabs[2]; | |
a8affc03 | 49 | case 129 ... BIO_MAX_VECS: |
7a800a20 CH |
50 | return &bvec_slabs[3]; |
51 | default: | |
52 | BUG(); | |
53 | return NULL; | |
54 | } | |
55 | } | |
1da177e4 | 56 | |
1da177e4 LT |
57 | /* |
58 | * fs_bio_set is the bio_set containing bio and iovec memory pools used by | |
59 | * IO code that does not need private memory pools. | |
60 | */ | |
f4f8154a | 61 | struct bio_set fs_bio_set; |
3f86a82a | 62 | EXPORT_SYMBOL(fs_bio_set); |
1da177e4 | 63 | |
bb799ca0 JA |
64 | /* |
65 | * Our slab pool management | |
66 | */ | |
67 | struct bio_slab { | |
68 | struct kmem_cache *slab; | |
69 | unsigned int slab_ref; | |
70 | unsigned int slab_size; | |
71 | char name[8]; | |
72 | }; | |
73 | static DEFINE_MUTEX(bio_slab_lock); | |
49d1ec85 | 74 | static DEFINE_XARRAY(bio_slabs); |
bb799ca0 | 75 | |
49d1ec85 | 76 | static struct bio_slab *create_bio_slab(unsigned int size) |
bb799ca0 | 77 | { |
49d1ec85 | 78 | struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL); |
bb799ca0 | 79 | |
49d1ec85 ML |
80 | if (!bslab) |
81 | return NULL; | |
bb799ca0 | 82 | |
49d1ec85 ML |
83 | snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size); |
84 | bslab->slab = kmem_cache_create(bslab->name, size, | |
85 | ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL); | |
86 | if (!bslab->slab) | |
87 | goto fail_alloc_slab; | |
bb799ca0 | 88 | |
49d1ec85 ML |
89 | bslab->slab_ref = 1; |
90 | bslab->slab_size = size; | |
bb799ca0 | 91 | |
49d1ec85 ML |
92 | if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL))) |
93 | return bslab; | |
bb799ca0 | 94 | |
49d1ec85 | 95 | kmem_cache_destroy(bslab->slab); |
bb799ca0 | 96 | |
49d1ec85 ML |
97 | fail_alloc_slab: |
98 | kfree(bslab); | |
99 | return NULL; | |
100 | } | |
bb799ca0 | 101 | |
49d1ec85 ML |
102 | static inline unsigned int bs_bio_slab_size(struct bio_set *bs) |
103 | { | |
9f180e31 | 104 | return bs->front_pad + sizeof(struct bio) + bs->back_pad; |
49d1ec85 | 105 | } |
bb799ca0 | 106 | |
49d1ec85 ML |
107 | static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs) |
108 | { | |
109 | unsigned int size = bs_bio_slab_size(bs); | |
110 | struct bio_slab *bslab; | |
bb799ca0 | 111 | |
49d1ec85 ML |
112 | mutex_lock(&bio_slab_lock); |
113 | bslab = xa_load(&bio_slabs, size); | |
114 | if (bslab) | |
115 | bslab->slab_ref++; | |
116 | else | |
117 | bslab = create_bio_slab(size); | |
bb799ca0 | 118 | mutex_unlock(&bio_slab_lock); |
49d1ec85 ML |
119 | |
120 | if (bslab) | |
121 | return bslab->slab; | |
122 | return NULL; | |
bb799ca0 JA |
123 | } |
124 | ||
125 | static void bio_put_slab(struct bio_set *bs) | |
126 | { | |
127 | struct bio_slab *bslab = NULL; | |
49d1ec85 | 128 | unsigned int slab_size = bs_bio_slab_size(bs); |
bb799ca0 JA |
129 | |
130 | mutex_lock(&bio_slab_lock); | |
131 | ||
49d1ec85 | 132 | bslab = xa_load(&bio_slabs, slab_size); |
bb799ca0 JA |
133 | if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) |
134 | goto out; | |
135 | ||
49d1ec85 ML |
136 | WARN_ON_ONCE(bslab->slab != bs->bio_slab); |
137 | ||
bb799ca0 JA |
138 | WARN_ON(!bslab->slab_ref); |
139 | ||
140 | if (--bslab->slab_ref) | |
141 | goto out; | |
142 | ||
49d1ec85 ML |
143 | xa_erase(&bio_slabs, slab_size); |
144 | ||
bb799ca0 | 145 | kmem_cache_destroy(bslab->slab); |
49d1ec85 | 146 | kfree(bslab); |
bb799ca0 JA |
147 | |
148 | out: | |
149 | mutex_unlock(&bio_slab_lock); | |
150 | } | |
151 | ||
7a800a20 | 152 | void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs) |
7ba1ba12 | 153 | { |
a8affc03 | 154 | BIO_BUG_ON(nr_vecs > BIO_MAX_VECS); |
ed996a52 | 155 | |
a8affc03 | 156 | if (nr_vecs == BIO_MAX_VECS) |
9f060e22 | 157 | mempool_free(bv, pool); |
7a800a20 CH |
158 | else if (nr_vecs > BIO_INLINE_VECS) |
159 | kmem_cache_free(biovec_slab(nr_vecs)->slab, bv); | |
bb799ca0 | 160 | } |
bb799ca0 | 161 | |
f2c3eb9b CH |
162 | /* |
163 | * Make the first allocation restricted and don't dump info on allocation | |
164 | * failures, since we'll fall back to the mempool in case of failure. | |
165 | */ | |
166 | static inline gfp_t bvec_alloc_gfp(gfp_t gfp) | |
167 | { | |
168 | return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) | | |
169 | __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; | |
bb799ca0 JA |
170 | } |
171 | ||
7a800a20 CH |
172 | struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, |
173 | gfp_t gfp_mask) | |
1da177e4 | 174 | { |
7a800a20 | 175 | struct biovec_slab *bvs = biovec_slab(*nr_vecs); |
1da177e4 | 176 | |
7a800a20 | 177 | if (WARN_ON_ONCE(!bvs)) |
7ff9345f | 178 | return NULL; |
7ff9345f JA |
179 | |
180 | /* | |
7a800a20 CH |
181 | * Upgrade the nr_vecs request to take full advantage of the allocation. |
182 | * We also rely on this in the bvec_free path. | |
7ff9345f | 183 | */ |
7a800a20 | 184 | *nr_vecs = bvs->nr_vecs; |
7ff9345f | 185 | |
7ff9345f | 186 | /* |
f007a3d6 CH |
187 | * Try a slab allocation first for all smaller allocations. If that |
188 | * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool. | |
a8affc03 | 189 | * The mempool is sized to handle up to BIO_MAX_VECS entries. |
7ff9345f | 190 | */ |
a8affc03 | 191 | if (*nr_vecs < BIO_MAX_VECS) { |
f007a3d6 | 192 | struct bio_vec *bvl; |
1da177e4 | 193 | |
f2c3eb9b | 194 | bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask)); |
7a800a20 | 195 | if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM)) |
f007a3d6 | 196 | return bvl; |
a8affc03 | 197 | *nr_vecs = BIO_MAX_VECS; |
7ff9345f JA |
198 | } |
199 | ||
f007a3d6 | 200 | return mempool_alloc(pool, gfp_mask); |
1da177e4 LT |
201 | } |
202 | ||
9ae3b3f5 | 203 | void bio_uninit(struct bio *bio) |
1da177e4 | 204 | { |
db9819c7 CH |
205 | #ifdef CONFIG_BLK_CGROUP |
206 | if (bio->bi_blkg) { | |
207 | blkg_put(bio->bi_blkg); | |
208 | bio->bi_blkg = NULL; | |
209 | } | |
210 | #endif | |
ece841ab JT |
211 | if (bio_integrity(bio)) |
212 | bio_integrity_free(bio); | |
a892c8d5 ST |
213 | |
214 | bio_crypt_free_ctx(bio); | |
4254bba1 | 215 | } |
9ae3b3f5 | 216 | EXPORT_SYMBOL(bio_uninit); |
7ba1ba12 | 217 | |
4254bba1 KO |
218 | static void bio_free(struct bio *bio) |
219 | { | |
220 | struct bio_set *bs = bio->bi_pool; | |
221 | void *p; | |
222 | ||
9ae3b3f5 | 223 | bio_uninit(bio); |
4254bba1 KO |
224 | |
225 | if (bs) { | |
7a800a20 | 226 | bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs); |
4254bba1 KO |
227 | |
228 | /* | |
229 | * If we have front padding, adjust the bio pointer before freeing | |
230 | */ | |
231 | p = bio; | |
bb799ca0 JA |
232 | p -= bs->front_pad; |
233 | ||
8aa6ba2f | 234 | mempool_free(p, &bs->bio_pool); |
4254bba1 KO |
235 | } else { |
236 | /* Bio was allocated by bio_kmalloc() */ | |
237 | kfree(bio); | |
238 | } | |
3676347a PO |
239 | } |
240 | ||
9ae3b3f5 JA |
241 | /* |
242 | * Users of this function have their own bio allocation. Subsequently, | |
243 | * they must remember to pair any call to bio_init() with bio_uninit() | |
244 | * when IO has completed, or when the bio is released. | |
245 | */ | |
3a83f467 ML |
246 | void bio_init(struct bio *bio, struct bio_vec *table, |
247 | unsigned short max_vecs) | |
1da177e4 | 248 | { |
2b94de55 | 249 | memset(bio, 0, sizeof(*bio)); |
c4cf5261 | 250 | atomic_set(&bio->__bi_remaining, 1); |
dac56212 | 251 | atomic_set(&bio->__bi_cnt, 1); |
3a83f467 ML |
252 | |
253 | bio->bi_io_vec = table; | |
254 | bio->bi_max_vecs = max_vecs; | |
1da177e4 | 255 | } |
a112a71d | 256 | EXPORT_SYMBOL(bio_init); |
1da177e4 | 257 | |
f44b48c7 KO |
258 | /** |
259 | * bio_reset - reinitialize a bio | |
260 | * @bio: bio to reset | |
261 | * | |
262 | * Description: | |
263 | * After calling bio_reset(), @bio will be in the same state as a freshly | |
264 | * allocated bio returned bio bio_alloc_bioset() - the only fields that are | |
265 | * preserved are the ones that are initialized by bio_alloc_bioset(). See | |
266 | * comment in struct bio. | |
267 | */ | |
268 | void bio_reset(struct bio *bio) | |
269 | { | |
9ae3b3f5 | 270 | bio_uninit(bio); |
f44b48c7 | 271 | memset(bio, 0, BIO_RESET_BYTES); |
c4cf5261 | 272 | atomic_set(&bio->__bi_remaining, 1); |
f44b48c7 KO |
273 | } |
274 | EXPORT_SYMBOL(bio_reset); | |
275 | ||
38f8baae | 276 | static struct bio *__bio_chain_endio(struct bio *bio) |
196d38bc | 277 | { |
4246a0b6 CH |
278 | struct bio *parent = bio->bi_private; |
279 | ||
4e4cbee9 CH |
280 | if (!parent->bi_status) |
281 | parent->bi_status = bio->bi_status; | |
196d38bc | 282 | bio_put(bio); |
38f8baae CH |
283 | return parent; |
284 | } | |
285 | ||
286 | static void bio_chain_endio(struct bio *bio) | |
287 | { | |
288 | bio_endio(__bio_chain_endio(bio)); | |
196d38bc KO |
289 | } |
290 | ||
291 | /** | |
292 | * bio_chain - chain bio completions | |
1051a902 | 293 | * @bio: the target bio |
5b874af6 | 294 | * @parent: the parent bio of @bio |
196d38bc KO |
295 | * |
296 | * The caller won't have a bi_end_io called when @bio completes - instead, | |
297 | * @parent's bi_end_io won't be called until both @parent and @bio have | |
298 | * completed; the chained bio will also be freed when it completes. | |
299 | * | |
300 | * The caller must not set bi_private or bi_end_io in @bio. | |
301 | */ | |
302 | void bio_chain(struct bio *bio, struct bio *parent) | |
303 | { | |
304 | BUG_ON(bio->bi_private || bio->bi_end_io); | |
305 | ||
306 | bio->bi_private = parent; | |
307 | bio->bi_end_io = bio_chain_endio; | |
c4cf5261 | 308 | bio_inc_remaining(parent); |
196d38bc KO |
309 | } |
310 | EXPORT_SYMBOL(bio_chain); | |
311 | ||
df2cb6da KO |
312 | static void bio_alloc_rescue(struct work_struct *work) |
313 | { | |
314 | struct bio_set *bs = container_of(work, struct bio_set, rescue_work); | |
315 | struct bio *bio; | |
316 | ||
317 | while (1) { | |
318 | spin_lock(&bs->rescue_lock); | |
319 | bio = bio_list_pop(&bs->rescue_list); | |
320 | spin_unlock(&bs->rescue_lock); | |
321 | ||
322 | if (!bio) | |
323 | break; | |
324 | ||
ed00aabd | 325 | submit_bio_noacct(bio); |
df2cb6da KO |
326 | } |
327 | } | |
328 | ||
329 | static void punt_bios_to_rescuer(struct bio_set *bs) | |
330 | { | |
331 | struct bio_list punt, nopunt; | |
332 | struct bio *bio; | |
333 | ||
47e0fb46 N |
334 | if (WARN_ON_ONCE(!bs->rescue_workqueue)) |
335 | return; | |
df2cb6da KO |
336 | /* |
337 | * In order to guarantee forward progress we must punt only bios that | |
338 | * were allocated from this bio_set; otherwise, if there was a bio on | |
339 | * there for a stacking driver higher up in the stack, processing it | |
340 | * could require allocating bios from this bio_set, and doing that from | |
341 | * our own rescuer would be bad. | |
342 | * | |
343 | * Since bio lists are singly linked, pop them all instead of trying to | |
344 | * remove from the middle of the list: | |
345 | */ | |
346 | ||
347 | bio_list_init(&punt); | |
348 | bio_list_init(&nopunt); | |
349 | ||
f5fe1b51 | 350 | while ((bio = bio_list_pop(¤t->bio_list[0]))) |
df2cb6da | 351 | bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); |
f5fe1b51 | 352 | current->bio_list[0] = nopunt; |
df2cb6da | 353 | |
f5fe1b51 N |
354 | bio_list_init(&nopunt); |
355 | while ((bio = bio_list_pop(¤t->bio_list[1]))) | |
356 | bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); | |
357 | current->bio_list[1] = nopunt; | |
df2cb6da KO |
358 | |
359 | spin_lock(&bs->rescue_lock); | |
360 | bio_list_merge(&bs->rescue_list, &punt); | |
361 | spin_unlock(&bs->rescue_lock); | |
362 | ||
363 | queue_work(bs->rescue_workqueue, &bs->rescue_work); | |
364 | } | |
365 | ||
1da177e4 LT |
366 | /** |
367 | * bio_alloc_bioset - allocate a bio for I/O | |
519c8e9f | 368 | * @gfp_mask: the GFP_* mask given to the slab allocator |
1da177e4 | 369 | * @nr_iovecs: number of iovecs to pre-allocate |
db18efac | 370 | * @bs: the bio_set to allocate from. |
1da177e4 | 371 | * |
3175199a | 372 | * Allocate a bio from the mempools in @bs. |
3f86a82a | 373 | * |
3175199a CH |
374 | * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to |
375 | * allocate a bio. This is due to the mempool guarantees. To make this work, | |
376 | * callers must never allocate more than 1 bio at a time from the general pool. | |
377 | * Callers that need to allocate more than 1 bio must always submit the | |
378 | * previously allocated bio for IO before attempting to allocate a new one. | |
379 | * Failure to do so can cause deadlocks under memory pressure. | |
3f86a82a | 380 | * |
3175199a CH |
381 | * Note that when running under submit_bio_noacct() (i.e. any block driver), |
382 | * bios are not submitted until after you return - see the code in | |
383 | * submit_bio_noacct() that converts recursion into iteration, to prevent | |
384 | * stack overflows. | |
df2cb6da | 385 | * |
3175199a CH |
386 | * This would normally mean allocating multiple bios under submit_bio_noacct() |
387 | * would be susceptible to deadlocks, but we have | |
388 | * deadlock avoidance code that resubmits any blocked bios from a rescuer | |
389 | * thread. | |
df2cb6da | 390 | * |
3175199a CH |
391 | * However, we do not guarantee forward progress for allocations from other |
392 | * mempools. Doing multiple allocations from the same mempool under | |
393 | * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad | |
394 | * for per bio allocations. | |
df2cb6da | 395 | * |
3175199a | 396 | * Returns: Pointer to new bio on success, NULL on failure. |
3f86a82a | 397 | */ |
0f2e6ab8 | 398 | struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs, |
7a88fa19 | 399 | struct bio_set *bs) |
1da177e4 | 400 | { |
df2cb6da | 401 | gfp_t saved_gfp = gfp_mask; |
451a9ebf TH |
402 | struct bio *bio; |
403 | void *p; | |
404 | ||
3175199a CH |
405 | /* should not use nobvec bioset for nr_iovecs > 0 */ |
406 | if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0)) | |
407 | return NULL; | |
df2cb6da | 408 | |
3175199a CH |
409 | /* |
410 | * submit_bio_noacct() converts recursion to iteration; this means if | |
411 | * we're running beneath it, any bios we allocate and submit will not be | |
412 | * submitted (and thus freed) until after we return. | |
413 | * | |
414 | * This exposes us to a potential deadlock if we allocate multiple bios | |
415 | * from the same bio_set() while running underneath submit_bio_noacct(). | |
416 | * If we were to allocate multiple bios (say a stacking block driver | |
417 | * that was splitting bios), we would deadlock if we exhausted the | |
418 | * mempool's reserve. | |
419 | * | |
420 | * We solve this, and guarantee forward progress, with a rescuer | |
421 | * workqueue per bio_set. If we go to allocate and there are bios on | |
422 | * current->bio_list, we first try the allocation without | |
423 | * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be | |
424 | * blocking to the rescuer workqueue before we retry with the original | |
425 | * gfp_flags. | |
426 | */ | |
427 | if (current->bio_list && | |
428 | (!bio_list_empty(¤t->bio_list[0]) || | |
429 | !bio_list_empty(¤t->bio_list[1])) && | |
430 | bs->rescue_workqueue) | |
431 | gfp_mask &= ~__GFP_DIRECT_RECLAIM; | |
432 | ||
433 | p = mempool_alloc(&bs->bio_pool, gfp_mask); | |
434 | if (!p && gfp_mask != saved_gfp) { | |
435 | punt_bios_to_rescuer(bs); | |
436 | gfp_mask = saved_gfp; | |
8aa6ba2f | 437 | p = mempool_alloc(&bs->bio_pool, gfp_mask); |
3f86a82a | 438 | } |
451a9ebf TH |
439 | if (unlikely(!p)) |
440 | return NULL; | |
1da177e4 | 441 | |
3175199a CH |
442 | bio = p + bs->front_pad; |
443 | if (nr_iovecs > BIO_INLINE_VECS) { | |
3175199a | 444 | struct bio_vec *bvl = NULL; |
34053979 | 445 | |
7a800a20 | 446 | bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask); |
df2cb6da KO |
447 | if (!bvl && gfp_mask != saved_gfp) { |
448 | punt_bios_to_rescuer(bs); | |
449 | gfp_mask = saved_gfp; | |
7a800a20 | 450 | bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask); |
df2cb6da | 451 | } |
34053979 IM |
452 | if (unlikely(!bvl)) |
453 | goto err_free; | |
a38352e0 | 454 | |
7a800a20 | 455 | bio_init(bio, bvl, nr_iovecs); |
3f86a82a | 456 | } else if (nr_iovecs) { |
3175199a CH |
457 | bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS); |
458 | } else { | |
459 | bio_init(bio, NULL, 0); | |
1da177e4 | 460 | } |
3f86a82a KO |
461 | |
462 | bio->bi_pool = bs; | |
1da177e4 | 463 | return bio; |
34053979 IM |
464 | |
465 | err_free: | |
8aa6ba2f | 466 | mempool_free(p, &bs->bio_pool); |
34053979 | 467 | return NULL; |
1da177e4 | 468 | } |
a112a71d | 469 | EXPORT_SYMBOL(bio_alloc_bioset); |
1da177e4 | 470 | |
3175199a CH |
471 | /** |
472 | * bio_kmalloc - kmalloc a bio for I/O | |
473 | * @gfp_mask: the GFP_* mask given to the slab allocator | |
474 | * @nr_iovecs: number of iovecs to pre-allocate | |
475 | * | |
476 | * Use kmalloc to allocate and initialize a bio. | |
477 | * | |
478 | * Returns: Pointer to new bio on success, NULL on failure. | |
479 | */ | |
0f2e6ab8 | 480 | struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs) |
3175199a CH |
481 | { |
482 | struct bio *bio; | |
483 | ||
484 | if (nr_iovecs > UIO_MAXIOV) | |
485 | return NULL; | |
486 | ||
487 | bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask); | |
488 | if (unlikely(!bio)) | |
489 | return NULL; | |
490 | bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs); | |
491 | bio->bi_pool = NULL; | |
492 | return bio; | |
493 | } | |
494 | EXPORT_SYMBOL(bio_kmalloc); | |
495 | ||
38a72dac | 496 | void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) |
1da177e4 LT |
497 | { |
498 | unsigned long flags; | |
7988613b KO |
499 | struct bio_vec bv; |
500 | struct bvec_iter iter; | |
1da177e4 | 501 | |
38a72dac | 502 | __bio_for_each_segment(bv, bio, iter, start) { |
7988613b KO |
503 | char *data = bvec_kmap_irq(&bv, &flags); |
504 | memset(data, 0, bv.bv_len); | |
505 | flush_dcache_page(bv.bv_page); | |
1da177e4 LT |
506 | bvec_kunmap_irq(data, &flags); |
507 | } | |
508 | } | |
38a72dac | 509 | EXPORT_SYMBOL(zero_fill_bio_iter); |
1da177e4 | 510 | |
83c9c547 ML |
511 | /** |
512 | * bio_truncate - truncate the bio to small size of @new_size | |
513 | * @bio: the bio to be truncated | |
514 | * @new_size: new size for truncating the bio | |
515 | * | |
516 | * Description: | |
517 | * Truncate the bio to new size of @new_size. If bio_op(bio) is | |
518 | * REQ_OP_READ, zero the truncated part. This function should only | |
519 | * be used for handling corner cases, such as bio eod. | |
520 | */ | |
85a8ce62 ML |
521 | void bio_truncate(struct bio *bio, unsigned new_size) |
522 | { | |
523 | struct bio_vec bv; | |
524 | struct bvec_iter iter; | |
525 | unsigned int done = 0; | |
526 | bool truncated = false; | |
527 | ||
528 | if (new_size >= bio->bi_iter.bi_size) | |
529 | return; | |
530 | ||
83c9c547 | 531 | if (bio_op(bio) != REQ_OP_READ) |
85a8ce62 ML |
532 | goto exit; |
533 | ||
534 | bio_for_each_segment(bv, bio, iter) { | |
535 | if (done + bv.bv_len > new_size) { | |
536 | unsigned offset; | |
537 | ||
538 | if (!truncated) | |
539 | offset = new_size - done; | |
540 | else | |
541 | offset = 0; | |
542 | zero_user(bv.bv_page, offset, bv.bv_len - offset); | |
543 | truncated = true; | |
544 | } | |
545 | done += bv.bv_len; | |
546 | } | |
547 | ||
548 | exit: | |
549 | /* | |
550 | * Don't touch bvec table here and make it really immutable, since | |
551 | * fs bio user has to retrieve all pages via bio_for_each_segment_all | |
552 | * in its .end_bio() callback. | |
553 | * | |
554 | * It is enough to truncate bio by updating .bi_size since we can make | |
555 | * correct bvec with the updated .bi_size for drivers. | |
556 | */ | |
557 | bio->bi_iter.bi_size = new_size; | |
558 | } | |
559 | ||
29125ed6 CH |
560 | /** |
561 | * guard_bio_eod - truncate a BIO to fit the block device | |
562 | * @bio: bio to truncate | |
563 | * | |
564 | * This allows us to do IO even on the odd last sectors of a device, even if the | |
565 | * block size is some multiple of the physical sector size. | |
566 | * | |
567 | * We'll just truncate the bio to the size of the device, and clear the end of | |
568 | * the buffer head manually. Truly out-of-range accesses will turn into actual | |
569 | * I/O errors, this only handles the "we need to be able to do I/O at the final | |
570 | * sector" case. | |
571 | */ | |
572 | void guard_bio_eod(struct bio *bio) | |
573 | { | |
309dca30 | 574 | sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); |
29125ed6 CH |
575 | |
576 | if (!maxsector) | |
577 | return; | |
578 | ||
579 | /* | |
580 | * If the *whole* IO is past the end of the device, | |
581 | * let it through, and the IO layer will turn it into | |
582 | * an EIO. | |
583 | */ | |
584 | if (unlikely(bio->bi_iter.bi_sector >= maxsector)) | |
585 | return; | |
586 | ||
587 | maxsector -= bio->bi_iter.bi_sector; | |
588 | if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) | |
589 | return; | |
590 | ||
591 | bio_truncate(bio, maxsector << 9); | |
592 | } | |
593 | ||
1da177e4 LT |
594 | /** |
595 | * bio_put - release a reference to a bio | |
596 | * @bio: bio to release reference to | |
597 | * | |
598 | * Description: | |
599 | * Put a reference to a &struct bio, either one you have gotten with | |
9b10f6a9 | 600 | * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. |
1da177e4 LT |
601 | **/ |
602 | void bio_put(struct bio *bio) | |
603 | { | |
dac56212 | 604 | if (!bio_flagged(bio, BIO_REFFED)) |
4254bba1 | 605 | bio_free(bio); |
dac56212 JA |
606 | else { |
607 | BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); | |
608 | ||
609 | /* | |
610 | * last put frees it | |
611 | */ | |
612 | if (atomic_dec_and_test(&bio->__bi_cnt)) | |
613 | bio_free(bio); | |
614 | } | |
1da177e4 | 615 | } |
a112a71d | 616 | EXPORT_SYMBOL(bio_put); |
1da177e4 | 617 | |
59d276fe KO |
618 | /** |
619 | * __bio_clone_fast - clone a bio that shares the original bio's biovec | |
620 | * @bio: destination bio | |
621 | * @bio_src: bio to clone | |
622 | * | |
623 | * Clone a &bio. Caller will own the returned bio, but not | |
624 | * the actual data it points to. Reference count of returned | |
625 | * bio will be one. | |
626 | * | |
627 | * Caller must ensure that @bio_src is not freed before @bio. | |
628 | */ | |
629 | void __bio_clone_fast(struct bio *bio, struct bio *bio_src) | |
630 | { | |
7a800a20 | 631 | WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs); |
59d276fe KO |
632 | |
633 | /* | |
309dca30 | 634 | * most users will be overriding ->bi_bdev with a new target, |
59d276fe KO |
635 | * so we don't set nor calculate new physical/hw segment counts here |
636 | */ | |
309dca30 | 637 | bio->bi_bdev = bio_src->bi_bdev; |
b7c44ed9 | 638 | bio_set_flag(bio, BIO_CLONED); |
111be883 SL |
639 | if (bio_flagged(bio_src, BIO_THROTTLED)) |
640 | bio_set_flag(bio, BIO_THROTTLED); | |
46bbf653 CH |
641 | if (bio_flagged(bio_src, BIO_REMAPPED)) |
642 | bio_set_flag(bio, BIO_REMAPPED); | |
1eff9d32 | 643 | bio->bi_opf = bio_src->bi_opf; |
ca474b73 | 644 | bio->bi_ioprio = bio_src->bi_ioprio; |
cb6934f8 | 645 | bio->bi_write_hint = bio_src->bi_write_hint; |
59d276fe KO |
646 | bio->bi_iter = bio_src->bi_iter; |
647 | bio->bi_io_vec = bio_src->bi_io_vec; | |
20bd723e | 648 | |
db6638d7 | 649 | bio_clone_blkg_association(bio, bio_src); |
e439bedf | 650 | blkcg_bio_issue_init(bio); |
59d276fe KO |
651 | } |
652 | EXPORT_SYMBOL(__bio_clone_fast); | |
653 | ||
654 | /** | |
655 | * bio_clone_fast - clone a bio that shares the original bio's biovec | |
656 | * @bio: bio to clone | |
657 | * @gfp_mask: allocation priority | |
658 | * @bs: bio_set to allocate from | |
659 | * | |
660 | * Like __bio_clone_fast, only also allocates the returned bio | |
661 | */ | |
662 | struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) | |
663 | { | |
664 | struct bio *b; | |
665 | ||
666 | b = bio_alloc_bioset(gfp_mask, 0, bs); | |
667 | if (!b) | |
668 | return NULL; | |
669 | ||
670 | __bio_clone_fast(b, bio); | |
671 | ||
07560151 EB |
672 | if (bio_crypt_clone(b, bio, gfp_mask) < 0) |
673 | goto err_put; | |
a892c8d5 | 674 | |
07560151 EB |
675 | if (bio_integrity(bio) && |
676 | bio_integrity_clone(b, bio, gfp_mask) < 0) | |
677 | goto err_put; | |
59d276fe KO |
678 | |
679 | return b; | |
07560151 EB |
680 | |
681 | err_put: | |
682 | bio_put(b); | |
683 | return NULL; | |
59d276fe KO |
684 | } |
685 | EXPORT_SYMBOL(bio_clone_fast); | |
686 | ||
5cbd28e3 CH |
687 | const char *bio_devname(struct bio *bio, char *buf) |
688 | { | |
309dca30 | 689 | return bdevname(bio->bi_bdev, buf); |
5cbd28e3 CH |
690 | } |
691 | EXPORT_SYMBOL(bio_devname); | |
692 | ||
5919482e ML |
693 | static inline bool page_is_mergeable(const struct bio_vec *bv, |
694 | struct page *page, unsigned int len, unsigned int off, | |
ff896738 | 695 | bool *same_page) |
5919482e | 696 | { |
d8166519 MWO |
697 | size_t bv_end = bv->bv_offset + bv->bv_len; |
698 | phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1; | |
5919482e ML |
699 | phys_addr_t page_addr = page_to_phys(page); |
700 | ||
701 | if (vec_end_addr + 1 != page_addr + off) | |
702 | return false; | |
703 | if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) | |
704 | return false; | |
52d52d1c | 705 | |
ff896738 | 706 | *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); |
d8166519 MWO |
707 | if (*same_page) |
708 | return true; | |
709 | return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE); | |
5919482e ML |
710 | } |
711 | ||
e4581105 CH |
712 | /* |
713 | * Try to merge a page into a segment, while obeying the hardware segment | |
714 | * size limit. This is not for normal read/write bios, but for passthrough | |
715 | * or Zone Append operations that we can't split. | |
716 | */ | |
717 | static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio, | |
718 | struct page *page, unsigned len, | |
719 | unsigned offset, bool *same_page) | |
489fbbcb | 720 | { |
384209cd | 721 | struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; |
489fbbcb ML |
722 | unsigned long mask = queue_segment_boundary(q); |
723 | phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; | |
724 | phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; | |
725 | ||
726 | if ((addr1 | mask) != (addr2 | mask)) | |
727 | return false; | |
489fbbcb ML |
728 | if (bv->bv_len + len > queue_max_segment_size(q)) |
729 | return false; | |
384209cd | 730 | return __bio_try_merge_page(bio, page, len, offset, same_page); |
489fbbcb ML |
731 | } |
732 | ||
1da177e4 | 733 | /** |
e4581105 CH |
734 | * bio_add_hw_page - attempt to add a page to a bio with hw constraints |
735 | * @q: the target queue | |
736 | * @bio: destination bio | |
737 | * @page: page to add | |
738 | * @len: vec entry length | |
739 | * @offset: vec entry offset | |
740 | * @max_sectors: maximum number of sectors that can be added | |
741 | * @same_page: return if the segment has been merged inside the same page | |
c66a14d0 | 742 | * |
e4581105 CH |
743 | * Add a page to a bio while respecting the hardware max_sectors, max_segment |
744 | * and gap limitations. | |
1da177e4 | 745 | */ |
e4581105 | 746 | int bio_add_hw_page(struct request_queue *q, struct bio *bio, |
19047087 | 747 | struct page *page, unsigned int len, unsigned int offset, |
e4581105 | 748 | unsigned int max_sectors, bool *same_page) |
1da177e4 | 749 | { |
1da177e4 LT |
750 | struct bio_vec *bvec; |
751 | ||
e4581105 | 752 | if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) |
1da177e4 LT |
753 | return 0; |
754 | ||
e4581105 | 755 | if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) |
1da177e4 LT |
756 | return 0; |
757 | ||
80cfd548 | 758 | if (bio->bi_vcnt > 0) { |
e4581105 | 759 | if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page)) |
384209cd | 760 | return len; |
320ea869 CH |
761 | |
762 | /* | |
763 | * If the queue doesn't support SG gaps and adding this segment | |
764 | * would create a gap, disallow it. | |
765 | */ | |
384209cd | 766 | bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; |
320ea869 CH |
767 | if (bvec_gap_to_prev(q, bvec, offset)) |
768 | return 0; | |
80cfd548 JA |
769 | } |
770 | ||
79d08f89 | 771 | if (bio_full(bio, len)) |
1da177e4 LT |
772 | return 0; |
773 | ||
14ccb66b | 774 | if (bio->bi_vcnt >= queue_max_segments(q)) |
489fbbcb ML |
775 | return 0; |
776 | ||
fcbf6a08 ML |
777 | bvec = &bio->bi_io_vec[bio->bi_vcnt]; |
778 | bvec->bv_page = page; | |
779 | bvec->bv_len = len; | |
780 | bvec->bv_offset = offset; | |
781 | bio->bi_vcnt++; | |
dcdca753 | 782 | bio->bi_iter.bi_size += len; |
1da177e4 LT |
783 | return len; |
784 | } | |
19047087 | 785 | |
e4581105 CH |
786 | /** |
787 | * bio_add_pc_page - attempt to add page to passthrough bio | |
788 | * @q: the target queue | |
789 | * @bio: destination bio | |
790 | * @page: page to add | |
791 | * @len: vec entry length | |
792 | * @offset: vec entry offset | |
793 | * | |
794 | * Attempt to add a page to the bio_vec maplist. This can fail for a | |
795 | * number of reasons, such as the bio being full or target block device | |
796 | * limitations. The target block device must allow bio's up to PAGE_SIZE, | |
797 | * so it is always possible to add a single page to an empty bio. | |
798 | * | |
799 | * This should only be used by passthrough bios. | |
800 | */ | |
19047087 ML |
801 | int bio_add_pc_page(struct request_queue *q, struct bio *bio, |
802 | struct page *page, unsigned int len, unsigned int offset) | |
803 | { | |
d1916c86 | 804 | bool same_page = false; |
e4581105 CH |
805 | return bio_add_hw_page(q, bio, page, len, offset, |
806 | queue_max_hw_sectors(q), &same_page); | |
19047087 | 807 | } |
a112a71d | 808 | EXPORT_SYMBOL(bio_add_pc_page); |
6e68af66 | 809 | |
ae29333f JT |
810 | /** |
811 | * bio_add_zone_append_page - attempt to add page to zone-append bio | |
812 | * @bio: destination bio | |
813 | * @page: page to add | |
814 | * @len: vec entry length | |
815 | * @offset: vec entry offset | |
816 | * | |
817 | * Attempt to add a page to the bio_vec maplist of a bio that will be submitted | |
818 | * for a zone-append request. This can fail for a number of reasons, such as the | |
819 | * bio being full or the target block device is not a zoned block device or | |
820 | * other limitations of the target block device. The target block device must | |
821 | * allow bio's up to PAGE_SIZE, so it is always possible to add a single page | |
822 | * to an empty bio. | |
823 | * | |
824 | * Returns: number of bytes added to the bio, or 0 in case of a failure. | |
825 | */ | |
826 | int bio_add_zone_append_page(struct bio *bio, struct page *page, | |
827 | unsigned int len, unsigned int offset) | |
828 | { | |
582cd91f | 829 | struct request_queue *q = bio->bi_bdev->bd_disk->queue; |
ae29333f JT |
830 | bool same_page = false; |
831 | ||
832 | if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND)) | |
833 | return 0; | |
834 | ||
835 | if (WARN_ON_ONCE(!blk_queue_is_zoned(q))) | |
836 | return 0; | |
837 | ||
838 | return bio_add_hw_page(q, bio, page, len, offset, | |
839 | queue_max_zone_append_sectors(q), &same_page); | |
840 | } | |
841 | EXPORT_SYMBOL_GPL(bio_add_zone_append_page); | |
842 | ||
1da177e4 | 843 | /** |
0aa69fd3 CH |
844 | * __bio_try_merge_page - try appending data to an existing bvec. |
845 | * @bio: destination bio | |
551879a4 | 846 | * @page: start page to add |
0aa69fd3 | 847 | * @len: length of the data to add |
551879a4 | 848 | * @off: offset of the data relative to @page |
ff896738 | 849 | * @same_page: return if the segment has been merged inside the same page |
1da177e4 | 850 | * |
0aa69fd3 | 851 | * Try to add the data at @page + @off to the last bvec of @bio. This is a |
3cf14889 | 852 | * useful optimisation for file systems with a block size smaller than the |
0aa69fd3 CH |
853 | * page size. |
854 | * | |
551879a4 ML |
855 | * Warn if (@len, @off) crosses pages in case that @same_page is true. |
856 | * | |
0aa69fd3 | 857 | * Return %true on success or %false on failure. |
1da177e4 | 858 | */ |
0aa69fd3 | 859 | bool __bio_try_merge_page(struct bio *bio, struct page *page, |
ff896738 | 860 | unsigned int len, unsigned int off, bool *same_page) |
1da177e4 | 861 | { |
c66a14d0 | 862 | if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) |
0aa69fd3 | 863 | return false; |
762380ad | 864 | |
cc90bc68 | 865 | if (bio->bi_vcnt > 0) { |
0aa69fd3 | 866 | struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; |
5919482e ML |
867 | |
868 | if (page_is_mergeable(bv, page, len, off, same_page)) { | |
2cd896a5 RH |
869 | if (bio->bi_iter.bi_size > UINT_MAX - len) { |
870 | *same_page = false; | |
cc90bc68 | 871 | return false; |
2cd896a5 | 872 | } |
5919482e ML |
873 | bv->bv_len += len; |
874 | bio->bi_iter.bi_size += len; | |
875 | return true; | |
876 | } | |
c66a14d0 | 877 | } |
0aa69fd3 CH |
878 | return false; |
879 | } | |
880 | EXPORT_SYMBOL_GPL(__bio_try_merge_page); | |
c66a14d0 | 881 | |
0aa69fd3 | 882 | /** |
551879a4 | 883 | * __bio_add_page - add page(s) to a bio in a new segment |
0aa69fd3 | 884 | * @bio: destination bio |
551879a4 ML |
885 | * @page: start page to add |
886 | * @len: length of the data to add, may cross pages | |
887 | * @off: offset of the data relative to @page, may cross pages | |
0aa69fd3 CH |
888 | * |
889 | * Add the data at @page + @off to @bio as a new bvec. The caller must ensure | |
890 | * that @bio has space for another bvec. | |
891 | */ | |
892 | void __bio_add_page(struct bio *bio, struct page *page, | |
893 | unsigned int len, unsigned int off) | |
894 | { | |
895 | struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; | |
c66a14d0 | 896 | |
0aa69fd3 | 897 | WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); |
79d08f89 | 898 | WARN_ON_ONCE(bio_full(bio, len)); |
0aa69fd3 CH |
899 | |
900 | bv->bv_page = page; | |
901 | bv->bv_offset = off; | |
902 | bv->bv_len = len; | |
c66a14d0 | 903 | |
c66a14d0 | 904 | bio->bi_iter.bi_size += len; |
0aa69fd3 | 905 | bio->bi_vcnt++; |
b8e24a93 JW |
906 | |
907 | if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page))) | |
908 | bio_set_flag(bio, BIO_WORKINGSET); | |
0aa69fd3 CH |
909 | } |
910 | EXPORT_SYMBOL_GPL(__bio_add_page); | |
911 | ||
912 | /** | |
551879a4 | 913 | * bio_add_page - attempt to add page(s) to bio |
0aa69fd3 | 914 | * @bio: destination bio |
551879a4 ML |
915 | * @page: start page to add |
916 | * @len: vec entry length, may cross pages | |
917 | * @offset: vec entry offset relative to @page, may cross pages | |
0aa69fd3 | 918 | * |
551879a4 | 919 | * Attempt to add page(s) to the bio_vec maplist. This will only fail |
0aa69fd3 CH |
920 | * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. |
921 | */ | |
922 | int bio_add_page(struct bio *bio, struct page *page, | |
923 | unsigned int len, unsigned int offset) | |
924 | { | |
ff896738 CH |
925 | bool same_page = false; |
926 | ||
927 | if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { | |
79d08f89 | 928 | if (bio_full(bio, len)) |
0aa69fd3 CH |
929 | return 0; |
930 | __bio_add_page(bio, page, len, offset); | |
931 | } | |
c66a14d0 | 932 | return len; |
1da177e4 | 933 | } |
a112a71d | 934 | EXPORT_SYMBOL(bio_add_page); |
1da177e4 | 935 | |
d241a95f | 936 | void bio_release_pages(struct bio *bio, bool mark_dirty) |
7321ecbf CH |
937 | { |
938 | struct bvec_iter_all iter_all; | |
939 | struct bio_vec *bvec; | |
7321ecbf | 940 | |
b2d0d991 CH |
941 | if (bio_flagged(bio, BIO_NO_PAGE_REF)) |
942 | return; | |
943 | ||
d241a95f CH |
944 | bio_for_each_segment_all(bvec, bio, iter_all) { |
945 | if (mark_dirty && !PageCompound(bvec->bv_page)) | |
946 | set_page_dirty_lock(bvec->bv_page); | |
7321ecbf | 947 | put_page(bvec->bv_page); |
d241a95f | 948 | } |
7321ecbf | 949 | } |
29b2a3aa | 950 | EXPORT_SYMBOL_GPL(bio_release_pages); |
7321ecbf | 951 | |
c42bca92 | 952 | static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter) |
6d0c48ae | 953 | { |
7a800a20 | 954 | WARN_ON_ONCE(bio->bi_max_vecs); |
c42bca92 PB |
955 | |
956 | bio->bi_vcnt = iter->nr_segs; | |
c42bca92 PB |
957 | bio->bi_io_vec = (struct bio_vec *)iter->bvec; |
958 | bio->bi_iter.bi_bvec_done = iter->iov_offset; | |
959 | bio->bi_iter.bi_size = iter->count; | |
ed97ce5e | 960 | bio_set_flag(bio, BIO_NO_PAGE_REF); |
977be012 | 961 | bio_set_flag(bio, BIO_CLONED); |
c42bca92 PB |
962 | |
963 | iov_iter_advance(iter, iter->count); | |
a10584c3 | 964 | return 0; |
6d0c48ae JA |
965 | } |
966 | ||
576ed913 CH |
967 | #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) |
968 | ||
2cefe4db | 969 | /** |
17d51b10 | 970 | * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio |
2cefe4db KO |
971 | * @bio: bio to add pages to |
972 | * @iter: iov iterator describing the region to be mapped | |
973 | * | |
17d51b10 | 974 | * Pins pages from *iter and appends them to @bio's bvec array. The |
2cefe4db | 975 | * pages will have to be released using put_page() when done. |
17d51b10 | 976 | * For multi-segment *iter, this function only adds pages from the |
3cf14889 | 977 | * next non-empty segment of the iov iterator. |
2cefe4db | 978 | */ |
17d51b10 | 979 | static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) |
2cefe4db | 980 | { |
576ed913 CH |
981 | unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; |
982 | unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; | |
2cefe4db KO |
983 | struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; |
984 | struct page **pages = (struct page **)bv; | |
45691804 | 985 | bool same_page = false; |
576ed913 CH |
986 | ssize_t size, left; |
987 | unsigned len, i; | |
b403ea24 | 988 | size_t offset; |
576ed913 CH |
989 | |
990 | /* | |
991 | * Move page array up in the allocated memory for the bio vecs as far as | |
992 | * possible so that we can start filling biovecs from the beginning | |
993 | * without overwriting the temporary page array. | |
994 | */ | |
995 | BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); | |
996 | pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); | |
2cefe4db KO |
997 | |
998 | size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); | |
999 | if (unlikely(size <= 0)) | |
1000 | return size ? size : -EFAULT; | |
2cefe4db | 1001 | |
576ed913 CH |
1002 | for (left = size, i = 0; left > 0; left -= len, i++) { |
1003 | struct page *page = pages[i]; | |
2cefe4db | 1004 | |
576ed913 | 1005 | len = min_t(size_t, PAGE_SIZE - offset, left); |
45691804 CH |
1006 | |
1007 | if (__bio_try_merge_page(bio, page, len, offset, &same_page)) { | |
1008 | if (same_page) | |
1009 | put_page(page); | |
1010 | } else { | |
79d08f89 | 1011 | if (WARN_ON_ONCE(bio_full(bio, len))) |
45691804 CH |
1012 | return -EINVAL; |
1013 | __bio_add_page(bio, page, len, offset); | |
1014 | } | |
576ed913 | 1015 | offset = 0; |
2cefe4db KO |
1016 | } |
1017 | ||
2cefe4db KO |
1018 | iov_iter_advance(iter, size); |
1019 | return 0; | |
1020 | } | |
17d51b10 | 1021 | |
0512a75b KB |
1022 | static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter) |
1023 | { | |
1024 | unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; | |
1025 | unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; | |
309dca30 | 1026 | struct request_queue *q = bio->bi_bdev->bd_disk->queue; |
0512a75b KB |
1027 | unsigned int max_append_sectors = queue_max_zone_append_sectors(q); |
1028 | struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; | |
1029 | struct page **pages = (struct page **)bv; | |
1030 | ssize_t size, left; | |
1031 | unsigned len, i; | |
1032 | size_t offset; | |
4977d121 | 1033 | int ret = 0; |
0512a75b KB |
1034 | |
1035 | if (WARN_ON_ONCE(!max_append_sectors)) | |
1036 | return 0; | |
1037 | ||
1038 | /* | |
1039 | * Move page array up in the allocated memory for the bio vecs as far as | |
1040 | * possible so that we can start filling biovecs from the beginning | |
1041 | * without overwriting the temporary page array. | |
1042 | */ | |
1043 | BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); | |
1044 | pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); | |
1045 | ||
1046 | size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); | |
1047 | if (unlikely(size <= 0)) | |
1048 | return size ? size : -EFAULT; | |
1049 | ||
1050 | for (left = size, i = 0; left > 0; left -= len, i++) { | |
1051 | struct page *page = pages[i]; | |
1052 | bool same_page = false; | |
1053 | ||
1054 | len = min_t(size_t, PAGE_SIZE - offset, left); | |
1055 | if (bio_add_hw_page(q, bio, page, len, offset, | |
4977d121 NA |
1056 | max_append_sectors, &same_page) != len) { |
1057 | ret = -EINVAL; | |
1058 | break; | |
1059 | } | |
0512a75b KB |
1060 | if (same_page) |
1061 | put_page(page); | |
1062 | offset = 0; | |
1063 | } | |
1064 | ||
4977d121 NA |
1065 | iov_iter_advance(iter, size - left); |
1066 | return ret; | |
0512a75b KB |
1067 | } |
1068 | ||
17d51b10 | 1069 | /** |
6d0c48ae | 1070 | * bio_iov_iter_get_pages - add user or kernel pages to a bio |
17d51b10 | 1071 | * @bio: bio to add pages to |
6d0c48ae JA |
1072 | * @iter: iov iterator describing the region to be added |
1073 | * | |
1074 | * This takes either an iterator pointing to user memory, or one pointing to | |
1075 | * kernel pages (BVEC iterator). If we're adding user pages, we pin them and | |
1076 | * map them into the kernel. On IO completion, the caller should put those | |
c42bca92 PB |
1077 | * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided |
1078 | * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs | |
1079 | * to ensure the bvecs and pages stay referenced until the submitted I/O is | |
1080 | * completed by a call to ->ki_complete() or returns with an error other than | |
1081 | * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF | |
1082 | * on IO completion. If it isn't, then pages should be released. | |
17d51b10 | 1083 | * |
17d51b10 | 1084 | * The function tries, but does not guarantee, to pin as many pages as |
5cd3ddc1 | 1085 | * fit into the bio, or are requested in @iter, whatever is smaller. If |
6d0c48ae JA |
1086 | * MM encounters an error pinning the requested pages, it stops. Error |
1087 | * is returned only if 0 pages could be pinned. | |
0cf41e5e PB |
1088 | * |
1089 | * It's intended for direct IO, so doesn't do PSI tracking, the caller is | |
1090 | * responsible for setting BIO_WORKINGSET if necessary. | |
17d51b10 MW |
1091 | */ |
1092 | int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) | |
1093 | { | |
c42bca92 | 1094 | int ret = 0; |
14eacf12 | 1095 | |
c42bca92 PB |
1096 | if (iov_iter_is_bvec(iter)) { |
1097 | if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) | |
1098 | return -EINVAL; | |
ed97ce5e | 1099 | return bio_iov_bvec_set(bio, iter); |
c42bca92 | 1100 | } |
17d51b10 MW |
1101 | |
1102 | do { | |
86004515 | 1103 | if (bio_op(bio) == REQ_OP_ZONE_APPEND) |
0512a75b | 1104 | ret = __bio_iov_append_get_pages(bio, iter); |
86004515 CH |
1105 | else |
1106 | ret = __bio_iov_iter_get_pages(bio, iter); | |
79d08f89 | 1107 | } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); |
17d51b10 | 1108 | |
0cf41e5e PB |
1109 | /* don't account direct I/O as memory stall */ |
1110 | bio_clear_flag(bio, BIO_WORKINGSET); | |
14eacf12 | 1111 | return bio->bi_vcnt ? 0 : ret; |
17d51b10 | 1112 | } |
29b2a3aa | 1113 | EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); |
2cefe4db | 1114 | |
4246a0b6 | 1115 | static void submit_bio_wait_endio(struct bio *bio) |
9e882242 | 1116 | { |
65e53aab | 1117 | complete(bio->bi_private); |
9e882242 KO |
1118 | } |
1119 | ||
1120 | /** | |
1121 | * submit_bio_wait - submit a bio, and wait until it completes | |
9e882242 KO |
1122 | * @bio: The &struct bio which describes the I/O |
1123 | * | |
1124 | * Simple wrapper around submit_bio(). Returns 0 on success, or the error from | |
1125 | * bio_endio() on failure. | |
3d289d68 JK |
1126 | * |
1127 | * WARNING: Unlike to how submit_bio() is usually used, this function does not | |
1128 | * result in bio reference to be consumed. The caller must drop the reference | |
1129 | * on his own. | |
9e882242 | 1130 | */ |
4e49ea4a | 1131 | int submit_bio_wait(struct bio *bio) |
9e882242 | 1132 | { |
309dca30 CH |
1133 | DECLARE_COMPLETION_ONSTACK_MAP(done, |
1134 | bio->bi_bdev->bd_disk->lockdep_map); | |
de6a78b6 | 1135 | unsigned long hang_check; |
9e882242 | 1136 | |
65e53aab | 1137 | bio->bi_private = &done; |
9e882242 | 1138 | bio->bi_end_io = submit_bio_wait_endio; |
1eff9d32 | 1139 | bio->bi_opf |= REQ_SYNC; |
4e49ea4a | 1140 | submit_bio(bio); |
de6a78b6 ML |
1141 | |
1142 | /* Prevent hang_check timer from firing at us during very long I/O */ | |
1143 | hang_check = sysctl_hung_task_timeout_secs; | |
1144 | if (hang_check) | |
1145 | while (!wait_for_completion_io_timeout(&done, | |
1146 | hang_check * (HZ/2))) | |
1147 | ; | |
1148 | else | |
1149 | wait_for_completion_io(&done); | |
9e882242 | 1150 | |
65e53aab | 1151 | return blk_status_to_errno(bio->bi_status); |
9e882242 KO |
1152 | } |
1153 | EXPORT_SYMBOL(submit_bio_wait); | |
1154 | ||
054bdf64 KO |
1155 | /** |
1156 | * bio_advance - increment/complete a bio by some number of bytes | |
1157 | * @bio: bio to advance | |
1158 | * @bytes: number of bytes to complete | |
1159 | * | |
1160 | * This updates bi_sector, bi_size and bi_idx; if the number of bytes to | |
1161 | * complete doesn't align with a bvec boundary, then bv_len and bv_offset will | |
1162 | * be updated on the last bvec as well. | |
1163 | * | |
1164 | * @bio will then represent the remaining, uncompleted portion of the io. | |
1165 | */ | |
1166 | void bio_advance(struct bio *bio, unsigned bytes) | |
1167 | { | |
1168 | if (bio_integrity(bio)) | |
1169 | bio_integrity_advance(bio, bytes); | |
1170 | ||
a892c8d5 | 1171 | bio_crypt_advance(bio, bytes); |
4550dd6c | 1172 | bio_advance_iter(bio, &bio->bi_iter, bytes); |
054bdf64 KO |
1173 | } |
1174 | EXPORT_SYMBOL(bio_advance); | |
1175 | ||
45db54d5 KO |
1176 | void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, |
1177 | struct bio *src, struct bvec_iter *src_iter) | |
16ac3d63 | 1178 | { |
1cb9dda4 | 1179 | struct bio_vec src_bv, dst_bv; |
16ac3d63 | 1180 | void *src_p, *dst_p; |
1cb9dda4 | 1181 | unsigned bytes; |
16ac3d63 | 1182 | |
45db54d5 KO |
1183 | while (src_iter->bi_size && dst_iter->bi_size) { |
1184 | src_bv = bio_iter_iovec(src, *src_iter); | |
1185 | dst_bv = bio_iter_iovec(dst, *dst_iter); | |
1cb9dda4 KO |
1186 | |
1187 | bytes = min(src_bv.bv_len, dst_bv.bv_len); | |
16ac3d63 | 1188 | |
1cb9dda4 KO |
1189 | src_p = kmap_atomic(src_bv.bv_page); |
1190 | dst_p = kmap_atomic(dst_bv.bv_page); | |
16ac3d63 | 1191 | |
1cb9dda4 KO |
1192 | memcpy(dst_p + dst_bv.bv_offset, |
1193 | src_p + src_bv.bv_offset, | |
16ac3d63 KO |
1194 | bytes); |
1195 | ||
1196 | kunmap_atomic(dst_p); | |
1197 | kunmap_atomic(src_p); | |
1198 | ||
6e6e811d KO |
1199 | flush_dcache_page(dst_bv.bv_page); |
1200 | ||
22b56c29 PB |
1201 | bio_advance_iter_single(src, src_iter, bytes); |
1202 | bio_advance_iter_single(dst, dst_iter, bytes); | |
16ac3d63 KO |
1203 | } |
1204 | } | |
38a72dac KO |
1205 | EXPORT_SYMBOL(bio_copy_data_iter); |
1206 | ||
1207 | /** | |
45db54d5 KO |
1208 | * bio_copy_data - copy contents of data buffers from one bio to another |
1209 | * @src: source bio | |
1210 | * @dst: destination bio | |
38a72dac KO |
1211 | * |
1212 | * Stops when it reaches the end of either @src or @dst - that is, copies | |
1213 | * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). | |
1214 | */ | |
1215 | void bio_copy_data(struct bio *dst, struct bio *src) | |
1216 | { | |
45db54d5 KO |
1217 | struct bvec_iter src_iter = src->bi_iter; |
1218 | struct bvec_iter dst_iter = dst->bi_iter; | |
1219 | ||
1220 | bio_copy_data_iter(dst, &dst_iter, src, &src_iter); | |
38a72dac | 1221 | } |
16ac3d63 KO |
1222 | EXPORT_SYMBOL(bio_copy_data); |
1223 | ||
45db54d5 KO |
1224 | /** |
1225 | * bio_list_copy_data - copy contents of data buffers from one chain of bios to | |
1226 | * another | |
1227 | * @src: source bio list | |
1228 | * @dst: destination bio list | |
1229 | * | |
1230 | * Stops when it reaches the end of either the @src list or @dst list - that is, | |
1231 | * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of | |
1232 | * bios). | |
1233 | */ | |
1234 | void bio_list_copy_data(struct bio *dst, struct bio *src) | |
1235 | { | |
1236 | struct bvec_iter src_iter = src->bi_iter; | |
1237 | struct bvec_iter dst_iter = dst->bi_iter; | |
1238 | ||
1239 | while (1) { | |
1240 | if (!src_iter.bi_size) { | |
1241 | src = src->bi_next; | |
1242 | if (!src) | |
1243 | break; | |
1244 | ||
1245 | src_iter = src->bi_iter; | |
1246 | } | |
1247 | ||
1248 | if (!dst_iter.bi_size) { | |
1249 | dst = dst->bi_next; | |
1250 | if (!dst) | |
1251 | break; | |
1252 | ||
1253 | dst_iter = dst->bi_iter; | |
1254 | } | |
1255 | ||
1256 | bio_copy_data_iter(dst, &dst_iter, src, &src_iter); | |
1257 | } | |
1258 | } | |
1259 | EXPORT_SYMBOL(bio_list_copy_data); | |
1260 | ||
491221f8 | 1261 | void bio_free_pages(struct bio *bio) |
1dfa0f68 CH |
1262 | { |
1263 | struct bio_vec *bvec; | |
6dc4f100 | 1264 | struct bvec_iter_all iter_all; |
1dfa0f68 | 1265 | |
2b070cfe | 1266 | bio_for_each_segment_all(bvec, bio, iter_all) |
1dfa0f68 CH |
1267 | __free_page(bvec->bv_page); |
1268 | } | |
491221f8 | 1269 | EXPORT_SYMBOL(bio_free_pages); |
1dfa0f68 | 1270 | |
1da177e4 LT |
1271 | /* |
1272 | * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions | |
1273 | * for performing direct-IO in BIOs. | |
1274 | * | |
1275 | * The problem is that we cannot run set_page_dirty() from interrupt context | |
1276 | * because the required locks are not interrupt-safe. So what we can do is to | |
1277 | * mark the pages dirty _before_ performing IO. And in interrupt context, | |
1278 | * check that the pages are still dirty. If so, fine. If not, redirty them | |
1279 | * in process context. | |
1280 | * | |
1281 | * We special-case compound pages here: normally this means reads into hugetlb | |
1282 | * pages. The logic in here doesn't really work right for compound pages | |
1283 | * because the VM does not uniformly chase down the head page in all cases. | |
1284 | * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't | |
1285 | * handle them at all. So we skip compound pages here at an early stage. | |
1286 | * | |
1287 | * Note that this code is very hard to test under normal circumstances because | |
1288 | * direct-io pins the pages with get_user_pages(). This makes | |
1289 | * is_page_cache_freeable return false, and the VM will not clean the pages. | |
0d5c3eba | 1290 | * But other code (eg, flusher threads) could clean the pages if they are mapped |
1da177e4 LT |
1291 | * pagecache. |
1292 | * | |
1293 | * Simply disabling the call to bio_set_pages_dirty() is a good way to test the | |
1294 | * deferred bio dirtying paths. | |
1295 | */ | |
1296 | ||
1297 | /* | |
1298 | * bio_set_pages_dirty() will mark all the bio's pages as dirty. | |
1299 | */ | |
1300 | void bio_set_pages_dirty(struct bio *bio) | |
1301 | { | |
cb34e057 | 1302 | struct bio_vec *bvec; |
6dc4f100 | 1303 | struct bvec_iter_all iter_all; |
1da177e4 | 1304 | |
2b070cfe | 1305 | bio_for_each_segment_all(bvec, bio, iter_all) { |
3bb50983 CH |
1306 | if (!PageCompound(bvec->bv_page)) |
1307 | set_page_dirty_lock(bvec->bv_page); | |
1da177e4 LT |
1308 | } |
1309 | } | |
1310 | ||
1da177e4 LT |
1311 | /* |
1312 | * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. | |
1313 | * If they are, then fine. If, however, some pages are clean then they must | |
1314 | * have been written out during the direct-IO read. So we take another ref on | |
24d5493f | 1315 | * the BIO and re-dirty the pages in process context. |
1da177e4 LT |
1316 | * |
1317 | * It is expected that bio_check_pages_dirty() will wholly own the BIO from | |
ea1754a0 KS |
1318 | * here on. It will run one put_page() against each page and will run one |
1319 | * bio_put() against the BIO. | |
1da177e4 LT |
1320 | */ |
1321 | ||
65f27f38 | 1322 | static void bio_dirty_fn(struct work_struct *work); |
1da177e4 | 1323 | |
65f27f38 | 1324 | static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); |
1da177e4 LT |
1325 | static DEFINE_SPINLOCK(bio_dirty_lock); |
1326 | static struct bio *bio_dirty_list; | |
1327 | ||
1328 | /* | |
1329 | * This runs in process context | |
1330 | */ | |
65f27f38 | 1331 | static void bio_dirty_fn(struct work_struct *work) |
1da177e4 | 1332 | { |
24d5493f | 1333 | struct bio *bio, *next; |
1da177e4 | 1334 | |
24d5493f CH |
1335 | spin_lock_irq(&bio_dirty_lock); |
1336 | next = bio_dirty_list; | |
1da177e4 | 1337 | bio_dirty_list = NULL; |
24d5493f | 1338 | spin_unlock_irq(&bio_dirty_lock); |
1da177e4 | 1339 | |
24d5493f CH |
1340 | while ((bio = next) != NULL) { |
1341 | next = bio->bi_private; | |
1da177e4 | 1342 | |
d241a95f | 1343 | bio_release_pages(bio, true); |
1da177e4 | 1344 | bio_put(bio); |
1da177e4 LT |
1345 | } |
1346 | } | |
1347 | ||
1348 | void bio_check_pages_dirty(struct bio *bio) | |
1349 | { | |
cb34e057 | 1350 | struct bio_vec *bvec; |
24d5493f | 1351 | unsigned long flags; |
6dc4f100 | 1352 | struct bvec_iter_all iter_all; |
1da177e4 | 1353 | |
2b070cfe | 1354 | bio_for_each_segment_all(bvec, bio, iter_all) { |
24d5493f CH |
1355 | if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) |
1356 | goto defer; | |
1da177e4 LT |
1357 | } |
1358 | ||
d241a95f | 1359 | bio_release_pages(bio, false); |
24d5493f CH |
1360 | bio_put(bio); |
1361 | return; | |
1362 | defer: | |
1363 | spin_lock_irqsave(&bio_dirty_lock, flags); | |
1364 | bio->bi_private = bio_dirty_list; | |
1365 | bio_dirty_list = bio; | |
1366 | spin_unlock_irqrestore(&bio_dirty_lock, flags); | |
1367 | schedule_work(&bio_dirty_work); | |
1da177e4 LT |
1368 | } |
1369 | ||
c4cf5261 JA |
1370 | static inline bool bio_remaining_done(struct bio *bio) |
1371 | { | |
1372 | /* | |
1373 | * If we're not chaining, then ->__bi_remaining is always 1 and | |
1374 | * we always end io on the first invocation. | |
1375 | */ | |
1376 | if (!bio_flagged(bio, BIO_CHAIN)) | |
1377 | return true; | |
1378 | ||
1379 | BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); | |
1380 | ||
326e1dbb | 1381 | if (atomic_dec_and_test(&bio->__bi_remaining)) { |
b7c44ed9 | 1382 | bio_clear_flag(bio, BIO_CHAIN); |
c4cf5261 | 1383 | return true; |
326e1dbb | 1384 | } |
c4cf5261 JA |
1385 | |
1386 | return false; | |
1387 | } | |
1388 | ||
1da177e4 LT |
1389 | /** |
1390 | * bio_endio - end I/O on a bio | |
1391 | * @bio: bio | |
1da177e4 LT |
1392 | * |
1393 | * Description: | |
4246a0b6 CH |
1394 | * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred |
1395 | * way to end I/O on a bio. No one should call bi_end_io() directly on a | |
1396 | * bio unless they own it and thus know that it has an end_io function. | |
fbbaf700 N |
1397 | * |
1398 | * bio_endio() can be called several times on a bio that has been chained | |
1399 | * using bio_chain(). The ->bi_end_io() function will only be called the | |
1400 | * last time. At this point the BLK_TA_COMPLETE tracing event will be | |
1401 | * generated if BIO_TRACE_COMPLETION is set. | |
1da177e4 | 1402 | **/ |
4246a0b6 | 1403 | void bio_endio(struct bio *bio) |
1da177e4 | 1404 | { |
ba8c6967 | 1405 | again: |
2b885517 | 1406 | if (!bio_remaining_done(bio)) |
ba8c6967 | 1407 | return; |
7c20f116 CH |
1408 | if (!bio_integrity_endio(bio)) |
1409 | return; | |
1da177e4 | 1410 | |
309dca30 CH |
1411 | if (bio->bi_bdev) |
1412 | rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio); | |
67b42d0b | 1413 | |
ba8c6967 CH |
1414 | /* |
1415 | * Need to have a real endio function for chained bios, otherwise | |
1416 | * various corner cases will break (like stacking block devices that | |
1417 | * save/restore bi_end_io) - however, we want to avoid unbounded | |
1418 | * recursion and blowing the stack. Tail call optimization would | |
1419 | * handle this, but compiling with frame pointers also disables | |
1420 | * gcc's sibling call optimization. | |
1421 | */ | |
1422 | if (bio->bi_end_io == bio_chain_endio) { | |
1423 | bio = __bio_chain_endio(bio); | |
1424 | goto again; | |
196d38bc | 1425 | } |
ba8c6967 | 1426 | |
309dca30 CH |
1427 | if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { |
1428 | trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio); | |
fbbaf700 N |
1429 | bio_clear_flag(bio, BIO_TRACE_COMPLETION); |
1430 | } | |
1431 | ||
9e234eea | 1432 | blk_throtl_bio_endio(bio); |
b222dd2f SL |
1433 | /* release cgroup info */ |
1434 | bio_uninit(bio); | |
ba8c6967 CH |
1435 | if (bio->bi_end_io) |
1436 | bio->bi_end_io(bio); | |
1da177e4 | 1437 | } |
a112a71d | 1438 | EXPORT_SYMBOL(bio_endio); |
1da177e4 | 1439 | |
20d0189b KO |
1440 | /** |
1441 | * bio_split - split a bio | |
1442 | * @bio: bio to split | |
1443 | * @sectors: number of sectors to split from the front of @bio | |
1444 | * @gfp: gfp mask | |
1445 | * @bs: bio set to allocate from | |
1446 | * | |
1447 | * Allocates and returns a new bio which represents @sectors from the start of | |
1448 | * @bio, and updates @bio to represent the remaining sectors. | |
1449 | * | |
f3f5da62 | 1450 | * Unless this is a discard request the newly allocated bio will point |
dad77584 BVA |
1451 | * to @bio's bi_io_vec. It is the caller's responsibility to ensure that |
1452 | * neither @bio nor @bs are freed before the split bio. | |
20d0189b KO |
1453 | */ |
1454 | struct bio *bio_split(struct bio *bio, int sectors, | |
1455 | gfp_t gfp, struct bio_set *bs) | |
1456 | { | |
f341a4d3 | 1457 | struct bio *split; |
20d0189b KO |
1458 | |
1459 | BUG_ON(sectors <= 0); | |
1460 | BUG_ON(sectors >= bio_sectors(bio)); | |
1461 | ||
0512a75b KB |
1462 | /* Zone append commands cannot be split */ |
1463 | if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) | |
1464 | return NULL; | |
1465 | ||
f9d03f96 | 1466 | split = bio_clone_fast(bio, gfp, bs); |
20d0189b KO |
1467 | if (!split) |
1468 | return NULL; | |
1469 | ||
1470 | split->bi_iter.bi_size = sectors << 9; | |
1471 | ||
1472 | if (bio_integrity(split)) | |
fbd08e76 | 1473 | bio_integrity_trim(split); |
20d0189b KO |
1474 | |
1475 | bio_advance(bio, split->bi_iter.bi_size); | |
1476 | ||
fbbaf700 | 1477 | if (bio_flagged(bio, BIO_TRACE_COMPLETION)) |
20d59023 | 1478 | bio_set_flag(split, BIO_TRACE_COMPLETION); |
fbbaf700 | 1479 | |
20d0189b KO |
1480 | return split; |
1481 | } | |
1482 | EXPORT_SYMBOL(bio_split); | |
1483 | ||
6678d83f KO |
1484 | /** |
1485 | * bio_trim - trim a bio | |
1486 | * @bio: bio to trim | |
1487 | * @offset: number of sectors to trim from the front of @bio | |
1488 | * @size: size we want to trim @bio to, in sectors | |
1489 | */ | |
1490 | void bio_trim(struct bio *bio, int offset, int size) | |
1491 | { | |
1492 | /* 'bio' is a cloned bio which we need to trim to match | |
1493 | * the given offset and size. | |
6678d83f | 1494 | */ |
6678d83f KO |
1495 | |
1496 | size <<= 9; | |
4f024f37 | 1497 | if (offset == 0 && size == bio->bi_iter.bi_size) |
6678d83f KO |
1498 | return; |
1499 | ||
6678d83f | 1500 | bio_advance(bio, offset << 9); |
4f024f37 | 1501 | bio->bi_iter.bi_size = size; |
376a78ab DM |
1502 | |
1503 | if (bio_integrity(bio)) | |
fbd08e76 | 1504 | bio_integrity_trim(bio); |
376a78ab | 1505 | |
6678d83f KO |
1506 | } |
1507 | EXPORT_SYMBOL_GPL(bio_trim); | |
1508 | ||
1da177e4 LT |
1509 | /* |
1510 | * create memory pools for biovec's in a bio_set. | |
1511 | * use the global biovec slabs created for general use. | |
1512 | */ | |
8aa6ba2f | 1513 | int biovec_init_pool(mempool_t *pool, int pool_entries) |
1da177e4 | 1514 | { |
7a800a20 | 1515 | struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1; |
1da177e4 | 1516 | |
8aa6ba2f | 1517 | return mempool_init_slab_pool(pool, pool_entries, bp->slab); |
1da177e4 LT |
1518 | } |
1519 | ||
917a38c7 KO |
1520 | /* |
1521 | * bioset_exit - exit a bioset initialized with bioset_init() | |
1522 | * | |
1523 | * May be called on a zeroed but uninitialized bioset (i.e. allocated with | |
1524 | * kzalloc()). | |
1525 | */ | |
1526 | void bioset_exit(struct bio_set *bs) | |
1da177e4 | 1527 | { |
df2cb6da KO |
1528 | if (bs->rescue_workqueue) |
1529 | destroy_workqueue(bs->rescue_workqueue); | |
917a38c7 | 1530 | bs->rescue_workqueue = NULL; |
df2cb6da | 1531 | |
8aa6ba2f KO |
1532 | mempool_exit(&bs->bio_pool); |
1533 | mempool_exit(&bs->bvec_pool); | |
9f060e22 | 1534 | |
7878cba9 | 1535 | bioset_integrity_free(bs); |
917a38c7 KO |
1536 | if (bs->bio_slab) |
1537 | bio_put_slab(bs); | |
1538 | bs->bio_slab = NULL; | |
1539 | } | |
1540 | EXPORT_SYMBOL(bioset_exit); | |
1da177e4 | 1541 | |
917a38c7 KO |
1542 | /** |
1543 | * bioset_init - Initialize a bio_set | |
dad08527 | 1544 | * @bs: pool to initialize |
917a38c7 KO |
1545 | * @pool_size: Number of bio and bio_vecs to cache in the mempool |
1546 | * @front_pad: Number of bytes to allocate in front of the returned bio | |
1547 | * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS | |
1548 | * and %BIOSET_NEED_RESCUER | |
1549 | * | |
dad08527 KO |
1550 | * Description: |
1551 | * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller | |
1552 | * to ask for a number of bytes to be allocated in front of the bio. | |
1553 | * Front pad allocation is useful for embedding the bio inside | |
1554 | * another structure, to avoid allocating extra data to go with the bio. | |
1555 | * Note that the bio must be embedded at the END of that structure always, | |
1556 | * or things will break badly. | |
1557 | * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated | |
1558 | * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). | |
1559 | * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to | |
1560 | * dispatch queued requests when the mempool runs out of space. | |
1561 | * | |
917a38c7 KO |
1562 | */ |
1563 | int bioset_init(struct bio_set *bs, | |
1564 | unsigned int pool_size, | |
1565 | unsigned int front_pad, | |
1566 | int flags) | |
1567 | { | |
917a38c7 | 1568 | bs->front_pad = front_pad; |
9f180e31 ML |
1569 | if (flags & BIOSET_NEED_BVECS) |
1570 | bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); | |
1571 | else | |
1572 | bs->back_pad = 0; | |
917a38c7 KO |
1573 | |
1574 | spin_lock_init(&bs->rescue_lock); | |
1575 | bio_list_init(&bs->rescue_list); | |
1576 | INIT_WORK(&bs->rescue_work, bio_alloc_rescue); | |
1577 | ||
49d1ec85 | 1578 | bs->bio_slab = bio_find_or_create_slab(bs); |
917a38c7 KO |
1579 | if (!bs->bio_slab) |
1580 | return -ENOMEM; | |
1581 | ||
1582 | if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) | |
1583 | goto bad; | |
1584 | ||
1585 | if ((flags & BIOSET_NEED_BVECS) && | |
1586 | biovec_init_pool(&bs->bvec_pool, pool_size)) | |
1587 | goto bad; | |
1588 | ||
1589 | if (!(flags & BIOSET_NEED_RESCUER)) | |
1590 | return 0; | |
1591 | ||
1592 | bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); | |
1593 | if (!bs->rescue_workqueue) | |
1594 | goto bad; | |
1595 | ||
1596 | return 0; | |
1597 | bad: | |
1598 | bioset_exit(bs); | |
1599 | return -ENOMEM; | |
1600 | } | |
1601 | EXPORT_SYMBOL(bioset_init); | |
1602 | ||
28e89fd9 JA |
1603 | /* |
1604 | * Initialize and setup a new bio_set, based on the settings from | |
1605 | * another bio_set. | |
1606 | */ | |
1607 | int bioset_init_from_src(struct bio_set *bs, struct bio_set *src) | |
1608 | { | |
1609 | int flags; | |
1610 | ||
1611 | flags = 0; | |
1612 | if (src->bvec_pool.min_nr) | |
1613 | flags |= BIOSET_NEED_BVECS; | |
1614 | if (src->rescue_workqueue) | |
1615 | flags |= BIOSET_NEED_RESCUER; | |
1616 | ||
1617 | return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags); | |
1618 | } | |
1619 | EXPORT_SYMBOL(bioset_init_from_src); | |
1620 | ||
de76fd89 | 1621 | static int __init init_bio(void) |
1da177e4 LT |
1622 | { |
1623 | int i; | |
1624 | ||
7878cba9 | 1625 | bio_integrity_init(); |
1da177e4 | 1626 | |
de76fd89 CH |
1627 | for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) { |
1628 | struct biovec_slab *bvs = bvec_slabs + i; | |
a7fcd37c | 1629 | |
de76fd89 CH |
1630 | bvs->slab = kmem_cache_create(bvs->name, |
1631 | bvs->nr_vecs * sizeof(struct bio_vec), 0, | |
1632 | SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); | |
1da177e4 | 1633 | } |
1da177e4 | 1634 | |
f4f8154a | 1635 | if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) |
1da177e4 LT |
1636 | panic("bio: can't allocate bios\n"); |
1637 | ||
f4f8154a | 1638 | if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) |
a91a2785 MP |
1639 | panic("bio: can't create integrity pool\n"); |
1640 | ||
1da177e4 LT |
1641 | return 0; |
1642 | } | |
1da177e4 | 1643 | subsys_initcall(init_bio); |